The present invention relates to a therapeutic method comprising administering anti-IGF-IR antibodies, particularly human anti-IGF-IR antibodies to a subject for the treatment of certain disorders preferably in conjunction with administration of another therapeutic agent. The invention further relates to pharmaceutical compositions comprising these antibodies and methods of using the antibodies and compositions thereof for treatment.
Inventors (continued): CUSMANO, JOHN DANIEL, US; GUYOT, DEBORAH JEAN, US; PAGE, KELLY LYNN, US
USES OF ANTI-INSULIN-LIKE GROWTH FACTOR 1 RECEPTOR ANTIBODIES

Vehicle

31.25 μm

125 μm

500 μm

KLH, 500 μm

(57) Abstract: The present invention relates to a therapeutic method comprising administering antiIGF-IR antibodies, particularly human anti-IGF-IR antibodies to a subject for the treatment of certain disorders preferably in conjunction with administration of another therapeutic agent. The invention further relates to pharmaceutical compositions comprising these antibodies and methods of using the antibodies and compositions thereof for treatment.
Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJK, TMM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

Date of publication of the international search report: 6 May 2005

For two-letter codes and other abbreviations, refer to the “Guidance Notes on Codes and Abbreviations” appearing at the beginning of each regular issue of the PCT Gazette.
USES OF ANTI-INSULIN-LIKE GROWTH FACTOR I RECEPTOR ANTIBODIES

Background of the Invention

The present invention relates to uses of, and compositions containing, anti-insulin-like growth factor I receptor (IGF-IR) antibodies.

Insulin-like growth factor (IGF-I) is a 7.5-kD polypeptide that circulates in plasma in high concentrations and is detectable in most tissues. IGF-I stimulates cell differentiation and cell proliferation, and is required by most mammalian cell types for sustained proliferation. These cell types include, among others, human diploid fibroblasts, epithelial cells, smooth muscle cells, T lymphocytes, neural cells, myeloid cells, chondrocytes, osteoblasts and bone marrow stem cells.

The first step in the transduction pathway leading to IGF-I-stimulated cellular proliferation or differentiation is binding of IGF-I or IGF-II (or insulin at supraphysiological concentrations) to the IGF-I receptor. The IGF-I receptor (IGF-IR) is composed of two types of subunits: an alpha subunit (a 130-135 kD protein that is entirely extracellular and functions in ligand binding) and a beta subunit (a 95-kD transmembrane protein, with transmembrane and cytoplasmic domains). The IGF-IR is initially synthesized as a single chain proreceptor polypeptide that is processed by glycosylation, proteolytic cleavage, and covalent bonding to assemble into a mature 460-kD heterotetramer comprising two alpha-subunits and two beta-subunits. The beta subunit(s) possesses ligand-activated tyrosine kinase activity. This activity is implicated in the signaling pathways mediating ligand action which involve autophosphorylation of the beta-subunit and phosphorylation of IGF-IR substrates.

Calorie restriction is the most effective and reproducible intervention for increasing the life span in a variety of animal species, including mammals. It is also the most potent, broadly acting cancer-prevention regimen in experimental carcinogenesis models. A key biological mechanism underlying many of its beneficial effects is the insulin-like growth factor-1 pathway (Hursting et al., Annu. Rev. Med. 54:131-52, 2003).

In view of the roles that IGF-I and IGF-IR have in such disorders as cancer and other proliferative disorders when IGF-I and/or IGF-IR are overexpressed, antibodies to IGF-IR have been produced that block binding of IGF-I or IGF-II to IGF-IR. Such antibodies are described, for example, in WO 02/05359, published July 11, 2002. The text of these publications, including all sequences described, is hereby incorporated by reference. It is desirable to use such high-affinity human anti-IGF-IR antibodies to treat relevant diseases in humans.

Summary of the Invention

The present invention relates to a method for the treatment or prevention of a disorder wherein said disorder is selected from the group consisting of multiple myeloma, liquid tumor, liver cancer, thymus disorder, T-cell mediated auto-immune disease, endocrinological disorder, ischemia, and neurodegenerative disorder in a mammal comprising administering to said mammal an amount of a human anti-IGF-IR antibody that is effective in treating said disorder. In one embodiment, the method also comprises administering to said mammal said antibody in combination with an agent selected from the group consisting of a corticosteroid, anti-emetic, cancer vaccine, analgesic, anti-vascular agent, and anti-proliferative agent.

The liquid tumor is preferably acute lymphocytic leukemia (ALL) or chronic myelogenic leukemia (CML). The liver cancer is preferably hepatoma, hepatocellular carcinoma, cholangiocarcinoma, angiosarcomas, hemangiosarcomas, or hepatoblastoma. The thymus disorder is preferably thymoma or thyroiditis. The T-cell mediated autoimmune disease is preferably Multiple Sclerosis, Rheumatoid Arthritis, Systemic Lupus Erythematosus (SLE), Grave’s Disease, Hashimoto’s Thyroiditis, Myasthenia Gravis, Auto-Immune Thyroiditis, or Bechet’s Disease. The endocrinological disorder is preferably Diabetes II, hyperthyroidism, hypothyroidism, thyroiditis, hyperadrenocorticism, and hypoadrenocorticism. The ischemia is preferably post-cardiac ischemia. The neurodegenerative disorder is preferably Alzheimer’s Disease.

Where the antibody is administered in combination with an anti-proliferative agent, the agent is preferably selected from the group consisting of farnesyl protein transferase inhibitors, αvβ3 inhibitors, αvβ5 inhibitors, p53 inhibitors, and PDGFR inhibitors.

Where the antibody is administered in combination with an anti-vascular agent, the agent is preferably selected from the group consisting of bevacizumab or rhuMAb-VEGF.
Where the antibody is administered in combination with an anti-emetic agent, the agent is preferably selected from the group consisting of ondansetron hydrochloride, granisetron hydrochloride, metoclopramide, domperidone, haloperidol, cyclazine, lorazepam, prochlorperazine, dexamethasone, levomepromazine, or tropisetron.

Where the antibody is administered in combination with a vaccine, the vaccine is preferably selected from GM-CSF DNA and cell-based vaccines, dendritic cell vaccines, recombinant viral vaccines, heat shock protein (HSP) vaccines, allogeneic or autologous tumor vaccines. In one embodiment, the vaccine is peptide, DNA, or cell based.

Where the antibody is administered in combination with an analgesic agent, the agent is preferably selected from the group consisting of ibuprofen, naproxen, choline magnesium trisalicylate, or oxycodone hydrochloride.

In a preferred embodiment, the mammal is a human.

In one embodiment, the antibody that binds to IGF-IR has the following properties:

- a binding affinity for human IGF-IR of K_d of 8 x 10^{-9} or less;
- inhibition of binding between human IGF-IR and IGF-I with an IC_{50} of less than 100 nM; and
- comprises a heavy chain amino acid sequence comprising human FR1, FR2, and FR3 amino acid sequences that correspond to those of the VH DP-35, VIV-4/4.35, VH DP-47, or VH DP-71 gene, or conservative substitutions or somatic mutations therein, wherein the FR sequences are linked with CDR1, CDR2, and CDR3 sequences, and wherein the antibody also comprises CDR regions in its light chain from the A27, A30, or O12 gene.

Alternatively, the antibody competes for binding with an antibody having heavy and light chain amino acid sequences of an antibody selected from the group consisting of 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.9.2, 4.17.3, and 6.1.1. For example, the antibody can bind to the epitope to which an antibody binds that has heavy and light chain amino acid sequences of an antibody selected from the group consisting of 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.9.2, 4.17.3, and 6.1.1.

In another embodiment, the invention is practiced using an antibody that comprises a heavy chain comprising the amino acid sequences of CDR-1, CDR-2, and CDR-3, and a light chain comprising the amino acid sequences of CDR-1, CDR-2, and CDR-3, of an antibody selected from the group consisting of 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.9.2, 4.17.3, and 6.1.1, or sequences having changes from said CDR sequences selected from the group consisting of conservative changes, wherein said conservative changes are selected from the group consisting of replacement of nonpolar residues by other nonpolar residues, replacement of polar charged residues by other polar uncharged residues, replacement of polar charged residues by other polar charged residues, and substitution of structurally similar residues; and non-conservative substitutions, wherein said non-conservative substitutions are selected from
the group consisting of substitution of polar charged residue for polar uncharged residues and substitution of nonpolar residues for polar residues, additions and deletions.

In a preferred embodiment, the antibody comprises a heavy chain comprising the amino acid sequences of CDR-1, CDR-2, and CDR-3, and a light chain comprising the amino acid sequences of CDR-1, CDR-2, and CDR-3, of an antibody selected from the group consisting of 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.9.2, 4.17.3, or 6.1.1. In another embodiment, the antibody comprises a heavy chain amino acid sequence derived from human gene DP-47 and a light chain amino acid derived from human gene A30.

The invention also relates to a pharmaceutical composition for treatment of a disorder in a mammal comprising an amount of a human anti-IGF-IR antibody that is effective in treating said disorder and a pharmaceutically acceptable carrier, wherein said disorder is selected from the group consisting of multiple myeloma, liquid tumor, liver cancer, thymus disorder, T-cell mediated autoimmune disease, endocrinological disorder, ischemia, and neurodegenerative disorder. In one embodiment, the invention relates to a combination pharmaceutical composition that also comprises an amount of a corticosteroid, anti-emetic, cancer vaccine, analgesic, anti-vascular agent, or an anti-proliferative agent that, in combination with said antibody, is effective in treating said disorder.

The invention also relates to use of an amount of a human anti-IGF-IR antibody in the preparation of a composition for the treatment of a disorder in a mammal that is effective in treating said disorder, wherein said disorder is selected from the group consisting of multiple myeloma, liquid tumor, liver cancer, thymus disorder, T-cell mediated autoimmune disease, endocrinological disorder, ischemia, and neurodegenerative disorder.

Brief Description of the Drawings

Figs. 1A-1C show alignments of the nucleotide sequences of the light chain variable regions from six human anti-IGF-IR antibodies to each other and to germline sequences. Fig. 1A shows the alignment of the nucleotide sequences of the variable region of the light chain (VL) of antibodies 2.12.1 (SEQ ID NO: 1) 2.13.2 (SEQ ID NO: 5), 2.14.3 (SEQ ID NO: 9) and 4.9.2 (SEQ ID NO: 13) to each other and to the germline Vk A30 sequence (SEQ ID NO: 39). Fig. 1B shows the alignment of the nucleotide sequence of VL of antibody 4.17.3 (SEQ ID NO: 17) to the germline Vk O12 sequence (SEQ ID NO: 41). Fig. 1C shows the alignment of the nucleotide sequence of VL of antibody 6.1.1 (SEQ ID NO: 21) to the germline Vk A27 sequence (SEQ ID NO: 37). The alignments also show the CDR regions of the VL from each antibody. The consensus sequences for Figs. 1A-1C are shown in SEQ ID NOS: 53-55, respectively.

Figs. 2A-2D show alignments of the nucleotide sequences of the heavy chain variable regions from six human anti-IGF-IR antibodies to each other and to germline sequences. Fig. 2A shows the alignment of the nucleotide sequence of the VH of antibody 2.12.1 (SEQ ID
NO: 3) to the germline VH DP-35 sequence (SEQ ID NO: 29). Fig. 2B shows the alignment of the nucleotide sequence of the VH of antibody 2.14.3 (SEQ ID NO: 11) to the germline VIV-4/4.35 sequence (SEQ ID NO: 43). Figs. 2C-1 and 2C-2 show the alignments of the nucleotide sequences of the VH of antibodies 2.13.2 (SEQ ID NO: 7), 4.9.2 (SEQ ID NO: 15) and 6.1.1 (SEQ ID NO: 23) to each other and to the germline VH DP-47 sequence (SEQ ID NO: 31). Fig. 2D shows the alignment of the nucleotide sequence of the VH of antibody 4.17.3 (SEQ ID NO: 19) to the germline VH DP-71 sequence (SEQ ID NO: 35). The alignment also shows the CDR regions of the antibodies. The consensus sequences for Figs. 2A-2D are shown in SEQ ID NOS: 56-59, respectively.

Fig. 3A shows the number of mutations in different regions of the heavy and light chains of 2.13.2 and 2.12.1 compared to the germline sequences. Figs. 3A-D show alignments of the amino acid sequences from the heavy and light chains of antibodies 2.13.2 and 2.12.1 with the germline sequences from which they are derived. Fig. 3B shows an alignment of the amino acid sequence of the heavy chain of antibody 2.13.2 (SEQ ID NO: 45) with that of germline sequence DP-47(3-23)/D6-19/JH6 (SEQ ID NO: 46). Fig. 3C shows an alignment of the amino acid sequence of the light chain of antibody 2.13.2 (SEQ ID NO: 47) with that of germline sequence A30/Jk2 (SEQ ID NO: 48). Fig. 3D shows an alignment of the amino acid sequence of the heavy chain of antibody 2.12.1 (SEQ ID NO: 49) with that of germline sequence DP-35(3-11)/D3-3/JH6 (SEQ ID NO: 50). Fig. 3E shows an alignment of the amino acid sequence of the light chain of antibody 2.12.1 (SEQ ID NO: 51) with that of germline sequence A30/Jk1 (SEQ ID NO: 52). For Figures 3B-E, the signal sequences are in italic, the CDRs are underlined, the constant domains are bold, the framework (FR) mutations are highlighted with a plus sign (+) above the amino acid residue and CDR mutations are highlighted with an asterisk above the amino acid residue.

Fig. 4 shows that anti-IGF-IR antibodies 2.13.2 and 4.9.2 reduce IGF-IR phosphotyrosine signal in 3T3-IGF-IR tumors.

Fig. 5 shows that anti-IGF-IR antibody 2.13.2 inhibits 3T3-IGF-IR tumor growth in vivo.

Detailed Description of the Invention

All patents, patent applications, and other references cited herein are hereby incorporated by reference in their entirety.

The antibody can also be used with other agents useful in treating abnormal IGF-IR activity, including, but not limited to different anti-IGF-IR antibodies such as those described in WO 02/053596, and other agents also capable of blocking IGF-IR.

Conjoint (combination) treatment described herein may be achieved by way of the simultaneous, sequential or separate dosing of the individual components of the treatment.
The antibody can be administered to treat or prevent initial disease, or to treat or prevent recurrence. It can be employed to treat early or advanced disease.

The term "treating", as used herein, unless otherwise indicated, means reversing, alleviating, inhibiting the progress of, or preventing the disorder or condition to which such term applies, or one or more symptoms of such disorder or condition. The term "treatment", as used herein, unless otherwise indicated, refers to the act of treating as "treating" is defined immediately above.

Unless otherwise defined herein, scientific and technical terms used in connection with the present invention shall have the meanings that are commonly understood by those of ordinary skill in the art. Generally, nomenclatures used in connection with, and techniques of, cell and tissue culture, molecular biology, immunology, microbiology, genetics and protein and nucleic acid chemistry and hybridization described herein are those well known and commonly used in the art.

The following terms, unless otherwise indicated, shall be understood to have the following meanings:

An "antibody" refers to an intact immunoglobulin or to an antigen-binding portion thereof that competes with the intact antibody for specific binding. Antigen-binding portions may be produced by recombinant DNA techniques or by enzymatic or chemical cleavage of intact antibodies. Antigen-binding portions include, inter alia, Fab, Fab', F(ab')2, Fv, dAb, and complementarity determining region (CDR) fragments, single-chain antibodies (scFv), chimeric antibodies, diabodies and polypeptides that contain at least a portion of an immunoglobulin that is sufficient to confer specific antigen binding to the polypeptide.

Immunoglobulin chains exhibit the same general structure of relatively conserved framework regions (FR) joined by three hypervariable regions, also called complementarity determining regions or CDRs. The CDRs from the two chains of each pair are aligned by the framework regions, enabling binding to a specific epitope. From N-terminus to C-terminus, both light and heavy chains comprise the domains FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4. The assignment of amino acids to each domain is in accordance with the definitions of Kabat Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, Md. (1987 and 1991)), or Chothia & Lesk J. Mol. Biol. 196:901-917 (1987); Chothia et al. Nature 342:878-883 (1989).

An "isolated antibody" is an antibody that (1) is not associated with naturally-associated components, including other naturally-associated antibodies, that accompany it in its native state, (2) is free of other proteins from the same species, (3) is expressed by a cell from a different species, or (4) does not occur in nature. Examples of isolated antibodies include an anti-IGF-IR antibody that has been affinity purified using IGF-IR is an isolated
antibody, an anti-IGF-IR antibody that has been synthesized by a hybridoma or other cell line in vitro, and a human anti-IGF-IR antibody derived from a transgenic mouse.

The term "chimeric antibody" refers to an antibody that contains one or more regions from one antibody and one or more regions from one or more other antibodies. In a preferred embodiment, one or more of the CDRs are derived from a human anti-IGF-IR antibody. In a more preferred embodiment, all of the CDRs are derived from a human anti-IGF-IR antibody. In another preferred embodiment, the CDRs from more than one human anti-IGF-IR antibodies are mixed and matched in a chimeric antibody. Further, the framework regions may be derived from one of the same anti-IGF-IR antibodies, from one or more different antibodies, such as a human antibody, or from a humanized antibody.

The term "epitope" includes any protein determinant capable of specific binding to an immunoglobulin or T-cell receptor. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar sides chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics. An antibody is said to specifically bind an antigen when the dissociation constant is \(\leq 1 \mu M \), preferably \(\leq 100 \) nM and most preferably \(\leq 10 \) nM.

As applied to polypeptides, the term "substantial identity" means that two peptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap weights, share at least 75% or 80% sequence identity, preferably at least 90% or 95% sequence identity, even more preferably at least 98% or 99% sequence identity. Preferably, residue positions that are not identical differ by conservative amino acid substitutions. A "conservative amino acid substitution" is one in which an amino acid residue is substituted by another amino acid residue having a side chain (R group) with similar chemical properties (e.g., charge or hydrophobicity). In general, a conservative amino acid substitution will not substantially change the functional properties of a protein. In cases where two or more amino acid sequences differ from each other by conservative substitutions, the percent sequence identity or degree of similarity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well-known to those of skill in the art. See, e.g., Pearson, Methods Mol. Biol. 24: 307-31 (1994), herein incorporated by reference. Examples of groups of amino acids that have side chains with similar chemical properties include 1) aliphatic side chains: glycine, alanine, valine, leucine and isoleucine; 2) aliphatic-hydroxyl side chains: serine and threonine; 3) amide-containing side chains: asparagine and glutamine; 4) aromatic side chains: phenylalanine, tyrosine, and tryptophan; 5) basic side chains: lysine, arginine, and histidine; and 6) sulfur-containing side chains are cysteine and methionine. Preferred conservative amino acids substitution groups are: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, glutamate-aspartate, and asparagine-glutamine.
Fragments or analogs of antibodies or immunoglobulin molecules can be readily prepared by those of ordinary skill in the art. Preferred amino- and carboxy-termini of fragments or analogs occur near boundaries of functional domains. Structural and functional domains can be identified by comparison of the nucleotide and/or amino acid sequence data to public or proprietary sequence databases. Preferably, computerized comparison methods are used to identify sequence motifs or predicted protein conformation domains that occur in other proteins of known structure and/or function. Methods to identify protein sequences that fold into a known three-dimensional structure are known. Bowie et al. Science 253:164 (1991). Thus, the foregoing examples demonstrate that those of skill in the art can recognize sequence motifs and structural conformations that may be used to define structural and functional domains in accordance with the invention.

Preferred amino acid substitutions are those which: (1) reduce susceptibility to proteolysis, (2) reduce susceptibility to oxidation, (3) alter binding affinity for forming protein complexes, (4) alter binding affinities, and (4) confer or modify other physicochemical or functional properties of such analogs. Analogs can include various mutations of a sequence other than the naturally-occurring peptide sequence. For example, single or multiple amino acid substitutions (preferably conservative amino acid substitutions) may be made in the naturally-occurring sequence (preferably in the portion of the polypeptide outside the domain(s) forming intermolecular contacts. A conservative amino acid substitution should not substantially change the structural characteristics of the parent sequence (e.g., a replacement amino acid should not tend to break a helix that occurs in the parent sequence, or disrupt other types of secondary structure that characterizes the parent sequence).

The term patient includes human and veterinary subjects.

Human antibodies avoid certain of the problems associated with antibodies that possess mouse or rat variable and/or constant regions. Therefore, in one embodiment, the invention provides humanized anti-IGF-IR antibodies. More preferred are fully human anti-human IGF-IR antibodies. Fully human anti-IGF-IR antibodies are expected to minimize the immunogenic and allergic responses intrinsic to mouse or mouse-derivatized monoclonal antibodies (Mabs) and thus to increase the efficacy and safety of the administered antibodies. The use of fully human antibodies can be expected to provide a substantial advantage in the treatment of chronic and recurring human diseases, such as inflammation and cancer, which may require repeated antibody administrations. In another embodiment, the invention provides an anti-IGF-IR antibody that does not bind complement.

In another aspect of the invention, the anti-IGF-IR antibodies bind to IGF-IR with high affinity. In one embodiment, the anti-IGF-IR antibody binds to IGF-IR with a K_d of 1×10^{-8} M or less. In a more preferred embodiment, the antibody binds to IGF-IR with a K_d of 1×10^{-9} M or less. In an even more preferred embodiment, the antibody binds to IGF-IR with a K_d of $5 \times$
10^{-10} \text{ M} \text{ or less. In another preferred embodiment, the antibody binds to IGF-IR with a } K_d \text{ or 1} x 10^{-10} \text{ M or less. In another preferred embodiment, the antibody binds to IGF-IR with substantially the same } K_d \text{ as an antibody selected from 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.9.2, 4.17.3 or 6.1.1. In another preferred embodiment, the antibody binds to IGF-IR with substantially the same } K_d \text{ as an antibody that comprises one or more CDRs from an antibody selected from 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.9.2, 4.17.3 or 6.1.1.}

The invention also employs an anti-IGF-IR antibody that binds the same antigen or epitope as a human anti-IGF-IR antibody. Further, the invention can employ an anti-IGF-IR antibody that cross-competes with a human anti-IGF-IR antibody. In a preferred embodiment, the human anti-IGF-IR antibody is 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.9.2, 4.17.3 or 6.1.1. In another preferred embodiment, the human anti-IGF-IR comprises one or more CDRs from an antibody selected from 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.9.2, 4.17.3 or 6.1.1.

The invention can also be practiced using an anti-IGF-IR antibody that comprises variable sequences encoded by a human κ gene. In a preferred embodiment, the variable sequences are encoded by either the Vκ A27, A30 or O12 gene family. In a preferred embodiment, the variable sequences are encoded by a human Vκ A30 gene family. In a more preferred embodiment, the light chain comprises no more than ten amino acid substitutions from the germline Vκ A27, A30 or O12, preferably no more than six amino acid substitutions, and more preferably no more than three amino acid substitutions. In a preferred embodiment, the amino acid substitutions are conservative substitutions.

In a preferred embodiment, the VL of the anti-IGF-IR antibody contains the same amino acid substitutions, relative to the germline amino acid sequence, as any one or more of the VL of antibodies 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.9.2, 4.17.3 or 6.1.1.

In another preferred embodiment, the light chain comprises an amino acid sequence that is the same as the amino acid sequence of the VL of 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.9.2, 4.17.3 or 6.1.1. In another highly preferred embodiment, the light chain comprises amino acid sequences that are the same as the CDR regions of the light chain of 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.9.2, 4.17.3 or 6.1.1. In another preferred embodiment, the light chain comprises an amino acid sequence from at least one CDR region of the light chain of 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.9.2, 4.17.3 or 6.1.1.

The present invention can also be carried out using an anti-IGF-IR antibody or portion thereof comprising a human heavy chain or a sequence derived from a human heavy chain. In one embodiment, the heavy chain amino acid sequence is derived from a human V\textsubscript{H} DP-35, DP-47, DP-70, DP-71 or VIV-4/4.35 gene family. In a preferred embodiment, the heavy chain amino acid sequence is derived from a human V\textsubscript{H} DP-47 gene family. In a more preferred embodiment, the heavy chain comprises no more than eight amino acid changes.
from germline V\textsubscript{H} DP-35, DP-47, DP-70, DP-71 or VIV-4/4.35, more preferably no more than six amino acid changes, and even more preferably no more than three amino acid changes.

In a preferred embodiment, the VH of the anti-IGF-IR antibody contains the same amino acid substitutions, relative to the germline amino acid sequence, as any one or more of the VH of antibodies 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.9.2, 4.17.3 or 6.1.1. In another embodiment, the amino acid substitutions are made in the same position as those found in any one or more of the VH of antibodies 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.17.3, 4.9.2 or 6.1.1, but conservative amino acid substitutions are made rather than using the same amino acid.

In another preferred embodiment, the heavy chain comprises an amino acid sequence that is the same as the amino acid sequence of the VH of 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.9.2, 4.17.3 or 6.1.1. In another highly preferred embodiment, the heavy chain comprises amino acid sequences that are the same as the CDR regions of the heavy chain of 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.9.2, 4.17.3 or 6.1.1. In another preferred embodiment, the heavy chain comprises an amino acid sequence from at least one CDR region of the heavy chain of 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.9.2, 4.17.3 or 6.1.1. In another preferred embodiment, the heavy chain comprises amino acid sequences from CDRs from different heavy chains. In a more preferred embodiment, the CDRs from different heavy chains are obtained from 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.9.2, 4.17.3 or 6.1.1.

In another embodiment, the invention employs an anti-IGF-IR antibody that inhibits the binding of IGF-I to IGF-IR or the binding of IGF-II to IGF-IR. In a preferred embodiment, the IGF-IR is human. In another preferred embodiment, the anti-IGF-IR antibody is a human antibody. In another embodiment, the antibody or portion thereof inhibits binding between IGF-IR and IGF-I with an IC\textsubscript{50} of no more than 100 nM. In a preferred embodiment, the IC\textsubscript{50} is no more than 10 nM. In a more preferred embodiment, the IC\textsubscript{50} is no more than 5 nM. The IC\textsubscript{50} can be measured by any method known in the art. Typically, an IC\textsubscript{50} can be measured by ELISA or RIA. In a preferred embodiment, the IC\textsubscript{50} is measured by RIA.

In another embodiment, the invention employs an anti-IGF-IR antibody that prevents activation of the IGF-IR in the presence of IGF-I. In another aspect of the invention, the antibody causes the downregulation of IGF-IR from a cell treated with the antibody. In a preferred embodiment, the antibody is selected 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.9.2, or 6.1.1, or comprises a heavy chain, light chain or antigen-binding region thereof.

Human antibodies can be produced by immunizing a non-human animal comprising of some or all of the human immunoglobulin locus with an IGF-IR antigen. In a preferred embodiment, the non-human animal is a XENOMOUSE™, which is an engineered mouse strain that comprises large fragments of the human immunoglobulin loci and is deficient in mouse antibody production. See, e.g., Green et al. Nature Genetics 7:13-21 (1994) and United States Patents 5,916,771, 5,939,598, 5,985,615, 5,998,209, 6,075,181, 6,091,001,

The IGF-IR antigen can be administered with a adjuvant to stimulate the immune response. Such adjuvants include complete or incomplete Freund's adjuvant, RIBI (muramyl dipeptides) or ISCOM (immunostimulating complexes). Such adjuvants may protect the polypeptide from rapid dispersal by sequestering it in a local deposit, or they may contain substances that stimulate the host to secrete factors that are chemotactic for macrophages and other components of the immune system. Preferably, if a polypeptide is being administered, the immunization schedule will involve two or more administrations of the polypeptide, spread out over several weeks.

The nucleic acid molecule encoding the variable region of the light chain may be derived from the A30, A27 or O12 Vκ gene. In a preferred embodiment, the light chain is derived from the A30 Vκ gene. In an even more preferred embodiment, the nucleic acid molecule encoding the light chain contains no more than ten amino acid changes from the germline A30 Vκ gene, preferably no more than six amino acid changes, and even more preferably no more than three amino acid changes.

In one embodiment, the antibody contains no greater than ten amino acid changes in either the VH or VL regions of the mutated anti-IGF-IR antibody compared to the anti-IGF-IR antibody prior to mutation. In a more preferred embodiment, there are no more than five amino acid changes in either the VH or VL regions of the mutated anti-IGF-IR antibody, more preferably no more than three amino acid changes. In another embodiment, there are no more than fifteen amino acid changes in the constant domains, more preferably, no more than ten amino acid changes, even more preferably, no more than five amino acid changes.

SEQ ID NOS: 2, 6, 10, 14, 18 and 22 provide the amino acid sequences of the variable regions of six anti-IGF-IR κ' light chains. SEQ ID NOS: 4, 8, 12, 16, 20 and 24 provide the amino acid sequences of the variable regions of six anti-IGF-IR heavy chains. SEQ ID NO: 26 depicts the amino acid sequence and SEQ ID NO: 25 depicts the nucleic acid
sequence encoding the constant region of the light chain of the anti-IGF-IR antibodies 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.9.2, 4.17.3 and 6.1.1. SEQ ID NO: 28 depicts the amino acid sequence and SEQ ID NO: 27 depicts the nucleic acid sequence encoding the constant region of the heavy chain of the anti-IGF-IR antibodies 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.9.2, 4.17.3 and 6.1.1. SEQ ID NOS: 30, 32, 34, 36 and 44 provide the amino acid sequences of the germline heavy chains DP-35, DP-47, DP-70, DP-71 and VIV-4, respectively. SEQ ID NO: 33 provides the nucleotide sequence of the germline heavy chain DP-70. SEQ ID NOS: 38, 40 and 42 provide the amino acid sequences of the three germline κ light chains from which the six anti-IGF-IR κ light chains are derived.

In another preferred embodiment, the invention relates to the use of anti-IGF-IR in the prevention of aging.

In another embodiment, the invention relates to pharmaceutical compositions for the treatment of a mammal that requires activation of IGF-IR, wherein the pharmaceutical composition comprises a therapeutically effective amount of an activating antibody of the invention and a pharmaceutically acceptable carrier. Pharmaceutical compositions comprising activating antibodies may be used to treat animals that lack sufficient IGF-I or IGF-II.

The anti-IGF-IR antibodies can be incorporated into pharmaceutical compositions suitable for administration to a subject. Typically, the pharmaceutical composition comprises an antibody and a pharmaceutically acceptable carrier. As used herein, "pharmaceutically acceptable carrier" includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible. Examples of pharmaceutically acceptable carriers include one or more of water, saline, phosphate buffered saline, dextrose, glycerol, ethanol and the like, as well as combinations thereof. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition. Pharmaceutically acceptable substances such as wetting or minor amounts of auxiliary substances such as wetting or emulsifying agents, preservatives or buffers, which enhance the shelf life or effectiveness of the antibody or antibody portion.

The pharmaceutical compositions may be in a variety of forms. These include, for example, liquid, semi-solid and solid dosage forms, such as liquid solutions (e.g., injectable and infusible solutions), dispersions or suspensions, tablets, pills, powders, liposomes and suppositories. The preferred form depends on the intended mode of administration and therapeutic application. Typical preferred compositions are in the form of injectable or infusible solutions, such as compositions similar to those used for passive immunization of humans with other antibodies. The preferred mode of administration is parenteral (e.g., intravenous, subcutaneous, intraperitoneal, intramuscular). In a preferred embodiment, the
antibody is administered by intravenous infusion or injection. In another preferred embodiment, the antibody is administered by intramuscular or subcutaneous injection.

Therapeutic compositions typically must be sterile and stable under the conditions of manufacture and storage. The composition can be formulated as a solution, microemulsion, dispersion, liposome, or other ordered structure suitable to high drug concentration. Sterile injectable solutions can be prepared by incorporating the anti-IGF-IR antibody in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof. The proper fluidity of a solution can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prolonged absorption of injectable compositions can be brought about by including in the composition an agent that delays absorption, for example, monostearate salts and gelatin.

The antibodies can be administered by a variety of methods known in the art, although for many therapeutic applications, the preferred route/mode of administration is intraperitoneal, subcutaneous, intramuscular, intravenous or infusion. As will be appreciated by the skilled artisan, the route and/or mode of administration will vary depending upon the desired results. In one embodiment, the antibodies can be administered as a single dose or may be administered as multiple doses.

In certain embodiments, the active compound may be prepared with a carrier that will protect the compound against rapid release, such as a controlled release formulation, including implants, transdermal patches, and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polynorthoesters, and polylactic acid. Many methods for the preparation of such formulations are patented or generally known to those skilled in the art. See, e.g., Sustained and Controlled Release Drug Delivery Systems, J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978.

In certain embodiments, the antibody may be orally administered, for example, with an inert diluent or an assimilable edible carrier. The compound (and other ingredients, if desired) may also be enclosed in a hard or soft shell gelatin capsule, compressed into tablets, or incorporated directly into the subject's diet. For oral therapeutic administration, the compounds may be incorporated with excipients and used in the form of ingestible tablets,
buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. To administer a compound of the invention by other than parenteral administration, it may be necessary to coat the compound with, or co-administer the compound with, a material to prevent its inactivation.

Supplementary active compounds can also be incorporated into the compositions. In certain embodiments, an anti-IGF-IR antibody is coformulated with and/or coadministered with one or more additional therapeutic agents, such as anti-emetics, cancer vaccines, analgesics, anti-vascular agents, and anti-proliferative agents.

The pharmaceutical composition may include a "therapeutically effective amount" or a "prophylactically effective amount" of an antibody or antibody portion of the invention. A "therapeutically effective amount" refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic result. A therapeutically effective amount of the antibody or antibody portion may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the antibody or antibody portion to elicit a desired response in the individual. A therapeutically effective amount is also one in which any toxic or detrimental effects of the antibody or antibody portion are outweighed by the therapeutically beneficial effects. A "prophylactically effective amount" refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically, since a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount will be less than the therapeutically effective amount.

Dosage regimens may be adjusted to provide the optimum desired response (e.g., a therapeutic or prophylactic response). For example, a single bolus may be administered, several divided doses may be administered over time or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. Pharmaceutical composition comprising the antibody or comprising a combination therapy comprising the antibody and one or more additional therapeutic agents may be formulated for single or multiple doses. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the active compound and the particular therapeutic or prophylactic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active compound for the treatment of sensitivity in
individuals. A particularly useful formulation is 5 mg/ml anti-IGF-IR antibody in a buffer of 20mM sodium citrate, pH 5.5, 140mM NaCl, and 0.2mg/ml polysorbate 80.

An exemplary, non-limiting range for a therapeutically or prophylactically effective amount of an antibody or antibody portion of the invention is 0.1-100 mg/kg, more preferably 0.5-50 mg/kg, more preferably 1-20 mg/kg, and even more preferably 1-10 mg/kg. It is to be noted that dosage values may vary with the type and severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that dosage ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition. In one embodiment, the therapeutically or prophylactically effective amount of an antibody or antigen-binding portion thereof is administered along with one or more additional therapeutic agents.

The antibody employed in the method of the invention can be labeled. This can be done by incorporation of a detectable marker, e.g., incorporation of a radiolabeled amino acid or attachment to a polypeptide of biotinyl moieties that can be detected by marked avidin (e.g., streptavidin containing a fluorescent marker or enzymatic activity that can be detected by optical or colorimetric methods). In certain situations, the label or marker can also be therapeutic. Various methods of labeling polypeptides and glycoproteins are known in the art and may be used. Examples of labels for polypeptides include, but are not limited to, the following: radioisotopes or radionuclides (e.g., 3H, 14C, 15N, 35S, 90Y, 99Tc, 111In, 125I, 131I), fluorescent labels (e.g., FITC, rhodamine, lanthanide phosphors), enzymatic labels (e.g., horseradish peroxidase, β-galactosidase, luciferase, alkaline phosphatase), chemiluminescent, biotinyl groups, predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags). In some embodiments, labels are attached by spacer arms of various lengths to reduce potential steric hindrance.

The antibodies employed in the present invention are preferably derived from cells that express human immunoglobulin genes. Use of transgenic mice is known in the art to produce such "human" antibodies. One such method is described in Mendez et al. Nature Genetics 15:146-156 (1997), Green and Jakobovits J. Exp. Med. 188:483-495 (1998), and U.S. Patent Application Serial 08/759,620 (filed December 3, 1996). The use of such mice to obtain human antibodies is also described in U.S. Patent Applications 07/466,008 (filed January 12, 1990), 07/610,515 (filed November 8, 1990), 07/919,297 (filed July 24, 1992), 07/922,649 (filed July 30, 1992), filed 08/031,801 (filed March 15,1993), 08/112,848 (filed August 27, 1993), 08/234,145 (filed April 28, 1994), 08/376,279 (filed January 20, 1995), 08/430,938 (filed April 27, 1995), 08/464,584 (filed June 5, 1995), 08/464,582 (filed June 5,

As noted above, the invention encompasses use of antibody fragments (included herein in the definition of "antibody"). Antibody fragments, such as Fv, F(ab')2, and Fab may be prepared by cleavage of the intact protein, e.g. by protease or chemical cleavage. Alternatively, a truncated gene is designed. For example, a chimeric gene encoding a portion of the F(ab')2 fragment would include DNA sequences encoding the CH1 domain and hinge region of the H chain, followed by a translational stop codon to yield the truncated molecule.

In one approach, consensus sequences encoding the heavy and light chain J regions may be used to design oligonucleotides for use as primers to introduce useful restriction sites into the J region for subsequent linkage of V region segments to human C region segments. C region cDNA can be modified by site directed mutagenesis to place a restriction site at the analogous position in the human sequence.

Expression vectors for use in obtaining the antibodies employed in the invention include plasmids, retroviruses, cosmids, YACs, EBV derived episomes, and the like. A convenient vector is normally one that encodes a functionally complete human CH or CL immunoglobulin sequence, with appropriate restriction sites engineered so that any VH or VL sequence can be easily inserted and expressed. In such vectors, splicing usually occurs between the splice donor site in the inserted J region and the splice acceptor site preceding the human C region, and also at the splice regions that occur within the human CH exons. Polyadenylation and transcription termination occur at native chromosomal sites downstream of the coding regions. The resulting chimeric antibody may be joined to any strong promoter, including retroviralLTRs, e.g. SV-40 early promoter, (Okayama et al. Mol. Cell. Bio. 3:280 (1983)), Rous sarcoma virus LTR (Gorman et al. P.N.A.S. 79:6777 (1982)), and moloney murine leukemia virus LTR (Grosschedl et al. Cell 41:885 (1985)); native Ig promoters, etc.

Antibodies that are generated for use in the invention need not initially possess a particular desired isotype. Rather, the antibody as generated can possess any isotype and can be isotype switched thereafter using conventional techniques. These include direct recombinant techniques (see e.g., U.S. Patent 4,816,397), and cell-cell fusion techniques (see e.g., U.S. Patent Application 08/730,639 (filed October 11, 1996).
As noted above, the effector function of the antibodies of the invention may be changed by isotype switching to an IgG1, IgG2, IgG3, IgG4, IgD, IgA, IgE, or IgM for various therapeutic uses. Furthermore, dependence on complement for cell killing can be avoided through the use of bispecifics, immunotoxins, or radiolabels, for example.

Bispecific antibodies can be generated that comprise (i) two antibodies: one with a specificity for IGF-IR and the other for a second molecule (ii) a single antibody that has one chain specific for IGF-IR and a second chain specific for a second molecule, or (iii) a single chain antibody that has specificity for IGF-IR and the other molecule. Such bispecific antibodies can be generated using well known techniques, e.g., Fanger et al. Immunol Methods 4:72-81 (1994), Wright and Harris, supra, and Traunecker et al. Int. J. Cancer (Suppl.) 7:51-52 (1992).

The antibodies employed can be modified to act as immunotoxins by conventional techniques. See e.g., Vitetta Immunol Today 14:252 (1993). See also U.S. Patent 5,194,594. Radiolabeled antibodies can also be prepared using well-known techniques. See e.g., Junghans et al. in Cancer Chemotherapy and Biotherapy 655-686 (2d edition, Chafner and Longo, eds., Lippincott Raven (1996)). See also U.S. Patents 4,681,581, 4,735,210, 5,101,827, 5,102,990 (RE 35,500), 5,648,471, and 5,697,902.

Particular antibodies useful in practice of the invention include those described in WO 02/053596, which further describes antibodies 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.9.2, and 4.17.3. As disclosed in that published application, hybridomas producing these antibodies were deposited in the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110-2209, on December 12, 2000 with the following deposit numbers:

<table>
<thead>
<tr>
<th>Hybridome</th>
<th>Deposit No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.12.1</td>
<td>PTA-2792</td>
</tr>
<tr>
<td>2.13.2</td>
<td>PTA-2788</td>
</tr>
<tr>
<td>2.14.3</td>
<td>PTA-2790</td>
</tr>
<tr>
<td>3.1.1</td>
<td>PTA-2791</td>
</tr>
<tr>
<td>4.9.2</td>
<td>PTA-2789</td>
</tr>
</tbody>
</table>
These antibodies are either fully human IgG2 or IgG4 heavy chains with human kappa light chains. In particular the invention concerns use of antibodies having amino acid sequences of these antibodies.

Antibodies employed in the invention preferably possess very high affinities, typically possessing Kds of from about 10^{-8} through about 10^{-11} M, when measured by either solid phase or solution phase.

Antibodies used in the present invention can be expressed in cell lines other than hybridoma cell lines. Sequences encoding the cDNAs or genomic clones for the particular antibodies can be used for transformation of suitable mammalian or nonmammalian host cells. Transformation can be by any known method for introducing polynucleotides into a host cell, including, for example packaging the polynucleotide in a virus (or into a viral vector) and transducing a host cell with the virus (or vector) or by transfection procedures known in the art, as exemplified by U.S. Patents 4,399,216, 4,912,040, 4,740,461, and 4,959,455. Methods for introduction of heterologous polynucleotides into mammalian cells are well known in the art and include, but are not limited to, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, particle bombardment, encapsulation of the polynucleotide(s) in liposomes, peptide conjugates, dendrimers, and direct microinjection of the DNA into nuclei.

Mammalian cell lines available as hosts for expression are well known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to Chinese hamster ovary (CHO) cells, NS0, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), and human hepatocellular carcinoma cells (e.g., Hep G2). Non-mammalian cells can also be employed, including bacterial, yeast, insect, and plant cells. Site directed mutagenesis of the antibody CH2 domain to eliminate glycosylation may be preferred in order to prevent changes in either the immunogenicity, pharmacokinetic, and/or effector functions resulting from non-human glycosylation. The glutamine synthase system of expression is discussed in whole or part in connection with European Patents 216 846, 256 055, and 323 997 and European Patent Application 89303964.4.

Antibodies for use in the invention can also be produced transgenically through the generation of a mammal or plant that is transgenic for the immunoglobulin heavy and light chain sequences of interest and production of the antibody in a recoverable form therefrom. Transgenic antibodies can be produced in, and recovered from, the milk of goats, cows, or other mammals. See, e.g., U.S. Patents 5,827,690, 5,756,687, 5,750,172, and 5,741,957.
The antibody, with or without an additional agent, may be administered once, but more preferably is administered multiple times. The antibody may be administered from three times daily to once every six months. The administering may be on a schedule such as three times daily, twice daily, once daily, once every two days, once every three days, once weekly, once every two weeks, once every month, once every two months, once every three months and once every six months. The antibody may be administered by an oral, mucosal, buccal, intranasal, inhalable, intravenous, subcutaneous, intramuscular, parenteral, intratumor or topical route.

In certain embodiments, the antibody may be administered in an aerosol or inhaleable form. Dry aerosol in the form of finely divided solid particles that are not dissolved or suspended in a liquid are also useful in the practice of the present invention. The pharmaceutical formulations of the present invention may be administered in the form of an aerosol spray using for example, a nebulizer such as those described in U.S. Pat. Nos. 4,624,251 issued Nov. 25, 1986; 3,703,173 issued Nov. 21, 1972; 3,561,444 issued Feb. 9, 1971 and 4,635,627 issued Jan. 13, 1971.

Hubbard, R. C. et al. (Proc. Natl. Acad. Sci. (USA) 86: 680-684, 1989) disclose the administration of a relatively large protein alpha.sub.1 -antitrypsin (AAT) via the pulmonary epithelial surface for the treatment of alpha anti-trypsin deficiency. AAT, a 45,000 dalton molecular weight single-chain polypeptide that functions as an inhibitor of neutrophil elastase was administered to sheep in an aerosol form. Aerosolized AAT remained fully functional and intact in the tissues of the mammal and diffused across the alveolar epithelium, as evidenced by the presence of AAT in the lung, lymph and blood tissue.

The antibody may be administered at a site distant from the site of the tumor. The antibody may also be administered continuously via a minipump. The antibody may be administered once, at least twice or for at least the period of time until the condition is treated, palliated or cured. The antibody generally will be administered for as long as the tumor is present provided that the antibody causes the tumor or cancer to stop growing or to decrease in weight or volume. The antibody will generally be administered as part of a pharmaceutical composition as described supra. The dosage of antibody will generally be in the range of 0.1-100 mg/kg, more preferably 0.5-50 mg/kg, more preferably 1-20 mg/kg, and even more preferably 1-10 mg/kg. The serum concentration of the antibody may be measured by any method known in the art. The antibody may also be administered prophylactically in order to prevent a cancer or tumor from occurring. This may be especially useful in patients that have a "high normal" level of IGF-I because these patients have been shown to have a higher risk of developing common cancers. See Rosen et al., supra.

Co-administration of the antibody with an additional therapeutic agent (combination therapy) encompasses administering a pharmaceutical composition comprising the anti-IGF-
IR antibody and the additional therapeutic agent and administering two or more separate pharmaceutical compositions, one comprising the anti-IGF-IR antibody and the other(s) comprising the additional therapeutic agent(s). Further, although co-administration or combination therapy generally means that the antibody and additional therapeutic agents are administered at the same time as one another, it also encompasses instances in which the antibody and additional therapeutic agents are administered at different times. For instance, the antibody may be administered once every three days, while the additional therapeutic agent is administered once daily. Alternatively, the antibody may be administered prior to or subsequent to treatment of the disorder with the additional therapeutic agent. Similarly, administration of the anti-IGF-IR antibody may be administered prior to or subsequent to other therapy, such as radiotherapy, chemotherapy, photodynamic therapy, surgery or other immunotherapy.

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

EXAMPLE I: Effects of the Antibodies of the Invention on IGF-IR in vivo

We induced tumors in athymic mice according to published methods (V.A. Pollack et al., "Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358,774: Dynamics of receptor inhibition in situ and antitumor effects in athymic mice," J. Pharmacol. Exp. Ther. 291:739-748 (1999). Briefly, we injected IGF-IR-transfected NIH-3T3 cells (5x10^3) subcutaneously into 3-4 week-old athymic (nu/nu) mice with 0.2 ml of Matrigel preparation. We then injected mice with an antibody of the invention intraperitoneally after established (i.e. approximately 400 mm^3) tumors formed.

After 24 hours, we extracted the tumors, homogenized them and determined the level of IGF-IR. To determine IGF-IR levels, we diluted the SC-713 antibody in Blocking buffer to a final concentration of 4 μg/ml and added 100 μl to each well of a Reacti-Bind Goat anti-rabbit (GAR) coated plate (Pierce). We incubated the plates at room temperature for 1 hour with shaking and then washed the plates five times with wash buffer. We then weighed tumor samples that had been prepared as described above and homogenized them in lysis buffer (1 ml/100 mg). We diluted 12.5 μl of tumor extract with lysis buffer to a final volume of 100 μl and added this to each well of a 96-well plate. We incubated the plates at room temperature with shaking for 1-2 hours and then washed the plates five times with Wash buffer. We then added 100μl of biotinylated anti-IGF-IR antibody in Blocking buffer to each well and incubated
at room temperature with shaking for 30 minutes. We then washed the plates five times with wash buffer. We developed the plates probed with anti-IGF-IR antibody by adding 100 μl of streptavidin-HRP diluted in Blocking buffer to each well, incubating at room temperature with shaking for 30 minutes. We developed the plates by adding 100 μl of the TMB microwell substrate per well and stopped color development with the addition 100 μl 0.9 M H₂SO₄. We then quantitated the signal by measuring the OD₄₅₀nm. The signal was normalized to total protein.

We observed that intraperitoneal injection of an antibody of this invention, particularly 2.13.2 and 4.9.2, resulted in inhibition of IGF-IR activity as measured by a decrease of both IGF-IR phosphotyrosine (phosphorylated IGF-IR) and total IGF-IR protein (Figure 4). Furthermore, this inhibition was responsive to the dose of antibody injected (Figure 4). These data demonstrate that the antibodies of the invention are able to target the IGF-IR in vivo in a manner analogous to what we observed in vitro.

EXAMPLE II: Growth Inhibition (TGI) of 3T3/IGF-IR Cell Tumors

We tested whether anti-IGF-IR antibodies of the invention would function to inhibit tumor growth. We induced tumors as described above (Example I) and when established, palpable tumors formed (i.e. 250 mm³, within 6-9 days), we treated the mice with a single, 0.20 ml dose of antibody by intraperitoneal injection. We measured tumor size by Vernier calipers across two diameters every third day and calculated the volume using the formula (length x [width]²)/2 using methods established by Geran, et al., "Protocols for screening chemical agents and natural products against animal tumors and other biological systems," Cancer Chemother. Rep. 3:1-104.

When we performed this analysis with an antibody of the invention, we found that a single treatment with antibody 2.13.2 alone inhibited the growth of IGF-IR-transfected NIH-3T3 cell-induced tumors (Figure 5).

Detailed Description Of The Drawings

Figs. 1A-1C show alignments of the nucleotide sequences of the light chain variable regions from six human anti-IGF-IR antibodies to each other and to germline sequences. Fig. 1A shows the alignment of the nucleotide sequences of the variable region of the light chain (VL) of antibodies 2.12.1 (SEQ ID NO: 1), 2.13.2 (SEQ ID NO: 5), 2.14.3 (SEQ ID NO: 9) and 4.9.2 (SEQ ID NO: 13) to each other and to the germline Vκ A30 sequence (SEQ ID NO: 39). Fig. 1B shows the alignment of the nucleotide sequence of VL of antibody 4.17.3 (SEQ ID NO: 17) to the germline Vκ O12 sequence (SEQ ID NO: 41). Fig. 1C shows the alignment of the nucleotide sequence of VL of antibody 6.1.1 (SEQ ID NO: 21) to the germline Vκ A27 sequence (SEQ ID NO: 37). The alignments also show the CDR regions of the VL from each antibody. The consensus sequences for Figs. 1A-1C are shown in SEQ ID NOS: 53-55, respectively.
Figs. 2A-2D show alignments of the nucleotide sequences of the heavy chain variable regions from six human anti-IGF-IR antibodies to each other and to germline sequences. Fig. 2A shows the alignment of the nucleotide sequence of the VH of antibody 2.12.1 (SEQ ID NO: 3) to the germline VH DP-35 sequence (SEQ ID NO: 29). Fig. 2B shows the alignment of the nucleotide sequence of the VH of antibody 2.14.3 (SEQ ID NO: 11) to the germline VIV-4/4.35 sequence (SEQ ID NO: 43). Figs. 2C-1 and 2C-2 show the alignments of the nucleotide sequences of the VH of antibodies 2.13.2 (SEQ ID NO: 7), 4.9.2 (SEQ ID NO: 15) and 6.1.1 (SEQ ID NO: 23) to each other and to the germline VH DP-47 sequence (SEQ ID NO: 31). Fig. 2D shows the alignment of the nucleotide sequence of the VH of antibody 4.17.3 (SEQ ID NO: 19) to the germline VH DP-71 sequence (SEQ ID NO: 35). The alignment also shows the CDR regions of the antibodies. The consensus sequences for Figs. 2A-2D are shown in SEQ ID NOS: 56-59, respectively.

Fig. 3A shows the number of mutations in different regions of the heavy and light chains of 2.13.2 and 2.12.1 compared to the germline sequences. Figs. 3A-D show alignments of the amino acid sequences from the heavy and light chains of antibodies 2.13.2 and 2.12.1 with the germline sequences from which they are derived. Fig. 3B shows an alignment of the amino acid sequence of the heavy chain of antibody 2.13.2 (SEQ ID NO: 45) with that of germline sequence DP-47(3-23)/D6-19/JH6 (SEQ ID NO: 46). Fig. 3C shows an alignment of the amino acid sequence of the light chain of antibody 2.13.2 (SEQ ID NO: 47) with that of germline sequence A30/Jk2 (SEQ ID NO: 48). Fig. 3D shows an alignment of the amino acid sequence of the heavy chain of antibody 2.12.1 (SEQ ID NO: 49) with that of germline sequence DP-35(3-11)/D3-3/JH6 (SEQ ID NO: 50). Fig. 3E shows an alignment of the amino acid sequence of the light chain of antibody 2.12.1 (SEQ ID NO: 51) with that of germline sequence A30/Jk1 (SEQ ID NO: 52). For Figures 3B-E, the signal sequences are in italic, the CDRs are underlined, the constant domains are bold, the framework (FR) mutations are highlighted with a plus sign (+) above the amino acid residue and CDR mutations are highlighted with an asterisk above the amino acid residue.

Figure 4 shows that anti-IGF-IR antibodies 2.13.2 and 4.9.2 reduce IGF-IR phosphotyrosine signal in 3T3-IGF-IR tumors.

Figure 5 shows that anti-IGF-IR antibody 2.13.2 inhibits 3T3-IGF-IR tumor growth in vivo.
SEQUENCE LISTING

<C110> Cohen, Bruce D.
 Bedian, Vahe
 Obrocea, Mihail
 Gomez-Navarro, Jesus
 Cusmano, John D.
 Wang, Huifen F.
 Page, Kelly L.
 Guyot, Deborah J.

<C120> USES OF ANTI-INSULIN-LIKE GROWTH FACTOR I RECEPTOR ANTIBODIES

<C130> PC25232A

<C140>

<C141>

<C160> 60

<C170> PatentIn Ver. 2.1

<C210> 1

<C211> 291

<C212> DNA

<C213> Homo sapiens

<C400> 1
tgcatctgta gtagacagag ttcacctcac tgtccgggca agtcaggaca ttagacgtga 60
ttttagcctgg tatcagcaca aaccaggga aagtctctag cgctgtcatc atgctgcacat 120
cgggttacaa aagtggtgccc cattcaagtt cagcggtcag tggattggga cagaatccac 180
tctcacaatc acagcgtggc agcctgaga ttttgaact tattactgtc taccgcataa 240
taatattctt ccgacgttgc gccaagggac caggtggaa atcatcagaa c 291

<C210> 2

<C211> 136

<C212> PRT

<C213> Homo sapiens

<C400> 2
Ala Ser Val Gly Asp Arg Val Thr Phe Thr Cys Arg Ala Ser Gln Asp 1 5 10 15
Ile Arg Arg Asp Leu Gly Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro 20 25 30
Lys Arg Leu Ile Tyr Ala Ala Ser Arg Leu Gln Ser Gly Val Pro Ser 35 40 45
Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser 50 55 60
Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln His Asn 65 70 75 80
Asn Tyr Pro Arg Thr Phe Gly Gln Gly Thr Glu Val Glu Ile Ile Arg
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln</td>
<td>90</td>
</tr>
<tr>
<td>100</td>
<td>105</td>
<td>110</td>
</tr>
<tr>
<td>5</td>
<td>Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr</td>
<td>115</td>
</tr>
<tr>
<td>130</td>
<td>135</td>
<td></td>
</tr>
</tbody>
</table>

Sequence:

```plaintext
<210> 3
<211> 352
<212> DNA
<213> Homo sapiens

<400> 3
gggagccctg gtcagccttg gaggtctctg agactctctc tgtgctgcctc tggattcact 60
ttcagtgact actatatgag ctggatccgc caggctccag ggaagggct ggaatgggtt 120
tcatacttta tagtagtagg tagttaccatc gacacccagcac tctctgataa gggcgcattc 180
acacctctca gggacaagcc caagaactca ctgtatctgc aatatgaacag cctgagagcc 240
gagacaccgg cctgatattat cttgtccaga gatggagtgaa aactacttttt tactactactc 300
tactacggta tggacgtctct ggcccaaggg accacgtca cctctctctc ag 352
```

Sequence:

```plaintext
<210> 4
<211> 174
<212> PRT
<213> Homo sapiens

<400> 4
Gly Arg Leu Gly Glu Ala Trp Arg Ser Leu Arg Leu Ser Cys Ala Ala | 1 | 5 | 10 | 15 |
| Ser Gly Phe Thr Phe Ser Asp Tyr Tyr Met Ser Trp Ile Arg Glu Ala | 20 | 25 | 30 | |
| Pro Gly Lys Gly Leu Glu Trp Val Ser Tyr Ile Ser Ser Ser Gly Ser | 35 | 40 | 45 |
| Thr Arg Asp Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg | 50 | 55 | 60 |
| Asp Asn Ala Lys Asn Ser Leu Tyr Leu Glu Ltn Met Asn Ser Leu Arg Ala | 65 | 70 | 75 | 80 |
| Glu Asp Thr Ala Val Tyr Tyr Cys Val Arg Asp Gly Val Glu Thr Thr | 85 | 90 | 95 |
| Phe Tyr Tyr Tyr Tyr Gly Met Asp Val Trp Gly Gln Gly Thr Thr | 100 | 105 | 110 |
| Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu | 115 | 120 | 125 |
| Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys |
```
Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser
145 150 155 160
Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ser Cys Ala
165 170

<210> 5
<211> 322
<212> DNA
<213> Homo sapiens

<400> 5
gacatccaga tgacccagtt tccatcctcc ctgtctgcag ctgtaggaga cagagtcacc 60
atcatctgcc gggcaagtca gggcattaga aatgatcag gctgtgtcag gcagaaactca 120
gggaaagcc ctaagcgcct gatctatgtc gcatacgcgtt tcgacagagg ggtcccataca 180
aggttcagcg gcagttgtgc agggcagaca ttcatcctca caatcgcag cctgcagcct 240
gaagattttg caacatttta ctgcttccaa cataatgtgt acccggtcag ttttggccag 300
gggaccaagc tggagatcaaa ac 322

<210> 6
<211> 107
<212> PRT
<213> Homo sapiens

Asp Ile Gln Met Thr Gln Phe Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Arg Asn Asp
20 25 30
Leu Gly Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile
35 40 45
Tyr Ala Ala Ser Arg Leu His Arg Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln His Asn Ser Tyr Pro Cys
85 90 95
Ser Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys
100 105

<210> 7
<211> 375
<212> DNA
<213> Homo sapiens

<400> 7
agtgccagct gtttgagttt ggggagggct tgggtacagcc tggggtctc ctggagcttct 60
cctgtacagc ccttttgtttt acctttgagc gatagccattg aacctgggttc ggcagggcttc 120
cagggagaag ggtgaggtgg gtttgcagaata ctattgttac agtggttacc acatttcaag 180
cagactcgcgg gaagggcggg ttaccatcc ccacggagc acctttggttctc 240
tgcaatgaa cagcctgtga ggcggagaca cggcgcgtcata ttactgtttcc aagaatctttg 300
gttggctca gctttactac tactactagc gttgacgcct cttgggctaca gggaccaggg 360
tcagcgcgcc tttcagcagc 375

<210> 8
<211> 124
<212> PRT
<213> Homo sapiens

Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser 1
 5 10 15
Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Thr Phe Ser Ser Tyr Ala 20
 25 30
Met Asn Trp Val Arg Gln Ala Pro Gly Lys Leu Glu Trp Val Ser 35
 40 45
Ala Ile Ser Gly Ser Gly Gly Thr Thr Phe Tyr Ala Asp Ser Val Lys 50
 55 60
Gly Arg Phe Thr Ile Ser Arg Asp Ser Arg Thr Thr Leu Tyr Leu 65
 70 75 80
Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 90
 95
Lys Asp Leu Gly Trp Ser Asp Ser Tyr Tyr Tyr Tyr Gly Met Asp 100
 105 110
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser 115
 120

<210> 9
<211> 302
<212> DNA
<213> Homo sapiens

<400> 9
tcctctctgt ctgcatctgt agagacaga gtccctctca cttgcgggct aagtcagacg ac 60
attagacgag atttagggctg gtatccagaa aacccagaga aagctctctaa ggcgctggtctc 120
tatgcgtcat ccggccttaca aagttgccgt ccatacaagt ttctgcggcctc tgcagctgcttct 180
tcagaaactc ctctcataat cagcgccgtg cagcctgagct attttggacaat ttattagcgct 240
cgcaccata ataattatcc ttggagccttc ggccaaggga cgcagggctga aacatcatacga 300
ac 302

<210> 10
<211> 100
<212> PRT
<table>
<thead>
<tr>
<th>Line</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Phe Thr Cys Arg</td>
</tr>
<tr>
<td>10</td>
<td>Ala Ser Gln Asp Ile Arg Arg Asp Leu Gly Trp Tyr Gln Gln Lys Pro</td>
</tr>
<tr>
<td>15</td>
<td>Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Arg Leu Gln Ser</td>
</tr>
<tr>
<td>20</td>
<td>Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr</td>
</tr>
<tr>
<td>25</td>
<td>Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys</td>
</tr>
<tr>
<td>30</td>
<td>Leu Gln His Asn Asn Tyr Pro Arg Thr Phe Gly Gln Gly Thr Glu Val</td>
</tr>
<tr>
<td>35</td>
<td>Glu Ile Ile Arg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>15</td>
<td>DNA</td>
</tr>
<tr>
<td>20</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>25</td>
<td>DNA</td>
</tr>
<tr>
<td>30</td>
<td>DNA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Gly Pro Gly Leu Val Lys Pro Ser Glu Thr Leu Ser Leu Thr Cys Thr</td>
</tr>
<tr>
<td>10</td>
<td>Val Ser Gly Gly Ser Ile Ser Asn Tyr Tyr Trp Ser Trp Ile Arg Gln</td>
</tr>
<tr>
<td>15</td>
<td>Pro Ala Gly Lys Leu Glu Trp Ile Gly Arg Ile Tyr Thr Ser Gly</td>
</tr>
<tr>
<td>20</td>
<td>Ser Pro Asn Tyr Asn Pro Ser Leu Lys Ser Arg Val Thr Met Ser Val</td>
</tr>
</tbody>
</table>
Asp Thr Ser Lys Asn Gln Phe Ser Leu Lys Leu Asn Ser Val Thr Ala
65 70 75 80

Ala Asp Thr Ala Val Tyr Tyr Cys Ala Val Thr Ile Phe Gly Val Val
85 90 95

Ile Ile Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
100 105 110

<210> 13
<211> 322
<212> DNA
<213> Homo sapiens

<400> 13
gacatccaga tgacccagtc tccatcctcc cttgctgccat cttggtaggaga cagagtcacc 60
atcacttgcc gggcaagtcga gggcattaga aagttgattag gctggttcca gcgaagacca 120
ggggaagccc ctaagcgccct gatctatgct gcatccaaat taccacctgtg ggtcccatca 180
agttcagcgc gcagttgacag tgggacagaa ttcatcttcta caatcagccg cctgcagcct 240
gaagatttgc caacttattaa ctgtctacag cataatgttt acctcttcac tttcgggaga 300
gggaccaaggggagatcaag ac 322

<210> 14
<211> 107
<212> PRT
<213> Homo sapiens

<400> 14
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
35 1 5 10 15
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Arg Ser Asp
20 25 30 1
Leu Gly Trp Phe Gln Gln Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile
35 40 45
Tyr Ala Ala Ser Lys Leu His Arg Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Arg Leu Gln Pro
65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln His Asn Ser Tyr Pro Leu
85 90 95
Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
100 105

<210> 15
<211> 376
<212> DNA
<213> Homo sapiens

<400> 15
gagttgcagc tggtgagtc tgggagggc ttggatcacg ctggggttgt ctctgagctt 60
tcctgtccag cctcttgatt cacatctgg agctatgcca tgactgggg gggccaggtt 120
caggggaagg gggagtggatg ggttcggcgatt attagttgta gttggtgtat cacataacctgctgt 180
gccagctcgc tgaagggggcg gtcacccact acacagagaa accgctgtat 240
cgcaaatgaa acacgctggag gcggcaagttc ataattgttc gaagatctgt 300
ggctacgggt aacttacta ctactactac ggtatggacc tctgggcagga agggaccagcag 360
gtccagtcct 376

<210> 16
<211> 125
<212> PRT
<213> Homo sapiens

<400> 16
Glu Val Gln Leu Leu Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Ala Ile Ser Gly Ser Gly Gly Ile Thr Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Lys Asp Leu Gly Tyr Gly Asp Phe Tyr Tyr Tyr Gly Met
100 105 110
Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120 125

<210> 17
<211> 279
<212> DNA
<213> Homo sapiens

<400> 17
caggagcag agtcacctc actgtgcggg caagtcagc cattagttcc ttgggaaat 60
ggtcagcga gaaaccggg aagccctcta aacctctgtt ccagttgca aacctgcttac 120
aaggtggggt ccacatcagg ttcaggtcgg gttggtctgg gacagatttc acctcaccaca 180
tcgatggtt gcaacctgaga gatttggcag cttactactg tcaacagagtt gattaatgcc 240
cactcacttt cggcggaggg accaaggtg agatcaac 279
<210> 18
<211> 92
<212> PRT
<213> Homo sapiens

5

<400> 18
Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Thr
1 5 10 15

Phe Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu
20 25 30

Ile His Val Ala Ser Ser Leu Gln Gly Gly Val Pro Ser Arg Phe Ser
35 40 45

Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln
50 55 60

Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Asn Ala Pro
65 70 75 80

Leu Thr Phe Gly Gly Thr Lys Val Glu Ile Lys
85 90

25

<210> 19
<211> 341
<212> DNA
<213> Homo sapiens

30

<400> 19
cccaagacagt gttgagcctt ccggagacct gtccctcaccc tcgactgctct ccgggtggtc 60
cagcatgctt tacatcggga gttggtatcag gcaccccccc gggaaaggag ctggagcgtaat 120
tggggtactc tattacagct gcggacacca ctacacccct tcccctcaaga gttgagtctac 180
catatcagta gacacgctca agaaccaggt cttcctggaag ctggagtcctcg tgacgctgtc 240
ggacacgctc gtgtatcct tactgcccagcag gtatcagctct ctgcctactc actacggtat 300
ggacgtctgg ggcgaagggc ccagcgctcag cgctctctca g341

40

<210> 20
<211> 113
<212> PRT
<213> Homo sapiens

45

<400> 20
Pro Gly Leu Val Lys Pro Ser Glu Thr Leu Ser Leu Thr Cys Thr Val
1 5 10 15

Ser Gly Gly Ser Ile Ser Ser Tyr Tyr Trp Ser Trp Ile Arg Gln Pro
20 25 30

Pro Gly Lys Gly Leu Glu Trp Ile Gly Tyr Ile Tyr Ser Gly Ser
35 40 45

Thr Asn Tyr Asn Pro Ser Leu Lys Ser Arg Val Thr Ile Ser Val Asp
50 55 60
Thr Ser Lys Asn Gln Phe Ser Leu Lys Leu Ser Ser Ser Val Thr Ala Ala
 65 70 75 80
Asp Thr Ala Val Tyr Tyr Cys Ala Arg Thr Tyr Ser Ser Ser Phe Tyr
 85 90 95
Tyr Tyr Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser
 100 105 110
 10 Ser

<210> 21
<211> 274
<212> DNA
<213> Homo sapiens

<400> 21
agagccaccc tctctctgtag ggccagtcag agtgtcgcc gcaggtacct agccttgtac 60
cagcagaaac ctgcccaggg tcccaagctc ctcatctctag gtgcattcag cagggcact 120
ggcctccac acaagttgct ccagcattgg cctggatcag actctactct cacacattgc 180
gacctggcc ctagaagattc tgcagcgttt tacgttagc agtatgtctg ttcactcgct 240
gcgtgccc aagggaccaat gtggaaactc aacc 274

30 22 91
<212> PRT
<213> Homo sapiens

<400> 22
Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Arg Gly Arg Tyr
 1 5 10 15
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile
 20 25 30
Tyr Gly Ala Ser Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly
 35 40 45
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro
 50 55 60
Glu Asp Phe Ala Val Phe Tyr Cys Gln Gln Tyr Gly Ser Ser Pro Arg
 65 70 75 80
Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Gly
 85 90

50 23
<212> DNA
<213> Homo sapiens

<400> 23
gaggtgcagc tgtaggagtc tggggagggc tgtgtacagc tgggggggtc cctgagactc 60
tcctgtcagc cctgtggtatt cacctttagc agctagcaca tgagctgggt cggccaggct 120
caggaggaag ggctgagagt gggtcaggtt attac tgtaa gtaatactac 180
gcagaccccg tgaaggggccc gttcaccatc tccagagaca atcngaagaa caagctgttat 240
cagcagaggg cagccctgag acggcgggt atattaacgg ggtag gtaatagc 300
gggcactaggg tgaattagc tgtgtgcagc cctgtgggggc agggacccct ggtaacgtg 360
tcctcag 367

<210> 24
<211> Homo sapiens

<400> 24
Glu Val Gln Leu Leu Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
 SER Gly Ile Thr Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val
25 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Cys
30 85 90
ala Lys Asp Pro Gly Thr Val Ile Met Ser Trp Asp Pro Trp
35 100 105 110
Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 25
<211> Homo sapiens

<400> 25
gaactgtgagc tgcacatct gttccatcct tccgcccacatcg tagtgaatagt ccctgtggtg 60
gaatgccttc tgtgtgtgca ctgctgaata acctctatcc cagagaggc aagatcacgt 120
gagaagttgga caacgctcct caatcgggta acctccagga gagtgtcaca gaggccgaga 180
gcagagcag cacacgctagc cctcagcagc cctcagctgct gacgctgata gactacgaga 240
aacaccaagtt ctaccccttg gaagtcaccc atcagggccc ggtctgcgcc gcacaaaga 300
gcttcaacac gggagagtgt 320

<210> 26
<211> Homo sapiens

<400> 26

<213> Homo sapiens

<400> 26
Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln
5 1 5 10 15
Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr
20 25 30
Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser
35 40 45
Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr
50 55 60
Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Tyr Glu Lys
65 70 75 80
His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro
85 90 95
Val Thr Lys Ser Phe Asn Arg Gly Gly Cys
100 105

<210> 27
<211> 978
<212> DNA
<213> Homo sapiens

<400> 27
gctcaccacca agggccacac ggtctttcccc ctggcgcctc gtcctcagag cacctccgag 60
agccagcggg ccctggcgctg cctggtcagag gactacctcc cccagacggt gacggtgtcgg 120
tggaacctcag ggccttgctc cgcagccgtc caccaagccgc acatccacgctc aagccttaa 180
ggacacctact ccctccagag ccctggctgag gcacattcctt gacagccagcc 240
tacacccaatc gatagatcga ccagcagacc aacaccaaggg tggccgctgc gataa 300
aatgttgtgtc tcgagtctcc gcacctgcctg cgggccgagc gtcgtcgtc 360
ttcctcccccc cacaacccctc atgtctcccc gcacccctcttc ggtcctgctg 420
gttggtttcct cacggcctca gcctgaggag tcatactggttg tgggacgcgc 480
gtggtgagtgtc ataattccca gacacagca gggagggggg gttgctctccg 540
gtcgcgagtct tcctccagcg gctgacctcg gactgtctca gacagcagcc 600
aaggttccag ccacagcctc cccagccagc tctgagaact cctctctcgaa acacccagt 660
cagccgagca aacccagagt tccacccagt cccctcctgc cggggcagat caccaaaaac 720
caggtctcgg ctggctggcg gctgaacgcc gtttaacccc gcgacggctc gctgcttg 780
gagacagcttg gcagccgctgc gaaagctcag ccctctctgc gacgcttcctgt gacgcttcctc 840
ggtccacacgcc gatgtctgcccc gacgctcgtc ggtgagcctc gacgctcctgc 900
gtttctctcagt cttctccagcg cagcggcgag ccagccccac ggtggccgctgc 960
tccctctctcct ccgggtacac 978

<210> 28
<211> 326
<212> PRT
<213> Homo sapiens

<400> 28
Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg
<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr</td>
<td>20</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser</td>
<td>50</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>Leu Ser Ser Val Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr</td>
<td>65</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys</td>
<td>85</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>Thr Val Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro</td>
<td>100</td>
<td>105</td>
<td>110</td>
</tr>
<tr>
<td>Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp</td>
<td>115</td>
<td>120</td>
<td>125</td>
</tr>
<tr>
<td>Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp</td>
<td>130</td>
<td>135</td>
<td>140</td>
</tr>
<tr>
<td>Val Ser His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly</td>
<td>145</td>
<td>150</td>
<td>155</td>
</tr>
<tr>
<td>Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn</td>
<td>165</td>
<td>170</td>
<td>175</td>
</tr>
<tr>
<td>Ser Thr Phe Arg Val Val Ser Val Leu Thr Val Val His Gln Asp Trp</td>
<td>180</td>
<td>185</td>
<td>190</td>
</tr>
<tr>
<td>Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro</td>
<td>195</td>
<td>200</td>
<td>205</td>
</tr>
<tr>
<td>Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu</td>
<td>210</td>
<td>215</td>
<td>220</td>
</tr>
<tr>
<td>Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn</td>
<td>225</td>
<td>230</td>
<td>235</td>
</tr>
<tr>
<td>Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile</td>
<td>245</td>
<td>250</td>
<td>255</td>
</tr>
<tr>
<td>Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr</td>
<td>260</td>
<td>265</td>
<td>270</td>
</tr>
<tr>
<td>Thr Pro Pro Met Leu Asp Ser Asp Gly Ser Phe Leu Tyr Ser Lys</td>
<td>275</td>
<td>280</td>
<td>285</td>
</tr>
<tr>
<td>Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys</td>
<td>290</td>
<td>295</td>
<td>300</td>
</tr>
<tr>
<td>Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
305 Ser Leu Ser Pro Gly Lys
 310 315 320

 5
<210> 29
<211> 296
<212> DNA
<213> Homo sapiens
<400> 29
 caggtgccag tcgtggagtct tggggagggc ttggtcaagc ctggagggtc cctgagactc 60
tcctgtgcag cctctggatt caacctcacg gactactaca tggagttgat ccgcaccgggt 120
cagaggagaag ggctggaggtg ggtttcatac attagtagta tggtagttac cattactac 180
gcagactctg tgaagggccg atccaccac tccaggaga acgcacaagaa ctcactgtat 240
cgcaaatgca acacgcttag aggccagag cgcgcgcgtg cattcagcag 296

 20
<210> 30
<211> 98
<212> PRT
<213> Homo sapiens
<400> 30
 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly
1 5 10 15
 20
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr
 25
 30
 35
Tyr Met Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 40
 45
Ser Tyr Ile Ser Ser Ser Gly Ser Thr Ile Tyr Tyr Ala Asp Ser Val
 50
 55
 60
Lys Gly Arg Phe Thr Ile Ser Arg Asn Ala Lys Asn Ser Leu Tyr
 65
 70
 75
 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
 85
 90
 95
 Ala Arg

 45
<210> 31
<211> 296
<212> DNA
<213> Homo sapiens
<400> 31
 gaggtgccag tcgtggagtct tggggagggc ttggtcacag cttgggggtc cctgagactc 60
tcctgtgcag cctctggatt caacctcacg gactactaca tggagttgat ccgcaccgggt 120
cagaggagaag ggctggaggtg ggtttcatac attagtagta tggtagttac cattactac 180
gcagactctg tgaagggccg atccaccac tccaggaga acgcacaagaa ctcactgtat 240
ctgcaaatga acagcctgag agccgaggac agggccgtat attactgtgc gaaga

5
<210> 32
<211> 98
<212> PRT
<213> Homo sapiens

10
Glu Val Gln Leu Leu Leu Ser Gly Gly Leu Val Gln Pro Gly Gly
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20
Ser Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
30
Ser Ala Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val
35
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
95

30
Ala Lys

35
<210> 33
<211> 296
<212> DNA
<213> Homo sapiens

40
<400> 33
caggtgacgc tgcaaggagtc gggccagga ctggtaagac cttcgggac cctgtccctc
acgtcgcctg tttcctggta cctccaccgc agtagtaact ggtgagttg ggtcggccag
ccccaggga agggatgga gtgaattggg gaaatccttc atagtgag ggacacacac
aacccattcc tcaagagtct agtcacacta tcagtagaca agtccagaga ccagtctccc
cgagacgta gcatctgtgac gcggcggagc agggcgtgtg attactgtgc gagaga

45
<210> 34
<211> 98
<212> PRT
<213> Homo sapiens

50
<400> 34
Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gly
Thr Leu Ser Leu Thr Cys Ala Val Ser Gly Gly Ser Ile Ser Ser Ser
55
Asn Trp Trp Ser Trp Val Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp
Ile Gly Glu Ile Tyr His Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu
50
Lys Ser Arg Val Thr Ile Ser Val Asp Lys Ser Lys Asn Gln Phe Ser
65
Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys
85
Ala Arg
90

<210> 35
<211> 293
<212> DNA
<213> Homo sapiens

<400> 35
caggtgcagc tgcaggagtc gggcccagga cttggtgaagc cttcgagcac cctgtccctc 60
acctgacagt tctctggtgg ctccatcagt agttactact gagctggtat ccggcagccc 120
caggggaagg gacctggagt gattggttat acotattaca gtgggagcag caactacaac 180
cctctccctca agagtgcagt caccatatca tggacagct ccaagaacca gtttctccctg 240
aagctgagct cttggtaccgc tcggcagcag gcgggtgtatt acctggtcag aga 293

<210> 36
<211> 97
<212> PRT
<213> Homo sapiens

<400> 36
gln val gln leu gln glu ser gly pro gly leu val lys pro ser glu
1 5 10
Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Ser Ile Ser Ser Tyr
20 25 30

Tyr Trp Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Ile
35 40 45
Gly Tyr Ile Tyr Tyr Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys
50 55 60
Ser Arg Val Thr Ile Ser Val Asp Thr Lys Asn Glu Phe Ser Leu
65 70 75 80

Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala
85 90 95
Arg
95

<210> 37
<211> 290
<212> DNA
<213> Homo sapiens

5 <400> 37
gaaatttgtgt ttgacgcagtc tccaggcaccc ctgtcttttgt ctccagggga aagagccacc 60
cctctctgca gggccagctca gagtgttagc agcagctact tagcttgta ccagcagaa 120
cctggccagg ctcctcagct cctcctcctt ggtgcatcca gacagggccac tggcatacca 180
gacaggttca gtggcagttg gtctgggaca gacctcactc tcaccatcag cagactgag 240
cctgaagatt ttgcagttga ttactgctcg cagttatggta gctcactcct 290

15 <210> 38
<212> PRT
<213> Homo sapiens

15 <400> 38
glu ile val leu thr gln ser pro gly thr leu ser leu ser pro gly
20 1 5 10 15

20 5 10 15

glu arg ala thr leu ser cys arg ala ser gln ser val ser ser
25 20 25 30

tyre leu ala trp tyr gln gln lys pro gly gln ala pro arg leu leu
30 35 40 45

30 35 40 45

ile tyr gly ala ser ser arg ala thr gly ile pro asp arg phe ser
40 50 55 60

40 50 55 60

gly ser gly ser gly thr asp phe thr leu thr ile ser arg leu glu
45 65 70 75 80

45 65 70 75 80

pro gly asp phe ala val tyr tyr cys gln gln tyr gly ser ser pro
50 85 90 95

50 85 90 95

<210> 39
<211> 288
<212> DNA
<213> Homo sapiens

45 <400> 39
gacatccaga tgacccagtc tccatcctcc ctgtctggcact ctgtaggaga cagagtcacc 60
tatctctgtt ggggaatgtc gggcttttaga aagcaggtag tcacagcatca gcagaaacca 120
ggggggggccc tcaagcgcgt gcattgtatg gcacatgggc tgcaccctatcg aagagttt 180
gagcagtcg gctgacggttc tgtccagaaat ttcacctgcaactgctgactctaccag 240
gagggttaga cactacagcttgtcttcag cattagttc accccctcc 288

55 <210> 40
<211> 96
<212> PRT
<213> Homo sapiens
<400> 40
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
 1 5 10 15

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Arg Asn Asp
 20 25 30
Leu Gly Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile
 35 40 45

Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln His Asn Ser Tyr Pro Pro
 85 90 95

20

25 <210> 41
25 <211> 288
25 <212> DNA
25 <213> Homo sapiens

30 <400> 41
gacctcagta tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60
atacctgacc gggcaagta gaggattagc agcttattaat attgatatca gcagaaacc 120
gggagaccc ctagctctct gacttctagt gcatccagtt tcgaataaggg ggtccctca 180
aggttctagt gcagttggat tggagcagat tctactccca cccatcagc agtctccttcc 240
35 gcagattttg caccctctca ctctcaacac agttacagta ccctctcch 288

<210> 42
<211> 96
<212> PRT
<213> Homo sapiens

<400> 42
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
 1 5 10 15

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr
 20 25 30

Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
 35 40 45

Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Pro Pro
 85 90 95

10 <210> 43
 <211> 293
 <212> DNA
 <213> Homo sapiens

15 caggtgacg tgcaggagtc gggccagga ctggtgaagc cttcggagac cctgtccctc 60
 acctgcactg tctctggtgg cttcatcagt agttactact ggaagctggat ccggcagccc 120
 gccgggaagg gactggagtg gattgggcgt atctatacga gttggagcag caactacaac 180
 ccttcocctca agagtcgagc caccagttcg gtagacacgt ccaagaacca gttctccctg 240
 aagctgagct ctggtaccgc cgcggagacag gcgcgtatt actgtgagcag aga 293

20 <210> 44
 <211> 97
 <212> PRT
 <213> Homo sapiens

25 <400> 44
 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu
 1 5 10 15
 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Tyr
 20 25 30
 Tyr Trp Ser Trp Ile Arg Gln Pro Ala Gly Lys Gly Leu Glu Trp Ile
 35 40 45
 Gly Arg Ile Tyr Thr Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys
 50 55 60
 Ser Arg Val Thr Met Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu
 65 70 75 80
 Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Cys Ala
 85 90 95
 Arg

50 <210> 45
 <211> 470
 <212> PRT
 <213> Homo sapiens

55 <400> 45
 Met Glu Phe Gly Leu Ser Trp Leu Phe Leu Val Ala Ile Leu Lys Gly
 1 5 10 15
<table>
<thead>
<tr>
<th></th>
<th>Val</th>
<th>Gln</th>
<th>Cys</th>
<th>Glu</th>
<th>Val</th>
<th>Gln</th>
<th>Leu</th>
<th>Leu</th>
<th>Gly</th>
<th>Gly</th>
<th>Gly</th>
<th>Gly</th>
<th>Leu</th>
<th>Val</th>
<th>Gln</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pro</td>
<td>Gly</td>
<td></td>
<td>Gly</td>
<td>Ser</td>
<td>Leu</td>
<td></td>
<td>Arg</td>
<td>Leu</td>
<td></td>
<td>Ser</td>
<td>Cys</td>
<td></td>
<td>Thr</td>
<td>Ala</td>
</tr>
<tr>
<td>6</td>
<td>Ser</td>
<td>Ser</td>
<td></td>
<td>Tyr</td>
<td>Ala</td>
<td>Met</td>
<td>Asn</td>
<td>Trp</td>
<td>Val</td>
<td>Arg</td>
<td>Gln</td>
<td>Ala</td>
<td>Pro</td>
<td>Gly</td>
<td>Lys</td>
</tr>
<tr>
<td>7</td>
<td>Glu</td>
<td>Trp</td>
<td>Val</td>
<td>Ser</td>
<td>Ala</td>
<td>Ile</td>
<td>Ser</td>
<td>Gly</td>
<td>Ser</td>
<td>Gly</td>
<td>Gly</td>
<td>Thr</td>
<td>Thr</td>
<td>Phe</td>
<td>Tyr</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Asp</td>
<td>Ser</td>
<td>Val</td>
<td>Lys</td>
<td></td>
<td>Gly</td>
<td>Arg</td>
<td>Phe</td>
<td>Thr</td>
<td>Ile</td>
<td>Ser</td>
<td>Arg</td>
<td>Asp</td>
<td>Asn</td>
<td>Ser</td>
</tr>
<tr>
<td>10</td>
<td>Thr</td>
<td>Leu</td>
<td>Tyr</td>
<td>Leu</td>
<td>Gln</td>
<td>Met</td>
<td></td>
<td>Asn</td>
<td>Leu</td>
<td>Arg</td>
<td>Ala</td>
<td>Glu</td>
<td>Asp</td>
<td>Thr</td>
<td>Ala</td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Tyr</td>
<td>Tyr</td>
<td>Cys</td>
<td>Ala</td>
<td>Lys</td>
<td></td>
<td>Asp</td>
<td>Leu</td>
<td>Gly</td>
<td>Trp</td>
<td>Ser</td>
<td>Asp</td>
<td>Ser</td>
<td>Tyr</td>
<td>Tyr</td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>105</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Tyr</td>
<td>Tyr</td>
<td>Cys</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Ala</td>
<td>Lys</td>
<td>Gly</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Tyr</td>
<td>Tyr</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Ser</td>
<td>Gly</td>
<td>Tyr</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>105</td>
<td>120</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Met</td>
<td>Asp</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Trp</td>
<td>Gly</td>
<td>Gln</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Gly</td>
<td>Thr</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Val</td>
<td>Thr</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Val</td>
<td>Ser</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ser</td>
<td>Thr</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ser</td>
<td>Glu</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ala</td>
<td>Leu</td>
<td>Gly</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Cys</td>
<td>Leu</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Lys</td>
<td>Asp</td>
<td>Tyr</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Ala</td>
<td>Ala</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pro</td>
<td>Val</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Val</td>
<td>Ser</td>
<td>Trp</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Asn</td>
<td>Ser</td>
<td>Gly</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ala</td>
<td>Leu</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ser</td>
<td>Tyr</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ser</td>
<td>Val</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Val</td>
<td>Pro</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ser</td>
<td>Asn</td>
<td>Phe</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Gly</td>
<td>Thr</td>
<td>Glu</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Thr</td>
<td>Cys</td>
<td>Asn</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Val</td>
<td>Asp</td>
<td>His</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Lys</td>
<td>Pro</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ser</td>
<td>Lys</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Glu</td>
<td>Arg</td>
<td>Lys</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Cys</td>
<td>Cys</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Val</td>
<td>Cys</td>
<td>Cys</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pro</td>
<td>Cys</td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Cys</td>
<td>Pro</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pro</td>
<td>Val</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Gly</td>
<td>Pro</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Val</td>
<td>Phe</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pro</td>
<td>Phe</td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pro</td>
<td>Lys</td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Thr</td>
<td>Leu</td>
<td>Met</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ile</td>
<td>Ser</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Thr</td>
<td>Pro</td>
<td>Glu</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Val</td>
<td>Thr</td>
<td>Cys</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Val</td>
<td>Val</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ser</td>
<td>His</td>
<td>Glu</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Asp</td>
<td>Pro</td>
<td>Glu</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Val</td>
<td>Glu</td>
<td>Lys</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Phe</td>
<td>Asn</td>
<td>Trp</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Tyr</td>
<td>Val</td>
<td>Asp</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Gly</td>
<td>Thr</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Val</td>
<td>Ala</td>
<td>Lys</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Thr</td>
<td>Lys</td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Arg</td>
<td>Glu</td>
<td>Glu</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Lys</td>
<td>Ala</td>
<td>Phe</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Asn</td>
<td>Val</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Val</td>
<td>Leu</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Val</td>
<td>Val</td>
<td>His</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Glu</td>
<td>Asp</td>
<td>Trp</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ser</td>
<td>Thr</td>
<td>Phe</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Val</td>
<td>Ser</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Val</td>
<td>Leu</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Val</td>
<td>Val</td>
<td>His</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Glu</td>
<td>Lys</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Gly</td>
<td>Leu</td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ala</td>
<td>Pro</td>
<td>Ile</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Glu</td>
<td>Lys</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Val</td>
<td>Ile</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Lys</td>
<td>Thr</td>
<td>Lys</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Gly</td>
<td>Glu</td>
<td>Gln</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pro</td>
<td>Arg</td>
<td>Glu</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pro</td>
<td>Gln</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Tyr</td>
<td>Thr</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pro</td>
<td>Ser</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Glu</td>
<td>Met</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Lys</td>
<td>Asn</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Gln</td>
<td>Val</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Leu</td>
<td>Thr</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Gly</td>
<td>Phe</td>
<td>Tyr</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ser</td>
<td>Asp</td>
<td>Ile</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ala</td>
<td>Val</td>
<td>Glu</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Trp</td>
<td>Glu</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Asn</td>
<td>Gly</td>
<td>Gln</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pro</td>
<td>Glu</td>
<td>Asn</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Asn</td>
<td>Tyr</td>
<td>Lys</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Thr</td>
<td>Lys</td>
<td>Thr</td>
<td></td>
</tr>
</tbody>
</table>
Thr Pro Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu

Ser Leu Ser Pro Gly Lys

<210> 47
<211> 236
<212> PRT
<213> Homo sapiens

Met Asp Met Arg Val Pro Ala Gln Leu Leu Leu Leu Leu Leu Leu Trp

Phe Pro Gly Ala Arg Cys Asp Ile Gln Met Thr Gln Phe Pro Ser Ser

Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser

Gln Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gln Gln Lys Pro Gly Lys

Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Arg Leu His Arg Gly Val

Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr

Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln

His Asn Ser Tyr Pro Cys Ser Phe Gly Gln Gly Thr Lys Leu Glu Ile

Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp

Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Cys Leu Leu Asn Asn

Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu

Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp
Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr
195 200 205

Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
210 215 220

Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
225 230 235

10

<210> 48
<211> 236
<212> PRT
<213> Homo sapiens

15

<400> 48
Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp
1 5 10 15

Phe Pro Gly Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser
20 25 30 35

Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser
35 40 45

Gln Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gln Gln Lys Pro Gly Lys
50 55 60

Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Leu Gln Ser Gly Val
65 70 75 80

Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr
85 90 95

Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln
100 105 110

His Asn Ser Tyr Pro Tyr Thr Phe Gly Glu Gly Thr Lys Leu Glu Ile
115 120 125

Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp
130 135 140

Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
145 150 155 160

Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu
165 170 175

Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Glu Asp Ser Lys Asp
180 185 190

Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr
195 200 205

55

Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
210 215 220
<p>| 5 | <210> 49 |
| | <211> 470 |
| | <212> PRT |
| | <213> Homo sapiens |
| 10 | <400> 49 |
| | Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Ile Ile Lys Gly |
| 15 | Val Gln Cys Gln Ala Gln Leu Val Glu Ser Gly Gly Glu Leu Val Lys |
| | Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe |
| 20 | Ser Asp Tyr Tyr Met Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu |
| 25 | Glu Trp Val Ser Tyr Ile Ser Ser Ser Gly Ser Thr Arg Asp Tyr Ala |
| | Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn |
| 30 | Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val |
| 35 | Tyr Tyr Cys Val Arg Asp Gly Val Glu Thr Thr Phe Tyr Tyr Tyr Tyr |
| 40 | Tyr Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser |
| 45 | Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Ala Pro Cys Ser Arg |
| 50 | Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr |
| 55 | Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser |
| | Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser |
| | Leu Ser Ser Val Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr |
| | Tyr Thr Cys Asn Val Asp His Lys Pro Ser Ser Thr Lys Val Asp Lys |
| | Thr Val Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro |</p>
<table>
<thead>
<tr>
<th></th>
<th>245</th>
<th>250</th>
<th>255</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pro</td>
<td>Val</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td>Gly</td>
<td>Pro</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td>Val</td>
<td>Phe</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td>Phe</td>
<td>Pro</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td>Pro</td>
<td>Lys</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td>Lys</td>
<td>Asp</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Thr</td>
<td>Leu</td>
<td>Met</td>
</tr>
<tr>
<td></td>
<td>Ile</td>
<td>Ser</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
<td>Thr</td>
<td>Pro</td>
<td>Glu</td>
</tr>
<tr>
<td></td>
<td>Val</td>
<td>Thr</td>
<td>Cys</td>
</tr>
<tr>
<td></td>
<td>Val</td>
<td>Val</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td>Val</td>
<td>Asp</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Val</td>
<td>Ser</td>
<td>His</td>
</tr>
<tr>
<td></td>
<td>Glu</td>
<td>Asp</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td>Glu</td>
<td>Val</td>
<td>Gln</td>
</tr>
<tr>
<td></td>
<td>Phe</td>
<td>Asn</td>
<td>Trp</td>
</tr>
<tr>
<td></td>
<td>Tyr</td>
<td>Val</td>
<td>Asp</td>
</tr>
<tr>
<td></td>
<td>Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Ser</td>
<td>Thr</td>
<td>Phe</td>
</tr>
<tr>
<td></td>
<td>Arg</td>
<td>Val</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td>Ser</td>
<td>Leu</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
<td>Val</td>
<td>Val</td>
<td>His</td>
</tr>
<tr>
<td></td>
<td>Gln</td>
<td>Asp</td>
<td>Trp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leu</td>
<td>Asn</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td>Lys</td>
<td>Glu</td>
<td>Tyr</td>
</tr>
<tr>
<td></td>
<td>Lys</td>
<td>Cys</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
<td>Val</td>
<td>Ser</td>
<td>Asn</td>
</tr>
<tr>
<td></td>
<td>Lys</td>
<td>Gly</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td>Pro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Ala</td>
<td>Pro</td>
<td>Ile</td>
</tr>
<tr>
<td></td>
<td>Glu</td>
<td>Lys</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
<td>Ile</td>
<td>Ser</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
<td>Thr</td>
<td>Lys</td>
<td>Gln</td>
</tr>
<tr>
<td></td>
<td>Pro</td>
<td>Arg</td>
<td>Glu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pro</td>
<td>Gln</td>
</tr>
<tr>
<td></td>
<td>Val</td>
<td>Tyr</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
<td>Leu</td>
<td>Pro</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td>Ser</td>
<td>Arg</td>
<td>Glu</td>
</tr>
<tr>
<td></td>
<td>Met</td>
<td>Thr</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
<td>Asn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Gln</td>
<td>Val</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td>Leu</td>
<td>Thr</td>
<td>Cys</td>
</tr>
<tr>
<td></td>
<td>Leu</td>
<td>Val</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
<td>Gly</td>
<td>Phe</td>
<td>Tyr</td>
</tr>
<tr>
<td></td>
<td>Pro</td>
<td>Ser</td>
<td>Asp</td>
</tr>
<tr>
<td></td>
<td>Ile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Ala</td>
<td>Val</td>
<td>Glu</td>
</tr>
<tr>
<td></td>
<td>Trp</td>
<td>Glu</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td>Asn</td>
<td>Gly</td>
<td>Gln</td>
</tr>
<tr>
<td></td>
<td>Pro</td>
<td>Glu</td>
<td>Asn</td>
</tr>
<tr>
<td></td>
<td>Asn</td>
<td>Tyr</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
<td>Thr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Thr</td>
<td>Pro</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td>Met</td>
<td>Leu</td>
<td>Asp</td>
</tr>
<tr>
<td></td>
<td>Ser</td>
<td>Asp</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td>Ser</td>
<td>Phe</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td>Tyr</td>
<td>Ser</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Ser</td>
<td>Leu</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td>Pro</td>
<td>Gly</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td><210></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td><211></td>
<td>473</td>
<td></td>
</tr>
<tr>
<td></td>
<td><212></td>
<td>PRT</td>
<td></td>
</tr>
<tr>
<td></td>
<td><213></td>
<td>Homo sapiens</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td><400></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Met</td>
<td>Glu</td>
<td>Phe</td>
</tr>
<tr>
<td></td>
<td>Gly</td>
<td>Leu</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td>Trp</td>
<td>Val</td>
<td>Phe</td>
</tr>
<tr>
<td></td>
<td>Leu</td>
<td>Val</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td>Ile</td>
<td>Ile</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Val</td>
<td>Gln</td>
<td>Cys</td>
</tr>
<tr>
<td></td>
<td>Gln</td>
<td>Val</td>
<td>Gln</td>
</tr>
<tr>
<td></td>
<td>Leu</td>
<td>Val</td>
<td>Glu</td>
</tr>
<tr>
<td></td>
<td>Ser</td>
<td>Gly</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td>Gly</td>
<td>Leu</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td>Lys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residue</td>
<td>Amino Acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Pro Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Gly Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Leu Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Leu Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Cys Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Ala Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Gly Phe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Thr Phe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Phe Tyr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Tyr Met</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Ser Trp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Ile Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Gln Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Pro Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Lys Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Leu Tyr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Leu Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Tyr Tyr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>Tyr Thy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Tyr Tyr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Tyr Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>Val Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>Ser Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Ser Thr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>Lys Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>Pro Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>Ser Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Ser Thr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>Glu Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>Ala Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>Gly Cys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Leu Val</td>
<td></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>Ser Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>Val His</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>Thr Phe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>Pro Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>Val Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>Gly Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>Val Thr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>Pro Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>Ser Asn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>Thr Lys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>Val Asp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>Lys Thr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>Val Glu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>Gly Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>Lys Cys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>Val Pro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>Ala Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>Pro Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>285</td>
<td>Val Phe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>Pro Ly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>295</td>
<td>Ser Met</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>Tyr Pro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>Val His</td>
<td></td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>Asn Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>Lys Thr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>Pro Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>325</td>
<td>Val Glu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>Val Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>335</td>
<td>Val Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thr Val</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Val His</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
340 345 350
Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln
355 360 365
Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met
370 375 380
Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro
385 390 395 400
Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn
405 410 415
Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu
420 425 430
Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val
435 440 445
Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln
450 455 460
Lys Ser Leu Ser Leu Ser Pro Gly Lys
465 470

<210> 51
<211> 236
<212> PRT
<213> Homo sapiens

<400> 51
Met Asp Met Arg Val Pro Ala Gln Leu Leu Leu Leu Leu Leu Trp
1 5 10 15
Phe Pro Gly Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser
20 25 30
Leu Ser Ala Ser Val Gly Asp Arg Val Phe Thr Cys Arg Ala Ser
35 40 45
Gln Asp Ile Arg Arg Asp Leu Gly Trp Tyr Gln Gln Lys Pro Gly Lys
50 55 60
Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Arg Leu Gln Ser Gly Val
65 70 75 80
Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr
85 90 95
Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Cys Leu Gln
100 105 110
His Asn Asn Tyr Pro Arg Thr Phe Gly Gln Gly Thr Glu Val Glu Ile
115 120 125
Ile Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp
130 135 140
5 Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
145 150 155 160
Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu
165 170 175
10 Gln Ser Gly Asn Ser Glu Ser Val Thr Glu Glu Asp Ser Lys Asp
180 185 190
Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr
195 200 205
Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
210 215 220
20 Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
225 230 235

<210> 52
<211> 236
<212> PRT
<213> Homo sapiens

30 Met Asp Met Arg Val Pro Ala Gln Leu Leu Leu Leu Leu Leu Trp
1 5 10 15
Phe Pro Gly Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser
20 25 30
35 Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser
35 40 45
Gln Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gln Gly Lys Pro Gly Lys
50 55 60
40 Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Leu Gln Ser Gly Val
65 70 75 80
45 Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr
85 90 95
Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln
100 105 110
50 His Asn Ser Tyr Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
115 120 125
Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp
130 135 140
55 Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
145 150 155 160
Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu
165 170 175

5
Gln Ser Gly Asn Ser Glu Ser Val Thr Glu Gln Asp Ser Lys Asp
180 185 190

10
Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr
195 200 205

Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
210 215 220

15
Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
225 230 235

53

<210> 53
<211> 326
<212> DNA
<213> Artificial Sequence

25
gacatcagaga tgacccagty gccatcctcc ctgtctgcagt ctgtaggaga cagagtcacc 60
wctacattgcc gggcaagtca ggrcatttag mtgatttag gctggtctca gcagaacctca 120
gggagagccc ctaarctctct gatctatgtgc gcatcggcgt gcacgacgatgt gcacgaacctca 180
aggtcagcgg cagttgcgcc tggagagaga ttcacgctg ggcacgctg ccacgtgctg 240
gaagatttgg cacttactta ctgtctacag atgttagatct gcacagtacag ttcacgctg 300
gggacccgac cgggacgacg 326

30

ggacccgagc cggacacgac

53

<210> 54
<211> 322
<212> DNA
<213> Artificial Sequence

<400> 54

gacatcagaga tgacccagtc tccatcctcc ctgtctgcagt ctgysagga gagaagtcacc 60
atcaagtgcc gggcaagtca gagatttag ascttwtttaa attttatca gccagaaacctca 120
gggagagccc ctaarctctct gatctatgtgc gcatcggcgt gcacgacgatgt gcacgacctc 180
aggtcagcgg cagttgcgcc tggagagaga ttcacgctg ggcacgctg ccacgtgctg 240
gaagatttgg cacttactta ctgtctacag atgttagatct gcacagtacag ttcacgctg 300
gggacccgac cgggacgacg 322

45

<210> 55
<211> 325
<212> DNA
<213> Artificial Sequence

<400> 55

gaagttctgt gtagcgcagtct tcggcaggccc cttcgcttttgt ctccagggga aagagcagcc 60
ctcttcggya gggcaggcca tcgggttmgc rgcagstact tagcttgata ccacgacagaa 120
cctggcaggct ctcggcagct cccgacgtct cctgctttttg gcaggtccgc gcaggtccgc ccacgtgcagc 180
gacaggttccagttgcagct ggtcggcaca ggtcggcagct ggtcggcagct 240
cctgaagattttgcgtgtgtg ttcagttgcagct ctcggcagct ggtcggcagct 300
caagggacca aggtggaaa t caaac 325

<210> 56
<211> 376
<212> DNA
<213> Artificial Sequence

<400> 56
cagttgcagc tgggtgagtc tggggagggc ttggtcaagc ctggaggtgc cctgagactc 60
tctctgtcag cctctggatt caacctcagt gactactaya tgacgctgat ccgcaagct 120
ccaagggagc ggtcctggtg ggttctacat attagatta gttggtagtc cakakacatc 180
gcagactctg tgaagggccc attaacacta tccaggagca acggcaagaa ctctactgtat 240
cctcaaatga acacgcttgag acggcaggag acggccggtg attactcctgy gagagatgga 300
gttggaaacta cttttctacta ctactactac ggtttagggag cctgaggccc agggacacag 360
gttacccgtct cctoag

<210> 57
<211> 358
<212> DNA
<213> Artificial Sequence

<400> 60
cagttgcagc tgggtgagtc gggccagga ctgggtgaagc cttcggagac cctggtccctc 60
actgtgcagt tctctggatt ccctcactat arttactact ggacgctgat ccggcagccc 120
gcagggagc ggtcctggtg gatgggctg atctatacca gttggagccc caactacaac 180
cctctccctca aagctgtcagt gacactagca tctggagac gcagcaagaa ctttctcctg 240
gcagactctg tgaagggccc attaacacta tccaggagca acggcaagaa ctctactgtat 300
gcagggagc ggtcctggtg gatgggctg atctatacca gttggagccc caactacaac 360
gttggaaacta cttttctacta ctactactac ggtttagggag cctgaggccc agggacacag 360
gttacccgtct cctoag

<210> 58
<211> 418
<212> DNA
<213> Artificial Sequence

<400> 58
cagttgcagc tgggtgagtc tggggagggc ttggtcaagc ctgggagggtc cctgagactc 60
tctctgtcag cctctggatt caacctcagt gactactaya tgacgctgat ccgcaagct 120
ccaagggagc ggtcctggtg ggttctacat attagatta gttggtagtc cakakacatc 180
gcagactctg tgaagggccc attaacacta tccaggagca acggcaagaa ctctactgtat 240
cctcaaatga acacgcttgag acggcaggag acggccggtg attactcctgy gagagatgga 300
gcagggagc ggtcctggtg gatgggctg atctatacca gttggagccc caactacaac 360
gttggaaacta cttttctacta ctactactac ggtttagggag cctgaggccc agggacacag 360
gttacccgtct cctoag

<210> 59
<211> 364
<212> DNA
<213> Artificial Sequence

<400> 59
cagttgcagc tgggtgagtc gggccagga ctgggtgaagc cttcggagac cctggtccctc 60
actgtgcagt tctctggatt ccctcactat arttactact ggacgctgat ccggcagccc 120
ccaagggagc ggtcctggtg gatgggctg atctatacca gttggagccc caactacaac 180
cctctccctca aagctgtcagt gacactagca tctggagac gcagcaagaa ctttctcctg 240
aagctgagyt ctgtgacgc tggagacacg gcogtgtatt actgtgccag gacgtatatc 300
agttcgttct actactacgg tatggacgct tggggcccaag ggaccacggt caccgtctcc 360
tcag 364

5

<210> 60
<211> 15
<212> PRT
<213> Artificial Sequence

10

<400> 60
1 5 10 15
SEQUENCE LISTING

<110> Cohen, Bruce D.
 Bedian, Vahe
 Obrocea, Mihail
 Gomez-Navarro, Jesus
 Cusmano, John D.
 Wang, Huifen F.
 Page, Kelly L.
 Guyot, Deborah J.

<120> USES OF ANTI-INSULIN-LIKE GROWTH FACTOR I RECEPTOR
 ANTIBODIES

<130> PC25232A

<140>

<160> 60

<170> PatentIn Ver. 2.1

<210> 1
<211> 291
<212> DNA
<213> Homo sapiens

<400> 1
 tgcattctgta gtagacagag tcaccttcac ttgcccgggca agtcagggca ttgacgtga 60
 ttttaggttg tagtctcaga aaccaggga agcttcttaag cgcctgatct atgctgatac 120
 ccgtttcaca aagtgggtcc catcaggtt cagccgagct ggatctgag cagaaattcag 180
 ttcctcaccgtc aaggcgtcag cagctgaga tattgcaact tattactgct tacagcataa 240
 taattatctt cggaggttgg gcagaagggcg gaggtggaa atcatacggac 291

<210> 2
<211> 136
<212> PRT
<213> Homo sapiens

<400> 2
Ala Ser Val Gly Asp Arg Arg Val Thr Phe Thr Cys Arg Ala Ser Gln Asp
 1 5 10 15
 Ile Arg Arg Asp Leu Gly Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro
 20 25 30

1
Lys Arg Leu Ile Tyr Ala Ala Ser Arg Leu Gln Ser Gly Val Pro Ser
35 40 45
Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser
50 55 60
Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln His Asn
65 70 75 80
Asn Tyr Pro Arg Thr Phe Gly Gln Gly Thr Glu Val Glu Ile Ile Arg
85 90 95
Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln
100 105 110
Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr
115 120 125
Pro Arg Glu Ala Lys Val Gln Trp
130 135

<210> 3
<211> 352
<212> DNA
<213> Homo sapiens

<400> 3
gggaggtcttg gtcaagcctg gaggtccctg agactctcct gtgcagcctc tggattcact 60
ttcagtgact actatatgag ctggatccgc caggctccag ggaaggggct ggaatgggtt 120
tcatacattt gtatgtggtag tattacagaa gacttcgtagc actctgtaag gggccggatcc 180
acccattctca gggacaagc cagaactca cgttatctgc aaatgaacag cctgagagcc 240
gaggacacg cgggtgttatt cgtgtgtgaga gatggagttg aaactacttt ttactactac 300
tactaggtta tggaggtcttg gggcaaggg accaaggtca cggcttcctc ag 352

<210> 4
<211> 174
<212> PRT
<213> Homo sapiens

<400> 4
Gly Arg Leu Gly Gln Ala Trp Arg Ser Leu Arg Leu Ser Cys Ala Ala
1 5 10 15
Ser Gly Phe Thr Phe Ser Asp Tyr Tyr Met Ser Trp Ile Arg Gln Ala
20 25 30
Pro Gly Lys Gly Leu Glu Trp Val Ser Tyr Ile Ser Ser Ser Gly Ser
35 40 45
Thr Arg Asp Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg
50 55 60
Asp Asn Ala Lys Asn Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala
65 70 75 80
Glu Asp Thr Ala Val Tyr Tyr Cys Val Arg Asp Gly Val Glu Thr Thr
85 90 95
Phe Tyr Tyr Tyr Tyr Gly Met Asp Val Trp Gly Gln Gly Thr Thr
100 105 110
Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu
115 120 125
Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys
130 135 140
Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser
145 150 155 160
Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ser Cys Ala
165 170

<210> 5
<211> 322
<212> DNA
<213> Homo sapiens

<400> 5
gcacatccaga tgacccagtt tccatcttcc ctgtctgcat ctgtaggaga cagagtcacc 60
atccatggcc gggcaagtca gggcattaga aatgatagag gcgtgtcatca gcagaaacca 120
ggggaaagcc ctaagcgacct gatctagtag gcatcgcgtg ttgacagagg ggtcctcatca 180
aggtttagcgc tagcttgcag ttggagcagaa ttccatcttca caatcagcag gctgacgcct 240
gagagttttg caaccttattca ctttttacaa cttttatggttt accggtgcag tttggccag 300
gggaccaagcc ttggatatcaac 322

<210> 6
<211> 107
<212> PRT
<213> Homo sapiens

<400> 6.
Asp Ile Gln Met Thr Gln Phe Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Arg Asn Asp
20 25 30
Leu Gly Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile
35 40 45
Tyr Ala Ala Ser Arg Leu His Arg Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln His Asn Ser Tyr Pro Cys
85 90 95
Ser Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys
100 105

<210> 7
<211> 375
<212> DNA
<213> Homo sapiens

<400> 7
aggtgcagct gttgagcttg cggggaggtct tggagctg gctggtact ctgagctc
ctgtacagc cttgatgtc accttagca gctatgac gtaacgtcgg ccagggtctc
cagggagggtcagtggagatctgtaggtatgctggtgctgacatc
<210> 8
<211> 124
<212> PRT
<213> Homo sapiens

<400> 8
Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser
1 5 10 15
Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Thr Phe Ser Ser Tyr Ala
20 25 30
Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser
35 40 45

Ala Ile Ser Gly Ser Gly Gly Thr Thr Phe Tyr Ala Asp Ser Val Lys
50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Arg Thr Thr Leu Tyr Leu
65 70 75 80

Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala
85 90 95

Lys Asp Leu Gly Trp Ser Asp Ser Tyr Tyr Tyr Tyr Gly Met Asp
100 105 110

Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120

<210> 9
<211> 302
<212> DNA
<213> Homo sapiens

<400> 9
tctctccttgt ctgcaccttgt aggagacaga gtcacctttca ctggcgggc cagtcaggac 60
attagacgtg atttaggctg gtatcagcag aaaccaggga aagctctttaa gcgcctgtac 120
tatgcgtcat cccggttaca aagtgggttc catcaaggt tcagcggcag tggatctggg 180
acagaattca ctctcacaaat cgcagccttg cagcctgaag attttgcaac ttattactgt 240
tcagccatataaatctcc tcggacgtttc ggcaagagga ccaggttgga aatcatacga 300
ac

<210> 10
<211> 100
<212> PRT
<213> Homo sapiens

<400> 10
Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Phe Thr Cys Arg
1 5 10 15

Ala Ser Gln Asp Ile Arg Arg Asp Leu Gly Trp Tyr Gln Gln Lys Pro
20 25 30

Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Arg Leu Gln Ser
35 40 45

5
Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr
50
60
Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys
65
70
75
80
Leu Gln His Asn Asn Tyr Pro Arg Thr Phe Gly Gln Gly Thr Glu Val
85
90
95
Glu Ile Ile Arg
100

<210> 11
<211> 338
<212> DNA
<213> Homo sapiens
<400> 11
gggccccagga ctggtgaagc cttccgagac cctgtcccctc acctgcactg tctctgtgg 60
cttccatagct aattactact ggagcttgat cgggccagcc gccggaagg gacttgagt 120
gattggccgt atctatacca gtggagcccc caacctacac ccctccccctca agagtcgagt 180
caccatgtca tgtgacagct ccaagaaaccct ttctccccgt aagctgaact ctgtgaccgc 240
cgcggcagcg ccggtgtatt acgtgcgggt aacgatttttt ggagtgttta ttatctttga 300
cactgggggc cagggaaacccttggtcaagctctcag 338

<210> 12
<211> 112
<212> PRT
<213> Homo sapiens
<400> 12
Gly Pro Gly Leu Val Lys Pro Ser Glu Thr Leu Ser Leu Thr Cys Thr
1
5
10
15
Val Ser Gly Ser Ile Ser Asn Tyr Tyr Trp Ser Trp Ile Arg Gln
20
25
30
Pro Ala Gly Lys Gly Leu Glu Trp Ile Gly Arg Ile Tyr Thr Ser Gly
35
40
45
Ser Pro Asn Tyr Asn Pro Ser Leu Lys Ser Ser Val Val
50
55
60
Asp Thr Ser Lys Asn Gln Phe Ser Leu Lys Leu Asn Ser Val Thr Ala
65
70
75
80
Ala Asp Thr Ala Val Tyr Tyr Cys Ala Val Thr Ile Phe Gly Val Val
85
90
Ile Ile Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
100
105
110

<210> 13
<211> 322
<212> DNA
<213> Homo sapiens

<400> 13
gacatccgga tgcaccagtc tccatctccc cttgtctgcat ctgtaggaga cagagtcacc 60
atcacttgccc ggccaggtca gggcattaga agtgatttag gctgtttaaa gacgaaacac 120
gggaaagcc ctaagccgct gatctatgct gcatccaatg tacaccgtgg ggtcccatca 180
aggttcagcg gcagtggtag tgggacagaa tttcacttctca caatcagccg cctgagctt 240
gaagatttag caaatttaa cttgctacag cactaatgta accctctccac tttcgggaga 300
gggaccaaggg tggagataac ac

<210> 14
<211> 107
<212> PRT
<213> Homo sapiens

<400> 14
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Arg Ser Asp
20 25 30
Leu Gly Trp Phe Gln Gln Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile
35 40 45
Tyr Ala Ala Ser Lys Leu His Arg Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Arg Leu Gln Pro
65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln His Asn Ser Tyr Pro Leu
85 90 95
Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
100 105

<210> 15
<211> 376
<212> DNA
<213> Homo sapiens

<400> 15
gagttgcagc tgttgagtc tggggaggc ttggtacagc cttgggggtc cctgagactc 60
tctcttgcag ctcttgagtt cacctttagc agctatgcca tgaagcttgg gtgccaggct 120
ccagggaggg ggcttgagtg ggctctagct attagttgta gtgggtgtat cacatactac 180
gcagactcgg tgaagggcgg gttcaccatt tccagagaca attccaaaga cacgctgtat 240
tgtcacaatga acagcttgct agcggaggac acgccggtat attacttgct gaaagatctg 300
ggctaggggt actttacta ctacttactc ggtatggaacg tctggggcca agggaccacg 360
gttccgtct cctcag

<210> 16
<211> 125
<212> PRT
<213> Homo sapiens

<400> 16
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Ser Tyr
20 25 30
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Ala Ile Ser Gly Ser Gly Gly Ile Thr Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Lys Asp Leu Gly Tyr Gly Asp Phe Tyr Tyr Tyr Tyr Gly Met
100 105 110
Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
<210> 17
<211> 279
<212> DNA
<213> Homo sapiens

<table>
<thead>
<tr>
<th>115</th>
<th>120</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td><400> 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>caggagacag agtcaccatc acttgccggg caagtcagag cattagtacc tttttaaatt 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ggtatcagca gaaaccaggg aagccctata aactctggtat ctcttgtgca ttccagtttac 120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aaggtggtt cccatcaagg ttcagtgcca gtggatctgg gacagatcct actctcacc 180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tcagcagtc gcaactgga aattttgcaaa cttactactg tcaacagagt tacaatgccc 240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cactcacttt cgcggagggg accaaggtgg agatccaac 279</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| <210> 18 |
| <211> 92 |
| <212> PRT |
| <213> Homo sapiens |

<400> 18
Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Thr

| 1 | 5 | 10 | 15 |

Phe Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu

| 20 | 25 | 30 |

Ile His Val Ala Ser Ser Leu Gln Gly Gly Val Pro Ser Arg Phe Ser

| 35 | 40 | 45 |

Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln

| 50 | 55 | 60 |

Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Asn Ala Pro

| 65 | 70 | 75 | 80 |

Leu Thr Phe Gly Gly Thr Lys Val Glu Ile Lys

| 85 | 90 |

<210> 19
<211> 341
<212> DNA
<213> Homo sapiens

<400> 19
cccagggactg gtgaagcttt cggagacctgtgccttcacc tgcactgctct gttgtgggttc 60
catacagtgt tactactgga gttggatccg gcagcccccca gggaagggac tggagtggat 120
tgggtatatc tattacagtg gagcaccaca etacaacccc tccctcaaga gtggagtccac 180
catatcagta gacacgtcga agaaccagtt ctcctctgaag ctagttctctg tcaggctgc 240
gacacagggcc ggtgtaatct gtgcagcagc gtatagcagt tcggtctact actacggat 300
gacgtctcgg ggcaagggaa cccaggtcac cgtctctcga g 341

<210> 20
<211> 113
<212> PRT
<213> Homo sapiens

<400> 20
Pro Gly Leu Val Lys Pro Ser Glu Thr Leu Ser Leu Thr Cys Thr Val
1 5 10 15
Ser Gly Gly Ser Ile Ser Ser Tyr Tyr Trp Ser Trp Ile Arg Gln Pro
20 25 30
Pro Gly Lys Gly Leu Glu Trp Ile Gly Tyr Ile Tyr Tyr Ser Gly Ser
35 40 45
Thr Asn Tyr Asn Pro Ser Leu Lys Ser Arg Val Thr Ile Ser Val Asp
50 55 60
Thr Ser Lys Asn Gln Phe Ser Leu Lys Leu Ser Ser Val Thr Ala Ala
65 70 75 80
Asp Thr Ala Val Tyr Tyr Cys Ala Arg Thr Ser Ser Ser Phe Tyr
85 90 95
Tyr Tyr Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser
100 105 110
Ser

<210> 21
<211> 274
<212> DNA
<213> Homo sapiens

<400> 21
agagcccccc ctctcctgtag ggccagtcag agtgctgccc gcaggtactt agccctgtac 60
cagcagaaac ctggccaggg tccaggctc ctcatctatg gtgcatcag caggccact 120
gccatcccg acaggttccag tggcagttgg tctgggacag acttcatctt caccatcagc 180
agactgaggc ctgaagatct tcgagttgat tactgtcagc agtattgttag ttcacctcgtn 240
acgttcggcc aagggaccaa ggtggaatc aaac

<210> 22
<211> 91
<212> PRT
<213> Homo sapiens

<400> 22
Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Arg Gly Arg Tyr
1 5 10 15
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile
20 25 30

Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly
35 40 45

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro
50 55 60

Glu Asp Phe Ala Val Phe Tyr Cys Gln Gln Tyr Gly Ser Ser Pro Arg
65 70 75 80

Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
85 90

<210> 23
<211> 367
<212> DNA
<213> Homo sapiens

<400> 23
gaggtgacgc tgttggagtc tggggagggc ttggtacagc ctgaggggtc cctgagactc 60
tccgtgtcag cctctggtatt caccttttagc agctatgccg tagctggtgt ccgccaggtct 120
ccagggaggg gagctggagtg ggattcaggt attactggga gtggtggtgatt tacatactac 180
gcagacacgc gtaaggggcc gttcacacatc tccagagaca atttcagaga caggtctgtat 240
cagacaatgac acagccctgag agccccagagac acggtcagta cattactgac gaaagatgcca 300
gggactacgg tgattatgag ttggttccag ccttggggtgc aggggacctt ggctaccgggtc 360
tcctcag

<210> 24
<211> 122
<212> PRT
<213> Homo sapiens
<400> 24
Glu Val Gln Leu Leu Gly Gly Gly Gly Gly Leu Val Gln Pro Gly Gly
 5 10
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 20 25 30
Ala Met Ser Trp Val Arg Gln Alp Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45
Ser Gly Ile Thr Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val
 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95
Ala Lys Asp Pro Gly Thr Thr Val Ile Met Ser Trp Phe Asp Pro Trp
 100 105 110
Gly Gln Gly Thr Leu Val Thr Val Ser Ser
 115 120

<210> 25
<211> 320
<212> DNA
<213> Homo sapiens

<400> 25
gaactgtggc tgcaccatct gtcttcactc tcccgccatc tgatgacca gttgaatctg 60
gaactgcctc tgggtgtgcctc tgctggaatctc acttcatcct cagaggtgcc aagagtacgt 120
ggaaggtggta taacgccctc caaatgggtgta actcccagga gagtgcacag gagcagcaca 180
gcaaggacag cacctacagcg ctgcagcagc ccctgacgct gacaccaagca gactacgaca 240
aacacaaagt ctacgcctgc gaagtcccc atcaggccct gacgctgccc gtcacaagaga 300
gcttcacacg gggagaggtgt 320

<210> 26
<211> 106
<212> PRT
<213> Homo sapiens

<400> 26
Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln
 1 5 10 15
Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr
 20 25 30
Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser
 35 40 45
Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr
 50 55 60
Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys
 65 70 75 80
His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro
 85 90 95
Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
 100 105

<210> 27
<211> 978
<212> DNA
<213> Homo sapiens

<400> 27
gccctccacca aaggcccacatc ggtcttcccct ctgggccctct gttccaggag cacctccgag 60
tagcagccgg cccttggtctg cctggtcaag gactacttcc cccgggagtt gacctctctg 120
tgaaactcag gcgcgtctgc acgcggcgtg cacaccttcc cagctctgctc acaagtttca 180
ggactcttc ctccacgca cgggttgacc cgtgccttcc gcacgtgctg ccacccctcg 240	
tacagcagca cagactgatca caagcccagc aaccacaagg tggcaaaagc agttgagcgc 300
aaatgttggg tcgagtgcacc accgtgcagg gcacagcatg cggcggagcg gtcgacgagc 360
tcttcccccc caaaaaccgca ggcacacccct atgatcttcc ggtgggcttg gagctctctg 420
gttggagtgg gacagcagcag cgaagccctgg gacgccccat ctgatggagc cctgacgagc 480
gtggaacgtgc ataatgcacca gacaagcccc cgggaggagc acgttgggat gctgagcctg 540
gttgctaggg tcttacccct tgacagcag tcttgagcag cgtgctaggg agggagggg 600
aaaggttccg tccacccgcc ctcaccgctg acggaaaaa ccaaggggct aacaaagggg 660
cagcgcggag aaccagcagtg acaatggtct cccctgctcc gcggagggag gacacagttg 720
cagttgctag gctatccgct gcgggggaa ccgacctgg gcggagggag gcttgcagtg 780
gggcaggggg ggcagctcag aagagtgatt ctttaggcac gatcagcag agagagagag 840
gtctctctct ctctctcag gccgtcagga cggagcgat gctgccagag gcctccagcg 900
gtcgctgcat gctccagcag ctcagcagcag gcagcagcag gcagcagcag 960
tcttcgtgctc gcgggttgg

<210> 28
<211> 326
<212> PRT
<213> Homo sapiens

<400> 28
Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg
1 5 10 15
Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr
20 25 30
Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser
35 40 45
Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser
50 55 60
Leu Ser Ser Val Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr
65 70 75 80
Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys
85 90 95
Thr Val Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro
100 105 110
Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp
115 120 125
Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp
130 135 140
Val Ser His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly
145 150 155 160
Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn
165 170 175
Ser Thr Phe Arg Val Val Ser Val Leu Thr Val Val His Gln Asp Trp
180 185 190
Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro
195 200 205
Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg,Glut
210 215 220
Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn
225 230 235 240
Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile
 245 250 255
Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr
 260 265 270
Thr Pro Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys
 275 280 285
Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys
 290 295 300
Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu
 305 310 315 320
Ser Leu Ser Pro Gly Lys
 325

<210> 29
<211> 296
<212> DNA
<213> Homo sapiens

<400> 29
caggtgcagc tgggaggtc tggggagggc tgggtcaagc ctggagggtc cctgagactc 60
tccctgctc cctctgtgatc gactactaca tgagctggat cggcagctg 120
tcagggagtt ggctgagtgc ggttctcttc attagttgta gtggtagttc ccatatcatgagctgagctggtctggtc 296

<210> 30
<211> 98
<212> PRT
<213> Homo sapiens

<400> 30
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly
 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr
 20 25 30
Tyr Met Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45
Ser Tyr Ile Ser Ser Ser Gly Ser Thr Ile Tyr Tyr Ala Asp Ser Val

15
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg

<210> 31
<211> 296
<212> DNA
<213> Homo sapiens

<400> 31
gaggtgagtc tgggggagc tgggtcacac ctgggggttc cctgagactc 60
tctctgctag ccctcggatt cacctttgag agctatggca tggctggtgt ccgccagacct 120
cagaggaag ggctggagtt ggtctcagct attagtggtga tggttgtag cacatactac 180
gcagactcgc gtaaggccgg gttccaccct gccagagcca attcaagaa cagctgttat 240
ctgcaaatga acgcctggag acggcaggac acggcggctat attactgtgc gaaaga 296

<210> 32
<211> 98
<212> PRT
<213> Homo sapiens

<400> 32
Glu Val Gln Leu Leu Leu Glu Ser Gly Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Ala Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Lys

33 caggtgcagc tgcaggagtct gggcccgaga ctgggtgaagc ctctggggac cctgtccccct 60
39 acctgcgcttg tctctgggtg gttctacagc gtagtaact ggtggagtgtg ggtccgccag 120
cccccagggaa aggggctgga gtggattggg gaaatctctc atagtgggag caccacaactac 180
80 aacccgctccct ctaagagttg cgtcaccata tcagtagaca agtccaagaa ccagttttcgc 240
cctgaaggtga ggtcctgtgac cgcgcgggac acgccccgtgt atacagtgtgc gagaga 296

34 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gly
1 5 10 15
Thr Leu Ser Leu Thr Cys Ala Val Ser Gly Gly Ser Ile Ser Ser Ser
20 25 30
35 Asn Trp Trp Ser Trp Val Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp
35 40 45
Ile Gly Glu Ile Tyr His Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu
50 55 60
65 Lys Ser Arg Val Thr Ile Ser Val Asp Lys Ser Lys Asn Gln Phe Ser
65 70 75 80
Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg

35
293
<212> DNA
<213> Homo sapiens

<400> 35
caaggtgcagc tgcagggagtct gggcccgagga ctgggtgaagc ctgctggagac ccctggcccctc 60
acctgacactg tctctgggtg ctcgctcagt agttactact gggagctggt agcggcagccc 120
cagggaggg gactggaggtg gatggtgtat acctcaccg caagaggagc 180
cctttctctca agatgtcgagc caccatatct gtagacaagct ccaagaacctggtcct 240
aagctgagct ctgctggacggc tggcagacag gcctgtatt actgtgcgag aaga 293

<210> 36
<211> PRT
<212> Homo sapiens

<400> 36
Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu 1 5 10 15
Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Tyr 20 25 30
Tyr Trp Ser Trp Ile Arg Glu Pro Pro Gly Lys Gly Leu Glu Trp Ile 35 40 45
Gly Tyr Ile Tyr Tyr Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys 50 55 60
Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu 65 70 75 80
Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95
Arg

<210> 37
<211> 290
<212> DNA
<213> Homo sapiens

<400> 37
gaaatgtgtgt tgagcagctc tccagcgacc ctgtcttttgt ctccagggga aagagccacc 60
cctctctgca gggcgacctg agtggatagc agcagctact tagctctgtat ccagcaagaa 120
cctgagggcagc ctccaggctc cttcatctat ggtgccttcga gcaggcctca tggcaagcaa 180
gacagttca gtgcagttgg gtcctgggaca gacttcacttc tccacatcag cagactggag 240
cctgagatt ttgcaagtta ttactgtcag cagtatggtc gtcacctcc 290

<210> 38
<211> 96
<212> PRT
<213> Homo sapiens

<400> 38
Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly
1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser
20 25 30
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu
35 40 45
Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser
50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu
65 70 75 80
Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Pro
85 90 95

<210> 39
<211> 288
<212> DNA
<213> Homo sapiens

<400> 39
gacatccaga tggccagtc tccatctccc ctgtctgcat ctgtaggaga cagagtcacc 60
atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaccc 120
gggaaagccc ctaacgcct gatctatgct gcatccagtt tgcaaatggtg ggtcccatca 180
aggttcagcc gcagttggtc tgggacagaa ttcacctcca caatcagcag cctgcagcct 240
gaagatatttg caacttatca ctgtctacag cataaattgc accctcnn 288

<210> 40
<211> 96
<212> PRT

19
Homo sapiens

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Arg Asn Asp
20 25 30
Leu Gly Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile
35 40 45
Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln His Asn Ser Tyr Pro Pro
85 90 95

DNA

gacatccagtc tgacccagtc tccatcctcc cttgctgcgt cttggaggaga cagagtcacc 60
atcacttgcc gggcaagtca gagcattagc agctatattaa attggtatca gcagaaacca 120
gggaaagccc ctaagctctt gatctatgct gcctcagtt tgacaaagtgg ggtcccatca 180
aggttcaagtg gcagtgtgcc tgggacagt ttcactctctta ccacgcagcag tctgcaacct 240
gagatctttg caacttacta ctgtcacaag agttacagta cccctccch 288

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr
Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35

Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
50

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65

Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Pro Pro
85

<210> 43
<211> 293
<212> DNA
<213> Homo sapiens

<400> 43
caggtgcagc tgcaagagtc gggccccagga cttggtaagc cttcggagac cctgtccccctc 60
acctgcactg tctctgtggg ctctcatcagt agttactact ggagcgtgat ccggcagccc 120
gccgggaagg gactggaagt gattggaact atctatatca gttggagcag caactacaac 180
cccctccctca agagtcgagt caccatgtca gtagacagct ccaagaacca gtctctctctg 240
aagctgagct ctgtgacgcc gcggcacaag gccgtgtatt acctgtgcgag aga 293

<210> 44
<211> 97
<212> PRT
<213> Homo sapiens

<400> 44
Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu
1 5 10 15

Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Tyr
20 25 30

Tyr Trp Ser Trp Ile Arg Gln Pro Ala Gly Lys Gly Leu Glu Trp Ile
35 40 45

Gly Arg Ile Tyr Thr Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys
50 55 60

21
Ser Arg Val Thr Met Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu
65
70
75
80
Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala
85
90
95
Arg

<210> 45
<211> 470
<212> PRT
<213> Homo sapiens

<400> 45
Met Glu Phe Gly Leu Ser Trp Leu Phe Leu Val Ala Ile Leu Lys Gly
1
5
10
15
Val Gln Cys Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln
20
25
30
Pro Gly Gly Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Thr Phe
35
40
45
Ser Ser Tyr Ala Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
50
55
60
Glu Trp Val Ser Ala Ile Ser Gly Ser Gly Gly Thr Thr Phe Tyr Ala
65
70
75
80
Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Arg Thr
85
90
95
Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
100
105
110
Tyr Tyr Cys Ala Lys Asp Leu Gly Trp Ser Asp Ser Tyr Tyr Tyr Tyr
115
120
125
Tyr Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
130
135
140
Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg
145
150
155
160
Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr
22
Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser
\[\text{165}\ 170\ 175\]
Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser
\[\text{180}\ 185\ 190\]
Leu Ser Ser Val Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr
\[\text{195}\ 200\ 205\]
Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys
\[\text{210}\ 215\ 220\]
Thr Val Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro
\[\text{225}\ 230\ 235\ 240\ 245\ 250\ 255\]
Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp
\[\text{260}\ 265\ 270\]
Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp
\[\text{275}\ 280\ 285\]
Val Ser His Glu Asp Pro Glu Val Glu Asp Glu Leu Trp Tyr Val Asp Gly
\[\text{290}\ 295\ 300\]
Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn
\[\text{305}\ 310\ 315\ 320\]
Ser Thr Phe Arg Val Ser Val Leu Thr Val Val His Gln Asp Trp
\[\text{325}\ 330\ 335\]
Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro
\[\text{340}\ 345\ 350\]
Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu
\[\text{355}\ 360\ 365\]
Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn
\[\text{370}\ 375\ 380\]
Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile
\[\text{385}\ 390\ 395\ 400\]
Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr
\[\text{405}\ 410\ 415\]
Thr Pro Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys
\[\text{420}\ 425\ 430\]
Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys
Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu
Ser Leu Ser Pro Gly Lys

<210> 46
<211> 470
<212> PRT
<213> Homo sapiens

Met Glu Phe Gly Leu Ser Trp Leu Phe Leu Val Ala Ile Leu Lys Gly
1 5 10 15
Val Gln Cys Glu Val Gln Leu Leu Glu Ser Gly Gln Gly Leu Val Gln
20 25 30
Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
35 40 45
Ser Ser Tyr Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
50 55 60
Glu Trp Val Ser Ala Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala
65 70 75 80
Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn
85 90 95
Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
100 105 110
Tyr Tyr Cys Ala Lys Gly Tyr Ser Ser Gly Trp Tyr Tyr Tyr Tyr
115 120 125
Tyr Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
130 135 140
Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg
145 150 155 160
Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr
 165 170 175
Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser
 180 185 190
Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser
 195 200 205
Leu Ser Ser Val Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr
 210 215 220
Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys
 225 230 235 240
Thr Val Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro
 245 250 255
Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp
 260 265 270
Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp
 275 280 285
Val Ser His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly
 290 295 300
Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn
 305 310 315 320
Ser Thr Phe Arg Val Val Ser Val Leu Thr Val Val His Gln Asp Trp
 325 330 335
Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro
 340 345 350
Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu
 355 360 365
Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn
 370 375 380
Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile
 385 390 395 400
Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr
 405 410 415
Thr Pro Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys
420
425
430

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys
435
440
445

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu
450
455
460

Ser Leu Ser Pro Gly Lys
465
470

<210> 47
<211> 236
<212> PRT
<213> Homo sapiens

<400> 47
Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp
1
5
10
15

Phe Pro Gly Ala Arg Cys Asp Ile Gln Met Thr Gln Phe Pro Ser Ser
20
25
30

Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser
35
40
45

Gln Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gln Gln Lys Pro Gly Lys
50
55
60

Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Arg Leu His Arg Gly Val
65
70
75
80

Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr
85
90
95

Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln
100
105
110

His Asn Ser Tyr Pro Cys Ser Phe Gly Gln Gly Thr Lys Leu Glu Ile
115
120
125

Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp
130
135
140

Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
145
150
155
160

26
Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
145 150 155 160
Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu
165 170 175
Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp
180 185 190
Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr
195 200 205
Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
210 215 220
Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
225 230 235

<210> 49
<211> 470
<212> PRT
<213> Homo sapiens

<400> 49
Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Ile Ile Lys Gly
1 5 10 15
Val Gln Cys Gln Ala Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys
20 25 30
Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
35 40 45
Ser Asp Tyr Tyr Met Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu
50 55 60
Glu Trp Val Ser Tyr Ile Ser Ser Ser Gly Ser Thr Arg Asp Tyr Ala
65 70 75 80
Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn
85 90 95
Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
100 105 110
Tyr Tyr Cys Val Arg Asp Gly Val Glu Thr Thr Phe Tyr Tyr Tyr Tyr
 115 120 125
Tyr Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
 130 135 140
Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg
 145 150 155 160
Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr
 165 170 175
Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser
 180 185 190
Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser
 195 200 205
Leu Ser Ser Val Thr Val Thr Pro Ser Ser Asn Phe Gly Thr Gln Thr
 210 215 220
Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys
 225 230 235 240
Thr Val Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro
 245 250 255
Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Asp
 260 265 270
Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp
 275 280 285
Val Ser His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly
 290 295 300
Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn
 305 310 315 320
Ser Thr Phe Arg Val Val Ser Val Leu Thr Val Val His Gln Asp Trp
 325 330 335
Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro
 340 345 350
 Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu
 355 360 365
<table>
<thead>
<tr>
<th>Pro</th>
<th>Gln</th>
<th>Val</th>
<th>Tyr</th>
<th>Thr</th>
<th>Leu</th>
<th>Pro</th>
<th>Pro</th>
<th>Ser</th>
<th>Arg</th>
<th>Glu</th>
<th>Glu</th>
<th>Met</th>
<th>Thr</th>
<th>Lys</th>
<th>Asn</th>
</tr>
</thead>
<tbody>
<tr>
<td>370</td>
<td>375</td>
<td></td>
<td>380</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gln</th>
<th>Val</th>
<th>Ser</th>
<th>Leu</th>
<th>Thr</th>
<th>Cys</th>
<th>Leu</th>
<th>Val</th>
<th>Lys</th>
<th>Gly</th>
<th>Phe</th>
<th>Tyr</th>
<th>Pro</th>
<th>Ser</th>
<th>Asp</th>
<th>Ile</th>
</tr>
</thead>
<tbody>
<tr>
<td>385</td>
<td></td>
<td></td>
<td>390</td>
<td></td>
<td>400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ala</th>
<th>Val</th>
<th>Glu</th>
<th>Trp</th>
<th>Glu</th>
<th>Ser</th>
<th>Asn</th>
<th>Gly</th>
<th>Gln</th>
<th>Pro</th>
<th>Glu</th>
<th>Asn</th>
<th>Asn</th>
<th>Tyr</th>
<th>Lys</th>
<th>Thr</th>
</tr>
</thead>
<tbody>
<tr>
<td>405</td>
<td></td>
<td>410</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thr</th>
<th>Pro</th>
<th>Pro</th>
<th>Met</th>
<th>Leu</th>
<th>Asp</th>
<th>Ser</th>
<th>Asp</th>
<th>Gly</th>
<th>Ser</th>
<th>Phe</th>
<th>Phe</th>
<th>Leu</th>
<th>Tyr</th>
<th>Ser</th>
<th>Lys</th>
</tr>
</thead>
<tbody>
<tr>
<td>420</td>
<td></td>
<td>425</td>
<td>430</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leu</th>
<th>Thr</th>
<th>Val</th>
<th>Asp</th>
<th>Lys</th>
<th>Ser</th>
<th>Arg</th>
<th>Trp</th>
<th>Gln</th>
<th>Gln</th>
<th>Gln</th>
<th>Gly</th>
<th>Asn</th>
<th>Val</th>
<th>Phe</th>
<th>Ser</th>
<th>Cys</th>
</tr>
</thead>
<tbody>
<tr>
<td>435</td>
<td></td>
<td>440</td>
<td>445</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ser</th>
<th>Val</th>
<th>Met</th>
<th>His</th>
<th>Glu</th>
<th>Ala</th>
<th>Leu</th>
<th>His</th>
<th>Asn</th>
<th>His</th>
<th>Tyr</th>
<th>Thr</th>
<th>Gln</th>
<th>Lys</th>
<th>Ser</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td>450</td>
<td></td>
<td>455</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ser</th>
<th>Leu</th>
<th>Ser</th>
<th>Pro</th>
<th>Gly</th>
<th>Lys</th>
</tr>
</thead>
<tbody>
<tr>
<td>465</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>470</td>
</tr>
</tbody>
</table>

<210> 50
<211> 473
<212> PRT
<213> Homo sapiens

<p>| <400> 50 |</p>
<table>
<thead>
<tr>
<th>Met</th>
<th>Glu</th>
<th>Phe</th>
<th>Gly</th>
<th>Leu</th>
<th>Ser</th>
<th>Trp</th>
<th>Val</th>
<th>Phe</th>
<th>Leu</th>
<th>Val</th>
<th>Ala</th>
<th>Ile</th>
<th>Ile</th>
<th>Lys</th>
<th>Gly</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Val</th>
<th>Gln</th>
<th>Cys</th>
<th>Gln</th>
<th>Val</th>
<th>Gln</th>
<th>Leu</th>
<th>Val</th>
<th>Glu</th>
<th>Ser</th>
<th>Gly</th>
<th>Gly</th>
<th>Leu</th>
<th>Val</th>
<th>Lys</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pro</th>
<th>Gly</th>
<th>Gly</th>
<th>Ser</th>
<th>Leu</th>
<th>Arg</th>
<th>Leu</th>
<th>Ser</th>
<th>Cys</th>
<th>Ala</th>
<th>Ala</th>
<th>Ser</th>
<th>Gly</th>
<th>Phe</th>
<th>Thr</th>
<th>Phe</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td></td>
<td></td>
<td>40</td>
<td></td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ser</th>
<th>Asp</th>
<th>Tyr</th>
<th>Tyr</th>
<th>Met</th>
<th>Ser</th>
<th>Trp</th>
<th>Ile</th>
<th>Arg</th>
<th>Gln</th>
<th>Ala</th>
<th>Pro</th>
<th>Gly</th>
<th>Lys</th>
<th>Gly</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td></td>
<td></td>
<td>55</td>
<td></td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glu</th>
<th>Trp</th>
<th>Val</th>
<th>Ser</th>
<th>Tyr</th>
<th>Ile</th>
<th>Ser</th>
<th>Ser</th>
<th>Gly</th>
<th>Ser</th>
<th>Thr</th>
<th>Ile</th>
<th>Tyr</th>
<th>Tyr</th>
<th>Ala</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td></td>
<td></td>
<td>70</td>
<td></td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Asp</th>
<th>Ser</th>
<th>Val</th>
<th>Lys</th>
<th>Gly</th>
<th>Arg</th>
<th>Phe</th>
<th>Thr</th>
<th>Ile</th>
<th>Ser</th>
<th>Arg</th>
<th>Asp</th>
<th>Asn</th>
<th>Ala</th>
<th>Lys</th>
<th>Asn</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td></td>
<td></td>
<td>90</td>
<td></td>
<td>95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ser</th>
<th>Leu</th>
<th>Tyr</th>
<th>Leu</th>
<th>Gln</th>
<th>Met</th>
<th>Asn</th>
<th>Ser</th>
<th>Leu</th>
<th>Arg</th>
<th>Ala</th>
<th>Glu</th>
<th>Asp</th>
<th>Thr</th>
<th>Ala</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
<td></td>
<td>105</td>
<td></td>
<td>110</td>
</tr>
</tbody>
</table>
Tyr Tyr Cys Ala Arg Val Leu Arg Phe Leu Glu Trp Leu Leu Tyr Tyr
115 120 125
Tyr Tyr Tyr Tyr Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr
130 135 140
Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro
145 150 155 160
Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val
165 170 175
Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala
180 185 190
Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly
195 200 205
Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Asn Phe Gly
210 215 220
Thr Gln Thr Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys
225 230 235 240
Val Asp Lys Thr Val Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys
245 250 255
Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
260 265 270
Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val
275 280 285
Val Val Asp Val Ser His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr
290 295 300
Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu
305 310 315 320
Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val Leu Thr Val Val His
325 330 335
Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
340 345 350
Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln
355 360 365
31
Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met
| | | | 370 | 375 | 380 |
Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro
| | | | 385 | 390 | 395 | 400 |
Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn
| | | | 405 | 410 | 415 |
Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu
| | | | 420 | 425 | 430 |
Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val
| | | | 435 | 440 | 445 |
Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln
| | | | 450 | 455 | 460 |
Lys Ser Leu Ser Leu Ser Pro Gly Lys
| | | | 465 | 470 |

<210> 51
<211> 236
<212> PRT
<213> Homo sapiens

<400> 51
Met Asp Met Arg Val Pro Ala Gln Leu Leu Leu Leu Leu Trp
| | | | | | | | 1 | 5 | 10 | 15 |
Phe Pro Gly Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser
| | | | | | | | 20 | 25 | 30 |
Leu Ser Ala Ser Val Gly Asp Arg Val Thr Phe Thr Cys Arg Ala Ser
| | | | | | | | 35 | 40 | 45 |
Gln Asp Ile Arg Arg Asp Leu Gly Trp Tyr Gln Gln Lys Pro Gly Lys
| | | | | | | | 50 | 55 | 60 |
Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Arg Leu Gln Ser Gly Val
| | | | | | | | 65 | 70 | 75 | 80 |
Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr
| | | | | | | | 85 | 90 | 95 |
Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln

32
<table>
<thead>
<tr>
<th></th>
<th>100</th>
<th>105</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>His Asn Asn Tyr Pro Arg Thr Phe Gly Gln Gly Thr Glu Val Glu Ile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>115</td>
<td>120</td>
<td>125</td>
</tr>
<tr>
<td>Ile Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp</td>
<td>130</td>
<td>135</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn</td>
<td>145</td>
<td>150</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>160</td>
</tr>
<tr>
<td>Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu</td>
<td>165</td>
<td>170</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp</td>
<td>180</td>
<td>185</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr</td>
<td>195</td>
<td>200</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser</td>
<td>210</td>
<td>215</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys</td>
<td>225</td>
<td>230</td>
<td>235</td>
</tr>
</tbody>
</table>

<210> 52
<211> 236
<212> PRT
<213> Homo sapiens

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phe Pro Gly Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser</td>
<td>20</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>Gln Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gln Gln Lys Pro Gly Lys</td>
<td>50</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val</td>
<td>65</td>
<td>70</td>
<td>75</td>
</tr>
</tbody>
</table>

33
Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
145 150 155 160

Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu
165 170 175

Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp
180 185 190

Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr
195 200 205

Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
210 215 220

Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
225 230 235

<210> 53
<211> 326
<212> DNA
<213> Artificial Sequence

<400> 53
gacatccaga tgaacccagty tccatcctcc cttgctgcat ctgtaggaga cagagtccac 60
wtaacttgcgc gggcaagtca ggrcattaga mrtgatttag gctggtwtdca gcagaaacc 120
gggaaagcyc ctaagcgccct gatctatgtc gcctcctmrwt trccamggwgg ggtcccatcga 180
agttcaggg gcaagtgatc tgggacagaa ttcccacctca caatcagcmg cctgcagoct 240
gaagatggta tccctatctaaa cttgttca cgtgtacin gctatattt acyckybns ktttygcsrr 300
ggaccrags tggaratcaw acgaac

<210> 54
<211> 322
<212> DNA
Artificial Sequence

gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgyaggaga cagagtcacc 60
atcacttgcc gggcaaagtca gacgattag ysa ctcttttaa atttgatcag gcagaacca 120
gggaaagccc cttaartctct gtatcyatgct gcatcaggct trcraagrttg ggttcacata cta 180
aggtctagtg gcagtggtgat gcggagcagat ttcactctct ca ccatcagcag ctcgctaacct 240
gagatttttg caatcttacta ctgtaacacag agttacartr cccayyhc tttcggcgga 300
ggacacaaag tggagatcag ac 322

DNA

Artificial Sequence

gaaatgtgtg tgacgcatc tccagcacc ctgtctttgt cttccagggga aagagccacc 60
cctctctgya gggcagtcag gatggttmgc rgcagstact tagcctggtta ccacagaaa 120
cctggaaggg cttccagcgtct cctcattatat ggtgcatccca gcagggccac tgccatccccca 180
gacaggttcta gtgcccaggtg gtcgctggaca gacccatcag tcacccatagct cagctgtagag 240
cctgaagatt tgtcaggttgw ttactgtcag caggtatggta gytccacctcs nacgttccggc 300
cagggaga caaggtggaat caaac 325

DNA

Artificial Sequence

caggtgcagc tgggtggagtc tggggggaggg ttggcagaacg ctcggagggc tcgtagactc 60
tctcgtgcag cctcgggtatt cacyctccat gactactaya tggagctggat cggcagggct 120
caggaggggg ggcggatgag cggttctcatt acttagatag tgggttagat cakakactac 180
gcagactctg taagaagggcct attcaccatgc tccagggaca acggcaagaa ccactctgtat 240
cctgcaatttga acagcctggtg agcggagacggcctgta tgtatttgca gggagatggga 300
gttggacacta ctttttcctat ctaaactctac ggtatcagggc tctgggggcag ggaccagcag 360
gttcaccgtc cttcag 376

DNA

Artificial Sequence

caggtgcagc tgggtggagtc tggggggaggg ttggcagaacg ctcggagggc tcgtagactc 60
tctcgtgcag cctcgggtatt cacyctccat gactactaya tggagctggat cggcagggct 120
<210> 58
<211> DNA
<213> Artificial Sequence

<400> 58
caggtgcagc tggtgagct tgaggagagc tgggtcacgc ctgggggtgct cctgagactc 60
tctgctrcag cctctggatt cacctttgac agctatgcca tgactgtggt ccgccagggtct 120
cagggagagg gccgtggagtct gcgtctcagct attaaggga gagattgcct yacatwctac 180
gcagactccg tgaagggccc gttacctacg tccagagaca ttccargam cgcgtgtatat 240
tgtgaaataa acagccctcag agcgggagac gccgcgggtat attactgtgc gaaagatctg 300
ggctrskxyg agtccgagtc acctacatgc ggtatgggagc tcgggggccc agggcacycg 360
gtgaattatga gtgggttctga cccctggggc cagggaaccct gggttacgcct ctctctcag 418

<210> 59
<211> DNA
<213> Artificial Sequence

<400> 59
caggtgcagc tgagaggacg gggccagaga ctgggtgaagc tcggggagac cctgctccctc 60
tcggtcactg ttctgtgtggt ctcctcatcgt agttactact ggaggytggt ctggccagccc 120
caggggaagg gcagcggagtct gattgggttat atctattaca ctggggagcac caactacaac 180
cctctccctca agagtgcact ccactatatca ctgggacagtt ccagacaccca gggtcctctg 240
eaagctgagyt ctggtgaccgc tggccagacag gcgggtgtatt cagctggtcag gcacgtatagc 300
agttcgcctct actatacagg tatggagtct gggggaacg ggcaccagct caccgtctcc 360
tcat 364

<210> 60
<211> PRT
<213> Artificial Sequence

<400> 60
1 5 10 15
CLAIMS

1. A method for the treatment or prevention of a disorder wherein said disorder is selected from the group consisting of multiple myeloma, liquid tumor, liver cancer, thymus disorder, T-cell mediated autoimmune disease, endocrinological disorder, ischemia, and neurodegenerative disorder in a mammal comprising administering to said mammal an amount of a human anti-IGF-IR antibody that is effective in treating said disorder.

2. The method of claim 1 wherein said liquid tumor is selected from the group consisting of acute lymphocytic leukemia (ALL) and chronic myelogenic leukemia (CML); wherein said liver cancer is selected from the group consisting of hepatoma, hepatocellular carcinoma, cholangiocarcinoma, angiosarcomas, hemangiosarcomas, hepatoblastoma; wherein said thymus disorder is selected from the group consisting of thymoma and thyroiditis, wherein said T-cell mediated autoimmune disease is selected from the group consisting of Multiple Sclerosis, Rheumatoid Arthritis, Systemic Lupus Erythematosus (SLE), Grave's Disease, Hashimoto's Thyroiditis, Myasthenia Gravis, Auto-Immune Thyroiditis, Bechet's Disease, wherein said endocrinological disorder is selected from the group consisting of Type II Diabetes, hyperthyroidism, hypothyroidism, thyroiditis, hyperadrenocorticism, and hypoadrenocorticism; wherein said ischemia is post cardiac ischemia, and wherein said neurodegenerative disorder is Alzheimer's Disease.

3. The method of claim 1 comprising administering to said mammal said antibody in combination with an agent selected from the group consisting of a corticosteroid, anti-emetic, cancer vaccine, analgesic, anti-vascular agent, and anti-proliferative agent.

4. The method of claim 1 comprising administering said antibody in combination with a vaccine, wherein said vaccine is selected from GM-CSF DNA and cell-based vaccines, dendritic cell vaccines, recombinant viral vaccines, heat shock protein (HSP) vaccines, allogeneic or autologous tumor vaccines.

5. The method of claim 1 comprising administering said antibody in combination with an analgesic agent, wherein said agent is selected from the group consisting of ibuprofen, naproxen, choline magnesium trisalicylate, or oxycodone hydrochloride.

6. The method of claim 1 comprising administering said antibody in combination with an anti-vascular agent, wherein said agent is selected from the group consisting of bevacizumab, or rhuMAb-VEGF.

7. The method of claim 1 comprising administering said antibody in combination with an anti-proliferative agent, wherein said agent is selected from the group consisting of farnesyl protein transferase inhibitors, avg3 inhibitors, avg5 inhibitors, p53 inhibitors, and PDGFR inhibitors.

8. The method of claim 1 wherein the antibody that binds to IGF-IR has the following properties:
a binding affinity for human IGF-IR of K_d of 8×10^{-9} or less;

inhibition of binding between human IGF-IR and IGF-1 with an IC$_{50}$ of less than 100 nM; and

comprises a heavy chain amino acid sequence comprising human FR1, FR2, and FR3 amino acid sequences that correspond to those of the VH DP-35, VIV-4/4.35, VH DP-47, or VH DP-71 gene, or conservative substitutions or somatic mutations therein, wherein the FR sequences are linked with CDR1, CDR2, and CDR3 sequences, and wherein the antibody also comprises CDR regions in its light chain from the A27, A30, or O12 gene.

9. The method of claim 1 wherein said antibody competes for binding with IGF-IR with an antibody having heavy and light chain amino acid sequences of an antibody selected from the group consisting of 2.12.1, 2.13.2, 2.14.3, 4.9.2, 4.17.3, and 6.1.1.

10. The method of claim 1 wherein said antibody comprises a heavy chain comprising the amino acid sequences of CDR-1, CDR-2, and CDR-3, and a light chain comprising the amino acid sequences of CDR-1, CDR-2, and CDR-3, of an antibody selected from the group consisting of 2.12.1, 2.13.2, 2.14.3, 4.9.2, 4.17.3, and 6.1.1, or sequences having changes from said CDR sequences selected from the group consisting of conservative changes, wherein said conservative changes are selected from the group consisting of replacement of nonpolar residues by other nonpolar residues, replacement of polar charged residues by other polar uncharged residues, replacement of polar charged residues by other polar uncharged residues, substitution of structurally similar residues; and non-conservative substitutions, wherein said non-conservative substitutions are selected from the group consisting of substitution of polar charged residue for polar uncharged residues and substitution of nonpolar residues for polar residues, additions and deletions.

11. The method of claim 11 wherein said antibody comprises a heavy chain comprising the amino acid sequences of CDR-1, CDR-2, and CDR-3, and a light chain comprising the amino acid sequences of CDR-1, CDR-2, and CDR-3, of an antibody selected from the group consisting of 2.12.1, 2.13.2, 2.14.3, 4.9.2, 4.17.3, and 6.1.1.

12. The method of claim 1 wherein said antibody is selected from the group consisting of an antibody comprising a heavy chain amino acid sequence derived from human gene DP-47 and a light chain amino acid sequence derived from human gene A30.

13. A pharmaceutical composition for the treatment or prevention of a disorder in a mammal comprising an amount of a human anti-IGF-IR antibody that is effective in treating said disorder and a pharmaceutically acceptable carrier, wherein said disorder is selected from the group consisting of multiple myeloma, liquid tumor, liver cancer, thymus disorder, T-cell mediated autoimmune disease, endocrinological disorder, ischemia, and neurodegenerative disorder.
14. Use of an amount of a human anti-IGF-IR antibody in the preparation of a composition for the treatment or prevention of a disorder in a mammal that is effective in treating said disorder, wherein said disorder is selected from the group consisting of multiple myeloma, liquid tumor, liver cancer, thymus disorder, T-cell mediated autoimmune disease, endocrinological disorder, ischemia, and neurodegenerative disorder.

15. A method for the treatment or prevention of aging in a mammal comprising administering to said mammal an amount of an anti-IGF-IR antibody that is effective in said treatment or prevention.
FIG. 1A

2.13.2K GACATCCAGA TGACCAGTT TCCATCTCC CCTGCTGGCAT CTGTAGAGGA 50
A30 GACATCCAGA TGACCAGTC TCCATCTCC CCTGCTGGCAT CTGTAGAGGA 50
2.14.3k ------------ ------------ ----TCTCC CCTGCTGGCAT CTGTAGAGGA 26
2.12.1k ------------ ------------ -----TGGCAT CTGTAGAGGA 15
4.9.2k GACATCCAGA TGACCAGTC TCCATCTCC CCTGCTGGCAT CTGTAGAGGA 50
Consensus GACATCCAGA TGACCAGTY TCCATCTCC CCTGCTGGCAT CTGTAGAGGA 50

CDR1

2.13.2K CAGAGTCACC ATCACTGGCC GGGCAAGTCG GCACATTAGA AATGATTTAG 100
A30 CAGAGTCACC ATCACTGGCC GGGCAAGTCG GCACATTAGA AATGATTTAG 100
2.14.3k CAGAGTCACC ATCACTGGCC GGGCAAGTCG GCACATTAGA CGTGAATTTAG 76
2.12.1k CAGAGTCACC ATCACTGGCC GGGCAAGTCG GCACATTAGA CGTGAATTTAG 65
4.9.2k CAGAGTCACC ATCACTGGCC GGGCAAGTCG GCACATTAGA AATGATTTAG 100
Consensus CAGAGTCACC ATCACTGGCC GGGCAAGTCG GCACATTAGA AATGATTTAG 100

CDR2

2.13.2K GCATCCCGTT TCCACACAGG GTGCCCCTCA AAGTCAGGCG GCAGTGGRTC 200
A30 GCATCCCGTT TCCACACAGG GTGCCCCTCA AAGTCAGGCG GCAGTGGRTC 200
2.14.3k GCATCCCGTT TCCACACAGG GTGCCCCTCA AAGTCAGGCG GCAGTGGRTC 176
2.12.1k GCATCCCGTT TCCACACAGG GTGCCCCTCA AAGTCAGGCG GCAGTGGRTC 165
4.9.2k GCATCCCGTT TCCACACAGG GTGCCCCTCA AAGTCAGGCG GCAGTGGRTC 200
Consensus GCATCCCGTT TCCACACAGG GTGCCCCTCA AAGTCAGGCG GCAGTGGRTC 200

CDR3

2.13.2K TGGGACAGAA TTTACTTTCA GATTCAGAG GCTGAGGCTT GAGATTGTTG 250
A30 TGGGACAGAA TTTACTTTCA GATTCAGAG GCTGAGGCTT GAGATTGTTG 250
2.14.3k TGGGACAGAA TTTACTTTCA GATTCAGAG GCTGAGGCTT GAGATTGTTG 226
2.12.1k TGGGACAGAA TTTACTTTCA GATTCAGAG GCTGAGGCTT GAGATTGTTG 215
4.9.2k TGGGACAGAA TTTACTTTCA GATTCAGAG GCTGAGGCTT GAGATTGTTG 250
Consensus TGGGACAGAA TTTACTTTCA GATTCAGAG GCTGAGGCTT GAGATTGTTG 250

Consensus GGGGACAGAA TTTACTTTCA GATTCAGAG GCTGAGGCTT GAGATTGTTG 250

2.13.2K CAACCTTATT ACGTGTTACAA CATAAATCTTT AGCCCTGAC GTTTGGCCAG 300
A30 CAACCTTATT ACGTGTTACAA CATAAATCTTT AGCCCTGAC GTTTGGCCAG 300
2.14.3k CAACCTTATT ACGTGTTACAA CATAAATCTTT AGCCCTGAC GTTTGGCCAG 276
2.12.1k CAACCTTATT ACGTGTTACAA CATAAATCTTT AGCCCTGAC GTTTGGCCAG 265
4.9.2k CAACCTTATT ACGTGTTACAA CATAAATCTTT AGCCCTGAC GTTTGGCCAG 300
Consensus CAACCTTATT ACGTGTTACAA CATAAATCTTT AGCCCTGAC GTTTGGCCAG 300

A30 ------------ ------------ ------------ ------------ 322
2.14.3k GGGGACAGAA TTTACTTTCA GATTCAGAG GCTGAGGCTT GAGATTGTTG 302
2.12.1k GGGGACAGAA TTTACTTTCA GATTCAGAG GCTGAGGCTT GAGATTGTTG 291
4.9.2k GGGGACAGAA TTTACTTTCA GATTCAGAG GCTGAGGCTT GAGATTGTTG 322
Consensus GGGGACAGAA TTTACTTTCA GATTCAGAG GCTGAGGCTT GAGATTGTTG 326
FIG. 1C

6.1.1K
A27
Consensus
GAAATTGTGTTGACGCAGTCCTCAGGCACCCTGTCTTGTGTCCAAGGGAG

50
50

6.1.1K
A27
Consensus
AGAGCCACCCTCTCCTGTA GGCCACGTA GAGTTTGAGC GACAGCTACT

49
100
100

6.1.1K
A27
Consensus
TAGGCTGGTACACGCAGAAA CCGGCAAGGCTCCCAAGGCTCTCATCTAT

99
150
150

6.1.1K
A27
Consensus
GGTGCATCCA GCAGGGCCACC GACAGGTCCA GTGCCAGTGG

149
200
200

6.1.1K
A27
Consensus
GCTCTGGGACA GACTTCATCC TCCCATCAGCAGACTGGAGGACTGAGATT

199
250
250

6.1.1K
A27
Consensus
TGCTGGGACA GACTTCATCC TCCCATCAGCAGACTGGAGGACTGAGATT

249
288
300

6.1.1K
A27
Consensus
CAAGGGACCA AGGTGGAAAT GAAAC

274
290
325
FIG. 3A

<table>
<thead>
<tr>
<th>Clone</th>
<th>C domain mutations</th>
<th>FR mutation</th>
<th>CDR mutation</th>
<th>Change in Cys</th>
<th>Change in glycosylation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.13.2 Heavy</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.13.2 Light</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>1 (CDR3)</td>
<td>0</td>
</tr>
<tr>
<td>2.12.2 Heavy</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.12.2 Light</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

FIG. 3B

PF2 2.13.2 Heavy chain (DP-47 (3-23)/D6-19/JH6)

<table>
<thead>
<tr>
<th>PEPTIDE</th>
<th>AA1</th>
<th>AA2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEPGLSWLFL</td>
<td>VAILKGVQCE</td>
<td>VQNLZZGGGL VQPGSSRLS</td>
</tr>
<tr>
<td>MEPGLSWLFL</td>
<td>VAILKGVQCE</td>
<td>VQNLZZGGGL VQPGSSRLS</td>
</tr>
<tr>
<td>QMNISRRAEDT</td>
<td>AVYYCAK</td>
<td>--D LGSNDSYLY YGMDVWQGT</td>
</tr>
<tr>
<td>QMNISRRAEDT</td>
<td>AVYYCAKGS --SGN--YYY YGMDVWQGT</td>
<td></td>
</tr>
<tr>
<td>AVLQSSGLYS</td>
<td>LSSWTVFSS</td>
<td>NGFTQTYTGN VDHKPSNTKV</td>
</tr>
<tr>
<td>AVLQSSGLYS</td>
<td>LSSWTVFSS</td>
<td>NGFTQTYTGN VDHKPSNTKV</td>
</tr>
<tr>
<td>NWWYDGVESVH</td>
<td>NAKTKPREEQ</td>
<td>FNSTFRVVSV LTVVHQDNLN</td>
</tr>
<tr>
<td>NWWYDGVESVH</td>
<td>NAKTKPREEQ</td>
<td>FNSTFRVVSV LTVVHQDNLN</td>
</tr>
<tr>
<td>DIAVEWESNG</td>
<td>QPENNYKTTT</td>
<td>PMLDSDGSSF LYSKLTVDKS RWWQGNVFSC SVMHEALHNH YTQKSLSLSP GK</td>
</tr>
<tr>
<td>DIAVEWESNG</td>
<td>QPENNYKTTT</td>
<td>PMLDSDGSSF LYSKLTVDKS RWWQGNVFSC SVMHEALHNH YTQKSLSLSP GK</td>
</tr>
</tbody>
</table>
FIG. 3C

PF2 2.13.2 LC (A30/JK2)

**

QPEDFATYYC LHNSYPFCSF GQGTKLIEKR TVAAPSVFIF PPSDEQLKSG TASVVCILNN FYPREAKVQW KVDNALQSGN SQESVTEQDS KDSTYLSST

LTLSKADYEK HKVYACEVTH QGLSSPVTKS FNRGEC

FIG. 3D

PF2 2.12.1 Heavy chain (DP-35-(3-11)/D3-3/JH6)

**

QMNLSRAEDT AVYYCARVHR GVEFTFYXY YGMDWGGQQ TTVTSSAST KGPSVFPLAP CSRSTSESTA ALGCLVKDYF PEEFTVSWNS GALTSGVHFT

PAVLQSSGLY SLSVSTIVPS SNFGTQTYTC NVHKPSNTK VDKTVERKCC VECPPCPAPP VAGPSVFLLP PPKPDTLMIS RTPEVTCVVV DVSHEDEPVO

PAVLQSSGLY SLSVSTIVPS SNFGTQTYTC NVHKPSNTK VDKTVERKCC VECPPCPAPP VAGPSVFLLP PPKPDTLMIS RTPEVTCVVV DVSHEDEPVO

PNWYVDGVEV HNAKTKPREE QFNSTERVVS VLTIVHDQWDL NGKEYCKKS NGKLPAFIEK TISRTKQOPRE PQVTLLPPS REEMTKNQVS LTLVKGFPY

SDIAVEWSEN GQFENNYKKT PFMIDSGSF FLYSKLTVDK SRWQQGNVFS C5SVHEAHLN HYTQKSLSLSP GK

SDIAVEWSEN GQFENNYKKT PFMIDSGSF FLYSKLTVDK SRWQQGNVFS C5SVHEAHLN HYTQKSLSLSP GK
FIG. 4

IGF1R Receptor, % of Control

Dose (µg)

FIG. 5

Tumor Size, mm³

Time, days

- Vehicle
- 31.25 µm
- 125 µm
- 500 µm
- KLH, 500 µm