

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2018/167019 A1

(43) International Publication Date
20 September 2018 (20.09.2018)

(51) International Patent Classification:

C07D 403/12 (2006.01) **C07D 405/12** (2006.01)
C07D 413/14 (2006.01) **C07D 471/04** (2006.01)
C07D 401/12 (2006.01) **C07D 209/42** (2006.01)
C07D 403/14 (2006.01)

MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/EP2018/056170

(22) International Filing Date:

13 March 2018 (13.03.2018)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

17160838.3 14 March 2017 (14.03.2017) EP

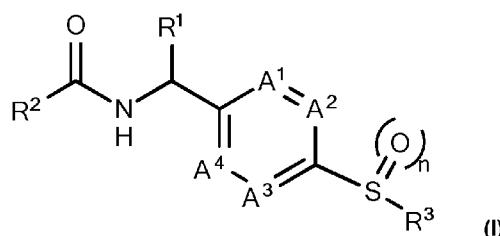
(71) Applicant: **BOEHRINGER INGELHEIM INTERNATIONAL GMBH** [DE/DE]; Binger Strasse 173, 55216 Ingelheim am Rhein (DE).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))

Published:

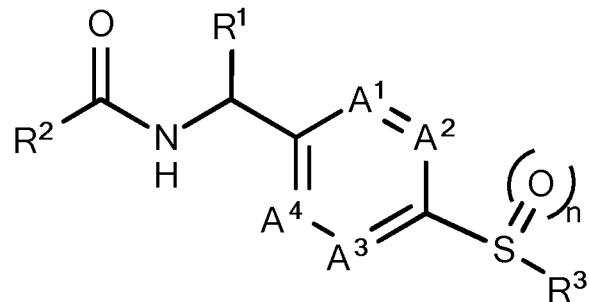

— with international search report (Art. 21(3))

(72) Inventors: **WEINSTABL, Harald**; Boehringer Ingelheim International GmbH, Corporate Patents, Binger Strasse 173, 55216 Ingelheim am Rhein (DE). **DAHMANN, Georg**; Boehringer Ingelheim International GmbH, Corporate Patents, Binger Strasse 173, 55216 Ingelheim am Rhein (DE). **TREU, Matthias**; Boehringer Ingelheim International GmbH, Corporate Patents, Binger Strasse 173, 55216 Ingelheim am Rhein (DE). **WELLENZOHN, Bernd**; Boehringer Ingelheim International GmbH, Corporate Patents, Binger Strasse 173, 55216 Ingelheim am Rhein (DE). **ZAHN, Stephan Karl**; Boehringer Ingelheim International GmbH, Corporate Patents, Binger Strasse 173, 55216 Ingelheim am Rhein (DE).

(74) Agent: **SIMON, Elke Anna Maria** et al.; Binger Strasse 173, 55216 Ingelheim am Rhein (DE).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,

(54) Title: TOSYLACETATE BASED COMPOUNDS AND DERIVATIVES THEREOF AS PHGDH INHIBITORS


(57) Abstract: The present invention encompasses compounds of formula (I), wherein the groups R¹ to R, A¹ to A⁴ and n have the meanings given in the claims and specification, their use as inhibitors of PHGDH, pharmaceutical compositions which contain compounds of this kind and their use as medicaments, especially as agents for treatment and/or prevention of oncological diseases.

**TOSYLACETATE BASED COMPOUNDS AND DERIVATIVES THEREOF AS
PHGDH INHIBITORS**

Field of the invention

The present invention relates to new tosylacetate based compounds and derivatives of

5 formula (I)

,

wherein the groups \mathbf{R}^1 to \mathbf{R}^3 , \mathbf{A}^1 to \mathbf{A}^4 and \mathbf{n} have the meanings given in the claims and
10 specification, their use as inhibitors of PHGDH, pharmaceutical compositions which contain compounds of this kind and their use as medicaments, especially as agents for treatment and/or prevention of oncological diseases.

Background of the invention

15 The essential contribution of the serine synthetic pathway (SSP) to tumorigenesis has been shown by a plethora of studies. Although serine (Ser) is classified as a nutritionally nonessential amino acid, Ser is indispensable and displays a critical role in several cellular processes that are of particular importance for tumor cells: (i) Ser can be converted to glycine via the action of the serine hydroxymethyltransferase (SHMT) providing carbon units for purine nucleotide synthesis (Kalhan & Hanson, *J Biol Chem.* (2012) 287:19786-19791; Locasale, *Nat Rev Cancer.* (2013) 13:572-583; Amelio et al.,
20 *Trends Biochem Sci.* (2014) 39:191-198; Mehrmohamadi & Locasale *Mol Cell Oncol.* (2015) 2:e996418; Tedeschi et al., *Cell Death Dis.* (2013) 4:e877). (ii) Ser can react with palmitoyl-CoA to provide sphingosine required for the generation of sphingolipids that

constitute the cell membrane (Ravez et al., *J Med Chem.* (2016) e-pub ahead; Xu et al., *J Biol Chem.* (1991) 266: 2143-2150). (iii) Ser serves as a precursor of several amino acids like glycine and cysteine (Vazquez et al., *Cancer Res.* (2013) 73: 478-482; Ravez et al., *J Med Chem.* (2016) e-pub ahead). (iv) Ser plays a crucial role in the regulation of the redox 5 status due to the fact that serine is involved in the production of NADPH (Tedeschi et al., *Cell Death Dis.* (2013) 4:e877). (v) Last but not least, PHGDH, the key enzyme of the de novo SSP was shown to produce the oncometabolite D-2-hydroxyglutarate (D-2HG) which has been linked with epigenetic de-regulation in tumor cells (Mondesir et al., *J Blood Med.* (2016) 7: 171-180; Fan et al., *ACS Chem Biol.* (2015) 10: 510-516). The SSP not only 10 provides essential building blocks/metabolites but also epigenetic regulators, Ser and its synthesis pathway essentially contributes to cell proliferation, tumor homeostasis and to de-differentiation of cancer cells (Mattaini et al., *J Cell Biol.* (2016) 214: 249-257; El-Hattab, *Mol Genet Metab.* (2016) 118: 153-159).

De novo synthesis of Ser is triggered via the SSP. The SSP diverts of the 3-PG from 15 glycolysis to generate Ser as well as equimolar amounts of reduced nicotinamide adenine dinucleotide (NADH) and α -ketoglutarate (α -KG). The SSP consists of three successive enzymatic reactions Phosphoglycerate dehydrogenase (PHGDH) catalyzes the first step and produces 3-phosphohydroxypyruvate (3-PPyr) by NAD⁺-coupled oxidation of 3-PG. Next, 3-PPyr is converted in phosphoserine by the phosphoserine aminotransferase 1 20 (PSAT-1) and then into serine by the action of phosphoserine phosphatase (PSPH). Finally, Ser can be converted into glycine by SHMT.

Elevated rates of SSP have been observed in neoplastic tissues of different origins (Snell & Weber, *Biochem J.* (1986) 233: 617-620; DeBerardinis, *Cell Metab.* (2011) 14: 285-286) and have been linked with tumorigenesis (DeBerardinis, *Cell Metab.* (2011) 14: 285-286) 25 with PHGDH being the key enzyme. PHGDH was shown to be amplified/overexpressed in melanoma and breast cancer (Beroukhim et al., *Nature.* (2010) 463: 899-8905; Locasale et al., *Nat Genet.* (2011) 43: 869-874; Possemato et al., *Nature.* (2011) 476: 346-350). In addition, recent studies identified several factors as activators of the SSP in cancer cells which also determine cancer pathogenesis, such as the general control nonderepressible 30 2 kinase (GCN2) leading to expression of the activating transcription factor 4 (ATF4). Similarly, ATF4 can also be induced by the transcription factor nuclear factor erythroid-2-related factor 2 (NRF2) in human non-small-cell lung cancer (Wang et al., *Neoplasia.* (2013) 15: 989-997; DeNicola et al., *Nat Genet.* (2015) 47: 1475-1481). Also MYC

activates the SSP by transcriptional upregulation of the expression of SSP enzymes under deprivation of glucose or glutamine (Sun et al., *Cell Res.* (2015) 25: 429-444). Most importantly, a recent study demonstrated that hypoxia induces the expression of SSP enzymes, and this phenomenon is mediated by HIF-1 and HIF-2 in a large panel of breast cancer cell lines (Samanta et al., *Cancer Res.* (2016) 76: 4430-4442). Finally, it was reported that tumor suppressors PKC- ζ and p53 repress the expression of PHGDH (Ma et al., *Cell.* (2013) 152: 599-611; Ou et al., *J Biol Chem.* (2015) 290: 457-466; Maddocks et al., *Nature.* (2013) 493: 542-546). Thus, deficiency of PKC- ζ or p53 in cancer cells promotes the activity of PHGDH and drives the SSP.

The knockdown of PHGDH inhibited the growth of cancer cell lines that harbor PHGDH amplification and/or PHGDH overexpression but had no effect on lines expressing PHGDH at a normal level (Luo, *Breast Cancer Res.* (2011) 13: 317; Possemato et al., *Nature.* (2011) 476: 346-350). A negative-selection RNAi screening using a human breast cancer xenograft model at an orthotopic site in mouse was developed by Possemato et al. in 2011 for identifying novel cancer targets (Possemato et al., *Nature.* (2011) 476: 346-350). This method highlighted PHGDH as a gene required for in vivo tumorigenesis and breast cancer progression (Samanta et al., *Cancer Res.* (2016) 76: 4430-4442) and that this gene is localized in a genomic region of recurrent copy number gain in breast cancer. Subsequently, it was shown that the most abundantly expressed SSP enzymes in basal-like TNBC tissues was PHGDH and that the expression levels of PHGDH were inversely correlated with clinical prognostic factors (Noh et al., *Tumour Biol.* (2014) 35: 4457-4468; Ravez et al., *J Med Chem.* (2016) e-pub ahead). Also Knockdown of PHGDH in melanoma cells selectively inhibited the growth of cells that exhibit PHGDH amplification versus those that lack this amplification (Locasale et al., *Nat Genet.* (2011) 43: 869-874; Mullarky et al., *Pigment Cell Melanoma Res.* (2011) 24: 1112-1115). The prognostic significance of amplification/overexpression of PHGDH has clearly been demonstrated for colon cancer (Yoon et al., *Oncology.* (2015) 89: 351-359; Jia et al., *Transl Oncol.* (2016) 9: 191-196), glioma (Liu et al., *J Neurooncol.* (2013) 111: 245-255), cervical adenocarcinoma (Jing et al., *Cancer Biol Ther.* (2015) 16: 541-548) and lung adenocarcinoma (DeNicola et al., *Nat Genet.* (2015) 47: 1475-1481; Amelio et al., *Oncogene.* (2014) 33: 5039-5046). In thyroid cancer it was shown that a B-Raf V600E mutation was associated with a higher rate of PHGDH expression compared to non-mutant cases (Chen et al., *Int J Mol Med.* (2015) 36: 1607-1614; Sun et al., *J Transl Med.* (2016) 14: 168).

Interestingly, in leukemia an increase in oxidative stress upon inhibition of glutamine metabolism was identified as the trigger of the up-regulation of PHGDH. Silencing of PHGDH inhibited leukemia cell growth, thereby identifying serine as a key pro-survival factor (Polet et al., *Oncotarget*. (2016) 7: 1765-1776).

5 Most recently, it was demonstrated that PHGDH catalyzes NADH-dependent reduction of α-ketoglutarate to the oncometabolite D-2-hydroxyglutarate (D-2HG) (Fan et al., *ACS Chem Biol.* (2015) 10: 510-516). Originally D-2HG was identified as an oncometabolite leading to inhibition of several de-methylases thereby changing the epigenetic landscape in tumor cells (Prensner & Chinnaiyan, *Nature Medicine* (2011) 17: 291–293). D-2HG is

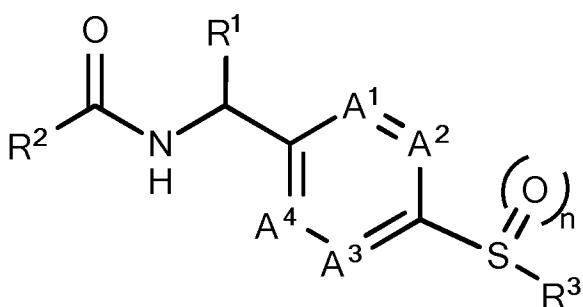
10 produced in large amounts by isocitrate dehydrogenase mutants in glioma (Xu et al., *Cancer Cell.* (2011) 19: 17-30; Rossetto et al., *Rev Neurol (Paris)* (2011) 167: 699-703) and acute myeloid leukemia (Ward et al., *Cancer Cell.* (2010) 17: 225-234; Ward et al., *Oncogene.* (2012) 31: 2491-2498). Most interestingly, in breast cancer PHGDH was identified as an enzymatic driver of D-2HG production (Fan et al., *ACS Chem Biol.* (2015) 15: 510-516). Terunuma and colleagues performed a detailed metabolic profiling of human breast tumors and uncovered intrinsic metabolite signatures in these tumors using an untargeted discovery approach and validation of key metabolites. D-2HG accumulated at high levels in those breast cancer tumors where MYC pathway activation was observed. Most importantly, MYC-driven accumulation of D-2HG is associated with a poor

20 prognosis in breast cancer (Terunuma et al., *J Clin Invest.* (2014) 124: 398-412). As it was shown that MYC – among others - regulate enzymes of the glycolytic pathway (Stine et al., *Cancer Discov.* (2015) 5: 1024-39) PHGDH amplification and/or overexpression in breast cancer could potentially influence cell physiology by overproduction of D-2HG in a similar way (e.g. DNA methylation) as it was shown for glioma and AML (see above).

25 The mechanism(s) by which PHGDH supports tumorigenesis might be manifold but the enzymatic function of PHGDH is a prerequisite to essentially contribute to cell proliferation, invasion, and tumorigenicity of cancer cells. All these data strongly support PHGDH as an attractive drug target in tumors that overexpress PHGDH or exhibit PHGDH gene amplification.

30 Indole-2-carboxamide based NAD⁺-competitive PHGDH inhibitors have been disclosed in 2015 and published in 2016 illustrating fragment based drug discovery at AstraZeneca (*Drug discovery today* (2016), 21(8), 1272-83). These compounds lack cellular potency.

The allosteric PHGDH inhibitors CBR-5884 with low micromolar potency was reported by Cantley et al. (Proceedings of the National Academy of Sciences of the United States of America (2016), 113(7), 1778-1783) Further allosteric binders (NCT-503 and NCT-502) were reported by Sabatini et al. (Nature Chemical Biology (2016), 12(6), 452-458) and by 5 Locasale and Lai (PKUMDL-WQ-2101, PKUMDL-WQ-2201, PKUMDL-WQ-2202, PKUMDL-WQ-2203) in Wang, et al. (Rational Design of Selective Allosteric Inhibitors of PHGDH and Serine Synthesis with Anti-tumor Activity, Cell Chemical Biology, 2017, Vol. 24-1 p. 55-65).

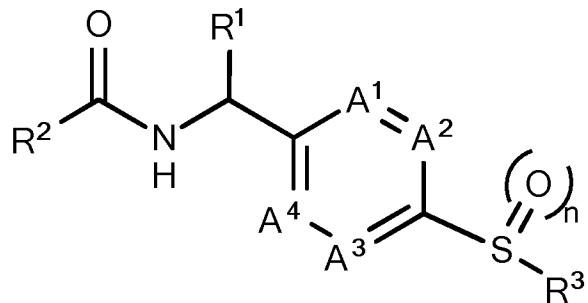

In WO2016040449, RAZE THERAPEUTICS INC. disclosed pyrazole based NAD⁺- 10 competitive PHGDH inhibitors or acid-bioisosteric inhibitors.

None of the above mentioned inhibitors were able to show nanomolar cellular biomarker modulation (¹³C-serine).

The aim of the present invention is to provide alternative PHGDH inhibitors which are also 15 selective and potent compounds having nanomolar biomarker modulation. This is achieved by the compounds of the invention via intracellular release of potent carboxylic acids (drug) from their permeable ester precursors (prodrug).

Detailed description of the invention

It has now been found that, surprisingly, compounds of formula (I)



20

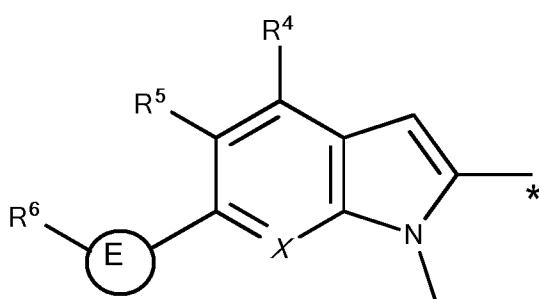
wherein the groups groups **R**¹ to **R**³, **A**¹ to **A**⁴ and **n** have the meanings given hereinafter act as inhibitors of PHGDH which are involved in modulating cell proliferation. Thus, the compounds according to the invention may be used for example for the treatment of diseases characterised by excessive or abnormal cell proliferation.

25

The present invention therefore relates to a compound of formula (I)

,

wherein


5 **n** is 1 or 2;

A¹, **A**², **A**³ and **A**⁴ are independently selected from $-N=$ and $-CR^{13}=$ and wherein none, one or two independently selected **A**¹, **A**², **A**³ and **A**⁴ can be $-N=$;

R¹³ is hydrogen, halogen, $-C_{1-3}$ alkyl, $-O-C_{1-3}$ alkyl;

R¹ is selected from the group consisting of hydrogen, $-C_{1-3}$ alkyl and $-C_{1-3}$ alkyl-OH;

10 **R**² is

, wherein

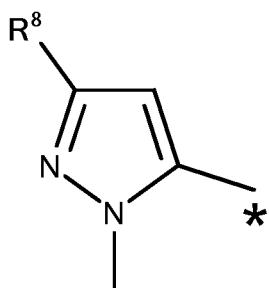
X is $-N=$ or $-CR^7-$;

R⁷ is selected from hydrogen, halogen, $-C_{1-3}$ alkyl and $-O-C_{1-3}$ alkyl;

15 **R**⁴ is selected from the group consisting of hydrogen, halogen, $-C_{1-3}$ haloalkyl, $-C_{1-3}$ alkyl;

R⁵ is selected from the group consisting of hydrogen, halogen, $-C_{1-3}$ haloalkyl, $-C_{1-3}$ alkyl;

C_3alkyl ;

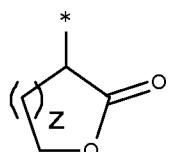

or \mathbf{R}^4 and \mathbf{R}^5 taken together form a ring selected from a 5 or 6 membered heteroaryl, a 5 or 6 membered heterocyclyl and phenyl;

\mathbf{E} is selected from a bond, $-\text{C}_{1-3}\text{alkylene}$ -, $-\text{C}_{1-3}\text{haloalkylene}$ -, $-\text{C}_{2-3}\text{alkynylene}$, 5 or 6 membered -heteroarylene- and 5 or 6 membered -heterocyclene-;

\mathbf{R}^6 is selected from hydrogen, halogen, $-\text{C}_{1-3}\text{alkyl}$, which $-\text{C}_{1-3}\text{alkyl}$ is optionally substituted with one group selected from $-\text{NH}_2$, $-\text{N}(\text{C}_{1-3}\text{alkyl})_2$ and 5 or 6 membered heterocycloalkyl;

or \mathbf{R}^2 is

10



, wherein

\mathbf{R}^8 is selected from indolyl or phenyl, each of which group is optionally substituted with one, two or three substituents independently selected from halogen, $-\text{C}_{1-3}\text{haloalkyl}$, $-\text{C}_{1-3}\text{alkyl}$, $-\text{O-C}_{1-3}\text{alkyl}$;

15

\mathbf{R}^3 is

and z is 1 or 2;

or \mathbf{R}^3 is $-\text{C}(\text{R}^9\text{R}^{10})\text{-COO-R}^{11}$ and

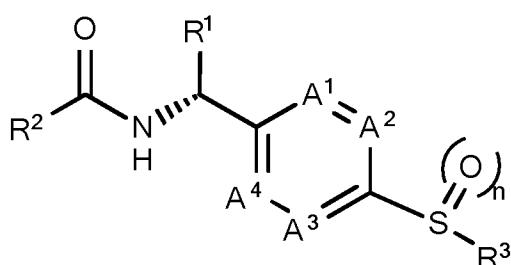
20

\mathbf{R}^9 and \mathbf{R}^{10} are the same or different, independently selected from hydrogen, $-\text{C}_{1-3}$

$\text{C}_{1-3}\text{alkyl}$, $-\text{C}_{1-3}\text{alkyl-O-C}_{1-3}\text{alkyl}$;

or R^9 and R^{10} taken together form a $-\text{C}_{3-5}\text{cycloalkyl}$ or a 6 membered heterocycloalkyl, which heterocycloalkyl is optionally substituted with $-\text{C}(\text{O})-\text{C}_{1-3}\text{alkyl}$;

5 R^{11} is selected from the group consisting of hydrogen, $-\text{C}_{3-6}\text{cycloalkyl}$, 4-6 membered heterocycloalkyl and $-\text{C}_{1-5}\text{alkyl}$, which $-\text{C}_{1-5}\text{alkyl}$ group is optionally and independently substituted with one or two the same or different substituents, selected from R^{12} ;


10 R^{12} is selected from the group consisting of $-\text{C}_{3-6}\text{cycloalkyl}$, halogen, $-\text{OH}$, $-\text{O-C}_{1-4}\text{alkyl}$, $-\text{O-C}_{1-4}\text{alkyl-O-C}_{1-4}\text{alkyl}$, $-\text{O-C}_{1-4}\text{alkyl-OH}$, $-\text{OC}(\text{O})-\text{C}_{1-4}\text{alkyl}$, $-\text{NHCOO-C}_{1-4}\text{alkyl}$, $-\text{SO}_2-\text{C}_{1-3}\text{alkyl}$, $-\text{N}(\text{C}_{1-3}\text{alkyl})_2$, 5 or 6 membered heteroaryl and phenyl, which phenyl group is optionally substituted with $-\text{C}_{1-3}\text{haloalkyl}$, or R^{12} is a 4 to 6 membered heterocycloalkyl, which heterocycloalkyl is optionally substituted with halogen or $-\text{C}_{1-3}\text{alkyl}$.

15 The example compounds as disclosed herein have chiral centres. Although not separately depicted in the tables all stereoisomers of such example compounds are meant to be embodiments of the invention and shall be deemed to be specifically disclosed, *i.e.* the compound as depicted in the tables, the corresponding enantiomer and/or diastereoisomers not specifically depicted in the tables and the racemate of both enantiomers are separate embodiments of the invention. The preferred embodiments are 20 the compounds disclosed in the examples.

Synthetic intermediates generically defined as well as specifically disclosed herein and their salts are also part of the invention.

The present invention further relates to hydrates, solvates, polymorphs, metabolites, derivatives, isomers and prodrugs of a compound of formula (I).

25 In an aspect the present invention relates to compounds of Formula (I')

It is to be understood that compounds of Formula (I') is a subset of compounds of Formula (I) and that whenever the term "compound(s) of Formula (I)" is used this also includes compound(s) (I') unless stated otherwise. Furthermore all aspects of the invention relating to a compound of Formula (I) or compounds of Formula (I) also in
5 addition corresponds to an aspect of the invention relating to a compound of Formula (I') or compounds of Formula (I').

The present invention further relates to a hydrate of a compound of formula (I).

The present invention further relates to a solvate of a compound of formula (I).

The present invention further relates to a polymorph of a compound of formula (I).

10 In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein each of \mathbf{A}^1 , \mathbf{A}^2 , \mathbf{A}^3 and \mathbf{A}^4 is $-\text{CH}=$.

In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein each of \mathbf{A}^1 , \mathbf{A}^2 and \mathbf{A}^4 is $-\text{CH}=$ and \mathbf{A}^3 is $-\text{N}=$.

15 In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein each of \mathbf{A}^2 , \mathbf{A}^3 and \mathbf{A}^4 is $-\text{CH}=$ and \mathbf{A}^1 is $-\text{N}=$.

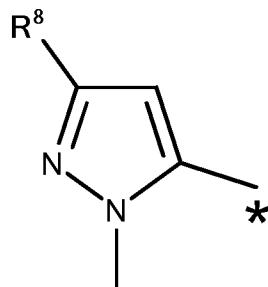
In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein \mathbf{n} is 2.

20 In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein \mathbf{n} is 1.

In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein \mathbf{R}^1 is selected from among hydrogen, $-\text{CH}_3$ and $-\text{CH}_2\text{OH}$.

In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein \mathbf{R}^1 is selected from among $-\text{CH}_3$ and $-\text{CH}_2\text{OH}$.

25 In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein \mathbf{X} is $-\text{N}=$.

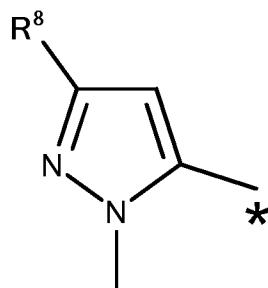

In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein \mathbf{X} is $-\text{CR}^7-$ and \mathbf{R}^7 is selected from hydrogen, halogen, $-\text{C}_{1-3}\text{alkyl}$ and $-\text{O-}\text{C}_{1-3}\text{alkyl}$.

In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein **X** is $-\text{CR}^7-$ and **R**⁷ is selected from hydrogen, halogen and $-\text{C}_{1-3}\text{alkyl}$.

In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein **X** is $-\text{CR}^7-$ and **R**⁷ is selected from hydrogen and $-\text{O-C}_{1-3}\text{alkyl}$.

5 In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein **X** is $-\text{CR}^7-$ and **R**⁷ is selected from among hydrogen, -Cl and -CH₃.

In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein **R**² is


10

and

R⁸ is selected from indolyl and phenyl, wherein the phenyl is optionally substituted with halogen, $-\text{O-C}_{1-3}\text{alkyl}$ and $-\text{C}_{1-3}\text{alkyl}$.

In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein **R**² is

15

and

R⁸ is selected from

indolyl and phenyl, wherein the phenyl is optionally substituted with -F, -Cl, $-\text{O-CH}_3$, $-\text{CH}_3$.

In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein \mathbf{R}^4 is selected from among hydrogen and halogen.

In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein \mathbf{R}^4 is selected from among hydrogen, -F and -Cl.

5 In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein \mathbf{R}^5 is selected from among hydrogen, -F, -Cl, -CF₃.

In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein \mathbf{R}^5 is selected from among hydrogen, halogen and -C₁₋₃haloalkyl.

10 In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein \mathbf{R}^5 and \mathbf{R}^4 taken together form a phenyl ring.

In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein

\mathbf{E} is a bond and \mathbf{R}^6 is selected from hydrogen, -C₁₋₃alkyl and halogen; or

15 \mathbf{E} is a 5 membered -heteroarylene- and \mathbf{R}^6 is -C₁₋₃alkyl substituted with a 6 membered heterocycloalkyl; or

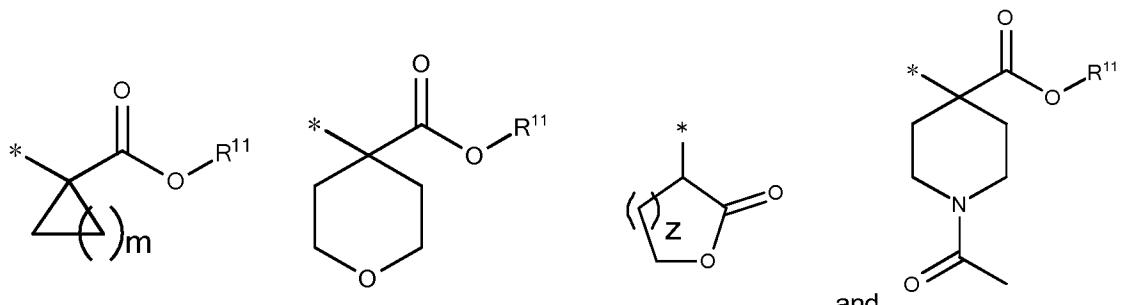
\mathbf{E} is a 6 membered -heterocycloalkylene- and \mathbf{R}^6 is -C₁₋₃alkyl,

\mathbf{E} is -C₂₋₃alkynylene- and \mathbf{R}^6 is hydrogen;

In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein \mathbf{E} is a bond and \mathbf{R}^6 is -C₁₋₃alkyl.

20 In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein \mathbf{E} is a bond and \mathbf{R}^6 is -CH₃.

In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein


25 \mathbf{R}^{11} is selected from the group consisting of hydrogen, 4 to 6 membered heterocycloalkyl, or -C₁₋₅alkyl, which -C₁₋₅alkyl is optionally and independently substituted with 1 or 2 the same or different substituents selected from \mathbf{R}^{12} ; and

\mathbf{R}^{12} is selected from the group consisting of -cyclopropyl, halogen, -OH, -O-C₁₋₄alkyl, -O-C₁₋₄alkyl-OH, -O-C₁₋₄alkyl-O-C₁₋₄alkyl, -OC(O)-C₁₋₄alkyl, -NHCOO-C₁₋₄alkyl, -SO₂-C₁₋₃alkyl,

$-\text{N}(\text{C}_{1-3}\text{alkyl})_2$, , , pyridyl, 4 to 6 membered heterocycloalkyl and phenyl, which phenyl group is optionally substituted with $-\text{C}_{1-3}\text{haloalkyl}$.

In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein R^3 is selected from the group consisting of $-\text{C}(\text{R}^9\text{R}^{10})\text{-COO-R}^{11}$,

5

\mathbf{z} is 1 or 2;

\mathbf{m} is 1, 2, 3 or 4;

R^9 and R^{10} are the same or different, independently selected from hydrogen, $-\text{C}_{1-3}\text{alkyl}$, $-\text{C}_{1-3}\text{alkyl-O-C}_{1-3}\text{alkyl}$;

10 R^{11} is selected from the group consisting of hydrogen, $-\text{C}_{3-6}\text{cycloalkyl}$, 4-6 membered heterocycloalkyl and $-\text{C}_{1-5}\text{alkyl}$, which $-\text{C}_{1-5}\text{alkyl}$ group is optionally and independently substituted with one or two the same or different substituents, selected from R^{12} ;

R^{12} is selected from the group consisting of $-\text{C}_{3-6}\text{cycloalkyl}$, halogen, $-\text{OH}$, $-\text{O-C}_{1-4}\text{alkyl}$, $-\text{O-C}_{1-4}\text{alkyl-O-C}_{1-4}\text{alkyl}$, $-\text{O-C}_{1-4}\text{alkyl-OH}$, $-\text{OC(O)-C}_{1-4}\text{alkyl}$, $-\text{NHCOO-C}_{1-4}\text{alkyl}$, $-\text{SO}_2\text{-C}_{1-3}\text{alkyl}$,

15 $-\text{N}(\text{C}_{1-3}\text{alkyl})_2$, 5 or 6 membered heteroaryl and phenyl, which phenyl group is optionally substituted with $-\text{C}_{1-3}\text{haloalkyl}$, or R^{12} is a 4 to 6 membered heterocycloalkyl,

or

In another aspect the present invention relates to a compound of formula (I), or a salt

thereof, wherein \mathbf{R}^{11} is H or $-\text{C}_{1-5}\text{alkyl}$.

In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein \mathbf{R}^{11} is $-\text{C}_{1-5}\text{alkyl}$.

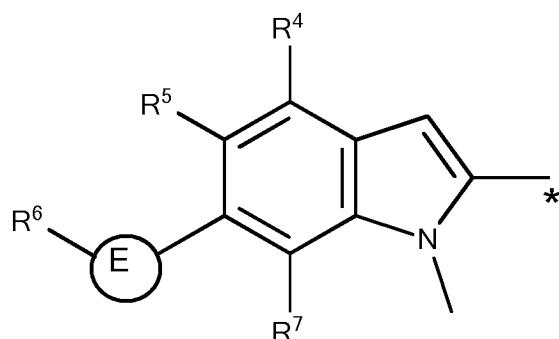
In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein \mathbf{R}^9 and \mathbf{R}^{10} are the same or different, independently selected from hydrogen and $-\text{C}_{1-3}\text{alkyl}$.

In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein \mathbf{R}^3 is selected from the group consisting of $-\text{C}(\mathbf{R}^9\mathbf{R}^{10})\text{-COO-}\mathbf{R}^{11}$;

\mathbf{R}^9 and \mathbf{R}^{10} are the same or different, independently selected from hydrogen, $-\text{C}_{1-3}\text{alkyl}$; and \mathbf{R}^{11} is hydrogen or $-\text{C}_{1-5}\text{alkyl}$.

In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein

\mathbf{E} is a bond and \mathbf{R}^6 is selected from hydrogen, $-\text{CH}_3$ and $-\text{I}$; or


\mathbf{E} is $-\text{pyrazolylene-}$ and \mathbf{R}^6 is $-\text{CH}_2\text{CH}_3$ substituted with morpholine; or

\mathbf{E} is a $-\text{piperazinylene-}$ and \mathbf{R}^6 is $-\text{CH}_3$.

\mathbf{E} is $-\text{CC-}$ \mathbf{R}^6 is hydrogen.

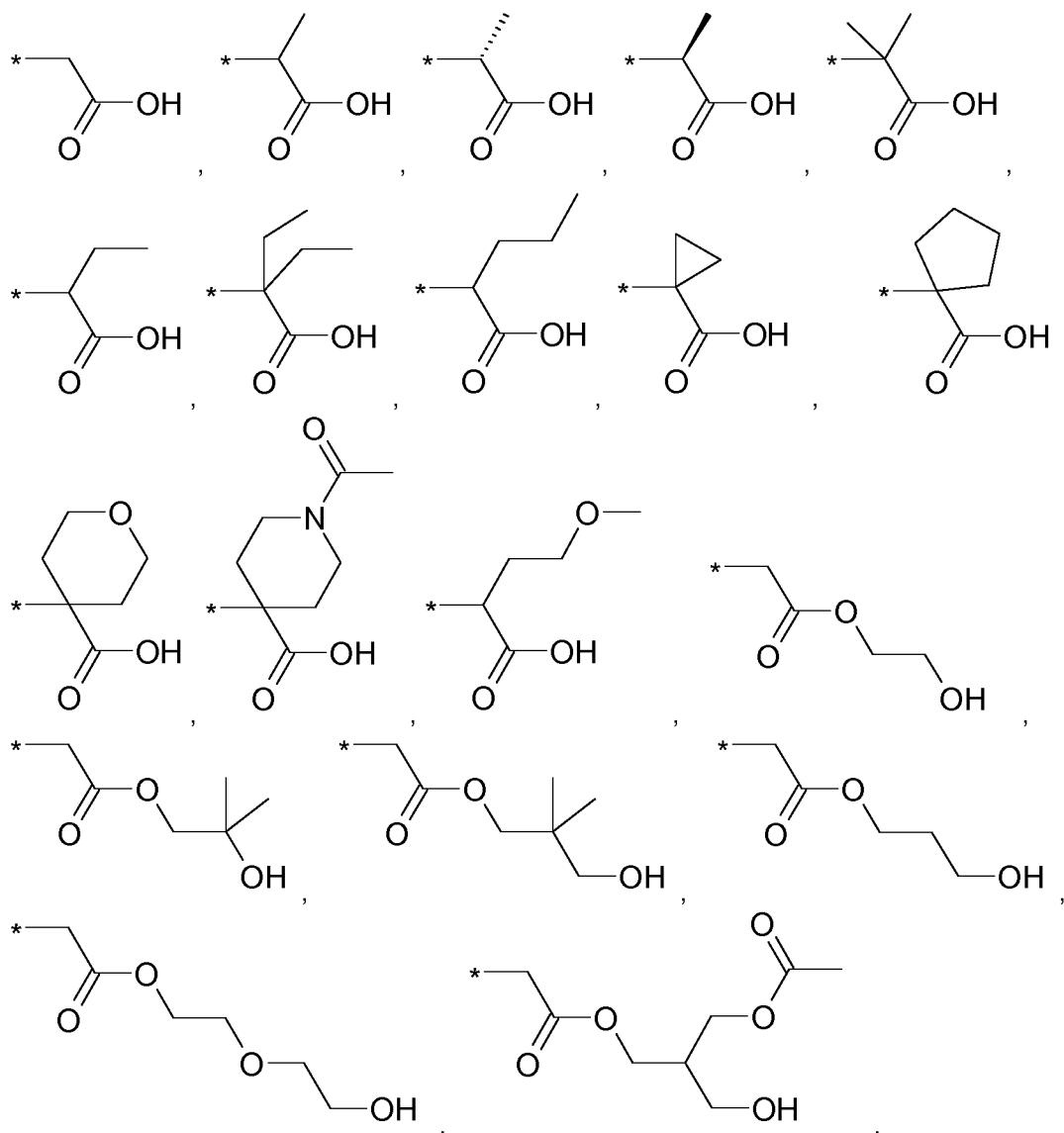
In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein

\mathbf{R}^2 is

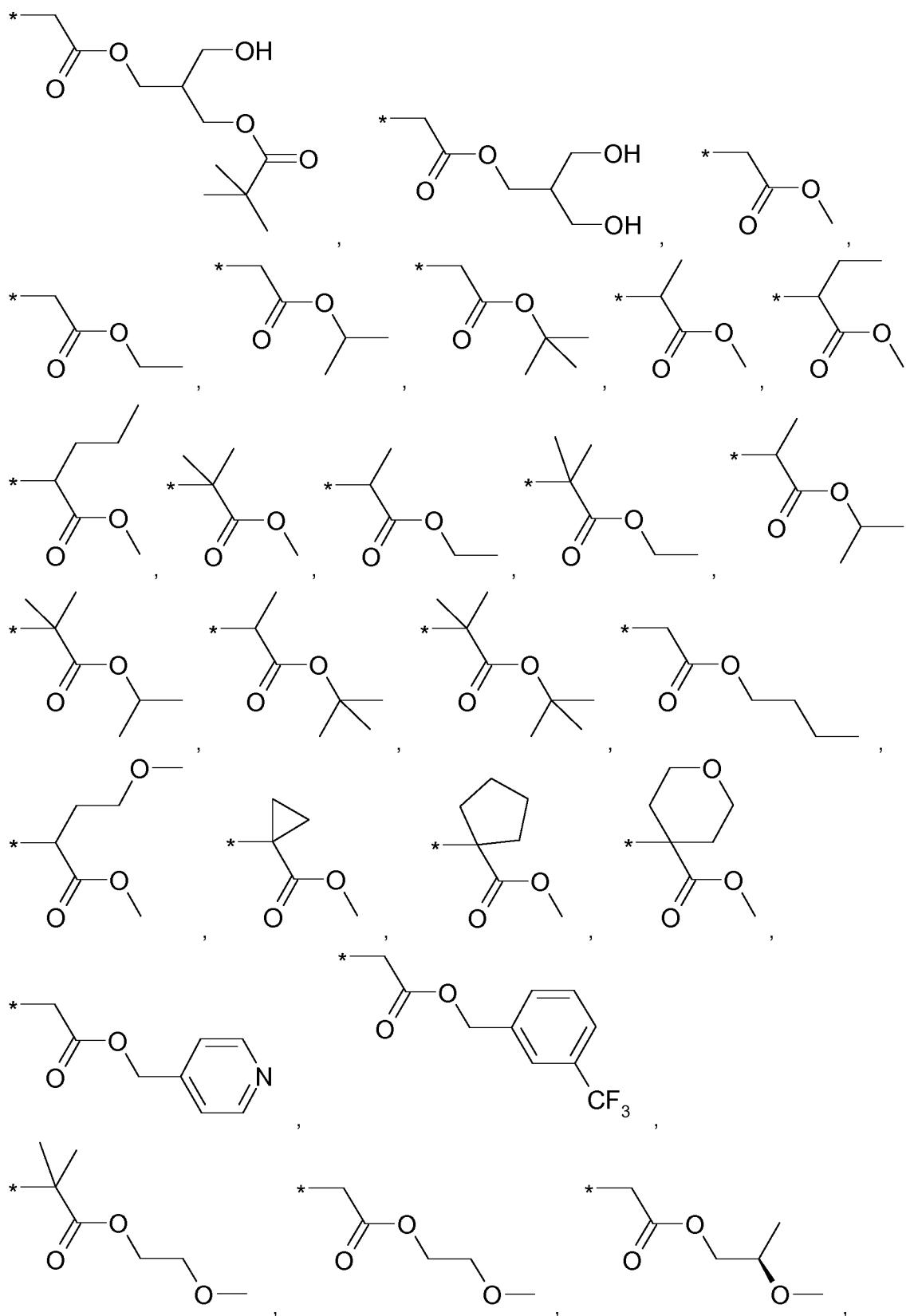
20

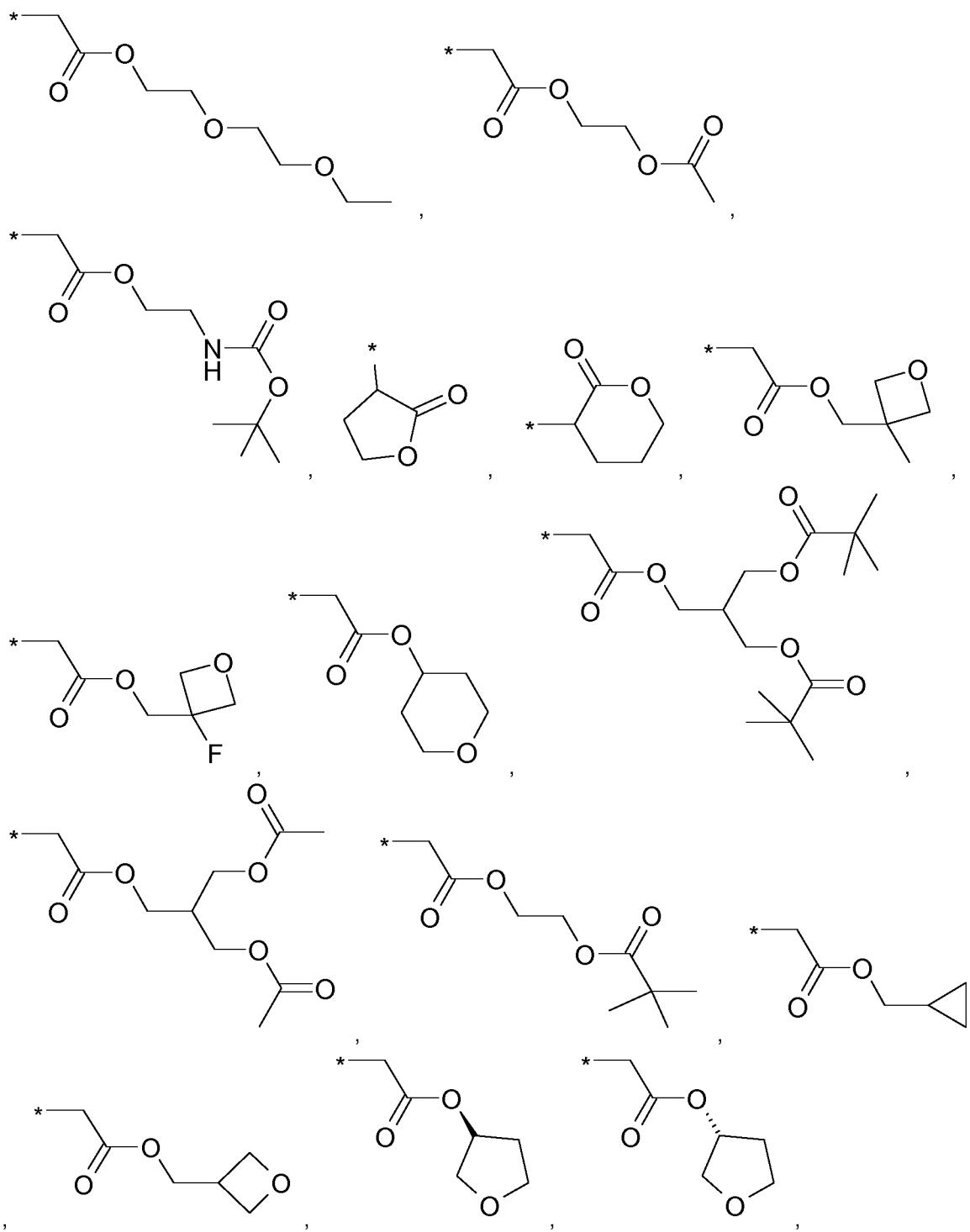
;

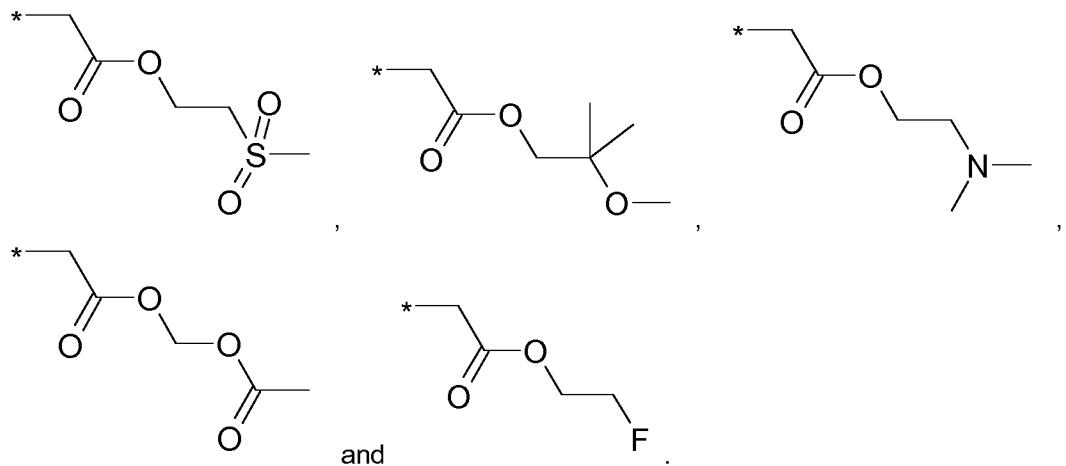
\mathbf{R}^7 is hydrogen;


R⁴ is selected from the group consisting of -F, -Cl, Br and -C₁₋₃alkyl;

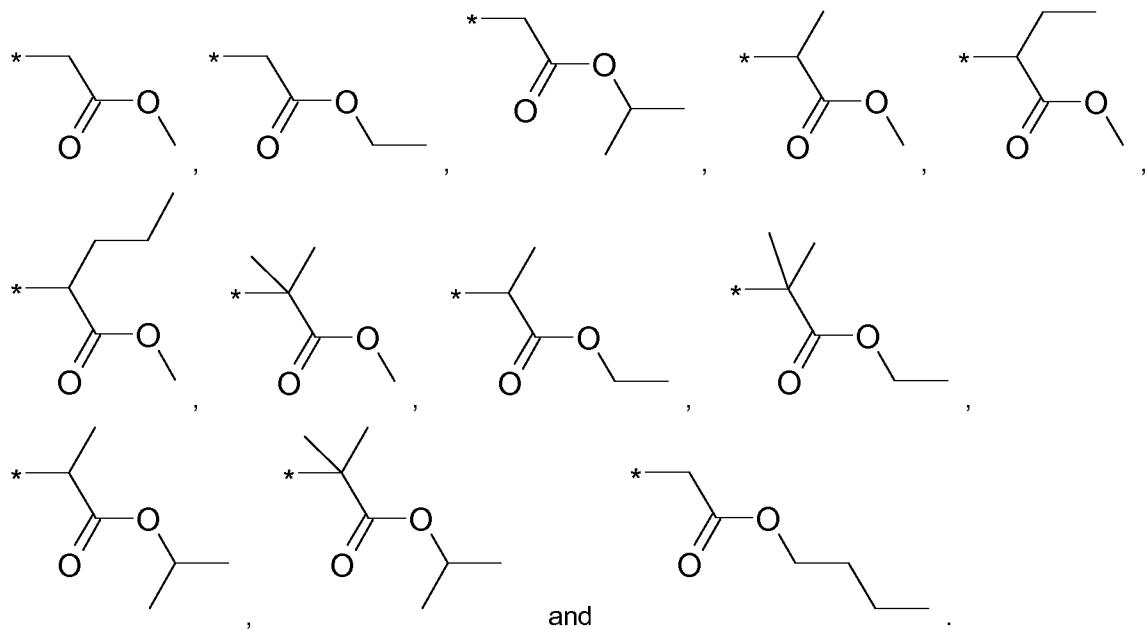
R⁵ is selected from the group consisting of -F, -Cl and Br;

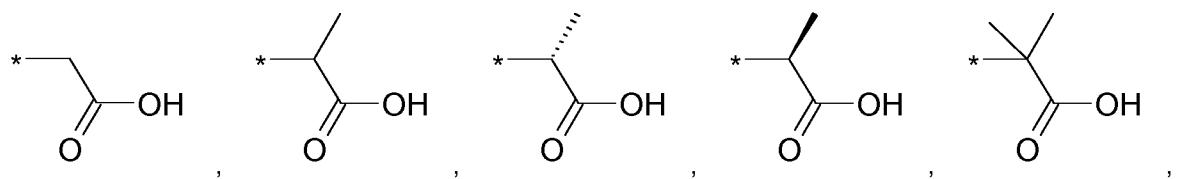

E is a bond and **R**⁶ is -C₁₋₃alkyl.

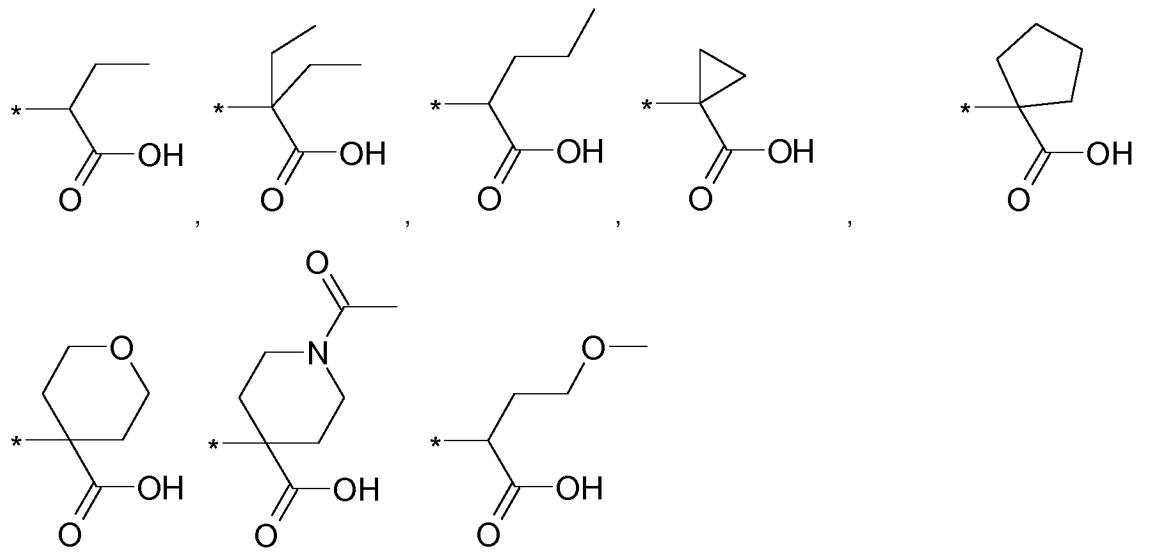

In another aspect the present invention relates to a compound of formula (I), or a salt


5 thereof, wherein **R**³ is selected from among

10




In another aspect the present invention relates to a compound of formula (I), or a salt


5 thereof, wherein \mathbf{R}^3 is selected from

10

In another aspect the present invention relates to a compound of formula (I), or a salt thereof, wherein \mathbf{R}^3 is selected from

Carboxylic acids according to formula (I) are up to three log-units more potent compared

5 to published chemical matter due to unique structural features of the -S(O)n-R3-moiety. However, these acids are badly cell permeable and therefore only micromolar serine modulators.

In addition, esters according to formula (I) are capable to release corresponding potent carboxylic acids intracellularly but the esters themselves are less potent PHGDH

10 inhibitors than the corresponding carboxylic acids. Due to the permeable nature of the esters they can penetrate the cell wall and thus show the ability of low nanomolar intracellular biomarker modulation (¹³Cserine).

The present invention further relates to a pharmaceutically acceptable salt of a compound of formula (I).

15 The present invention further relates to a co-crystal, preferably a pharmaceutically acceptable co-crystal, of a compound of formula (I).

The present invention further relates to a pharmaceutically acceptable salt of a compound of formula (I) with anorganic or organic acids or bases.

20 The present invention is directed to compounds of formula (I) which are useful in the prevention and/or treatment of a disease and/or condition wherein the inhibition of PHGDH is of therapeutic benefit, including but not limited to the treatment and/or prevention of cancer.

In another aspect the invention relates to a compound of formula (I) – or a pharmaceutically acceptable salt thereof – for use as a medicament.

In another aspect the invention relates to a compound of formula (I) – or a pharmaceutically acceptable salt thereof – for use in a method of treatment of the human or animal body.

In another aspect the invention relates to a compound of formula (I) – or a pharmaceutically acceptable salt thereof – for use in the treatment and/or prevention of a disease and/or condition wherein the inhibition of PHGDH is of therapeutic benefit.

In another aspect the invention relates to a compound of formula (I) – or a pharmaceutically acceptable salt thereof – for use in the treatment and/or prevention of cancer, infections, inflammations or autoimmune diseases.

In another aspect the invention relates to a compound of formula (I) – or a pharmaceutically acceptable salt thereof – for use in a method of treatment and/or prevention of cancer, infections, inflammations or autoimmune diseases in the human or animal body.

In another aspect the invention relates to the use of a compound of formula (I) – or a pharmaceutically acceptable salt thereof – for preparing a pharmaceutical composition for the treatment and/or prevention of cancer, infections, inflammations or autoimmune diseases.

In another aspect the invention relates to a compound of formula (I) – or a pharmaceutically acceptable salt thereof – for use in the treatment and/or prevention of cancer.

In another aspect the invention relates to the use of a compound of formula (I) – or a pharmaceutically acceptable salt thereof – for preparing a pharmaceutical composition for the treatment and/or prevention of cancer.

In another aspect the invention relates to a compound of formula (I) – or a pharmaceutically acceptable salt thereof – for use in a method of treatment and/or prevention of cancer in the human or animal body.

In another aspect the invention relates to a compound of formula (I) – or a pharmaceutically acceptable salt thereof – for use in the treatment and/or prevention of a hematological cancer.

In another aspect the invention relates to a compound of formula (I) – or a pharmaceutically acceptable salt thereof – for use in the treatment and/or prevention of glioma, breast cancer, melanoma, non-small cell lung cancer (NSCLC), colorectal cancer, cervical carcinoma, thyroid cancer, preferably BRAF mutated and leukemia.

5 In another aspect the invention relates to a compound of formula (I) – or a pharmaceutically acceptable salt thereof – for use in the treatment and/or prevention of p53 mutated cancer, MYC-driven cancers and/or cancers with a high level of D-2-hydroxyglutarate (D-2HG).

10 In another aspect the invention relates to the use of a compound of formula (I) – or a pharmaceutically acceptable salt thereof – for preparing a pharmaceutical composition for the treatment and/or prevention of a hematological cancer.

15 In another aspect the invention relates to the use of a compound of formula (I) – or a pharmaceutically acceptable salt thereof – for preparing a pharmaceutical composition for the treatment and/or prevention of glioma, breast cancer, melanoma, non-small cell lung cancer (NSCLC), colorectal cancer, cervical carcinoma, thyroid cancer, preferably BRAF mutated and leukemia.

20 In another aspect the invention relates to the use of a compound of formula (I) – or a pharmaceutically acceptable salt thereof – for preparing a pharmaceutical composition for the treatment and/or prevention of p53 mutated cancer, MYC-driven cancers and/or cancers with a high level of 2DHG.

In another aspect the invention relates to a method for the treatment and/or prevention of a disease and/or condition wherein the inhibition of PHGDH is of therapeutic benefit comprising administering a therapeutically effective amount of a compound of formula (I) – or a pharmaceutically acceptable salt thereof – to a human being.

25 In another aspect the invention relates to a method for the treatment and/or prevention of cancer comprising administering a therapeutically effective amount of a compound of formula (I) – or a pharmaceutically acceptable salt thereof – to a human being.

30 In another aspect the invention relates to a pharmaceutical composition comprising at least one compound of formula (I) – or a pharmaceutically acceptable salt thereof – and a pharmaceutically acceptable carrier.

In another aspect the invention relates to a pharmaceutical preparation comprising a

compound of formula (I) – or a pharmaceutically acceptable salt thereof – and at least one other cytostatic and/or cytotoxic active substance.

In another aspect the invention relates to a compound of formula (I) – or a pharmaceutically acceptable salt thereof – for use in the treatment and/or prevention of 5 cancer, infections, inflammations or autoimmune diseases wherein said compound is administered before, after or together with at least one other cytostatic or cytotoxic active substance.

In another aspect the invention relates to the use of a compound of formula (I) – or a pharmaceutically acceptable salt thereof – for preparing a medicament for the treatment 10 and/or prevention of cancer, infections, inflammations or autoimmune diseases wherein said compound is administered before, after or together with at least one other cytostatic or cytotoxic active substance.

In another aspect the invention relates to a cytostatic or cytotoxic active substance prepared for being administered before, after or together with a compound of formula (I) – 15 or a pharmaceutically acceptable salt thereof – for use in the treatment and/or prevention of cancer, infections, inflammations or autoimmune diseases.

In another aspect the invention relates to a method for the treatment and/or prevention of cancer, infections, inflammations or autoimmune diseases comprising administering to a patient in need thereof a therapeutically effective amount of a compound of formula (I) – 20 or a pharmaceutically acceptable salt thereof – before, after or together with at least one other cytostatic or cytotoxic active substance.

Definitions

Terms not specifically defined herein should be given the meanings that would be given to them by one of skill in the art in light of the disclosure and the context. As used in the 25 specification, however, unless specified to the contrary, the following terms have the meaning indicated and the following conventions are adhered to:

All different depictions of R^x without superscript such as R_x or Rx herein shall refer to and be understood as R^x , e.g. R_1 or $R1$ should refer to R^1 .

All different depictions of A^x without superscript such as A_x or Ax herein shall refer to and 30 be understood as A^x , e.g. A_1 or $A1$ should refer to A^1 .

The use of the prefix C_{x-y} , wherein x and y each represent a natural number ($x < y$),

indicates that the chain or ring structure or combination of chain and ring structure as a whole, specified and mentioned in direct association, may consist of a maximum of **y** and a minimum of **x** carbon atoms.

The indication of the number of members in groups that contain one or more 5 heteroatom(s) (e.g. heteroalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocycylalkyl) relates to the total number of atoms of all the ring members or chain members or the total of all the ring and chain members.

The indication of the number of carbon atoms in groups that consist of a combination of 10 carbon chain and carbon ring structure (e.g. cycloalkylalkyl, arylalkyl) relates to the total number of carbon atoms of all the carbon ring and carbon chain members. Obviously, a ring structure has at least three members.

In general, for groups comprising two or more subgroups (e.g. heteroarylalkyl, heterocycylalkyl, cycloalkylalkyl, arylalkyl) the last named subgroup is the radical attachment point, for example, the substituent aryl-C₁₋₆alkyl means an aryl group which is 15 bound to a C₁₋₆alkyl group, the latter of which is bound to the core or to the group to which the substituent is attached.

In groups like OH, NH₂, S(O), S(O)₂, CN (cyano), COOH, CF₃ or the like, the skilled artisan can see the radical attachment point(s) to the molecule from the free valences of the group itself.

20 As it will be clear to the person skilled in the art, the radical attachment point(s) to the molecule from the free valences of the group itself is indicated with the following symboles “ - ” or “ * ”.

Alkyl denotes monovalent, saturated hydrocarbon chains, which may be present in both straight-chain (unbranched) and branched form. If an **alkyl** is substituted, the substitution 25 may take place independently of one another, by mono- or polysubstitution in each case, on all the hydrogen-carrying carbon atoms.

The term "C₁₋₅alkyl" includes for example H₃C-, H₃C-CH₂-, H₃C-CH₂-CH₂-, H₃C-CH(CH₃)-, H₃C-CH₂-CH₂-CH₂-, H₃C-CH₂-CH(CH₃)-, H₃C-CH(CH₃)-CH₂-, H₃C-C(CH₃)₂-, H₃C-CH₂-CH₂-CH₂-CH₂-, H₃C-CH₂-CH₂-CH(CH₃)-, H₃C-CH₂-CH(CH₃)-CH₂-, 30 H₃C-CH(CH₃)-CH₂-CH₂-, H₃C-CH₂-C(CH₃)₂-, H₃C-C(CH₃)₂-CH₂-, H₃C-CH(CH₃)-CH(CH₃)- and H₃C-CH₂-CH(CH₂CH₃)-.

Further examples of **alkyl** are methyl (Me; -CH₃), ethyl (Et; -CH₂CH₃), 1-propyl (*n*-propyl; *n*-Pr; -CH₂CH₂CH₃), 2-propyl (*i*-Pr; *iso*-propyl; -CH(CH₃)₂), 1-butyl (*n*-butyl; *n*-Bu; -CH₂CH₂CH₂CH₃), 2-methyl-1-propyl (*iso*-butyl; *i*-Bu; -CH₂CH(CH₃)₂), 2-butyl (*sec*-butyl; *sec*-Bu; -CH(CH₃)CH₂CH₃), 2-methyl-2-propyl (*tert*-butyl; *t*-Bu; -C(CH₃)₃),

5 1-pentyl (*n*-pentyl; -CH₂CH₂CH₂CH₂CH₃), 2-pentyl (-CH(CH₃)CH₂CH₂CH₃), 3-pentyl (-CH(CH₂CH₃)₂), 3-methyl-1-butyl (*iso*-pentyl; -CH₂CH₂CH(CH₃)₂), 2-methyl-2-butyl (-C(CH₃)₂CH₂CH₃), 3-methyl-2-butyl (-CH(CH₃)CH(CH₃)₂), 2,2-dimethyl-1-propyl (*neo*-pentyl; -CH₂C(CH₃)₃), 2-methyl-1-butyl (-CH₂CH(CH₃)CH₂CH₃), 1-hexyl (*n*-hexyl; -CH₂CH₂CH₂CH₂CH₂CH₃), 2-hexyl (-CH(CH₃)CH₂CH₂CH₂CH₃), 3-hexyl (-CH(CH₂CH₃)(CH₂CH₂CH₃)), 2-methyl-2-pentyl (-C(CH₃)₂CH₂CH₂CH₃), 3-methyl-2-pentyl (-CH(CH₃)CH(CH₃)CH₂CH₃), 4-methyl-2-pentyl (-CH(CH₃)CH₂CH(CH₃)₂),

10 3-methyl-3-pentyl (-C(CH₃)(CH₂CH₃)₂), 2-methyl-3-pentyl (-CH(CH₂CH₃)CH(CH₃)₂), 2,3-dimethyl-2-butyl (-C(CH₃)₂CH(CH₃)₂), 3,3-dimethyl-2-butyl (-CH(CH₃)C(CH₃)₃), 2,3-dimethyl-1-butyl (-CH₂CH(CH₃)CH(CH₃)CH₃), 2,2-dimethyl-1-butyl (-CH₂C(CH₃)₂CH₂CH₃), 3,3-dimethyl-1-butyl (-CH₂CH₂C(CH₃)₃), 2-methyl-1-pentyl (-CH₂CH(CH₃)CH₂CH₂CH₃), 3-methyl-1-pentyl (-CH₂CH₂CH(CH₃)CH₂CH₃), 1-heptyl (*n*-heptyl), 2-methyl-1-hexyl, 3-methyl-1-hexyl, 2,2-dimethyl-1-pentyl, 2,3-dimethyl-1-pentyl, 2,4-dimethyl-1-pentyl, 3,3-dimethyl-1-pentyl, 2,2,3-trimethyl-1-butyl, 3-ethyl-1-pentyl, 1-octyl (*n*-octyl), 1-nonyl (*n*-nonyl); 1-decyl (*n*-decyl) etc.

20 By the terms propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl etc. without any further definition are meant saturated hydrocarbon groups with the corresponding number of carbon atoms, wherein all isomeric forms are included.

The above definition for **alkyl** also applies if **alkyl** is a part of another (combined) group such as for example C_{x-y}**alkyl**amino or C_{x-y}**alkyloxy**.

25 The term **alkylene** can also be derived from **alkyl**. **Alkylene** is bivalent, unlike **alkyl**, and requires two binding partners. Formally, the second valency is produced by removing a hydrogen atom in an **alkyl**. Corresponding groups are for example -CH₃ and -CH₂-, -CH₂CH₃ and -CH₂CH₂- or >CHCH₃ etc.

The term “C₁₋₄alkylene” includes for example -(CH₂)-, -(CH₂-CH₂)-, -(CH(CH₃))-,

30 -(CH₂-CH₂-CH₂)-, -(C(CH₃)₂)-, -(CH(CH₂CH₃))-, -(CH(CH₃)-CH₂)-, -(CH₂-CH(CH₃))-,

-(CH₂-CH₂-CH₂-CH₂)-, -(CH₂-CH₂-CH(CH₃))-, -(CH(CH₃)-CH₂-CH₂)-,

-(CH₂-CH(CH₃)-CH₂)-, -(CH₂-C(CH₃)₂)-, -(C(CH₃)₂-CH₂)-, -(CH(CH₃)-CH(CH₃))-,

-(CH₂-CH(CH₂CH₃))-, -(CH(CH₂CH₃)-CH₂)-, -(CH(CH₂CH₂CH₃))-, -(CH(CH(CH₃))₂)- and -C(CH₃)(CH₂CH₃)-.

Other examples of **alkylene** are methylene, ethylene, propylene, 1-methylethylene, butylene, 1-methylpropylene, 1,1-dimethylethylene, 1,2-dimethylethylene, pentylene,

5 1,1-dimethylpropylene, 2,2-dimethylpropylene, 1,2-dimethylpropylene, 1,3-dimethylpropylene, hexylene etc.

By the generic terms propylene, butylene, pentylene, hexylene etc. without any further definition are meant all the conceivable isomeric forms with the corresponding number of carbon atoms, i.e. propylene includes 1-methylethylene and butylene includes

10 1-methylpropylene, 2-methylpropylene, 1,1-dimethylethylene and 1,2-dimethylethylene.

The above definition for **alkylene** also applies if **alkylene** is part of another (combined) group such as for example in HO-C_{x-y}**alkylene**amino or H₂N-C_{x-y}**alkylene**oxy.

Unlike **alkyl**, **alkenyl** consists of at least two carbon atoms, wherein at least two adjacent carbon atoms are joined together by a C-C double bond and a carbon atom can only be

15 part of one C-C double bond. If in an **alkyl** as hereinbefore defined having at least two carbon atoms, two hydrogen atoms on adjacent carbon atoms are formally removed and the free valencies are saturated to form a second bond, the corresponding **alkenyl** is formed.

Examples of **alkenyl** are vinyl (ethenyl), prop-1-enyl, allyl (prop-2-enyl), isopropenyl,

20 but-1-enyl, but-2-enyl, but-3-enyl, 2-methyl-prop-2-enyl, 2-methyl-prop-1-enyl, 1-methyl-prop-2-enyl, 1-methyl-prop-1-enyl, 1-methylidenepropyl, pent-1-enyl, pent-2-enyl, pent-3-enyl, pent-4-enyl, 3-methyl-but-3-enyl, 3-methyl-but-2-enyl, 3-methyl-but-1-enyl, hex-1-enyl, hex-2-enyl, hex-3-enyl, hex-4-enyl, hex-5-enyl, 2,3-dimethyl-but-3-enyl, 2,3-dimethyl-but-2-enyl, 2-methylidene-3-methylbutyl, 25 2,3-dimethyl-but-1-enyl, hexa-1,3-dienyl, hexa-1,4-dienyl, penta-1,4-dienyl, penta-1,3-dienyl, buta-1,3-dienyl, 2,3-dimethylbuta-1,3-diene etc.

By the generic terms propenyl, butenyl, pentenyl, hexenyl, butadienyl, pentadienyl, hexadienyl, heptadienyl, octadienyl, nonadienyl, decadienyl etc. without any further

30 definition are meant all the conceivable isomeric forms with the corresponding number of carbon atoms, i.e. propenyl includes prop-1-enyl and prop-2-enyl, butenyl includes but-1-enyl, but-2-enyl, but-3-enyl, 1-methyl-prop-1-enyl, 1-methyl-prop-2-enyl etc.

Alkenyl may optionally be present in the *cis* or *trans* or *E* or *Z* orientation with regard to

the double bond(s).

The above definition for **alkenyl** also applies when **alkenyl** is part of another (combined) group such as for example in C_{x-y} **alkenyl**amino or C_{x-y} **alkenyl**oxy.

Unlike **alkylene**, **alkenylene** consists of at least two carbon atoms, wherein at least two adjacent carbon atoms are joined together by a C-C double bond and a carbon atom can only be part of one C-C double bond. If in an **alkylene** as hereinbefore defined having at least two carbon atoms, two hydrogen atoms at adjacent carbon atoms are formally removed and the free valencies are saturated to form a second bond, the corresponding **alkenylene** is formed.

10 Examples of **alkenylene** are ethenylene, propenylene, 1-methylethenylene, butenylene, 1-methylpropenylene, 1,1-dimethylethenylene, 1,2-dimethylethenylene, pentenylene, 1,1-dimethylpropenylene, 2,2-dimethylpropenylene, 1,2-dimethylpropenylene, 1,3-dimethylpropenylene, hexenylene etc.

15 By the generic terms propenylene, butenylene, pentenylene, hexenylene etc. without any further definition are meant all the conceivable isomeric forms with the corresponding number of carbon atoms, i.e. propenylene includes 1-methylethenylene and butenylene includes 1-methylpropenylene, 2-methylpropenylene, 1,1-dimethylethenylene and 1,2-dimethylethenylene.

20 **Alkenylene** may optionally be present in the *cis* or *trans* or *E* or *Z* orientation with regard to the double bond(s).

The above definition for **alkenylene** also applies when **alkenylene** is a part of another (combined) group as for example in $HO-C_{x-y}$ **alkenylene**amino or H_2N-C_{x-y} **alkenylene**oxy.

25 Unlike **alkyl**, **alkynyl** consists of at least two carbon atoms, wherein at least two adjacent carbon atoms are joined together by a C-C triple bond. If in an **alkyl** as hereinbefore defined having at least two carbon atoms, two hydrogen atoms in each case at adjacent carbon atoms are formally removed and the free valencies are saturated to form two further bonds, the corresponding **alkynyl** is formed.

30 Examples of **alkynyl** are ethynyl, prop-1-ynyl, prop-2-ynyl, but-1-ynyl, but-2-ynyl, but-3-ynyl, 1-methyl-prop-2-ynyl, pent-1-ynyl, pent-2-ynyl, pent-3-ynyl, pent-4-ynyl, 3-methyl-but-1-ynyl, hex-1-ynyl, hex-2-ynyl, hex-3-ynyl, hex-4-ynyl, hex-5-ynyl etc.

By the generic terms propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl,

decynyl etc. without any further definition are meant all the conceivable isomeric forms with the corresponding number of carbon atoms, *i.e.* propynyl includes prop-1-ynyl and prop-2-ynyl, butynyl includes but-1-ynyl, but-2-ynyl, but-3-ynyl, 1-methyl-prop-1-ynyl, 1-methyl-prop-2-ynyl, *etc.*

5 If a hydrocarbon chain carries both at least one double bond and also at least one triple bond, by definition it belongs to the **alkynyl** subgroup.

The above definition for **alkynyl** also applies if **alkynyl** is part of another (combined) group, as for example in C_{x-y} **alkynyl**amino or C_{x-y} **alkynyl**oxy.

10 Unlike **alkylene**, **alkynylene** consists of at least two carbon atoms, wherein at least two adjacent carbon atoms are joined together by a C-C triple bond. If in an **alkylene** as hereinbefore defined having at least two carbon atoms, two hydrogen atoms in each case at adjacent carbon atoms are formally removed and the free valencies are saturated to form two further bonds, the corresponding **alkynylene** is formed.

15 Examples of **alkynylene** are ethynylene, propynylene, 1-methylethynylene, butynylene, 1-methylpropynylene, 1,1-dimethylethynylene, 1,2-dimethylethynylene, pentynylene, 1,1-dimethylpropynylene, 2,2-dimethylpropynylene, 1,2-dimethylpropynylene, 1,3-dimethylpropynylene, hexynylene *etc.*

20 By the generic terms propynylene, butynylene, pentynylene, hexynylene etc. without any further definition are meant all the conceivable isomeric forms with the corresponding number of carbon atoms, *i.e.* propynylene includes 1-methylethynylene and butynylene includes 1-methylpropynylene, 2-methylpropynylene, 1,1-dimethylethynylene and 1,2-dimethylethynylene.

25 The above definition for **alkynylene** also applies if **alkynylene** is part of another (combined) group, as for example in $HO-C_{x-y}$ **alkynylene**amino or H_2N-C_{x-y} **alkynylene**oxy.

26 By **heteroatoms** are meant oxygen, nitrogen and sulphur atoms.

27 **Haloalkyl (haloalkenyl, haloalkynyl)** is derived from the previously defined **alkyl (alkenyl, alkynyl)** by replacing one or more hydrogen atoms of the hydrocarbon chain independently of one another by halogen atoms, which may be identical or different. If a **haloalkyl (haloalkenyl, haloalkynyl)** is to be further substituted, the substitutions may take place independently of one another, in the form of mono- or polysubstitutions in each case, on all the hydrogen-carrying carbon atoms.

Examples of **haloalkyl (haloalkenyl, haloalkynyl)** are -CF₃, -CHF₂, -CH₂F, -CF₂CF₃, -CHFCF₃, -CH₂CF₃, -CF₂CH₃, -CHFCH₃, -CF₂CF₂CF₃, -CF₂CH₂CH₃, -CF=CF₂, -CCl=CH₂, -CBr=CH₂, -C≡C-CF₃, -CHFCH₂CH₃, -CHFCH₂CF₃ etc.

From the previously defined **haloalkyl (haloalkenyl, haloalkynyl)** are also derived the terms **haloalkylene (haloalkenylene, haloalkynylene)**. **Haloalkylene (haloalkenylene, haloalkynylene)**, unlike **haloalkyl (haloalkenyl, haloalkynyl)**, is bivalent and requires two binding partners. Formally, the second valency is formed by removing a hydrogen atom from a **haloalkyl (haloalkenyl, haloalkynyl)**.

Corresponding groups are for example -CH₂F and -CHF-, -CHFCH₂F and -CHFCHF- or >CFCH₂F etc.

The above definitions also apply if the corresponding halogen-containing groups are part of another (combined) group.

Halogen relates to fluorine, chlorine, bromine and/or iodine atoms.

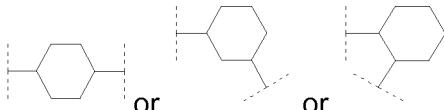
Cycloalkyl is made up of the subgroups **monocyclic hydrocarbon rings, bicyclic hydrocarbon rings** and **spiro-hydrocarbon rings**. The systems are saturated. In bicyclic hydrocarbon rings two rings are joined together so that they have at least two carbon atoms in common. In spiro-hydrocarbon rings one carbon atom (spiroatom) belongs to two rings together.

If a **cycloalkyl** is to be substituted, the substitutions may take place independently of one another, in the form of mono- or polysubstitutions in each case, on all the hydrogen-carrying carbon atoms. **Cycloalkyl** itself may be linked as a substituent to the molecule via every suitable position of the ring system.

Examples of **cycloalkyl** are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, bicyclo[2.2.0]hexyl, bicyclo[3.2.0]heptyl, bicyclo[3.2.1]octyl, bicyclo[2.2.2]octyl, bicyclo[4.3.0]nonyl (octahydroindenyl), bicyclo[4.4.0]decyl (decahydronaphthyl), bicyclo[2.2.1]heptyl (norbornyl), bicyclo[4.1.0]heptyl (norcaranyl), bicyclo[3.1.1]heptyl (pinanyl), spiro[2.5]octyl, spiro[3.3]heptyl etc.

The above definition for **cycloalkyl** also applies if **cycloalkyl** is part of another (combined) group as for example in C_{x-y}**cycloalkylamino**, C_{x-y}**cycloalkyloxy** or C_{x-y}**cycloalkylalkyl**.

If the free valency of a **cycloalkyl** is saturated, then an **alicyclic group** is obtained.


The term **cycloalkylene** can thus be derived from the previously defined **cycloalkyl**.

Cycloalkylene, unlike **cycloalkyl**, is bivalent and requires two binding partners. Formally, the second valency is obtained by removing a hydrogen atom from a **cycloalkyl**.

Corresponding groups are for example:

5

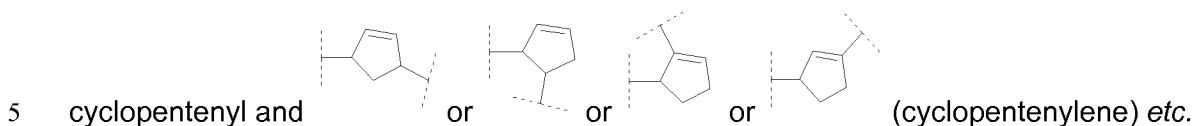
cyclohexyl and

or

(cyclohexylene).

The above definition for **cycloalkylene** also applies if **cycloalkylene** is part of another (combined) group as for example in $\text{HO-C}_{x-y}\text{cycloalkyleneamino}$ or $\text{H}_2\text{N-C}_{x-y}\text{cycloalkyleneoxy}$.

10 **Cycloalkenyl** is also made up of the subgroups **monocyclic hydrocarbon rings**, **bicyclic hydrocarbon rings** and **spiro-hydrocarbon rings**. However, the systems are unsaturated, *i.e.* there is at least one C-C double bond but no aromatic system. If in a **cycloalkyl** as hereinbefore defined two hydrogen atoms at adjacent cyclic carbon atoms are formally removed and the free valencies are saturated to form a second bond, the corresponding **cycloalkenyl** is obtained.


15 If a **cycloalkenyl** is to be substituted, the substitutions may take place independently of one another, in the form of mono- or polysubstitutions in each case, on all the hydrogen-carrying carbon atoms. **Cycloalkenyl** itself may be linked as a substituent to the molecule *via* every suitable position of the ring system.

20 Examples of **cycloalkenyl** are cycloprop-1-enyl, cycloprop-2-enyl, cyclobut-1-enyl, cyclobut-2-enyl, cyclopent-1-enyl, cyclopent-2-enyl, cyclopent-3-enyl, cyclohex-1-enyl, cyclohex-2-enyl, cyclohex-3-enyl, cyclohept-1-enyl, cyclohept-2-enyl, cyclohept-3-enyl, cyclohept-4-enyl, cyclobuta-1,3-dienyl, cyclopenta-1,4-dienyl, cyclopenta-1,3-dienyl, cyclopenta-2,4-dienyl, cyclohexa-1,3-dienyl, cyclohexa-1,5-dienyl, cyclohexa-2,4-dienyl, cyclohexa-1,4-dienyl, cyclohexa-2,5-dienyl, bicyclo[2.2.1]hepta-2,5-dienyl (norborna-2,5-dienyl), bicyclo[2.2.1]hept-2-enyl (norbornenyl), spiro[4.5]dec-2-enyl etc.

25 The above definition for **cycloalkenyl** also applies when **cycloalkenyl** is part of another (combined) group as for example in $\text{C}_{x-y}\text{cycloalkenylamino}$, $\text{C}_{x-y}\text{cycloalkenylxyloxy}$ or $\text{C}_{x-y}\text{cycloalkenylalkyl}$.

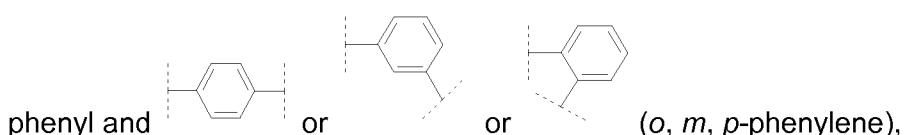
30 If the free valency of a **cycloalkenyl** is saturated, then an **unsaturated alicyclic group** is obtained.

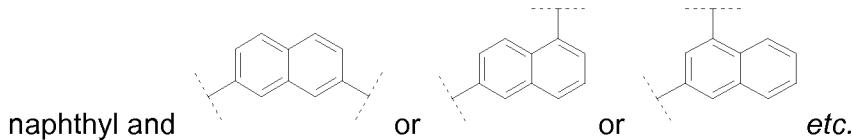
The term **cycloalkenylene** can thus be derived from the previously defined **cycloalkenyl**. **Cycloalkenylene**, unlike **cycloalkenyl**, is bivalent and requires two binding partners. Formally, the second valency is obtained by removing a hydrogen atom from a **cycloalkenyl**. Corresponding groups are for example:

The above definition for **cycloalkenylene** also applies if **cycloalkenylene** is part of another (combined) group as for example in $\text{HO-C}_{x-y}\text{cycloalkenyleneamino}$ or $\text{H}_2\text{N-C}_{x-y}\text{cycloalkenyleneoxy}$.

Aryl denotes mono-, bi- or tricyclic carbocycles with at least one aromatic carbocycle.

10 Preferably, it denotes a monocyclic group with six carbon atoms (phenyl) or a bicyclic group with nine or ten carbon atoms (two six-membered rings or one six-membered ring with a five-membered ring), wherein the second ring may also be aromatic or, however, may also be partially saturated.


If an **aryl** is to be substituted, the substitutions may take place independently of one 15 another, in the form of mono- or polysubstitutions in each case, on all the hydrogen-carrying carbon atoms. **Aryl** itself may be linked as a substituent to the molecule via every suitable position of the ring system.


Examples of **aryl** are phenyl, naphthyl, indanyl (2,3-dihydroindenyl), indenyl, anthracenyl, phenanthrenyl, tetrahydronaphthyl (1,2,3,4-tetrahydronaphthyl, tetralinyl), dihydronaphthyl 20 (1,2-dihydronaphthyl), fluorenyl etc. Most preferred is phenyl.

The above definition of **aryl** also applies if **aryl** is part of another (combined) group as for example in **aryl**amino, **aryl**oxy or **aryl**alkyl.

If the free valency of an **aryl** is saturated, then an **aromatic group** is obtained.

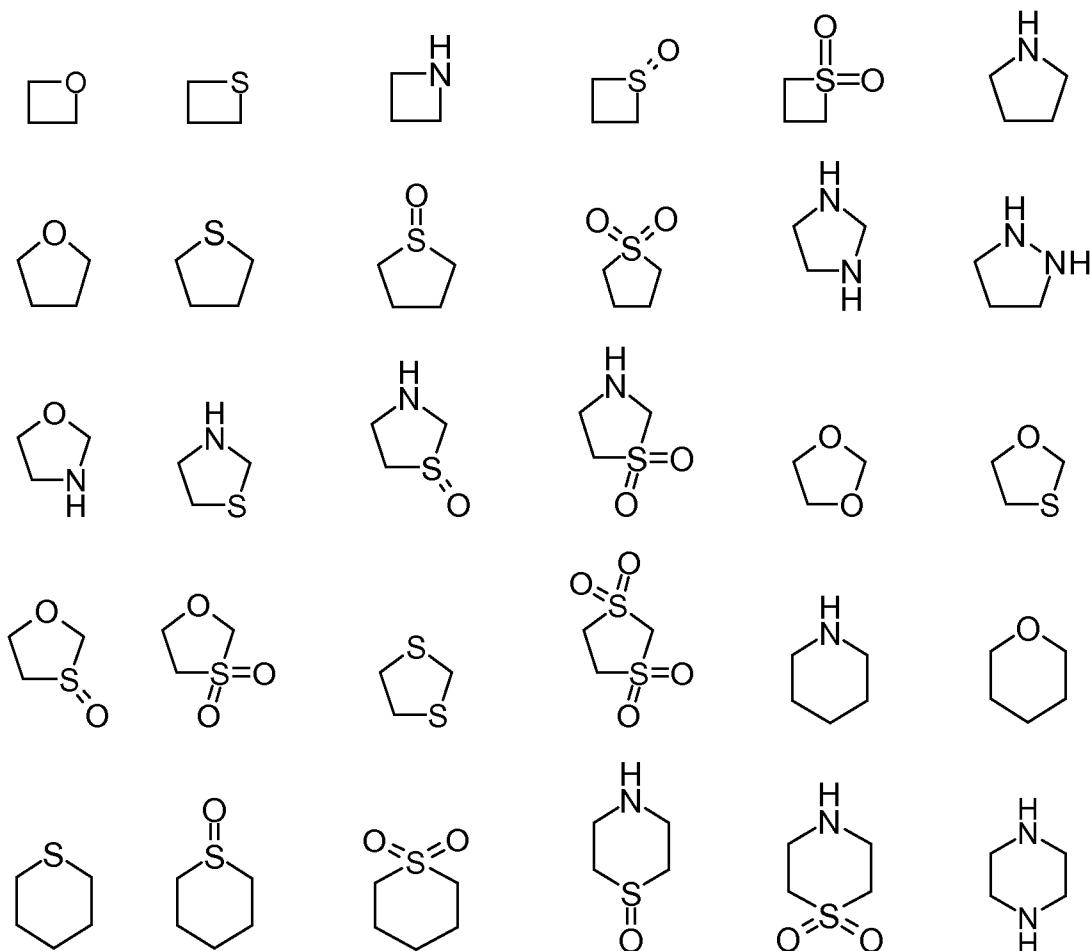
The term **arylene** can also be derived from the previously defined **aryl**. **Arylene**, unlike 25 **aryl**, is bivalent and requires two binding partners. Formally, the second valency is formed by removing a hydrogen atom from an **aryl**. Corresponding groups are for example:

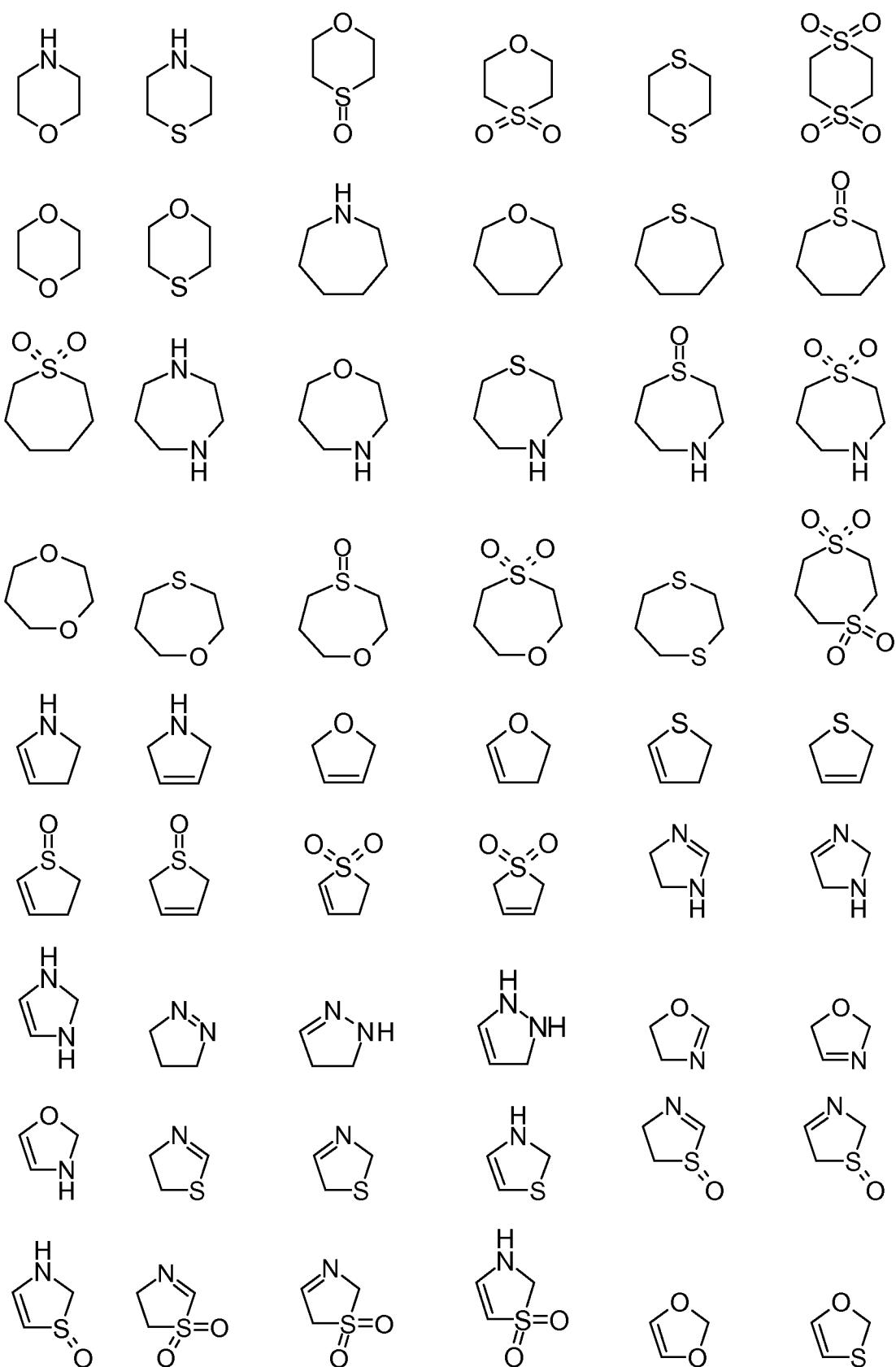
The above definition for **arylene** also applies if **arylene** is part of another (combined) group as for example in HO-**arylene**amino or H₂N-**arylene**oxy.

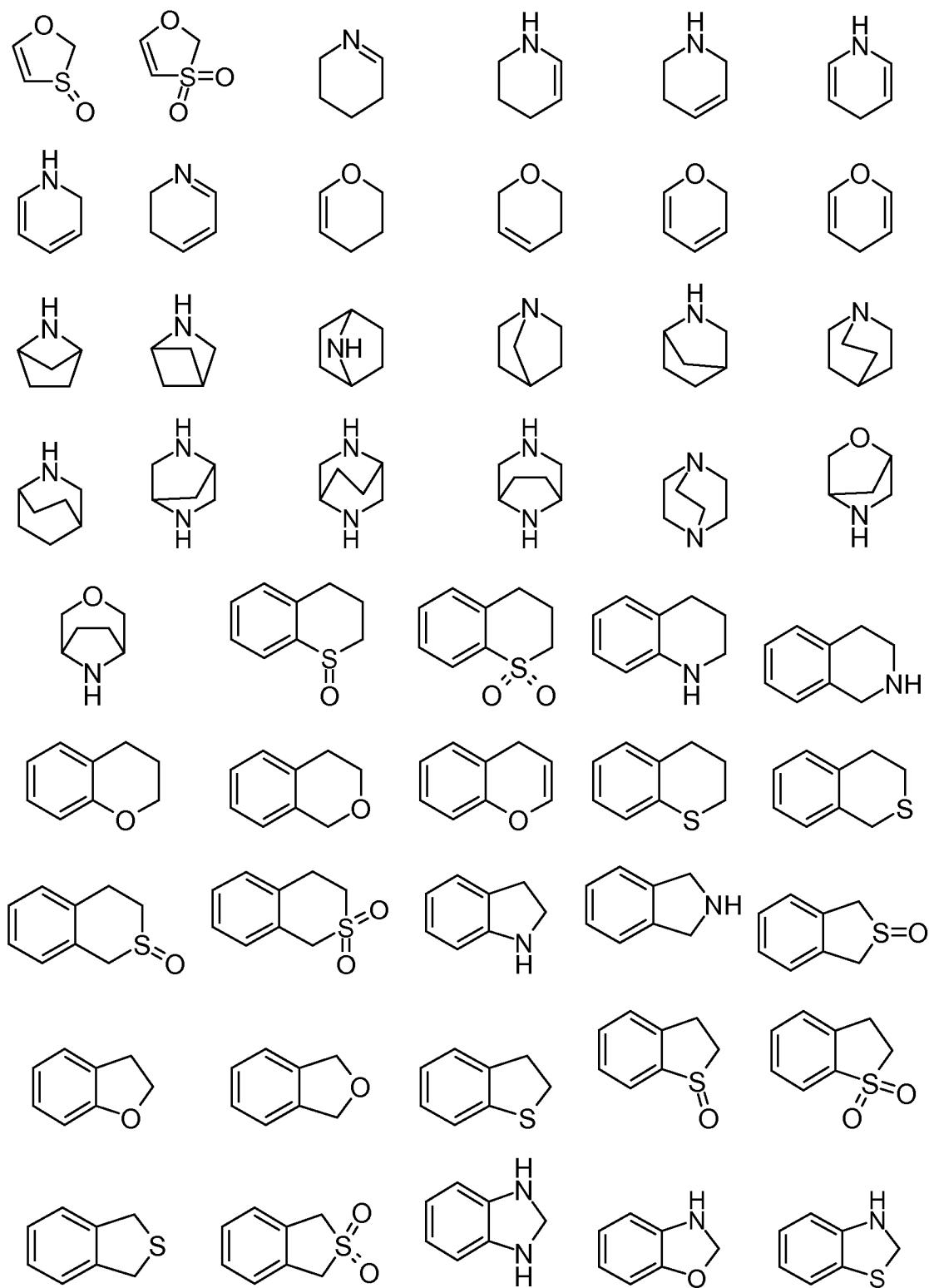
Heterocyclyl denotes ring systems, which are derived from the previously defined 5 **cycloalkyl**, **cycloalkenyl** and **aryl** by replacing one or more of the groups -CH₂- independently of one another in the hydrocarbon rings by the groups -O-, -S- or -NH- or by replacing one or more of the groups =CH- by the group =N-, wherein a total of not more than five heteroatoms may be present, at least one carbon atom must be present 10 between two oxygen atoms and between two sulphur atoms or between an oxygen and a sulphur atom and the ring as a whole must have chemical stability. Heteroatoms may optionally be present in all the possible oxidation stages (sulphur → sulphoxide -SO-, sulphone -SO₂-; nitrogen → N-oxide).

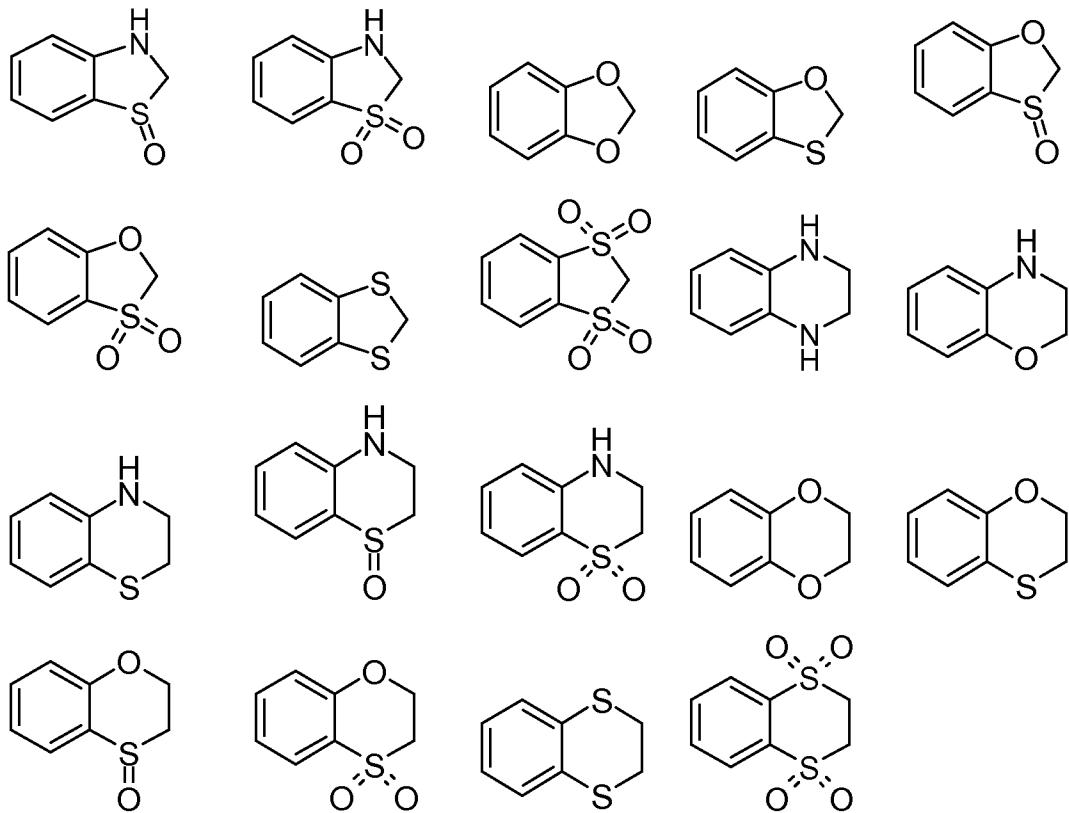
As it will be clear to the person skilled in the art, **Heterocycloalkyl** is derived from cycloalkyl and **heterocycloalkenyl** is derived from cycloalkenyl, as described above.

15 A direct result of the derivation from **cycloalkyl**, **cycloalkenyl** and **aryl** is that **heterocyclyl** is made up of the subgroups **monocyclic heterorings**, **bicyclic heterorings**, **tricyclic heterorings** and **spiro-heterorings**, which may be present in saturated or unsaturated form.

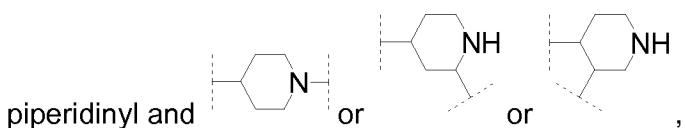

20 By unsaturated is meant that there is at least one double bond in the ring system in question, but no heteroaromatic system is formed. In bicyclic heterorings two rings are linked together so that they have at least two (hetero)atoms in common. In spiro-heterorings one carbon atom (spiroatom) belongs to two rings together.

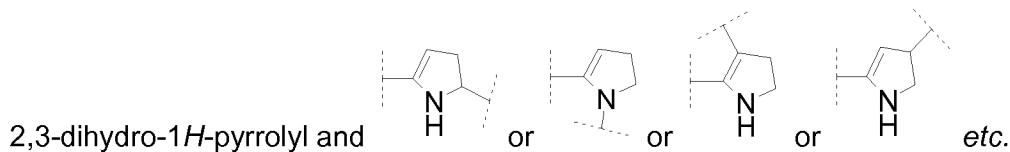

If a **heterocyclyl** is substituted, the substitutions may take place independently of one 25 another, in the form of mono- or polysubstitutions in each case, on all the hydrogen-carrying carbon and/or nitrogen atoms. **Heterocyclyl** itself may be linked as a substituent to the molecule via every suitable position of the ring system.


Examples of **heterocyclyl** are tetrahydrofuryl, pyrrolidinyl, pyrrolinyl, imidazolidinyl, thiazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperidinyl, piperazinyl, oxiranyl, aziridinyl, azetidinyl, 1,4-dioxanyl, azepanyl, diazepanyl, morpholinyl, thiomorpholinyl, 30 homomorpholinyl, homopiperidinyl, homopiperazinyl, homothiomorpholinyl,


thiomorpholinyl-S-oxide, thiomorpholinyl-S,S-dioxide, 1,3-dioxolanyl, tetrahydropyranyl, tetrahydrothiopyranyl, [1,4]-oxazepanyl, tetrahydrothienyl, homothiomorpholinyl-S,S-dioxide, oxazolidinonyl, dihydropyrazolyl, dihydropyrrolyl, dihydropyrazinyl, dihydropyridyl, dihydro-pyrimidinyl, dihydrofuryl, dihydropyranlyl, tetrahydrothienyl-S-oxide, 5 tetrahydrothienyl-S,S-dioxide, homothiomorpholinyl-S-oxide, 2,3-dihydroazet, 2*H*-pyrrolyl, 4*H*-pyranyl, 1,4-dihydropyridinyl, 8-aza-bicyclo[3.2.1]octyl, 8-aza-bicyclo[5.1.0]octyl, 2-oxa-5-azabicyclo[2.2.1]heptyl, 8-oxa-3-aza-bicyclo[3.2.1]octyl, 3,8-diaza-bicyclo[3.2.1]octyl, 2,5-diaza-bicyclo[2.2.1]heptyl, 1-aza-bicyclo[2.2.2]octyl, 10 3,8-diaza-bicyclo[3.2.1]octyl, 3,9-diaza-bicyclo[4.2.1]nonyl, 2,6-diaza-bicyclo[3.2.2]nonyl, 1,4-dioxa-spiro[4.5]decyl, 1-oxa-3,8-diaza-spiro[4.5]decyl, 2,6-diaza-spiro[3.3]heptyl, 2,7-diaza-spiro[4.4]nonyl, 2,6-diaza-spiro[3.4]octyl, 3,9-diaza-spiro[5.5]undecyl, 2,8-diaza-spiro[4,5]decyl etc.

Further examples are the structures illustrated below, which may be attached *via* each hydrogen-carrying atom (exchanged for hydrogen):

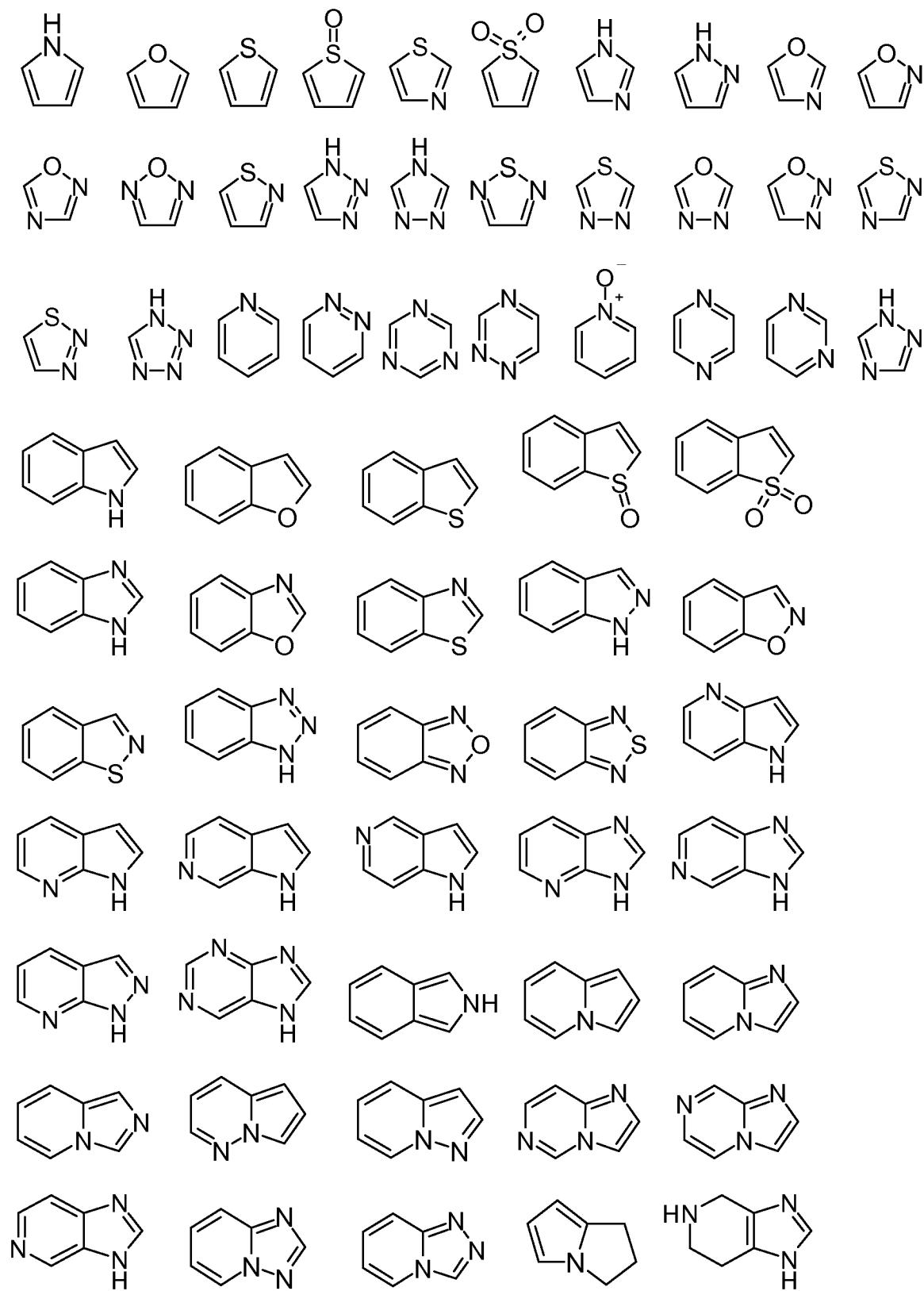

Preferably, heterocycls are 4 to 8 membered, monocyclic and have one or two heteroatoms independently selected from oxygen, nitrogen and sulfur.

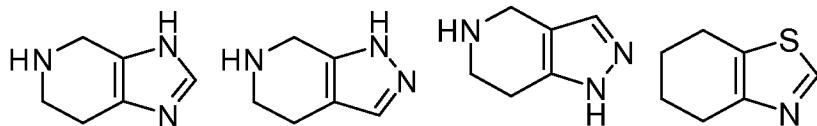

Preferred heterocycls are: piperazinyl, piperidinyl, morpholinyl, pyrrolidinyl, azetidinyl, tetrahydropyranyl, tetrahydrofuranyl.

The above definition of **heterocycl** also applies if **heterocycl** is part of another (combined) group as for example in **heterocyclamino**, **heterocycloxy** or **heterocyclalkyl**.

If the free valency of a **heterocycl**yl is saturated, then a **heterocyclic group** is obtained.

10 The term **heterocyclene** is also derived from the previously defined **heterocycl**. **Heterocyclene**, unlike **heterocycl**, is bivalent and requires two binding partners. Formally, the second valency is obtained by removing a hydrogen atom from a **heterocycl**. Corresponding groups are for example:


The above definition of **heterocyclene** also applies if **heterocyclene** is part of another (combined) group as for example in HO-**heterocyclene**amino or H₂N-**heterocyclene**oxy.

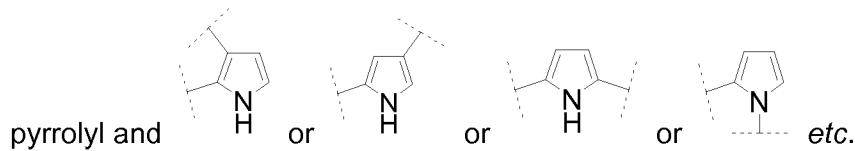

5 **Heteroaryl** denotes monocyclic heteroaromatic rings or polycyclic rings with at least one heteroaromatic ring, which compared with the corresponding **aryl** or **cycloalkyl** (**cycloalkenyl**) contain, instead of one or more carbon atoms, one or more identical or different heteroatoms, selected independently of one another from among nitrogen, sulphur and oxygen, wherein the resulting group must be chemically stable. The
10 prerequisite for the presence of **heteroaryl** is a heteroatom and a heteroaromatic system.

If a **heteroaryl** is to be substituted, the substitutions may take place independently of one another, in the form of mono- or polysubstitutions in each case, on all the hydrogen-carrying carbon and/or nitrogen atoms. **Heteroaryl** itself may be linked as a substituent to the molecule *via* every suitable position of the ring system, both carbon and nitrogen.

15 Examples of **heteroaryl** are furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, pyrazolyl, imidazolyl, triazolyl, tetrazolyl, oxadiazolyl, thiadiazolyl, pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, triazinyl, pyridyl-*N*-oxide, pyrrolyl-*N*-oxide, pyrimidinyl-*N*-oxide, pyridazinyl-*N*-oxide, pyrazinyl-*N*-oxide, imidazolyl-*N*-oxide, isoxazolyl-*N*-oxide, oxazolyl-*N*-oxide, thiazolyl-*N*-oxide, oxadiazolyl-*N*-oxide, thiadiazolyl-*N*-oxide, triazolyl-*N*-oxide, tetrazolyl-*N*-oxide, indolyl, isoindolyl, benzofuryl, benzothienyl, benzoxazolyl,
20 benzothiazolyl, benzisoxazolyl, benzothiazolyl, benzimidazolyl, indazolyl, isoquinolinyl, quinolinyl, quinoxalinyl, cinnolinyl, phthalazinyl, quinazolinyl, benzotriazinyl, indolizinyl, oxazolopyridyl, imidazopyridyl, naphthyridinyl, benzoxazolyl, pyridopyridyl, pyrimidopyridyl, purinyl, pteridinyl, benzothiazolyl, imidazopyridyl, imidazothiazolyl,
25 quinolinyl-*N*-oxide, indolyl-*N*-oxide, isoquinolinyl-*N*-oxide, quinazolinyl-*N*-oxide, quinoxalinyl-*N*-oxide, phthalazinyl-*N*-oxide, indolizinyl-*N*-oxide, indazolyl-*N*-oxide, benzothiazolyl-*N*-oxide, benzimidazolyl-*N*-oxide etc.

Further examples are the structures illustrated below, which may be attached *via* each hydrogen-carrying atom (exchanged for hydrogen):

Preferably, heteroaryls are 5-6 membered monocyclic or 9-10 membered bicyclic, each with 1 to 4 heteroatoms independently selected from oxygen, nitrogen and sulfur.


The above definition of **heteroaryl** also applies if **heteroaryl** is part of another (combined) group as for example in **heteroaryl**amino, **heteroaryl**oxy or **heteroaryl**alkyl.

If the free valency of a **heteroaryl** is saturated, a **heteroaromatic group** is obtained.

The term **heteroarylene** is also derived from the previously defined **heteroaryl**.

Heteroarylene, unlike **heteroaryl**, is bivalent and requires two binding partners. Formally, the second valency is obtained by removing a hydrogen atom from a **heteroaryl**.

10 Corresponding groups are for example:

The above definition of **heteroarylene** also applies if **heteroarylene** is part of another (combined) group as for example in HO-**heteroarylene**amino or H₂N-**heteroarylene**oxy.

By **substituted** is meant that a hydrogen atom which is bound directly to the atom under consideration, is replaced by another atom or another group of atoms (**substituent**).

Depending on the starting conditions (number of hydrogen atoms) mono- or polysubstitution may take place on one atom. Substitution with a particular substituent is only possible if the permitted valencies of the substituent and of the atom that is to be substituted correspond to one another and the substitution leads to a stable compound 20 (*i.e.* to a compound which is not converted spontaneously, *e.g.* by rearrangement, cyclisation or elimination).

Bivalent substituents such as =S, =NR, =NOR, =NNRR, =NN(R)C(O)NRR, =N₂ or the like, may only be substituents on carbon atoms, whereas the bivalent substituent =O may also be a substituent on sulphur. Generally, substitution may be carried out by a bivalent substituent only at ring systems and requires replacement of two geminal hydrogen atoms, *i.e.* hydrogen atoms that are bound to the same carbon atom that is saturated prior

to the substitution. Substitution by a bivalent substituent is therefore only possible at the group -CH₂- or sulphur atoms (=O only) of a ring system.

Stereochemistry/solvates/hydrates: Unless specifically indicated, throughout the specification and appended claims, a given chemical formula or name shall encompass

5 tautomers and all stereo, optical and geometrical isomers (e.g. enantiomers, diastereomers, *E/Z* isomers, etc.) and racemates thereof as well as mixtures in different proportions of the separate enantiomers, mixtures of diastereomers, or mixtures of any of the foregoing forms where such isomers and enantiomers exist, as well as salts, including 10 pharmaceutically acceptable salts thereof and solvates thereof such as for instance hydrates including solvates and hydrates of the free compound or solvates and hydrates of a salt of the compound.

In general, substantially pure stereoisomers can be obtained according to synthetic principles known to a person skilled in the field, e.g. by separation of corresponding mixtures, by using stereochemically pure starting materials and/or by stereoselective 15 synthesis. It is known in the art how to prepare optically active forms, such as by resolution of racemic forms or by synthesis, e.g. starting from optically active starting materials and/or by using chiral reagents.

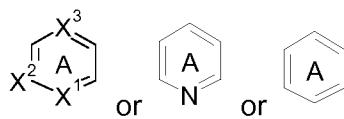
Enantiomerically pure compounds of this invention or intermediates may be prepared *via* asymmetric synthesis, for example by preparation and subsequent separation of 20 appropriate diastereomeric compounds or intermediates which can be separated by known methods (e.g. by chromatographic separation or crystallization) and/or by using chiral reagents, such as chiral starting materials, chiral catalysts or chiral auxiliaries.

Further, it is known to the person skilled in the art how to prepare enantiomerically pure compounds from the corresponding racemic mixtures, such as by chromatographic 25 separation of the corresponding racemic mixtures on chiral stationary phases, or by resolution of a racemic mixture using an appropriate resolving agent, e.g. by means of diastereomeric salt formation of the racemic compound with optically active acids or bases, subsequent resolution of the salts and release of the desired compound from the salt, or by derivatization of the corresponding racemic compounds with optically active 30 chiral auxiliary reagents, subsequent diastereomer separation and removal of the chiral auxiliary group, or by kinetic resolution of a racemate (e.g. by enzymatic resolution); by enantioselective crystallization from a conglomerate of enantiomorphous crystals under suitable conditions, or by (fractional) crystallization from a suitable solvent in the presence

of an optically active chiral auxiliary.

Salts: The phrase “**pharmaceutically acceptable**” is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgement, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, and commensurate with a reasonable benefit/risk ratio.

As used herein “**pharmaceutically acceptable salts**” refers to derivatives of the disclosed compounds wherein the parent compound is modified by making acid or base salts thereof. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like.

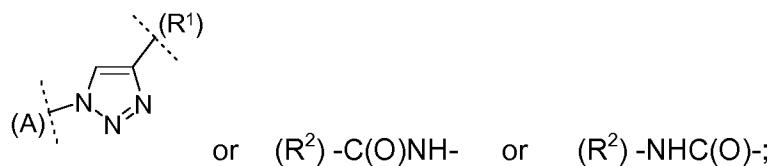

For example, such salts include salts from benzenesulfonic acid, benzoic acid, citric acid, ethanesulfonic acid, fumaric acid, gentisic acid, hydrobromic acid, hydrochloric acid, maleic acid, malic acid, malonic acid, mandelic acid, methanesulfonic acid, 4-methylbenzenesulfonic acid, phosphoric acid, salicylic acid, succinic acid, sulfuric acid and tartaric acid.

Further pharmaceutically acceptable salts can be formed with cations from ammonia, L-arginine, calcium, 2,2'-iminobisethanol, L-lysine, magnesium, N-methyl-D-glucamine, potassium, sodium and tris(hydroxymethyl)-aminomethane.

The pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base form of these compounds with a sufficient amount of the appropriate base or acid in water or in an organic diluent like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile, or a mixture thereof.

Salts of other acids than those mentioned above which for example are useful for purifying or isolating the compounds of the present invention (e.g. trifluoro acetate salts), also comprise a part of the invention.

In a representation such as for example



the letter A has the function of a ring designation in order to make it easier, for example, to

indicate the attachment of the ring in question to other rings.

For bivalent groups in which it is crucial to determine which adjacent groups they bind and with which valency, the corresponding binding partners are indicated in brackets where necessary for clarification purposes, as in the following representations:

5

10

Groups or substituents are frequently selected from among a number of alternative groups/substituents with a corresponding group designation (e.g. R^a , R^b etc). If such a group is used repeatedly to define a compound according to the invention in different parts of the molecule, it is pointed out that the various uses are to be regarded as totally independent of one another.

By a **therapeutically effective amount** for the purposes of this invention is meant a quantity of substance that is capable of obviating symptoms of illness or of preventing or alleviating these symptoms, or which prolong the survival of a treated patient.

15

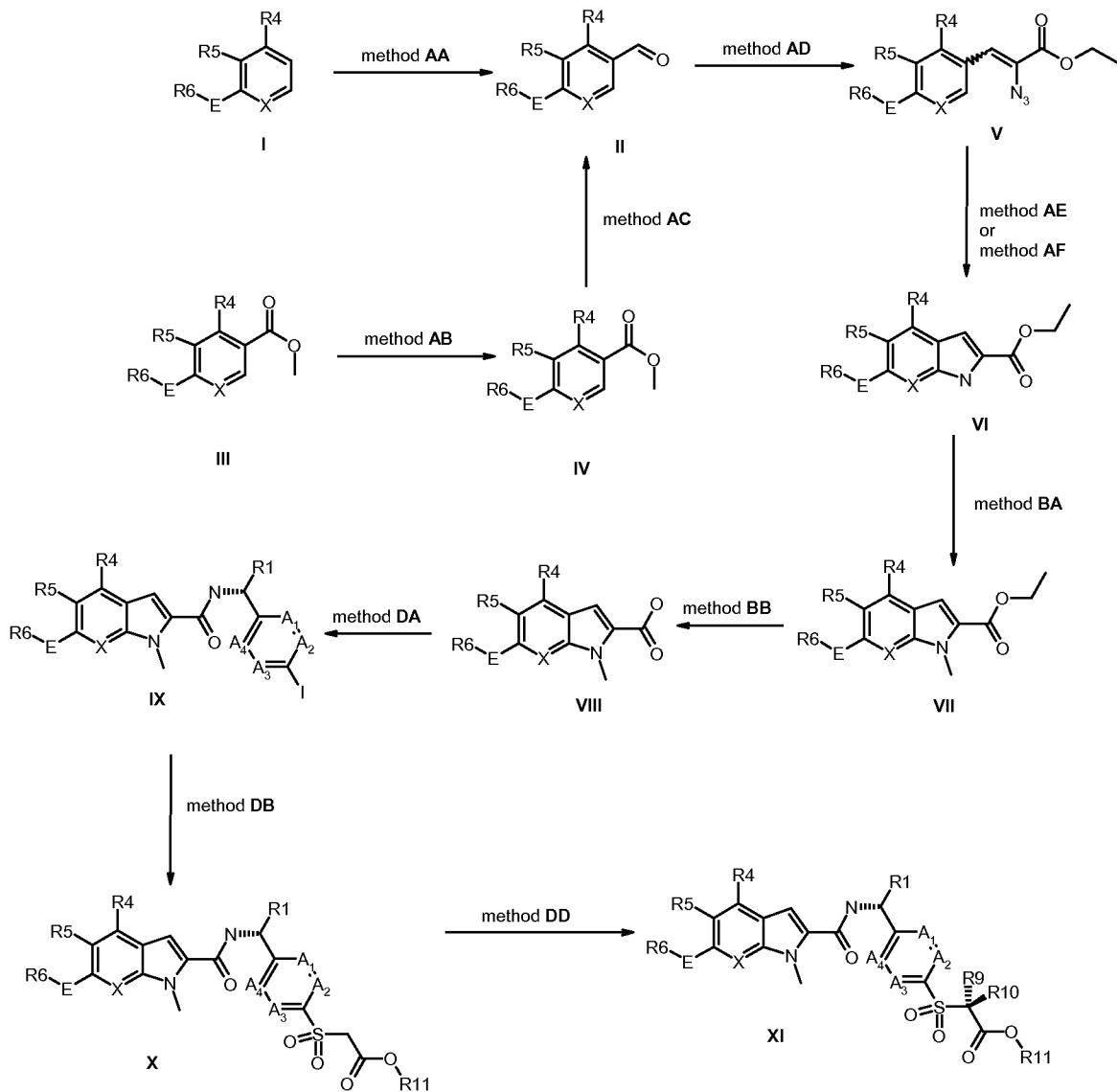
The compounds according to the invention are prepared by the methods of synthesis described hereinafter in which the substituents of the general formulae have the meanings given hereinbefore. These methods are intended as an illustration of the invention without restricting its subject matter and the scope of the compounds claimed to these examples. Where the preparation of starting compounds is not described, they are commercially obtainable or may be prepared analogously to known prior art compounds or methods described herein. Substances described in the literature are prepared according to or in analogy to the published methods of synthesis.

20

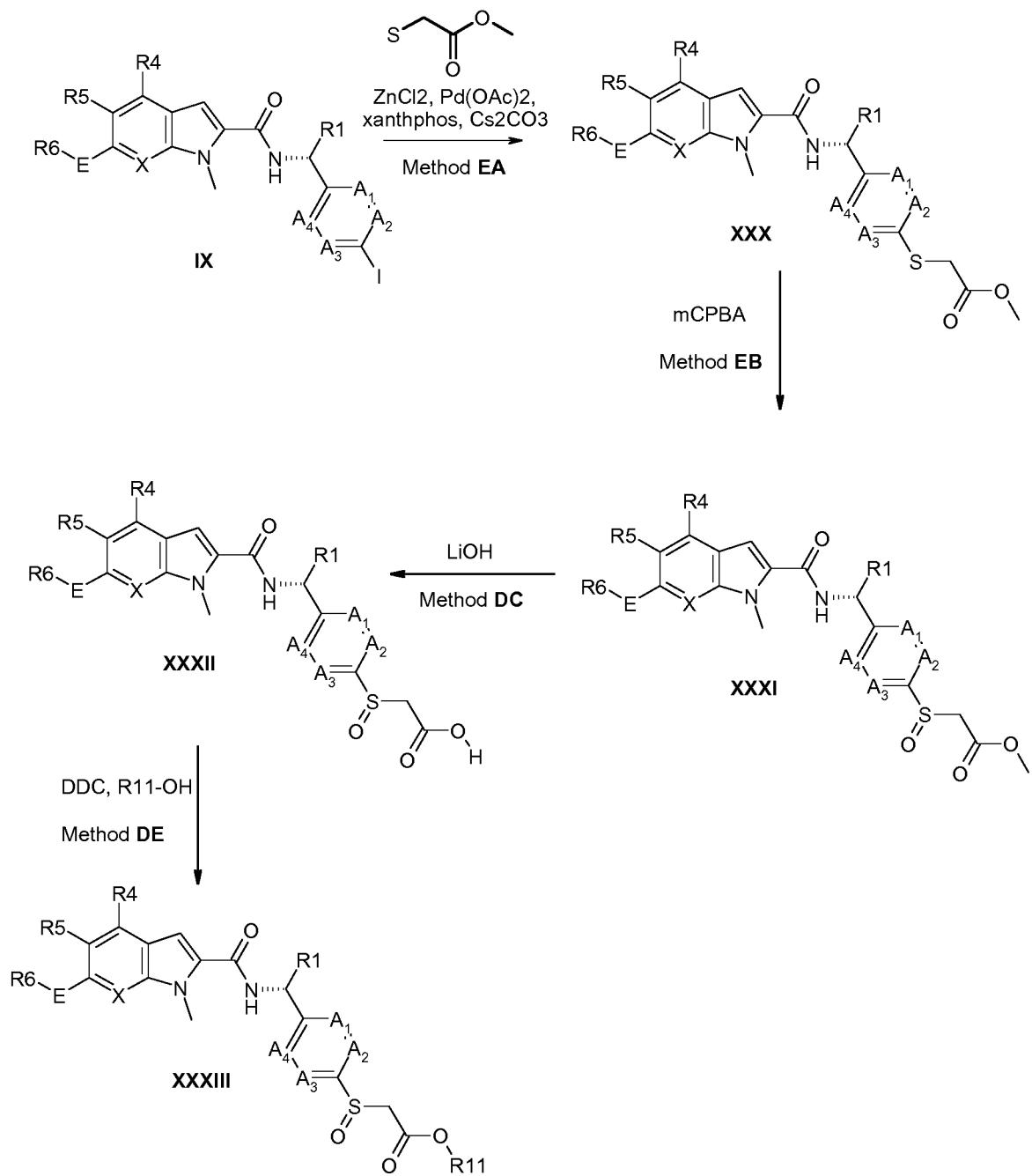
General reaction scheme and summary of the synthesis route

List of abbreviations

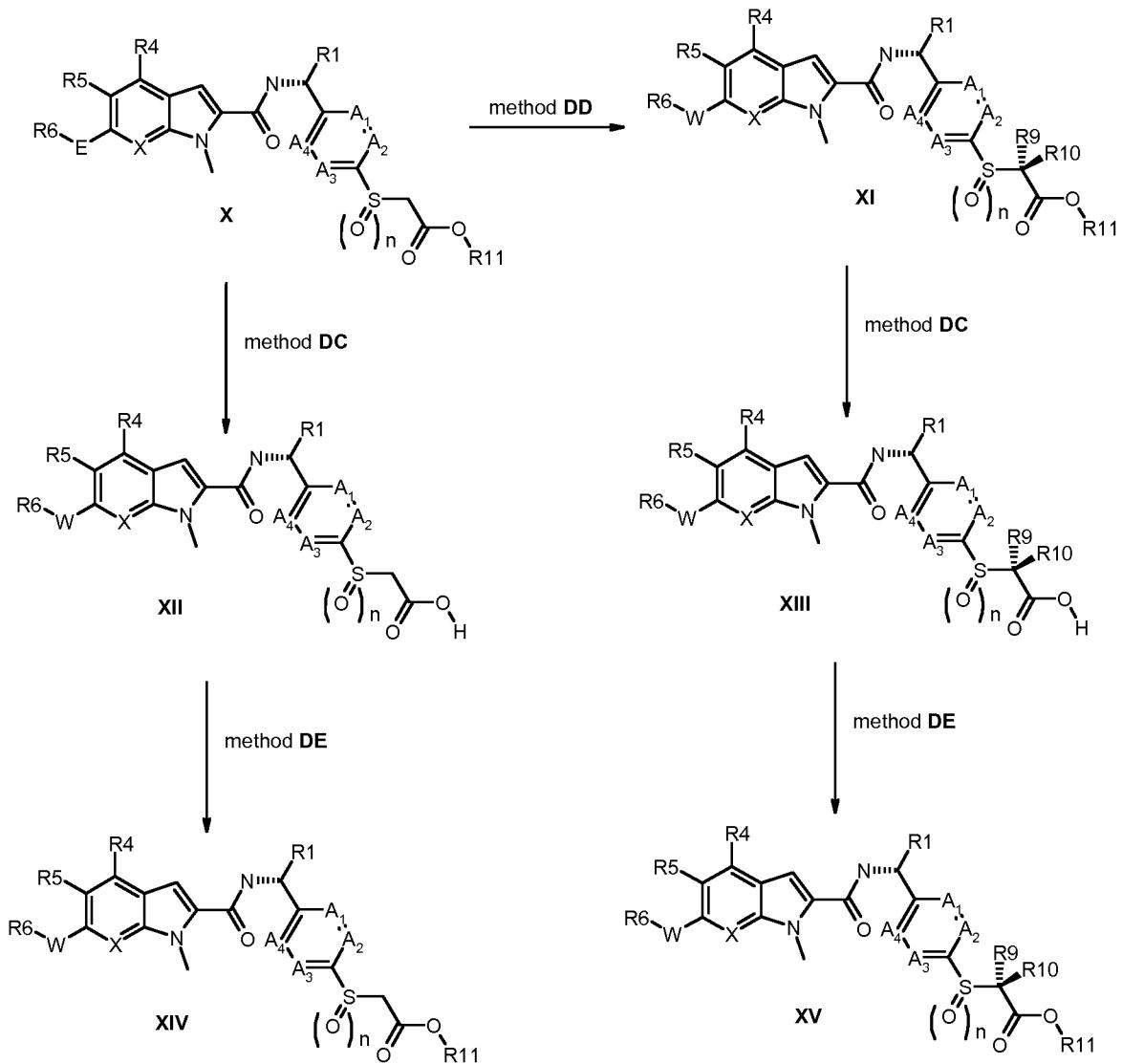
Ac	acetyl
ACN, AN	acetonitrile
aq.	aquatic, aqueous
ATP	adenosine triphosphate
BINAP	2,2'-bis(diphenylphosphino)-1,1'-binaphthyl

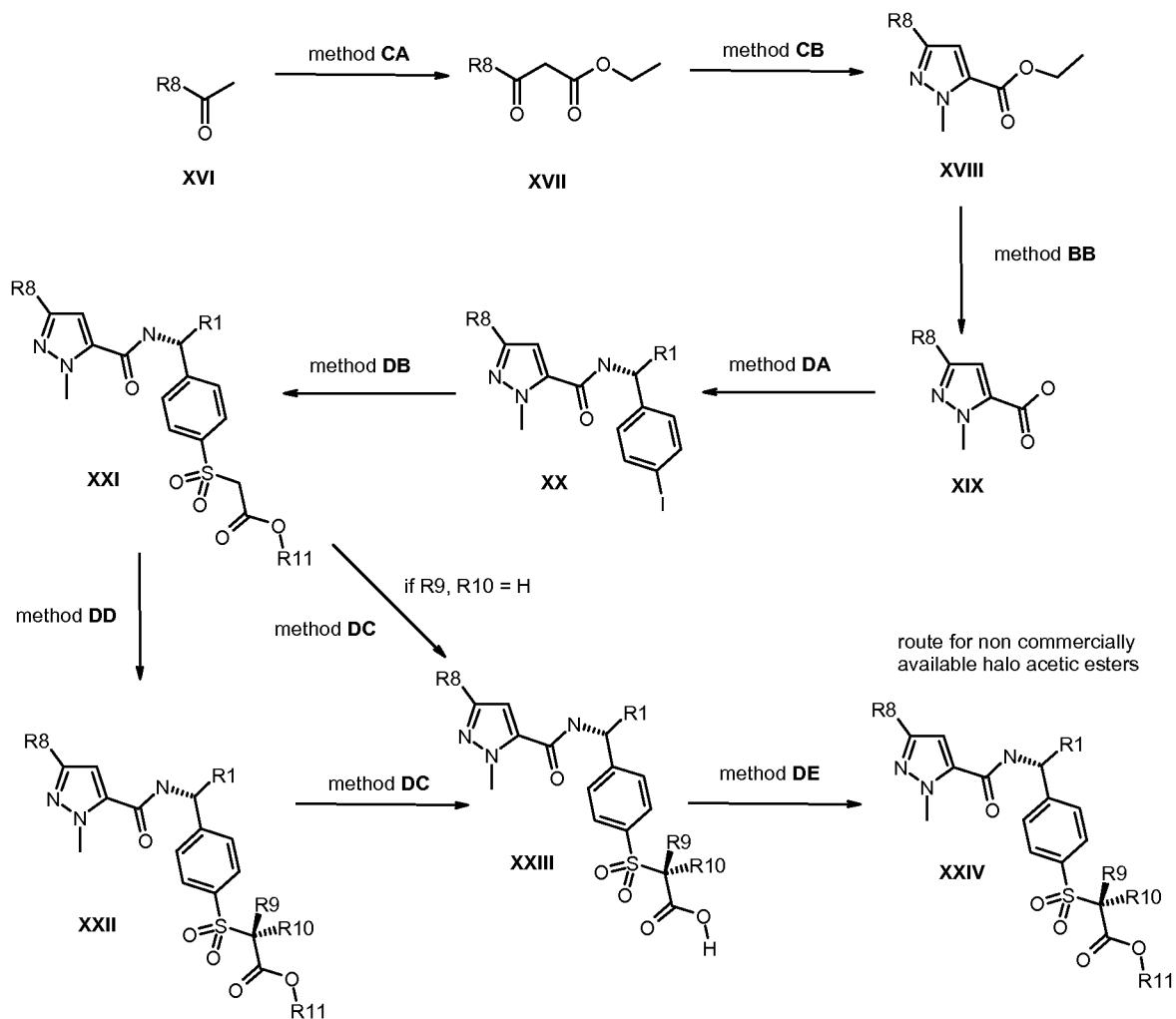

BiPh	biphenyl
Bn	benzyl
Boc	tert-butyloxycarbonyl
Bu	butyl
c	concentration
d	day(s)
dba	dibenzylideneacetone
TLC	thin layer chromatography
DABSO	1,4-Diazabicyclo[2.2.2]octane bis(sulfur dioxide) adduct
Davephos	2-dimethylamino-2'-dicyclohexylaminophosphinobiphenyl
DBA	dibenzylideneacetone
DCM	dichloromethane
DEA	diethylamine
DIPEA	<i>N</i> -ethyl- <i>N,N</i> -diisopropylamine (Hünig's base)
DMAP	4- <i>N,N</i> -dimethylaminopyridine
DME	1,2-dimethoxyethane
DMF	<i>N,N</i> -dimethylformamide
DMSO	dimethylsulphoxide
DPPA	diphenylphosphorylazide
dppf	1,1'-bis(diphenylphosphino)ferrocene
EDTA	ethylenediaminetetraacetic acid
EGTA	ethyleneglycoltetraacetic acid
ADAC	Allgemeiner Deutscher Automobil-Club e.V.
eq	equivalent(s)
ESI	electron spray ionization
Et	ethyl
Et ₂ O	diethyl ether
EtOAc	ethyl acetate
EtOH	ethanol
h	hour
HATU	O-(7-azabenzotriazol-1-yl)- <i>N,N,N',N'</i> -tetramethyl-uronium hexafluorophosphate
HPLC	high performance liquid chromatography
<i>i</i>	iso

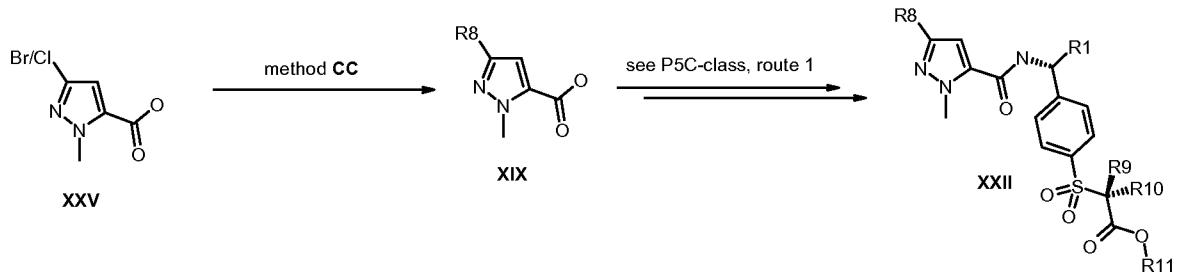
Kat., kat.	catalyst, catalytic
conc.	concentrated
LC	liquid chromatography
LiHMDS	lithium bis(trimethylsilyl)amide
sln.	solution
Me	methyl
MeCN	acetonitrile
MeOH	methanol
min	minutes
MPLC	medium pressure liquid chromatography
MS	mass spectrometry
NBS	<i>N</i> -bromo-succinimide
NIS	<i>N</i> -ido-succinimide
NMM	<i>N</i> -methylmorpholine
NMP	<i>N</i> -methylpyrrolidone
NP	normal phase
n.a.	not available
PBS	phosphate-buffered saline
Ph	phenyl
Pr	propyl
Py	pyridine
rac	racemic
red.	reduction
Rf (R _f)	retention factor
RP	reversed phase
rt	ambient temperature
S _N	nucleophilic substitution
TBAF	tetrabutylammonium fluoride
TBDMS	tert-butyldimethylsilyl
TBME	tert-butylmethylether
TBTU	O-(benzotriazol-1-yl)-N,N,N',N'-tetramethyl-uronium tetrafluoroborate
tBu	tert-butyl
TEA	triethylamine


temp.	temperature
<i>tert</i>	tertiary
Tf	triflate
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TMS	trimethylsilyl
$t_{\text{Ret.}}$	retention time (HPLC)
TRIS	tris(hydroxymethyl)-aminomethane
TsOH	p-toluenesulphonic acid
UV	ultraviolet

General Reaction Scheme:


- Indol-2-carboxamides; synthesis of R11-Esters; for commercially available halo acetic acid derivatives


- Indol-2-carboxamides; synthesis of sulfoxide derivatives


- Indol-2-carboxamides; alternative ester synthesis for non-commercially available halo-acetic acid derivatives

- Pyrazol-5-Carboxamides; Route 1 for branched esters

- Pyrazol-5-Carboxamides; Route 2, starting from XXV

Features and advantages of the present invention will become apparent from the following detailed examples which illustrate the fundamentals of the invention by way of example without restricting its scope:

Preparation of the compounds according to the invention

5 **General**

Unless stated otherwise, all the reactions are carried out in commercially obtainable apparatus using methods that are commonly used in chemical laboratories. Starting materials that are sensitive to air and/or moisture are stored under protective gas and corresponding reactions and manipulations therewith are carried out under protective gas (nitrogen or argon).

10 The compounds according to the invention are named in accordance with CAS rules using the software Autonom (Beilstein) or Marvin Sketch. If a compound is to be represented both by a structural formula and by its nomenclature, in the event of a conflict the structural formula is decisive.

15 **Microwave reactions** are carried out in an initiator/reactor made by Biotage or in an Explorer made by CEM or in Synthos 3000 or Monowave 300 made by Anton Paar in sealed containers (preferably 2, 5 or 20 mL), preferably with stirring.

Chromatography

The thin layer chromatography is carried out on ready-made silica gel 60 TLC plates on glass (with fluorescence indicator F-254) made by Merck.

20 The **preparative high pressure chromatography (RP HPLC)** of the example compounds according to the invention is carried out with columns made by Waters (names: XTerra Prep. MS C18, 5 µm, 30 x 100 mm or XTerra Prep. MS C18, 5 µm, 50 x 100 mm OBD or Symmetrie C18, 5 µm, 19 x 100 mm or Sunfire C18 OBD, 19 x 100 mm, 5 µm or Sunfire Prep C 10 µm OBD 50 x 150 mm or X-Bridge Prep C18 5 µm OBD 19 x 50 mm) or X-Bridge Prep C18 10 µm OBD 50 x 150 mm), Agilent (name: Zorbax SB-C8 5 µm PrepHT 21.2 x 50 mm) and Phenomenex (names: Gemini C18 5 µm AXIA 21.2 x 50 mm or Gemini C18 10 µm 50 x 150 mm). Different gradients of H₂O/acetonitrile or H₂O/MeOH are used to elute the compounds, while 0.1 % HCOOH is added to the water (acidic conditions). For the chromatography under basic conditions H₂O/acetonitrile gradients are used as well, while the water is made alkaline as follows: 5 mL NH₄HCO₃ solution 25 (158 g in 1 L H₂O) and 2 mL NH₃ (7 M in MeOH) are replenished to 1 L with H₂O.

30 The **analytical HPLC (reaction control)** of intermediate compounds is carried out using columns made by Agilent (names: Zorbax SB-C8, 5 µm, 21.2 x 50 mm or Zorbax SB-C8 3.5 µm 2.1 x 50 mm), Phenomenex (name: Gemini C18 3 µm 2 x 30 mm) and Waters (names: XBridgeTM C18, 3.5 µm, 2.1 x 50 mm, XBridgeTM C18, 5 µm, 2.1 x 50 mm, XBridgeTM C18, 2.5 µm, 2.1 x 35 20 mm or SunfireTM C18, 3.5 µm, 2.1 x 50 mm. The analytical equipment is also equipped with a

mass detector in each case.

HPLC-mass spectroscopy/UV-spectrometry

The retention times/MS-ESI⁺ for characterizing the example compounds according to the invention are produced using an HPLC-MS apparatus (high performance liquid chromatography with mass

5 detector). Compounds that elute at the injection peak are given the retention time $t_{\text{Ret.}} = 0.00$.

Method 1

HPLC	Agilent 1100/1200 system
MS	1200 Series LC/MSD (API-ES +/- 3000 V, Quadrupol, G6140)
MSD signal settings	Scan pos 150 – 750
column	YMC; Part. No. TA12S03-0302WT; Triart C18, 3 µm, 12 nm; 30 x 2.0 mm column
eluant	A: H ₂ O + 0,11% formic acid B: MeCN + 0,1% formic acid (HPLC grade)
detection signal	UV 254 nm (bandwidth 10, reference off)
spectrum	range: 190 – 400 nm; step: 4 nm
peak width	> 0.005 min (0.1 s)
injection	0,5 µL standard injection
flow	1.4 mL/min
column temperature	45 °C
gradient	0.0 – 1.0 min 15 % → 100 % B 1.0 – 1.1 min 100 % B Stop time: 1.23 min

Method 2

HPLC	Agilent 1100/1200 system
MS	1200 Series LC/MSD (API-ES +/- 3000 V, Quadrupol, G6140)
MSD signal settings	Scan pos 150 – 750, Scan neg 150 – 750
column	YMC; Part. No. TA12S03-0302WT; Triart C18, 3 µm, 12 nm; 30 x 2.0 mm column
eluant	A: H ₂ O + 0,11% formic acid B: MeCN + 0,1% formic acid (HPLC grade)
detection signal	UV 254 nm (bandwidth 10, reference off)

spectrum	range: 190 – 400 nm; step: 4 nm	
peak width	> 0.005 min (0.1 s)	
injection	0.5 µL standard injection	
flow	1.4 mL/min	
column temperature	45 °C	
gradient	0.0 – 1.0 min	15 % → 100 % B
	1.0 – 1.1 min	100 % B
	Stop time: 1.23 min	

Method 3

HPLC	Agilent 1100/1200 system	
MS	1200 Series LC/MSD (MM-ES+APCI +/- 4000 V, Quadrupol, G6130)	
MSD signal settings	Scan pos 150 – 800, Scan neg 150 – 800	
column	Waters; Part. No. 186006028; XBridge BEH C18 XP, 2.5µm, 30 x 2.1 mm column	
eluant	5 mM NH4HCO3/18 mM NH3 (pH = 9.2) B: acetonitrile (HPLC grade)	
detection signal	UV 254 nm (bandwidth 8, reference off)	
spectrum	range: 190 – 400 nm; step: 4 nm	
peak width	0.0025 min (0.05 s)	
injection	0.5 µL standard injection	
flow	1.4 mL/min	
column temperature	45 °C	
gradient	0.0 – 1.0 min	15 % → 95 % B
	1.0 – 1.3 min	95 % B
	Stop time: 1.3 min	

Method 4

HPLC	Agilent 1100/1200 system	
MS	1200 Series LC/MSD (MM-ES+APCI +/- 3000 V, Quadrupol, G6130)	
MSD signal settings	Scan pos 150 – 750	
column	Waters; Part. No. 186006028; XBridge BEH C18 XP, 2.5µm, 30 x 2.1 mm column	

eluant	5 mM NH ₄ HCO ₃ /18 mM NH ₃ (pH = 9.2) B: acetonitrile (HPLC grade)	
detection signal	UV 254 nm (bandwidth 8, reference off)	
spectrum	range: 190 – 400 nm; step: 4 nm	
peak width	0.0025 min (0.05 s)	
injection	0.5 µL standard injection	
flow	1.4 mL/min	
column temperature	45 °C	
gradient	0.0 – 1.0 min	15 % → 95 % B
	1.0 – 1.3 min	95 % B
	Stop time: 1.3 min	

Method 5

HPLC	Agilent 1100 system	
MS	1200 Series LC/MSD (API-ES +/- 3000 V, Quadrupol, G6130)	
5 MSD signal settings	Scan pos/neg 120 - 900m/z	
column	Waters, Xbridge C18, 2.5 µm, 2.1x20 mm column	
eluant	A: 20mM NH ₄ HCO ₃ / NH ₃ pH 9 B: acetonitrile HPLC grade	
detection signal	315 nm (bandwidth 170nm, reference off)	
10 spectrum	range: 230 – 400 nm	
peak width	<0.01 min	
injection	5µL standard injection	
column temperature	60 °C	
flow	1.00 mL/min	
15 gradient	0.00 – 1.50 min	10 % → 95 % B
	1.50 – 2.00 min	95 % B
	2.00 – 2.10 min	95 % → 10 % B

Method 6

LC	Agilent Infinity 1290 series	
MS	Agilent 6150 Quadrupole lcms(SQ)	
MSD signal settings	Scan pos/neg 100-1200	

column	Aquity BEH C18 2.1x50mm, 1.7µm	
eluant	A: water + 0.1 % formic acid B: acetonitrile (HPLC grade) + 0.1 % formic acid	
detection signal	UV 215/254 nm (bandwidth 4, reference off)	
spectrum	range: 200 – 400 nm; step: 2.0 nm	
peak width	> 0.01 min (0.2 s)	
injection	0.5 µL standard injection	
flow	0.6 mL/min	
column temperature	25 °C	
gradient	0.0 – 0.4 min	3 % B
	0.4 – 3.2 min	3% → 98 % B
	3.2 – 3.8 min	98 % B
	3.8 – 4.2min	98% → 3 % B
	4.2 – 4.5 min	3 % B

Method 7

LC	Waters UPLC Acquity	
MS	Micromass Quattro micro™	
MSD signal settings	Scan pos/neg 100-1200	
column	Kinetex C18, 2.1x100mm, 1.7µm	
eluant	A: water + 0.1 % formic acid B: acetonitrile (HPLC grade) + 0.1 % formic acid	
detection signal	UV 215/254 nm (bandwidth 4, reference off)	
spectrum	range: 200 – 400 nm; Resolution: 1.2 nm	
Sampling rate	5 points/sec	
injection	0.5 µL standard injection	
flow	0.4 mL/min	
column temperature	35 °C	
gradient	0.0 – 0.3 min	5 % B
	0.3 – 1.5 min	5% → 50 % B
	1.5 – 3.0 min	50% → 100 % B
	3.0 – 4.5min	100% B
	4.5 – 5.0 min	100% → 5 % B

5.0 – 6.0 min 5 % B

Method 8

LC	Waters UPLC Acquity	
MS	Micromass Quattro micro TM	
MSD signal settings	Scan pos/neg 100-1000	
column	Aquity BEH C18 2.1x50mm, 1.7µm	
 eluant	A: water + 0.1 % formic acid	
	B: acetonitrile (HPLC grade) + 0.1 % formic acid	
detection signal	UV 215/254 nm	
spectrum	range: 200 – 400 nm; Resolution: 1.2 nm	
Sampling rate	5 points/sec	
injection	0.5 µL standard injection	
flow	0.4 mL/min	
column temperature	35 °C	
gradient	0.0 – 0.5 min	5 % B
	0.5 – 2.0 min	5% → 50 % B
	2.0 – 3.5 min	50% → 100 % B
	3.5 – 5.0min	100% B
	5.0 – 5.1 min	5 % B

Method 9

LC	Agilent RRLC 1200 series	
MS	Agilent 6130 Quadrupole lcms(SQ)	
MSD signal settings	Scan pos/neg 90-1200	
column	Xbridge C18, 4.6x 50mm, 2.5µ	
 eluant	A: 5mM Ammonium Acetate	
	B: acetonitrile	
detection signal	UV 215/254 nm (bandwidth 4, reference off)	
spectrum	range: 200 – 400 nm; step: 2.0 nm	
peak width	> 0.10 min (2 s)	
injection	0.5 µL standard injection	

flow	0.6 mL/min	
column temperature	35 °C	
gradient	0.0 – 1.0 min	5 % B
	1.0 – 1.8 min	5% → 55 % B
	1.8 – 3.5 min	55% → 98 % B
	3.5 – 5.5min	98% B
	5.5 – 6.0 min	98% → 5 % B

Method 10

HPLC	Agilent RRLC (1200 Series)	
MS	Agilent SQD -6130 (API-ES/APCI (Multi Mode) +/- 3000 V, Corona Current 4 μA)	
MSD signal settings	Scan pos 90 – 1000, Scan neg 90 – 1000	
Column	X-bridge C18, 4.6x 50mm, 2.5μ	
Eluent	A: 5mM Ammonium Acetate B: Acetonitrile	
Detection signal	UV 215 nm (bandwidth 4, reference off)	
Spectrum	range: 200 – 400 nm; step: 2 nm	
Peak width	> 0.1 min (2.0 S)	
Injection	5 μL injection with needle wash.	
Flow rate	0.6 mL/min	
Column temperature	35 °C	
Gradient	0.0 – 1.0 min	5 % B
	1.0 – 1.8 min	5 % → 55% B
	1.8 – 3.5 min	55 %→ 98% B
	3.5 – 5.5 min	98 % B
	5.5 – 6.0 min	98 %→ 5% B

Method 11

LC	Agilent Infinity 1290 series
MS	Agilent 6150 Quadrupole lcms(SQ)
MSD signal settings	Scan pos/neg 80-1200
column	Aquity BEH C18 2.1x50mm, 1.7μm

eluant	A: water + 0.1 % formic acid	
	B: acetonitrile (HPLC grade) + 0.1 % formic acid	
detection signal	UV 215/254 nm (bandwidth 4, reference off)	
spectrum	range: 200 – 400 nm; step: 2.0 nm	
peak width	> 0.01 min (0.2 s)	
injection	0.5 µL standard injection	
flow	0.8 mL/min	
column temperature	60 °C	
gradient	0.0 – 0.2 min	3 % B
	0.2 – 1.5 min	3% → 95 % B
	1.5 – 2.5 min	95 % B
	2.5 – 2.6min	95% → 3 % B
	2.6 – 3.2 min	3 % B

Method 12

HPLC	Agilent Infinity-1290 Series	
MS	Agilent SQD -6130 (API-ES +/- 3000 V)	
MSD signal settings	Scan pos 100 – 1000, Scan neg 100 – 1000	
Column	Aquity BEH C18, 2.1x50mm, 1.7µm	
Eluent	A: 0.1% Formic Acid in Acetonitrile	
	B: 0.1% Formic Acid in water	
Detection signal	UV 215 nm (bandwidth 4, reference off)	
Spectrum	range: 200 – 400 nm; step: 2 nm	
Peak width	> 0.025 min (0.5 S)	
Injection	0.5 µL injection with needle wash at flush port.	
Flow rate	0.8 mL/min	
Column temperature	60 °C	
Gradient	0.0 – 0.2 min	3% B
	0.2 – 1.5 min	3% → 95% B
	1.5 – 2.5 min	95% B
	2.5 – 2.6 min	95% → 3% B

Method 13

HPLC	Agilent Infinity-1290 Series
-------------	------------------------------

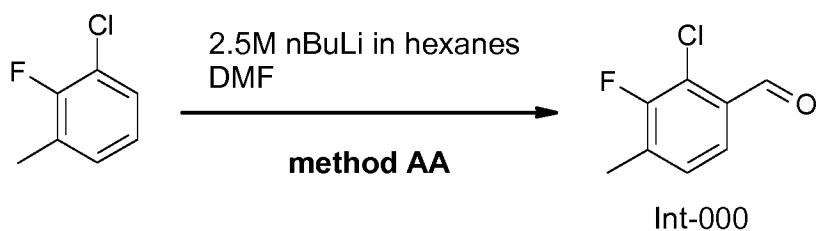
MS	Agilent SQD -6150 (API-ES +/- 3000 V)	
MSD signal settings	Scan pos 100 – 1000, Scan neg 100 – 1000	
Column	Aquity BEH C18, 2.1x50mm, 1.7µm	
Eluent	A: 0.1% Formic Acid in Acetonitrile B: 0.1% Formic Acid in water	
Detection signal	UV 215 nm (bandwidth 4, reference off)	
Spectrum	range: 200 – 400 nm; step: 2 nm	
Peak width	> 0.025 min (0.5 S)	
Injection	0.5 µL injection with needle wash at flush port.	
Flow rate	0.8 mL/min	
Column temperature	45 °C	
Gradient	0.0 – 0.2 min	2% B
	0.2 – 1.5 min	2% → 98% B
	1.5 – 2.6 min	98% B
	2.6 – 2.61 min	98% → 2% B
	2.61 – 3.2 min	2% B

Method 14

LC	Waters UPLC Acquity	
MS	Micromass Quattro micro™	
MSD signal settings	Scan pos/neg 100-1200	
column	Aquity BEH C18 2.1x50mm, 1.7µm	
eluant	A: acetonitrile (HPLC grade) + 0.1 % formic acid B: water + 0.1 % formic acid	
detection signal	UV 215/254 nm	
spectrum	range: 200 – 400 nm; Resolution: 1.2 nm	
Sampling rate	10 points/sec	
injection	0.5 µL standard injection	
flow	0.6 mL/min	
column temperature	35 °C	
gradient	0.0 – 0.3 min	97 % B
	0.3 – 3.5 min	97% → 2 % B
	3.5 – 4.8 min	2% B
	4.8 – 5.0min	2% → 97 % B

5.0 – 5.1 min 97 % B

Method 15

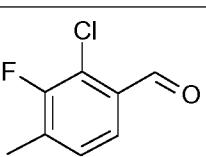

HPLC	Agilent Infinity-1290 Series	
MS	Agilent SQD -6130 (API-ES +/- 3000 V)	
MSD signal settings	Scan pos 100 – 1000, Scan neg 100 – 1000	
Column	Aquity BEH C18, 2.1x50mm, 1.7µm	
Eluent	A: 0.1% Formic Acid in Acetonitrile B: 0.1% Formic Acid in water	
Detection signal	UV 215 nm (bandwidth 4, reference off)	
Spectrum	range: 200 – 400 nm; step: 2 nm	
Peak width	> 0.025 min (0.5 S)	
Injection	0.5 µL injection with needle wash at flush port.	
Flow rate	0.8 mL/min	
Column temperature	60 °C	
Gradient	0.0 – 0.2 min	3% B
	0.2 – 1.5 min	3% → 95% B
	1.5 – 2.5 min	95% B
	2.5 – 2.6 min	95% → 3% B

Method 16

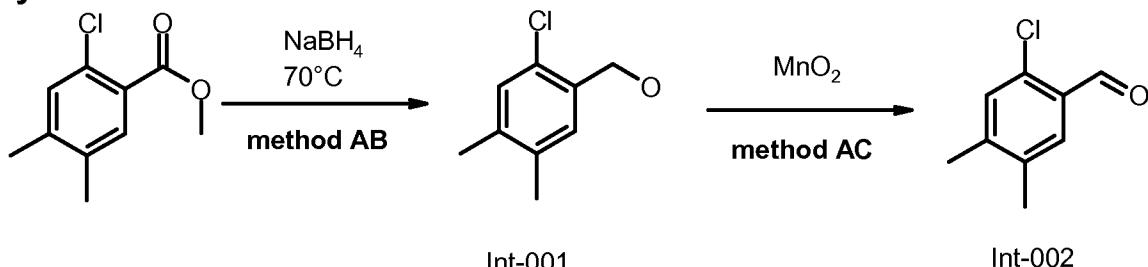
HPLC	Agilent Infinity-1290 Series	
MS	Agilent SQD -6130 (API-ES + 3500 V/ -3000 V)	
MSD signal settings	Scan pos 100 – 1200, Scan neg 100 – 1200	
Column	Aquity BEH C18, 2.1x50mm, 1.7µm	
Eluent	A: 0.1% Formic Acid in Acetonitrile B: 0.1% Formic Acid in water	
Detection signal	UV 215/254 nm (bandwidth 4, reference off)	
Spectrum	range: 200 – 400 nm; step: 2 nm	
Peak width	> 0.025 min (0.5 S)	
Injection	0.5 µL injection with needle wash at flush port.	
Flow rate	0.8 mL/min	
Column temperature	60 °C	
Gradient	0.0 – 0.4 min	97% B

0.4 – 2.2 min	97% → 2% B
2.2 – 2.6 min	2% B
2.6 – 2.61 min	2% → 97% B
2.61 – 3.0 min	97% B

Synthesis of Benzaldehyde Derivatives By Lithiation


5

Synthesis of Int-000 (Method AA):


To a stirred solution of 1-Chloro-2-fluoro-3-methyl-benzene (500 mg; 0.003 mol) in anhydrous THF (5 ml) n-BuLi (1.750 ml; 2.5 m in hexanes) is added at -78 °C. The reaction mixture is stirred for 10 30 min before DMF (0.200 ml) is added. The reaction mixture is allowed to warm to rt within 2 h and subsequently quenched with sat. aq NH₄Cl solution, extracted with EtOAc, and dried under reduced pressure. The residual solid is purified by column chromatography (100-200 mesh).

The following benzaldehyde derivatives are prepared according to the above described procedure:

15

Example	Structure	NMR
Int-000		¹ H-NMR (400 MHz; DMSO): δ 10.22 (s, 1H); 7.66-7.64 (d, 1H, J =8.8 Hz); 7.49-7.46 (t, 1H, J =14.8 Hz); 2.37-2.37 (s, 3H, J =2Hz)

By Reduction – Re-oxidation

Synthesis of Int-001 (Method AB).

Sodiumborohydride (805.00 mg, 0.02 mol) is added to a stirred solution methyl 2-chloro-4,5-dimethylbenzoate (705.00 mg, 3.55 mmol) in anhydrous THF (20 mL) at rt. The reaction mixture is stirred for 15 min, methanol (3.60 ml) is added and the mixture is stirred at 70 °C for 4 hrs. HPLC/MS shows complete conversion. The reaction mixture is poured into water and extracted with DCM. The organic layer is dried over MgSO₄ and concentrated under reduced pressure. The residue is loaded onto Isolute and chromatographed.

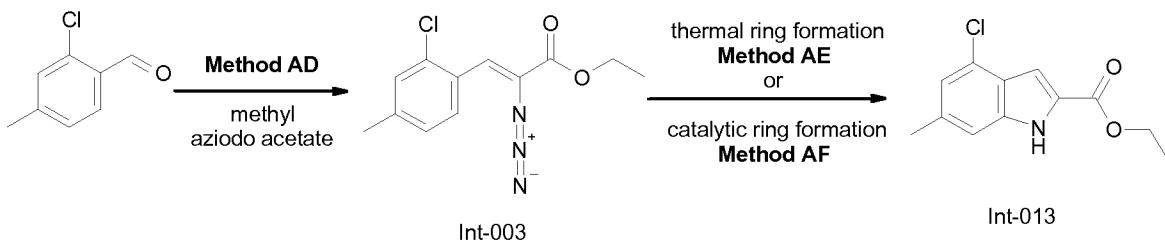
10

The following benzyl alcohol derivatives are prepared according to the above described procedure:

Example	Structure	t _{ret} [min]	M+H	HPLC Method
Int-001		1.03	not detectable	5

Synthesis of Int-002 (Method AC).

15 (2-Chloro-4,5-dimethyl-phenyl)-methanol (526.00 mg, 0.003 mol) is dissolved in DCM, manganese
dioxide (3.05 g, 0.031 mol) is added and the mixture is stirred at r.t. for two days. HPLC/MS shows
complete conversion. The mixture is filtered and concentrated under reduced pressure and used
without further purification


The following benzaldehyde derivatives are prepared according to the above described procedure:

20

Example	Structure	t _{ret} [min]	M+H	HPLC Method
Int-002		1.22	not detectable	5

Synthesis of indole carboxylate intermediates *Hemetsberger-Knittel Synthesis*

5

Synthesis of Int-003 (Method AD)

To sodium ethoxide (25% in ethanol, 293.3 g, 906 mmol) and 2-chloro-4-methylbenzaldehyde (35.0 g, 226 mmol) ethyl azido acetate (116.8 g, 906 mmol) in THF (70 mL)/ethanol (700 mL) is added at -30 °C and stirred for 1 h at ambient temperature. Ice water is added, and the solid is collected by filtration.

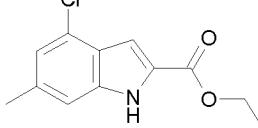
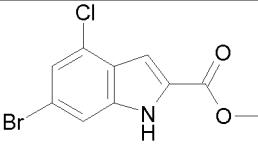
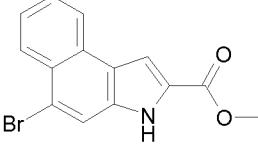
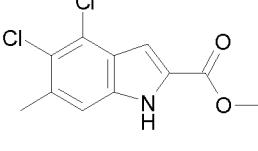
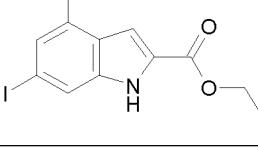
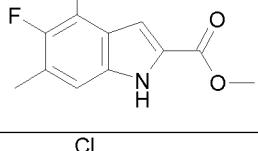
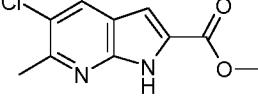
The following azido esters are available in an analogous manner starting from different aldehydes.

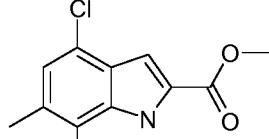
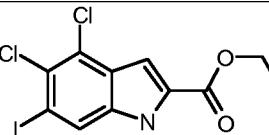
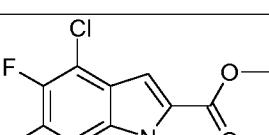
Example	Structure	NMR
Int-003		¹ H-NMR (400 MHz; CDCl ₃): δ 8.07-8.09 (d, 1H J=8 Hz); 7.29 (s, 1H); 7.24-7.260 (d, 1H, J=8.8 Hz); 7.09-7.11 (d, 1H, J=8 Hz); 4.35-4.41(m,2H); 2.34 (s, 3H); 1.38-1.42 (t, 3H)
Int-004		¹ H-NMR (400 MHz; CDCl ₃): δ 8.28-8.31 (m, 1H); 8.28-8.31 (m, 1H); 7.98-8.01 (m, 1H); 7.81-7.83 (d, 1H, J= 8 Hz); 7.58-7.66 (m, 3H); 3.98 (s, 3H)
Int-005		¹ H-NMR (400 MHz; CDCl ₃): δ 7.91-7.93 (d, 1H, J=8.4 Hz); 7.60-7.63 (d, 1H, J=8.4 Hz); 7.18 (s, 1H); 4.35-4.41 (m, 2H); 1.32-1.45 (t, 3H)

Example	Structure	NMR
Int-006		¹ H-NMR (500 MHz; CDCl ₃): δ 7.81-7.80 (d, 1H J=8.5 Hz); 7.75-7.74 (d, 1H, J=8.5 Hz); 7.16 (s, 1H); 4.42-4.38 (m, 2H); 1.43-1.28 (t, 3H)
Int-007		¹ H-NMR (400 MHz; DMSO): δ 7.97-7.95 (d, 1H, J=8 Hz); 7.37-7.33 (t, 1H, J=14.8 Hz); 7.07 (s, 1H); 3.88 (s, 3H); 2.30 (s, 3H).

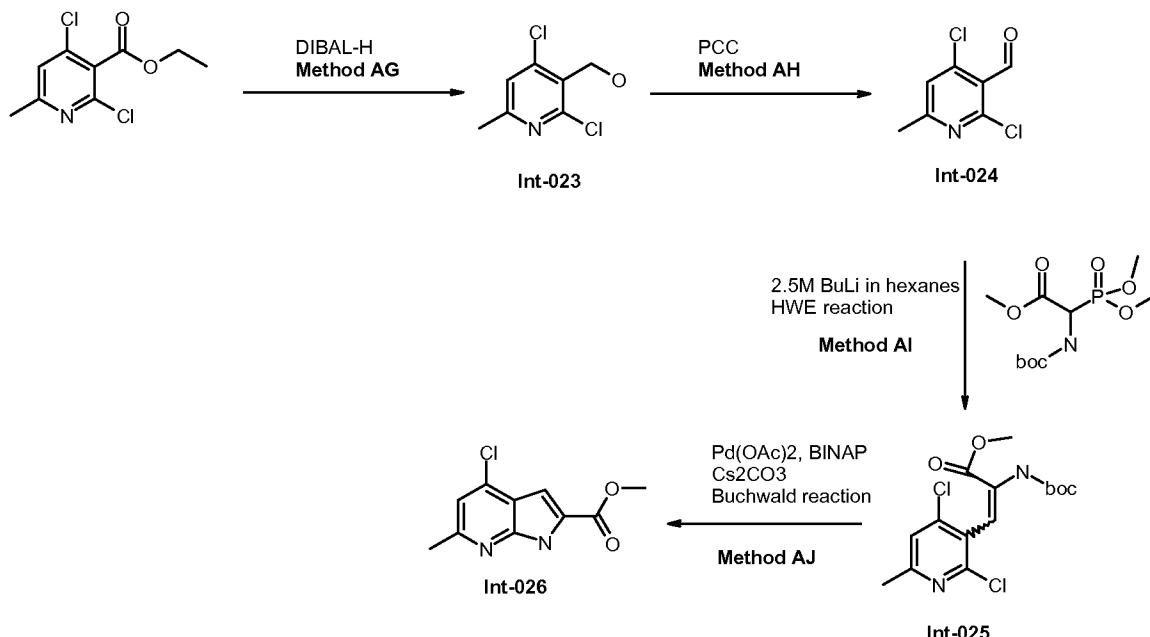
Example	Structure	t _{ret} [min]	M+H	HPLC Method
Int-008		0.94	not detectable	3
Int-009		0.95	not detectable	2
Int-010		0.87	267	1
Int-011		0.82	287/ 289	2
Int-012		0.92	not detectable	2

Synthesis of Int-013 (Method AE)








5 Int-004 (26.0 g, 265.7 mmol) in xylene (20 mL) is added to xylene (520 mL) at 160 °C over a period




of 20 min. and stirred for 3 h at this temperature. The reaction mixture is concentrated *in vacuo* and triturated with pentane (100 mL).

Synthesis of Int-014 (Method AF)

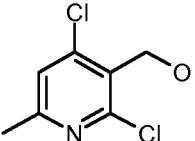

5 To **Int-008** (1.40 g, 4.43 mmol) in toluene (250 mL) rhodium(II)heptafluorobutyrate dimer (482 mg, 2.19 mmol) is added and stirred at 60 °C overnight. The reaction mixture is concentrated *in vacuo*, and the residue is purified by column chromatography.

The following indoles are available in an analogous manner applying the given synthetic method.

Example	Structure	synthetic method	t _{ret} [min]	M+H	M-H	HPLC Method
Int-013		AE	2.79	238		6
Int-014		AF	0.79		286/ 288	3
Int-015		AE	2.65	304		7
Int-016		AF	0.81	258		2
Int-017		AE	3.03		348	6
Int-018		AF	0.70	226		1
Int-019		AE	0.72	259/ 261		2

Int-020		AE	1.43	238		5
Int-021		AE	2.22	384		16
Int-022		AE	2.62	240		8

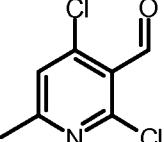
Synthesis of Aza-Indoles


5

Synthesis of Int-023 (Method AG)

To a stirred solution of 2,4-Dichloro-6-methyl-nicotinic acid ethyl ester (2.5 g, 0.01 mol) in anhydrous THF (25 mL) DIBALH (21 mL, 0.021 mol, 1.0 M in toluene) is slowly added at 0 °C. The reaction mixture is allowed to warm to rt and stirring is continued for 16 h. The reaction mixture is

10 cooled 0 °C and aq. sat. ammonium chloride solution is added. Ethyl acetate is added and the


layers are separated. The organic layer is dried over sodium sulphate, filtered and solvents are removed under reduced pressure. The crude product is purified by column chromatography.

Example	Structure	t _{ret} [min]	M+H	HPLC Method
Int-023		1.71	193	8

Synthesis of Int-024 (Method AH)

5 To a stirred solution of (Int-023; 2,4-Dichloro-6-methyl-pyridin-3-yl)-methanol (1.2 g, 6.0 mmol) in DCM (20 mL) PCC (2.7 g, 12.0 mmol) is added at 0 °C and the reaction mixture is allowed to warm to rt. Stirring is continued at rt for additional 2 h. The reaction mixture is filtered through a plug of celite®. Solvents are removed under reduced pressure and the crude solid is purified by column chromatography.

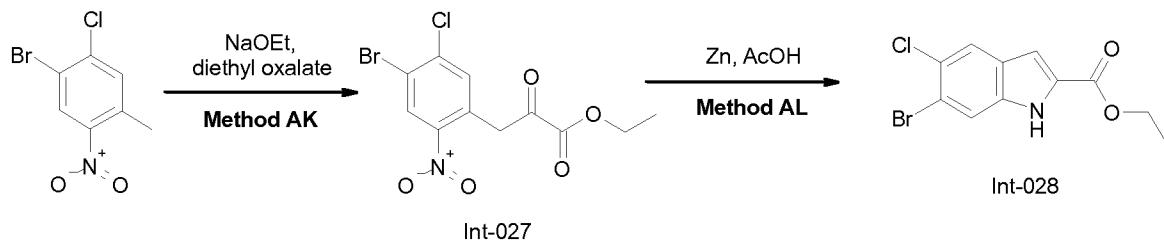
10

Example	Structure	t _{ret} [min]	M+H	HPLC Method
Int-024		2.15	191	8

Synthesis of Int-025 (Method AI)

To a stirred solution of tert-Butoxycarbonylamino-(dimethoxy-phosphoryl)-acetic acid methyl ester (Int-024; 782 mg, 2.63 mmol) in anhydrous THF (8 mL) n-BuLi (2.5M in hexanes, 2.1 mL, 5.3mmol) is added at 0 °C during a period of time of 15 minutes. Stirring is continued for additional 30 minutes at same temperature, before 2,4-Dichloro-6-methyl-pyridine-3-carbaldehyde (500 mg, 2.6 mmol) dissolved in anhydrous THF (2 mL) is added to the reaction mixture at 0 °C. Stirring is continued for 1 h, the reaction mixture is quenched with sat. aq. ammonium chloride solution and the aqueous phase is extracted with ethyl acetate. Phases are separated, the organic phase is dried with MgSO₄, filtered and solvents are removed in vacuo. The crude product is purified with column chromatography.

Example	Structure	t _{ret} [min]	M+H	HPLC Method
Int-025		1.80	361	16


Synthesis of Int-026 (Method AJ)

2-tert-Butoxycarbonylamino-3-(2,4-dichloro-6-methyl-pyridin-3-yl)-acrylic acid methyl ester (**Int-025**; 6.0 g, 16.6 mmol) is dissolved in anhydrous 1,4-dioxane (60 mL) and methylamine (2 M in THF, 25 mL, 50 mmol), Palladium(II)acetate (373 mg, 2 mmol), BINAP (1.04 g, 2 mmol), and cesium carbonate (10.8 g, 33 mmol) are added and the reaction mixture is degassed with Argon. The reaction mixture is heated to reflux for 16 hours, cooled to rt and solids are filtered off. After washing with ethyl acetate the combined organic extracts are concentrated and the crude product is purified by column chromatography.

10

Example	Structure	t _{ret} [min]	M+H	HPLC Method
Int-026		2.43	225	8

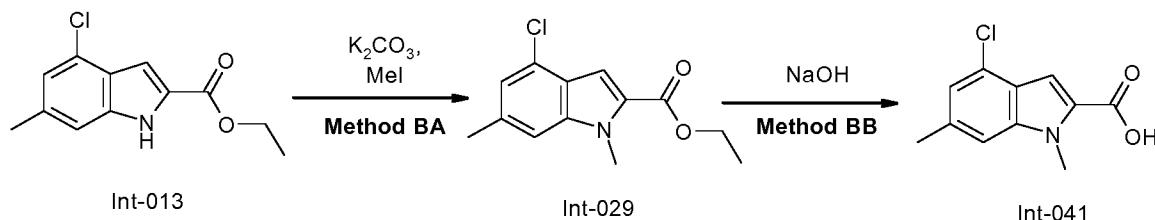
Synthesis via dialkyl oxalate condensation

15

Synthesis of Int-027 (Method AK).

1-Bromo-2-chloro-4-methyl-5-nitrobenzene (25.0 g, 100 mmol) in ethanol (100 mL) is added to sodium ethoxide (13.57 g, 110 mmol) in ethanol (200 mL) at ambient temperature. Diethyl oxalate (16.03 g, 110 mmol) is added and stirred for 16 h at ambient temperature. Ice water is added. The formed solid is collected by filtration and triturated with water.

20

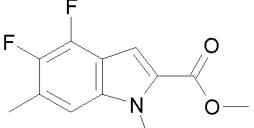
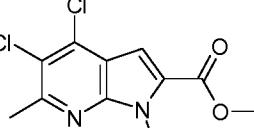
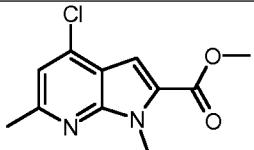
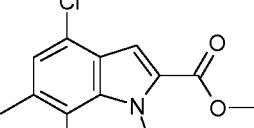

Example	Structure	t _{ret} [min]	M-H	HPLC Method
Int-027		4.33	350	9

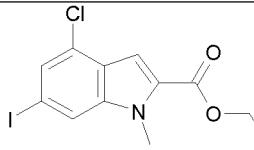
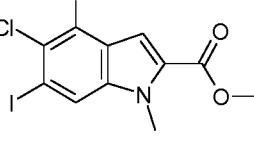
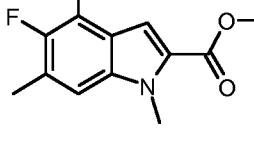
Synthesis of **Int-28 (Method AL)**.

To **Int-027** (11.0 g, 31 mmol) in glacial acetic acid (120 mL)/water (80 mL) zinc dust (20.4 g, 314 mmol) is added at 75 °C in small portions. The mixture is stirred at this temperature until the conversion is complete and then cooled to ambient temperature. The mixture is partitioned between water and EtOAc, stirred for 20 min. and filtered. The organic layer is concentrated *in vacuo*, and the residue is purified by column chromatography.

Example	Structure	t _{ret} [min]	M+H	HPLC Method
Int-028		3.18	316	8

Synthesis of indole-2-carboxylic acid intermediates

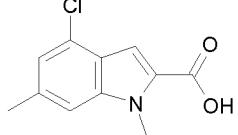
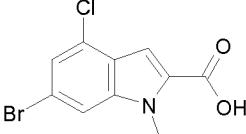
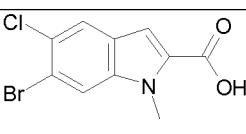
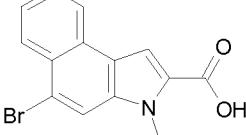
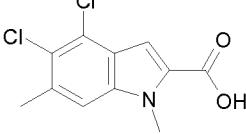
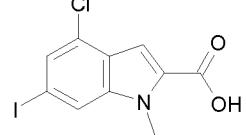
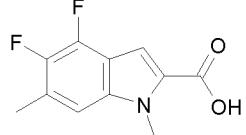
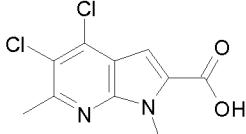
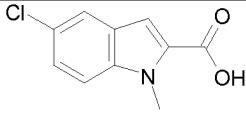



5 Synthesis of Int-29 (Method BA)

To **Int-013** (12.0 g, 50.5 mmol) and K_2CO_3 (13.96 g, 101 mmol) in DMF (120 mL) methyl iodide (14.34 g, 101 mmol) is added at 0 °C and stirred for 4 h at ambient temperature. Ice water is added. The formed solid is collected by filtration and triturated subsequently with water and pentane.

10 The following indoles are prepared in an analogous manner.

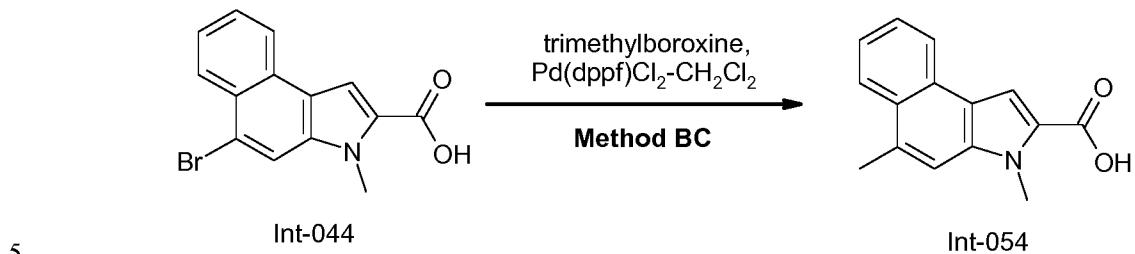
Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
Int-029		3.12	252		6
Int-030		0.92		301/ 303	3
Int-031		3.18	316		8
Int-032		3.03	318		7
Int-033		0.92	272		2

Int-034		0.83	240		1
Int-035		0.92	273/ 275		2
Int-036		0.78	239		2
Int-037		0.89	252		2










Example	Structure	NMR
Int-038		¹ H-NMR (400 MHz; CDCl ₃): δ 7.66 (s, 1H); 7.45 (s, 1H); 7.3 (s, 1H); 4.3-4.4 (m, 2H); 4.04 (s, 3H); 1.2-1.3 (t, 3H)
Int-039		¹ H-NMR (500 MHz; CDCl ₃): δ 7.87 (s, 1H); 7.28 (s, 1H); 4.41-4.36 (m, 2H); 4.09 (s, 3H); 1.44-1.40 (t, 3H)
Int-040		¹ H-NMR (300 MHz; CDCl ₃): δ 7.30 (s, 1H); 7.06-7.08 (d, 1H, J=5.1 Hz); 4.04 (s, 3H); 3.92 (s, 3H); 2.45 (s, 3H)

Synthesis of Int-41 (Method BB)

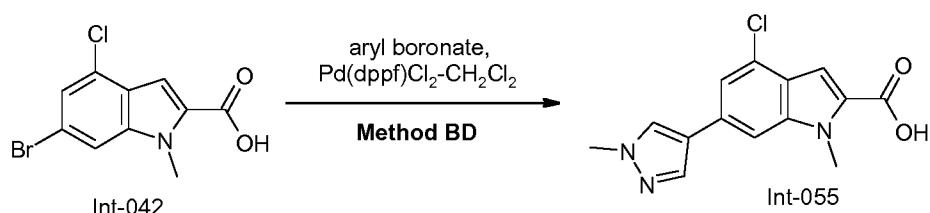
To **Int-029** (12.0 g, 47.7 mmol) in THF (70 mL)/water (25 mL) lithium hydroxide monohydrate


5 (8.01 g, 191 mmol) is added at 0 °C and stirred at ambient temperature for 2 h. 4 N HCl (10 mL) is added, and the mixture is extracted exhaustively with EtOAc. The combined organic layer is washed with water and brine, dried (MgSO₄), filtered and concentrated *in vacuo*. The residue is triturated with ether and pentane.

The following indole carboxylic acids are prepared in an analogous manner.

Example	Structure	t _{ret} [min]	M+H	M-H	HPLC Method
Int-041		2.47		222	6
Int-042		0.42		286/ 287	3
Int-043		3.12		286	9
Int-044		3.27		302	10
Int-045		0.74	258		2
Int-046		1.54		334	11
Int-047		0.64	226		1
Int-048		0.70	259/ 261		2
Int-049		0.61	210		1

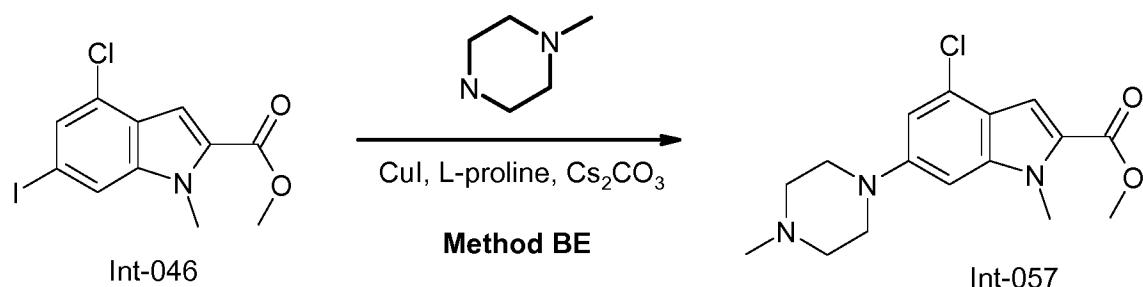
Int-050		0.78	239		2
Int-051		0.57	225		2
Int-052		1.57	370		12
Int-053		2.47	240		8


Indole core derivatisation

Synthesis of Int-054 (Method BC).

Int-044 (200 mg, 0.86 mmol), 2 m aq. K₂CO₃ (986 µL), trimethylboroxine (138 µL, 0.99 mmol), and Pd(dppf)Cl₂-CH₂Cl₂ (42 mg, 0.05 mmol) in dioxane (3 mL) is stirred for 3 h at 80 °C. The reaction mixture is filtered and concentrated *in vacuo*. Water is added, and the pH is adjusted to 5 using 2 N HCl. The solid is collected by filtration and dried *in vacuo*.

Example	Structure	t _{ret} [min]	M+H	HPLC Method
Int-054		0.69	240	1

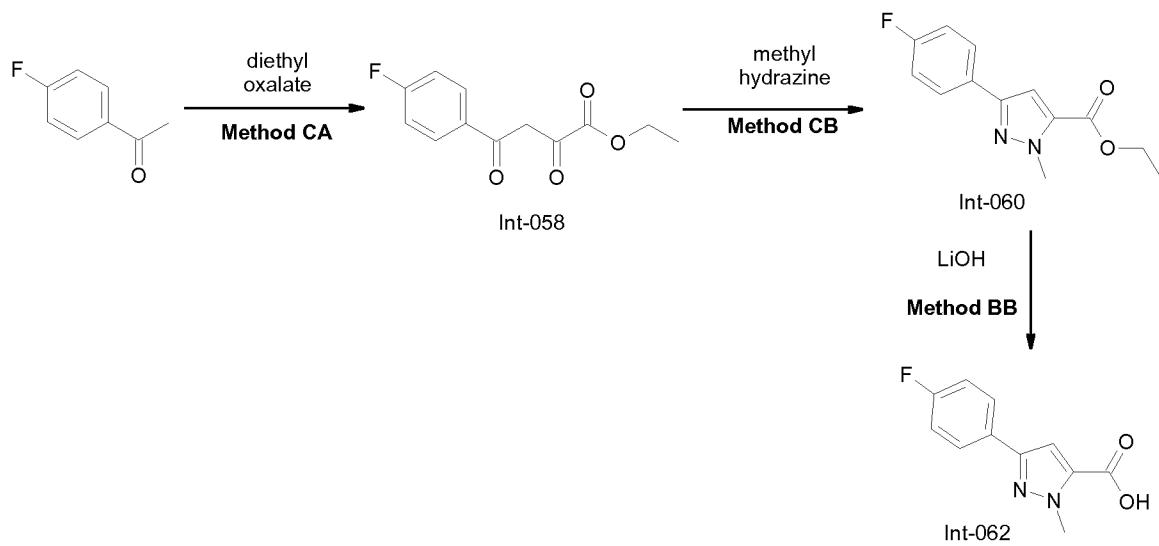

5

Synthesis of Int-055 (Method BD).

Int-042 (1.0 g, 2.98 mmol), K₂CO₃ (0.83 g, 5.96 mmol), 1-methyl-1H-pyrazole-4-boronic acid pinacol ester (1.24 g, 5.96 mmol), and Pd(dppf)Cl₂-CH₂Cl₂ (243 mg, 0.30 mmol) in DMSO (18 mL)/water (2 mL) is stirred for 1 h at 75 °C. The reaction mixture is filtered and concentrated *in vacuo*. Water is added, and the pH is adjusted to 4 using 2 N HCl. The solid is collected by filtration and purified by column chromatography.

The following pyrazolyl indoles are prepared in an analogous manner.

Example	Structure	t _{ret} [min]	M+H	HPLC Method
Int-055		0.56	290	2
Int-056		0.37	389	2


Synthesis of Int-057 (Method BE).

4-Chloro-6-iodo-1-methyl-1H-indole-2-carboxylic acid methyl ester (**Int-046**; 370 mg, 1.06 mmol),
 5 N-methyl-piperazine (425 mg, 4.23 mmol), copper(I)iodide (60 mg, 0.32 mmol), L-proline (73.0 mg,
 0.64 mmol), and cesium carbonate (690.0 mg, 2.12 mmol) are dissolved in degassed DMSO and
 stirred for one hour at 90 °C. Water is added and the solids are collected by filtration. Reversed
 phase column chromatography delivers the purified product.

10

Synthesis of arylpyrazole carboxylates and analogous intermediates

Pyrazole ring formation

15

Synthesis of Int-058 (Method CA)

Sodium metal (60%, 15.06 g, 376 mmol) is added to dry ethanol (300 mL), then 1-(4-fluorophenyl)-ethanone (40.0 g, 289 mmol) in dry THF is added at 0 °C and stirred for 10 min. at this temperature. Diethyl oxalate (50.78 g, 347 mmol) is added and stirred for 16 h at ambient

temperature. 2 N HCl is added. The formed solid is collected by filtration and dried.

The following diketones are prepared in an analogous manner.

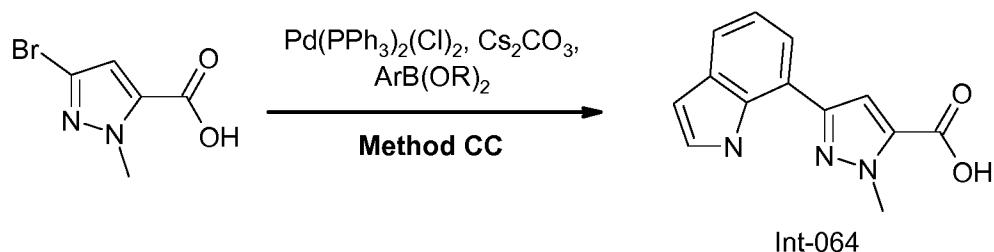
Example	Structure	t _{ret} [min]	M+H	HPLC Method
Int-058		2.08	239	13
Int-059		1.54	255	11

5 Synthesis of Int-060 (Method CB)

To **Int-058** (60.0 g, 252 mmol) in ethanol (300 mL) methyl hydrazine (13.9 g, 302 mmol) and acetic acid (126 g, 126 mmol) are added and stirred for 3 h at ambient temperature. Most of the ethanol is evaporated, and water is added. The mixture is extracted exhaustively with EtOAc. The combined organic layer is washed with water and brine, dried (MgSO_4), filtered and concentrated *in vacuo*.

10 The mixture of isomers is purified by column chromatography.

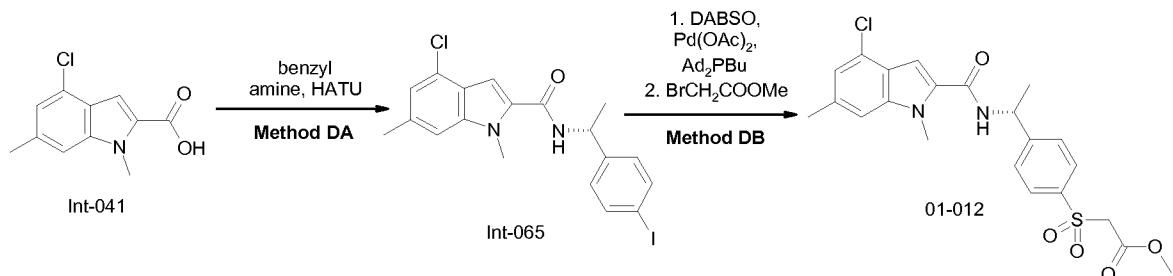
The following aryl pyrazoles are prepared in an analogous manner.


Example	Structure	t _{ret} [min]	M+H	HPLC Method
Int-060		1.35	249	11
Int-061		1.44	266	11

Carboxylic acids **Int-062** and **Int-063** are prepared using general **Method BB**

Example	Structure	t _{ret} [min]	M+H	HPLC Method
Int-062		2.63	221	9
Int-063		2.18	237	14

Halo-Pyrazole functionalization


5

3-Bromo-1-methyl-1*H*-pyrazole-5-carboxylic acid (0.5 g, 2.44 mmol), Cs₂CO₃ (2 M in water, 1.8 mL, 3.7 mmol), indole-7-boronic acid, pinacol ester (712 mg, 2.93 mmol), and Pd(PPh₃)₂Cl₂ (86 mg, 0.12 mmol) in mixture of ethanol/DME (1/10; 2.2 mL) is stirred for 16 hours at 80 °C. The reaction mixture is filtered and concentrated *in vacuo*. Water is added, and the pH is adjusted to 4 using 2 N HCl. The solid is collected by filtration and purified by column chromatography.

Example	Structure	t _{ret} [min]	M+H	HPLC Method
Int-064		0.72	242	5

Synthesis of Examples 01-001 – 02-017

5

Synthesis of Int-065 (Method DA)

To **Int-041** (300 mg, 1.34 mmol) in dry MeCN (10 mL) ethyl diisopropyl amine (432 μ L, 2.68 mmol) and HATU (624 mg, 1.61 mmol) are added and stirred for 20 min. at ambient temperature. (1R)-1-(4-iodophenyl)ethanamine (331 mg, 1.34 mmol) is added and stirred for 16 h. Water is added. The formed solid is collected by filtration and triturated with water.

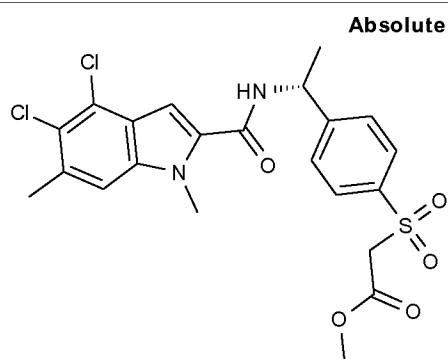
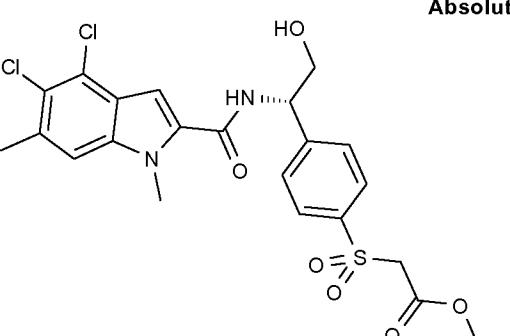
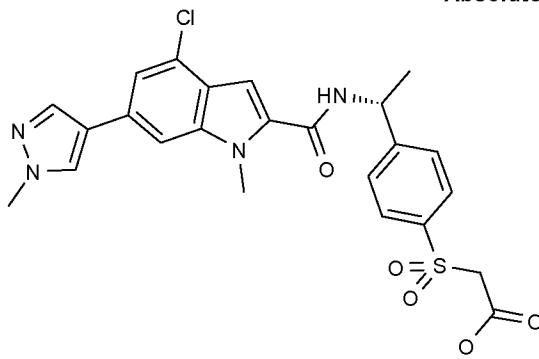
The following amides are prepared in an analogous manner.

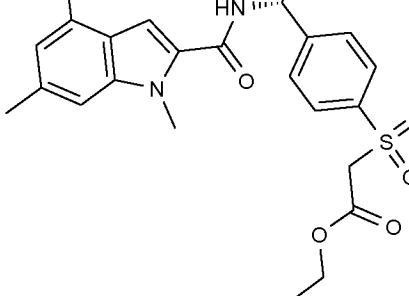
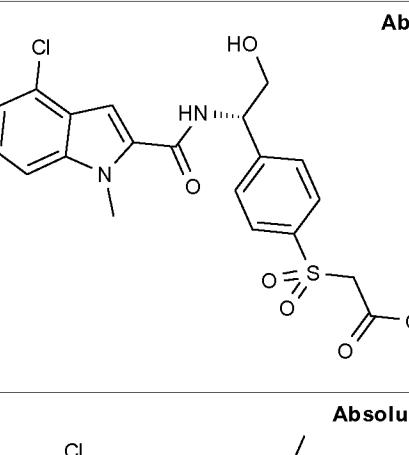
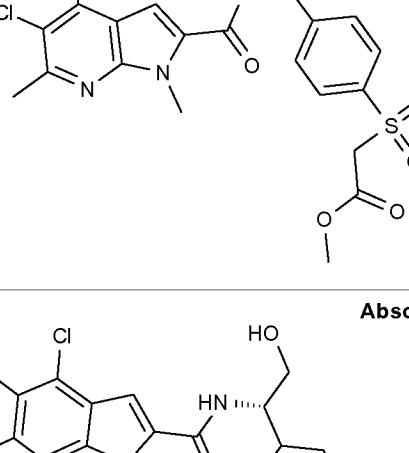
Example	Structure	t_{ret} [min]	M+H	HPLC Method
Int-065		0.95	453	4
Int-066		0.94	469	1

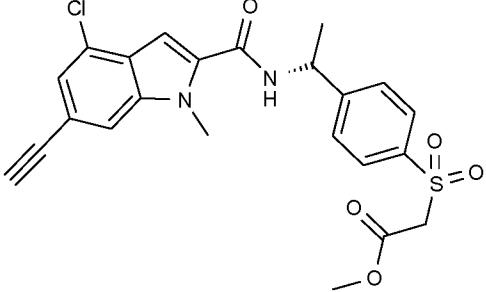
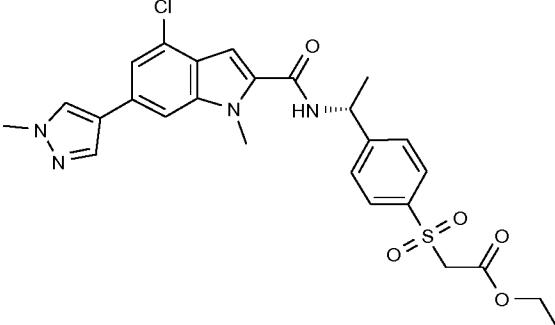
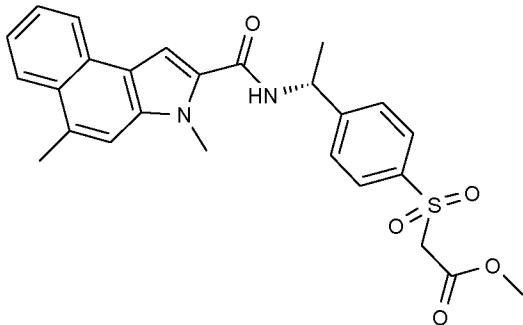
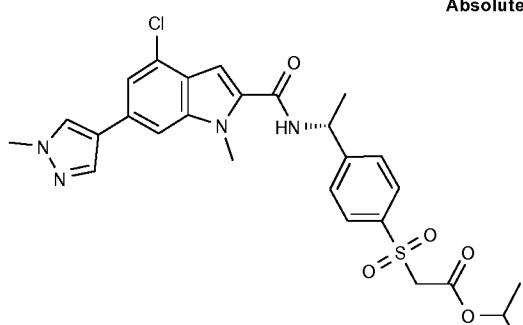
Int-067		0.99	487	2
Int-068		0.79	471	1
Int-068		0.98	488/ 490	2
Int-069		0.88	439	1
Int-070		0.84	519	2
Int-071		0.62	618	2

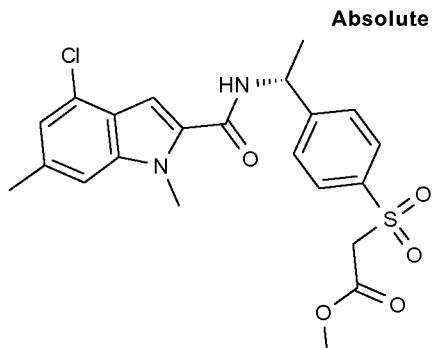
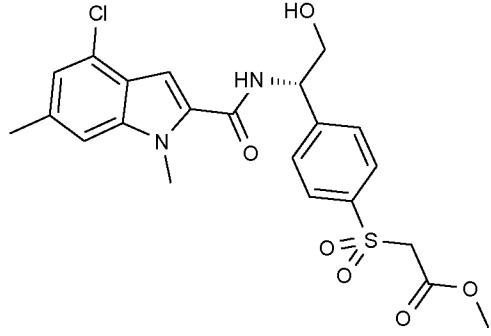
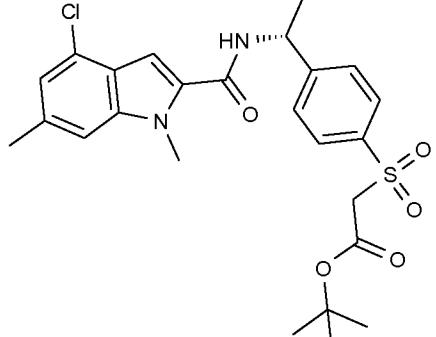
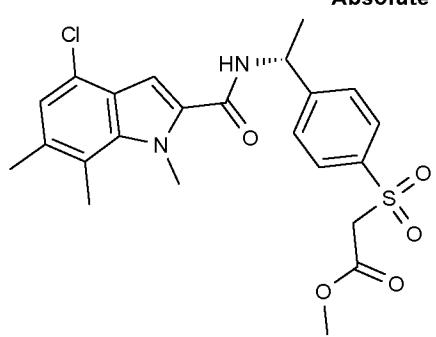
Int-072		0.90	439	1
Int-073		0.87	503/ 504	2
Int-074		0.82	432	1
Int-075		0.83	450	1
Int-076		0.87	471	2

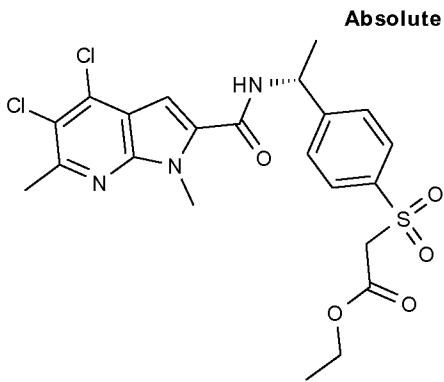
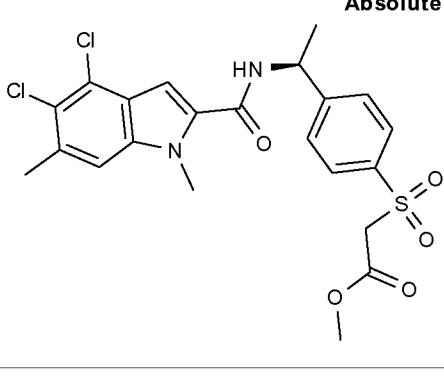
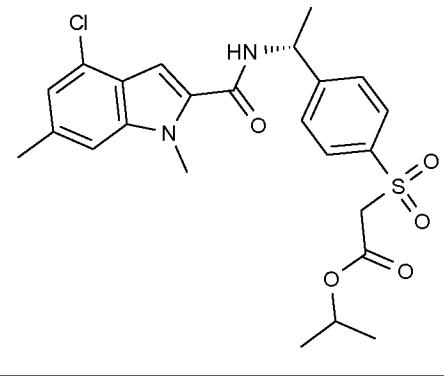
Synthesis of 01-012 (Method DB).

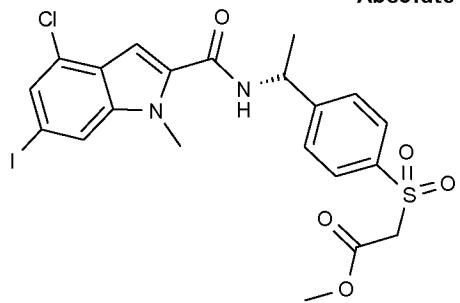
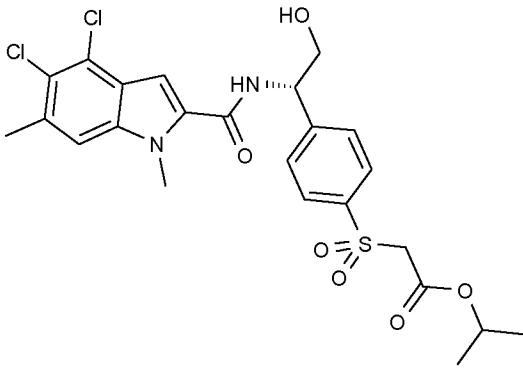
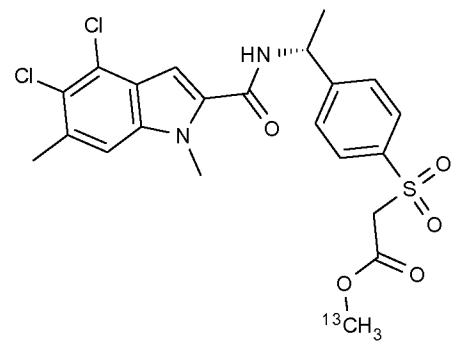
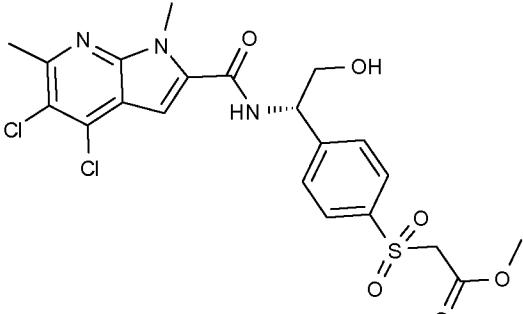



Int-065 (400 mg, 0.44 mmol), DABSO (123 mg, 0.49 mmol), $\text{Pd}(\text{OAc})_2$ (10 mg, 0.04 mmol), butyldi-

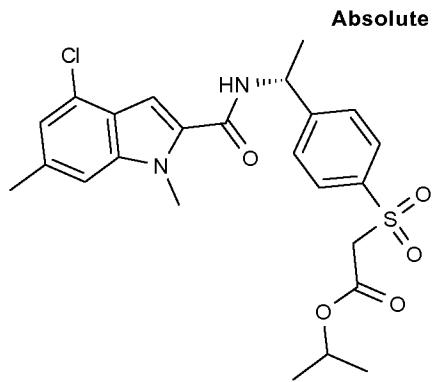
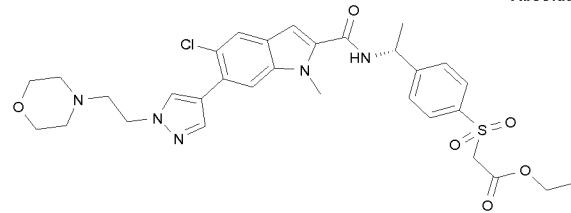
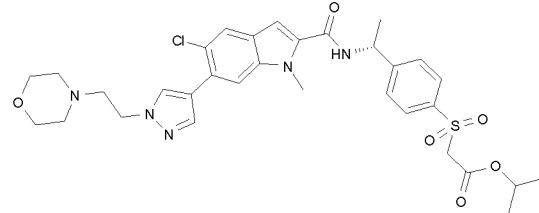
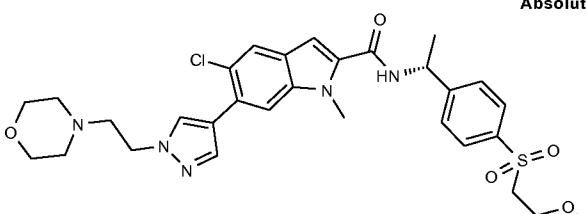
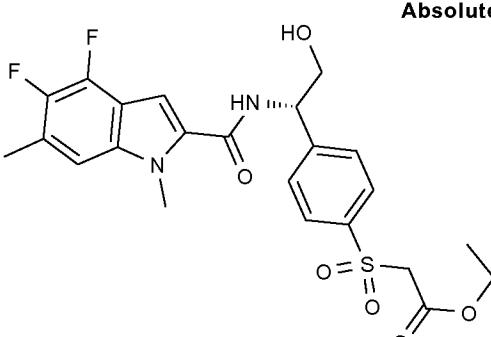



1-adamantylphosphine (32 mg, 0.09 mmol), triethyl amine (150 μL , 1.33 mmol) and 2-propanol

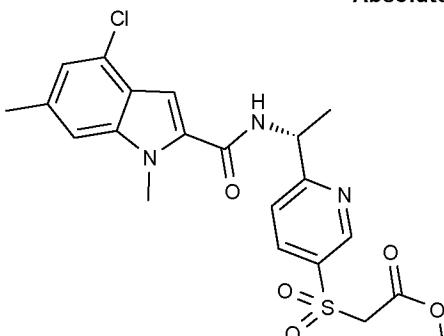
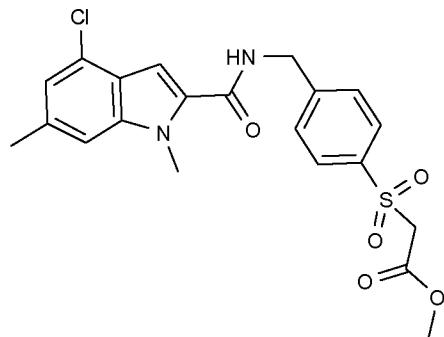
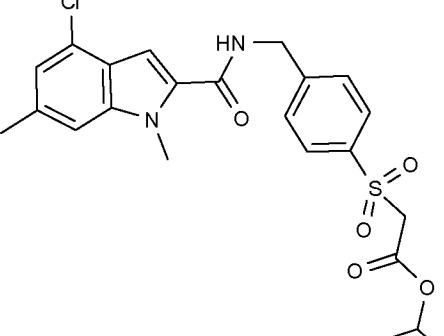
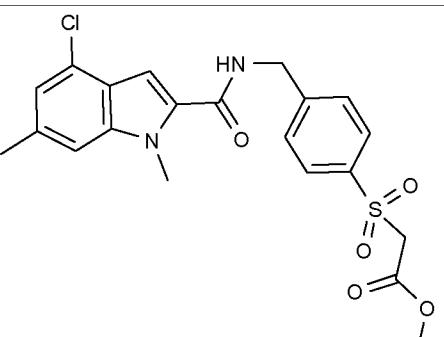




5 (900 μL) are degassed with argon and stirred for 2 h at 75 $^\circ\text{C}$. The mixture is cooled, and methyl bromoacetate (127 μL , 1.33 mmol) is added. The mixture is stirred at ambient temperature





overnight. The reaction mixture is concentrated *in vacuo*, and the residue is partitioned between water and dichloromethane. The aqueous layer is extracted exhaustively with dichloromethane. The combined organic layer is washed with 1 N HCl, dried (MgSO_4), filtered and concentrated *in vacuo*. The residue is purified by column chromatography or by RP-HPLC/MS.

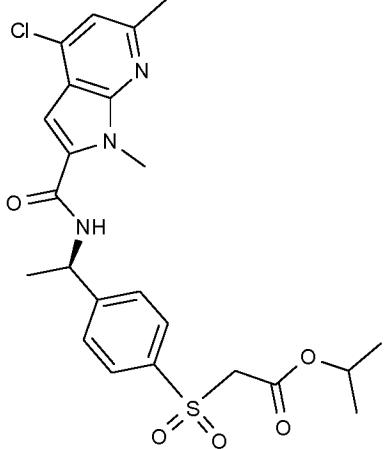
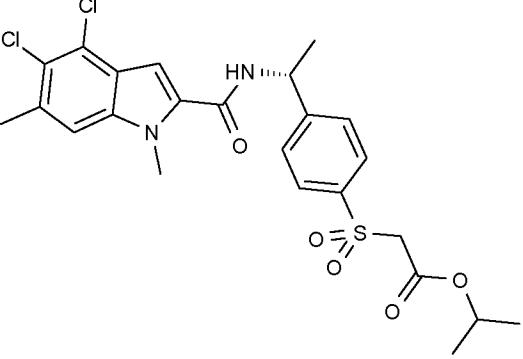
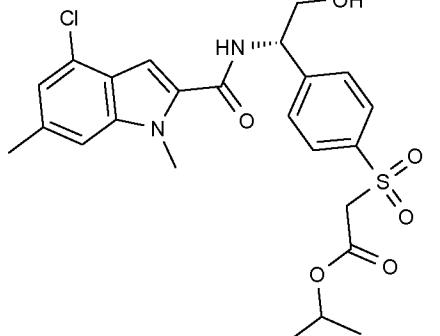



5 The following sulfonyl acetates are prepared in an analogous manner.

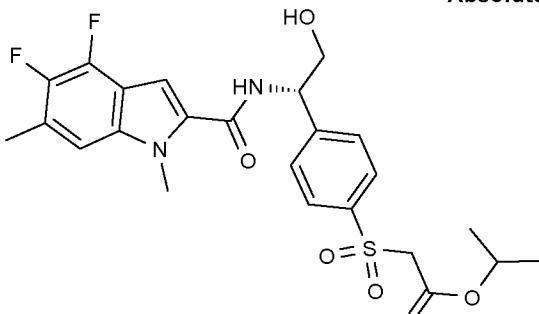
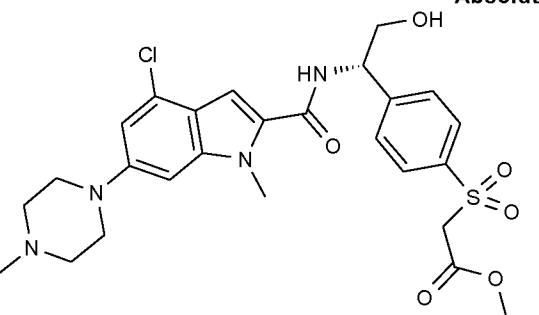
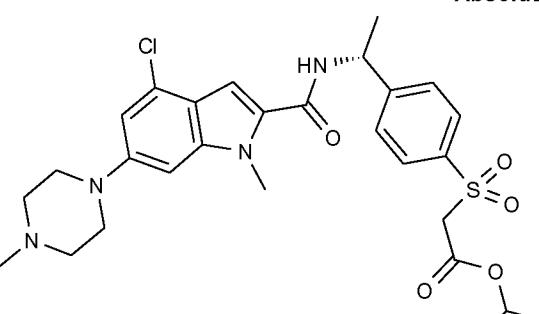




Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
01-001	<p style="text-align: center;">Absolute</p>	1.4	497		5
01-002	<p style="text-align: center;">Absolute</p>	1.36	527		5
01-003	<p style="text-align: center;">Absolute</p>	1.24	529		5






Example	Structure	t _{ret} [min]	M+H	M-H	HPLC Method
01-004		1.45	477		5
01-005		1.29	493		5
01-006		1.44	498		5
01-007		1.32	513		5

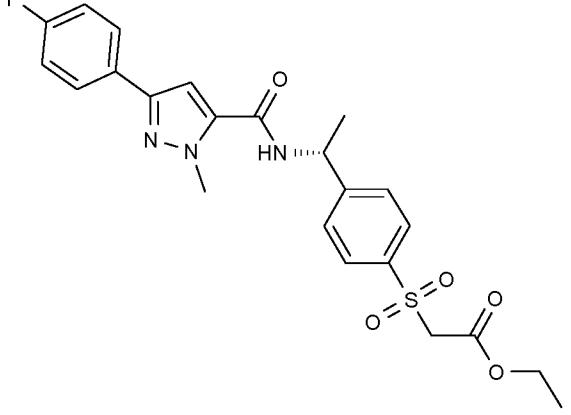
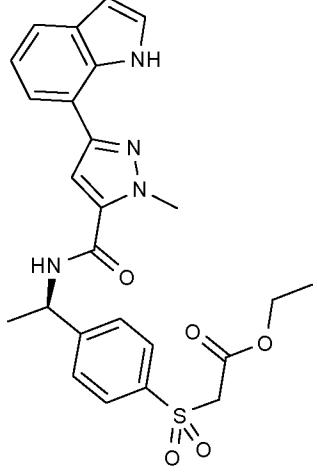
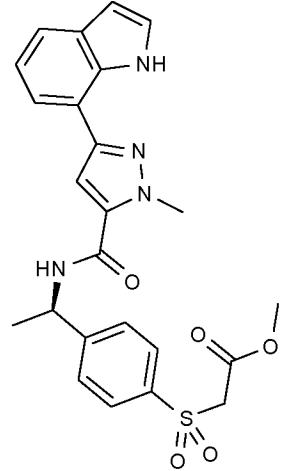




Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
01-008	 Absolute	1.4	473		5
01-009	 Absolute	1.28	543		5
01-010	 Absolute	1.42	479		5
01-011	 Absolute	1.32	557		5

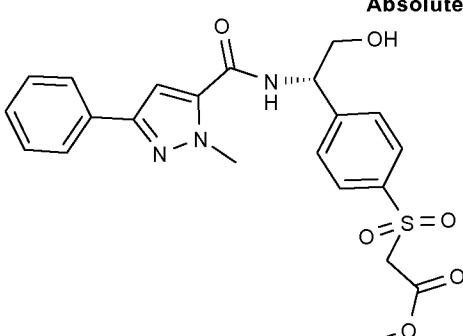
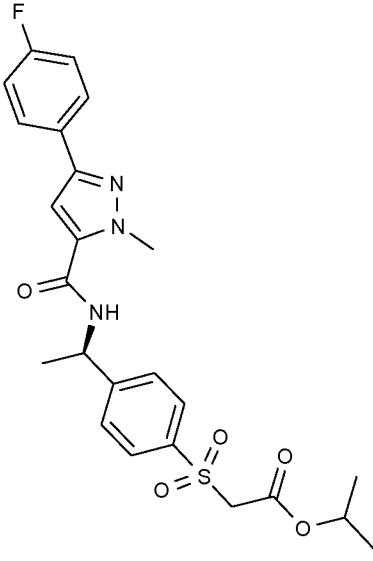
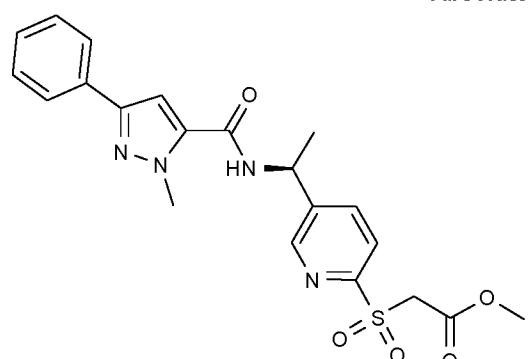
Example	Structure	t _{ret} [min]	M+H	M-H	HPLC Method
01-012	<p>Absolute</p>	1.41	463		5
01-013	<p>Absolute</p>	1.25	479		5
01-014	<p>Absolute</p>	1.56		503	5
01-015	<p>Absolute</p>	1.44	477		5

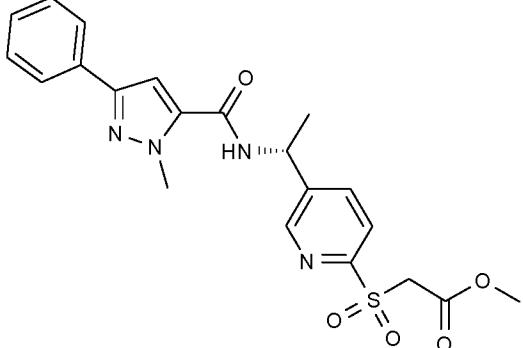
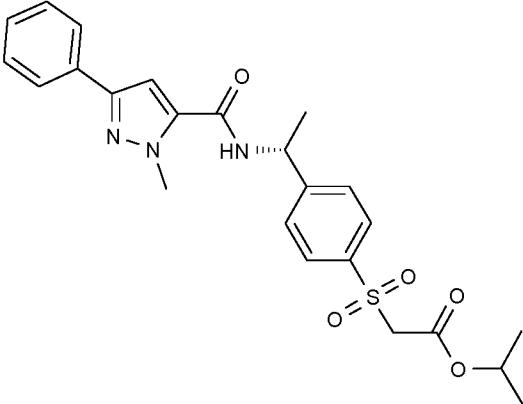
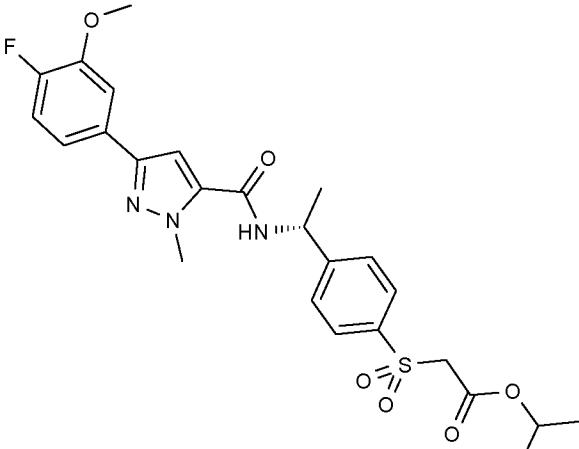



Example	Structure	t _{ret} [min]	M+H	M-H	HPLC Method
01-016	Absolute	1.5	512		5
01-017	Absolute	1.5	497		5
01-018	Absolute	1.5	491		5
01-019	Absolute	1.28	449		5

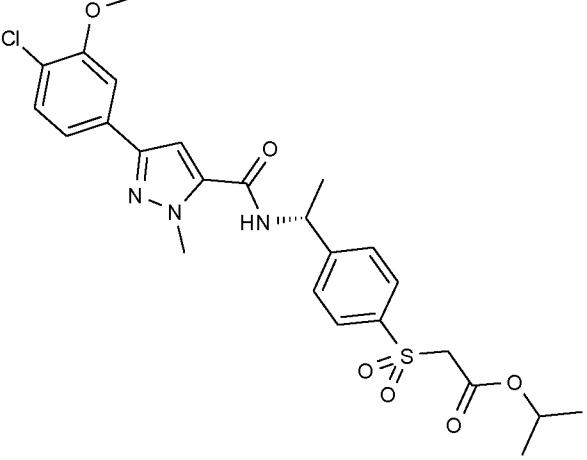
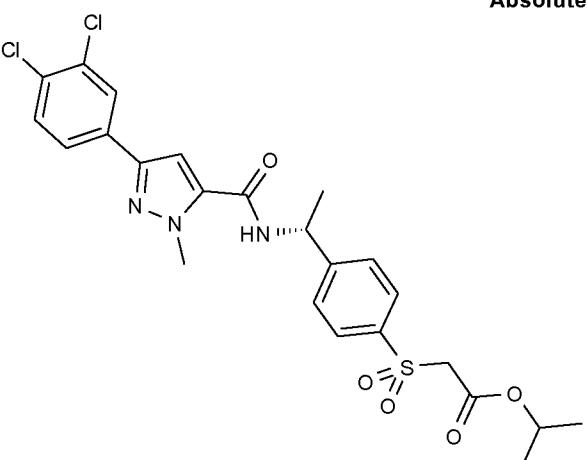
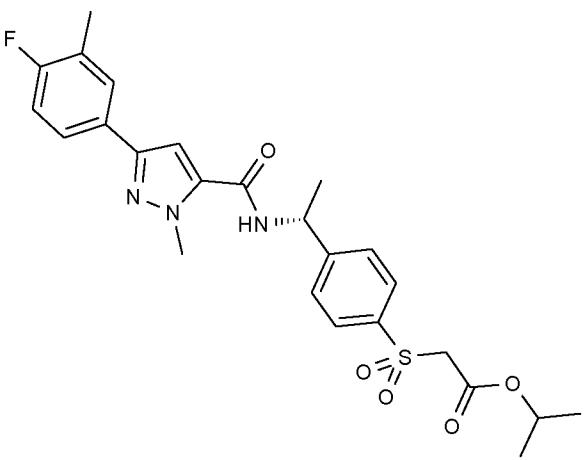



Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
01-020	<p style="text-align: center;">Absolute</p>	1.51	575		5
01-021	<p style="text-align: center;">Absolute</p>	1.4	541		5
01-022	<p style="text-align: center;">Absolute</p>	1.43	498		5
01-023	<p style="text-align: center;">Absolute</p>	1.27	514		5

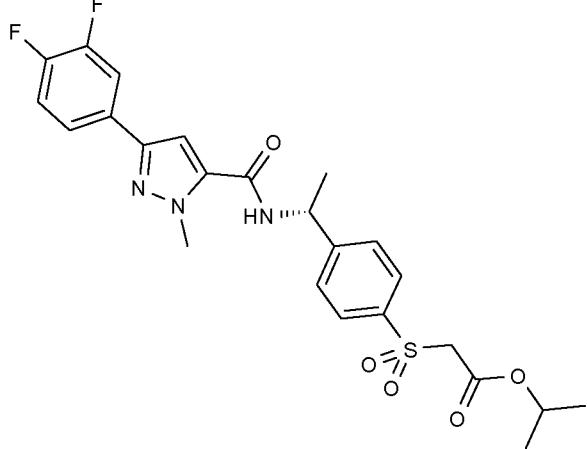
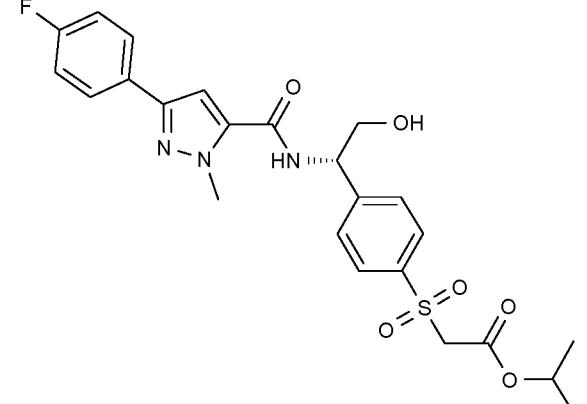
Example	Structure	t _{ret} [min]	M+H	M-H	HPLC Method
01-024	<p style="text-align: center;">Absolute</p>	1.50	491		5
01-025	<p style="text-align: center;">Absolute</p>	1.23	642		5
01-026	<p style="text-align: center;">Absolute</p>	1.26	656		5
01-027	<p style="text-align: center;">Absolute</p>	1.16	628		5
01-028	<p style="text-align: center;">Absolute</p>	1.25	495		5




Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
01-029	<p style="text-align: center;">Absolute</p>	2.76		469	6
01-030		n.a.	n.a.		5
01-031		1.65	477		5
01-032		1.37	463		5

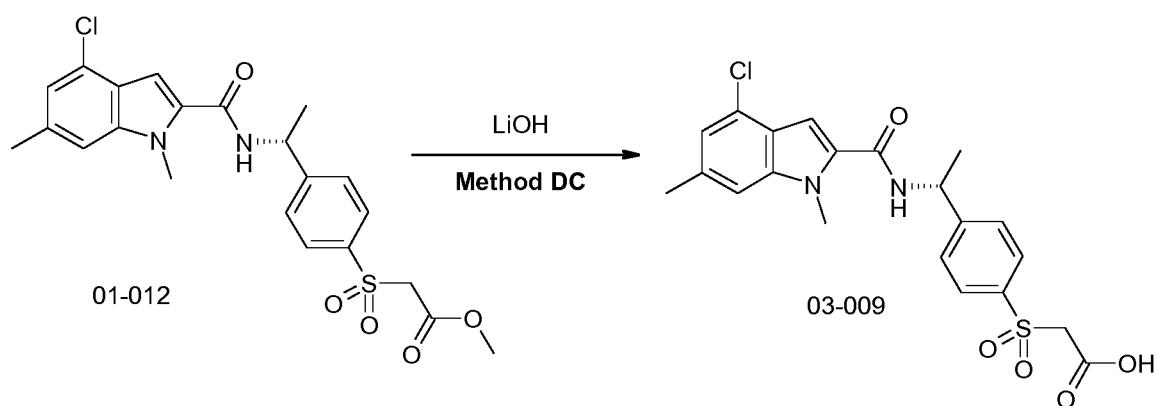







Example	Structure	t _{ret} [min]	M+H	M-H	HPLC Method
01-036	<p style="text-align: center;">Absolute</p>	1.38	492		5
01-037	<p style="text-align: center;">Absolute</p>	1.52	525		5
01-038	<p style="text-align: center;">Absolute</p>	1.35	507		5




Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
01-039	<p>Absolute</p>	1.28	509		5
01-040	<p>Absolute</p>	1.17	591		5
01-041	<p>Absolute</p>	1.33	575		5



Example	Structure	t Ret	M+H	Method
02-001	<p style="text-align: center;">Absolute</p>	1.25	460	5
02-002	<p style="text-align: center;">Absolute</p>	1.2	442	5
02-003	<p style="text-align: center;">Absolute</p>	1.19	456	5

Example	Structure	t Ret	M+H	Method
02-004	<p style="text-align: center;">Absolute</p>	1.31	474	5
02-005	<p style="text-align: center;">Absolute</p>	1.36	495	5
02-006	<p style="text-align: center;">Absolute</p>	1.32	481	5

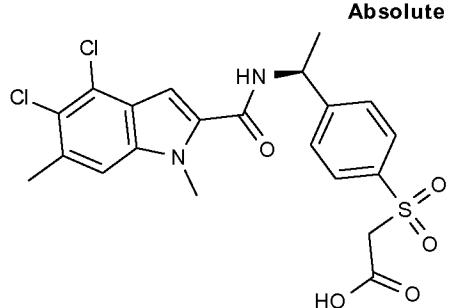
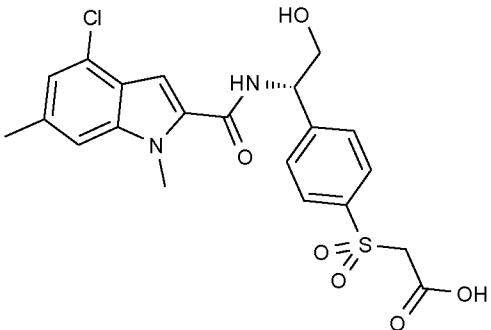
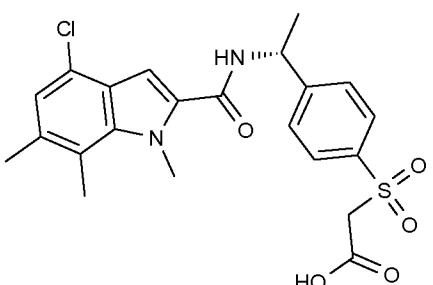

Example	Structure	t Ret	M+H	Method
02-007	<p>Absolute</p>	1.05	458	5
02-008	<p>Absolute</p>	1.34	488	5
02-009	<p>Absolute</p>			12

Example	Structure	t Ret	M+H	Method
02-010	<p style="text-align: center;">Absolute</p>			12
02-011	<p style="text-align: center;">Absolute</p>	1.32	470	5
02-012	<p style="text-align: center;">Absolute</p>	1.34	518	5

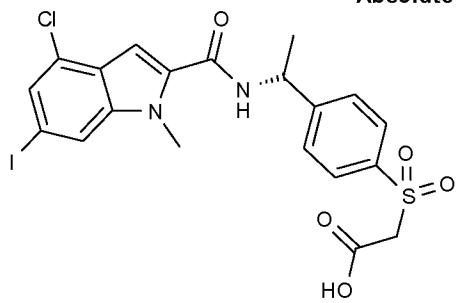
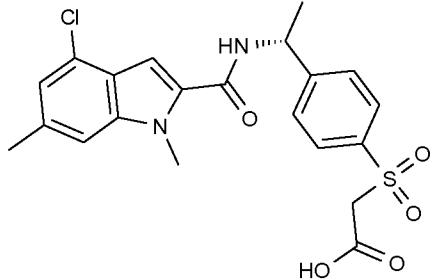
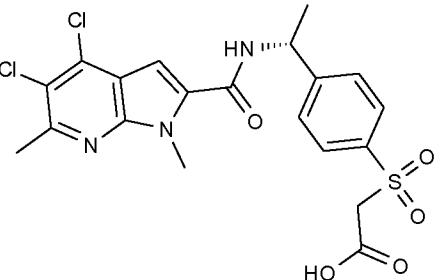
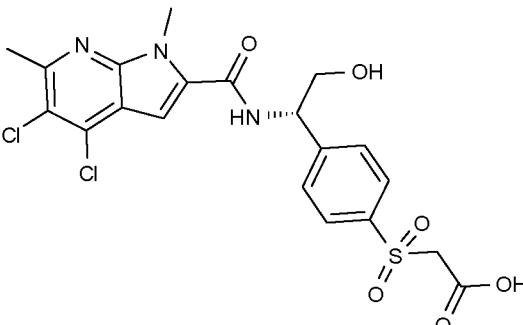
Example	Structure	t Ret	M+H	Method
02-013	<p style="text-align: center;">Absolute</p>	1.4	534	5
02-014	<p style="text-align: center;">Absolute</p>	1.54	538	5
02-015	<p style="text-align: center;">Absolute</p>	1.41	502	5

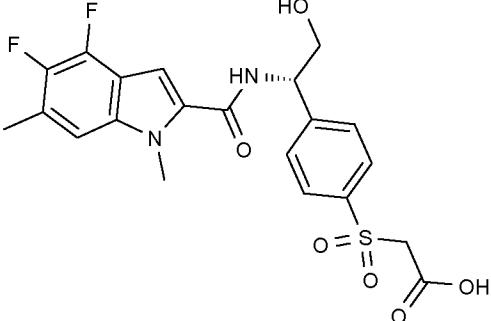
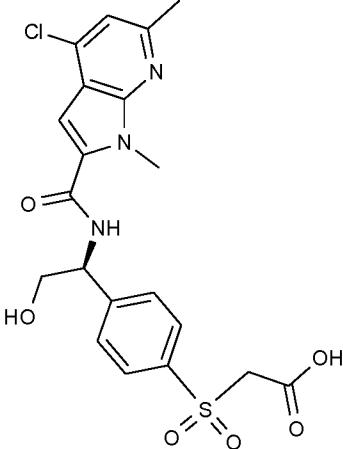
Example	Structure	t Ret	M+H	Method
02-016	<p style="text-align: center;">Absolute</p>	1.4	506	5
02-017	<p style="text-align: center;">Absolute</p>	1.2	504	5

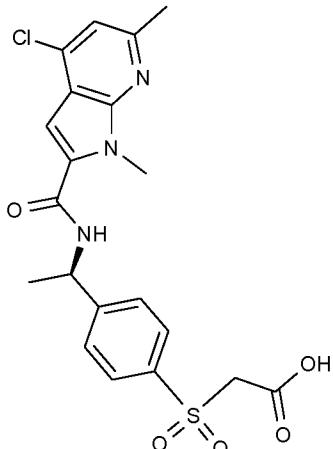
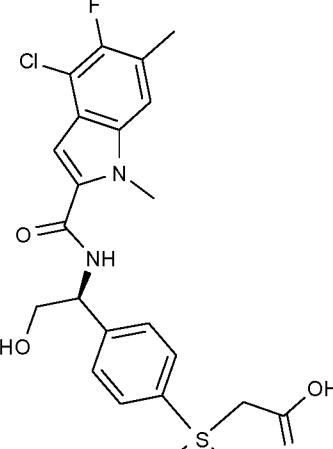
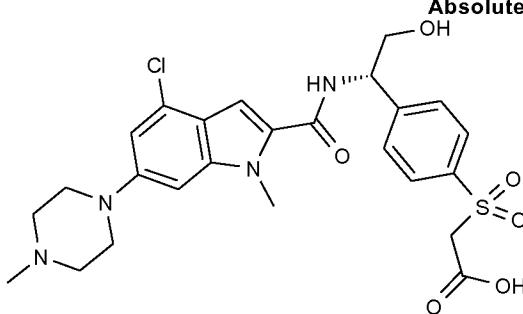
Synthesis of Examples 03-001 – 04-004

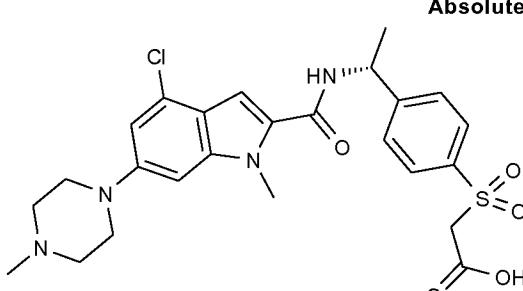




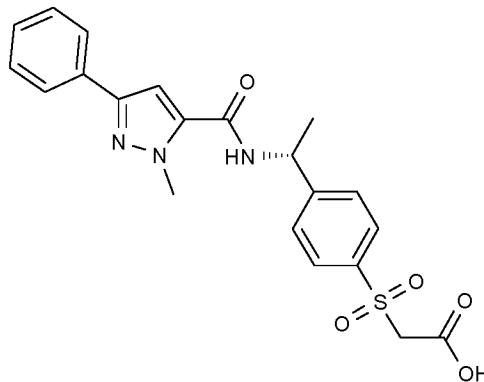
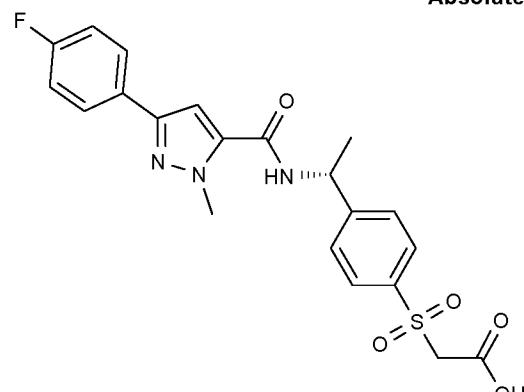
Synthesis of 03-009 (Method DC)

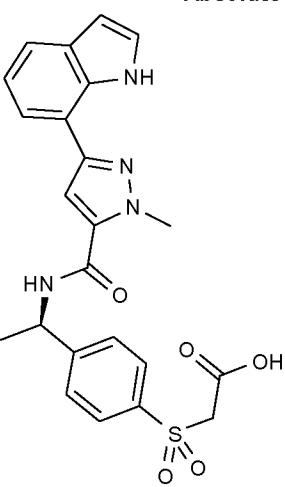
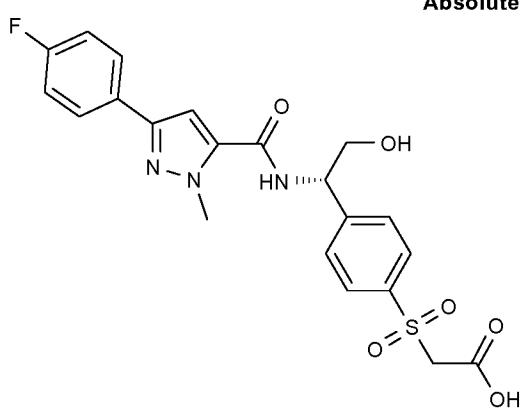




To **01-012** (260 mg, 0.56 mmol) in THF (6 mL) 1 N LiOH (2.25 mL, 2.25 mmol) is added at ambient temperature and stirred for 2 h. The mixture is concentrated, water is added, and the pH is adjusted to 4 using 2 N HCl. The mixture is extracted exhaustively with EtOAc. The combined organic layer is washed with water, dried (MgSO_4), filtered and concentrated *in vacuo*.



The residue is purified by RP-HPLC/MS if necessary.

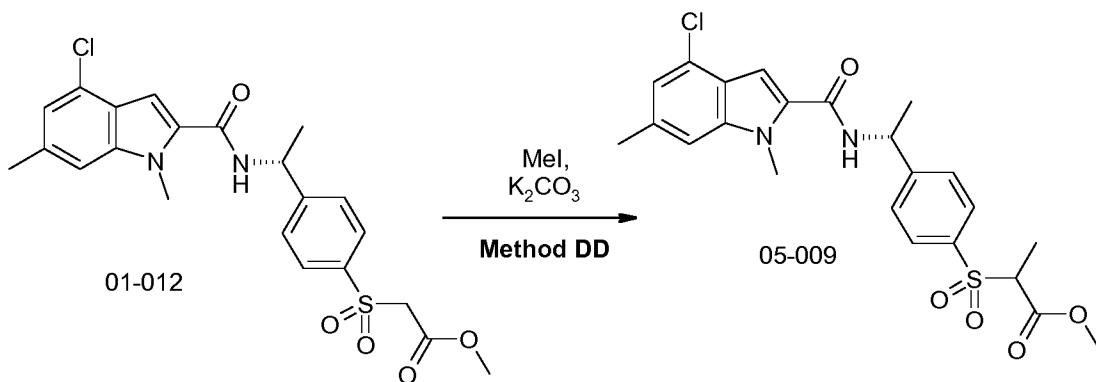



The following sulfonyl acetic acids are prepared in an analogous manner.


Example	Structure	t_{ret} [min]	$\text{M}+\text{H}$	HPLC Method
03-001	<p>Absolute</p>	1.01	449	5
03-002	<p>Absolute</p>	0.91	465	5
03-003	<p>Absolute</p>	1.01	463	5



Example	Structure	t_{ret} [min]	$\text{M}+\text{H}$	HPLC Method
03-004		0.91	515	5
03-005		1.03	483	5
03-006		0.97	499	5
03-007		1	459	5



Example	Structure	t_{ret} [min]	$M+H$	HPLC Method
03-008	<p>Absolute</p>	1.08	561	5
03-009	<p>Absolute</p>	0.9	449	5
03-010	<p>Absolute</p>	1	484	5
03-011	<p>Absolute</p>	0.93	500	5

Example	Structure	t_{ret} [min]	$\text{M}+\text{H}$	HPLC Method
03-012	<p>Absolute</p>	0.88	467	5
03-013	<p>Absolute</p>	0.83	466	5
03-014	<p>Absolute</p>	1.03	467	5

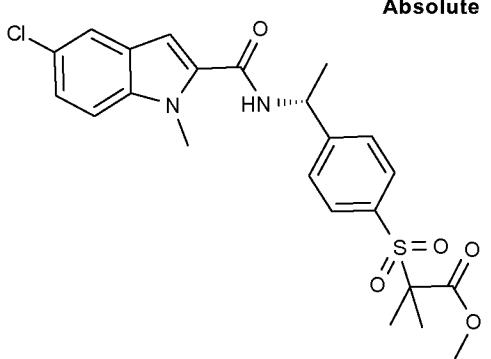
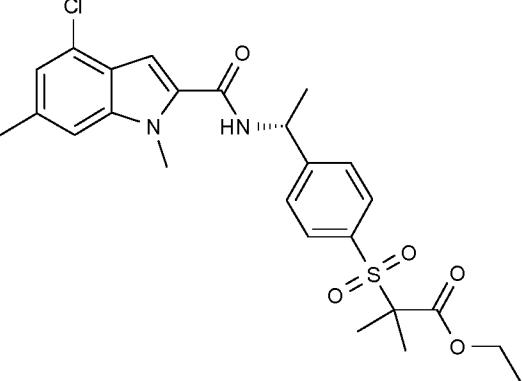
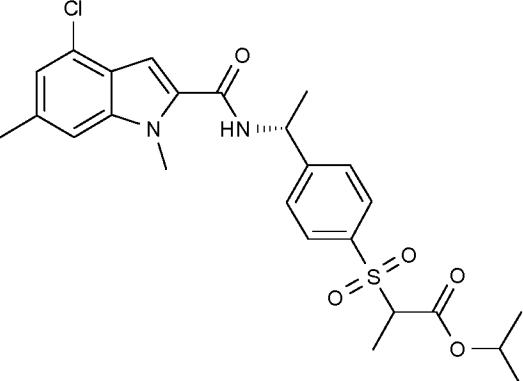

Example	Structure	t_{ret} [min]	$M+H$	HPLC Method
03-015	<p style="text-align: center;">Absolute</p>	0.93	450	5
03-016	<p style="text-align: center;">Absolute</p>	0.93	483	5
03-017	<p style="text-align: center;">Absolute</p>	0.84	549	5

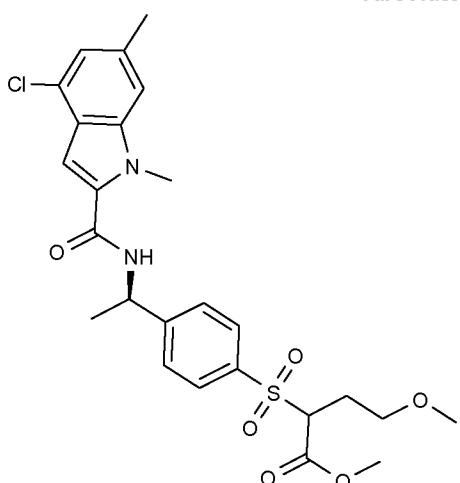
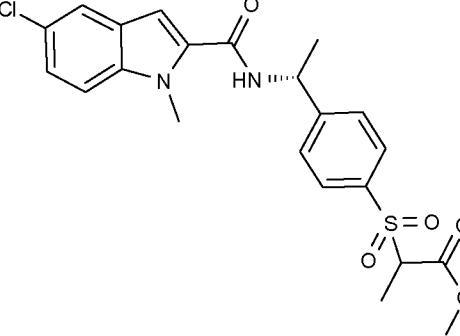
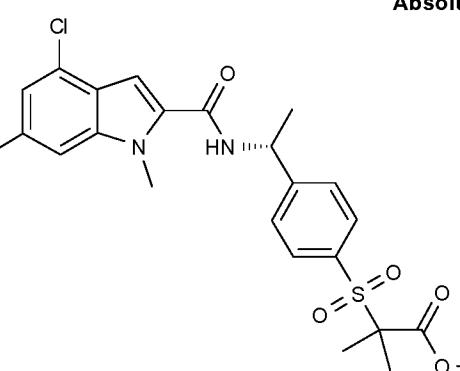
Example	Structure	t_{ret} [min]	M+H	HPLC Method
03-018	<p style="text-align: center;">Absolute</p>	0.91	533	5

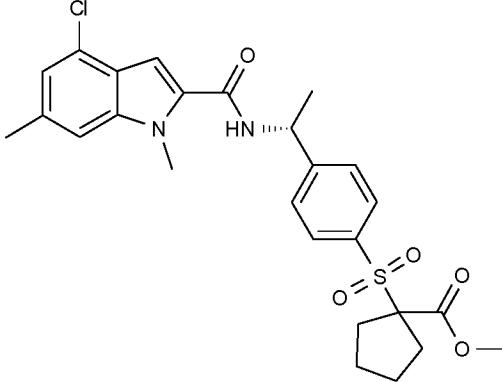
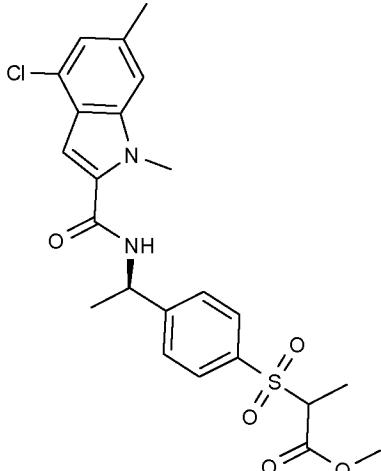
Example	Structure	t_{ret} [min]	M+H	HPLC Method
04-001	<p style="text-align: center;">Absolute</p>	0.8	428	5
04-002	<p style="text-align: center;">Absolute</p>	0.88	446	5

Example	Structure	t_{ret} [min]	M+H	HPLC Method
04-003	<p style="text-align: center;">Absolute</p>	0.97	467	5
04-004	<p style="text-align: center;">Absolute</p>	0.82	462	5

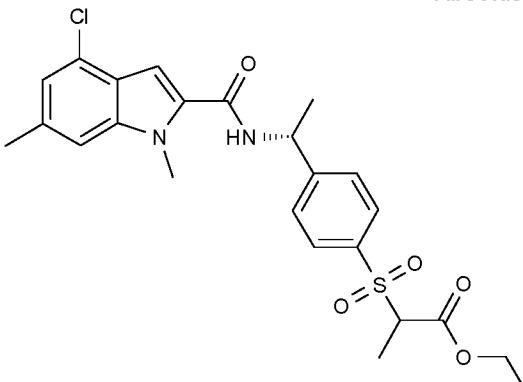
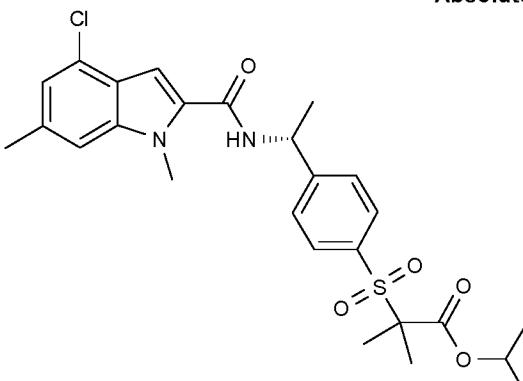
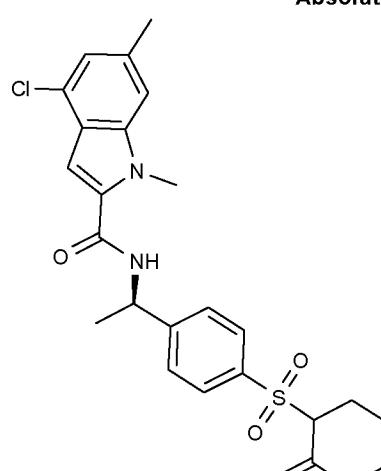
Synthesis of examples 05-001 – 06-008

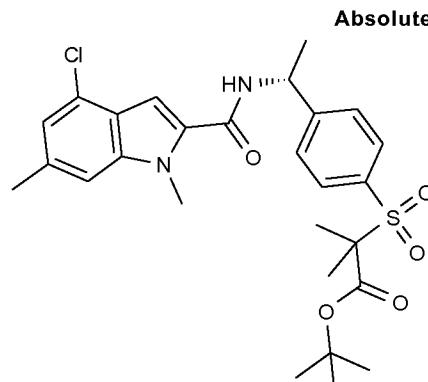
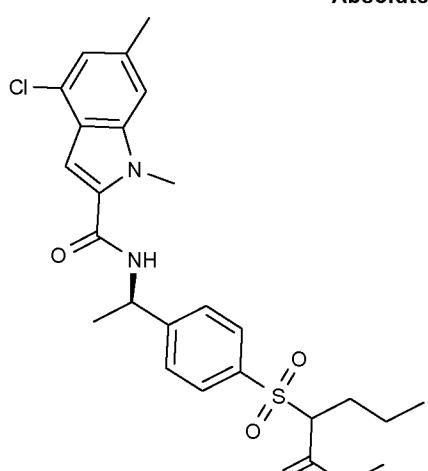
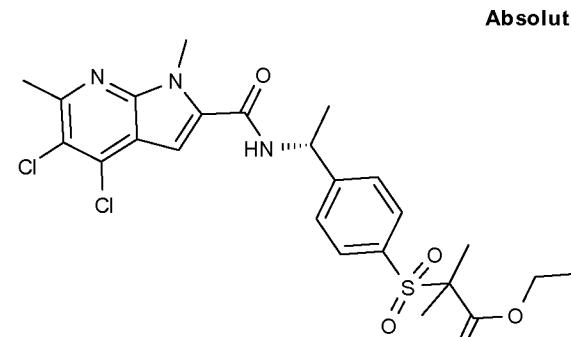




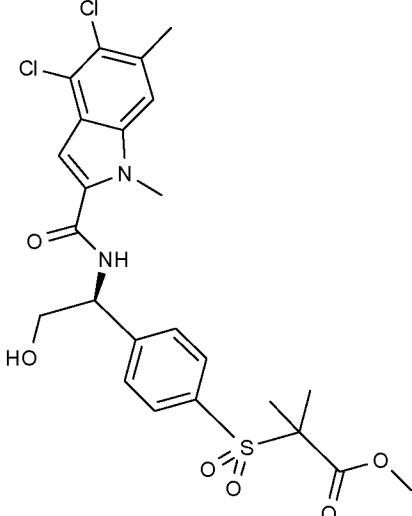
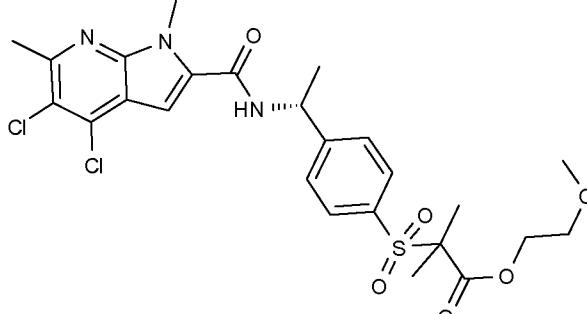
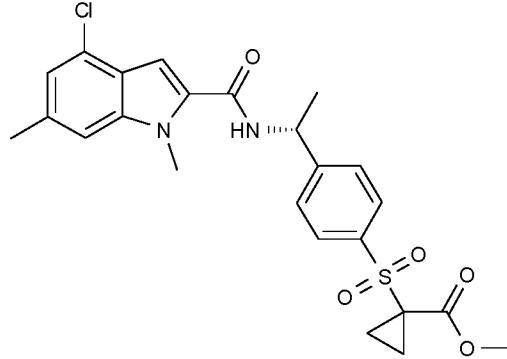



Synthesis of 05-009 (Method DD).

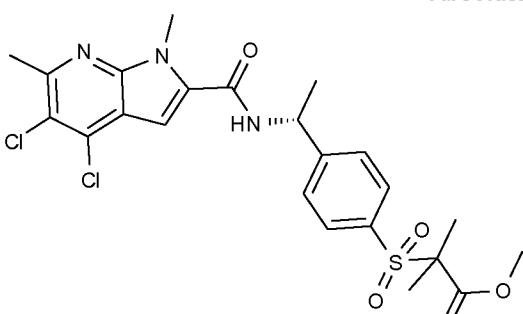
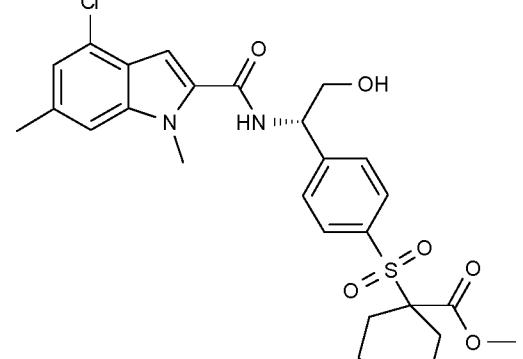
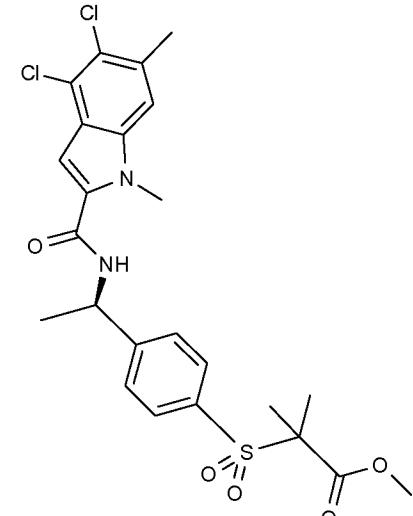



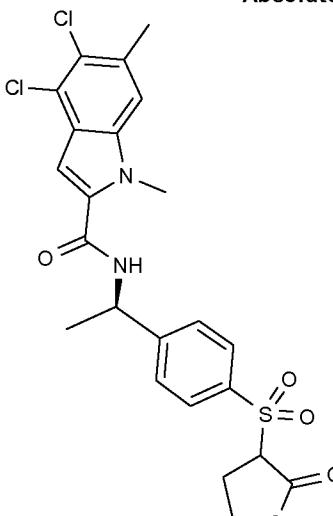
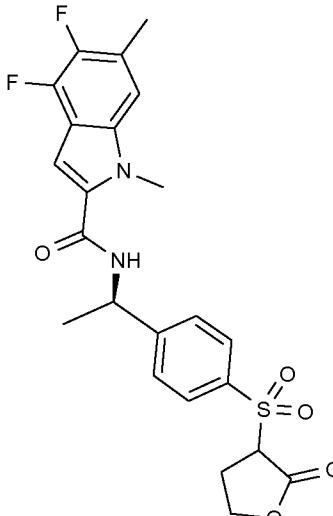
5 To **01-012** (244 mg, 0.54 mmol) and K_2CO_3 (83 mg, 0.60 mmol) in DMF (5 mL) methyl iodide (36 μ L, 0.57 mmol) is added and stirred at ambient temperature overnight. The mixture is concentrated, water is added, and the aqueous layer is extracted exhaustively with EtOAc. The combined organic layer is washed with water, dried ($MgSO_4$), filtered and concentrated *in vacuo*. The residue is purified by column chromatography or by RP-HPLC/MS.

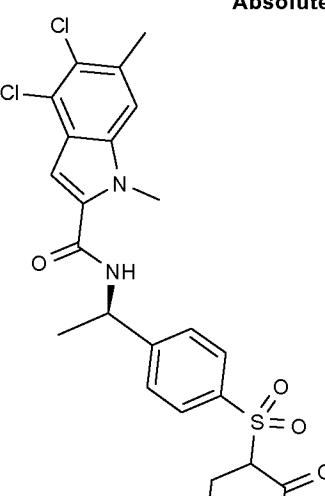



10 The following branched sulfonyl acetic acids are prepared in an analogous manner.

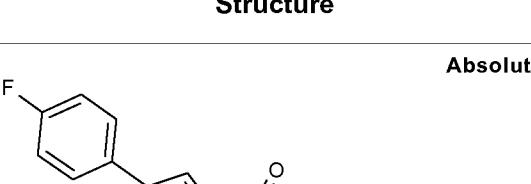



Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
05-001	<p style="text-align: center;">Absolute</p>	1.57		517	5

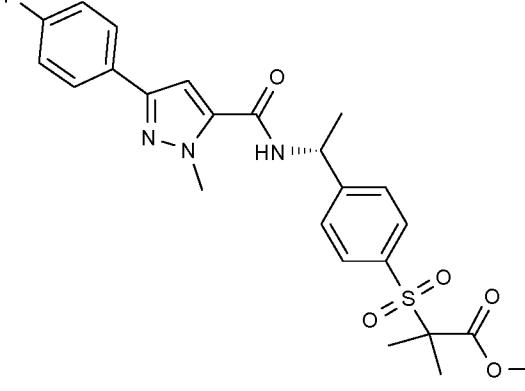
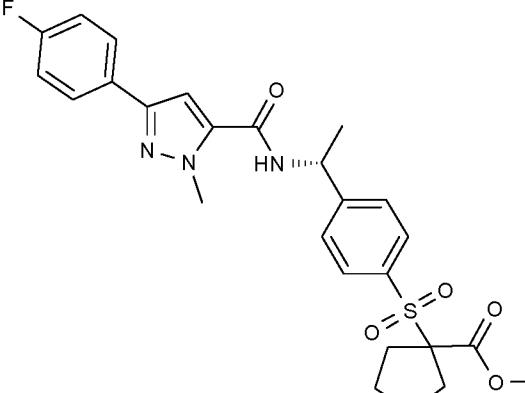
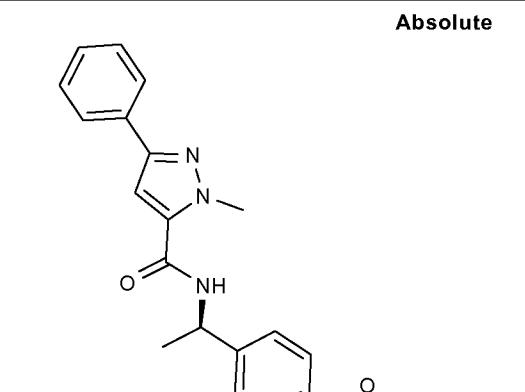



Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
05-002	<p style="text-align: center;">Absolute</p>	1.33	477		5
05-003	<p style="text-align: center;">Absolute</p>	1.54	505		5
05-004	<p style="text-align: center;">Absolute</p>	1.54	505		5

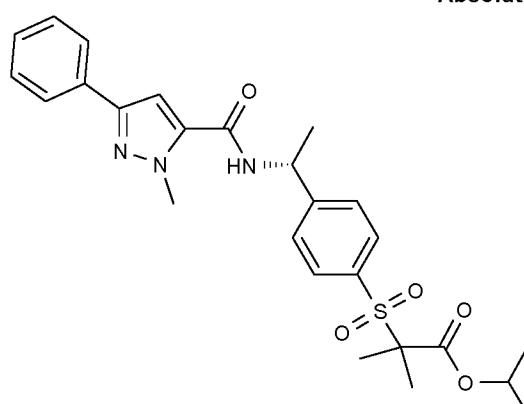
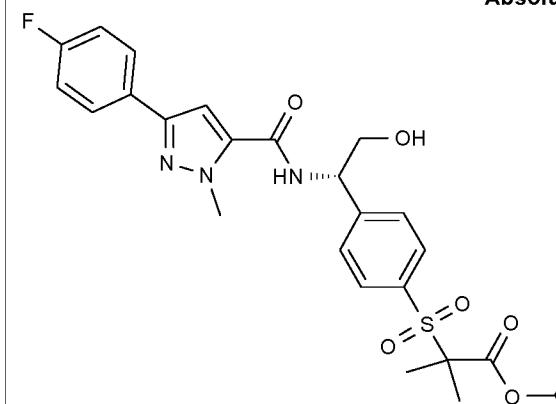
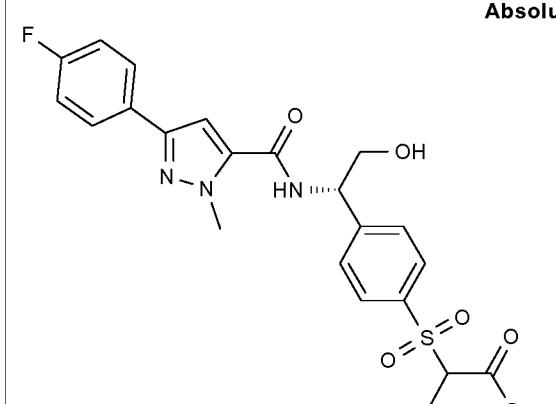



Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
05-005	<p style="text-align: center;">Absolute</p>	1.46	521		5
05-006	<p style="text-align: center;">Absolute</p>	1.29	463		5
05-007	<p style="text-align: center;">Absolute</p>	1.49	491		5

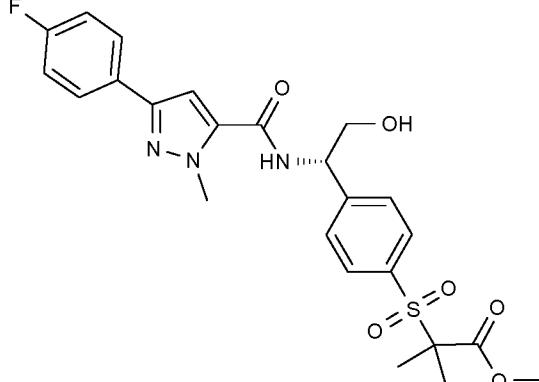


Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
05-008	<p style="text-align: center;">Absolute</p>	1.57	517		5
05-009	<p style="text-align: center;">Absolute</p>	1.43	477		5
05-010	<p style="text-align: center;">Absolute</p>	1.47	533		5


Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
05-011	<p style="text-align: center;">Absolute</p>	1.49	491		5
05-012	<p style="text-align: center;">Absolute</p>	1.58	519		5
05-013	<p style="text-align: center;">Absolute</p>	1.5	491		5


Example	Structure	t _{ret} [min]	M+H	M-H	HPLC Method
05-014	<p>Absolute</p>	1.63	477		5
05-015	<p>Absolute</p>	1.54	505		5
05-016	<p>Absolute</p>	1.58	540		5

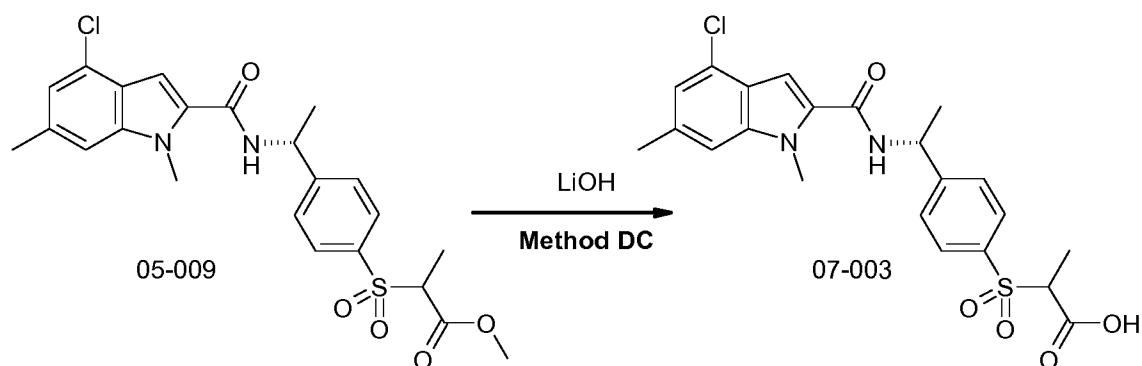



Example	Structure	t _{ret} [min]	M+H	M-H	HPLC Method
05-017	<p style="text-align: center;">Absolute</p>	1.4	541		5
05-018	<p style="text-align: center;">Absolute</p>	1.52	570		5
05-019	<p style="text-align: center;">Absolute</p>	1.47	489		5




Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
05-020	<p style="text-align: center;">Absolute</p>	1.52	526		5
05-021	<p style="text-align: center;">Absolute</p>	1.3	549		5
05-022	<p style="text-align: center;">Absolute</p>	1.56	525		5


Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
05-023	<p style="text-align: center;">Absolute</p>	1.47	509		5
05-024	<p style="text-align: center;">Absolute</p>	1.35	477		5

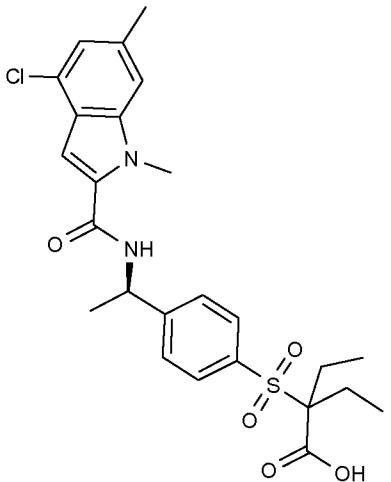
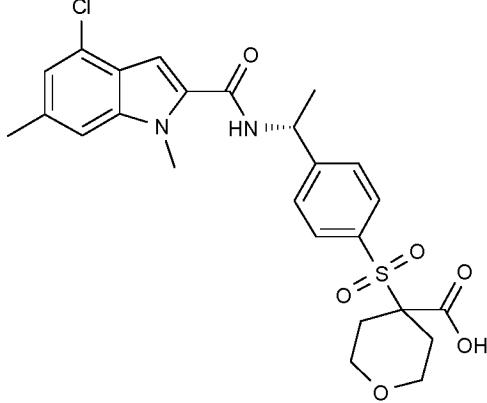
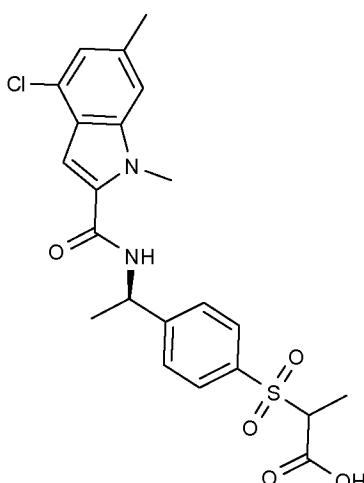
Example	Structure	t _{ret} [min]	M+H	M-H	HPLC Method
05-025	<p style="text-align: center;">Absolute</p>	1.47	523		5

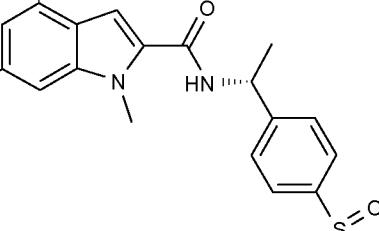
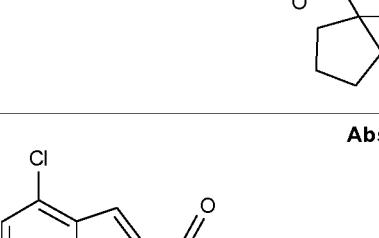
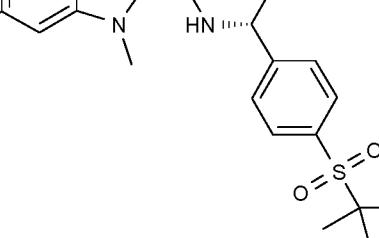
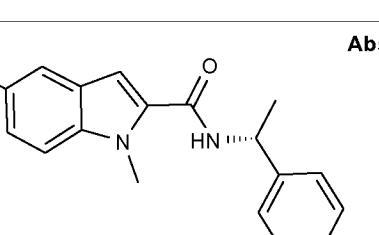
Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
06-001	<p style="text-align: center;">Absolute</p>	1.3	530		5

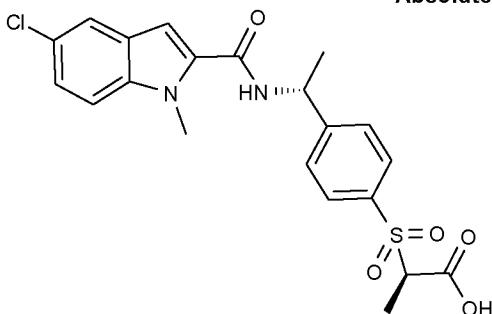
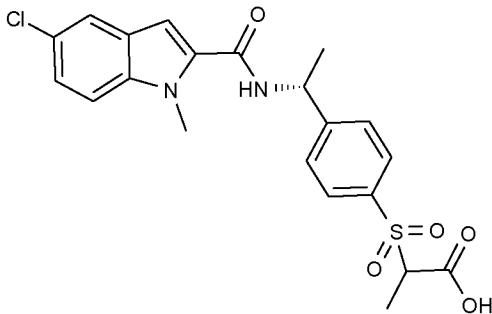
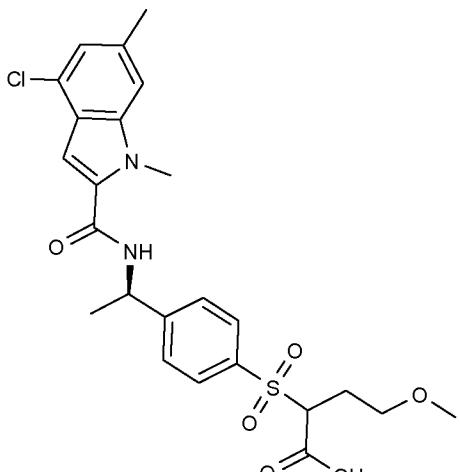

Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
06-002	<p style="text-align: center;">Absolute</p>	1.33	488		5
06-003	<p style="text-align: center;">Absolute</p>	1.4	514		5
06-004	<p style="text-align: center;">Absolute</p>	1.35	484		5

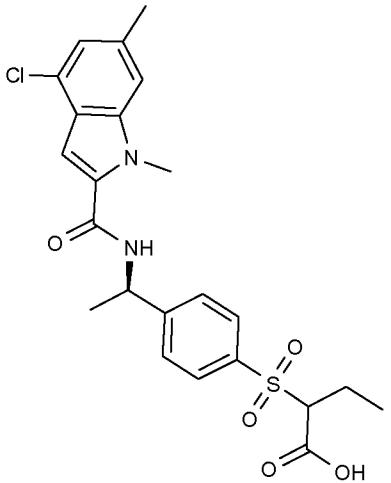
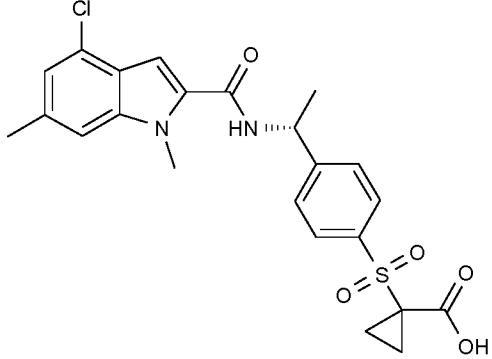
Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
06-005	<p style="text-align: center;">Absolute</p>	1.4	498		5
06-006	<p style="text-align: center;">Absolute</p>	1.29	532		5
06-007	<p style="text-align: center;">Absolute</p>	1.24	518		5

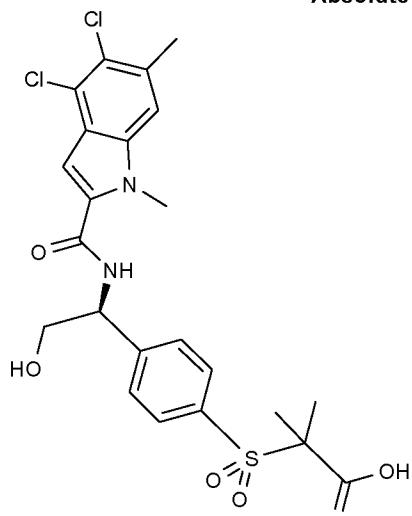
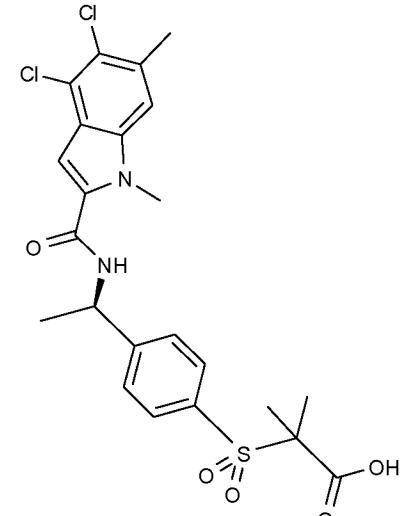
Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
06-008	<p style="text-align: center;">Absolute</p>	1.18	504		5

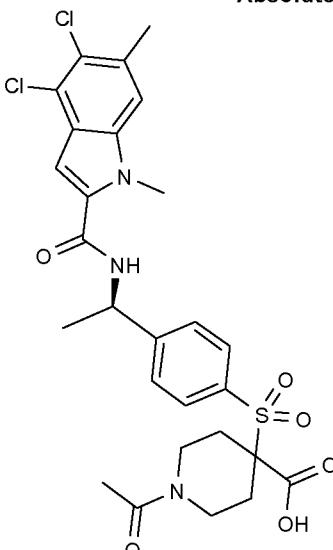



5

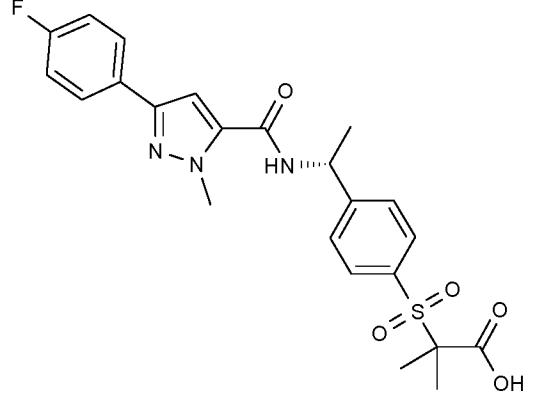
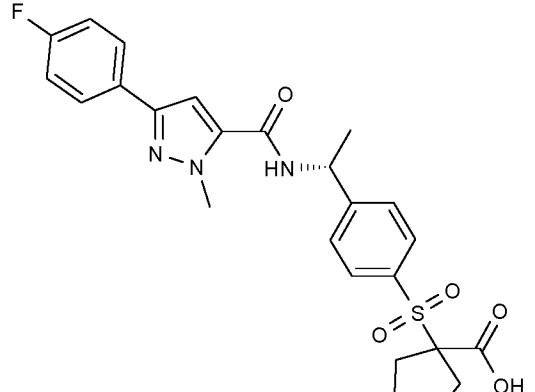
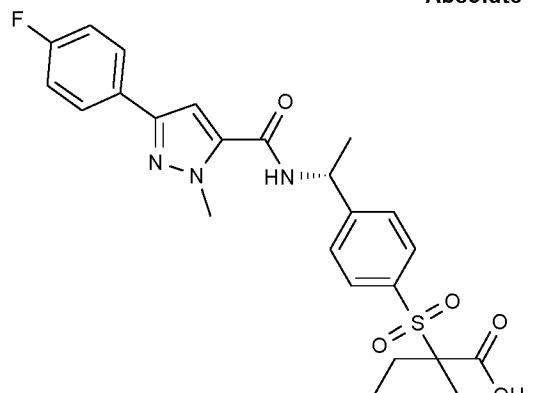




Synthesis of Examples 07-001 – 08-003



Carboxylic acids 07-001 – 08-003 are prepared using **Method DC** and purified by RP-HPLC/MS.

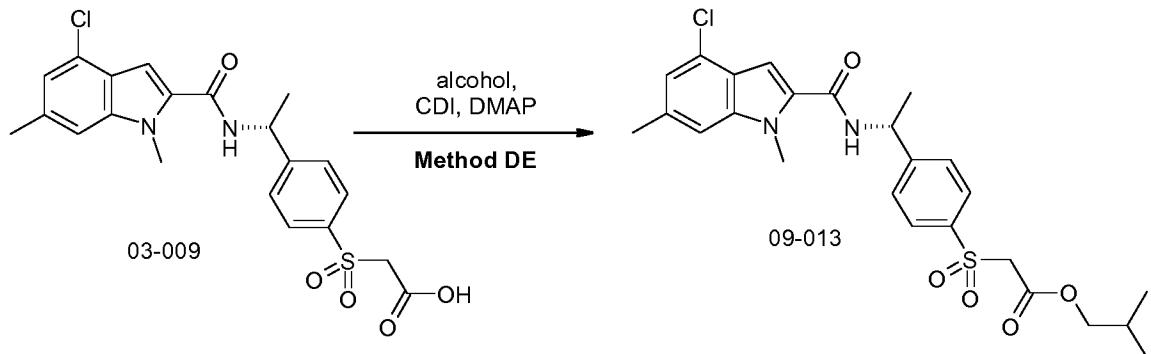


10


Example	Structure	t_{ret} [min]	$\text{M}+\text{H}$	HPLC Method
07-001	<p style="text-align: center;">Absolute</p>	1.07	505	5
07-002	<p style="text-align: center;">Absolute</p>	1.01	519	5
07-003	<p style="text-align: center;">Absolute</p>	1.01	463	5




Example	Structure	t_{ret} [min]	$\text{M}+\text{H}$	HPLC Method
07-004		1.05	503	5
07-005		1.02	477	5
07-006		0.97	449	5
07-007		0.93	463	5

Example	Structure	t_{ret} [min]	M+H	HPLC Method
07-008	<p>Absolute</p>	0.97	449	5
07-009	<p>Absolute</p>	0.91	449	5
07-010	<p>Absolute</p>	1.03	507	5

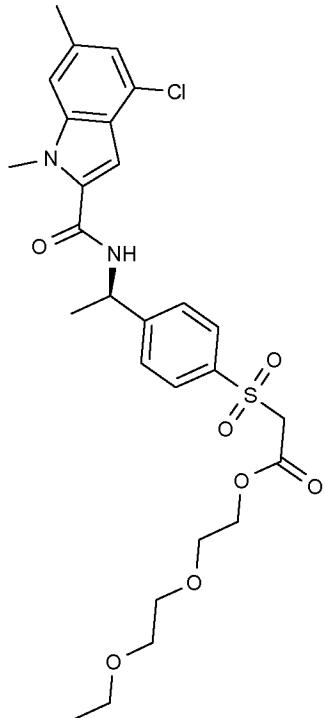
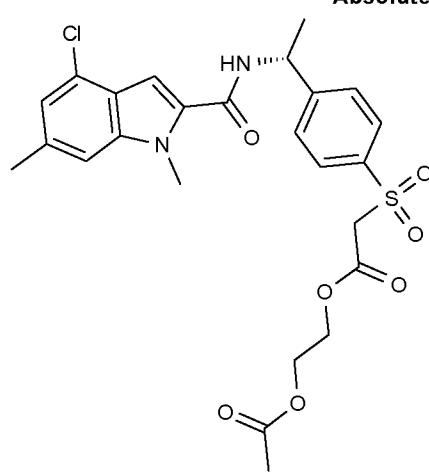
Example	Structure	t _{ret} [min]	M+H	HPLC Method
07-011	<p style="text-align: center;">Absolute</p>	1.03	477	5
07-012	<p style="text-align: center;">Absolute</p>	1.05	491	5
07-013	<p style="text-align: center;">Absolute</p>	1.02	475	5

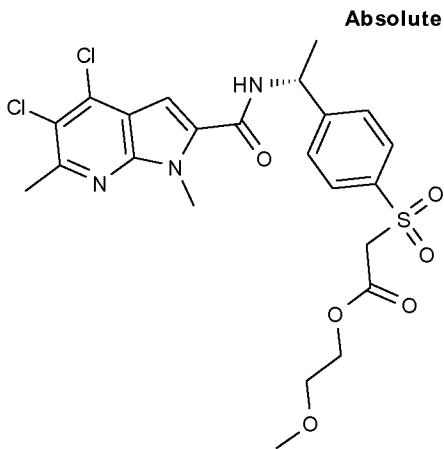
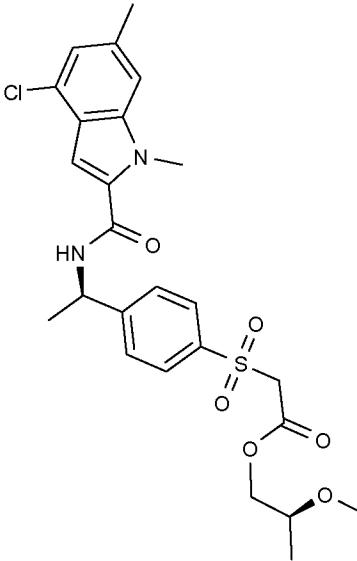

Example	Structure	t _{ret} [min]	M+H	HPLC Method
07-014	<p style="text-align: center;">Absolute</p>	0.99	527	5
07-015	<p style="text-align: center;">Absolute</p>	1.1	511	5

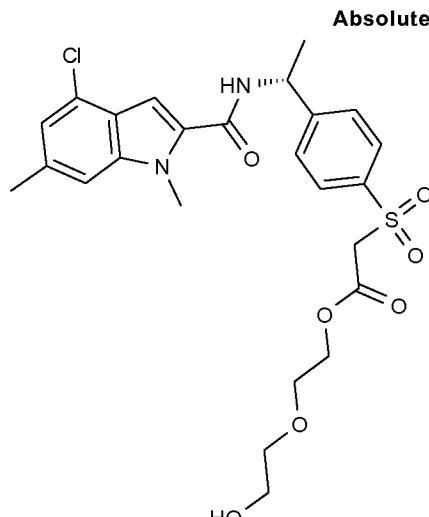
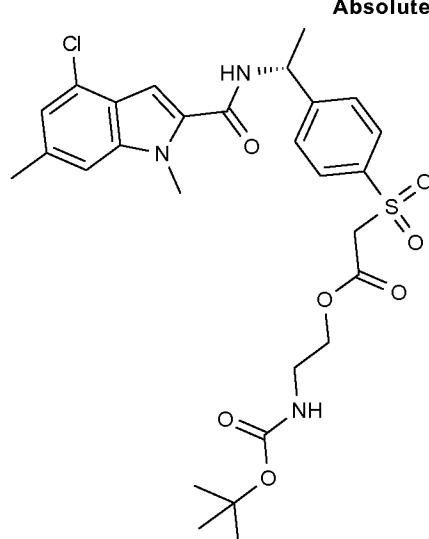
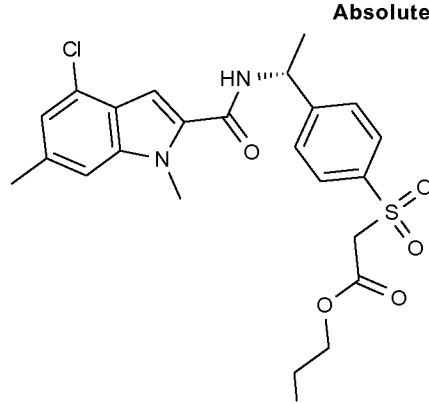
Example	Structure	t_{ret} [min]	M+H	HPLC Method
07-016	<p style="text-align: center;">Absolute</p>	1.09	594	5

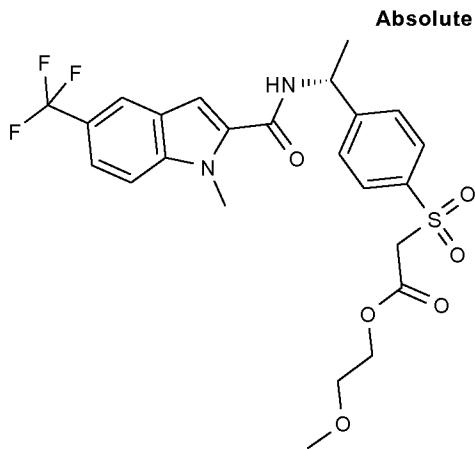
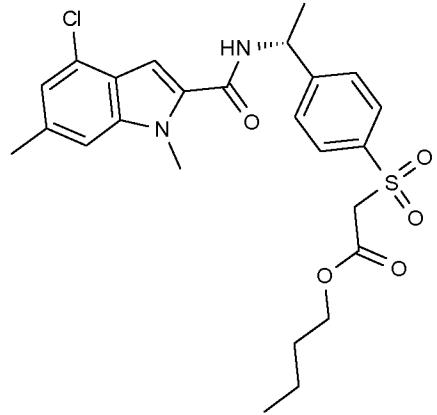
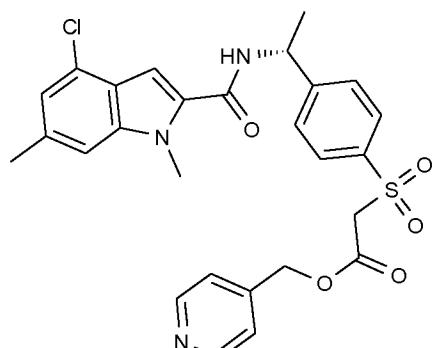
Example	Structure	t_{ret} [min]	M+H	HPLC Method
08-001	<p style="text-align: center;">Absolute</p>	0.89	474	5
08-002	<p style="text-align: center;">Absolute</p>	0.93	500	5
08-003	<p style="text-align: center;">Absolute</p>	0.89	516	5

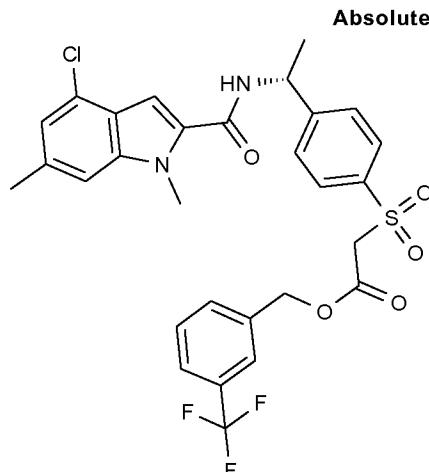
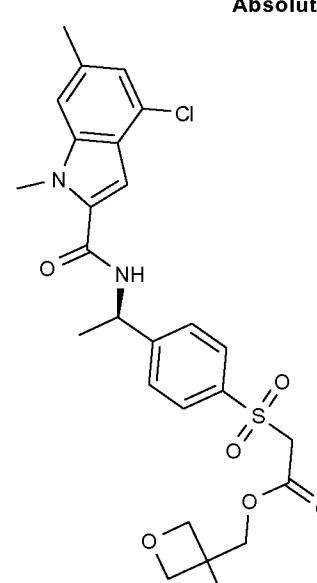
Syntheses of Esters derived from Structurally Diverse Alcohols 09-001

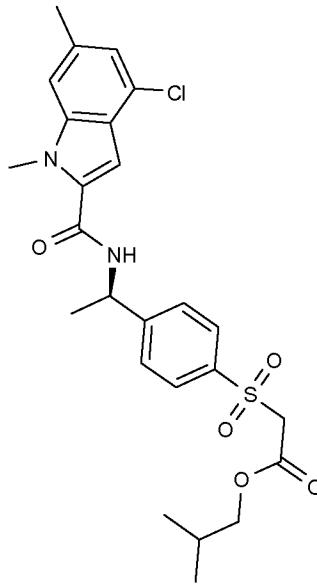
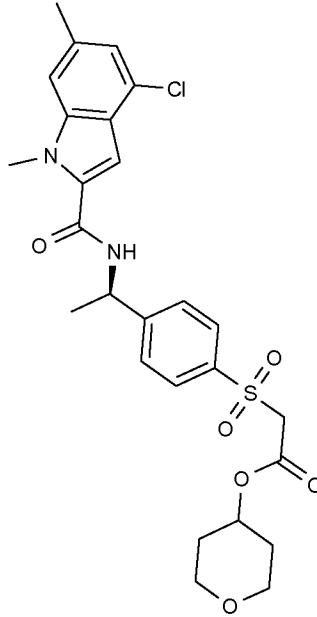


– 10-007

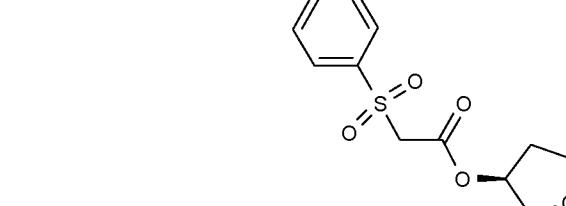
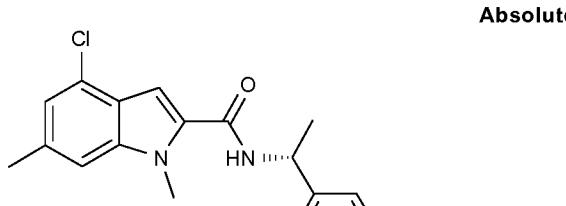
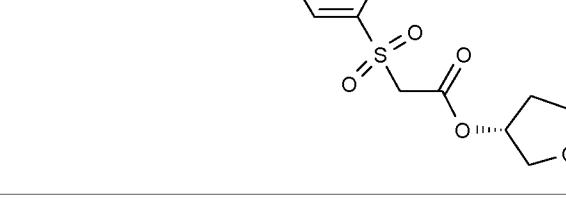



5 Synthesis of 09-013 (Method DE)

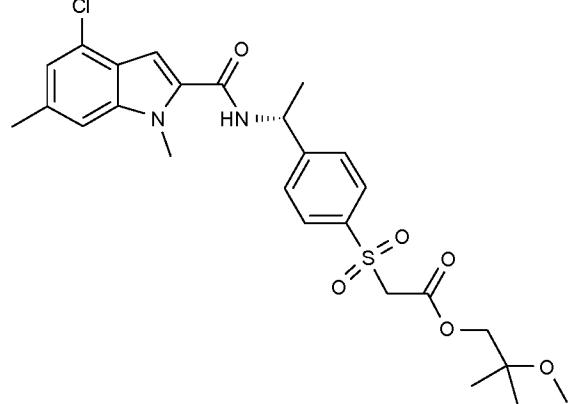
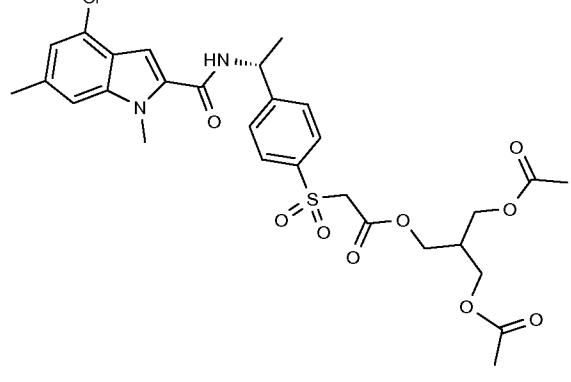
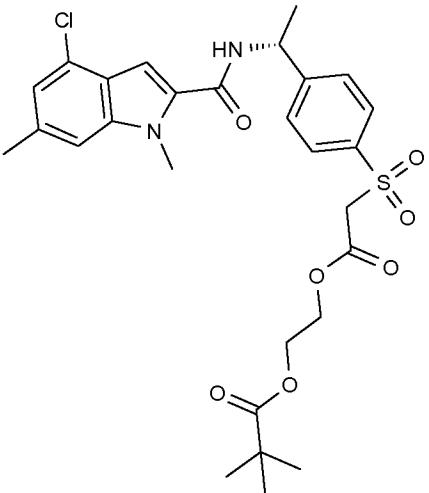



To **03-009** (50 mg, 0.11 mmol), DMAP (14 mg, 0.11 mmol) and N,N'-dicyclohexylcarbodiimide (34 mg, 0.17 mmol) in MeCN (500 μ L) isobutyl alcohol (51 μ L, 0.55 mmol) is added and stirred for 48 h at ambient temperature. The mixture is filtered and concentrated *in vacuo*. The residue is dissolved in DMSO/MeOH and purified by RP-HPLC/MS.

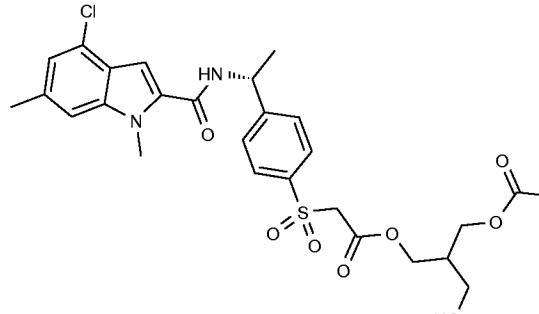
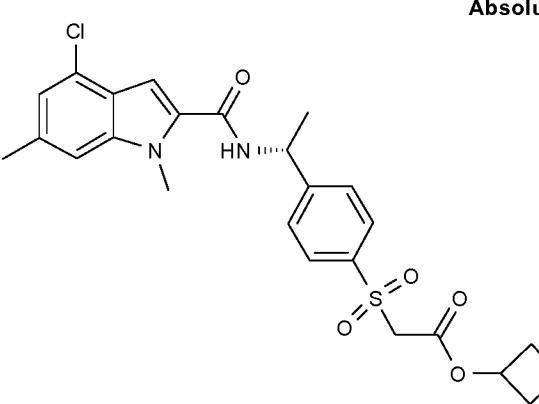


10 The following sulfonyl acetates are prepared in an analogous manner.



Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
09-001	<p style="text-align: center;">Absolute</p>	1.46	565		5
09-002	<p style="text-align: center;">Absolute</p>	1.42	535		5

Example	Structure	t _{ret} [min]	M+H	M-H	HPLC Method
09-003	<p>Absolute</p>	1.45	542		5
09-004	<p>Absolute</p>	1.46	521		5

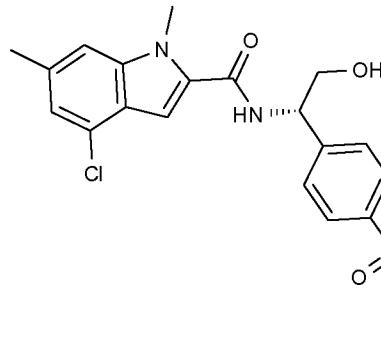
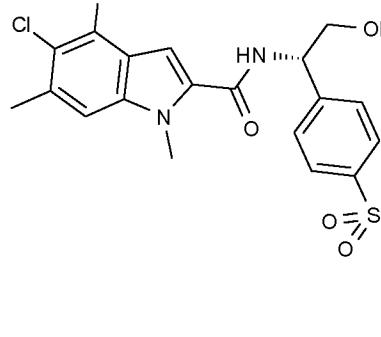
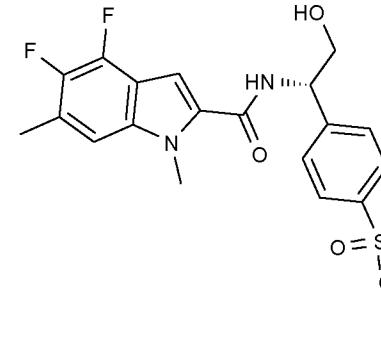



Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
09-005	<p>Absolute</p>	1.3	537		5
09-006	<p>Absolute</p>	1.54	492		5
09-007	<p>Absolute</p>	1.29	493		5

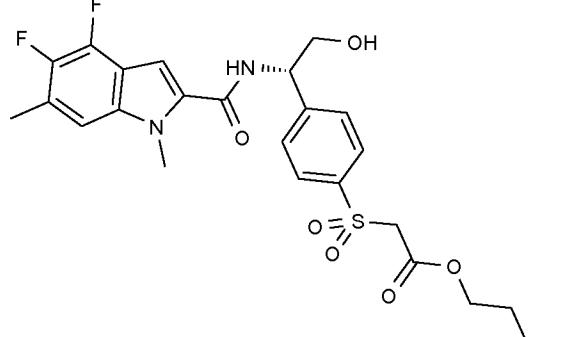
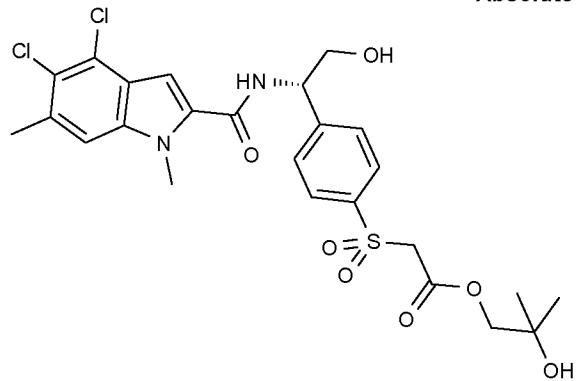
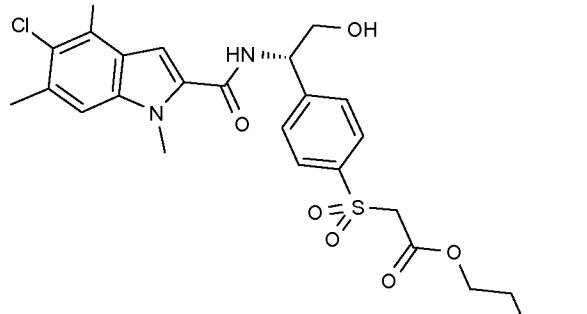



Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
09-008	<p style="text-align: center;">Absolute</p>	1.36	527		5
09-009	<p style="text-align: center;">Absolute</p>	1.56	505		5
09-010	<p style="text-align: center;">Absolute</p>	1.37	540		5

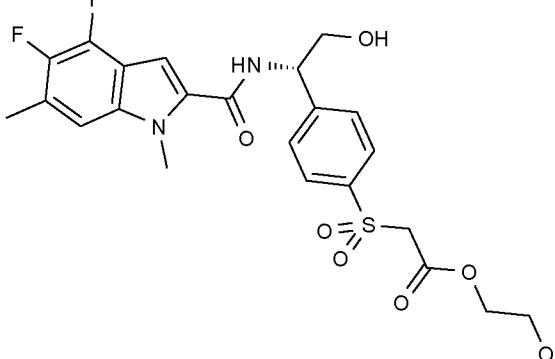
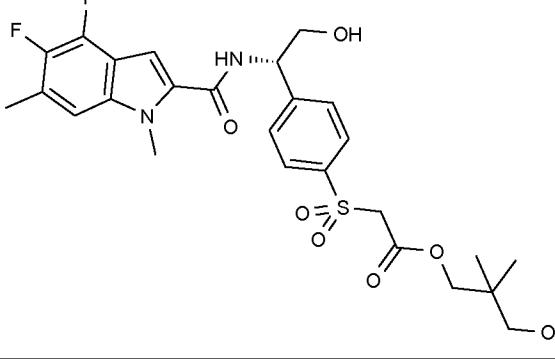
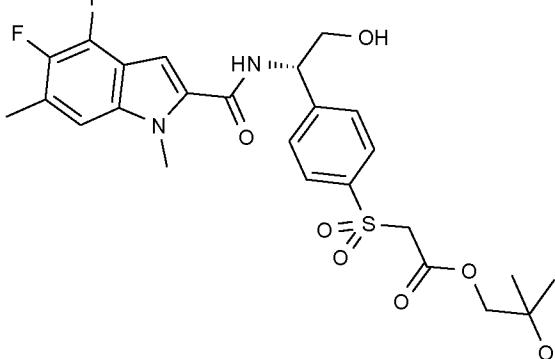



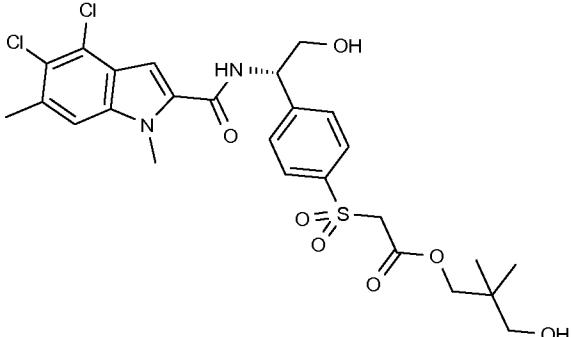
Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
09-011	<p style="text-align: center;">Absolute</p>	1.63	607		5
09-012	<p style="text-align: center;">Absolute</p>	1.41	533		5

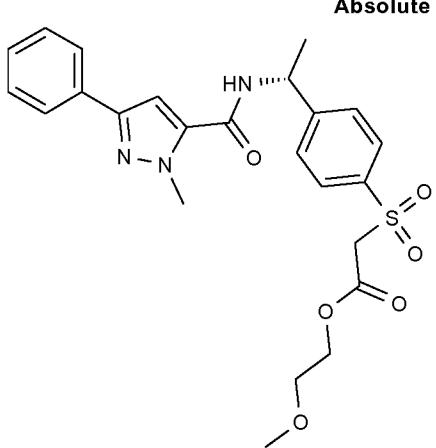
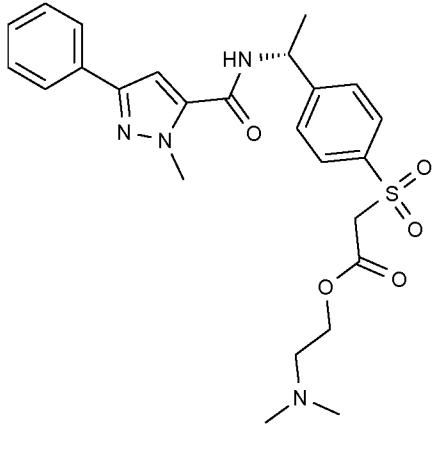
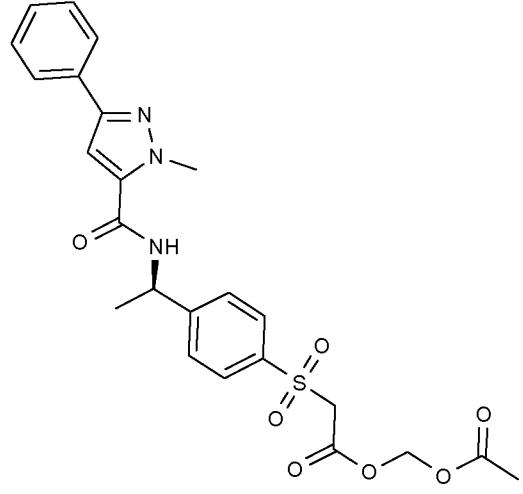
Example	Structure	t _{ret} [min]	M+H	M-H	HPLC Method
09-013	<p style="text-align: center;">Absolute</p>	1.57	505		5
09-014	<p style="text-align: center;">Absolute</p>	1.42	533		5




Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
09-018	<p style="text-align: center;">Absolute</p>	1.4	519		5
09-019	<p style="text-align: center;">Absolute</p>	1.4	519		5
09-020	<p style="text-align: center;">Absolute</p>	1.3	555		5

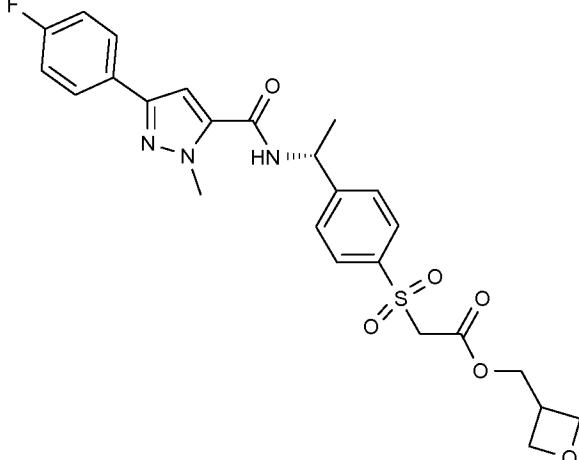



Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
09-021	<p style="text-align: center;">Absolute</p>	1.48	557 (M+N a)		5
09-022	<p style="text-align: center;">Absolute</p>	1.47	621		5
09-023	<p style="text-align: center;">Absolute</p>	1.58	577		5




Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
09-024	<p style="text-align: center;">Absolute</p>	1.35		577	5
09-025	<p style="text-align: center;">Absolute</p>	1.38	505		5
09-026	<p style="text-align: center;">Absolute</p>	1.5	621		5

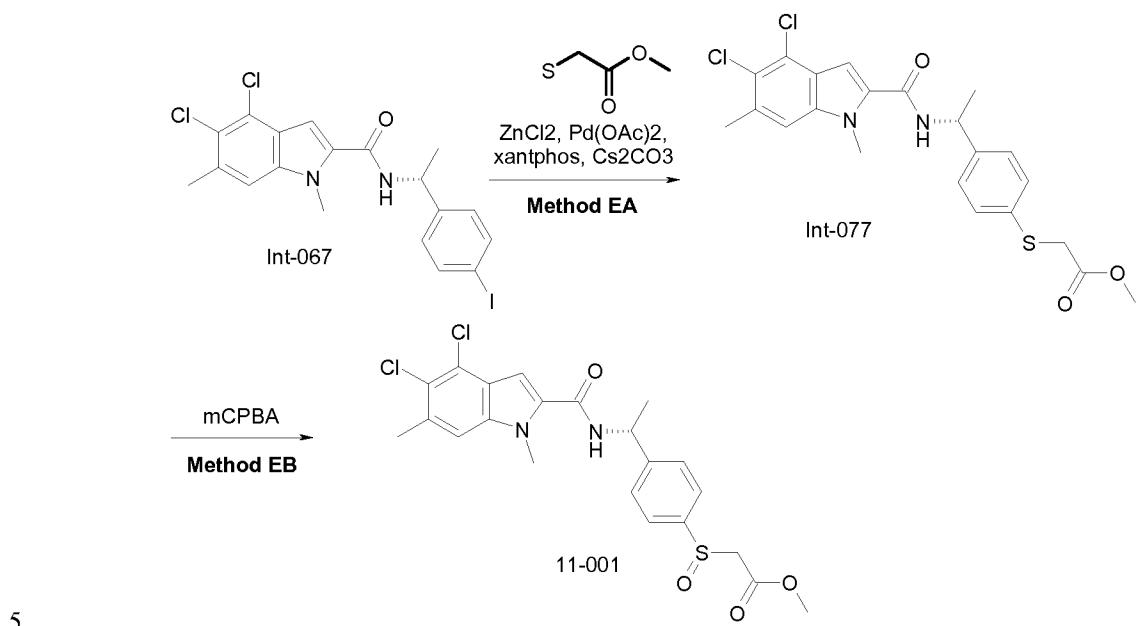

Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
09-027	<p>Absolute</p>	1.23	537		5
09-028	<p>Absolute</p>	1.24		547	5
09-029	<p>Absolute</p>	1.22	520		5
09-030	<p>Absolute</p>	1.21	535		5




Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
09-031		Absolute 1.23	549		5
09-032		Absolute 1.23	533		5
09-033		Absolute 1.15	523		5
09-034		Absolute 1.13	509		5

Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
09-035	<p style="text-align: center;">Absolute</p>	1.19	535		5
09-036	<p style="text-align: center;">Absolute</p>	1.24	543		5
09-037	<p style="text-align: center;">Absolute</p>	1.23	551		5


Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
09-038	<p style="text-align: center;">Absolute</p>	1.14	525		5
09-039	<p style="text-align: center;">Absolute</p>	1.29	571		5
09-040	<p style="text-align: center;">Absolute</p>	1.25	557		5

Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
09-041	<p style="text-align: center;">Absolute</p>	1.12	511		5
09-042	<p style="text-align: center;">Absolute</p>	1.23	553		5
09-043	<p style="text-align: center;">Absolute</p>	1.19	539		5


Example	Structure	t_{ret} [min]	M+H	M-H	HPLC Method
09-044	<p>Absolute</p>	1.34	585		5

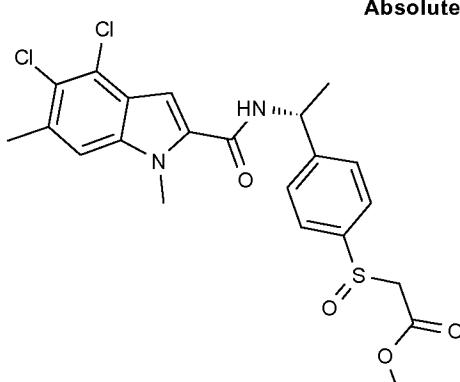
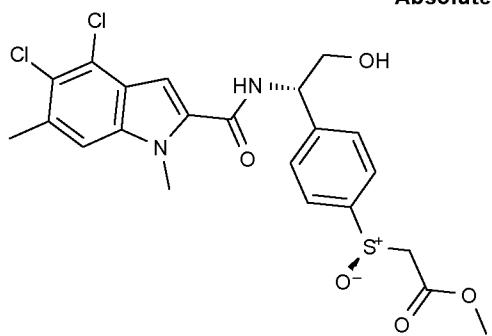
Example	Structure	t_{ret} [min]	$M+H$	HPLC Method
10-001	<p style="text-align: center;">Absolute</p>	1.2	486	5
10-002	<p style="text-align: center;">Absolute</p>	1.18	499	5
10-003	<p style="text-align: center;">Absolute</p>	1.25	500	5

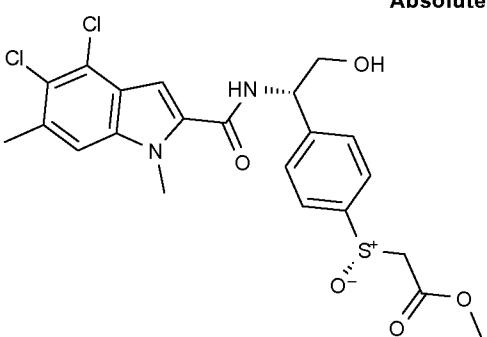
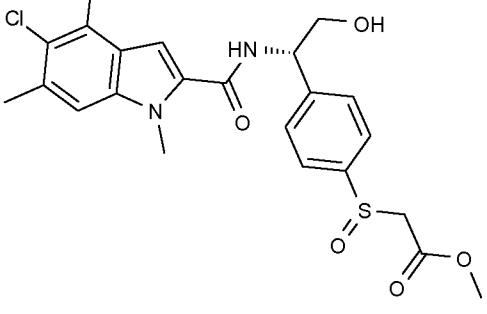
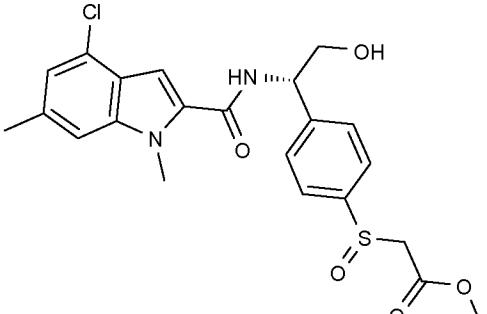
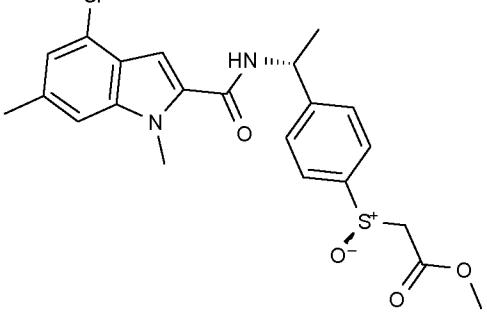
Example	Structure	t_{ret} [min]	M+H	HPLC Method
10-007	<p style="text-align: center;">Absolute</p>	1.21	516	5

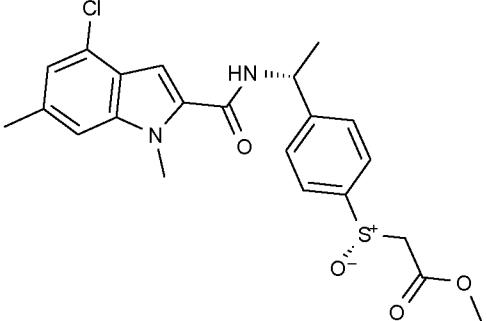
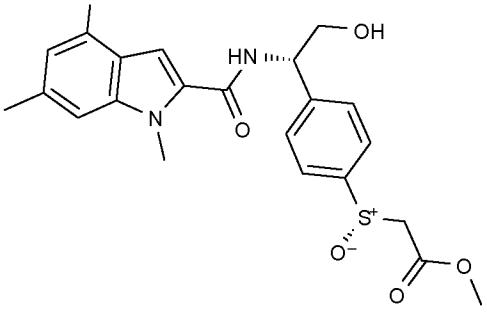
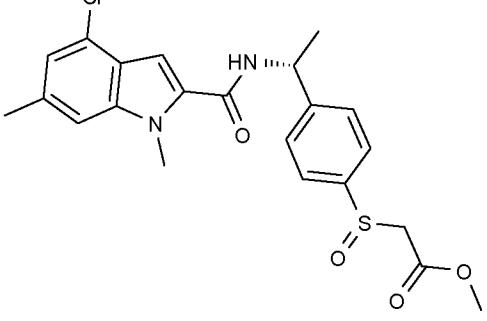
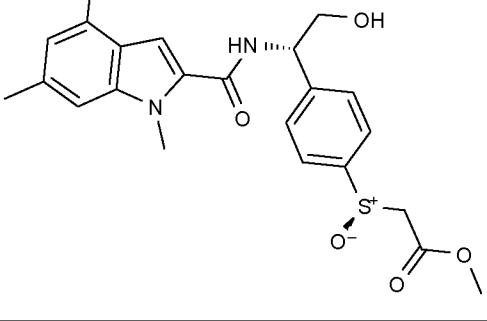
Syntheses of Sulfoxide Ester Derivatives 11-001 – 11-010

Synthesis of Int-077 (Method EA).

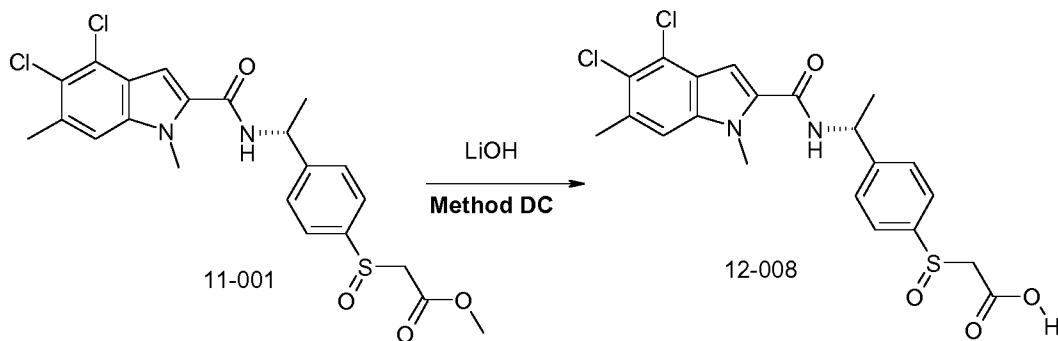
An adopted procedure from Nikolovska-Coleska et al is used (J. Med. Chem. 2014, 57, 4111–4133).



10 Methylthioglycolate (34 μ L, 0.37 mmol) is added to a suspension of Cs_2CO_3 (120 mg, 0.37 mmol) in dry THF (2 mL) under an argon atmosphere. The mixture is stirred at room temperature for 10 min.





At this time, a solution of $ZnCl_2$ (130 μL , 0.13 mmol, 1M in Et₂O) is added and the mixture is stirred at room temperature for an additional 10 min. Meanwhile, in a separate flask, $Pd(OAc)_2$ (4.1 mg, 0.018 mmol) and xantphos (22 mg, 0.37 mmol) are premixed in dry THF (1 mL) under argon and stirred at room temperature for about 20 min. To the mixture of thiol, Cs_2CO_3 , and $ZnCl_2$ is added 5 **Int-067** (90 mg, 0.19 mmol), Lil (12 mg, 0.09 mmol), and the premixed solution of the catalyst and ligand. The mixture was stirred at 60 °C under argon for 2 h. The reaction mixture was filtered and purified by RP-chromatography (MeCN/water 30-98%, acidic modifier).





Synthesis of **11-001** (Method EB)

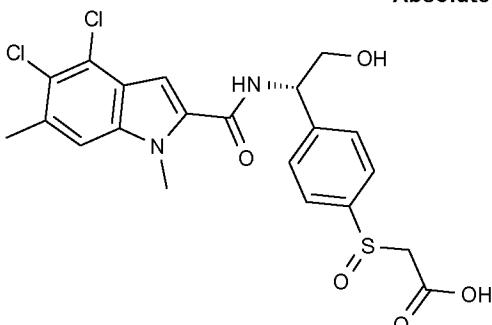
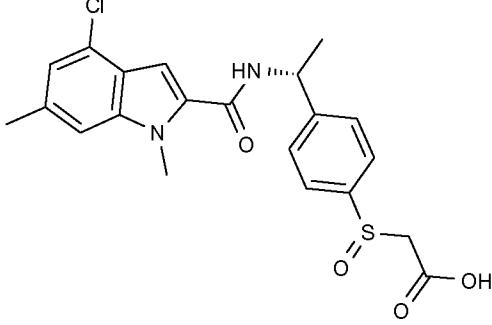
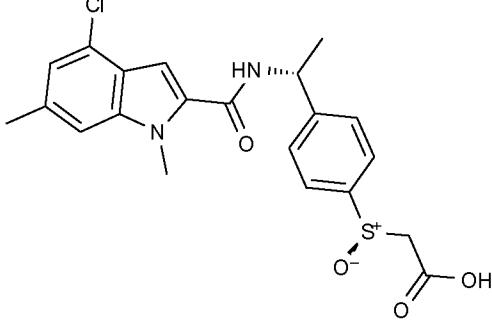
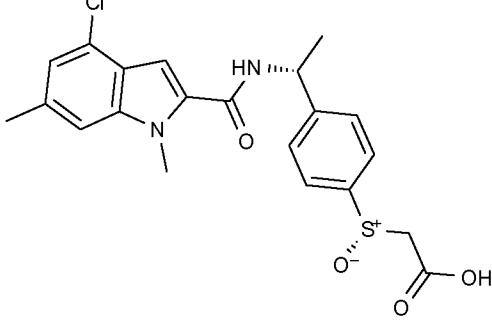
10 To **Int-077** (310 mg, 0.67 mmol) in DCM, mCPBA (77%; 164 mg, 0.73 mmol) is added and stirred for 30 min at ambient temperature. The mixture is diluted with DCM (30 mL) and washed with saturated aqueous $NaHCO_3$. The Organic layer is dried ($MgSO_4$), filtered, and the solvents removed under reduced pressure. The residue is dissolved in DMSO/MeCN and purified by RP-chromatography (MeCN/water 20-98%, acidic modifier)

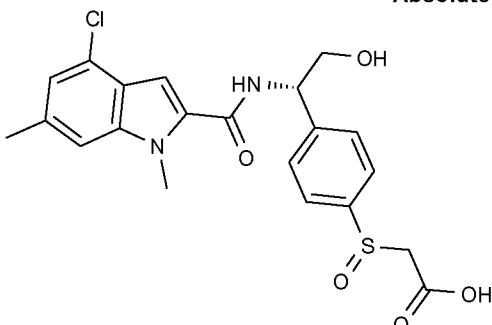
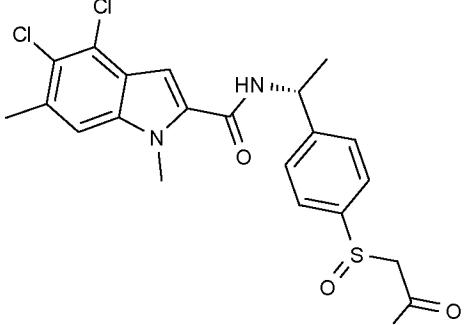
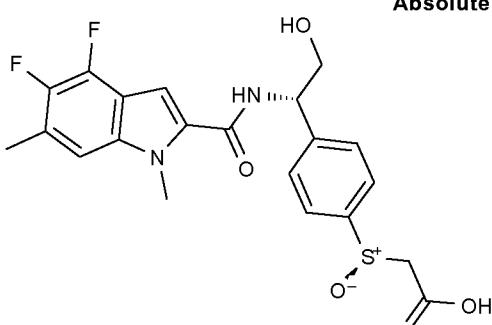
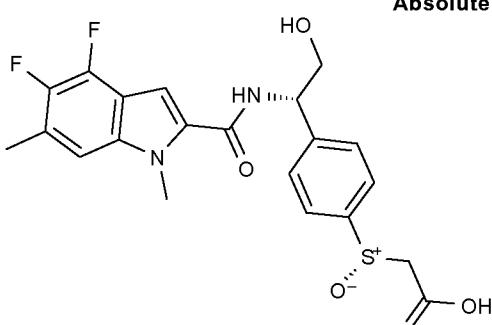

15 The following sulfoxynyl acetates are prepared in an analogous manner. Diastereomerically enriched derivatives are prepared by SFC separation.

Example	Structure	t_{ret} [min]	M+H	HPLC Method
11-001	<p>Absolute</p>	1.4	481	5
11-002	<p>Absolute</p>	1.23	497	5

Example	Structure	t_{ret} [min]	$\text{M}+\text{H}$	HPLC Method
11-003		1.23	497	5
11-004		1.23	497	5
11-005		1.15	463	5
11-006		1.32	447	5

Example	Structure	t_{ret} [min]	M+H	HPLC Method
11-007	<p>Absolute</p>	1.32	447	5
11-008	<p>Absolute</p>	1.16	463	5
11-009	<p>Absolute</p>	1.32	447	5
11-010	<p>Absolute</p>	1.16	463	5

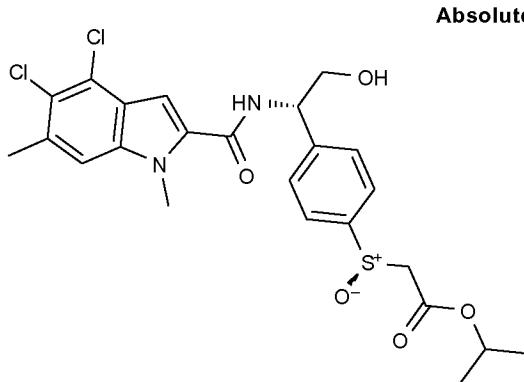
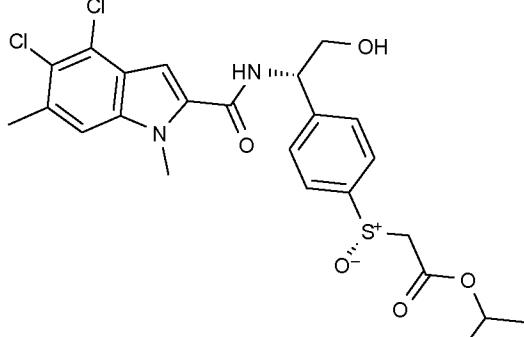
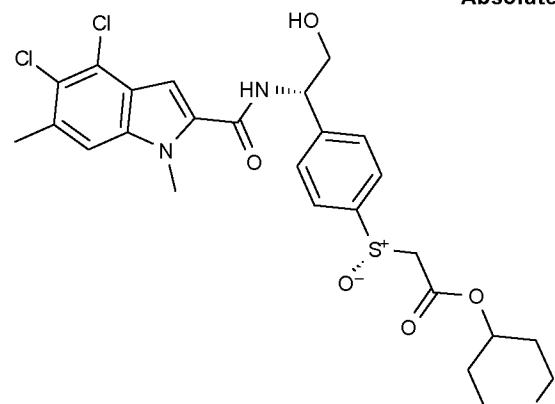




Syntheses of Sulfoxide Acid Derivatives 12-001 – 12-010

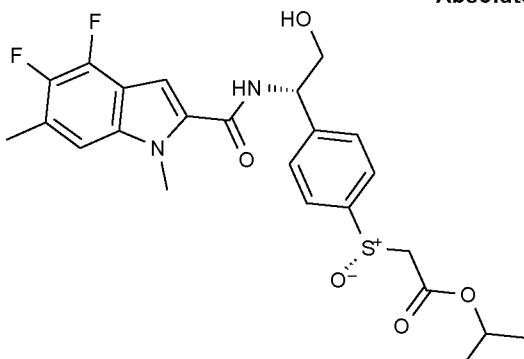
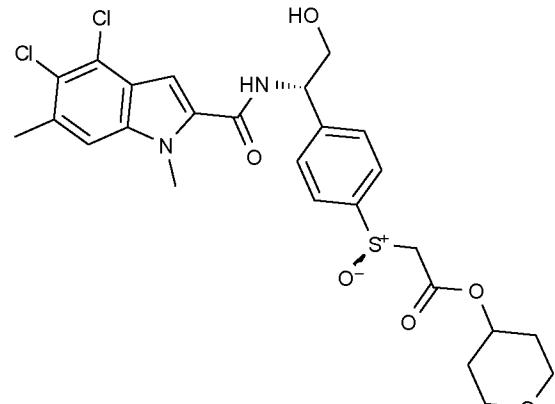
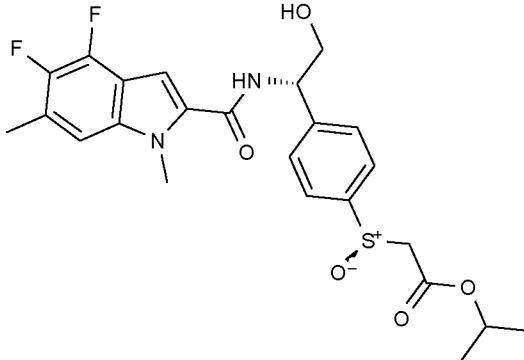





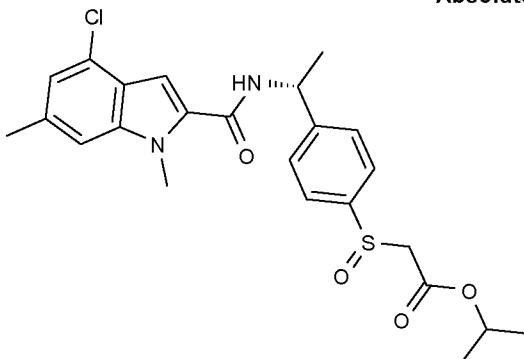
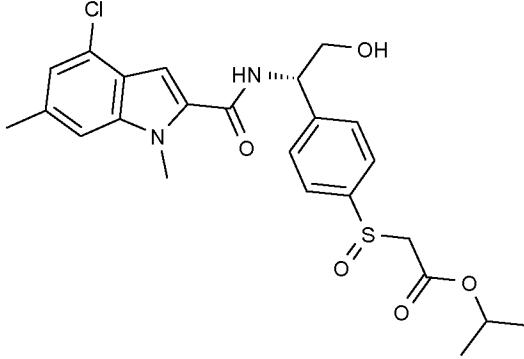
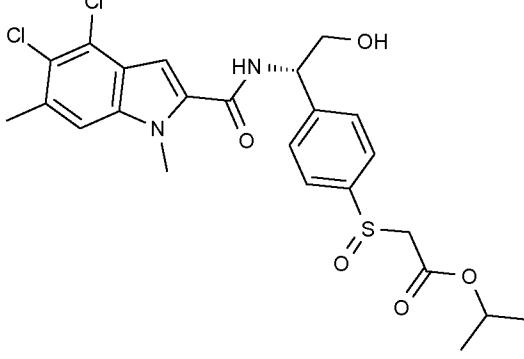
5

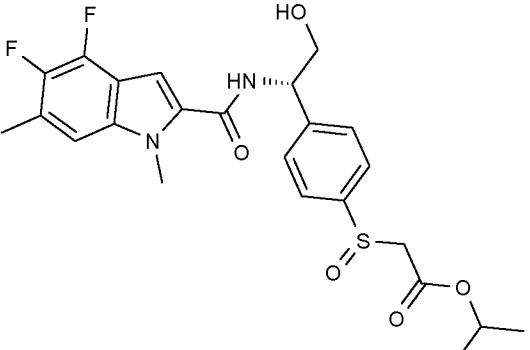
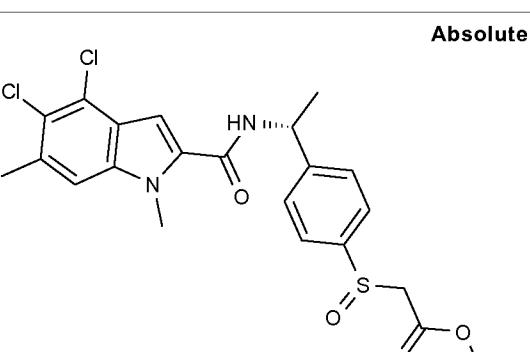
Carboxylic acids **12-001** to **12-010** are prepared using general **Method DC**. Diastereomerically enriched derivatives are prepared by SFC separation.

Example	Structure	t_{ret} [min]	M+H	HPLC Method
12-001	<p>Absolute</p>	0.97	483	5
12-002	<p>Absolute</p>	0.97	483	5




Example	Structure	t_{ret} [min]	M+H	HPLC Method
12-003	<p>Absolute</p>	0.96	483	5
12-004	<p>Absolute</p>	1.02	433	5
12-005	<p>Absolute</p>	1.01	433	5
12-006	<p>Absolute</p>	1.01	433	5




Example	Structure	t_{ret} [min]	M+H	HPLC Method
12-007	<p style="text-align: center;">Absolute</p>	0.88	449	5
12-008	<p style="text-align: center;">Absolute</p>	1.02	467	5
12-009	<p style="text-align: center;">Absolute</p>	0.84	451	5
12-010	<p style="text-align: center;">Absolute</p>	0.85	451	5




Syntheses of Sulfoxide Ester Derivatives 13-001 – 13-011



The following examples of solfoxyacetate esters are prepared according to the general procedure
method DE

5

Example	Structure	t_{ret} [min]	$\text{M}+\text{H}$	HPLC Method
13-001	<p>Absolute</p>	1.32	525	5
13-002	<p>Absolute</p>	1.32	525	5
13-003	<p>Absolute</p>	1.25	567	5

Example	Structure	t_{ret} [min]	M+H	HPLC Method
13-004	<p style="text-align: center;">Absolute</p>	1.22	493	5
13-005	<p style="text-align: center;">Absolute</p>	1.25	567	5
13-006	<p style="text-align: center;">Absolute</p>	1.22	493	5

Example	Structure	t_{ret} [min]	$M+H$	HPLC Method
13-007	<p style="text-align: center;">Absolute</p>	1.42	475	5
13-008	<p style="text-align: center;">Absolute</p>	1.25	491	5
13-009	<p style="text-align: center;">Absolute</p>	1.33	525	5

Example	Structure	t_{ret} [min]	$M+H$	HPLC Method
13-010	<p>Absolute</p>	1.22	493	5
13-011	<p>Absolute</p>	1.44	509	5

Example	Chemical Name
01-036	propan-2-yl 2-{4-[(1R)-1-({4-chloro-1,6-dimethyl-1H-pyrrolo[2,3-b]pyridin-2-yl}formamido)ethyl]benzenesulfonyl}acetate
09-034	2-hydroxyethyl 2-{4-[(1S)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
02-011	propan-2-yl 2-{4-[(1R)-1-[(1-methyl-3-phenyl-1H-pyrazol-5-yl)formamido]ethyl]benzenesulfonyl}acetate
09-028	oxan-4-yl 2-{4-[(1S)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
12-004	2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfinyl}acetic acid
12-005	2-[(R)-4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfinyl]acetic acid
11-005	methyl 2-{4-[(1S)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfinyl}acetate
02-014	propan-2-yl 2-{4-[(1R)-1-{{3-(3,4-dichlorophenyl)-1-methyl-1H-pyrazol-5-yl}formamido}ethyl]benzenesulfonyl}acetate
10-007	oxetan-3-ylmethyl 2-{4-[(1R)-1-{{3-(4-fluorophenyl)-1-methyl-1H-pyrazol-5-yl}formamido}ethyl]benzenesulfonyl}acetate
06-004	propan-2-yl 2-{4-[(1R)-1-[(1-methyl-3-phenyl-1H-pyrazol-5-yl)formamido]ethyl]benzenesulfonyl}propanoate
12-006	2-[(S)-4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfinyl]acetic acid
11-006	methyl 2-[(R)-4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfinyl]acetate
15-001	3-(4-fluorophenyl)-1-methyl-N-[(1R)-1-4-({[2-(morpholin-4-yl)ethoxy]carbamoyl}methanesulfonyl)phenyl]ethyl]-1H-pyrazole-5-carboxamide
05-021	methyl 4-{4-[(1S)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}oxane-4-carboxylate
09-031	(3-methyloxetan-3-yl)methyl 2-{4-[(1S)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
01-033	propan-2-yl 2-{4-[(1R)-1-[(4-chloro-5-fluoro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate

Example	Chemical Name
11-007	methyl 2-[(S)-4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfinyl]acetate
01-018	propan-2-yl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
01-034	propan-2-yl 2-{4-[(1S)-1-({4-chloro-1,6-dimethyl-1H-pyrrolo[2,3-b]pyridin-2-yl}formamido)-2-hydroxyethyl]benzenesulfonyl}acetate
09-035	oxetan-3-ylmethyl 2-{4-[(1S)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
15-002	3-(4-fluorophenyl)-1-methyl-N-[(1R)-1-[4-({(1-methylpiperidin-4-yl)oxy}carbamoyl)methanesulfonyl]phenyl]ethyl]-1H-pyrazole-5-carboxamide
07-014	2-{4-[(1S)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}-2-methylpropanoic acid
03-015	2-{4-[(1R)-1-({4-chloro-1,6-dimethyl-1H-pyrrolo[2,3-b]pyridin-2-yl}formamido)ethyl]benzenesulfonyl}acetic acid
03-013	2-{4-[(1S)-1-({4-chloro-1,6-dimethyl-1H-pyrrolo[2,3-b]pyridin-2-yl}formamido)-2-hydroxyethyl]benzenesulfonyl}acetic acid
13-007	propan-2-yl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfinyl}acetate
13-008	propan-2-yl 2-{4-[(1S)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfinyl}acetate
09-032	(3-fluorooxetan-3-yl)methyl 2-{4-[(1S)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
01-035	propan-2-yl 2-{4-[(1S)-1-[(4-chloro-5-fluoro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
11-008	methyl 2-[(S)-4-[(1S)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfinyl]acetate
12-007	2-{4-[(1S)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfinyl}acetic acid
01-037	propan-2-yl 2-{4-[(1R)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
06-005	propan-2-yl 2-methyl-2-{4-[(1R)-1-[(1-methyl-3-phenyl-1H-pyrazol-5-yl)formamido]ethyl]benzenesulfonyl}propanoate

Example	Chemical Name
10-006	(3-methyloxetan-3-yl)methyl 2-{4-[(1R)-1-{[3-(4-fluorophenyl)-1-methyl-1H-pyrazol-5-yl]formamido}ethyl]benzenesulfonyl}acetate
09-030	(3S)-oxolan-3-yl 2-{4-[(1S)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
02-013	propan-2-yl 2-{4-[(1R)-1-{[3-(4-chloro-3-methoxyphenyl)-1-methyl-1H-pyrazol-5-yl]formamido}ethyl]benzenesulfonyl}acetate
15-003	5-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}-4-oxopentanoic acid
09-029	2-methoxyethyl 2-{4-[(1S)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
15-004	3-(4-fluorophenyl)-N-[(1R)-1-{4-[(methoxycarbamoyl)methanesulfonyl]phenyl}ethyl]-1-methyl-1H-pyrazole-5-carboxamide
02-015	propan-2-yl 2-{4-[(1R)-1-{[3-(4-fluoro-3-methylphenyl)-1-methyl-1H-pyrazol-5-yl]formamido}ethyl]benzenesulfonyl}acetate
02-012	propan-2-yl 2-{4-[(1R)-1-{[3-(4-fluoro-3-methoxyphenyl)-1-methyl-1H-pyrazol-5-yl]formamido}ethyl]benzenesulfonyl}acetate
11-009	methyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfinyl}acetate
10-005	2-hydroxyethyl 2-{4-[(1R)-1-{[3-(4-fluorophenyl)-1-methyl-1H-pyrazol-5-yl]formamido}ethyl]benzenesulfonyl}acetate
11-010	methyl 2-[(R)-4-[(1S)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfinyl}acetate
01-038	propan-2-yl 2-{4-[(1S)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
09-033	3-hydroxypropyl 2-{4-[(1S)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
03-014	2-{4-[(1R)-1-[(4-chloro-5-fluoro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetic acid
02-016	propan-2-yl 2-{4-[(1R)-1-{[3-(3,4-difluorophenyl)-1-methyl-1H-pyrazol-5-yl]formamido}ethyl]benzenesulfonyl}acetate
06-006	propan-2-yl 2-{4-[(1S)-1-{[3-(4-fluorophenyl)-1-methyl-1H-pyrazol-5-yl]formamido}-2-hydroxyethyl]benzenesulfonyl}-2-methylpropanoate

Example	Chemical Name
02-017	propan-2-yl 2-{4-[(1S)-1-{[3-(4-fluorophenyl)-1-methyl-1H-pyrazol-5-yl]formamido}-2-hydroxyethyl]benzenesulfonyl}acetate
03-016	2-{4-[(1S)-1-[(4-chloro-5-fluoro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetic acid
11-001	methyl 2-{4-[(1R)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfinyl}acetate
12-001	2-[(S)-4-[(1S)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfinyl]acetic acid
11-002	methyl 2-[(R)-4-[(1S)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfinyl]acetate
13-009	propan-2-yl 2-{4-[(1S)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfinyl}acetate
11-003	methyl 2-[(S)-4-[(1S)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfinyl]acetate
06-007	propan-2-yl 2-{4-[(1S)-1-{[3-(4-fluorophenyl)-1-methyl-1H-pyrazol-5-yl]formamido}-2-hydroxyethyl]benzenesulfonyl}propanoate
04-004	2-{4-[(1S)-1-{[3-(4-fluorophenyl)-1-methyl-1H-pyrazol-5-yl]formamido}-2-hydroxyethyl]benzenesulfonyl}acetic acid
13-001	propan-2-yl 2-[(R)-4-[(1S)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfinyl]acetate
03-017	2-{4-[(1S)-1-{[4-chloro-1-methyl-6-(4-methylpiperazin-1-yl)-1H-indol-2-yl]formamido}-2-hydroxyethyl]benzenesulfonyl}acetic acid
03-018	2-{4-[(1R)-1-{[4-chloro-1-methyl-6-(4-methylpiperazin-1-yl)-1H-indol-2-yl]formamido}ethyl]benzenesulfonyl}acetic acid
12-002	2-[(R)-4-[(1S)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfinyl]acetic acid
11-004	methyl 2-{4-[(1S)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfinyl}acetate
06-008	methyl 2-{4-[(1S)-1-{[3-(4-fluorophenyl)-1-methyl-1H-pyrazol-5-yl]formamido}-2-hydroxyethyl]benzenesulfonyl}2-methylpropanoate
13-002	propan-2-yl 2-[(S)-4-[(1S)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfinyl]acetate

Example	Chemical Name
01-039	propan-2-yl 2-{4-[(1S)-1-[(4,5-difluoro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
12-003	2-{4-[(1S)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfinyl}acetic acid
07-015	2-{4-[(1R)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}-2-methylpropanoic acid
05-017	methyl 2-{4-[(1S)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}-2-methylpropanoate
03-012	2-{4-[(1S)-1-[(4,5-difluoro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetic acid
01-002	ethyl 2-{4-[(1S)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
09-044	3-hydroxy-2,2-dimethylpropyl 2-{4-[(1S)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
07-001	2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}-2-ethylbutanoic acid
05-023	4,5-dichloro-1,6-dimethyl-N-[(1R)-1-{4-[(2-oxooxolan-3-yl)sulfonyl]phenyl}ethyl]-1H-indole-2-carboxamide
04-003	2-{4-[(1R)-1-[(3-(1H-indol-7-yl)-1-methyl-1H-pyrazol-5-yl)formamido]ethyl]benzenesulfonyl}acetic acid
13-003	oxan-4-yl 2-[(S)-4-[(1S)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfinyl]acetate
12-009	2-[(R)-4-[(1S)-1-[(4,5-difluoro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfinyl]acetic acid
09-036	2-hydroxyethyl 2-{4-[(1S)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
09-037	oxan-4-yl 2-{4-[(1S)-1-[(4,5-difluoro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
03-004	2-{4-[(1R)-1-[(4-chloro-1-methyl-6-(1-methyl-1H-pyrazol-4-yl)-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetic acid
09-038	3-hydroxypropyl 2-{4-[(1S)-1-[(4,5-difluoro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate

Example	Chemical Name
09-039	2-hydroxy-2-methylpropyl 2-{4-[(1S)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
09-040	3-hydroxypropyl 2-{4-[(1S)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
03-003	2-{4-[(1R)-1-[(4-chloro-1,6,7-trimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetic acid
09-041	2-hydroxyethyl 2-{4-[(1S)-1-[(4,5-difluoro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
05-024	4,5-difluoro-1,6-dimethyl-N-[(1R)-1-{4-[(2-oxooxolan-3-yl)sulfonyl]phenyl}ethyl]-1H-indole-2-carboxamide
01-028	ethyl 2-{4-[(1S)-1-[(4,5-difluoro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
07-012	2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}pentanoic acid
12-010	2-[(S)-4-[(1S)-1-[(4,5-difluoro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfinyl]acetic acid
03-006	2-{4-[(1S)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetic acid
09-042	3-hydroxy-2,2-dimethylpropyl 2-{4-[(1S)-1-[(4,5-difluoro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
13-010	propan-2-yl 2-{4-[(1S)-1-[(4,5-difluoro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfinyl}acetate
09-043	2-hydroxy-2-methylpropyl 2-{4-[(1S)-1-[(4,5-difluoro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
13-004	propan-2-yl 2-[(S)-4-[(1S)-1-[(4,5-difluoro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfinyl]acetate
03-005	2-{4-[(1R)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetic acid
13-005	oxan-4-yl 2-[(R)-4-[(1S)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfinyl]acetate
07-013	1-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}cyclopropane-1-carboxylic acid

Example	Chemical Name
13-006	propan-2-yl 2-[(R)-4-[(1S)-1-[(4,5-difluoro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfinyl]acetate
05-025	4,5-dichloro-1,6-dimethyl-N-[(1R)-1-{4-[(2-oxooxan-3-yl)sulfonyl]phenyl}ethyl]-1H-indole-2-carboxamide
07-016	1-acetyl-4-{4-[(1R)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}piperidine-4-carboxylic acid
12-008	2-{4-[(1R)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfinyl}acetic acid
13-011	propan-2-yl 2-{4-[(1R)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfinyl}acetate
02-008	propan-2-yl 2-{4-[(1R)-1-{{3-(4-fluorophenyl)-1-methyl-1H-pyrazol-5-yl}formamido}ethyl]benzenesulfonyl}acetate
09-014	oxan-4-yl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
15-005	ethyl 2-{4-[(1R)-1-{{3-(1H-indol-1-yl)-1-methyl-1H-pyrazol-5-yl}formamido}ethyl]benzenesulfonyl}acetate
01-029	methyl 2-{{6-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]pyridin-3-yl}sulfonyl}acetate
01-006	methyl 2-{4-[(1R)-1-{{4,5-dichloro-1,6-dimethyl-1H-pyrrolo[2,3-b]pyridin-2-yl}formamido}ethyl]benzenesulfonyl}acetate
09-003	2-methoxyethyl 2-{4-[(1R)-1-{{4,5-dichloro-1,6-dimethyl-1H-pyrrolo[2,3-b]pyridin-2-yl}formamido}ethyl]benzenesulfonyl}acetate
09-012	(3-methyloxetan-3-yl)methyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
03-009	2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetic acid
01-001	methyl 2-{4-[(1R)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
05-001	tert-butyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}propanoate
01-011	propan-2-yl 2-{4-[(1R)-1-{{4-chloro-1-methyl-6-(1-methyl-1H-pyrazol-4-yl)-1H-indol-2-yl}formamido}ethyl]benzenesulfonyl}acetate

Example	Chemical Name
05-018	2-methoxyethyl 2-{4-[(1R)-1-({4,5-dichloro-1,6-dimethyl-1H-pyrrolo[2,3-b]pyridin-2-yl}formamido)ethyl]benzenesulfonyl}-2-methylpropanoate
02-010	methyl 2-{5-[(1R)-1-[(1-methyl-3-phenyl-1H-pyrazol-5-yl)formamido]ethyl]pyridin-2-yl}sulfonyl)acetate
14-020	4-chloro-N-[(1R)-1-{4-[(hydroxycarbamoyl)methanesulfonyl]phenyl}ethyl]-1,6-dimethyl-1H-indole-2-carboxamide
01-023	methyl 2-{4-[(1S)-1-({4,5-dichloro-1,6-dimethyl-1H-pyrrolo[2,3-b]pyridin-2-yl}formamido)-2-hydroxyethyl]benzenesulfonyl}acetate
01-027	methyl 2-{4-[(1R)-1-[(5-chloro-1-methyl-6-{1-[2-(morpholin-4-yl)ethyl]-1H-pyrazol-4-yl}-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
05-010	methyl 4-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}oxane-4-carboxylate
01-007	methyl 2-{4-[(1S)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
01-021	propan-2-yl 2-{4-[(1S)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
01-012	methyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
09-013	2-methylpropyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
05-012	propan-2-yl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}-2-methylpropanoate
05-013	methyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}butanoate
15-006	ethyl 2-{4-[(1R)-1-{{3-(1H-indazol-1-yl)-1-methyl-1H-pyrazol-5-yl}formamido]ethyl]benzenesulfonyl}acetate
09-005	2-(2-hydroxyethoxy)ethyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
06-001	methyl 4-{4-[(1R)-1-{{3-(4-fluorophenyl)-1-methyl-1H-pyrazol-5-yl}formamido]ethyl]benzenesulfonyl}oxane-4-carboxylate
07-005	2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}-2-methylpropanoic acid

Example	Chemical Name
05-003	ethyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}-2-methylpropanoate
10-003	(acetyloxy)methyl 2-{4-[(1R)-1-[(1-methyl-3-phenyl-1H-pyrazol-5-yl)formamido]ethyl]benzenesulfonyl}acetate
03-011	2-{4-[(1S)-1-({4,5-dichloro-1,6-dimethyl-1H-pyrrolo[2,3-b]pyridin-2-yl}formamido)-2-hydroxyethyl]benzenesulfonyl}acetic acid
05-009	methyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}propanoate
01-016	ethyl 2-{4-[(1R)-1-({4,5-dichloro-1,6-dimethyl-1H-pyrrolo[2,3-b]pyridin-2-yl}formamido)ethyl]benzenesulfonyl}acetate
01-003	methyl 2-{4-[(1R)-1-[(4-chloro-1-methyl-6-(1-methyl-1H-pyrazol-4-yl)-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
09-011	[3-(trifluoromethyl)phenyl]methyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
15-007	N-[(1R)-1-[4-(1-carbamoyl-1-methylethanesulfonyl)phenyl]ethyl]-4-chloro-1,6-dimethyl-1H-indole-2-carboxamide
01-004	ethyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
01-009	ethyl 2-{4-[(1R)-1-[(4-chloro-1-methyl-6-(1-methyl-1H-pyrazol-4-yl)-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
05-004	propan-2-yl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}propanoate
15-008	4-chloro-N-[(1R)-1-[4-(3-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}-2-oxopropanesulfonyl)phenyl]ethyl]-1,6-dimethyl-1H-indole-2-carboxamide
07-002	4-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}oxane-4-carboxylic acid
09-002	2-(acetyloxy)ethyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
05-005	methyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}-4-methoxybutanoate
02-005	ethyl 2-{4-[(1R)-1-{{3-(1H-indol-7-yl)-1-methyl-1H-pyrazol-5-yl}formamido}ethyl]benzenesulfonyl}acetate

Example	Chemical Name
05-019	methyl 1-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}cyclopropane-1-carboxylate
01-026	propan-2-yl 2-{4-[(1R)-1-[(5-chloro-1-methyl-6-{1-[2-(morpholin-4-yl)ethyl]-1H-pyrazol-4-yl}-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
01-013	methyl 2-{4-[(1S)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
09-004	(2S)-2-methoxypropyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
02-004	ethyl 2-{4-[(1R)-1-[(3-(4-fluorophenyl)-1-methyl-1H-pyrazol-5-yl)formamido]ethyl]benzenesulfonyl}acetate
02-001	methyl 2-{4-[(1R)-1-[(3-(4-fluorophenyl)-1-methyl-1H-pyrazol-5-yl)formamido]ethyl]benzenesulfonyl}acetate
06-002	methyl 2-{4-[(1R)-1-[(3-(4-fluorophenyl)-1-methyl-1H-pyrazol-5-yl)formamido]ethyl]benzenesulfonyl}-2-methylpropanoate
05-011	ethyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}propanoate
02-007	methyl 2-{4-[(1S)-2-hydroxy-1-[(1-methyl-3-phenyl-1H-pyrazol-5-yl)formamido]ethyl]benzenesulfonyl}acetate
01-024	propan-2-yl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
15-009	4-chloro-N-[(1R)-1-{4-[(dimethylcarbamoyl)methanesulfonyl]phenyl}ethyl]-1,6-dimethyl-1H-indole-2-carboxamide
09-020	2-methanesulfonylethyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
09-001	2-(2-ethoxyethoxy)ethyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
15-010	ethyl 2-{4-[(1R)-1-[(1-methyl-5-phenyl-1H-pyrazol-3-yl)formamido]ethyl]benzenesulfonyl}acetate
09-007	2-hydroxyethyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
15-011	2-[(2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetyl)oxy]ethyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate

Example	Chemical Name
01-005	ethyl 2-{4-[(1S)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
03-002	2-{4-[(1S)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetic acid
03-001	2-{4-[(1S)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetic acid
10-001	2-methoxyethyl 2-{4-[(1R)-1-[(1-methyl-3-phenyl-1H-pyrazol-5-yl)formamido]ethyl]benzenesulfonyl}acetate
10-002	2-(dimethylamino)ethyl 2-{4-[(1R)-1-[(1-methyl-3-phenyl-1H-pyrazol-5-yl)formamido]ethyl]benzenesulfonyl}acetate
03-007	2-(4-{1-[(4-chloro-6-ethynyl-1-methyl-1H-indol-2-yl)formamido]ethyl}benzenesulfonyl)acetic acid
03-008	2-(4-{1-[(4-chloro-6-iodo-1-methyl-1H-indol-2-yl)formamido]ethyl}benzenesulfonyl)acetic acid
07-003	2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl}benzenesulfonyl}propanoic acid
07-004	1-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl}benzenesulfonyl}cyclopentane-1-carboxylic acid
02-002	methyl 2-{4-[(1R)-1-[(1-methyl-3-phenyl-1H-pyrazol-5-yl)formamido]ethyl}benzenesulfonyl}acetate
09-006	2-[(tert-butoxy)carbonyl]aminoethyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl}benzenesulfonyl}acetate
09-008	2-methoxyethyl 2-{4-[(1R)-1-[(1-methyl-5-(trifluoromethyl)-1H-indol-2-yl)formamido]ethyl}benzenesulfonyl}acetate
07-006	(2S)-2-{4-[(1R)-1-[(5-chloro-1-methyl-1H-indol-2-yl)formamido]ethyl}benzenesulfonyl}propanoic acid
05-006	methyl 2-{4-[(1R)-1-[(5-chloro-1-methyl-1H-indol-2-yl)formamido]ethyl}benzenesulfonyl}propanoate
01-008	methyl 2-(4-{1-[(4-chloro-6-ethynyl-1-methyl-1H-indol-2-yl)formamido]ethyl}benzenesulfonyl)acetate
09-010	pyridin-4-ylmethyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl}benzenesulfonyl}acetate

Example	Chemical Name
04-002	2-{4-[(1R)-1-[[3-(4-fluorophenyl)-1-methyl-1H-pyrazol-5-yl]formamido]ethyl]benzenesulfonyl}acetic acid
07-008	(2R)-2-{4-[(1R)-1-[(5-chloro-1-methyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}propanoic acid
07-007	2-{4-[(1R)-1-[(5-chloro-1-methyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}-2-methylpropanoic acid
03-010	2-{4-[(1R)-1-({4,5-dichloro-1,6-dimethyl-1H-pyrrolo[2,3-b]pyridin-2-yl)formamido]ethyl]benzenesulfonyl}acetic acid
01-010	methyl 2-{4-[(1R)-1-({3,5-dimethyl-3H-benzo[e]indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
07-010	2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}-4-methoxybutanoic acid
05-007	methyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}-2-methylpropanoate
01-014	tert-butyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
01-015	methyl 2-{4-[(1R)-1-[(4-chloro-1,6,7-trimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
05-008	methyl 1-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}cyclopentane-1-carboxylate
07-011	2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}butanoic acid
07-009	2-{4-[(1R)-1-[(5-chloro-1-methyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}propanoic acid
01-017	methyl 2-{4-[(1S)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
02-006	methyl 2-{4-[(1R)-1-{{3-(1H-indol-7-yl)-1-methyl-1H-pyrazol-5-yl}formamido]ethyl]benzenesulfonyl}acetate
04-001	2-{4-[(1R)-1-[(1-methyl-3-phenyl-1H-pyrazol-5-yl)formamido]ethyl]benzenesulfonyl}acetic acid
05-015	methyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}pentanoate

Example	Chemical Name
09-009	butyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
02-003	ethyl 2-{4-[(1R)-1-[(1-methyl-3-phenyl-1H-pyrazol-5-yl)formamido]ethyl]benzenesulfonyl}acetate
01-020	methyl 2-(4-{1-[(4-chloro-6-iodo-1-methyl-1H-indol-2-yl)formamido]ethyl}benzenesulfonyl)acetate
05-014	tert-butyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}-2-methylpropanoate
01-022	(¹³ C)methyl 2-{4-[(1R)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
05-002	methyl 2-{4-[(1R)-1-[(5-chloro-1-methyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}-2-methylpropanoate
10-004	2-fluoroethyl 2-{4-[(1R)-1-[(1-methyl-3-phenyl-1H-pyrazol-5-yl)formamido]ethyl]benzenesulfonyl}acetate
02-009	methyl 2-{5-[(1S)-1-[(1-methyl-3-phenyl-1H-pyrazol-5-yl)formamido]ethyl]pyridin-2-yl}sulfonyl)acetate
01-019	methyl 2-{4-[(1R)-1-[(5-chloro-1-methyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
09-016	cyclopropylmethyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
09-024	2-[(acetoxy)methyl]-3-hydroxypropyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
09-018	(3S)-oxolan-3-yl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
09-017	oxetan-3-ylmethyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
05-016	ethyl 2-{4-[(1R)-1-[(4,5-dichloro-1,6-dimethyl-1H-pyrrolo[2,3-b]pyridin-2-yl)formamido]ethyl]benzenesulfonyl}-2-methylpropanoate
09-027	3-hydroxy-2-(hydroxymethyl)propyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
09-026	2-[(2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetyl)oxy]methyl}-3-hydroxypropyl 2,2-dimethylpropanoate

Example	Chemical Name
09-022	3-(acetoxy)-2-[(acetoxy)methyl]propyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
09-023	2-[(2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetyl)oxy]ethyl 2,2-dimethylpropanoate
05-020	methyl 2-{4-[(1R)-1-[(4,5-dichloro-1,6-dimethyl-1H-pyrrolo[2,3-b]pyridin-2-yl)formamido]ethyl]benzenesulfonyl}-2-methylpropanoate
01-025	ethyl 2-{4-[(1R)-1-[(5-chloro-1-methyl-6-{1-[2-(morpholin-4-yl)ethyl]-1H-pyrazol-4-yl}-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
09-019	(3R)-oxolan-3-yl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
09-015	2-[(2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetyl)oxy]methyl]-3-[(2,2-dimethylpropanoyl)oxy]propyl 2,2-dimethylpropanoate
09-021	2-methoxy-2-methylpropyl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
09-025	oxetan-3-yl 2-{4-[(1R)-1-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
01-040	propan-2-yl 2-{4-[(1S)-1-[(4-chloro-1-methyl-6-(4-methylpiperazin-1-yl)-1H-indol-2-yl)formamido]-2-hydroxyethyl]benzenesulfonyl}acetate
08-002	1-{4-[(1R)-1-[(3-(4-fluorophenyl)-1-methyl-1H-pyrazol-5-yl)formamido]ethyl]benzenesulfonyl}cyclopentane-1-carboxylic acid
01-041	propan-2-yl 2-{4-[(1R)-1-[(4-chloro-1-methyl-6-(4-methylpiperazin-1-yl)-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}acetate
08-003	4-{4-[(1R)-1-[(3-(4-fluorophenyl)-1-methyl-1H-pyrazol-5-yl)formamido]ethyl]benzenesulfonyl}oxane-4-carboxylic acid
06-003	methyl 1-{4-[(1R)-1-[(3-(4-fluorophenyl)-1-methyl-1H-pyrazol-5-yl)formamido]ethyl]benzenesulfonyl}cyclopentane-1-carboxylate
01-031	propan-2-yl 2-(4-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]methyl)benzenesulfonyl)acetate
01-032	ethyl 2-(4-[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]methyl)benzenesulfonyl)acetate
08-001	2-{4-[(1R)-1-[(3-(4-fluorophenyl)-1-methyl-1H-pyrazol-5-yl)formamido]ethyl]benzenesulfonyl}-2-methylpropanoic acid

Example	Chemical Name
01-030	methyl 2-(4-{[(4-chloro-1,6-dimethyl-1H-indol-2-yl)formamido]methyl}benzenesulfonyl)acetate
05-022	methyl 2-{4-[(1R)-1-[(4,5-dichloro-1,6-dimethyl-1H-indol-2-yl)formamido]ethyl]benzenesulfonyl}-2-methylpropanoate

Biological data

3-Phosphoglycerate dehydrogenase (PHGDH) Fluorescence Intensity Assay

This assay is used to identify compounds which inhibit the enzymatic activity of PHGDH which catalyzes the reaction of 3-Phosphoglycerate (3-PG) and NAD to 3-Phosphohydroxypyruvate and NADH.

The produced NADH is used in a coupled reaction for Diaphorase mediated reduction of Resazurin to Resorufin which can be measured in a Fluorescence Intensity readout.

10 The full length version of PHGDH enzyme was expressed in *E. coli* with an N-terminal HIS-tag and a TEV cleavage site.
The 3-Phosphoglycerate substrate was purchased from Sigma. NAD, Diaphorase and Resazurin were purchased from Sigma Aldrich.

15 Compounds are dispensed onto assay plates (black, low volume, flat bottom 384 well, Corning) using an Access Labcyte Workstation with the Labcyte Echo 55x from a DMSO solution. For the chosen highest assay concentration of 100 μ M, 150 nl of compound solution are transferred from a 10 mM DMSO compound stock solution. A series of 11 concentrations (10 1:5 steps) is transferred for each compound.

20 DMSO is added such that every well has a total of 150 nl compound solution.

The assay has been performed at two different NAD / 3-PG ratios (final assay concentrations):

PHGDH_HIGH_NAD/3-PG: 250 μ M NAD / 500 μ M 3-PG

PHGDH_500_NAD/3-PG: 500 μ M NAD / 500 μ M 3-PG

25 5 μ l of PHGDH protein (final assay concentration 100ng/ml) in assay buffer (125mM Tris-HCl, pH 7.5; 56.25 mM Hydrazine sulfate pH 9.0; 2.5mM EDTA; assay specific NAD concentration; 0.0125% Tween20) are added to the 150 nl of compounds.
10 μ l of a mix containing assay specific 3-PG concentration, Resazurin (25 μ M final assay

concentration) and Diaphorase (35 µg/ml final assay concentration) are added. Plates are kept at room temperature. After 240 minutes incubation time the fluorescence signal is measured in a PerkinElmer Envision HTS Multilabel Reader with an excitation wavelength at 530-560nm and an emission wavelength at 590 nm.

5 Each plate contains negative controls (diluted DMSO instead of test compound; reaction as described with PHGDH protein) and positive controls (diluted DMSO instead of test compound; reaction as described with buffer instead of PHGDH protein). Negative and positive control values are used for normalization.

A known inhibitor of PHGDH activity is used as internal control.

10 IC50 values are calculated and analyzed in the MEGALAB IC50 application using a 4 parametric logistic model.

Example	IC50 (PHGDH_HIGH_NAD/3-PG)	IC50 (PHGDH_500_NAD/3-PG)
01-036	1833 nM	
09-034	52 nM	
02-011	6724 nM	
09-028	230 nM	
12-004	11 nM	18 nM
12-005	17 nM	28 nM
11-005	221 nM	
02-014	73347 nM	
10-007	714 nM	
06-004	78161 nM	
12-006	61 nM	95 nM
11-006	1124 nM	
05-021	2448 nM	
09-031	61 nM	
01-033	36497 nM	
11-007	234 nM	
01-018	3551 nM	
01-034	1147 nM	
09-035	54 nM	
07-014	4 nM	6 nM
03-015	41 nM	
03-013	35 nM	

Example	IC50 (PHGDH_HIGH_NAD/3-PG)	IC50 (PHGDH_500_NAD/3-PG)
13-007	2143 nM	
13-008	695 nM	1204 nM
09-032	27 nM	
01-035	466 nM	
11-008	120 nM	
12-007	8 nM	11 nM
01-037	3374 nM	
06-005	15855 nM	
10-006	938 nM	
09-030	85 nM	
02-013	6115 nM	
09-029	62 nM	
02-015	5492 nM	
02-012	3718 nM	
11-009	612 nM	
10-005	766 nM	
11-010	447 nM	
14-001	83 nM	
01-038	261 nM	
09-033	98 nM	
14-002	58 nM	
03-014	5 nM	7 nM
02-016	> 20000 nM	
14-003	7 nM	9 nM
14-004	73 nM	90 nM
06-006	14468 nM	
02-017	7706 nM	
03-016	5 nM	7 nM
11-001	296 nM	436 nM
12-001	7 nM	9 nM
11-002	189 nM	291 nM
13-009	428 nM	797 nM
11-003	89 nM	137 nM
06-007	29552 nM	

Example	IC50 (PHGDH_HIGH_NAD/3-PG)	IC50 (PHGDH_500_NAD/3-PG)
04-004	174 nM	299 nM
13-001	204 nM	305 nM
14-005	81 nM	158 nM
03-017	40 nM	146 nM
03-018	84 nM	292 nM
12-002	3 nM	4 nM
11-004	98 nM	196 nM
06-008	8340 nM	
13-002	819 nM	1018 nM
01-039	1120 nM	
14-006	39 nM	66 nM
12-003	3 nM	5 nM
14-007	38 nM	59 nM
14-008	20 nM	31 nM
07-015	5 nM	9 nM
05-017	1229 nM	2956 nM
03-012	8 nM	17 nM
01-002	169 nM	258 nM
09-044		419 nM
07-001	10 nM	14 nM
14-009		92 nM
05-023		119 nM
04-003	53 nM	87 nM
14-010		4897 nM
13-003		211 nM
12-009		32 nM
09-036		107 nM
14-011		85 nM
09-037		578 nM
03-004	20 nM	29 nM
14-012		256 nM
09-038		255 nM
14-013		18 nM
09-039		168 nM

Example	IC50 (PHGDH_HIGH_NAD/3-PG)	IC50 (PHGDH_500_NAD/3-PG)
09-040		190 nM
03-003	13 nM	22 nM
09-041		156 nM
05-024		119 nM
01-028	267 nM	525 nM
14-014		16 nM
07-012	6 nM	16 nM
12-010		10 nM
03-006	3 nM	4 nM
09-042		509 nM
14-015		1128 nM
14-016		8 nM
14-017		2484 nM
13-010		1061 nM
09-043		246 nM
13-004		690 nM
03-005	4 nM	9 nM
13-005		191 nM
14-018		4542 nM
07-013	10 nM	15 nM
13-006		2084 nM
05-025		20 nM
07-016		21 nM
12-008		8 nM
13-011		1738 nM
14-019		21 nM
14-020	172 nM	
05-001	24415 nM	
09-001	289 nM	
03-001	155 nM	
03-002	6 nM	
10-001	1452 nM	
10-002	497 nM	
09-002	230 nM	

Example	IC50 (PHGDH_HIGH_NAD/3-PG)	IC50 (PHGDH_500_NAD/3-PG)
07-002	7 nM	
03-007	29 nM	
09-003	286 nM	
03-008	24 nM	
09-004	394 nM	
01-001	441 nM	
05-003	15891 nM	
02-001	1262 nM	
07-003	8 nM	
09-005	197 nM	
07-004	6 nM	
02-002	1356 nM	
09-006	701 nM	
01-003	905 nM	
05-004	11781 nM	
09-007	166 nM	
01-004	964 nM	
05-005	652 nM	
01-005	223 nM	
07-005	12 nM	
02-004	3098 nM	
09-008	3456 nM	
07-006	238 nM	
01-006	485 nM	
01-007	121 nM	
05-006	3046 nM	
01-008	1694 nM	
01-009	815 nM	
09-010	175 nM	
04-002	76 nM	
07-008	139 nM	
07-007	209 nM	
09-011	3510 nM	
03-010	170 nM	

Example	IC50 (PHGDH_HIGH_NAD/3-PG)	IC50 (PHGDH_500_NAD/3-PG)
01-010	943 nM	
01-011	1929 nM	
07-010	21 nM	
10-003	816 nM	
03-009	8 nM	
05-007	4524 nM	
01-013	87 nM	
01-014	4251 nM	
09-012	303 nM	
09-013	19319 nM	
01-012	412 nM	
01-015	583 nM	
02-005	3001 nM	
01-016	1094 nM	
05-008	18286 nM	
07-011	11 nM	
05-009	1683 nM	
07-009	190 nM	
01-017	6719 nM	
02-006	1270 nM	
05-010	11169 nM	
05-011	5017 nM	
05-012	25095 nM	
04-001	145 nM	
05-013	5527 nM	
02-007	4343 nM	
05-015	3470 nM	
01-021	463 nM	
09-009	3735 nM	
02-003	3178 nM	
01-020	1786 nM	
05-014	5054 nM	
09-014	1041 nM	
01-022	414 nM	

Example	IC50 (PHGDH_HIGH_NAD/3-PG)	IC50 (PHGDH_500_NAD/3-PG)
05-002	33068 nM	
03-011	9 nM	
10-004	1437 nM	
01-023	216 nM	
02-009	> 100000 nM	
02-010	3688 nM	
01-019	2477 nM	
01-024	3551 nM	
09-016	2105 nM	
09-024	247 nM	
09-018	418 nM	
05-019	5309 nM	
09-017	177 nM	
05-016	> 100000 nM	
09-027	160 nM	
09-026	1406 nM	
09-022	431 nM	
05-018	5331 nM	
09-023	1804 nM	
02-008	4843 nM	
05-020	> 20000 nM	
01-027	248 nM	
01-025	742 nM	
09-019	250 nM	
09-015	9188 nM	
01-029	1133 nM	
09-021	574 nM	
09-025	72 nM	
01-026	1353 nM	
09-020	54 nM	
01-040	981 nM	
08-002	74 nM	95 nM
01-041	3136 nM	
08-003	139 nM	

Example	IC50 (PHGDH_HIGH_NAD/3-PG)	IC50 (PHGDH_500_NAD/3-PG)
06-001	7696 nM	
06-002	14654 nM	
06-003	11653 nM	
01-031	> 20000 nM	
01-032	5943 nM	
08-001	161 nM	
01-030	3386 nM	
14-021	127 nM	
05-022	5585 nM	

¹³C₃ Serine Assay MDA-MB-468

Cell Line:

5 MDA-MB-468 (ATCC: HTB-132)

Reagents:

Medium I: DMEM Lonza BE12-604F+ 10% FCS

Medium II: DMEM glucose free (Gibco # A14430-01)+ 10% FCS + 1% Na-Pyruvate (Gibco # 11360) + 1% Glutamax I (Gibco # 35050) + ¹³C Glucose (Aldrich # 389374) (20mM final concentration)

10 Assay Protocol:

Cells are cultivated in Medium I in a 75 mL flask.

Day 1: 5000 cells in 180 µL Medium I /well were seeded into a 96-well plate. Plates were incubated at 37°C in a 5% CO₂ incubator overnight.

15 Day 2: 10mM DMSO stock from test compounds were serially pre-diluted with Medium I (See dilution scheme: for the first well 20µL DMSO stock are diluted with 180 µL Medium I. From this 1000µM solution further seven 1:3 (1+2) dilution are prepared with Medium I). 20 µL of these pre-dilutions are transferred in duplicates to the 96-well plate of Day 1. After incubation at 37°C in a CO₂ incubator for 1 hour the medium was removed, 100 µL PBS (tempered to room temperature) 20 added and subsequently removed again.

180 µL Medium II were then added per well and 20 µL of serial dilutions of test compounds in Medium II (as described before) were transferred per well as above. After 180 minutes incubation at 37°C in a CO₂ incubator the medium was again cautiously removed.

25 After the addition of 100 µL methanol: H₂O (80:20, v:v, pre-cooled to -80°C) the plates were sealed immediately and frozen at -80°C.

At day of measurement plates were thawed, centrifuged and the supernatant evaporated. The samples were resuspended in 100 μ l water for tandem mass spectrometry.

$^{13}\text{C}_3$ serine levels were analyzed with LC/MS/MS using Multiple Reaction Monitoring (MRM).

Data Analysis:

5 Detected Peak Areas with MRM transition 107.090/75.80 Da were integrated using Analyst software. IC50 values were computed from these values using a 4 parametric logistic model.

Example	IC50 (^{13}C SERINE)
01-002	2.9 nM
01-028	7.3 nM
03-006	203.3 nM
03-005	1068.1 nM
01-018	66.3 nM
01-004	29.3 nM
01-012	52.5 nM
01-024	66.3 nM
02-011	134.9 nM
15-001	55358.7 nM
15-002	85293.7 nM
10-006	102.9 nM
15-003	9638 nM
15-004	6273.5 nM
05-017	0.3 nM
07-012	2392.2 nM
02-008	68.4 nM
09-014	14.7 nM
15-005	309.2 nM
01-029	51.4 nM
01-006	88.8 nM
09-003	82.8 nM
09-012	22.2 nM
03-009	3567.9 nM
01-001	7 nM
05-001	891.4 nM
01-011	489.3 nM

Example	IC50 (¹³ CSERINE)
05-018	141.8 nM
02-010	593.7 nM
14-020	135.7 nM
01-023	0.8 nM
01-027	34.2 nM
05-010	3.7 nM
01-007	5 nM
01-021	12.6 nM
09-013	70.1 nM
05-012	906.1 nM
05-013	165.9 nM
15-006	73.3 nM
09-005	138.7 nM
06-001	25382.5 nM
07-005	1187.5 nM
05-003	30.2 nM
10-003	23.7 nM
03-011	1998 nM
05-009	1.6 nM
01-016	72.1 nM
01-003	109.2 nM
09-011	20.1 nM
15-007	3216.7 nM
01-009	44.1 nM
05-004	10.1 nM
15-008	11.9 nM
07-002	6902.8 nM
09-002	69 nM
05-005	831.2 nM
02-005	64.8 nM
05-019	508.8 nM
01-026	35.9 nM
01-013	8.3 nM
09-004	78.6 nM

Example	IC50 (^{13}C SERINE)
02-004	62.1 nM
02-001	32.8 nM
06-002	1884 nM
05-011	3.9 nM
02-007	166.6 nM
15-009	3392.1 nM
09-020	37.4 nM
09-001	53.8 nM
15-010	1303.4 nM
09-007	23.9 nM
15-011	249 nM
01-005	3.3 nM
03-002	1377 nM

Therapeutic Use

Due to their biological properties the compounds of the invention, their tautomers, 5 racemates, enantiomers, diastereomers, mixtures thereof and the salts of all the above-mentioned forms may be suitable for treating diseases characterised by excessive or abnormal cell proliferation such as cancer.

For example, the following cancers, tumors and other proliferative diseases may be treated with compounds of the invention, without being restricted thereto:

10 Cancers/tumors/carcinomas of the head and neck: e.g. tumors/carcinomas/cancers of the nasal cavity, paranasal sinuses, nasopharynx, oral cavity (including lip, gum, alveolar ridge, retromolar trigone, floor of mouth, tongue, hard palate, buccal mucosa), oropharynx (including base of tongue, tonsil, tonsillar pilar, soft palate, tonsillar fossa, pharyngeal wall), middle ear, larynx (including supraglottis, glottis, subglottis, vocal cords),
15 hypopharynx, salivary glands (including minor salivary glands);

cancers/tumors/carcinomas of the lung: e.g. non-small cell lung cancer (NSCLC) (squamous cell carcinoma, spindle cell carcinoma, adenocarcinoma, large cell carcinoma, clear cell carcinoma, bronchioalveolar), small cell lung cancer (SCLC) (oat cell cancer, intermediate cell cancer, combined oat cell cancer);

neoplasms of the mediastinum: e.g. neurogenic tumors (including neurofibroma, neurilemoma, malignant schwannoma, neurosarcoma, ganglioneuroblastoma, ganglioneuroma, neuroblastoma, pheochromocytoma, paraganglioma), germ cell tumors (including seminoma, teratoma, non-seminoma), thymic tumors (including thymoma, 5 thymolipoma, thymic carcinoma, thymic carcinoid), mesenchymal tumors (including fibroma, fibrosarcoma, lipoma, liposarcoma, myxoma, mesothelioma, leiomyoma, leiomyosarcoma, rhabdomyosarcoma, xanthogranuloma, mesenchymoma, hemangioma, hemangioendothelioma, hemangiopericytoma, lymphangioma, lymphangiopericytoma, lymphangiomyoma);

10 cancers/tumors/carcinomas of the gastrointestinal (GI) tract: e.g. tumors/carcinomas/ cancers of the esophagus, stomach (gastric cancer), pancreas, liver and biliary tree (including hepatocellular carcinoma (HCC), e.g. childhood HCC, fibrolamellar HCC, combined HCC, spindle cell HCC, clear cell HCC, giant cell HCC, carcinosarcoma HCC, sclerosing HCC; hepatoblastoma; cholangiocarcinoma; cholangiocellular carcinoma; 15 hepatic cystadenocarcinoma; angiosarcoma, hemangioendothelioma, leiomyosarcoma, malignant schwannoma, fibrosarcoma, Klatskin tumor), gall bladder, extrahepatic bile ducts, small intestine (including duodenum, jejunum, ileum), large intestine (including cecum, colon, rectum, anus; colorectal cancer, gastrointestinal stroma tumor (GIST)), genitourinary system (including kidney, e.g. renal pelvis, renal cell carcinoma (RCC), 20 nephroblastoma (Wilms' tumor), hypernephroma, Grawitz tumor; ureter; urinary bladder, e.g. urachal cancer, urothelial cancer; urethra, e.g. distal, bulbomembranous, prostatic; prostate (androgen dependent, androgen independent, castration resistant, hormone independent, hormone refractory), penis);

cancers/tumors/carcinomas of the testis: e.g. seminomas, non-seminomas,

25 Gynecologic cancers/tumors/carcinomas: e.g. tumors/carcinomas/cancers of the ovary, fallopian tube, peritoneum, cervix, vulva, vagina, uterine body (including endometrium, fundus);

cancers/tumors/carcinomas of the breast: e.g. mammary carcinoma (infiltrating ductal, colloid, lobular invasive, tubular, adenocystic, papillary, medullary, mucinous), hormone 30 receptor positive breast cancer (estrogen receptor positive breast cancer, progesterone receptor positive breast cancer), Her2 positive breast cancer, triple negative breast cancer, Paget's disease of the breast;

cancers/tumors/carcinomas of the endocrine system: e.g. tumors/carcinomas/cancers of the endocrine glands, thyroid gland (thyroid carcinomas/tumors; papillary, follicular, anaplastic, medullary), parathyroid gland (parathyroid carcinoma/tumor), adrenal cortex (adrenal cortical carcinoma/tumors), pituitary gland (including prolactinoma, 5 craniopharyngioma), thymus, adrenal glands, pineal gland, carotid body, islet cell tumors, paraganglion, pancreatic endocrine tumors (PET; non-functional PET, PPoma, gastrinoma, insulinoma, VIPoma, glucagonoma, somatostatinoma, GRFoma, ACTHoma), carcinoid tumors;

10 sarcomas of the soft tissues: e.g. fibrosarcoma, fibrous histiocytoma, liposarcoma, leiomyosarcoma, rhabdomyosarcoma, angiosarcoma, lymphangiosarcoma, Kaposi's sarcoma, glomus tumor, hemangiopericytoma, synovial sarcoma, giant cell tumor of tendon sheath, solitary fibrous tumor of pleura and peritoneum, diffuse mesothelioma, malignant peripheral nerve sheath tumor (MPNST), granular cell tumor, clear cell sarcoma, melanocytic schwannoma, plexosarcoma, neuroblastoma, 15 ganglioneuroblastoma, neuroepithelioma, extraskeletal Ewing's sarcoma, paraganglioma, extraskeletal chondrosarcoma, extraskeletal osteosarcoma, mesenchymoma, alveolar soft part sarcoma, epithelioid sarcoma, extrarenal rhabdoid tumor, desmoplastic small cell tumor;

20 sarcomas of the bone: e.g. myeloma, reticulum cell sarcoma, chondrosarcoma (including central, peripheral, clear cell, mesenchymal chondrosarcoma), osteosarcoma (including parosteal, periosteal, high-grade surface, small cell, radiation-induced osteosarcoma, Paget's sarcoma), Ewing's tumor, malignant giant cell tumor, adamantinoma, (fibrous) histiocytoma, fibrosarcoma, chordoma, small round cell sarcoma, hemangioendothelioma, hemangiopericytoma, osteochondroma, osteoid osteoma, osteoblastoma, eosinophilic 25 granuloma, chondroblastoma;

mesothelioma: e.g. pleural mesothelioma, peritoneal mesothelioma;

cancers of the skin: e.g. basal cell carcinoma, squamous cell carcinoma, Merkel's cell carcinoma, melanoma (including cutaneous, superficial spreading, lentigo maligna, acral lentiginous, nodular, intraocular melanoma), actinic keratosis, eyelid cancer;

30 neoplasms of the central nervous system and brain: e.g. astrocytoma (cerebral, cerebellar, diffuse, fibrillary, anaplastic, pilocytic, protoplasmic, gemistocytic), glioblastoma, gliomas, oligodendrogiomas, oligoastrocytomas, ependymomas,

ependymoblastomas, choroid plexus tumors, medulloblastomas, meningiomas, schwannomas, hemangioblastomas, hemangiomas, hemangiopericytomas, neuromas, ganglioneuromas, neuroblastomas, retinoblastomas, neurinomas (e.g. acoustic), spinal axis tumors;

5 lymphomas and leukemias: e.g. B-cell non-Hodgkin lymphomas (NHL) (including small lymphocytic lymphoma (SLL), lymphoplasmacytoid lymphoma (LPL), mantle cell lymphoma (MCL), follicular lymphoma (FL), diffuse large cell lymphoma (DLCL), Burkitt's lymphoma (BL)), T-cell non-Hodgkin lymphomas (including anaplastic large cell lymphoma (ALCL), adult T-cell leukemia/lymphoma (ATLL), cutaneous T-cell lymphoma 10 (CTCL), peripheral T-cell lymphoma (PTCL)), lymphoblastic T-cell lymphoma (T-LBL), adult T-cell lymphoma, lymphoblastic B-cell lymphoma (B-LBL), immunocytoma, chronic B-cell lymphocytic leukemia (B-CLL), chronic T-cell lymphocytic leukemia (T-CLL) B-cell small lymphocytic lymphoma (B-SLL), cutaneous T-cell lymphoma (CTLC), primary central nervous system lymphoma (PCNSL), immunoblastoma, Hodgkin's disease (HD) 15 (including nodular lymphocyte predominance HD (NLPHD), nodular sclerosis HD (NSHD), mixed-cellularity HD (MCHD), lymphocyte-rich classic HD, lymphocyte-depleted HD (LDHD)), large granular lymphocyte leukemia (LGL), chronic myelogenous leukemia (CML), acute myelogenous/myeloid leukemia (AML), acute lymphatic/lymphoblastic 20 leukemia (ALL), acute promyelocytic leukemia (APL), chronic lymphocytic/lymphatic leukemia (CLL), prolymphocytic leukemia (PLL), hairy cell leukemia, chronic myelogenous/myeloid leukemia (CML), myeloma, plasmacytoma, multiple myeloma (MM), plasmacytoma, myelodysplastic syndromes (MDS), chronic myelomonocytic leukemia (CMML);

cancers of unknown primary site (CUP);

25 All cancers/tumors/carcinomas mentioned above which are characterized by their specific location/origin in the body are meant to include both the primary tumors and the metastatic tumors derived therefrom.

All cancers/tumors/carcinomas mentioned above may be further differentiated by their histopathological classification:

30 Epithelial cancers, e.g. squamous cell carcinoma (SCC) (carcinoma *in situ*, superficially invasive, verrucous carcinoma, pseudosarcoma, anaplastic, transitional cell, lymphoepithelial), adenocarcinoma (AC) (well-differentiated, mucinous, papillary,

pleomorphic giant cell, ductal, small cell, signet-ring cell, spindle cell, clear cell, oat cell, colloid, adenosquamous, mucoepidermoid, adenoid cystic), mucinous cystadenocarcinoma, acinar cell carcinoma, large cell carcinoma, small cell carcinoma, neuroendocrine tumors (small cell carcinoma, paraganglioma, carcinoid); oncocytic carcinoma;

5 Nonepithelial cancers, e.g. sarcomas (fibrosarcoma, chondrosarcoma, rhabdomyosarcoma, leiomyosarcoma, hemangiosarcoma, giant cell sarcoma, lymphosarcoma, fibrous histiocytoma, liposarcoma, angiosarcoma, lymphangiosarcoma, neurofibrosarcoma), lymphoma, melanoma, germ cell tumors, hematological neoplasms, 10 mixed and undifferentiated carcinomas;

The compounds of the invention may be used in therapeutic regimens in the context of first line, second line, or any further line treatments.

The compounds of the invention may be used for the prevention, short-term or long-term treatment of the above-mentioned diseases, optionally also in combination with 15 radiotherapy and/or surgery.

Of course, the above also includes the use of the compounds of the invention in various methods of treating the above diseases by administering a therapeutically effective dose to a patient in need thereof, as well as the use of these compounds for the manufacture of medicaments for the treatment of such diseases, as well as pharmaceutical compositions 20 including such compounds of the invention, as well as the preparation and/or manufacture of medicaments including such compounds of the invention, and the like.

Combinations with other active substances

The compounds of the invention may be used on their own or in combination with one or several other pharmacologically active substances such as state-of-the-art or standard-of-care 25 compounds, such as e.g. cell proliferation inhibitors, *anti-angiogenic* substances, steroids or immune modulators/checkpoint inhibitors, and the like.

Therapeutic agents (= cytostatic and/or cytotoxic active substances) which may be administered in combination with the compounds according to the invention, include, without being restricted thereto, hormones, hormone analogues and antihormones (e.g. 30 tamoxifen, toremifene, raloxifene, fulvestrant, megestrol acetate, flutamide, nilutamide, bicalutamide, aminoglutethimide, cyproterone acetate, finasteride, buserelin acetate, fludrocortisone, fluoxymesterone, medroxyprogesterone, octreotide), aromatase inhibitors

(e.g. anastrozole, letrozole, liarozole, vorozole, exemestane, atamestane), LHRH agonists and antagonists (e.g. goserelin acetate, luprolide), inhibitors of growth factors and/or of their corresponding receptors (growth factors such as for example platelet derived growth factor (PDGF), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), 5 epidermal growth factor (EGF), insulin-like growth factors (IGF), human epidermal growth factor (HER, e.g. HER2, HER3, HER4) and hepatocyte growth factor (HGF) and/or their corresponding receptors), inhibitors are for example (anti-)growth factor antibodies, (anti-)growth factor receptor antibodies and tyrosine kinase inhibitors, such as for example cetuximab, gefitinib, afatinib, nintedanib, imatinib, lapatinib, bosutinib, bevacizumab and 10 trastuzumab); antimetabolites (e.g. antifolates such as methotrexate, raltitrexed, pyrimidine analogues such as 5-fluorouracil (5-FU), ribonucleoside and deoxyribonucleoside analogues, capecitabine and gemcitabine, purine and adenosine analogues such as mercaptopurine, thioguanine, cladribine and pentostatin, cytarabine (ara C), fludarabine); antitumour antibiotics (e.g. anthracyclins such as doxorubicin, doxil 15 (pegylated liposomal doxorubicin hydrochloride, myocet (non-pegylated liposomal doxorubicin), daunorubicin, epirubicin and idarubicin, mitomycin-C, bleomycin, dactinomycin, plicamycin, streptozocin); platinum derivatives (e.g. cisplatin, oxaliplatin, carboplatin); alkylation agents (e.g. estramustin, meclorethamine, melphalan, chlorambucil, busulphan, dacarbazine, cyclophosphamide, ifosfamide, temozolomide, 20 nitrosoureas such as for example carmustin and lomustin, thiotepa); antimitotic agents (e.g. Vinca alkaloids such as for example vinblastine, vindesine, vinorelbine and vincristine; and taxanes such as paclitaxel, docetaxel); angiogenesis inhibitors (e.g. tasquinimod), tubuline inhibitors; DNA synthesis inhibitors, PARP inhibitors, topoisomerase inhibitors 25 (e.g. epipodophyllotoxins such as for example etoposide and etopophos, teniposide, amsacrine, topotecan, irinotecan, mitoxantrone), serine/threonine kinase inhibitors (e.g. PDK 1 inhibitors, Raf inhibitors, A-Raf inhibitors, B-Raf inhibitors, C-Raf inhibitors, mTOR inhibitors, mTORC1/2 inhibitors, PI3K inhibitors, PI3K α inhibitors, dual mTOR/PI3K inhibitors, STK 33 inhibitors, AKT inhibitors, PLK 1 inhibitors, inhibitors of CDKs, Aurora kinase inhibitors), tyrosine kinase inhibitors (e.g. PTK2/FAK inhibitors), protein protein 30 interaction inhibitors (e.g. IAP activator, Mcl-1, MDM2/MDMX), MEK inhibitors, ERK inhibitors, FLT3 inhibitors, BRD4 inhibitors, IGF-1R inhibitors, TRAILR2 agonists, Bcl-xL inhibitors, Bcl-2 inhibitors, Bcl-2/Bcl-xL inhibitors, ErbB receptor inhibitors, BCR-ABL inhibitors, ABL inhibitors, Src inhibitors, rapamycin analogs (e.g. everolimus, temsirolimus, ridaforolimus, sirolimus), androgen synthesis inhibitors, androgen receptor inhibitors,

DNMT inhibitors, HDAC inhibitors, ANG1/2 inhibitors, CYP17 inhibitors, radiopharmaceuticals, proteasome inhibitors, immunotherapeutic agents such as immune checkpoint inhibitors (e.g. CTLA4, PD1, PD-L1, PD-L2, LAG3, and TIM3 binding molecules/immunoglobulins, such as e.g. ipilimumab, nivolumab, pembrolizumab), ADCC 5 (antibody-dependent cell-mediated cytotoxicity) enhancers (e.g. anti-CD33 antibodies, anti-CD37 antibodies, anti-CD20 antibodies), t-cell engagers (e.g. bi-specific T-cell engagers (BiTEs[®]) like e.g. CD3 x BCMA, CD3 x CD33, CD3 x CD19), PSMA x CD3), tumor vaccines and various chemotherapeutic agents such as amifostin, anagrelid, clodronat, filgrastin, interferon, interferon alpha, leucovorin, procarbazine, levamisole, 10 mesna, mitotane, pamidronate and porfimer.

Most preferred are combinations with IAP activators, proteasome inhibitors, immunotherapeutic agents such as immune checkpoint inhibitors (e.g. CTLA4, PD1, PD-L1, PD-L2, LAG3, and TIM3 binding molecules/immunoglobulins, such as e.g. ipilimumab, nivolumab, pembrolizumab), ADCC (antibody-dependent cell-mediated cytotoxicity) enhancers (e.g. anti-CD33 antibodies, anti-CD37 antibodies, anti-CD20 antibodies), T-cell engagers (e.g. bi-specific T-cell engagers (BiTEs[®]) like e.g. CD3 x BCMA, CD3 x CD33, CD3 x CD19, PSMA x CD3) and tumor vaccines.

When two or more substances or principles are to be used as part of a combined treatment regimen, they can be administered *via* the same route of administration or *via* 20 different routes of administration, at essentially the same time (*i.e.* simultaneously, concurrently) or at different times (e.g. sequentially, successively, alternately, consecutively, or according to any other sort of alternating regime).

When the substances or principles are to be administered simultaneously *via* the same route of administration, they may be administered as different pharmaceutical formulations 25 or compositions or as part of a combined pharmaceutical formulation or composition. Also, when two or more active substances or principles are to be used as part of a combined treatment regimen, each of the substances or principles may be administered in the same amount and according to the same regimen as used when the compound or principle is used on its own, and such combined use may or may not lead to a synergistic effect. 30 However, when the combined use of the two or more active substances or principles leads to a synergistic effect, it may also be possible to reduce the amount of one, more or all of the substances or principles to be administered, while still achieving the desired therapeutic action. This may for example be useful for avoiding, limiting or reducing any

unwanted side-effects that are associated with the use of one or more of the substances or principles when they are used in their usual amounts, while still obtaining the desired pharmacological or therapeutic effect.

Of course, the above includes the preparation and methods of preparing, the compounds of the invention for the combined use with the above combination partners. Also included are the preparation, and methods of preparing, the above-mentioned combination partners for the combined use with the compounds of the invention.

Furthermore, the invention also encompasses kits comprising at least one compound of the invention and one or more other components selected from the group consisting of other drugs used for the treatment of the diseases and disorders as described above, and devices as described below.

Formulations

Suitable preparations for administering the compounds of the invention will be apparent to those with ordinary skill in the art and include for example tablets, pills, capsules, suppositories, lozenges, troches, solutions – particularly solutions for injection (s.c., i.v., i.m.) and infusion (injectables) – elixirs, syrups, sachets, emulsions, inhalatives or dispersible powders. The content of the pharmaceutically active compound(s) should be in the range from 0.1 to 90 wt.-%, preferably 0.5 to 50 wt.-% of the composition as a whole, i.e. in amounts which are sufficient to achieve the dosage range specified below. The doses specified may, if necessary, be given several times a day.

Suitable tablets may be obtained, for example, by mixing the active substance(s) of the invention with known excipients, for example inert diluents, carriers, disintegrants, adjuvants, surfactants, binders and/or lubricants. The tablets may also comprise several layers.

Coated tablets may be prepared accordingly by coating cores produced analogously to the tablets with substances normally used for tablet coatings, for example collidone or shellac, gum arabic, talc, titanium dioxide or sugar. To achieve delayed release or prevent incompatibilities the core may also consist of a number of layers. Similarly the tablet coating may consist of a number of layers to achieve delayed release, possibly using the excipients mentioned above for the tablets.

Syrups or elixirs containing the active substances or combinations thereof according to the invention may additionally contain a sweetener such as saccharine, cyclamate,

glycerol or sugar and a flavour enhancer, e.g. a flavouring such as vanillin or orange extract. They may also contain suspension adjuvants or thickeners such as sodium carboxymethyl cellulose, wetting agents such as, for example, condensation products of fatty alcohols with ethylene oxide, or preservatives such as p-hydroxybenzoates.

5 Solutions for injection and infusion are prepared in the usual way, e.g. with the addition of isotonic agents, preservatives such as p-hydroxybenzoates, or stabilisers such as alkali metal salts of ethylenediamine tetraacetic acid, optionally using emulsifiers and/or dispersants, whilst if water is used as the diluent, for example, organic solvents may 10 optionally be used as solvating agents or dissolving aids, and transferred into injection vials or ampoules or infusion bottles.

Capsules containing one or more active substances or combinations of active substances may for example be prepared by mixing the active substances with inert carriers such as lactose or sorbitol and packing them into gelatine capsules.

15 Suitable suppositories may be made for example by mixing with carriers provided for this purpose such as neutral fats or polyethyleneglycol or the derivatives thereof.

Excipients which may be used include, for example, water, pharmaceutically acceptable 20 organic solvents such as paraffins (e.g. petroleum fractions), vegetable oils (e.g. groundnut or sesame oil), mono- or polyfunctional alcohols (e.g. ethanol or glycerol), carriers such as e.g. natural mineral powders (e.g. kaolins, clays, talc, chalk), synthetic mineral powders (e.g. highly dispersed silicic acid and silicates), sugars (e.g. cane sugar, lactose and glucose), emulsifiers (e.g. lignin, spent sulphite liquors, methylcellulose, starch and polyvinylpyrrolidone) and lubricants (e.g. magnesium stearate, talc, stearic acid and sodium lauryl sulphate).

25 The preparations are administered by the usual methods, preferably by oral or transdermal route, most preferably by oral route. For oral administration the tablets may of course contain, apart from the above-mentioned carriers, additives such as sodium citrate, calcium carbonate and dicalcium phosphate together with various additives such as starch, preferably potato starch, gelatine and the like. Moreover, lubricants such as magnesium stearate, sodium lauryl sulphate and talc may be used at the same time for 30 the tabletting process. In the case of aqueous suspensions the active substances may be combined with various flavour enhancers or colourings in addition to the excipients mentioned above.

For parenteral use, solutions of the active substances with suitable liquid carriers may be used.

The dosage range of the compounds of formula (I) applicable per day is usually from 1 mg to 2000 mg, preferably from 1 to 1000 mg.

5 The dosage for intravenous use is from 1 mg to 1000 mg with different infusion rates, preferably between 5 mg and 500 mg with different infusion rates.

However, it may sometimes be necessary to depart from the amounts specified, depending on the body weight, age, the route of administration, severity of the disease, the individual response to the drug, the nature of its formulation and the time or interval

10 over which the drug is administered (continuous or intermittent treatment with one or multiple doses per day). Thus, in some cases it may be sufficient to use less than the minimum dose given above, whereas in other cases the upper limit may have to be exceeded. When administering large amounts it may be advisable to divide them up into a number of smaller doses spread over the day.

15 The formulation examples which follow illustrate the present invention without restricting its scope:

Examples of pharmaceutical formulations

20	A)	<u>Tablets</u>	<u>per tablet</u>
		active substance according to formulae (I)	100 mg
		lactose	140 mg
		corn starch	240 mg
		polyvinylpyrrolidone	15 mg
25		magnesium stearate	5 mg
			=====
			500 mg

The finely ground active substance, lactose and some of the corn starch are mixed together. The mixture is screened, then moistened with a solution of polyvinylpyrrolidone

30 in water, kneaded, wet-granulated and dried. The granules, the remaining corn starch and the magnesium stearate are screened and mixed together. The mixture is compressed to produce tablets of suitable shape and size.

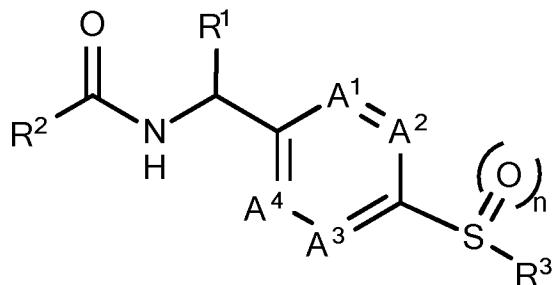
B)	<u>Tablets</u>	per tablet
	active substance according to formulae (I)	80 mg
	lactose	55 mg
	corn starch	190 mg
5	microcrystalline cellulose	35 mg
	polyvinylpyrrolidone	15 mg
	sodiumcarboxymethyl starch	23 mg
	magnesium stearate	2 mg

10		400 mg

The finely ground active substance, some of the corn starch, lactose, microcrystalline cellulose and polyvinylpyrrolidone are mixed together, the mixture is screened and worked with the remaining corn starch and water to form a granulate which is dried and screened. The sodiumcarboxymethyl starch and the magnesium stearate are added and mixed in
15 and the mixture is compressed to form tablets of a suitable size.

C)	<u>Tablets</u>	per tablet
	active substance according to formulae (I)	25 mg
	lactose	50 mg
20	microcrystalline cellulose	24 mg
	magnesium stearate	1 mg

		100 mg


The active substance, lactose and cellulose are mixed together. The mixture is screened, then either moistened with water, kneaded, wet-granulated and dried or dry-granulated or directly final blend with the magnesium stearate and compressed to tablets of suitable shape and size. When wet-granulated, additional lactose or cellulose and magnesium stearate is added and the mixture is compressed to produce tablets of suitable shape and size.
25

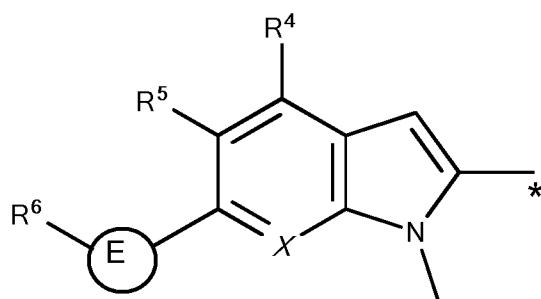
30	<u>D)</u>	<u>Ampoule solution</u>	
		active substance according to formulae (I)	50 mg
		sodium chloride	50 mg
		water for inj.	5 mL

The active substance is dissolved in water at its own pH or optionally at pH 5.5 to 6.5 and sodium chloride is added to make it isotonic. The solution obtained is filtered free from pyrogens and the filtrate is transferred under aseptic conditions into ampoules which are then sterilised and sealed by fusion. The ampoules contain 5 mg, 25 mg and 50 mg of 5 active substance.

Claims

1. A compound of formula (I), or a salt thereof,

5 wherein


n is 1 or 2;

A¹, **A²**, **A³** and **A⁴** are independently selected from $-N=$ and $-CR^{13}=$ and wherein none, one or two independently selected **A¹**, **A²**, **A³** and **A⁴** can be $-N=$;

R¹³ is hydrogen, halogen, $-C_{1-3}\text{alkyl}$, $-O-C_{1-3}\text{alkyl}$;

10 **R¹** is selected from the group consisting of hydrogen, $-C_{1-3}\text{alkyl}$ and $-C_{1-3}\text{alkyl-OH}$;

R² is

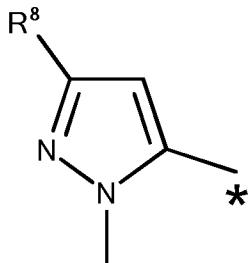
, wherein

X is $-N=$ or $-CR^7-$;

15 **R⁷** is selected from hydrogen, halogen, $-C_{1-3}\text{alkyl}$ and $-O-C_{1-3}\text{alkyl}$;

R⁴ is selected from the group consisting of hydrogen, halogen, $-C_{1-3}\text{haloalkyl}$, $-C_{1-3}$

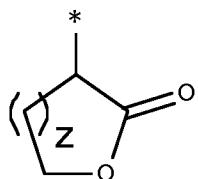
β alkyl;


R⁵ is selected from the group consisting of hydrogen, halogen, $-C_{1-3}$ haloalkyl, $-C_{1-3}$ alkyl;

or **R**⁴ and **R**⁵ taken together form a ring selected from a 5 or 6 membered heteroaryl, a 5 or 6 membered heterocyclyl and phenyl;

E is selected from a bond, $-C_{1-3}$ alkylene-, $-C_{1-3}$ haloalkylene-, $-C_{2-3}$ alkynylene, 5 or 6 membered -heteroarylene- and 5 or 6 membered -heterocyclene-;

R⁶ is selected from hydrogen, halogen, $-C_{1-3}$ alkyl, which $-C_{1-3}$ alkyl is optionally substituted with one group selected from $-NH_2$, $-N(C_{1-3}alkyl)_2$ and 5 or 6 membered heterocycloalkyl;


or **R**² is

, wherein

R⁸ is selected from indolyl or phenyl, each of which group is optionally substituted with one, two or three substituents independently selected from halogen, $-C_{1-3}$ haloalkyl, $-C_{1-3}$ alkyl, $-O-C_{1-3}$ alkyl;

R³ is

and z is 1 or 2;

or **R**³ is $-C(R^9R^{10})-COO-R^{11}$ and

R⁹ and **R**¹⁰ are the same or different, independently selected from hydrogen, $-C_{1-3}$

$\text{C}_{1-3}\text{alkyl}$, $-\text{C}_{1-3}\text{alkyl}-\text{O}-\text{C}_{1-3}\text{alkyl}$;

or R^9 and R^{10} taken together form a $-\text{C}_{3-5}\text{cycloalkyl}$ or a 6 membered heterocycloalkyl, which heterocycloalkyl is optionally substituted with $-\text{C}(\text{O})-\text{C}_{1-3}\text{alkyl}$;

5 R^{11} is selected from the group consisting of hydrogen, $-\text{C}_{3-6}\text{cycloalkyl}$, 4-6 membered heterocycloalkyl and $-\text{C}_{1-5}\text{alkyl}$, which $-\text{C}_{1-5}\text{alkyl}$ group is optionally and independently substituted with one or two the same or different substituents, selected from R^{12} ;

10 R^{12} is selected from the group consisting of $-\text{C}_{3-6}\text{cycloalkyl}$, halogen, $-\text{OH}$, $-\text{O}-\text{C}_{1-4}\text{alkyl}$, $-\text{O}-\text{C}_{1-4}\text{alkyl}-\text{O}-\text{C}_{1-4}\text{alkyl}$, $-\text{O}-\text{C}_{1-4}\text{alkyl}-\text{OH}$, $-\text{OC}(\text{O})-\text{C}_{1-4}\text{alkyl}$, $-\text{NHCOO}-\text{C}_{1-4}\text{alkyl}$, $-\text{SO}_2-\text{C}_{1-3}\text{alkyl}$, $-\text{N}(\text{C}_{1-3}\text{alkyl})_2$, , 5 or 6 membered heteroaryl and phenyl, which phenyl group is optionally substituted with $-\text{C}_{1-3}\text{haloalkyl}$, or R^{12} is a 4 to 6 membered heterocycloalkyl, which heterocycloalkyl is optionally substituted with halogen or $-\text{C}_{1-3}\text{alkyl}$.

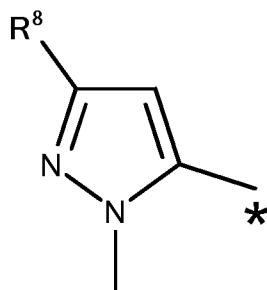
15

2. The compound according to claim 1, or a salt thereof, wherein each of A^1 , A^2 , A^3 and A^4 is $-\text{CH}=$.

3. The compound according to claim 1 or 2, or a salt thereof, wherein

20 R^1 is selected from among hydrogen, $-\text{CH}_3$ and $-\text{CH}_2\text{OH}$.

4. The compound according to claim 3, or a salt thereof, wherein


R^1 is selected from among $-\text{CH}_3$ and $-\text{CH}_2\text{OH}$.

25 5. The compound according to anyone of claims 1 to 4, or a salt thereof, wherein

X is $-\text{CR}^7-$ and

R^7 is selected from hydrogen and $-\text{O}-\text{C}_{1-3}\text{alkyl}$.

6. The compound according to anyone of claims 1 to 4, or a salt thereof, wherein **R**² is

and

R⁸ is selected from

5 indolyl and phenyl, wherein the phenyl is optionally substituted with -F, -Cl, -O-CH₃, -CH₃.

7. The compound according to any one of claims 1 to 5, or a salt thereof, wherein

R⁴ is selected from among hydrogen, -F and -Cl.

10 8. The compound according to any one of claims 1 to 5, or a salt thereof, wherein

R⁵ is selected from among hydrogen, -F, -Cl, -CF₃.

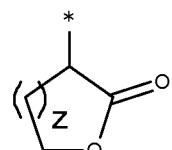
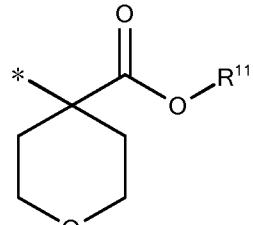
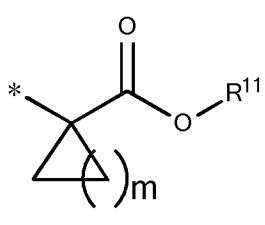
9. The compound according to any one of claims 1 to 5, 7 and 8, or a salt thereof, wherein

15 **E** is a bond and **R**⁶ is selected from hydrogen, -C₁₋₃alkyl and halogen; or

E is a 5 membered -heteroarylene- and **R**⁶ is -C₁₋₃alkyl substituted with a 6 membered heterocycloalkyl; or

E is a 6 membered -heterocycloalkylene- and **R**⁶ is -C₁₋₃alkyl,

E is -C₂₋₃alkynylene- and **R**⁶ is hydrogen;

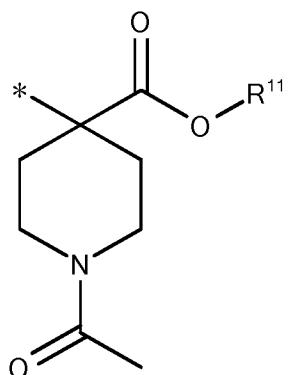



20

10. The compound according to claim 9, or a salt thereof, wherein

E is a bond and **R**⁶ is -C₁₋₃alkyl.

11. The compound according to anyone of claims 1 to 10, or a salt thereof, wherein

R³ is selected from the group consisting of $-\text{C}(\text{R}^9\text{R}^{10})\text{-COO-R}^{11}$,



5

,

,

and

z is 1 or 2;

m is 1, 2, 3 or 4;

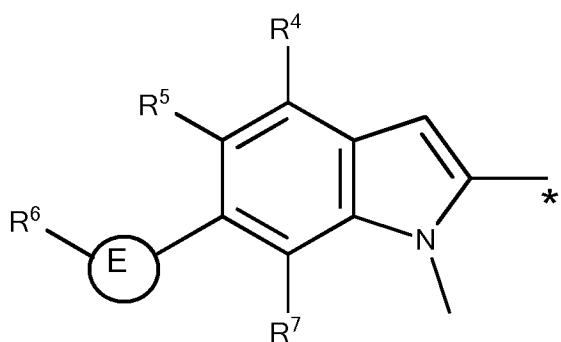
R⁹ and **R**¹⁰ are the same or different, independently selected from hydrogen, $-\text{C}_1\text{-alkyl}$, $-\text{C}_{1-3}\text{alkyl-O-C}_1\text{-alkyl}$;

R¹¹ is selected from the group consisting of hydrogen, 3-6 membered cycloalkyl, 3-6 membered heterocycloalkyl, or $-\text{C}_{1-5}\text{alkyl}$ linear or branched, optionally substituted with 1 or 2 the same or different substituents, independently selected from **R**¹²;

R¹² is selected from the group consisting of cycloalkyl, heterocycloalkyl, halogen, OH, $-\text{O-C}_{1-4}\text{alkyl}$, $-\text{O-C}_{1-4}\text{alkyl-O-C}_{1-4}\text{alkyl}$, $-\text{OC(O)-C}_{1-4}\text{alkyl}$, $-\text{NHCOO-C}_{1-4}\text{alkyl}$, -

$\text{SO}_2\text{-C}_{1-3}\text{alkyl}$, $-\text{N}(\text{C}_{1-3}\text{alkyl})_2$,
membered aryl and heteroaryl.

12. The compound according to anyone of claims 1 to 11, or a salt thereof, wherein

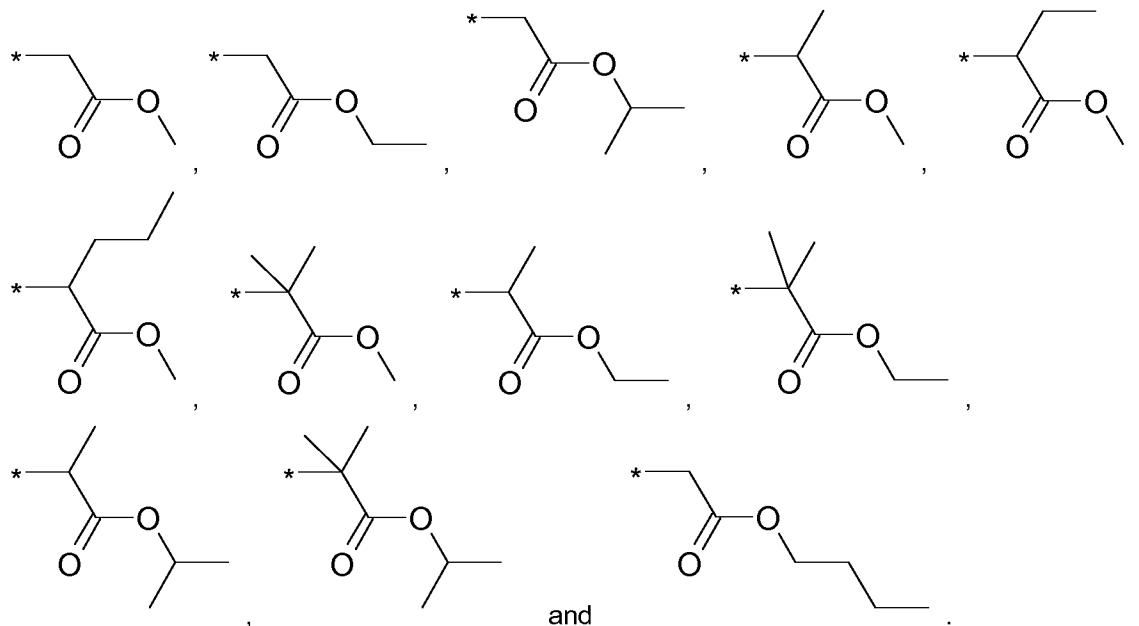

5 \mathbf{R}^{11} is H or $-\text{C}_{1-5}\text{alkyl}$.

13. The compound according to anyone of claims 1 to 12, or a salt thereof, wherein

\mathbf{R}^9 and \mathbf{R}^{10} are the same or different, independently selected from hydrogen and $-\text{C}_{1-3}\text{alkyl}$.

10 14. The compound according to anyone of claims 1 to 5 and 11 to 13, or a salt thereof, wherein

\mathbf{R}^2 is



\mathbf{R}^7 is hydrogen;

15 \mathbf{R}^4 is selected from the group consisting of $-\text{F}$, $-\text{Cl}$, Br and $-\text{C}_{1-3}\text{alkyl}$;
 \mathbf{R}^5 is selected from the group consisting of $-\text{F}$, $-\text{Cl}$ and Br ;
 \mathbf{E} is a bond and \mathbf{R}^6 is $-\text{C}_{1-3}\text{alkyl}$.

15. The compound according to anyone of claims 1 to 14, or a salt thereof, wherein \mathbf{R}^3 is selected from

5

10

16. A method for the treatment and/or prevention of a disease and/or condition, wherein the inhibition of PHGDH is of therapeutic benefit comprising administering a 15 therapeutically effective amount of a compound according to any one of claims 1 to 15, or a salt thereof, to a human being.

17. A compound according to any one of claims 1 to 15, or a salt thereof, for use in the treatment and/or prevention of a disease and/or condition wherein the inhibition of PHGDH is of therapeutic benefit.

20 18. The compound according to any one of claims 1 to 15, or a salt thereof, for use in the treatment and/or prevention of cancer, infections, inflammations or autoimmune diseases.

19. A pharmaceutical composition comprising a compound according to any one of claims 1 to 15, or a pharmaceutically acceptable salt thereof, and a pharmaceutically 25 acceptable carrier.

20. A compound according to any one of claims 1 to 15, or a salt thereof, for use in the treatment and/or prevention of cancer, infections, inflammations or autoimmune diseases, wherein said compound is administered before, after or together with at least one other cytostatic or cytotoxic active substance.

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2018/056170

A. CLASSIFICATION OF SUBJECT MATTER				
INV. C07D403/12	C07D413/14	C07D401/12	C07D403/14	C07D405/12
C07D471/04		C07D209/42		

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 2016/040449 A1 (RAZE THERAPEUTICS INC [US]) 17 March 2016 (2016-03-17) cited in the application abstract; tables 1-3; compounds I-1-I-156 ----- A FULLER NATHAN ET AL: "An improved model for fragment-based lead generation at AstraZeneca", DRUG DISCOVERY TODAY, ELSEVIER, AMSTERDAM, NL, vol. 21, no. 8, 11 May 2016 (2016-05-11), pages 1272-1283, XP029680971, ISSN: 1359-6446, DOI: 10.1016/J.DRUDIS.2016.04.023 cited in the application the whole document Case study at page 1282, (a) PHGDH inhibitor ----- - / --	1-20
A		1-20

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
18 April 2018	09/05/2018

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Goss, Ilaria

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2018/056170

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>MICHAEL E PACOLD ET AL: "A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate", NATURE CHEMICAL BIOLOGY, vol. 12, no. 6, 28 June 2016 (2016-06-28), pages 452-458, XP055366719, ISSN: 1552-4450, DOI: 10.1038/nchembio.2070 cited in the application the whole document</p> <p>-----</p>	1-20
A	<p>EDOUARD MULLARKY ET AL: "Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers", PROCEEDINGS NATIONAL ACADEMY OF SCIENCES PNAS, vol. 113, no. 7, 16 February 2016 (2016-02-16), pages 1778-1783, XP055352948, US ISSN: 0027-8424, DOI: 10.1073/pnas.1521548113 cited in the application the whole document</p> <p>-----</p>	1-20

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/EP2018/056170

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 2016040449	A1 17-03-2016	NONE	