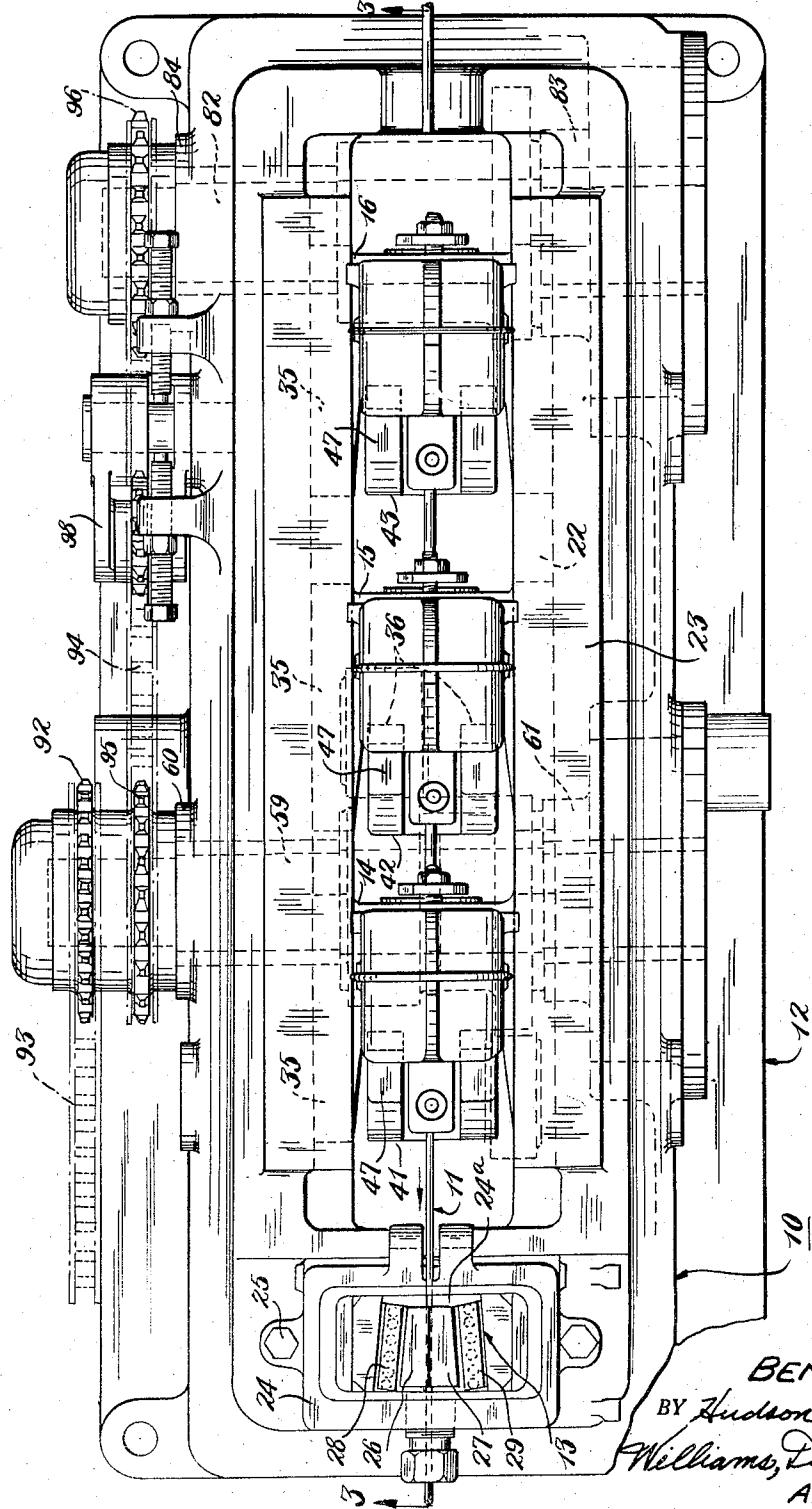


April 14, 1959


B. F. WARE

2,881,908

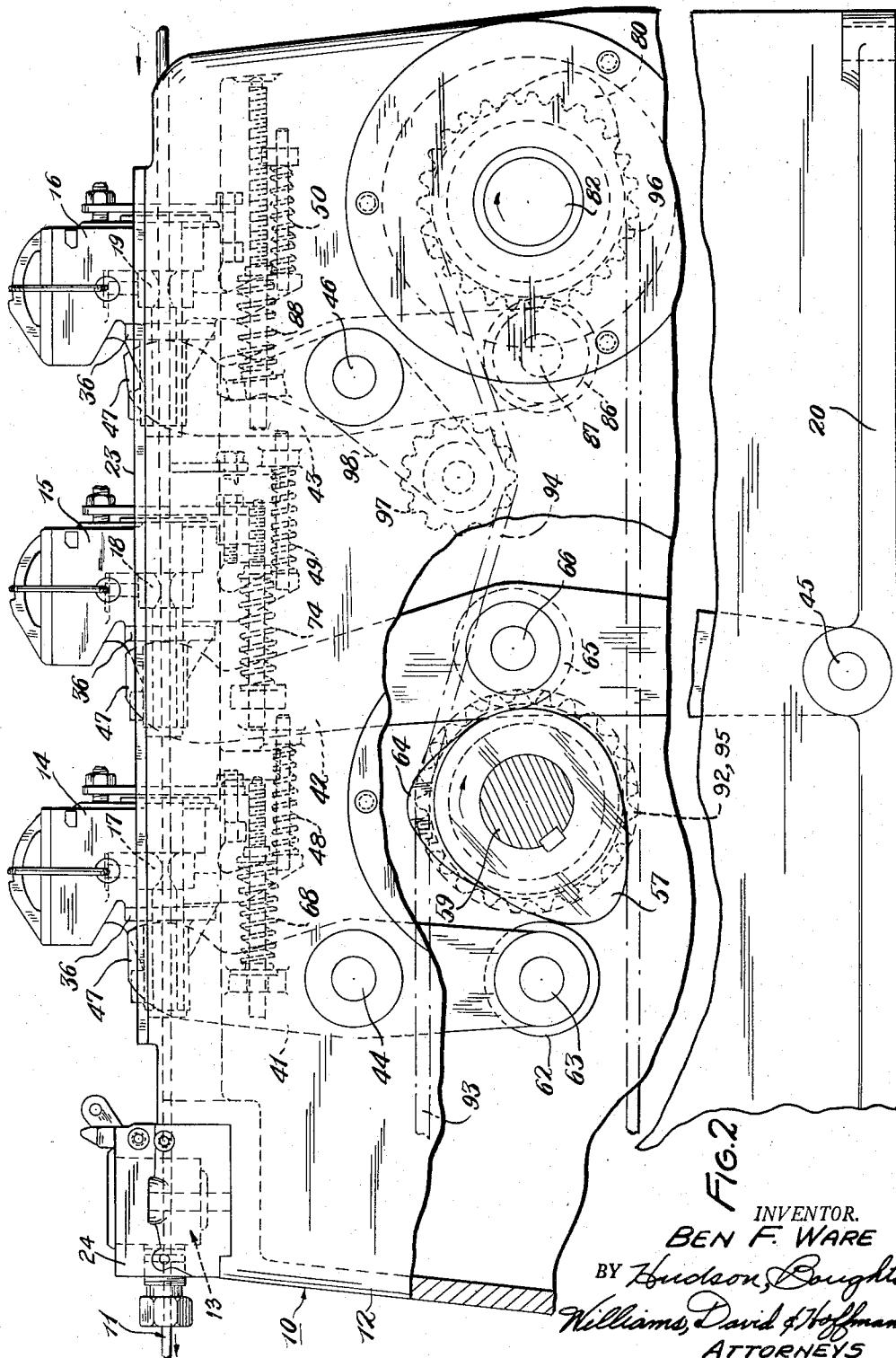
MULTIPLE-DRAW WIRE DRAWER

Filed May 3, 1954

3 Sheets-Sheet 1

INVENTOR.
BEN F. WARE
BY *Hudson, Boughton,
Williams, David & Hoffmann*
ATTORNEYS

April 14, 1959


B. F. WARE

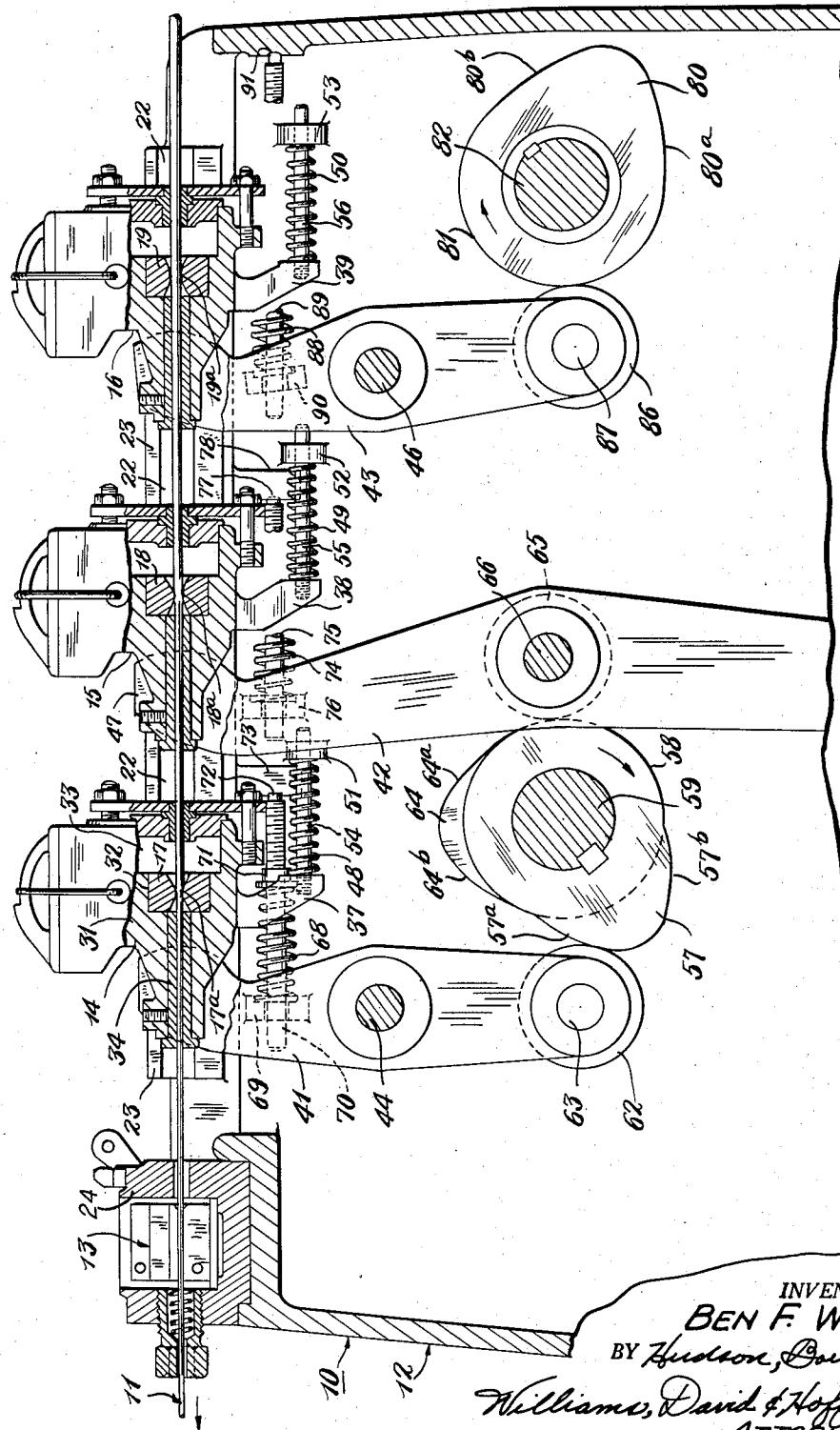
2,881,908

MULTIPLE-DRAW WIRE DRAWER

Filed May 3, 1954

3 Sheets-Sheet 2

April 14, 1959


B. F. WARE

2,881,908

MULTIPLE-DRAW WIRE DRAWER

Filed May 3, 1954

3 Sheets-Sheet 3

INVENTOR.
BEN F. WARE
BY Hudson, Daughton,
Williams, David & Hoffmann
ATTORNEYS

2,881,908

MULTIPLE-DRAW WIRE DRAWER

Ben F. Ware, Euclid, Ohio, assignor to The Ajax Manufacturing Company, Euclid, Ohio, a corporation of Ohio

Application May 3, 1954, Serial No. 427,211

13 Claims. (Cl. 205—14)

This invention relates to wire drawers of the kind in which the wire being drawn passes through a series of drawing dies in succession, and more particularly, to a novel form of wire drawer of this kind.

An object of this invention is to provide a novel wire drawer of the kind having a series of drawing dies performing multiple draws on a wire and in which the drawing operations of the dies are performed in succession in a drawing cycle, such that the load on the drawer will be a distributed load and the maximum applied force during the drawing operation will be only the maximum force required by some one of the dies of the series.

Another object is to provide such a multiple-draw wire drawer in which the drawing dies are reciprocably movable relative to a wire gripping means, and in which the drawing stroke of one die starts substantially simultaneously with the end of the drawing stroke of the preceding die of the series.

Still another object is to provide a novel multiple-draw wire drawer in which a plurality of drawing dies are carried by reciprocable die carriers disposed in a series and actuated by thrust applying devices, and in which the die carriers are movable relative to their associated thrust applying devices to accommodate the elongation produced in the wire.

Yet another object is to provide such a multiple-draw wire drawer in which the die carriers are slides movable along a common guideway by swingable draw levers and are urged toward engagement with such draw levers by spring means which also produces a return-stroke movement of the slides.

Additionally, this invention provides a multiple-draw wire drawer of the character above indicated in which the draw levers are actuated by rotary cams of an arcuate spacing and throw, such that the drawing strokes of the dies are in a direction away from the grip means and occur in succession in a drawing cycle, starting with the drawing die nearest the grip means.

The invention can be further briefly summarized as consisting in certain novel combinations and arrangements of parts hereinafter described and particularly set out in the claims hereof.

In the accompanying sheets of drawings forming a part of this specification:

Fig. 1 is a plan view of a wire drawer embodying this invention;

Fig. 2 is a partial side elevation of the drawer, but showing the same with portions thereof broken away; and

Fig. 3 is a partial longitudinal vertical section taken through the drawer substantially as indicated by section line 3—3 of Fig. 1.

As representing a preferred embodiment of the invention, the drawings show this novel multiple-draw wire drawer 10 as being of the kind adapted to be used in advance of a fabricating machine, such as a cold-header, for supplying drawn wire 11 to the feed rolls (not shown)

of such machine or header. The wire drawer 10 comprises, in general, a frame 12 having thereon a grip device 13 adapted to grip the wire 11 for preventing backward movement thereof, and a plurality of die carriers or slides, in this instance, three such slides 14, 15 and 16 having thereon the respective wire drawing dies 17, 18 and 19.

The frame 12 is an upright hollow longitudinal frame having a base portion 20 upon which the wire drawer is adapted to stand and is provided adjacent the top thereof with a longitudinal guideway 22 extending substantially in the direction of the axis of the wire 11 and in a direction away from the grip device 13. The guideway 22 is also defined, in part, by longitudinal cover plates 23 which are suitably secured to the frame 12 in inwardly overhanging relation to the sides of the guideway.

The grip device 13 is of a conventional form comprising a grip box 24 secured to the frame 12 by screws 25, and a pair of tapered grip blocks 26 and 27 located in the chamber 24^a of the grip box and having limited longitudinal shifting therein for gripping the wire 11 therebetween. The grip device 13 also comprises a pair of roller bearing assemblies 28 and 29 disposed in a relatively inclined relation in the grip box 24 and engaged by the grip blocks 26 and 27 for facilitating the longitudinal shifting of the latter. The action of the grip device 13 is such that upon any tendency of the wire 11 to be moved in a backward direction, that is in a direction toward the right as seen in the drawings, the grip blocks 26 and 27 will close against the wire and tightly grip the same.

The die-carrying slides 14, 15 and 16 are disposed in a longitudinal series extending away from the grip device 13 and are reciprocably movable in the guideway 22. The slides 14, 15 and 16 are substantially identical in construction and are of a conventional form comprising a slide body 31 having a die recess or pocket 32 therein adapted to receive and hold the drawing die. The slide body 31 is provided on one side of the die with a powder chamber 33 adapted to receive a suitable drawing compound, and on the opposite side of the drawing die with a guide tube or bushing 34 through which the drawn wire extends in leaving the die box.

The die slides 14, 15 and 16 are each provided with a pair of laterally extending guide portions 35 which are slidable in the guideway 22 and retained therein by the cover plates 23. The slides are also provided with thrust surfaces 36 on the end thereof facing the grip device 13 and which thrust surfaces are substantially flat vertical surfaces located on opposite sides of the portion of the slide body containing the guide bushing 34. The slides 14, 15 and 16 are also provided with depending thrust brackets 37, 38 and 39. The purpose of the thrust faces 36 and of the thrust brackets 37, 38 and 39 will be explained hereinafter.

The drawing dies 17, 18 and 19 are seated in the die pockets 32 of the respective slides 14, 15 and 16 so as to constitute a longitudinally extending series of dies and are suitably retained in such pockets. These drawing dies have draw orifices 17^a, 18^a and 19^a of a progressively varying size and which produce the multiple-draw drawing operation on the wire 11. The die 17 produces the smallest wire size for the wire 11 and represents the final draw performed on the wire prior to its passing through the grip device 13. For convenience of analysis of the cycle of drawing operations, the die 17 can be regarded as producing its draw first in point of time in the sequence of draws and can therefore be referred to as the first die. The draw orifice 17^a of this first die is, therefore, of the smallest transverse dimension or diameter of all of the dies of the series.

The die 18 is the intermediate die of the series and produces its draw as the second draw of the sequence. The draw orifice 18^a of this second die is of a transverse dimension or diameter somewhat larger than the orifice of the first die 17.

The die 19 is the die of the series which is encountered first by the wire 11 since this die is relatively more remote from the grip device 13 than the first and intermediate dies 17 and 18, but produces its draw last in the sequence of draws and is therefore referred to as the last die of the series. The draw orifice of this last die is somewhat larger in transverse dimension or diameter than the orifice of the next preceding die 18.

Thus, during relative axial forward movement of the wire 11 through the drawing dies of the series, it will be subjected to a progressive decrease in size as the drawing operations are performed thereon by the respective dies of the series.

Working or drawing strokes of the dies 17, 18 and 19 are produced by movement of the slides 14, 15 and 16 toward the right along the guideway 22, as seen in Fig. 3. These drawing strokes of the dies 14 and 15 and 16 are produced by suitable mechanism such as that illustrated in the drawings and which includes actuating members here shown as draw levers 41, 42 and 43 associated with the respective slides and swingably mounted in the hollow frame 12 by transverse pivot pins 44, 45 and 46. These draw levers have a forked upper end 47 in engagement with the pairs of thrust surfaces 36 of the respective die slides, such that a clockwise swinging movement imparted to the levers will cause drawing strokes of the slides 14, 15 and 16 and of the drawing dies carried thereby.

Return movement is imparted to the slides 14, 15 and 16 by compression springs 48, 49 and 50 engaging the thrust brackets 37, 38 and 39 of the respective slides. These springs also urge the slides toward engagement with the forked upper ends 47 of their respective draw levers. The springs 48, 49 and 50 have their rear or remote ends in engagement with spring seats 51, 52 and 53 formed by lug projections of the frame 12 and are disposed in surrounding relation to guide rods 54, 55 and 56 which are threadedly connected with the thrust brackets 37, 38 and 39 and slidably extend through the spring seats 51, 52 and 53.

The clockwise drawing stroke of the first slide 14 is produced by a suitable actuating means for the draw lever 41 and which, in this instance, is a rotary cam 57 carried by a transverse drive shaft 59 rotatably mounted in suitable bearings 60 and 61 of the frame 12. The cam 57 is engaged by a cam follower provided on the lower end of the draw lever 41 and which is in the form of a roller 62 mounted on a pivot shaft 63.

The drawing stroke of the lever 41 takes place as the roller 62 traverses the rise portion 57^a of the cam and the return stroke occurs as the roller traverses the fall portion 57^b. After traversing the fall portion 57^b, the roller 62 operates on the cylindrical dwell portion or hub 58 until it is again engaged by the rise portion 57^a at the start of the next drawing cycle. The lift or throw of the cam 57 is of a suitable value to provide a drawing stroke of the desired length for the slide 14.

The draw lever 42 for the second slide 15 is actuated by a second cam 64 carried by the shaft 59 and which engages a roller 65 forming a cam follower for this lever by being mounted on a pivot shaft 66. The clockwise drawing stroke of the lever 42 is produced as the roller 65 traverses the rise portion 64^a of the cam and the return stroke occurs as the roller traverses the fall portion 64^b of the cam. After traversing the fall portion 64^b, the roller 65 operates on the cylindrical dwell portion or hub 58 until it is again engaged by the rise portion 64^a during the next drawing cycle.

The cam 64 has a lift or throw of a suitable value

to provide a drawing stroke of the desired length for the slide 15. The cam 64 is located on the shaft 59 in an arcuately spaced relation to the actuating cam 57 for the slide 14. The arcuate spacing of the cam 64 relative to the cam 57 can be of any desired value, but is preferably such that the drawing stroke of the slide 15 will be started substantially simultaneously with the completion of the drawing stroke of the slide 14.

The roller 62 of the draw lever 41 is maintained in engagement with the cam 57 by the action of a compression spring 68 having one end thereof in engagement with a spring seat 69 provided on this draw lever. The spring 68 is disposed in surrounding relation to a guide rod 70, and its opposite end is in engagement with a threadedly adjustable spring seat 71 provided on such rod. One end of the guide rod 70 is engaged in a socket recess 72 provided in a thrust lug 73 of the frame 12, and its opposite end slidably extends through an opening of the spring seat 69.

Similarly, the roller 65 of the draw lever 42 is maintained in engagement with the cam 64 by a compression spring 74 disposed around a guide rod 75 and having one end thereof engaging a spring seat 76 provided on this draw lever. One end of the guide rod 75 slidably extends through the spring seat 76, and its other end is rockably engaged in a socket recess 77 of a thrust lug 78. The action of the springs 68 and 74 is such as to hold the rollers 62 and 65 against their associated cams 57 and 64 or against the cylindrical dwell portion 58.

The draw lever 43 for the third slide 16 is actuated by a rotary cam 80 secured to a transverse drive shaft 82 rotatably mounted in the frame 12 by suitable bearings 83 and 84. The cam 80 has a lift or throw of a suitable value to provide a drawing stroke of the desired length for the slide 16 and is engageable by a roller 86 mounted on a pivot shaft 87 of the draw lever 43. The clockwise drawing stroke of the lever 43 is produced as roller 86 traverses the rise portion 80^a of the cam and the return stroke occurs as the roller traverses the fall portion 80^b of the cam. After traversing the fall portion 80^b, the roller 86 operates on the cylindrical dwell portion 81 until it is again engaged by the rise portion 80^a during the next drawing cycle.

The lift portion of the cam 80 is located in arcuately spaced relation to the cams 57 and 64, such that the drawing stroke of the slide 16 will occur in timed sequence with the drawing stroke of the slides 14 and 15. When the series of drawing dies comprises three dies, as in the wire drawer 10, the cams 57, 64 and 80 are spaced approximately 120 degrees apart, such that the load of the drawing strokes will be distributed relatively evenly around the full 360 degrees of arcuate extent of the drive shaft 59.

The roller 86 is held in engagement with the face of the cam 80 by the action of a compression spring 88 disposed around a guide rod 89 and engaging a spring seat 90 of the lever 43. The opposite end of the spring 88 engages a spring seat provided on this guide rod similar to the spring seat 71 of the guide rod 70. One end of the guide rod 89 slidably extends through the spring seat 90 of the lever 43 and its opposite end is rockably engaged in a socket recess 91 of the frame 12.

The drive shaft 59 is suitably driven from an available source of power, such as the fabricating machine or header with which the wire drawer 10 is being used. For this purpose, this shaft is provided with a drive sprocket 92 engaged by a drive chain 93. The shaft 82 is driven from the shaft 59 by means of a chain 94 extending around sprockets 95 and 96. An idler sprocket 97 carried by a swingable arm 98 engages the chain 94 and forms a tightener for this chain.

From the construction above described for the wire drawer 10, and with the parts of the machine occupying the relative positions shown in the drawings, it will be seen that the lift portion 57^a of the cam 57 is imparting

a drawing stroke to the first slide 14 by which the drawing die 17 is being pushed over the wire 11 while this wire is being held against backward movement by the grip device 13. The elongation which is produced in the wire 11 by the drawing stroke of the die 17 will occur in the portion of the wire extending between this die and the grip device 13. This elongation in the wire will be accommodated in the machine by a movement of the second slide 15 toward the right away from its draw lever 42 and by a similar movement of the third slide 16 away from its draw lever 43. This movement of the slides 15 and 16 away from their draw levers is permitted by, and is in opposition to, the compression springs 49 and 50.

Substantially simultaneously with the completion of the drawing stroke of the die 17, that is to say, substantially simultaneously with the crest of the cam 57 leaving the roller 62, the lift portion 64^a of the cam 64 will begin to actuate the lever 42 to cause the drawing stroke of the die 18, during which this die is pushed over the wire 11 while the latter is held against backward movement by the grip device 13. The elongation produced in the wire by this drawing stroke of the die 18 will be accommodated in the machine by a further movement of the slide 16 away from its draw lever 43.

Substantially simultaneously with the completion of the drawing stroke of the die 18, that is to say, substantially simultaneously with the crest of the cam 64 leaving the roller 65, the lift portion 80^a of the cam 80 will actuate the draw lever 43 to cause a drawing stroke of the die 19 during which the latter will be pushed over the wire 11. During the initial portion of the swinging movement imparted to the draw levers 42 and 43 by the cams 64 and 80, these levers will move through and take up the space by which the slides 15 and 16 were shifted away from these levers by the drawing elongation previously produced in the wire by the preceding die or dies of the series. As soon as this intervening space has been taken up, the draw levers will engage the slides 15 and 16 and produce the drawing strokes thereof.

After all of the dies of the series have been moved through their drawing strokes as explained above, the wire 11 is fed forward by the feed rolls and during this forward feeding movement, the slides 14, 15 and 16 move through their return stroke by advancing with the wire under the action of the springs 48, 49 and 50.

From the accompanying drawings and the foregoing detailed description, it will now readily be understood that the wire drawer 10 accomplishes a multiple-draw reduction of the wire stock by actuation of the drawing dies of a series in a sequence, such that the drawing operation of one die will start substantially simultaneously with the completion of the drawing operation of a related or preceding die of the series. In this way, the maximum load to which the machine is subjected will be the maximum drawing load accompanying the actuation of some one of the dies of this series. Moreover, it will be seen that in this novel wire drawer, the provision for movement of the die slides away from their respective actuating devices accommodates the elongation produced in the wire by the preceding die or dies of the series. It will, accordingly, be understood that this multiple-draw wire drawer extends the range of usefulness of various fabricating machines and headers by producing a greater reduction in the stock diameter than has heretofore been possible in available wire drawing machines. It will also be seen that although the machine herein disclosed employs three drawing dies, a larger or smaller number of such dies could be provided within the 360 degrees of available angular extent of the drive shafts 59 and 82 and through which arcuate distance a corresponding number of actuating cams could be spaced.

From the disclosure herein made of the wire drawer

10 it will be further understood that the wire 11 is advanced intermittently in the direction indicated in the drawings, and between the successive advance movements is held against backward movement by the grip device 13 and is subjected to the above-explained multiple-draw drawing operation by the drawing dies of the series.

Although the novel wire drawer of this invention has been illustrated and described herein to a somewhat detailed extent, it will be understood, of course, that the invention is not to be regarded as being limited correspondingly in scope, but includes all changes and modifications coming within the terms of the claims hereof.

Having thus described my invention, I claim:

1. In a wire drawer, a frame, a plurality of slides disposed in a series and individually reciprocably movable on said frame in the direction of and along the axis of a wire to be drawn, a plurality of drawing dies having draw orifices of progressively different sizes, grip means on said frame and effective on said wire to prevent backward movement thereof, said dies being carried by the respective slides and being movable thereby through drawing strokes over said wire and in a direction away from said grip means, and slide actuating mechanism including devices effective on the respective slides for imparting said drawing strokes thereto in succession and in series sequence.
2. In a wire drawer, a frame, a plurality of slides disposed in a series and individually reciprocably movable on said frame in the direction of and along the axis of a wire to be drawn, a plurality of drawing dies having draw orifices of progressively different sizes, grip means on said frame and effective on said wire to prevent backward movement thereof, said dies being carried by the respective slides and being movable thereby through drawing strokes over said wire and in a direction away from said grip means, and slide actuating mechanism including actuating members engageable with the respective slides for imparting said drawing strokes thereto in succession and in series sequence, the slide relatively more remote from said grip means being movable away from its actuating member during the drawing stroke of another of said slides which is relatively closer to said grip means for accommodating elongation produced in said wire.
3. In a wire drawer, a frame having a guideway thereon, a plurality of slides individually reciprocable in said guideway and disposed in a spaced-apart series relation therealong, grip means on said frame adjacent one end of said guideway and adapted to grip the wire to be drawn to prevent backward movement thereof, a plurality of drawing dies in a series extending along said guideway and having draw orifices of sizes decreasing progressively toward said grip means, said dies being carried by the respective slides and being movable thereby through drawing strokes along said wire and in a direction away from said grip means, and slide actuating mechanism including thrust members engageable with the respective slides for imparting said drawing strokes thereto in succession and in a sequence starting with the slide nearest said grip means, the slides relatively more remote from said grip means being movable away from their thrust members by substantially the amount of the elongation produced in the wire of the drawing action of the dies of the preceding slides of the series.
4. A wire drawer as defined in claim 3 in which the thrust members are actuated in timed relation by rotary cam means.
5. A wire drawer as defined in claim 3 in which the thrust members are actuated in timed relation by rotary cams, said cams having an arcuate spacing and throw such that the drawing stroke of the die of each succeeding slide of the series starts substantially simultaneously with the end of the drawing stroke of the next preceding slide.
6. A wire drawer as defined in claim 3 in which the thrust members are swingable draw levers actuated in

timed relation by rotary cams and having cam follower means held against said cams by spring means.

7. In a wire drawer, a frame having a guideway thereon, a plurality of slides individually reciprocable in said guideway and disposed in a spaced-apart series relation therealong, grip means on said frame adjacent one end of said guideway and adapted to grip the wire to be drawn to prevent backward movement thereof, a plurality of drawing dies in a series extending along said guideway and having draw orifices of a size decreasing progressively toward said grip means, said dies being carried by the respective slides and being movable thereby through drawing strokes along said wire and in a direction away from said grip means, slide actuating mechanism including thrust members engageable with the respective slides for imparting said drawing strokes thereto in succession and in a sequence starting with the slide nearest said grip means, and spring devices effective on said slides for producing a return stroke thereof and normally urging said slides into engagement with said thrust members, the slides relatively more remote from said grip means being movable away from their thrust members and in opposition to said spring devices by substantially the amount of the elongation produced in the wire by the drawing action of the dies of the preceding slides of the series.

8. In a wire drawer, a frame having a longitudinal guideway thereon, a plurality of slides individually reciprocable in said guideway and disposed in a spaced-apart relation in a series extending therealong, grip means on said frame adjacent one end of said guideway and adapted to grip the wire to be drawn to prevent backward movement thereof, a plurality of drawing dies having draw orifices of sizes decreasing progressively toward said grip means, said dies being carried by the respective slides and being movable thereby through drawing strokes along said wire and in a direction away from said grip means, shaft means rotatable in said frame and extending transversely to said guideway, rotary cam means driven by said shaft means, draw levers swingable on said frame and having pushing engagement with the respective slides of said series, said levers being actuated by said rotary cam means in timed sequence for causing the drawing strokes of said slides in succession starting with the slide which is nearest said grip means, and spring means effective on said slides for imparting return stroke movement thereto and urging said slides toward engagement with said levers, the slides relatively more remote from said grip means being movable away from their draw levers during elongation produced in the wire by the drawing dies of the slides which are relatively closer to said grip means.

9. A wire drawer as defined in claim 8 in which said shaft means includes a first rotary shaft having a pair of said draw levers located on opposite sides thereof, and in which said rotary cam means comprises a pair of arcuately spaced cams driven by said first shaft and adapted to actuate said pair of levers.

10. In a wire drawer, a frame having a longitudinal guideway thereon, a plurality of slides individually reciprocable in said guideway and disposed in a spaced-apart relation in a series extending therealong, a grip

10

15

20

25

30

35

40

45

50

55

60

means on said frame adjacent one end of said guideway and adapted to grip the wire to be drawn to prevent backward movement thereof, a plurality of drawing dies having draw orifices of sizes decreasing progressively toward said grip means, said dies being carried by the respective slides and being movable thereby through drawing strokes along said wire and in a direction away from said grip means, shaft means rotatable in said frame and extending transversely to said guideway, rotary cam means driven by said shaft means, and draw levers swingable on said frame and having pushing engagement with the respective slides of said series, said levers being actuated by said rotary cam means in timed sequence for causing the drawing strokes of said slides in succession during an operating cycle of 360 degrees of rotation of said shaft means, said rotary cam means comprising cams spaced arcuately of said shaft means such that the drawing stroke of one die starts substantially simultaneously with the ending of the drawing stroke of an adjacent die and such as to distribute the drawing strokes of said dies throughout said 360 degrees of rotation, the slides relatively more remote from said grip means being movable away from their draw levers during elongation produced in the wire by the drawing dies of the slides which are relatively closer to said grip means.

11. The method of drawing wire which comprises the steps of, gripping a wire for holding the same against backward movement, and pushing a series of drawing dies over and along the wire for drawing the same while the wire is being thus held against backward movement, said pushing of the dies being carried out in succession and in a series sequence starting with such pushing of an end die of the series.

12. The method of drawing wire which comprises the steps of, gripping a wire for holding the same against backward movement, pushing a series of drawing dies over and along the wire for drawing the same while the wire is being thus held against backward movement, said pushing of the dies being carried out in succession and in a series sequence starting with such pushing of an end die of the series, and advancing the wire and dies together after each such series sequence drawing actuation of the dies.

13. The method of drawing wire which comprises the steps of, gripping a wire for holding the same against backward movement, and pushing a series of drawing dies over and along the wire for drawing the same while the wire is being thus held against backward movement, said pushing of the dies being carried out in succession and in a series sequence starting with the die which is the most remote from the gripping point.

References Cited in the file of this patent

UNITED STATES PATENTS

1,934,466	Hogue	Nov. 7, 1933
2,018,211	Hogue	Oct. 22, 1935
2,126,453	Criley et al.	Aug. 9, 1938
2,226,400	Gaines	Dec. 24, 1940
2,337,881	Gaines	Dec. 28, 1943