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current view. An availability value indicates that a disparity vector for the cur-
rent block is unavailable when the disparity vector derivation process is unable
to derive the disparity vector for the current block. When the availability value
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indicates that the disparity vector derivation process has not derived the dispar-
ity vector for the current block, the video coding device generates a disparity
vector for the current block in another manner.
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DISPARITY VECTOR REFINEMENT IN VIDEO CODING

[0001] This application claims the benefit of U.S. Provisional Patent Application No.
61/804,583, filed March 22, 2013, the entire content of which is incorporated herein by

reference.

TECHNICAL FIELD

[0002] This disclosure relates to video encoding and decoding.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferencing devices, video streaming
devices, and the like. Digital video devices implement video compression techniques,
such as those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263,
ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency
Video Coding (HEVC) standard presently under development, and extensions of such
standards. The video devices may transmit, receive, encode, decode, and/or store digital
video information more efficiently by implementing such video compression
techniques.

[0004] Video compression techniques perform spatial (intra-picture) prediction and/or
temporal (inter-picture) prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (i.e., a video frame or a portion
of a video frame) may be partitioned into video blocks. Video blocks in an intra-coded
(D) slice of a picture are encoded using spatial prediction with respect to reference
samples in neighboring blocks in the same picture. Video blocks in an inter-coded (P or
B) slice of a picture may use spatial prediction with respect to reference samples in
neighboring blocks in the same picture or temporal prediction with respect to reference
samples in other reference pictures. Pictures may be referred to as frames, and

reference pictures may be referred to as reference frames.
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[0005] Spatial or temporal prediction results in a predictive block for a block to be
coded. Residual data represents pixel differences between the original block to be
coded and the predictive block. An inter-coded block is encoded according to a motion
vector that points to a block of reference samples forming the predictive block, and the
residual data indicates the difference between the coded block and the predictive block.
An intra-coded block is encoded according to an intra-coding mode and the residual
data. For further compression, the residual data may be transformed from the pixel
domain to a transform domain, resulting in residual coefficients, which then may be
quantized. The quantized coefficients, initially arranged in a two-dimensional array,
may be scanned in order to produce a one-dimensional vector of coefficients, and
entropy coding may be applied to achieve even more compression.

[0006] A multi-view coding bitstream may be generated by encoding views, e.g., from
multiple perspectives. Some three-dimensional (3D) video standards have been
developed that make use of multi-view coding aspects. For example, different views
may transmit left and right eye views to support 3D video. Alternatively, some 3D
video coding processes may apply so-called multi-view plus depth coding. In multi-
view plus depth coding, a 3D video bitstream may contain not only texture view
components, but also depth view components. For example, each view may comprise

one texture view component and one depth view component.

SUMMARY
[0007] In general, this disclosure relates to multi-view video coding. More specifically,
a video coder may perform a disparity vector derivation process for a current block of
multi-view video data. When the disparity vector derivation process does not produce
an available disparity vector, the video coder may perform a disparity vector refinement
process to generate a refined disparity vector for the current block. The techniques of
this disclosure may be applicable to disparity vector derivation when backward view
synthesis prediction is supported.
[0008] In one example, this disclosure describes a method for decoding multi-view
video data, the method comprising: performing a disparity vector derivation process for
a current block of the multi-view video data, the current block being in a current view;
setting an availability value such that the availability value indicates that a disparity

vector for the current block is unavailable when the disparity vector derivation process
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is unable to derive the disparity vector for the current block; when the availability value
indicates that the disparity vector for the current block is unavailable, generating a
refined disparity vector for the current block by performing a disparity vector
refinement process that accesses a depth view component of a reference view; and
decoding the current block based on the refined disparity vector for the current block.
[0009] In another example, this disclosure describes a method for encoding multi-view
video data, the method comprising: performing a disparity vector derivation process for
a current block of the multi-view video data, the current block being in a current view;
setting an availability value such that the availability value indicates that a disparity
vector for the current block is unavailable when the disparity vector derivation process
is unable to derive the disparity vector for the current block; when the availability value
indicates that the disparity vector for the current block is unavailable, generating a
refined disparity vector for the current block by performing a disparity vector
refinement process that accesses a depth view component of a reference view; and
encoding the current block based on the refined disparity vector for the current block.
[0010] In another example, this disclosure describes a video coding device comprising a
memory that stores multi-view video data and one or more processors configured to:
perform a disparity vector derivation process for a current block of the multi-view video
data, the current block being in a current view; set an availability value such that the
availability value indicates that a disparity vector for the current block is unavailable
when the disparity vector derivation process is unable to derive the disparity vector for
the current block; and when the availability value indicates that the disparity vector for
the current block is unavailable, perform a disparity vector refinement process to
generate a refined disparity vector for the current block.

[0011] In another example, this disclosure describes a video coding device comprising:
means for performing a disparity vector derivation process for a current block of multi-
view video data, the current block being in a current view; means for setting an
availability value such that the availability value indicates that a disparity vector for the
current block is unavailable when the disparity vector derivation process is unable to
derive the disparity vector for the current block; and means for generating, when the
availability value indicates that the disparity vector for the current block is unavailable,
a refined disparity vector for the current block by performing a disparity vector

refinement process that accesses a depth view component of a reference view.
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[0012] In another example, this disclosure describes a non-transitory computer-readable
data storage medium having instructions stored thercon that, when executed, configure
one or more processors to: perform a disparity vector derivation process for a current
block of multi-view video data, the current block being in a current view; set an
availability value such that the availability value indicates that a disparity vector for the
current block is unavailable when the disparity vector derivation process is unable to
derive the disparity vector for the current block; and when the availability value
indicates that the disparity vector derivation process has not derived the disparity vector
for the current block, generate a refined disparity vector for the current block by
performing a disparity vector refinement process that accesses a depth view component
of a reference view.

[0013] In another example, this disclosure describes a method for decoding multi-view
video data, the method comprising: performing a disparity vector derivation process for
a current block of the multi-view video data, the current block being in a current view;
when the disparity vector derivation process determines that a disparity vector for the
current block is unavailable, determining the disparity vector for the current block by
adding an offset to a zero disparity vector; and decoding the current block based on the
disparity vector for the current block.

[0014] In another example, this disclosure describes a method for encoding multi-view
video data, the method comprising: performing a disparity vector derivation process for
a current block of the multi-view video data, the current block being in a current view;
when the disparity vector derivation process determines that a disparity vector for the
current block is unavailable, determining the disparity vector for the current block by
adding an offset to a zero disparity vector; and encoding the current block based on the
disparity vector for the current block.

[0015] In another example, this disclosure describes a device for coding multi-view
video data, the device comprising a memory that stores multi-view video data and one
or more processors configured to: perform a disparity vector derivation process for a
current block of the multi-view video data, the current block being in a current view;
when the disparity vector derivation process determines that a disparity vector for the
current block is unavailable, determine the disparity vector for the current block by
adding an offset to a zero disparity vector; and code the current block based on the

disparity vector for the current block.
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[0016] In another example, this disclosure describes a device for coding multi-view
video data, the device comprising: means for performing a disparity vector derivation
process for a current block of the multi-view video data, the current block being in a
current view; means for determining, when the disparity vector derivation process
determines that a disparity vector for the current block is unavailable, the disparity
vector for the current block by adding an offset to a zero disparity vector; and means for
coding the current block based on the disparity vector for the current block.

[0017] In another example, this disclosure describes a non-transitory computer-readable
data storage medium having instructions stored thereon that, when executed by one or
more processors of a device for coding multi-view video data, cause the device to:
perform a disparity vector derivation process for a current block of the multi-view video
data, the current block being in a current view; when the disparity vector derivation
process determines that a disparity vector for the current block is unavailable, determine
the disparity vector for the current block by adding an offset to a zero disparity vector;
and code the current block based on the disparity vector for the current block.

[0018] The details of one or more examples of the disclosure are set forth in the
accompanying drawings and the description below. Other features, objects, and

advantages will be apparent from the description, drawings, and claims.

BRIEF DESCRIPTION OF DRAWINGS

[0019] FIG. 1 is a block diagram illustrating an example video coding system that may
utilize the techniques described in this disclosure.

[0020] FIG. 2 is a conceptual diagram illustrating example spatially-neighboring
prediction units (PUs) relative to a current PU.

[0021] FIG. 3 is a conceptual diagram illustrating an example multi-view decoding
order.

[0022] FIG. 4 is a conceptual diagram illustrating an example prediction structure for
multi-view coding.

[0023] FIG. 5 is a conceptual diagram illustrating depth block derivation from a
reference view to perform backward view synthesis prediction (BVSP).

[0024] FIG. 6 is a block diagram illustrating an example video encoder that may

implement the techniques described in this disclosure.
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[0025] FIG. 7 is a block diagram illustrating an example video decoder that may
implement the techniques described in this disclosure.

[0026] FIG. 8 is a flowchart illustrating an example operation of a video decoder to
decode multi-view video data, in accordance with one or more techniques of this
disclosure.

[0027] FIG. 9 is a flowchart illustrating an example operation of a video encoder to
encode multi-view video data, in accordance with one or more techniques of this
disclosure.

[0028] FIG. 10 is a flowchart illustrating an example operation of a video decoder to
decode multi-view video data, in accordance with one or more additional techniques of
this disclosure.

[0029] FIG. 11 is a flowchart illustrating an example operation of a video encoder to
encode multi-view video data, in accordance with one or more additional techniques of

this disclosure.

DETAILED DESCRIPTION
[0030] High-Efficiency Video Coding (HEVC) is a newly-developed video coding
standard. 3D-HEVC is an extension of HEVC for 3-dimensional video data. 3D-
HEVC provides for multiple views of the same scene from different viewpoints. The
standardization efforts for 3D-HEVC include the standardization of a multi-view video
codec based on HEVC. In 3D-HEVC, inter-view prediction based on the reconstructed
view components from different views is enabled. To improve coding efficiency
further, two new coding tools, namely inter-view motion prediction and inter-view
residual prediction, have been adopted in some versions of the reference software for
3D-HEVC.
[0031] In 3D-HEVC, inter-view motion prediction is similar to the motion
compensation used in standard HEVC and may utilize the same or similar syntax
elements. Merge mode, skip mode, and Advanced Motion Vector Prediction (AMVP)
mode are example types of motion prediction. When a video coder performs inter-view
motion prediction on a prediction unit (PU), the video coder may use, as a source of
motion information, a picture that is in the same access unit as the PU, but in a different
view. In contrast, conventional motion compensation only uses pictures in different

access units as reference pictures. Thus, in 3D-HEVC, the motion parameters of a block
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in a dependent view may be predicted or inferred based on already-coded motion
parameters in other views of the same access unit.

[0032] When a video coder performs motion prediction, the video coder may generate a
candidate list (e.g., a merging candidate list or an AMVP candidate list) when the
motion information of a current PU is signaled using merge mode, skip mode, or AMVP
mode. To implement inter-view motion prediction in 3D-HEVC, the candidate list may
include inter-view predicted motion vector candidates. The video coder may use an
inter-view predicted motion vector candidate in the same manner as other candidates in
a candidate list. An inter-view predicted motion vector candidate may specify the
motion information of a PU (i.c., a reference PU) of a disparity reference picture. The
disparity reference picture may be in the same access unit as a current PU, but in a
different view than the current PU. To determine a reference PU in a disparity reference
picture, the video coder may perform a disparity vector construction process to
determine a disparity vector for the current PU. The disparity vector for the current PU
may indicate a spatial displacement between a prediction block of the current PU and a
location within the disparity reference picture. The reference PU may be a PU of the
disparity reference picture that covers the location indicated by the disparity vector.
[0033] In general, view synthesis prediction (VSP) is a technique that warps a picture
from a neighboring viewpoint to the current viewpoint for prediction purposes. Depth
information is used to perform the warping. Backward-warping VSP (BVSP) uses the
neighboring blocks to derive a depth block to perform the backward warping operation.
In backward warping, the depth used for warping is from the same viewpoint of the
current picture, which typically requires depth first coding in the dependent view. In
order to estimate the depth information for a block in BVSP, a video coder may derive a
disparity vector from the neighboring blocks. The video coder may then use the derived
disparity vector to obtain a depth block from a reference view.

[0034] The video coder may perform a method called Neighboring Blocks based
Disparity Vector (NBDV) to derive a disparity vector. When the video coder uses
NBDYV derivation to derive a disparity vector for a current PU, the video coder may use
disparity motion vectors from spatial and temporal neighboring blocks to derive the
disparity vector. In this disclosure, a disparity motion vector of a PU refers to a motion
vector that indicates a position in a disparity reference picture (i.e., a reference picture

that is in a different view than the PU). Furthermore, for ease of explanation, this
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disclosure may refer to either spatially-neighboring blocks or temporally-neighboring
blocks as neighboring blocks.

[0035] A video coder can use a depth view component of a reference view to refine a
disparity vector. The video coder may use the same refinement process to refine a
disparity motion vector for use in backward view synthesis prediction. In particular, the
video coder may use the NBDV process to determine a disparity vector for a current
PU. When the video coder determines an available disparity vector using NBDV
derivation (e.g., when the video coder finds a disparity motion vector among
neighboring blocks), the video coder may further refine the disparity vector by
retrieving depth data from the reference view’s depth map. The refinement process
includes two steps. First, the video coder locates a corresponding depth block by the
derived disparity vector in the previously coded reference depth view, such as the base
view. The size of the corresponding depth block is the same as that of the current PU.
Second, the video coder selects one depth value from four corner pixels of the
corresponding depth block and converts the selected depth value to the horizontal
component of the refined disparity vector. The vertical component of the disparity
vector is unchanged.

[0036] The above process is also called NBDV refinement (NBDV-R) or depth oriented
NBDYV (Do-NBDV). The video coder may use the refined disparity vector for inter-
view motion prediction while the video coder may use the unrefined disparity vector for
inter-view residual prediction. Furthermore, the video coder may store the refined
disparity vector as a motion vector of a PU if the PU is coded with backward VSP
mode. When the NBDV process does not provide an available disparity vector, the
above NBDV-R process is skipped and a zero disparity vector is directly returned.
[0037] The current disparity vector derivation method in 3D-HEVC has several
problems. For example, when the NBDV process provides an unavailable disparity
vector, the video coder may skip the NBDV-R process to refine the disparity vector.

This may lead to a coding performance drop.
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[0038] The techniques of this disclosure may solve the previously-mentioned problems
or shortcomings. That is, this disclosure may provide a better refined disparity vector
by accessing the depth view component of a reference view when a disparity vector
derivation method (e.g., NBDV in 3D-HEVC) cannot produce an available disparity
vector.

[0039] In some examples, a video decoder may perform a disparity vector derivation
process for a current block of multi-view video data. When the disparity vector
derivation process does not produce an available disparity vector, the video decoder
may nevertheless still perform a disparity vector refinement process to generate a
refined disparity vector for the current block. In some such examples, the disparity
vector refinement process uses a zero disparity vector. In other words, the disparity
vector refinement process is not limited to cases where the disparity vector derivation
process produces an available disparity vector. Even if the disparity vector derivation
process does not produce an available disparity vector, the techniques of this disclosure
allow for disparity vector refinement with respect to some default disparity vector (such
as a default disparity vector having horizontal and vertical components equal to zero).
[0040] In some examples, a variable is maintained to identify whether the disparity
vector derivation process (e.g., NBDV derivation) originally returned an available
disparity vector or not. This variable can be used for other coding tools in certain
conditions. For instance, this flag equal to 0 may lead to the disabling of the inter-view
residual prediction for the current block.

[0041] FIG. 1 is a block diagram illustrating an example video coding system 10 that
may utilize the techniques of this disclosure. As used herein, the term “video coder”
refers generically to both video encoders and video decoders. In this disclosure, the
terms “video coding” or “coding” may refer generically to video encoding or video
decoding.

[0042] As shown in FIG. 1, video coding system 10 includes a source device 12 and a
destination device 14. Source device 12 generates encoded video data. Accordingly,
source device 12 may be referred to as a video encoding device or a video encoding
apparatus. Destination device 14 may decode the encoded video data generated by
source device 12. Accordingly, destination device 14 may be referred to as a video
decoding device or a video decoding apparatus. Source device 12 and destination

device 14 may be examples of video coding devices or video coding apparatuses.
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[0043] Source device 12 and destination device 14 may comprise a wide range of
devices, including desktop computers, mobile computing devices, notebook (e.g.,
laptop) computers, tablet computers, set-top boxes, telephone handsets such as so-called
“smart” phones, televisions, cameras, display devices, digital media players, video
gaming consoles, in-car computers, or the like.

[0044] Destination device 14 may receive encoded video data from source device 12 via
a channel 16. Channel 16 may comprise one or more media or devices capable of
moving the encoded video data from source device 12 to destination device 14. In one
example, channel 16 may comprise one or more communication media that enable
source device 12 to transmit encoded video data directly to destination device 14 in real-
time. In this example, source device 12 may modulate the encoded video data
according to a communication standard, such as a wireless communication protocol, and
may transmit the modulated video data to destination device 14. The one or more
communication media may include wireless and/or wired communication media, such
as a radio frequency (RF) spectrum or one or more physical transmission lines. The one
or more communication media may form part of a packet-based network, such as a local
areca network, a wide-area network, or a global network (e.g., the Internet). The one or
more communication media may include routers, switches, base stations, or other
equipment that facilitate communication from source device 12 to destination device 14.
[0045] In another example, channel 16 may include a storage medium that stores
encoded video data generated by source device 12. In this example, destination device
14 may access the storage medium, ¢.g., via disk access or card access. The storage
medium may include a variety of locally-accessed data storage media such as Blu-ray
discs, DVDs, CD-ROMs, flash memory, or other suitable digital storage media for
storing encoded video data.

[0046] In a further example, channel 16 may include a file server or another
intermediate storage device that stores encoded video data generated by source device
12. In this example, destination device 14 may access encoded video data stored at the
file server or other intermediate storage device via streaming or download. The file
server may be a type of server capable of storing encoded video data and transmitting
the encoded video data to destination device 14. Example file servers include web
servers (e.g., for a website), file transfer protocol (FTP) servers, network attached

storage (NAS) devices, and local disk drives.
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[0047] Destination device 14 may access the encoded video data through a standard
data connection, such as an Internet connection. Example types of data connections
may include wireless channels (e.g., Wi-Fi connections), wired connections (e.g., digital
subscriber line (DSL), cable modem, etc.), or combinations of both that are suitable for
accessing encoded video data stored on a file server. The transmission of encoded video
data from the file server may be a streaming transmission, a download transmission, or a
combination of both.

[0048] The techniques of this disclosure are not limited to wireless applications or
settings. The techniques may be applied to video coding in support of a variety of
multimedia applications, such as over-the-air television broadcasts, cable television
transmissions, satellite television transmissions, streaming video transmissions, €.g., via
the Internet, encoding of video data for storage on a data storage medium, decoding of
video data stored on a data storage medium, or other applications. In some examples,
video coding system 10 may be configured to support one-way or two-way video
transmission to support applications such as video streaming, video playback, video
broadcasting, and/or video telephony.

[0049] FIG. 1 is merely an example and the techniques of this disclosure may apply to
video coding settings (e.g., video encoding or video decoding) that do not necessarily
include any data communication between the encoding and decoding devices. In other
examples, data is retrieved from a local memory, streamed over a network, or the like.

A video encoding device may encode and store data to memory, and/or a video decoding
device may retrieve and decode data from memory. In many examples, the encoding
and decoding is performed by devices that do not communicate with one another, but
simply encode data to memory and/or retrieve and decode data from memory. The data
may include video data, such as multi-view video data.

[0050] In the example of FIG. 1, source device 12 includes a video source 18, a video
encoder 20, and an output interface 22. In some examples, output interface 22 may
include a modulator/demodulator (modem) and/or a transmitter. Video source 18 may
include a video capture device, e.g., a video camera, a video archive containing
previously-captured video data, a video feed interface to receive video data from a video
content provider, and/or a computer graphics system for generating video data, or a

combination of such sources of video data.
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[0051] Video encoder 20 may encode video data from video source 18. In some
examples, source device 12 directly transmits the encoded video data to destination
device 14 via output interface 22. In other examples, the encoded video data may also
be stored onto a storage medium or a file server for later access by destination device 14
for decoding and/or playback.

[0052] In the example of FIG. 1, destination device 14 includes an input interface 28, a
video decoder 30, and a display device 32. In some examples, input interface 28
includes a receiver and/or a modem. Input interface 28 may receive encoded video data
over channel 16. Video decoder 30 may decode encoded video data. Display device 32
may display the decoded video data. Display device 32 may be integrated with or may
be external to destination device 14. Display device 32 may comprise a variety of
display devices, such as a liquid crystal display (LCD), a plasma display, an organic
light emitting diode (OLED) display, or another type of display device.

[0053] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application-specific integrated circuits (ASICs), field-programmable
gate arrays (FPGAs), discrete logic, hardware, or any combinations thereof. If the
techniques are implemented partially in software, a device may store instructions for the
software in a suitable, non-transitory computer-readable storage medium and may
execute the instructions in hardware using one or more processors to perform the
techniques of this disclosure. Any of the foregoing (including hardware, software, a
combination of hardware and software, etc.) may be considered to be one or more
processors. Each of video encoder 20 and video decoder 30 may be included in one or
more encoders or decoders, either of which may be integrated as part of a combined
encoder/decoder (CODEC) in a respective device.

[0054] This disclosure may generally refer to video encoder 20 “signaling” certain
information to another device, such as video decoder 30. The term “signaling” may
generally refer to the communication of syntax elements and/or other data used to
decode the compressed video data. Such communication may occur in real- or near-
real-time. Alternately, such communication may occur over a span of time, such as
might occur when storing syntax elements to a computer-readable storage medium in an
encoded bitstream at the time of encoding, which then may be retrieved by a decoding

device at any time after being stored to this medium.
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[0055] In some examples, video encoder 20 and video decoder 30 operate according to
a video compression standard, such as ISO/IEC MPEG-4 Visual and ITU-T H.264 (also
known as ISO/IEC MPEG-4 AVC), including its Scalable Video Coding (SVC)
extension, Multi-view Video Coding (MVC) extension, and MVC-based 3DV
extension. In some instances, any bitstream conforming to the MVC-based 3DV
extension of H.264/AVC always contains a sub-bitstream that is compliant to the MVC
extension of H.264/AVC. Furthermore, there is an ongoing effort to generate a three-
dimensional video (3DV) coding extension to H.264/AVC, namely AVC-based 3DV.
In other examples, video encoder 20 and video decoder 30 may operate according to
ITU-T H.261, ISO/IEC MPEG-1 Visual, ITU-T H.262 or ISO/IEC MPEG-2 Visual, and
ITU-T H.264, ISO/IEC Visual.

[0056] In other examples, video encoder 20 and video decoder 30 may operate
according to the High Efficiency Video Coding (HEVC) standard developed by the
Joint Collaboration Team on Video Coding (JCT-VC) of ITU-T Video Coding Experts
Group (VCEG) and ISO/IEC Motion Picture Experts Group (MPEG). A draft of the
HEVC standard, referred to as “HEVC Working Draft 8” is described in Bross et al.,
“High Efficiency Video Coding (HEVC) text specification draft 8,” Joint Collaborative
Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WG11, 10" Meeting, Stockholm, Sweden, July 2012. Another draft of the
HEVC standard, referred to as “HEVC Working Draft 9” is described in Bross et al.,
“High Efficiency Video Coding (HEVC) text specification draft 9,” Joint Collaborative
Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WGl1, 1 1t Meeting, Shanghai, China, October 2012. Furthermore, there
are ongoing efforts to produce scalable video coding, multi-view coding, and 3DV
extensions for HEVC. The scalable video coding extension of HEVC may be referred
to as SHEVC.

[0057] Currently, a Joint Collaboration Team on 3D Video Coding (JCT-3C) of VCEG
and MPEG is developing a 3DV standard based on HEVC, for which part of the
standardization efforts includes the standardization of the multi-view video codec based
on HEVC (MV-HEVC) and another part includes the standardization of 3D video
coding based on HEVC (3D-HEVC). For 3D-HEVC, new coding tools, including those
at the coding unit/prediction unit level, for both texture and depth views may be

included and supported. A software 3D-HTM for 3D-HEVC can be downloaded from
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the following link: [3D-HTM version 6.0]:

https://hevc.hhi.fraunhofer.de/svn/svn 3DV CSoftware/tags/HTM-6.0/

[0058] The reference software description as well as the working draft of 3D-HEVC is
available as follows: Gerhard Tech, Krzysztof Wegner, Ying Chen, Sehoon Yea, “3D-
HEVC Test Model Description draft 2,” JCT3V-B1005, Joint Collaborative Team on
3D Video Coding Extension Development of ITU-T SG 16 WP 3 and ISO/IEC JTC
1/SC 29/WG 11, 2nd Meeting: Shanghai, CN, Oct. 2012, which as of December 24,
2013, can be downloaded from the following link: http://phenix.it-
sudparis.cu/jct2/doc_end user/documents/2 Shanghai/wgl1/JCT3V-B1005-v1.zip.
Another version of the reference software description of 3D-HEVC may be available
from http://phenix.it-sudparis.cu/jct2/doc_end user/current document.php?id=706.
Another draft of 3D-HEVC, referred to as “3D-HEVC Test Model Description Draft 3,”
is described in Tech et al., “3D-HEVC Test Model 3,” Joint Collaborative Team on 3D
Video Coding Extension Development of ITU-T SG 16 WP 3 and ISO/IEC

JTC 1/SC 29/WG 11 3rd Meeting: Geneva, CH , 17-23 Jan. 2013, document no.
JCT3V-C1005_spec d1. Video encoder 20 and video decoder 30 may operate
according to SHEVC, MV-HEVC, and/or 3D-HEVC.

[0059] In HEVC and other video coding specifications, a video sequence typically
includes a series of pictures. Pictures may also be referred to as “frames.” A picture
may include three sample arrays, denoted Sp, Scp, and S¢;. St is a two-dimensional
array (i.c., a block) of luma samples. Scy is a two-dimensional array of Cb chrominance
samples. Sc; is a two-dimensional array of Cr chrominance samples. Chrominance
samples may also be referred to herein as “chroma” samples. In other instances, a
picture may be monochrome and may only include an array of luma samples.

[0060] To generate an encoded representation of a picture, video encoder 20 may
generate a set of coding tree units (CTUs). Each of the CTUs may comprise a coding
tree block of luma samples, two corresponding coding tree blocks of chroma samples,
and syntax structures used to code the samples of the coding tree blocks. In
monochrome pictures or pictures having three separate color planes, a CTU may
comprise a single coding tree block and syntax structures used to code the samples of
the coding tree block. A coding tree block may be an NxN block of samples. A CTU
may also be referred to as a “tree block” or a “largest coding unit” (LCU). The CTUs of

HEVC may be broadly analogous to the macroblocks of other standards, such as
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H.264/AVC. However, a CTU is not necessarily limited to a particular size and may
include one or more coding units (CUs). A slice may include an integer number of
CTUs ordered consecutively in a raster scan order.

[0061] A coded slice may comprise a slice header and slice data. The slice header of a
slice may be a syntax structure that includes syntax elements that provide information
about the slice. The slice data may include coded CTUs of the slice.

[0062] This disclosure may use the term “video unit” or “video block” or “block™ to
refer to one or more sample blocks and syntax structures used to code samples of the
one or more blocks of samples. Example types of video units may include CTUs, CUS,
PUs, transform units (TUs), macroblocks, macroblock partitions, and so on. In general,
the size of a block may refer to the size of a sample block associated with the block.
[0063] To generate a coded CTU, video encoder 20 may recursively perform quad-tree
partitioning on the coding tree blocks of a CTU to divide the coding tree blocks into
coding blocks, hence the name “coding tree units.” A coding block is an NxN block of
samples. A CU may comprise a coding block of luma samples and two corresponding
coding blocks of chroma samples of a picture that has a luma sample array, a Cb sample
array, and a Cr sample array, and syntax structures used to code the samples of the
coding blocks. In monochrome pictures or pictures having three separate color planes, a
CU may comprise a single coding block and syntax structures used to code the samples
of the coding block.

[0064] Video encoder 20 may partition a coding block of a CU into one or more
prediction blocks. A prediction block is a rectangular (i.e., square or non-square) block
of samples on which the same prediction is applied. A prediction unit (PU) of a CU
may comprise a prediction block of luma samples, two corresponding prediction blocks
of chroma samples, and syntax structures used to predict the prediction blocks. In
monochrome pictures or pictures having three separate color planes, a PU may comprise
a single prediction block and syntax structures used to predict the prediction block.
Video encoder 20 may generate predictive luma, Cb, and Cr blocks for luma, Cb, and Cr
prediction blocks of each PU of the CU.

[0065] Video encoder 20 may use intra prediction or inter prediction to generate the
predictive blocks for a PU. If video encoder 20 uses intra prediction to generate the

predictive blocks of a PU, video encoder 20 may generate the predictive blocks of the
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PU based on samples of the picture associated with the PU. In this disclosure, the
phrase “based on” may indicate “based at least in part on.”

[0066] If video encoder 20 uses inter prediction to generate the predictive blocks of a
PU, video encoder 20 may generate the predictive blocks of the PU based on decoded
samples of one or more pictures other than the picture associated with the PU. Inter
prediction may be uni-directional (i.e., uni-prediction) or bi-directional (i.e., bi-
prediction). To perform inter prediction, video encoder 20 may generate a first
reference picture list (RefPicList0) for a current picture and may also generate a second
reference picture list (RefPicListl) for the current picture. Each of the reference picture
lists may include one or more reference pictures. After a reference picture list is
constructed (namely RefPicList0 and RefPicList] if available), a reference index to a
reference picture list can be used to identify any reference picture included in the
reference picture list.

[0067] When using uni-prediction, video encoder 20 may search the reference pictures
in either or both RefPicList0 and RefPicList] to determine a reference location within a
reference picture. Furthermore, when using uni-prediction, video encoder 20 may
generate, based at least in part on samples corresponding to the reference location, the
predictive blocks for the PU. Moreover, when using uni-prediction, video encoder 20
may generate a single motion vector that indicates a spatial displacement between a
prediction block of the PU and the reference location. The motion vector may include a
horizontal component specifying a horizontal displacement between the prediction
block of the PU and the reference location and may include a vertical component
specifying a vertical displacement between the prediction block of the PU and the
reference location.

[0068] When using bi-prediction to encode a PU, video encoder 20 may determine a
first reference location in a reference picture in RefPicList0 and a second reference
location in a reference picture in RefPicListl. Video encoder 20 may generate, based at
least in part on samples corresponding to the first and second reference locations, the
predictive blocks for the PU. Moreover, when using bi-prediction to encode the PU,
video encoder 20 may generate a first motion vector indicating a spatial displacement
between a prediction block of the PU and the first reference location and a second
motion vector indicating a spatial displacement between the prediction block of the PU

and the second reference location.
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[0069] After video encoder 20 generates one or more predictive blocks (e.g., luma, Cb,
and Cr predictive blocks) for one or more PUs of a CU, video encoder 20 may generate
one or more residual blocks for the CU. For instance, video encoder 20 may generate a
luma residual block for the CU. Each sample in the CU’s luma residual block indicates
a difference between a luma sample in one of the CU’s predictive luma blocks and a
corresponding sample in the CU’s original luma coding block. In addition, video
encoder 20 may generate a Cb residual block for the CU. Each sample in the CU’s Cb
residual block may indicate a difference between a Cb sample in one of the CU’s
predictive Cb blocks and a corresponding sample in the CU’s original Cb coding block.
Video encoder 20 may also generate a Cr residual block for the CU. Each sample in the
CU’s Cr residual block may indicate a difference between a Cr sample in one of the
CU’s predictive Cr blocks and a corresponding sample in the CU’s original Cr coding
block.

[0070] Furthermore, video encoder 20 may use quad-tree partitioning to decompose
residual blocks of a CU (e.g., luma, Cb, and Cr residual blocks of the CU) into one or
more transform blocks (e.g., luma, Cb, and Cr transform blocks). A transform block is
a rectangular (e.g., square or non-square) block of samples on which the same transform
is applied. A transform unit (TU) of a CU may comprise a transform block of luma
samples, two corresponding transform blocks of chroma samples, and syntax structures
used to transform the transform block samples. Thus, each TU of a CU may be
associated with a luma transform block, a Cb transform block, and a Cr transform block.
The luma transform block associated with the TU may be a sub-block of the CU’s luma
residual block. The Cb transform block may be a sub-block of the CU’s Cb residual
block. The Cr transform block may be a sub-block of the CU’s Cr residual block. In
monochrome pictures or pictures having three separate color planes, a TU may comprise
a single transform block and syntax structures used to transform the samples of the
transform block.

[0071] Video encoder 20 may apply one or more transforms to a transform block of a
TU to generate a coefficient block for the TU. For instance, video encoder 20 may
apply one or more transforms to a luma transform block of a TU to generate a luma
coefficient block for the TU. A coefficient block may be a two-dimensional array of
transform coefficients. A transform coefficient may be a scalar quantity. Video encoder

20 may apply one or more transforms to a Cb transform block of a TU to generate a Cb
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coefficient block for the TU. Video encoder 20 may apply one or more transforms to a
Cr transform block of a TU to generate a Cr coefficient block for the TU.

[0072] After generating a coefficient block (e.g., a luma coefficient block, a Cb
coefficient block or a Cr coefficient block), video encoder 20 may quantize the
coefficient block. Quantization generally refers to a process in which transform
coefficients are quantized to possibly reduce the amount of data used to represent the
transform coefficients, providing further compression. After video encoder 20 quantizes
a coefficient block, video encoder 20 may entropy encode syntax elements indicating
the quantized transform coefficients. For example, video encoder 20 may perform
Context-Adaptive Binary Arithmetic Coding (CABAC) on the syntax elements
indicating the quantized transform coefficients.

[0073] Video encoder 20 may output a bitstream that includes a sequence of bits that
forms a representation of coded pictures and associated data. The bitstream may
comprise a sequence of network abstraction layer (NAL) units. A NAL unit is a syntax
structure containing an indication of the type of data in the NAL unit and bytes
containing that data in the form of a raw byte sequence payload (RBSP) interspersed as
necessary with emulation prevention bits. Each of the NAL units includes a NAL unit
header and encapsulates a RBSP. The NAL unit header may include a syntax element
that indicates a NAL unit type code. The NAL unit type code specified by the NAL unit
header of a NAL unit indicates the type of the NAL unit. A RBSP may be a syntax
structure containing an integer number of bytes that is encapsulated within a NAL unit.
In some instances, an RBSP includes zero bits.

[0074] Different types of NAL units may encapsulate different types of RBSPs. For
example, different types of NAL unit may encapsulate different RBSPs for video
parameter sets (VPSs), sequence parameter sets (SPSs), picture parameter sets (PPSs),
coded slices, supplemental enhancement information (SEI), and so on. NAL units that
encapsulate RBSPs for video coding data (as opposed to RBSPs for parameter sets and
SEI messages) may be referred to as video coding layer (VCL) NAL units.

[0075] In HEVC, SPSs may contain information that applies to all slices of a coded
video sequence (CVS). In HEVC, a CVS may start from an instantaneous decoding
refresh (IDR) picture, or a broken link access (BLA) picture, or a clean random access
(CRA) picture that is the first picture in the bitstream, including all subsequent pictures

that are not an IDR or BLA picture. That is, in HEVC, a CVS may comprise a sequence
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of access units that may consist, in decoding order, of a CRA access unit that is the first
access unit in the bitstream, an IDR access unit or a BLA access unit, followed by zero
or more non-IDR and non-BLA access units including all subsequent access units up to
but not including any subsequent IDR or BLA access unit.

[0076] A VPS is a syntax structure comprising syntax elements that apply to zero or
more entire CVSs. An SPS may include a syntax element that identifies a VPS that is
active when the SPS is active. Thus, the syntax elements of a VPS may be more
generally applicable than the syntax elements of an SPS. A PPS is a syntax structure
comprising syntax elements that apply to zero or more coded pictures. A PPS may
include a syntax element that identifies an SPS that is active when the PPS is active. A
slice header of a slice may include a syntax element that indicates a PPS that is active
when the slice is being coded.

[0077] Video decoder 30 may receive a bitstream generated by video encoder 20. In
addition, video decoder 30 may parse the bitstream to obtain syntax elements from the
bitstream. Video decoder 30 may reconstruct the pictures of the video data based at
least in part on the syntax elements obtained from the bitstream. The process to
reconstruct the video data may be generally reciprocal to the process performed by
video encoder 20. For instance, video decoder 30 may use motion vectors of PUs to
determine predictive blocks for the PUs of a current CU. In addition, video decoder 30
may inverse quantize coefficient blocks associated with TUs of the current CU. Video
decoder 30 may perform inverse transforms on the coefficient blocks to reconstruct
transform blocks associated with the TUs of the current CU. Video decoder 30 may
reconstruct the coding blocks of the current CU by adding the samples of the predictive
blocks for PUs of the current CU to corresponding samples of the transform blocks of
the TUs of the current CU. By reconstructing the coding blocks for each CU of a
picture, video decoder 30 may reconstruct the picture.

[0078] As indicated above, a CU may be partitioned into one or more PUs. The term
“part_mode” may denote the partitioning mode of the current CU. In other words,
part_mode may denote the manner in which a CU is partitioned into PUs. In HEVC, the
value of part_mode may be restricted as follows:

o If the coding mode of one CU is equal to MODE INTRA, part mode shall be
equal to 0 or 1. The coding mode of a CU may indicate whether the CU is coded using
intra prediction (i.e., MODE INTRA) or inter prediction (i.e., MODE INTER).
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Otherwise (the coding mode of one CU is equal to MODE INTER), the

following may apply:

If the size of the current CU is greater than the size of a smallest allowable CU
and asymmetric motion partitioning is enabled, part mode shall be in the range
of 0 to 2, inclusive and in the range of 4 to 7, inclusive. When asymmetric
motion partitioning is enabled, the current CU may be partitioned into PUs that
do not each have the same size.

Otherwise, if the size of the current CU is greater than the size of the smallest
CU and asymmetric motion partition is disabled, part mode shall be in the range
of 0 to 2, inclusive. The size of the CU may refer to the size of a coding block
(e.g., a luma coding block) of the CU.

Otherwise, if the size of the current CU is equal to 8, the value of part mode
shall be in the range of 0 to 2, inclusive.

Otherwise (the size of the current CU is greater than §), the value of part mode

shall be in the range of 0 to 3, inclusive.

[0079] The relationship between part mode and the associated value of the variable

PartMode is defined in Table 1, below. The variable PartMode provides a human-

readable name of a partitioning mode. The term part mode may define an index value

in a coded bitstream, consistent with Table 1, which maps to a definition defined by

variable PartMode in Table 1. In some examples, when part mode is not present, the

partition mode of current CU is inferred to be equal to PART 2Nx2N.
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Table 1 — Name association to prediction mode and partitioning type.

The coodl::gC Illjmde of part_mode PartMode
0 PART_2Nx2N
MODE_INTRA N PART NxN
0 PART 2Nx2N
1 PART 2NxN
2 PART Nx2N
3 PART _NxN
MODE_INTER 4 PART 2NxnU
5 PART 2NxnD
6 PART nLx2N
7 PART nRx2N

[0080] In H.264/AVC, a video sequence typically includes a series of video frames.
Furthermore, in H.264/AVC, a group of pictures (GOP) generally comprises a series of
one or more video frames. A GOP may include syntax data in a header of the GOP, a
header of one or more frames of the GOP, or elsewhere, that describes a number of
frames included in the GOP. Each frame may include frame syntax data that describe an
encoding mode for the respective frame. Video encoder 20 typically operates on blocks
within individual video frames in order to encode the video data. In H.264/AVC, a
block may correspond to a macroblock (MB) or a partition of a macroblock. An MB is
a 16x16 block of luma samples and two corresponding blocks of chroma samples of a
picture that has three sample arrays, or a 16x16 block of samples of a monochrome
picture or a picture that is coded using three separate color planes. A MB partition is a
block of luma samples and two corresponding blocks of chroma samples resulting from
a partitioning of a macroblock for inter prediction for a picture that has three sample
arrays, or a block of luma samples resulting from a partitioning of a macroblock for
inter prediction of a monochrome picture or a picture that is coded using three separate
color planes. In HEVC, a block may correspond to a PU. The sample blocks associated
with blocks (e.g., video units) may have fixed or varying sizes, and may differ in size
according to a specified coding standard.

[0081] In H.264/AVC, video encoder 20 generates a predictive block for an inter MB
based on one or more reference pictures. Each inter MB may be partitioned in four
different ways:

o One 16x16 MB partition
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o Two 16x8 MB partitions
o Two 8x16 MB partitions
o Four 8x8 MB partitions

Different MB partitions in one MB may have different reference index values for each
direction (i.c., RefPicList0 or RefPicListl). Thus, a video coder may generate, based on
different reference pictures, predictive blocks for different MB partitions of one inter
MB. When an inter MB is not partitioned into four 8x8 MB partitions, the inter MB
may have only one motion vector for the whole MB partition in each direction. In other
words, when the inter MB is not partitioned into four 8x8 MB partitions, there may only
be a single RefPicList0 motion vector for the inter MB and a single RefPicList] motion
vector for the inter MB.

[0082] When an MB is partitioned into four 8x8 MB partitions, each 8x8 MB partition
can be further partitioned into sub-blocks. There are four different ways to partition an
8x8 MB partition into sub-blocks:

o One 8x8 sub-block

o Two 8x4 sub-blocks

o Two 4x8 sub-blocks

o Four 4x4 sub-blocks

Each sub-block can have a different motion vector in cach direction. In other words,
cach sub-block in a B slice may have a RefPicList) motion vector and a RefPicListl1
motion vector. A “sub-block partition” is a term used to indicate how an 8x8 MB
partition is partitioned into sub-blocks.

[0083] In HEVC, video encoder 20 may signal the motion information of a PU using
merge mode or advanced motion vector prediction (AMVP) mode. In other words, in
HEVC, there are two modes for the prediction of motion parameters (i.c., motion
information), one being the merge mode and the other being AMVP. Motion prediction
may comprise the determination of motion information of a block (e.g., a PU) based on
motion information of one or more other blocks. The motion information of a PU may
include motion vector(s) of the PU, reference index(s) of the PU, and one or more
prediction direction indicators.

[0084] When video encoder 20 signals the motion information of a current PU using

merge mode, video encoder 20 generates a merge candidate list. In other words, video
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encoder 20 may perform a motion vector predictor list construction process. The merge
candidate list includes a set of merge candidates that indicate the motion information of
PUs that spatially or temporally neighbor the current PU. That is, in the merge mode, a
candidate list of motion parameters (e.g., reference indexes, motion vectors, etc.) is
constructed where a candidate can be from spatial and temporal neighboring blocks.
[0085] Furthermore, in merge mode, video encoder 20 may select a merge candidate
from the merge candidate list and may use the motion information indicated by the
selected merge candidate as the motion information of the current PU. Video encoder
20 may signal the position in the merge candidate list of the selected merge candidate.
For instance, video encoder 20 may signal the selected motion vector parameters by
transmitting an index into the candidate list. Video decoder 30 may obtain, from the
bitstream, the index into the candidate list (i.c., the candidate list index). In addition,
video decoder 30 may generate the same merge candidate list and may determine, based
on the indication of the position of the selected merge candidate, the selected merge
candidate. Video decoder 30 may then use the motion information of the selected
merge candidate to generate predictive blocks for the current PU. That is, video
decoder 30 may determine, based at least in part on the candidate list index, a selected
candidate in the candidate list, wherein the selected candidate specifies the motion
vector for the current PU. In this way, at the decoder side, once the index is decoded,
all motion parameters of the corresponding block where the index points may be
inherited by the current PU.

[0086] Skip mode is similar to merge mode. In skip mode, video encoder 20 and video
decoder 30 generate and use a merge candidate list in the same way that video encoder
20 and video decoder 30 use the merge candidate list in merge mode. However, when
video encoder 20 signals the motion information of a current PU using skip mode, video
encoder 20 does not signal any residual data for the current PU. Accordingly, video
decoder 30 may determine, without use of residual data, a predictive block for the PU
based on a reference block indicated by the motion information of a selected candidate
in the merge candidate list.

[0087] AMVP mode is similar to merge mode in that video encoder 20 may generate a
candidate list and may select a candidate from the candidate list. However, when video
encoder 20 signals the RefPicListX (where X is 0 or 1) motion information of a current

PU using AMVP mode, video encoder 20 may signal a RefPicListX motion vector
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difference (MVD) for the current PU and a RefPicListX reference index for the current
PU in addition to signaling a RefPicListX motion vector predictor (MVP) flag for the
current PU. The RefPicListX MVP flag for the current PU may indicate the position of
a selected AMVP candidate in the AMVP candidate list. The RefPicListX MVD for the
current PU may indicate a difference between a RefPicListX motion vector of the
current PU and a motion vector of the selected AMVP candidate. In this way, video
encoder 20 may signal the RefPicListX motion information of the current PU by
signaling a RefPicListX MVP flag, a RefPicListX reference index value, and a
RefPicListX MVD. In other words, the data in the bitstream representing the motion
vector for the current PU may include data representing a reference index, an index to a
candidate list, and an MVD.

[0088] Furthermore, when the motion information of a current PU is signaled using
AMVP mode, video decoder 30 may obtain, from the bitstream, a MVD for the current
PU and a MVP flag. Video decoder 30 may generate the same AMVP candidate list
and may determine, based on the MVP flag, the selected AMVP candidate. Video
decoder 30 may recover a motion vector of the current PU by adding the MVD to the
motion vector indicated by the selected AMVP candidate. That is, video decoder 30
may determine, based on a motion vector indicated by the selected AMVP candidate
and the MVD, the motion vector of the current PU. Video decoder 30 may then use the
recovered motion vector or motion vectors of the current PU to generate predictive
blocks for the current PU.

[0089] When video decoder 30 generates an AMVP candidate list for a current PU,
video decoder 30 may derive one or more AMVP candidates based on the motion
information of PUs (i.e., spatially-neighboring PUs) that cover locations that spatially
neighbor the current PU. FIG. 2 is a conceptual diagram illustrating example spatially-
neighboring PUs relative to a current PU 40. In the example of FIG. 2, the spatially-
neighboring PUs may be PUs that cover the locations indicated as Ay, A1, Bo, By, and
B;. A PU may cover a location when a prediction block of the PU includes the location.
[0090] A candidate in a merge candidate list or an AMVP candidate list that is based on
the motion information of a PU that temporally neighbors a current PU (i.e., a PU that is
in a different time instance than the current PU) may be referred to as a temporal motion
vector predictor (TMVP). TMVPs may be used to improve the coding efficiency of
HEVC and, different from other coding tools, TMVPs may need to access the motion
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vector of a frame in a decoded picture buffer, more specifically in a reference picture
list.

[0091] The use of TMVPs may be enabled or disabled on a CVS-by-CVS basis, a slice-
by-slice basis, or on another basis. A syntax element (e.g.,
sps_temporal mvp enable flag) in a SPS may indicate whether the use of TMVPs is
enabled for a CVS. Furthermore, when the use of TMVPs is enabled for a CVS, the use
of TMVPs may be enabled or disabled for particular slices within the CVS. For
instance, a syntax element (e.g., slice_temporal mvp enable flag) in a slice header may
indicate whether the use of TMVPs is enabled for a slice. Thus, in an inter predicted
slice, when the TMVP is enabled for a whole CVS (e.g.,
sps_temporal mvp enable flagin a SPS is set to 1), slice_temporal mvp_enable flag
is signaled in the slice header to indicate whether the use of TMVPs is enabled for the
current slice.

[0092] To determine a TMVP, a video coder may firstly identify a reference picture that
includes a PU that is co-located with the current PU. In other words, the video coder
may identify a so-called co-located picture. If the current slice of the current picture is a
B slice (i.c., a slice that is allowed to include bi-directionally inter predicted PUs), video
encoder 20 may signal, in a slice header, a syntax element (e.g.,
collocated from 10 flag) that indicates whether the co-located picture is from
RefPicListO or RefPicListl. In other words, when the use of TMVPs is enabled for a
current slice, and the current slice is a B slice (e.g., a slice that is allowed to include bi-
directionally inter predicted PUs), video encoder 20 may signal a syntax element (e.g.,
collocated from 10 flag) in a slice header to indicate whether the co-located picture is
in RefPicList0 or RefPicListl. After video decoder 30 identifies the reference picture
list that includes the co-located picture, video decoder 30 may use another syntax
clement (e.g., collocated ref idx), which may be signaled in a slice header, to identify a
picture (i.c., the co-located picture) in the identified reference picture list. That is, after
a reference picture list is identified, collocated ref idx, signaled in a slice header may
be used to identify the picture in the reference picture list.

[0093] The video coder may identify a co-located PU by checking the co-located
picture. When the video coder checks the co-located PU, the video coder may check a
right-bottom PU of the co-located picture and a center PU of the co-located picture.

The right-bottom PU may cover a location that is co-located with a location
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immediately to below and right of a lower right corner of the prediction block of the
current PU. The center PU may cover a location that is co-located with a center of the
prediction block of the current PU. The TMVP may indicate the motion information of
the right-bottom PU or the center PU.

[0094] When motion vectors identified by the above process (i.e., motion vectors of a
TMVP) are used to generate a motion candidate for merge mode or AMVP mode, the
video coder may scale the motion vectors based on the temporal location (reflected by
POC value). For instance, a video coder may increase the magnitude of a motion vector
by greater amounts when a difference between the POC values of a current picture and a
reference picture is greater than when a difference between the POC values of the
current picture and the reference picture is less.

[0095] The target reference index of all possible reference picture lists for the temporal
merging candidate derived from a TMVP may be always set to 0. However, for AMVP,
the target reference index of all possible reference pictures is set equal to the decoded
reference index. In HEVC, a SPS may include a flag (e.g.,
sps_temporal mvp enable flag) and the slice header may include a flag (e.g.,
pic_temporal mvp enable flag) when sps_temporal mvp enable flag is equal to 1.
When both pic_temporal mvp_enable flag and a temporal id are equal to 0 for a
particular picture, no motion vector from pictures before that particular picture in
decoding order are used as a TMVP in decoding of the particular picture or a picture
after the particular picture in decoding order.

[0096] In multi-view coding, there may be multiple views of the same scene from
different viewpoints. The term “access unit” is used to refer to the set of pictures that
correspond to the same time instance. Thus, video data may be conceptualized as a
series of access units occurring over time. A “view component” may be a coded
representation of a view in a single access unit. A view component may contain a
texture view component and a depth view component. In this disclosure, a “view” may
refer to a sequence of view components associated with the same view identifier.

[0097] A texture view component (i.c., a texture picture) may be a coded representation
of the texture of a view in a single access unit. A texture view may be a sequence of
texture view components associated with an identical value of view order index. A
view order index of a view may indicate a camera position of the view relative to other

views. A depth view component (i.e., a depth picture) may be a coded representation of
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the depth of a view in a single access unit. A depth view may be a sequence of depth
view components associated with an identical value of view order index.

[0098] Multi-view coding supports inter-view prediction. Inter-view prediction is
similar to the inter prediction used in HEVC and may use the same syntax elements.
However, when a video coder performs inter-view prediction on a current block (such
as a PU), video encoder 20 may use, as a reference picture, a picture that is in the same
access unit as the current block, but in a different view. In contrast, conventional inter
prediction only uses pictures in different access units as reference pictures.

[0099] The texture view component includes the actual image content that is displayed.
For example, the texture view component may include luma (e.g., Y) and chroma (e.g.,
Cb and Cr) components. The depth view component may indicate relative depths of the
pixels in its corresponding texture view component. As one example, the depth view
component is a gray scale image that includes only luma values. In other words, the
depth view component may not convey any image content, but rather provide a measure
of the relative depths of the pixels in the texture view component.

[0100] In multi-view coding, a bitstream may have a plurality of layers. Each of the
layers may correspond to a different view. In multi-view coding, a view may be
referred to as a “base view” if a video decoder (e.g., video decoder 30) can decode
pictures in the view without reference to pictures in any other view. A view may be
referred to as a non-base view if decoding of the view is dependent on decoding of
pictures in one or more other views.

[0101] For instance, NAL units may include headers (i.e., NAL unit headers) and
payloads (e.g., RBSPs). The NAL unit headers may include nuh_reserved zero_ 6bits
syntax elements. NAL units that have nuh_reserved zero 6bit syntax elements that
specify different values belong to different “layers” of a bitstream. Thus, in multi-view
coding, 3DV, or SVC, the nuh_reserved zero 6bits syntax element of a NAL unit
specifies a layer identifier (i.c., a layer ID) of the NAL unit. In some examples, the
nuh reserved zero 6bits syntax element of a NAL unit is equal to 0 if the NAL unit
relates to a base layer in multi-view coding, 3DV coding, or SVC. Data in a base layer
of a bitstream may be decoded without reference to data in any other layer of the
bitstream. If the NAL unit does not relate to a base layer in multi-view coding, 3DV, or
SVC, the nuh reserved zero 6bits syntax element may have a non-zero value. As

indicated above, in multi-view coding and 3DV coding, different layers of a bitstream
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may correspond to different views. In SVC, layers other than the base layer may be
referred to as “enhancement layers” and may provide information that enhances the
visual quality of video data decoded from the bitstream.

[0102] Furthermore, some pictures within a layer may be decoded without reference to
other pictures within the same layer. Thus, NAL units encapsulating data of certain
pictures of a layer may be removed from the bitstream without affecting the
decodability of other pictures in the layer. Removing NAL units encapsulating data of
such pictures may reduce the frame rate of the bitstream. A subset of pictures within a
layer that may be decoded without reference to other pictures within the layer may be
referred to herein as a “sub-layer” or a “temporal sub-layer.”

[0103] When coding a picture in one of the non-base views, a video coder (such as
video encoder 20 or video decoder 30) may add a picture into a reference picture list if
the picture is in a different view but within a same time instance (i.e., access unit) as the
picture that the video coder is currently coding. Like other inter prediction reference
pictures, the video coder may insert an inter-view prediction reference picture at any
position of a reference picture list.

[0104] FIG. 3 is a conceptual diagram illustrating an example multi-view decoding
order. The multi-view decoding order may be a bitstream order. In the example of FIG.
3, each square corresponds to a view component. Columns of squares correspond to
access units. Each access unit may be defined to contain the coded pictures of all the
views of a time instance. Rows of squares correspond to views. In the example of FIG.
3, the access units are labeled TO...T8 and the views are labeled S0...S7. Because cach
view component of an access unit is decoded before any view component of the next
access unit, the decoding order of FIG. 3 may be referred to as time-first coding. The
decoding order of access units may not be identical to the output or display order of the
Views.

[0105] Multi-view coding may support inter-view prediction. Inter-view prediction is
similar to the inter prediction used in H.264/AVC, HEVC, or other video coding
specifications and may use the same syntax elements. However, when a video coder
performs inter-view prediction on a current block (such as a macroblock or PU), the
video coder may use, as a reference picture, a picture that is in the same access unit as

the current block, but in a different view. In contrast to the inter-view prediction



WO 2014/149212 PCT/US2014/014835

29

described herein, conventional inter prediction only uses pictures in different access
units as reference pictures.

[0106] FIG. 4 is a conceptual diagram illustrating an example prediction structure for
multi-view coding. The multi-view prediction structure of FIG. 4 includes temporal and
inter-view prediction. In the example of FIG. 4, each square corresponds to a view
component. In the example of FIG. 4, the access units are labeled TO...T11 and the
views are labeled S0...S7. Squares labeled “I” are intra predicted view components.
Squares labeled “P” are uni-directionally inter predicted view components. Squares
labeled “B” and “b” are bi-directionally inter predicted view components. Squares
labeled “b” may use squares labeled “B” as reference pictures. An arrow that points
from a first square to a second square indicates that the first square is available in inter
prediction as a reference picture for the second square. As indicated by the vertical
arrows in FIG. 4, view components in different views of the same access unit may be
available as reference pictures. The use of one view component of an access unit as a
reference picture for another view component of the same access unit may be referred to
as inter-view prediction.

[0107] In the MVC extension of H.264/AVC, inter-view prediction is supported by
disparity motion compensation, which uses the syntax of the H.264/AVC motion
compensation, but allows a picture in a different view to be used as a reference picture.
Coding of two views may also be supported by the MVC extension of H.264/AVC.

One of the advantages of the MVC extension of H.264/AVC is that an MVC encoder
may take more than two views as a 3D video input and an MVC decoder may decode
such a multi-view representation. Consequently, any renderer with a MVC decoder
may expect 3D video contents with more than two views.

[0108] In multi-view coding, inter-view prediction may be performed among pictures in
different views of the same access unit (i.e., with the same time instance) to remove
correlation between views. When coding a picture in one of the non-base views, a
picture may be added into a reference picture list, if the picture is in a different view but
with a same time instance. An inter-view prediction reference picture can be put in any
position of a reference picture list, just like any inter prediction reference picture.

[0109] In the context of multi-view video coding, there are two kinds of motion vectors.
One kind of motion vector is a normal motion vector that points to a temporal reference

picture. The type of inter prediction corresponding to a normal, temporal motion vector
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may be referred to as “motion-compensated prediction” or “MCP.” When an inter-view
prediction reference picture is used for motion compensation, the corresponding motion
vector is referred to as a “disparity motion vector.” In other words, a disparity motion
vector points to a picture in a different view (i.c., an inter-view reference picture). The
type of inter prediction corresponding to a disparity motion vector may be referred to as
“disparity-compensated prediction” or “DCP.”

[0110] As mentioned above, a 3DV extension of HEVC (i.e., 3D-HEVC) is under
development. 3D-HEVC may improve coding efficiency using inter-view motion
prediction and inter-view residual prediction. In inter-view motion prediction, a video
coder may determine (i.c., predict) the motion information of a current PU based on the
motion information of a PU in a different view than the current PU. In inter-view
residual prediction, a video coder may determine residual blocks of a current CU based
on residual data in a different view than the current CU.

[0111] To enable inter-view motion prediction and inter-view residual prediction, a
video coder may determine disparity vectors for blocks (e.g., PUs, CUs, etc.). In
general, a disparity vector is used as an estimator of the displacement between two
views. A video coder may use a disparity vector for a block either to locate a reference
block in another view for inter-view motion or residual prediction, or the video coder
may convert the disparity vector to a disparity motion vector for inter-view motion
prediction. For instance, when a block is coded with inter-view motion prediction, a
disparity vector may need to be derived for selecting a corresponding block in a
different view.

[0112] Furthermore, a video coder may derive a disparity vector for a current block. In
some examples, the video coder may use the method of Neighboring Blocks Based
Disparity Vector (NBDV) to derive the disparity vector for the current block. That is, to
derive a disparity vector for the current block, a process called NBDV may be used in a
test model for 3D-HEVC (i.e., 3D-HTM). 3D-HEVC firstly adopted the NBDV process
proposed in Zhang et al., “3D-CES5.h: Disparity vector generation results,” Joint
Collaborative Team on 3D Video Coding Extension Development of ITU-T SG 16

WP 3 and ISO/TEC JTC 1/SC 29/WG 11, 1st Meeting: Stockholm, SE, 16-20 July
2012, document JCT3V-A0097.

[0113] The NBDYV process uses disparity motion vectors from spatial and temporal

neighboring blocks to derive the disparity vector for the current block. Because
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neighboring blocks (e.g., blocks that spatially or temporally neighbor the current block)
are likely to share almost the same motion and disparity information in video coding,
the current block can use the motion vector information in the neighboring blocks as a
predictor of the disparity vector of the current block. Thus, the NBDV process uses the
neighboring disparity information for estimating the disparity vector in different views.
[0114] When a video coder performs the NBDV process, the video coder may check, in
a fixed checking order, motion vectors of spatially-neighboring and temporally-
neighboring PUs. That is, several spatial and temporal neighboring blocks are firstly
defined, each of which are then checked in a pre-defined order that may be determined
by the priority of the correlation between the current block and the candidate block (i.e.,
the spatial or temporal neighboring block). Thus, two sets of neighboring blocks are
utilized. One set is from spatial neighboring blocks and the other set is from temporal
neighboring blocks.

[0115] When the video coder checks the motion vector(s) of a spatially-neighboring or
temporally-neighboring PU, the video coder may determine whether the motion
vector(s) are disparity motion vectors. A disparity motion vector of a PU of a picture is
a motion vector pointing to a location within an inter-view reference picture of the
picture. An inter-view reference picture of a picture may be a picture that is in the same
access unit as the picture, but in a different view. Once a disparity motion vector (i.c.,
the motion vector points to an inter-view reference picture) is found in the candidates,
the video coder may convert the disparity motion vector to a disparity vector. For
example, the video coder may set a horizontal component of the disparity vector for the
current block equal to a horizontal component of the disparity motion vector and may
set the vertical component of the disparity vector to 0.

[0116] In some designs of 3D-HEVC (e.g., 3D-HTM 6.0), when the video coder
performs the NBDV process, the video coder checks disparity motion vectors in the
temporal neighboring blocks, disparity motion vectors in the spatial neighboring blocks,
and then implicit disparity vectors (IDVs) in order. An IDV may be a disparity vector
of a spatially- or temporally-neighboring PU that is coded using inter-view prediction.
IDVs may also be referred to as derived disparity vectors. An IDV may be generated
when a PU employs inter-view motion vector prediction, i.¢., the candidate for AMVP
or merge modes is derived from a reference block in the other view with the help of a

disparity vector. Such a disparity vector is called IDV. An IDV may be stored to the
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PU for the purpose of disparity vector derivation. For instance, even though the block is
coded with motion prediction, a derived disparity vector for the block is not discarded
for the purpose of coding a following block. Thus, when the video coder identifies a
disparity motion vector or an IDV, the video coder may return the identified disparity
motion vector or IDV. IDVs were included with a simplified version of NBDV in Sung
et al., “3D-CES.h: Simplification of disparity vector derivation for HEVC-based 3D
video coding, document JCTV3-A0126.” The use of IDVs in the NBDV process was
further simplified in Kang et al., “3D-CES5.h related: improvements for disparity vector
derivation,” document JCT3V-B0047, by removing the IDVs stored in the decoded
picture buffer and also improved coding gain with random access point (RAP) picture
selection. The video coder may convert the returned disparity motion vector or IDV to
a disparity vector and may use the disparity vector for inter-view motion prediction and
inter-view residual prediction. Random access refers to a decoding of a bitstream
starting from a coded picture that is not the first coded picture in the bitstream. The
insertion of random access pictures or random access points into a bitstream at regular
intervals may enable random access. Example types of random access pictures include
Instantancous Decoder Refresh (IDR) pictures, Clean Random Access (CRA) pictures,
and Broken Link Access (BLA) pictures. Hence, IDR pictures, CRA pictures and BLA
pictures are collectively referred to as RAP pictures. In some examples, RAP pictures
may have NAL unit types are equal to BLA W _LP, BLA W RADL, BLA N LP,
IDR_W _RADL, IDR N LP, RSV IRAP VCL22,RSV_IRAP VCL23, or CRA NUT.
[0117] When the video coder identifies a disparity motion vector or an IDV, the video
coder may terminate the checking process. Thus, once the video coder finds a disparity
vector for the current block, the video coder may terminate the NBDV process. When
the video coder is unable to determine a disparity vector for the current block by
performing the NBDV process (i.e., when there is no disparity motion vector or IDV
found during the NBDV process), the NBDV is marked as unavailable. In other words,
it can be considered that the NBDV process returns an unavailable disparity vector.
[0118] If the video coder is unable to derive a disparity vector for the current block (i.c.,
if no disparity vector is found) by performing the NBDV process, the video coder may
use a zero disparity vector as the disparity vector for the current PU. The zero disparity
vector is a disparity vector having both horizontal and vertical components equal to 0.

Thus, even when the NBDV process returns an unavailable result, other coding
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processes of the video coder that require a disparity vector may use a zero disparity
vector for the current block. In some examples, if the video coder is unable to derive a
disparity vector for the current block by performing the NBDV process, the video coder
may disable inter-view residual prediction for the current block. However, regardless of
whether the video coder is able to derive a disparity vector for the current block by
performing the NBDV process, the video coder may use inter-view motion prediction
for the current block. That is, if no disparity vector is found after checking all the pre-
defined neighboring blocks, a zero disparity vector may be used for inter-view motion
prediction while inter-view residual prediction may be disabled for the corresponding
CU.

[0119] As mentioned above, the video coder may check spatially-neighboring PUs as
part of the process of determining the disparity vector for the current PU. In some
examples, the video coder checks the following spatially-neighboring blocks: the below-
left spatially-neighboring block, the left spatially-neighboring block, the above-right
spatially-neighboring block, the above spatially-neighboring block, and the above-left
spatially-neighboring block. For instance, in some versions of the NBDV process, five
spatial neighboring blocks are used for disparity vector derivation. The five spatially-
neighboring blocks may cover the locations Ay, A1, Bo, By, and By, respectively, as
indicated in FIG. 2. The video coder may check the five spatially-neighboring blocks in
the order of Aj, By, By, Ag, and B,. The same five spatially-neighboring block may be
used in merge modes for HEVC. Therefore, in some examples, no additional memory
access is required. If one of the spatially-neighboring blocks has a disparity motion
vector, the video coder may terminate the checking process and the video coder may use
the disparity motion vector as the final disparity vector for the current block.

[0120] Furthermore, as mentioned above, the video coder may check temporally-
neighboring PUs as part of the process to determine the disparity vector for the current
block. For checking temporal neighboring blocks (e.g., PUs), a construction process of
a candidate picture list may be performed first. In some examples, the video coder may
check up to two reference pictures from the current view for disparity motion vectors.
The first reference picture may be the co-located picture. Thus, the co-located picture
(i.e., the co-located reference picture) may be first inserted into the candidate picture
list, followed by other candidate pictures in ascending order of reference index. When

the reference pictures with the same reference index in both reference picture lists are
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available, the reference picture in the same reference picture list as the co-located
picture precedes, in the candidate list, the reference picture that is not in the same
reference picture list as the co-located picture.
[0121] For each candidate picture (i.c., the random-access picture and the co-located
picture) in the candidate picture list, the video coder may check three candidate regions.
The three candidate regions may be defined as follows:

e CPU: A co-located region of the current PU or current CU.

e CLCU: A largest coding unit (LCU) covering the co-located region of the

current block.

e BR: A bottom-right 4x4 block of the CPU.

If the PU that covers the candidate region specifies a disparity motion vector, the video
coder may determine the disparity vector of the current video unit based on the disparity
motion vector of the PU.

[0122] When the video coder checks a neighboring PU (i.e., a spatially- or temporally-
neighboring PU), the video coder may check first whether the neighboring PU has a
disparity motion vector. If none of the neighboring PUs has a disparity motion vector,
the video coder may determine whether any of the spatially-neighboring PUs has an
IDV. The video coder may check the spatially-neighboring PUs in the order of Ay, Ay,
By, By, and B,. If one of the spatially-neighboring PUs has an IDV and the IDV is
coded as merge/skip mode, the video coder may terminate the checking process and
may use the IDV as the final disparity vector for the current PU.

[0123] As indicated above, a video coder may apply an NBDV process to derive a
disparity vector for a current block (e.g., a CU, PU, etc.). The disparity vector for the
current block may indicate a location in a reference picture (i.e., a reference component)
in a reference view. In some 3D-HEVC designs, the video coder is allowed to access
depth information for the reference view. In some such 3D-HEVC designs, when the
video coder uses the NBDV process to derive the disparity vector for the current block,
the video coder may apply a refinement process to further refine the disparity vector for
the current block. The video coder may refine the disparity vector for the current block
based on the reference picture’s depth map. The video coder may use a similar
refinement process to refine a disparity motion vector for backward view synthesis

prediction. In this way, the depth can be used to refine the disparity vector or disparity
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motion vector to be used for backward view synthesis prediction. This refinement
process may be referred to herein as NBDV refinement (“NBDV-R”), the NBDV
refinement process, or depth-oriented NBDV (Do-NBDV).

[0124] When the NBDV process returns an available disparity vector (e.g., when the
NBDYV process returns a variable that indicates that the NBDV process was able to
derive a disparity vector for the current block based on a disparity motion vector or an
IDV of a neighboring block), the video coder may further refine the disparity vector by
retrieving depth data from the reference view’s depth map. In some examples, the

refinement process includes the following two steps:

1. Use the disparity vector of the current block to locate a block in the reference
view’s depth map. In other words, locate a corresponding depth block by the
derived disparity vector in the previously-coded reference depth view, such as
the base view. In this example, the size of the corresponding block in the depth
may be the same as the size of the current block.

2. Select one depth value from among the four corner pixels of the corresponding
depth block and convert the depth value to the horizontal component of the
refined disparity vector. In this example, the video coder does not change the

vertical component of the disparity vector.

[0125] When the NBDV process does not return an available disparity vector (e.g.,
when the NBDV process returns a variable that indicates that the NBDV process was
unable to derive a disparity vector for the current block based on a disparity motion
vector or an IDV of a neighboring block), the video coder does not perform the NBDV
refinement process and the video coder uses, as the disparity vector for the current
block, the zero disparity vector. In other words, when NBDV does not provide an
available disparity vector, and thus the result of NBDV is unavailable, the above
NBDV-R process is skipped and a zero disparity vector is directly returned.

[0126] In some 3D-HEVC designs, the video coder uses a refined disparity vector for a
current block for inter-view motion prediction while the video coder uses an unrefined
disparity vector for the current block for inter-view residual prediction. For example,
the video coder may use the NBDV process to derive an unrefined disparity vector for

the current block. The video coder may then apply the NBDV refinement process to
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derive a refined disparity vector for the current block. The video coder may use the
refined disparity vector for the current block for the purpose of determining motion
information of the current block. Moreover, the video coder may use the unrefined
disparity vector for the current block for the purpose of determining a residual block of
the current block. In some examples, the video coder may store the refined disparity
vector as a motion vector of one PU if the PU is coded with BVSP mode.

[0127] A backward view synthesis prediction (BVSP) approach was proposed in Tian et
al., “CE1.h: Backward View Synthesis Prediction Using Neighboring Blocks,”
document JCT3V-C0152 (hereinafter, “JCT3V-C0152”) and was adopted in the third
JCT-3V meeting. A video coder may perform BVSP to synthesize a view component.
Because the view component can be synthesized, it may be unnecessary for a bitstream
to include a coded representation of the view component. For at least this reason, the
use of BVSP may reduce the size of the bitstream.

[0128] BVSP is conceptually similar to block-based VSP in 3D-AVC. In other words,
the basic idea of backward-warping VSP is the same as the block-based VSP in 3D-
AVC. Both BVSP and block-based VSP in 3D-AVC use backward warping and block-
based VSP to avoid transmitting motion vector differences and to use more precise
motion vectors. However, implementation details are different due to different
platforms.

[0129] In general, when a video coder performs BVSP to synthesize a reference texture
picture, the video coder processes blocks (e.g., video units) in a dependent texture
picture. The dependent texture picture and the synthesized texture picture are in the
same access unit, but are in different views. When the video coder processes a block
(i.e., a current block) of the dependent texture picture, the video coder may perform an
NBDYV process to identify a disparity vector of the current block. That is, in order to
estimate the depth information for a block, a video coder may first derive a disparity
vector from neighboring blocks.

[0130] Furthermore, when the video coder performs BVSP to synthesize the reference
texture picture, the video coder may use the disparity vector of the current block to
identify a reference block in a reference depth picture. In other words, the video coder
may then use the derived disparity vector to obtain a depth block from a reference view.
For instance, the disparity vector identified by the NBDV process may be denoted as
(dvy, dvy) and the current block position may be denoted as (blocky, block,).
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Furthermore, in this example, the video coder may fetch a depth block at (blockgt+dvy,
blocky,+dvy) in the depth image of the reference view. In this example, the fetched
depth block has the same size of the current PU. The dependent texture picture and the
reference depth picture are in the same access unit, but are in different views. The video
coder may then perform a backward warping process to determine, based on sample
values of the current block and sample values of the identified reference block of the
reference picture, sample values of the synthesized picture In other words, the video
coder, in this example, may use the fetched depth block to perform backward warping
for the current PU.

[0131] As indicated above, when the video coder performs BVSP, the video coder may
perform an NBDV process to identify a disparity vector for a current block.
Furthermore, when the video coder performs BVSP, the video coder may use a
refinement process similar to that described elsewhere in this disclosure to refine the
disparity motion vector derived using the NBDV process. When the video coder
performs the disparity vector refinement process, the video coder may refine the
disparity vector based on depth values in a depth map in a reference view. In other
words, the depth can be used to refine the disparity vector or disparity motion vector to
be used for BVSP. The refined disparity vector may be stored as the motion vector of
one PU if the refined disparity vector is coded with BVSP mode.

[0132] In some versions of 3D-HEVC, texture first coding is applied. In texture first
coding, a video coder codes (e.g., encodes or decodes) a texture view component prior
to coding the corresponding depth view component (i.e., the depth view component
having the same POC value and view identifier as the texture view component).
Therefore, a non-base view depth view component is unavailable for use in coding a
corresponding a non-base view texture view component. In other words, when a video
coder codes a non-base texture view component, the corresponding non-base depth view
component is unavailable. Therefore, the depth information may be estimated and used
to perform BVSP.

[0133] FIG. 5 is a conceptual diagram illustrating depth block derivation from a
reference view to perform BVSP prediction. In the example of FIG. 5, a video coder is
coding a current texture picture 60. Current texture picture 60 is labeled a “dependent
texture picture” because current texture picture 60 is dependent on a synthesized

reference texture picture 62. In other words, the video coder may need to synthesize
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reference texture picture 62 in order to decode current texture picture 60. Reference
texture picture 62 and current texture picture 60 are in the same access unit but are in
different views.

[0134] In order to synthesize reference texture picture 62, the video coder may process
blocks (i.e., video units) of current texture picture 60. In the example of FIG. 5, the
video coder is processing a current block 64. When the video coder processes current
block 64, the video coder may perform the NBDV process to derive a disparity vector
for current block 64. For instance, in the example of FIG. 5, the video coder identifies a
disparity vector 66 of a block 68 that neighbors current block 64. The identification of
disparity vector 66 is shown as Step 1 of FIG. 5. Furthermore, in the example of FIG. 5,
the video coder determines, based on disparity vector 66, a disparity vector 68 of current
block 64. For instance, disparity vector 68 may be a copy of disparity vector 66.
Copying disparity vector 66 is shown as Step 2 of FIG. 5.

[0135] The video coder may identify, based on disparity vector 68 of current block 64, a
reference block 70 in a reference depth picture 72. Reference depth picture 72, current
texture picture 60, and reference texture picture 62 may each be in the same access unit.
Reference depth picture 72 and reference texture picture 62 may be in the same view.
The video coder may determine, based on texture sample values of current block 64 and
depth sample values of reference block 70, texture sample values of reference texture
picture 62. The process of determining the texture sample values may be referred to as
backward warping. Section H.8.5.2.2.7 of 3D-HEVC Test Model 3 describes the
process of backward warping. Backward warping is shown as Step 3 of FIG. 5. In this
way, FIG. 5 illuminates the three steps how a depth block from the reference view is
located and then used for BVSP prediction.

[0136] In some examples, BVSP is enabled for some CVSs, but not others. In CVSs
where BVSP is enabled, a video coder may perform an NBDV process that is different
than the NBDV process for inter-view motion prediction. That is, if BVSP is enabled in
a CVS, the NBDV process for inter-view motion prediction may be changed. When the
video coder performs the NBDV process with regard to a current block in a CVS where
BVSP is enabled, the video coder may determine whether temporal neighboring blocks
have disparity motion vectors. If a temporal neighboring block has a disparity motion
vector, the video coder may determine the disparity vector of the current block based on

the disparity motion vector of the temporal neighboring block. The video coder may
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then refine the disparity vector. In other words, for each of the temporal neighboring
blocks, if it uses a disparity motion vector, the disparity motion vector is returned as the
disparity vector and it is further refined with the method described elsewhere in this
disclosure.

[0137] Furthermore, when the video coder performs the NBDV process with regard to
the current block, the video coder may evaluate spatial neighboring blocks. For each of
the spatial neighboring blocks, the following apply. For RefPicList0 and RefPicList] in
order, if the spatial neighboring block uses a disparity motion vector, the video coder
returns the disparity motion vector as the disparity vector of the current block and the
video coder may further refine the disparity vector as described elsewhere in this
disclosure. Otherwise, if the spatial neighboring block uses BVSP mode, the video
coder returns the associated motion vector as the disparity vector of the current block
and may refine the disparity vector in a manner similar to that described elsewhere in
this disclosure. However, if the spatial neighboring block uses BVSP mode, the video
coder may select the maximum depth value from all pixels of the corresponding depth
block rather than four corner pixels and the video coder may set the vertical component
of the refined disparity vector to 0. If the spatial neighboring block uses an IDV, the
video coder may return the IDV as the disparity vector and the video coder may further
refine the disparity vector with the method described elsewhere in this disclosure. If
there is no disparity motion vector is available, the video decoder does not apply the
refining process, and the video coder may derive a disparity vector is as a zero vector.
[0138] After the video coder determines a disparity vector for a current block and
refines the disparity vector for the current block, the video coder may derive a disparity
motion vector for the current block. For each sub-region (4x4 block) within the current
block (i.e., one PU coded with BVSP mode), the video coder may locate, based on the
refined disparity vector, a corresponding 4x4 depth block in the reference depth view.
Secondly, the video coder may select the maximum value of the sixteen depth pixels in
the corresponding depth block. Thirdly, the video coder may convert the maximum
value to the horizontal component of a disparity motion vector. The video coder may
set the vertical component of the disparity motion vector to 0.

[0139] A video coder is unlikely to be able to derive disparity vectors using NBDV for
certain types of blocks (e.g., PUs, CUs, etc.). For example, unavailable disparity

vectors are likely to occur from NBDV for blocks along slice, tile, or picture
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boundaries. In another example, unavailable disparity vectors are likely to occur from
NBDYV if neighboring blocks are all coded with intra prediction.

[0140] In general, a tile is an integer number of coding tree blocks co-occurring in one
column and one row, ordered consecutively in coding tree block raster scan of the tile.
A row may be an integer number of coding tree blocks. Columns are delineated from
one another by vertical boundaries that extend from the top boundary to the bottom
boundary of the picture and are ordered consecutively from left to right in the picture.
Rows are delineated from one another by horizontal boundaries that extend from the left
boundary to the right boundary of the picture and are ordered consecutively from top to
bottom in the picture. A column may be an integer number of coding tree blocks.
[0141] The current disparity vector derivation method in 3D-HEVC has several
problems. For example, when the NBDV process provides an unavailable disparity
vector, the video coder may skip the NBDV-R process to refine the disparity vector.
This may lead to a coding performance drop.

[0142] The techniques of this disclosure may have advantages over previous video
coding techniques. For instance, the techniques of this disclosure may provide a better
refined disparity vector by accessing the depth view component of a reference view
when a disparity vector derivation method (e.g., NBDV in 3D-HEVC) cannot produce
an available disparity vector.

[0143] In some examples, a video coder may perform a disparity vector derivation
process for a current block of the multi-view video data. When the video coder
performs the disparity vector derivation process, the video coder may or may not be able
to successfully derive a disparity vector for the current block. For instance, the video
coder may not be able to successfully derive a disparity vector for the current block by
performing the disparity vector derivation process when none of the neighboring blocks
has a disparity motion vector or an IDV. Hence, when the video coder performs the
disparity vector derivation process, the video coder may generate a disparity vector for
the current block and an availability value (e.g., availableDV). The availability value
indicates whether the video coder was able to derive a disparity vector for the current
block by performing the disparity vector derivation process.

[0144] In this disclosure, if the availability value indicates that the video coder was able
to derive a disparity vector for the current block by performing the disparity vector

derivation process, the disparity vector for the current block is “available.” Likewise, if



WO 2014/149212 PCT/US2014/014835

41

the availability value indicates that the video coder was unable to derive a disparity
vector for the current block by performing the disparity vector derivation process, the
disparity vector for the current block is “unavailable.” Hence, the availability value
indicates that the disparity vector for the current block is unavailable when the disparity
vector derivation process is unable to derive the disparity vector for the current block.
Furthermore, in this disclosure, the disparity vector derivation process is said to have
returned an available or unavailable disparity vector depending on whether the video
coder was able to derive a disparity vector for the current block by performing the
disparity vector derivation process.

[0145] In accordance with one or more techniques of this disclosure, when the
availability value indicates that the disparity vector derivation process has not derived a
disparity vector for the current block, the video coder may nevertheless still perform a
disparity vector refinement process to generate a refined disparity vector for the current
block. Thus, the disparity vector refinement process is not limited to cases where the
disparity vector derivation process produces an available disparity vector. Hence, even
if the disparity vector derivation process does not produce an available disparity vector,
the techniques of this disclosure may allow for disparity vector refinement with respect
to a default disparity vector (such as a default disparity vector having horizontal and
vertical components equal to zero).

[0146] For example, video decoder 30 may perform a disparity vector derivation
process (e.g., an NBDV process) for a current block of the multi-view video data. The
current block may be in a current view. Furthermore, an availability value may indicate
that a disparity vector for the current block is unavailable when the disparity vector
derivation process is unable to derive the disparity vector for the current block. In this
example, when the availability value indicates that the disparity vector derivation
process has not derived the disparity vector for the current block, video decoder 30 may
generate a refined disparity vector for the current block by performing a disparity vector
refinement process (e.g., an NBDV-R process) that accesses a depth view component of
a reference view. Video decoder 30 may decode the current block based on the refined
disparity vector for the current block. For instance, video decoder 30 may use the
refined disparity vector to perform inter-view motion prediction, inter-view residual

prediction and/or backward warping view synthesis prediction for the current block.
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[0147] Similarly, video encoder 20 may perform a disparity vector derivation process
(e.g., an NBDV process) for a current block of the multi-view video data. The current
block may be in a current view. Furthermore, an availability value may indicate that a
disparity vector for the current block is unavailable when the disparity vector derivation
process is unable to derive the disparity vector for the current block. In this example,
when the availability value indicates that the disparity vector derivation process has not
derived the disparity vector for the current block, video encoder 20 may generate a
refined disparity vector for the current block by performing a disparity vector
refinement process (e.g., an NBDV-R process) that accesses a depth view component of
a reference view. Video encoder 20 may encode the current block based on the refined
disparity vector for the current block. For instance, video encoder 20 may use the
refined disparity vector to perform inter-view motion prediction, inter-view residual
prediction and/or backward warping view synthesis prediction for the current block.
[0148] In some examples, when the NBDV process returns an unavailable result after
checking the disparity motion vector and IDVs in the neighboring blocks (i.e., when the
availability value indicates that the disparity vector for the current block is unavailable),
instead of directly using a zero disparity vector and skipping the refinement process in
NBDV-R, a video coder may use a zero disparity motion vector in the NBDV-R
process. Therefore, the refinement process in NBDV-R can be used to refine the
disparity vector, by accessing the depth view component.

[0149] Alternatively, in some examples, when the NBDV process returns an
unavailable disparity vector (i.c., when the availability value indicates that the disparity
vector for the current block is unavailable), the video coder may set the availability of
the current block to available and may set the disparity vector of the current block to
zero. In other words, the video coder may modify the availability value to indicate that
the disparity vector for the current block is available. The video coder may then apply
the disparity vector refinement process to the disparity vector for the current block.
[0150] As indicated above, the NBDV process may return an availability value (e.g.,
availableDV). In one example, availableDV equal to 0 may indicate that the NBDV
process returned an unavailable disparity vector. In other words, availableDV equal to 0
may indicate that the NBDV process was unable to derive the disparity vector for the
current block. availableDV equal to 1 may indicate that the NBDV process returned an

available disparity vector. In other words, availableDV equal to 1 may indicate that the
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NBDYV process was able to derive the disparity vector for the current block.
Furthermore, in this example, mvDisp denotes the disparity vector of the current block,
mvDisp[0] denotes a horizontal component of the disparity vector of the current block,
and mvDisp[1] denotes a vertical component of the disparity vector of the current block.
Thus, in this example, when availableDV is equal to 0, the video coder may set
mvDisp[0] to 0, set mvDisp[1] to 0, and set availableDV to 1. The video coder may
then apply the disparity vector refinement process to mvDisp.

[0151] In this way, an availability value (e.g., availableDV) may indicate whether the
disparity vector derivation process (¢.g., the NBDV process) was able to derive a
disparity vector for the current block. In this example, when the availability value
indicates that the disparity vector derivation process was unable to derive the disparity
vector for the current block, the video coder may set the availability value to indicate
that the disparity vector for the current block is available and may set the disparity
vector for the current block to a zero disparity vector.

[0152] Furthermore, in some examples where the video coder sets the availability value
to indicate that the disparity vector of the current block to available and sets the
disparity vector of the current block to zero when the NBDV process returns an
unavailable disparity vector, the video coder may maintain a variable (e.g.,
availableDVRes) to identify whether or not the NBDV process originally returned an
available disparity vector. The video coder may use the variable for other coding tools
in certain conditions. For instance, this variable being equal to 0 may lead to the video
coder disabling inter-view residual prediction for the current block. Thus, in this
example, the video coder may maintain a variable to indicate whether the disparity
vector derivation process originally derived the disparity vector for the current block.
The video coder may provide the variable for use by one or more coding tools.
Moreover, the video coder may enable one or more of the coding tools based on the
value of the variable.

[0153] In some examples where the video coder sets the availability value of the
disparity vector of the current block to available and sets the disparity vector of the
current block to zero when the NBDV process returns an unavailable disparity vector,
the video coder may add an offset to the disparity vector of the current block (i.c., the
zero disparity vector). In this example, the video coder does not apply the disparity

vector refinement process to the disparity vector for the current block. In other words,
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in this example, there is no refinement process using the depth information. Hence, in
this example, when the disparity vector derivation process returns an unavailable
disparity vector, the video coder may add an offset to a zero disparity vector to produce
a modified disparity vector.

[0154] In the example of the previous paragraph, the video coder may set the offset in
various ways. For example, the video coder may add the offset only to the horizontal
component of the disparity vector of the current block. Furthermore, in some examples,
the video coder (or another device) may compute the offset with camera parameters and
a default depth pixel value (e.g., 128). Hence, in this example, the video coder may
determine the offset based on one or more of camera parameters and a default depth
pixel value. In some examples, video encoder 20 signals the offset in a slice header of a
slice that contains the current block. Hence, in such examples, the video coder may
determine the offset based on a signaled value received in a coded video bitstream. In
such examples, the value may be signaled in a slice header.

[0155] In accordance with some techniques of this disclosure, one or more of the
examples provided in this disclosure can be combined.

[0156] FIG. 6 is a block diagram illustrating an example video encoder 20 that may
implement the techniques of this disclosure. FIG. 6 is provided for purposes of
explanation and should not be considered limiting of the techniques as broadly
exemplified and described in this disclosure. For purposes of explanation, this
disclosure describes video encoder 20 in the context of HEVC coding. However, the
techniques of this disclosure may be applicable to other coding standards or methods.
[0157] In the example of FIG. 6, video encoder 20 includes a prediction processing unit
100, a residual generation unit 102, a transform processing unit 104, a quantization unit
106, an inverse quantization unit 108, an inverse transform processing unit 110, a
reconstruction unit 112, a filter unit 114, a decoded picture buffer 116, and an entropy
encoding unit 118. Prediction processing unit 100 includes an inter-prediction
processing unit 120 and an intra-prediction processing unit 126. Inter-prediction
processing unit 120 includes a motion estimation unit 122 and a motion compensation
unit 124. In other examples, video encoder 20 may include more, fewer, or different
functional components.

[0158] Video encoder 20 may receive video data. Video encoder 20 may encode each

CTU in a slice of a picture of the video data. Each of the CTUs may be associated with
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equally-sized luma coding tree blocks (CTBs) and corresponding CTBs of the picture.
As part of encoding a CTU, prediction processing unit 100 may perform quad-tree
partitioning to divide the CTBs of the CTU into progressively-smaller blocks. The
smaller blocks may be coding blocks of CUs. For example, prediction processing unit
100 may partition a CTB associated with a CTU into four equally-sized sub-blocks,
partition one or more of the sub-blocks into four equally-sized sub-sub-blocks, and so
on.

[0159] Video encoder 20 may encode CUs of a CTU to generate encoded
representations of the CUs (i.e., coded CUs). As part of encoding a CU, prediction
processing unit 100 may partition the coding blocks associated with the CU among one
or more PUs of the CU. Thus, each PU may be associated with a luma prediction block
and corresponding chroma prediction blocks. Video encoder 20 and video decoder 30
may support PUs having various sizes. As indicated above, the size of a CU may refer
to the size of the luma coding block of the CU and the size of a PU may refer to the size
of a luma prediction block of the PU. Assuming that the size of a particular CU is
2Nx2N, video encoder 20 and video decoder 30 may support PU sizes of 2Nx2N or
NxN for intra prediction, and symmetric PU sizes of 2Nx2N, 2NxN, Nx2N, NxN, or
similar for inter prediction. Video encoder 20 and video decoder 30 may also support
asymmetric partitioning for PU sizes of 2NxnU, 2NxnD, nLx2N, and nRx2N for inter
prediction.

[0160] Inter-prediction processing unit 120 may generate predictive data for a PU by
performing inter prediction on each PU of a CU. The predictive data for the PU may
include predictive blocks of the PU and motion information for the PU. Inter-prediction
processing unit 120 may perform different operations for a PU of a CU depending on
whether the PU is in an I slice, a P slice, or a B slice. In an I slice, all PUs are intra
predicted. Hence, if the PU is in an I slice, inter-prediction processing unit 120 does not
perform inter prediction on the PU.

[0161] If a PU is in a P slice, motion estimation unit 122 may search the reference
pictures in a list of reference pictures (e.g., “RefPicList0”) for a reference region for the
PU. The reference region for the PU may be a region, within a reference picture, that
contains samples that most closely correspond to the prediction blocks of the PU.
Motion estimation unit 122 may generate a reference index that indicates a position in

RefPicList0 of the reference picture containing the reference region for the PU. In
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addition, motion estimation unit 122 may generate a motion vector that indicates a
spatial displacement between a prediction block of the PU and a reference location
associated with the reference region. For instance, the motion vector may be a two-
dimensional vector that provides an offset from the coordinates in the current picture to
coordinates in a reference picture. Motion estimation unit 122 may output the reference
index and the motion vector as the motion information of the PU. Motion compensation
unit 124 may generate the predictive blocks of the PU based on actual or interpolated
samples at the reference location indicated by the motion vector of the PU.

[0162] If a PU is in a B slice, motion estimation unit 122 may perform uni-prediction or
bi-prediction for the PU. To perform uni-prediction for the PU, motion estimation unit
122 may search the reference pictures of RefPicList0 or a second reference picture list
(“RefPicList1”) for a reference region for the PU. Motion estimation unit 122 may
output, as the motion information of the PU, a reference index that indicates a position
in RefPicList0 or RefPicList] of the reference picture that contains the reference region,
a motion vector that indicates a spatial displacement between a prediction block of the
PU and a reference location associated with the reference region, and one or more
prediction direction indicators that indicate whether the reference picture is in
RefPicList0 or RefPicList]l. Motion compensation unit 124 may generate the predictive
blocks of the PU based at least in part on actual or interpolated samples at the reference
location indicated by the motion vector of the PU.

[0163] To perform bi-directional inter prediction for a PU, motion estimation unit 122
may scarch the reference pictures in RefPicList0 for a reference region for the PU and
may also search the reference pictures in RefPicList] for another reference region for
the PU. Motion estimation unit 122 may generate reference indexes that indicate
positions in RefPicList0 and RefPicList] of the reference pictures that contain the
reference regions. In addition, motion estimation unit 122 may generate motion vectors
that indicate spatial displacements between the reference locations associated with the
reference regions and a prediction block of the PU. The motion information of the PU
may include the reference indexes and the motion vectors of the PU. Motion
compensation unit 124 may generate the predictive blocks of the PU based at least in
part on actual or interpolated samples at the reference locations indicated by the motion

vectors of the PU.
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[0164] Intra-prediction processing unit 126 may generate predictive data for a PU by
performing intra prediction on the PU. The predictive data for the PU may include
predictive blocks for the PU and various syntax elements. Intra-prediction processing
unit 126 may perform intra prediction on PUs in I slices, P slices, and B slices.

[0165] To perform intra prediction on a PU, intra-prediction processing unit 126 may
use multiple intra prediction modes to generate multiple sets of predictive blocks for the
PU. When performing intra prediction using a particular intra prediction mode, intra-
prediction processing unit 126 may generate predictive blocks for the PU using a
particular set of samples from neighboring blocks. The neighboring blocks may be
above, above and to the right, above and to the left, or to the left of the prediction blocks
of the PU, assuming a left-to-right, top-to-bottom encoding order for PUs, CUs, and
CTUs. Intra-prediction processing unit 126 may use various numbers of intra prediction
modes, ¢.g., 33 directional intra prediction modes. In some examples, the number of
intra prediction modes may depend on the size of the prediction blocks of the PU.
[0166] In some examples, inter-prediction processing unit 120 may derive a disparity
vector for a current block (e.g., a CU, a PU, etc.). The disparity vector may support
inter-view motion prediction, inter-view residual prediction, backward warping view
synthesis prediction, and so on. In accordance with one or more techniques of this
disclosure, inter-prediction processing unit 120 may perform a disparity vector
derivation process for a current block of multi-view video data. An availability value
indicates that a disparity vector for the current block is unavailable when the disparity
vector derivation process is unable to derive the disparity vector for the current block.
When the availability value indicates that the disparity vector derivation process has not
derived the disparity vector for the current block, inter-prediction processing unit 120
may generate a refined disparity vector for the current block by performing a disparity
vector refinement process that accesses a depth view component of a reference view.
[0167] Prediction processing unit 100 may select the predictive data for PUs of a CU
from among the predictive data generated by inter-prediction processing unit 120 for the
PUs or the predictive data generated by intra-prediction processing unit 126 for the PUs.
In some examples, prediction processing unit 100 selects the predictive data for the PUs
of the CU based on rate/distortion metrics of the sets of predictive data. The predictive

blocks of the selected predictive data may be referred to herein as the selected predictive
blocks.
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[0168] Residual generation unit 102 may generate, based on the luma, Cb and Cr
coding blocks of a CU and the selected predictive luma, Cb and Cr blocks of the PUs of
the CU, luma, Cb and Cr residual blocks of the CU. For instance, residual generation
unit 102 may generate the residual blocks of the CU such that each sample in the
residual blocks has a value equal to a difference between a sample in a coding block of
the CU and a corresponding sample in a corresponding selected predictive block of a
PU of the CU.

[0169] Transform processing unit 104 may perform quad-tree partitioning to partition
the residual blocks of a CU into transform blocks associated with TUs of the CU. Thus,
a TU may be associated with a luma transform block and two corresponding chroma
transform blocks. The sizes and positions of the luma and chroma transform blocks of
TUs of a CU may or may not be based on the sizes and positions of prediction blocks of
the PUs of the CU.

[0170] Transform processing unit 104 may generate transform coefficient blocks for
cach TU of a CU by applying one or more transforms to the transform blocks of the TU.
Transform processing unit 104 may apply various transforms to a transform block
associated with a TU. For example, transform processing unit 104 may apply a discrete
cosine transform (DCT), a directional transform, or a conceptually-similar transform to
a transform block. In some examples, transform processing unit 104 does not apply
transforms to a transform block. In such examples, the transform block may be treated
as a transform coefficient block.

[0171] Quantization unit 106 may quantize the transform coefficients in a coefficient
block. The quantization process may reduce the bit depth associated with some or all of
the transform coefficients. For example, an #-bit transform coefficient may be rounded
down to an m-bit transform coefficient during quantization, where # is greater than m.
Quantization unit 106 may quantize a coefficient block associated with a TU of a CU
based on a quantization parameter (QP) value associated with the CU. Video encoder
20 may adjust the degree of quantization applied to the coefficient blocks associated
with a CU by adjusting the QP value associated with the CU. Quantization may
introduce loss of information, thus quantized transform coefficients may have lower
precision than the original ones.

[0172] Inverse quantization unit 108 and inverse transform processing unit 110 may

apply inverse quantization and inverse transforms to a coefficient block, respectively, to
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reconstruct a residual block from the coefficient block. Reconstruction unit 112 may
add the reconstructed residual block to corresponding samples from one or more
predictive blocks generated by prediction processing unit 100 to produce a reconstructed
transform block associated with a TU. Reconstruction unit 112 may also be referred to
as a summer. By reconstructing transform blocks for each TU of a CU in this way,
video encoder 20 may reconstruct the coding blocks of the CU.

[0173] Filter unit 114 may perform one or more deblocking operations to reduce
blocking artifacts in the coding blocks associated with a CU. Decoded picture buffer
116 may store the reconstructed coding blocks after filter unit 114 performs the one or
more deblocking operations on the reconstructed coding blocks. Inter-prediction
processing unit 120 may use a reference picture that contains the reconstructed coding
blocks to perform inter prediction on PUs of other pictures. In addition, intra-prediction
processing unit 126 may use reconstructed coding blocks in decoded picture buffer 116
to perform intra prediction on other PUs in the same picture as the CU. Decoded picture
buffer 116 may also be referred to as a reference picture memory. Hence, decoded
picture buffer 116 may comprise a memory that stores video data, such as multi-view
video data.

[0174] Entropy encoding unit 118 may receive data from other functional components
of video encoder 20. For example, entropy encoding unit 118 may receive coefficient
blocks from quantization unit 106 and may receive syntax elements from prediction
processing unit 100. Entropy encoding unit 118 may perform one or more entropy
encoding operations on the data to generate entropy-encoded data. For example,
entropy encoding unit 118 may perform a context-adaptive variable length coding
(CAVLC) operation, a CABAC operation, a variable-to-variable (V2V) length coding
operation, a syntax-based context-adaptive binary arithmetic coding (SBAC) operation,
a Probability Interval Partitioning Entropy (PIPE) coding operation, an Exponential-
Golomb encoding operation, or another type of entropy encoding operation on the data.
Video encoder 20 may output a bitstream that includes entropy-encoded data generated
by entropy encoding unit 118.

[0175] FIG. 7 is a block diagram illustrating an example video decoder 30 that is
configured to implement the techniques of this disclosure. FIG. 7 is provided for
purposes of explanation and is not limiting on the techniques as broadly exemplified

and described in this disclosure. For purposes of explanation, this disclosure describes
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video decoder 30 in the context of HEVC coding. However, the techniques of this
disclosure may be applicable to other coding standards or methods.

[0176] In the example of FIG. 7, video decoder 30 includes an entropy decoding unit
150, a prediction processing unit 152, an inverse quantization unit 154, an inverse
transform processing unit 156, a reconstruction unit 158, a filter unit 160, and a decoded
picture buffer 162. Prediction processing unit 152 includes a motion compensation unit
164 and an intra-prediction processing unit 166. In other examples, video decoder 30
may include more, fewer, or different functional components.

[0177] A coded picture buffer (CPB) 151 may receive and store encoded video data
(e.g., NAL units) of a bitstream. Entropy decoding unit 150 may receive NAL units
from CPB 151 and parse the NAL units to obtain syntax elements from the bitstream.
Entropy decoding unit 150 may entropy decode entropy-encoded syntax elements in the
NAL units. Prediction processing unit 152, inverse quantization unit 154, inverse
transform processing unit 156, reconstruction unit 158, and filter unit 160 may generate
decoded video data based on the syntax elements extracted from the bitstream.

[0178] The NAL units of the bitstream may include coded slice NAL units. As part of
decoding the bitstream, entropy decoding unit 150 may extract and entropy decode
syntax elements from the coded slice NAL units. Each of the coded slices may include
a slice header and slice data. The slice header may contain syntax elements pertaining
to a slice.

[0179] In addition to obtaining syntax elements from the bitstream, video decoder 30
may perform a decoding operation on a CU. By performing the decoding operation on a
CU, video decoder 30 may reconstruct coding blocks of the CU.

[0180] As part of performing a decoding operation on a CU, inverse quantization unit
154 may inverse quantize, i.¢., de-quantize, coefficient blocks associated with TUs of
the CU. Inverse quantization unit 154 may use a QP value associated with the CU of
the TU to determine a degree of quantization and, likewise, a degree of inverse
quantization for inverse quantization unit 154 to apply. That is, the compression ratio,
i.., the ratio of the number of bits used to represent original sequence and the
compressed one, may be controlled by adjusting the value of the QP used when
quantizing transform coefficients. The compression ratio may also depend on the

method of entropy coding employed.
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[0181] After inverse quantization unit 154 inverse quantizes a coefficient block, inverse
transform processing unit 156 may apply one or more inverse transforms to the
coefficient block in order to generate a residual block associated with the TU. For
example, inverse transform processing unit 156 may apply an inverse DCT, an inverse
integer transform, an inverse Karhunen-Loeve transform (KLT), an inverse rotational
transform, an inverse directional transform, or another inverse transform to the
coefficient block.

[0182] If a PU is encoded using intra prediction, intra-prediction processing unit 166
may perform intra prediction to generate predictive blocks for the PU. Intra-prediction
processing unit 166 may use an intra prediction mode to generate the predictive luma,
Cb, and Cr blocks for the PU based on the prediction blocks of spatially-neighboring
PUs. Intra-prediction processing unit 166 may determine the intra prediction mode for
the PU based on one or more syntax elements decoded from the bitstream.

[0183] Prediction processing unit 152 may construct a first reference picture list
(RefPicList0) and a second reference picture list (RefPicList]) based on syntax elements
extracted from the bitstream. Furthermore, if a PU is encoded using inter prediction,
entropy decoding unit 150 may obtain motion information for the PU. Motion
compensation unit 164 may determine, based on the motion information of the PU, one
or more reference regions for the PU. Motion compensation unit 164 may generate,
based on samples at the one or more reference blocks for the PU, predictive luma, Cb,
and Cr blocks for the PU.

[0184] In some examples, prediction processing unit 152 may derive a disparity vector
for a current block (e.g., a CU, a PU, etc.). The disparity vector may support inter-view
motion prediction, inter-view residual prediction, backward warping view synthesis
prediction, and so on. In accordance with one or more techniques of this disclosure,
prediction processing unit 152 may perform a disparity vector derivation process for a
current block of multi-view video data. An availability value indicates that a disparity
vector for the current block is unavailable when the disparity vector derivation process
is unable to derive the disparity vector for the current block. When the availability
value indicates that the disparity vector derivation process has not derived the disparity
vector for the current block, prediction processing unit 152 may generate a refined
disparity vector for the current block by performing a disparity vector refinement

process that accesses a depth view component of a reference view.
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[0185] Reconstruction unit 158 may use the residual values from the luma, Cb, and Cr
transform blocks associated with TUs of a CU and the predictive luma, Cb, and Cr
blocks of the PUs of the CU, i.e., either intra-prediction data or inter-prediction data, as
applicable, to reconstruct the luma, Cb, and Cr coding blocks of the CU. For example,
reconstruction unit 158 may add samples of the luma, Cb, and Cr transform blocks to
corresponding samples of the predictive luma, Cb, and Cr blocks to reconstruct the
luma, Cb, and Cr coding blocks of the CU. Reconstruction unit 158 may also be
referred to as a summer.

[0186] Filter unit 160 may perform a deblocking operation to reduce blocking artifacts
associated with the luma, Cb, and Cr coding blocks of the CU. Video decoder 30 may
store the luma, Cb, and Cr coding blocks of the CU in decoded picture buffer 162.
Decoded picture buffer 162 may also be referred to as a reference picture memory.
Hence, decoded picture buffer 162 may comprise a memory that stores video data, such
as multi-view video data. Decoded picture buffer 162 may provide reference pictures
for subsequent motion compensation, intra prediction, and presentation on a display
device, such as display device 32 of FIG. 1. For instance, video decoder 30 may
perform, based on the luma, Cb, and Cr blocks in decoded picture buffer 162, intra
prediction or inter prediction operations on PUs of other CUs. In this way, video
decoder 30 may extract, from the bitstream, transform coefficient levels of the
significant luma coefficient block, inverse quantize the transform coefficient levels,
apply a transform to the transform coefficient levels to generate a transform block,
generate, based at least in part on the transform block, a coding block, and output the
coding block for display.

[0187] As described above, a video coder (e.g., video encoder 20 or video decoder 30)
may use a NBDV process to determine a disparity vector. Furthermore, the video coder
may perform a refinement process on the disparity vector. In accordance with some
techniques of this disclosure, the video coder may perform the refinement process on a
zero disparity vector when the NDBV process determines that the disparity vector is
unavailable. The horizontal and vertical components of the zero disparity vector are
equal to zero. In accordance with such techniques, sub-clauses H.8.5.4 of 3D HEVC
Test Model Description Draft 3 may be modified as follows. In the following text,

added subject matter is underlined.
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H.8.5.4 Derivation process for a disparity vector

When availableDV is equal to 1 and deriveFromDepthFlag is equal to
1, the following ordered steps apply:

1. The derivation process for disparity sample array as specified
in subclause H.8.5.4.3 is invoked with the luma locations xP,
yP, the disparity vector mvDisp, the view identifier
refViewldx, the variables nPSW, nPSH, the variable
nSubBlkW equal to nPSW, the variable nSubBlkH equal to
nPSH, and the flag restMaxSearchFlag being equal to 1 as the
inputs, and the output is the array disparitySamples of size

(nPSWDs)x(nPSHDs).

The horizontal component of the disparity vector mvDisp[ 0 ] is set

equal to disparitySamples[ 0 ][ 0 ].

Otherwise, when availableDV is equal to 0 and deriveFromDepthFlag

is equal to 1, the following ordered steps apply:

1. The derivation process for disparity sample array as specified

in subclause H.8.5.4.3 is invoked with the luma locations xP,

yP. the disparity vector mvDisp, which is set equal to 0, the

view identifier refViewldx, the variables nPSW, nPSH., the
variable nSubBlkW equal to nPSW, the variable nSubBlkH

equal to nPSH., and the flag restMaxSearchFlag being equal to

1 as the inputs, and the output is the array disparitySamples of

size (NPSWDs)x(nPSHDs).

2. The horizontal component of the disparity vector mvDisp[ 0 ] is set

equal to disparitySamples[ 0 ][ 0 ].

[0188] As indicated above, sub-clause H.8.5.4.3 “Derivation process for a disparity
sample array” is invoked to refine the zero disparity vector using the associated depth

information when there is no available disparity motion vector found in sub-clause
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H.8.5.4 “Derivation process for a disparity vector.” Sub-clause H.8.5.4.3 of 3D HEVC
Test Model Description Draft 3 is reproduced below.

H.8.5.4.3 Derivation process for a disparity sample array

Inputs to this process are:

a luma location ( xP, yP ) of the top-left luma sample of the current
prediction unit relative to the top-left luma sample of the current

picture,
— adisparity vector mvDisp,
— aview identifier refViewldx specifying a reference view,

— variables nPSW and nPSH specifying the width and the height,

respectively, of the current prediction unit.

— variable nSubBlkW and nSubBlkW specifying the conversion

precision of the corresponding depth samples,

— aflag restMaxSearchFlag specifying whether the search for the

maximum disparity is restricted.
Outputs of this process are:
— a (nPSW)x(nPSH) array disparitySamples of disparities values.

Let refDepPels be an array of reconstructed depth samples of the depth
view component with Viewldx equal to refViewldx. The luma location
(x11, y11.) Of top-left luma sample of refDepPels is derived by
xrr, = Clip3( 0, pic_width_in_luma _samples —nPSW — 1, xP +
(mvDisp[0]>>2)) (H-291)
y11, = Clip3( 0, pic_height in luma samples —nPSH -1, yP +
(mvDisp[ 1]>>2)) (H-292)

The array disparitySamples of size (nPSW)x(nPSH) is derived as specified

in the following;:

— For sBy in the range of 0 to ( (nPSH / nSubBlkH) —1 ), inclusive, the
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following applies:

—For sBx in the range of 0 to ( ( nPSW / nSubBlkW) —1 ), inclusive,
the following applies:

—The variable maxDep is set equal to —1 and modified as specified

in the following.

— If restMaxSearchFlag is equal to 0, the following applies:

for ( yOff = 0; yOff < nSubBIlkH; yOff++ )
for ( xOff = 0; xOff < nSubBIkW; xOff++ ) {
X = X7, T sBx * nSubBIkW + xOff
y =y, + sBy * nSubBIkH + yOff
maxDep = Max( maxDep, refDepPels[ x [y ])
}

— Otherwise ( restMaxSearchFlag is equal to 1), the following
applies:

X = x11, T sBx * nSubB1kW

y =y + sBy * nSubBlkH

maxDep = Max( maxDep, refDepPels[ x [[y])

maxDep = Max( maxDep,

refDepPels[ x ][ y + nSubBIkH - 1])

maxDep = Max( maxDep, refDepPels[ x + nSubBlkW —
Nyl

maxDep = Max( maxDep, refDepPels[ x + nSubBlkW —
1[ y + nSubBlkH - 1])

maxDep = Max( maxDep,

refDepPels[ x + nSubBIkW /2 ][ y + nSubBIkH /2 ])

- The values of the array depthSamples are derived as specified in the

following:

for ( yOff = 0; yOff < nSubBIkH; yOff++ )
for( xOff = 0; xOff < nSubBlkW; xOff++ ) {
x = sBx * nSubBIkW + xOff
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y = sBy * nSubBIlkH + yOff
disparitySamples[ x [[y ] =
DepthToDisparityB[ refViewldx ][ maxDep ]
}

[0189] In other techniques of this disclosure, a video coder may always set the
availability value for an NBDYV result to 1, even when the NBDV process does not find
an available disparity motion vector or IDV in any neighboring block. In accordance
with some such techniques, sub-clause H.8.5.4 of 3D HEVC Test Model Description
Draft 3 may be modified as follows. In the following text, added subject matter is
underlined. Portions of sub-clause H.8.5.4 of 3D HEVC Test Model Description Draft
3 not shown below may be the same as in 3D HEVC Test Model Description Draft 3.

H.8.5.4 Derivation process for a disparity vector

When availableDV is equal to 0, mvDisp[ 0 ]is set to 0, mvDisp| 1 ] is set

t0 0. and availableDV is set to 1.

When availableDV is equal to 1 and deriveFromDepthFlag is equal to 1,
the following ordered steps apply:

1. The derivation process for disparity sample array as specified in
subclause H.8.5.4.3 is invoked with the luma locations xP, yP, the
disparity vector mvDisp, the view identifier refViewldx, the
variables nPSW, nPSH, the variable nSubBlkW equal to nPSW,
the variable nSubBlkH equal to nPSH, and the flag
restMaxSearchFlag being equal to 1 as the inputs, and the output is
the array disparitySamples of size (nPSWDs)x(nPSHDs).

The horizontal component of the disparity vector mvDisp[ 0 ] is set

equal to disparitySamples[ 0 ][ 0 ].
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[0190] In an alternative example, a variable availableDVRes may be introduced to
disable using an unavailable NBDV result for inter-view residual prediction. In this
example, the variable availableDVRes may be further used to control whether to
perform inter-view residual prediction or not. In this example, instead of returning
availableDV as an output of subclause H.8.5.4 of 3D HEVC Test Model Description
Draft 3, availableDVRes is the output and is further used for inter-view residual
prediction. In accordance with this example, sub-clauses H.8.5.4 and H.8.5.2.2.6 of 3D
HEVC Test Model Description Draft 3 may be modified as follows. In the following
text, added subject matter is underlined and deleted subject matter is italicized and
enclosed in double square brackets. Portions of sub-clauses H.8.5.4 and H.8.5.2.2.6 of
3D HEVC Test Model Description Draft 3 not shown below may be the same as in 3D
HEVC Test Model Description Draft 3.

H.8.5.4 Derivation process for a disparity vector

When availableDV is equal to 0, mvDisp[ 0 ]is set to 0, mvDisp| 1 ]is set to 0.

availableDVRes is set to availableDV.

When [[availableDV is equal to 1 and]] deriveFromDepthFlag is equal to 1, the
following ordered steps apply:

2. The derivation process for disparity sample array as specified in
subclause H.8.5.4.3 is invoked with the luma locations xP, yP, the
disparity vector mvDisp, the view identifier refViewldx, the variables
nPSW, nPSH, the variable nSubBIkW equal to nPSW, the variable
nSubBIlkH equal to nPSH, and the flag restMaxSearchFlag being equal to
1 as the inputs, and the output is the array disparitySamples of size

(nPSWDs)x(nPSHDs).

The horizontal component of the disparity vector mvDisp[ 0 ] is set equal to

disparitySamples[ 0 ][ O ].
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H.8.5.2.2.6 Inter-view residual prediction process
The process is only invoked if res_pred flag is equal to 1.

Inputs to this process are:

a luma location ( xC, yC ) specifying the top-left sample of the current luma

coding block relative to the top left luma sample of the current picture,

— aluma location ( xP, yP ) of the top-left luma sample of the current

prediction unit relative to the top-left luma sample of the current picture,
— avariable nCS specifying the size of the current luma coding block,

— variables nPSW and nPSH specifying the width and the height, respectively,
of the current prediction unit,prediction list utilization flags, predFlagl.0 and

predFlagl.1,
— a(nPSW)x(nPSH) array predSamples;, of luma prediction samples,

—  two (nPSW / 2)x(nPSH / 2) arrays predSamplescy, and predSamplesc, of

chroma prediction samples.
Output of this process are:
— amodified version of the (nPSW)x(nPSH) array predSamplesy,

— amodified versions of the (nPSW / 2)x(nPSH / 2) arrays predSamplesc, and

predSamplesc;.

The derivation process for a disparity vector as specified in subclause H.8.5.4 is
invoked with the luma locations ( xC, yC ) and ( xP, yP ), the coding block size
nCS, the variables nPSW and nPSH, the partition index partldx and the variable
deriveFromDepthFlag being equal to 0, as the inputs and the outputs are the

view order index refViewldx, the flag //availableDV]] availableDVRes and the

disparity vector mvDisp

Let refResSamples;, be the (PicWidthInSamplesy )x(PicHeightInSamples; ) array
of luma residual samples ResSamples; . of the view component with Viewldx

equal to refViewldx. Let refResSamplescy, and refResSamplesc; be the
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(PicWidthInSamples;, / 2)x(PicHeightInSamples;, / 2) arrays of Cb and Cr
residual samples ResSamplescy, and ResSamplesc,, respectively, for inter-coded

coding units for the view component with Viewldx equal to refViewldx.

When the flag [/availableDV]] availableDVRes is equal to 0 the whole

decoding process of this sub-clause terminates.

For y proceeding over the values 0..(nPSH — 1) and x proceeding over the values

0..(nPSW — 1), the following ordered steps apply.

[0191] FIG. 8 is a flowchart illustrating an example operation 200 of video decoder 30
to decode multi-view video data, in accordance with one or more techniques of this
disclosure. The multi-view video data may be 3D-HEVC video data. In the example of
FIG. 8, video decoder 30 may perform a disparity vector derivation process for a current
block of the multi-view video data (202). The current block is in a current view. Video
decoder 30 may set an availability value such that the availability value indicates that a
disparity vector for the current block is unavailable when the disparity vector derivation
process is unable to derive the disparity vector for the current block (204). For instance,
the availability value may indicate that the disparity vector for the current block is
available when the disparity vector derivation process is able to derive the disparity
vector for the current block from a disparity motion vector or an implicit disparity
vector of a block that neighbors the current block. In some examples, video decoder 30
may sct the availability value as part of performing the disparity vector derivation
process.

[0192] Regardless of whether the availability value indicates that the disparity vector
for the current block is available (e.g., when the availability value indicates that the
disparity vector derivation process has not derived the disparity vector for the current
block or when the availability value indicates that the disparity vector derivation process
has derived the disparity vector for the current block), video decoder 30 may generate a
refined disparity vector for the current block by performing a disparity vector
refinement process that accesses a depth view component of a reference view (206). In

some examples, video encoder 20 may generate the refined disparity vector for the
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current block by applying the disparity vector refinement process to a zero disparity
vector.

[0193] In the example of FIG. 8, video decoder 30 decodes the current block based on
the refined disparity vector for the current block (208). As part of decoding the current
block based on the refined disparity vector for the current block, video decoder 30 may
use the refined disparity vector for at least one of inter-view motion prediction, inter-
view residual prediction, or backward view synthesis prediction. By using inter-view
motion prediction, inter-view residual prediction, and/or backward view synthesis
prediction, video decoder 30 may be able to reconstruct a sample block corresponding
to the current block.

[0194] FIG. 9 is a flowchart illustrating an example operation 250 of video encoder 20
to encode multi-view video data, in accordance with one or more techniques of this
disclosure. The multi-view video data may be 3D-HEVC video data. In the example of
FIG. 9, video encoder 20 may perform a disparity vector derivation process for a current
block of the multi-view video data (252). The current block is in a current view. Video
encoder 20 may set an availability value such that the availability value indicates that a
disparity vector for the current block is unavailable when the disparity vector derivation
process is unable to derive the disparity vector for the current block (254). For instance,
the availability value may indicate that the disparity vector for the current block is
available when the disparity vector derivation process is able to derive the disparity
vector for the current block from a disparity motion vector or an implicit disparity
vector of a block that neighbors the current block. In some examples, video encoder 20
may sct the availability value as part of performing the disparity vector derivation
process.

[0195] Regardless of whether the availability value indicates that the disparity vector
for the current block is available (e.g., when the availability value indicates that the
disparity vector derivation process has not derived the disparity vector for the current
block or when the availability value indicates that the disparity vector derivation process
has derived the disparity vector for the current block), video encoder 20 may generate a
refined disparity vector for the current block by performing a disparity vector
refinement process that accesses a depth view component of a reference view (256). In

some examples, video encoder 20 may generate the refined disparity vector for the
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current block by applying the disparity vector refinement process to a zero disparity
vector. The reference view is different than the current view.

[0196] In the example of FIG. 9, video encoder 20 encodes the current block based on
the refined disparity vector for the current block (258). In other words, video encoder
20 may use the refined disparity vector for the current block to generate an encoded
representation of the current block. As part of encoding the current block based on the
refined disparity vector for the current block, video encoder 20 may use the refined
disparity vector for at least one of inter-view motion prediction, inter-view residual
prediction, or backward view synthesis prediction.

[0197] FIG. 10 is a flowchart illustrating an example operation 300 of video decoder 30
to decode multi-view video data, in accordance with one or more additional techniques
of this disclosure. In the example of FIG. 10, video decoder 30 may perform a disparity
vector derivation process to derive a disparity vector for a current block (302). For
instance, video decoder 30 may perform an NBDV process to derive the disparity vector
for the current block. Subsequently, video decoder 30 may determine whether the
disparity vector derivation process derived an available disparity vector for the current
block (304).

[0198] In response to determining that the disparity vector derivation process did not
derive an available disparity vector for the current block (“NO” of 304), video decoder
30 may determine the disparity vector for the current block such that the disparity vector
for the current block is equal to the sum of an offset and the zero disparity vector (306).
In some examples, video decoder 30 may add the offset only to the horizontal
component of the disparity vector of the current block. Furthermore, in some examples,
video decoder 30 may compute the offset with camera parameters and a default depth
pixel value (e.g., 128). In some examples, video encoder 20 signals the offset in a slice
header of a slice that contains the current block.

[0199] After determining the disparity vector for the current block in (306) or in
response to determining that the disparity vector derivation process derived an available
vector for the current block (“YES” of 304), video decoder 30 may decode the current
block based on the disparity vector for the current block (308). As part of decoding the
current block based on the refined disparity vector for the current block, video decoder
30 may use the refined disparity vector for at least one of inter-view motion prediction,

inter-view residual prediction, or backward view synthesis prediction. By using inter-
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view motion prediction, inter-view residual prediction, and/or backward view synthesis
prediction, video decoder 30 may be able to reconstruct a sample block corresponding
to the current block.

[0200] FIG. 11 is a flowchart illustrating an example operation 350 of video encoder 20
to encode multi-view video data, in accordance with one or more additional techniques
of this disclosure. In the example of FIG. 11, video encoder 20 may perform a disparity
vector derivation process to derive a disparity vector for a current block (352). For
instance, video encoder 20 may perform an NBDV process to derive the disparity vector
for the current block. Subsequently, video encoder 20 may determine whether the
disparity vector derivation process derived an available disparity vector for the current
block (354).

[0201] In response to determining that the disparity vector derivation process did not
derive an available disparity vector for the current block (“NO” of 354), video encoder
20 may determine the disparity vector for the current block such that the disparity vector
for the current block is equal to the sum of an offset and the zero disparity vector (356).
In some examples, video encoder 20 may add the offset only to the horizontal
component of the disparity vector of the current block. Furthermore, in some examples,
video encoder 20 may compute the offset with camera parameters and a default depth
pixel value (e.g., 128). In some examples, video encoder 20 signals the offset in a slice
header of a slice that contains the current block.

[0202] After determining the disparity vector for the current block in (356) or in
response to determining that the disparity vector derivation process derived an available
vector for the current block (“YES” of 354), video encoder 20 may decode the current
block based on the disparity vector for the current block (358).

[0203] The following are additional examples in accordance with the techniques of this
disclosure.

[0204] Example 1. A method for decoding multiview video data, the method
comprising: performing a disparity vector derivation process for a current block of the
multiview video data; and when the disparity vector derivation process does not produce
an available disparity vector, performing a disparity vector refinement process to

generate a refined disparity vector for the current block.
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[0205] Example 2. The method of example 1, wherein performing the disparity vector
refinement process comprises performing the disparity vector refinement process using
a zero disparity vector.

[0206] Example 3. The method of example 2, further comprising generating the zero
disparity vector for the disparity vector refinement process when the disparity vector
derivation does not produce an available disparity vector.

[0207] Example 4. The method of example 2, further comprising, when the disparity
vector derivation process does not produce an available disparity vector, setting a status
to indicate that the disparity vector is available and setting the value of the disparity
vector to zero, and performing the disparity vector refinement process using the
disparity vector with the value of zero.

[0208] Example 5. The method of any of examples 1-4, or combinations thereof,
further comprising maintaining a variable to indicate whether the disparity vector
derivation process produced an available disparity vector.

[0209] Example 6. The method of example 5, further comprising providing the variable
for use by one or more coding tools.

[0210] Example 7. The method of example 6, further comprising enabling one or more
of the coding tools based on the value of the variable.

[0211] Example 8. The method of example 1, further comprising, when the disparity
vector derivation process does not produce an available disparity vector, adding an
offset to a zero disparity vector to produce a modified disparity vector.

[0212] Example 9. The method of example 8, further comprising determining the offset
based on one or more of camera parameters and a default depth pixel value.

[0213] Example 10. The method of example &, further comprising determining the
offset based on a signaled value received in a coded video bitstream.

[0214] Example 11. The method of example 10, wherein the value is signaled in a slice
header.

[0215] Example 12. The method of any of examples 1-11, or combinations thereof,
wherein the disparity vector derivation process is a neighboring block disparity vector
(NBDV) derivation process.

[0216] Example 13. The method of any of examples 1-12, or combinations thereof,
wherein the disparity vector refinement process is neighboring block disparity vector

refinement (NBDV-R) process.
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[0217] Example 14. The method of any of examples 1-13, or combinations thereof,
further comprising using the refined disparity vector for at least one of inter-view
motion prediction, inter-view residual prediction, or backward view synthesis
prediction.

[0218] Example 15. The method of any of examples 1-14, or combinations thereof,
wherein the multiview video data is 3D-HEVC video data.

[0219] Example 16. The method of any of examples 1-15, or combinations thereof,
further comprising decoding the video data based on the refined disparity vector.

[0220] Example 17. A method for encoding multiview video data, the method
comprising: performing a disparity vector derivation process for a current block of the
multiview video data; and when the disparity vector derivation process does not produce
an available disparity vector, performing a disparity vector refinement process to
generate a refined disparity vector for the current block.

[0221] Example 18. The method of example 17, wherein performing the disparity
vector refinement process comprises performing the disparity vector refinement process
using a zero disparity vector.

[0222] Example 19. The method of example 18, further comprising generating the zero
disparity vector for the disparity vector refinement process when the disparity vector
derivation does not produce an available disparity vector.

[0223] Example 20. The method of example 18, further comprising, when the disparity
vector derivation process does not produce an available disparity vector, setting a status
to indicate that the disparity vector is available and setting the value of the disparity
vector to zero, and performing the disparity vector refinement process using the
disparity vector with the value of zero.

[0224] Example 21. The method of any of examples 17-20, or combinations thereof,
further comprising maintaining a variable to indicate whether the disparity vector
derivation process produced an available disparity vector.

[0225] Example 22. The method of example 21, further comprising providing the
variable for use by one or more coding tools.

[0226] Example 23. The method of example 22, further comprising enabling one or

more of the coding tools based on the value of the variable.
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[0227] Example 24. The method of example 17, further comprising, when the disparity
vector derivation process does not produce an available disparity vector, adding an
offset to a zero disparity vector to produce a modified disparity vector.

[0228] Example 25. The method of example 24, further comprising determining the
offset based on one or more of camera parameters and a default depth pixel value.
[0229] Example 26. The method of example 24, further comprising determining the
offset based on a signaled value received in a coded video bitstream.

[0230] Example 27. The method of example 26, wherein the value is signaled in a slice
header.

[0231] Example 28. The method of any of examples 17-27, or combinations thereof,
wherein the disparity vector derivation process is a neighboring block disparity vector
(NBDV) derivation process.

[0232] Example 29. The method of any of examples 17-28, or combinations thereof,
wherein the disparity vector refinement process is neighboring block disparity vector
refinement (NBDV-R) process.

[0233] Example 30. The method of any of examples 17-29, or combinations thereof,
further comprising using the refined disparity vector for at least one of inter-view
motion prediction, inter-view residual prediction, or backward view synthesis
prediction.

[0234] Example 31. The method of any of examples 17-30, or combinations thereof,
wherein the multiview video data is 3D-HEVC video data.

[0235] Example 32. A video decoding apparatus configured to perform the method of
any of examples 1-16 or combinations thereof.

[0236] Example 33. A video encoding apparatus configured to perform the method of
any of examples 17-31 or combinations thereof.

[0237] Example 34. A video decoding apparatus comprising means for performing the
method of any of examples 1-16 or combinations thereof.

[0238] Example 35. A video encoding apparatus comprising means for performing the
method of any of examples 17-31 or combinations thereof.

[0239] Example 36. A computer-readable medium comprising instructions to cause one
or more processors to perform the method of any of examples 1-31 or combinations

thereof.
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[0240] Example 37. A method of encoding video data according to any of the
techniques disclosed herein.

[0241] Example 38. A method of decoding video data according to any of the
techniques disclosed herein.

[0242] Example 39. A device configured to perform any of the techniques disclosed
herein.

[0243] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over, as one or more instructions or code,
a computer-readable medium and executed by a hardware-based processing unit.
Computer-readable media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to
another, ¢.g., according to a communication protocol. In this manner, computer-
readable media generally may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
one or more computers or one or more processors to retrieve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.

[0244] By way of example, and not limitation, such computer-readable storage media
can comprisc RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures
and that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transient

media, but are instead directed to non-transient, tangible storage media. Disk and disc,
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as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.

[0245] Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or
software modules configured for encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented in one or more circuits or logic
elements.

[0246] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0247] Various examples have been described. These and other examples are within the

scope of the following claims.
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WHAT IS CLAIMED IS:

1. A method for decoding multi-view video data, the method comprising:

performing a disparity vector derivation process for a current block of the multi-
view video data, the current block being in a current view;

setting an availability value such that the availability value indicates that a
disparity vector for the current block is unavailable when the disparity vector derivation
process is unable to derive the disparity vector for the current block;

when the availability value indicates that the disparity vector for the current
block is unavailable, generating a refined disparity vector for the current block by
performing a disparity vector refinement process that accesses a depth view component
of a reference view; and

decoding the current block based on the refined disparity vector for the current
block.

2. The method of claim 1, wherein the availability value indicates that the disparity
vector for the current block is available when the disparity vector derivation process is
able to derive the disparity vector for the current block from a disparity motion vector or

an implicit disparity vector of a block that neighbors the current block.

3. The method of claim 1, wherein generating the refined disparity vector
comprises generating the refined disparity vector for the current block by applying the

disparity vector refinement process to a zero disparity vector.

4. The method of claim 1, further comprising when the availability value indicates
that the disparity vector for the current block is unavailable:

setting the availability value to indicate that the disparity vector for the current
block is available; and

setting the disparity vector for the current block to a zero disparity vector.
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5. The method of claim 4, further comprising:
maintaining a variable to indicate whether the disparity vector derivation process
originally derived the disparity vector for the current block; and

providing the variable for use by one or more coding tools.

6. The method of claim 5, further comprising enabling one or more of the coding

tools based on the value of the variable.

7. The method of claim 1, wherein:

the disparity vector derivation process is a neighboring block disparity vector
(NBDV) derivation process; and

the disparity vector refinement process is a neighboring block disparity vector

refinement (NBDV-R) process.

8. The method of claim 1, wherein decoding the current block based on the refined
disparity vector for the current block comprises using the refined disparity vector for at
least one of inter-view motion prediction, inter-view residual prediction, or backward

view synthesis prediction.

9. The method of claim 1, wherein the multi-view video data is 3D-HEVC video
data.



WO 2014/149212 PCT/US2014/014835

70

10. A method for encoding multi-view video data, the method comprising:

performing a disparity vector derivation process for a current block of the multi-
view video data, the current block being in a current view;

setting an availability value such that the availability value indicates that a
disparity vector for the current block is unavailable when the disparity vector derivation
process is unable to derive the disparity vector for the current block;

when the availability value indicates that the disparity vector for the current
block is unavailable, generating a refined disparity vector for the current block by
performing a disparity vector refinement process that accesses a depth view component
of a reference view; and

encoding the current block based on the refined disparity vector for the current

block.

11.  The method of claim 10, wherein the availability value indicates that the
disparity vector for the current block is available when the disparity vector derivation
process is able to derive the disparity vector for the current block from a disparity

motion vector or an implicit disparity vector of a block that neighbors the current block.

12.  The method of claim 10, wherein generating the refined disparity vector
comprises generating the refined disparity vector for the current block by applying the

disparity vector refinement process to a zero disparity vector.

13.  The method of claim 10, further comprising when the availability value indicates
that the disparity vector for the current block is unavailable:

setting the availability value to indicate that the disparity vector for the current
block is available; and

setting the disparity vector for the current block to a zero disparity vector.

14. The method of claim 13, further comprising:
maintaining a variable to indicate whether the disparity vector derivation process
originally derived the disparity vector for the current block; and

providing the variable for use by one or more coding tools.
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15.  The method of claim 14, further comprising enabling one or more of the coding

tools based on the value of the variable.

16. The method of claim 10, wherein:

the disparity vector derivation process is a neighboring block disparity vector
(NBDV) derivation process; and

the disparity vector refinement process is a neighboring block disparity vector

refinement (NBDV-R) process.

17.  The method of claim 10, wherein encoding the current block based on the
refined disparity vector for the current block comprises using the refined disparity
vector for at least one of inter-view motion prediction, inter-view residual prediction, or

backward view synthesis prediction.

18. The method of claim 10, wherein the multi-view video data is 3D-HEVC video
data.

19. A video coding device comprising a memory that stores multi-view video data
and one or more processors configured to:

perform a disparity vector derivation process for a current block of the multi-
view video data, the current block being in a current view;

set an availability value such that the availability value indicates that a disparity
vector for the current block is unavailable when the disparity vector derivation process
is unable to derive the disparity vector for the current block; and

when the availability value indicates that the disparity vector for the current
block is unavailable, perform a disparity vector refinement process to generate a refined

disparity vector for the current block.

20.  The video coding device of claim 19, wherein the availability value indicates
that the disparity vector for the current block is available when the disparity vector
derivation process is able to derive the disparity vector for the current block from a
disparity motion vector or an implicit disparity vector of a block that neighbors the

current block.
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21.  The video coding device of claim 19, wherein the one or more processors are
configured to generate the refined disparity vector for the current block by applying the

disparity vector refinement process to a zero disparity vector.

22.  The video coding device of claim 19, wherein the one or more processors are
configured such that when the availability value indicates that the disparity vector for
the current block is unavailable, the one or more processors:

set the availability value to indicate that the disparity vector for the current block
is available; and

set the disparity vector for the current block to a zero disparity vector.

23.  The video coding device of claim 22, wherein the one or more processors are
configured to:

maintain a variable to indicate whether the disparity vector derivation process
originally derived the disparity vector for the current block; and

provide the variable for use by one or more coding tools.

24.  The video coding device of claim 23, wherein the one or more processors are

configured to enable one or more of the coding tools based on the value of the variable.

25.  The video coding device of claim 19, wherein:

the disparity vector derivation process is a neighboring block disparity vector
(NBDV) derivation process; and

the disparity vector refinement process is a neighboring block disparity vector

refinement (NBDV-R) process.

26.  The video coding device of claim 19, wherein the one or more processors are
configured to use the refined disparity vector for at least one of inter-view motion

prediction, inter-view residual prediction, or backward view synthesis prediction.

27.  The video coding device of claim 19, wherein the multi-view video data is 3D-

HEVC video data.
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28.  The video coding device of claim 19, wherein the one or more processors are
configured to decode the current block based on the refined disparity vector for the

current block.

29.  The video coding device of claim 19, wherein the one or more processors are
configured to encode the current block based on the refined disparity vector for the

current block.

30. A video coding device comprising:

means for performing a disparity vector derivation process for a current block of
multi-view video data, the current block being in a current view;

means for setting an availability value such that the availability value indicates
that a disparity vector for the current block is unavailable when the disparity vector
derivation process is unable to derive the disparity vector for the current block; and

means for generating, when the availability value indicates that the disparity
vector for the current block is unavailable, a refined disparity vector for the current
block by performing a disparity vector refinement process that accesses a depth view

component of a reference view.

31. A non-transitory computer-readable data storage medium having instructions
stored thereon that, when executed, configure one or more processors to:

perform a disparity vector derivation process for a current block of multi-view
video data, the current block being in a current view;

set an availability value such that the availability value indicates that a disparity
vector for the current block is unavailable when the disparity vector derivation process
is unable to derive the disparity vector for the current block; and

when the availability value indicates that the disparity vector derivation process
has not derived the disparity vector for the current block, generate a refined disparity
vector for the current block by performing a disparity vector refinement process that

accesses a depth view component of a reference view.
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32. A method for decoding multi-view video data, the method comprising:
performing a disparity vector derivation process for a current block of the multi-
view video data, the current block being in a current view;
when the disparity vector derivation process determines that a disparity vector
for the current block is unavailable, determining the disparity vector for the current
block by adding an offset to a zero disparity vector; and

decoding the current block based on the disparity vector for the current block.

33.  The method of claim 32, further comprising determining the offset based on a

camera parameter and a default depth pixel value.

34.  The method of claim 32, wherein the offset is signaled in a slice header of the

multi-view video data.

35.  The method of claim 32, wherein determining the disparity vector for the current
block comprises adding the offset only to a horizontal component of the zero disparity

vector.

36. A method for encoding multi-view video data, the method comprising:
performing a disparity vector derivation process for a current block of the multi-
view video data, the current block being in a current view;
when the disparity vector derivation process determines that a disparity vector
for the current block is unavailable, determining the disparity vector for the current
block by adding an offset to a zero disparity vector; and

encoding the current block based on the disparity vector for the current block.

37.  The method of claim 36, further comprising determining the offset based on a

camera parameter and a default depth pixel value.

38.  The method of claim 36, wherein the offset is signaled in a slice header of the

multi-view video data.
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39.  The method of claim 36, wherein determining the disparity vector for the current
block comprises adding the offset only to a horizontal component of the zero disparity

vector.

40. A device for coding multi-view video data, the device comprising a memory that
stores multi-view video data and one or more processors configured to:

perform a disparity vector derivation process for a current block of the multi-
view video data, the current block being in a current view;

when the disparity vector derivation process determines that a disparity vector
for the current block is unavailable, determine the disparity vector for the current block
by adding an offset to a zero disparity vector; and

code the current block based on the disparity vector for the current block.

41.  The device of claim 40, wherein the one or more processors are configured to

determine the offset based on a camera parameter and a default depth pixel value.

42.  The device of claim 40, wherein the offset is signaled in a slice header of the

multi-view video data.

43.  The device of claim 40, wherein to determine the disparity vector for the current
block, the one or more processors add the offset only to a horizontal component of the

zero disparity vector.

44. A device for coding multi-view video data, the device comprising:

means for performing a disparity vector derivation process for a current block of
the multi-view video data, the current block being in a current view;

means for determining, when the disparity vector derivation process determines
that a disparity vector for the current block is unavailable, the disparity vector for the
current block by adding an offset to a zero disparity vector; and

means for coding the current block based on the disparity vector for the current

block.
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45. A non-transitory computer-readable data storage medium having instructions
stored thereon that, when executed by one or more processors of a device for coding
multi-view video data, cause the device to:

perform a disparity vector derivation process for a current block of the multi-
view video data, the current block being in a current view;

when the disparity vector derivation process determines that a disparity vector
for the current block is unavailable, determine the disparity vector for the current block
by adding an offset to a zero disparity vector; and

code the current block based on the disparity vector for the current block.
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