Title: USE OF AKKERMANSIA FOR TREATING METABOLIC DISORDERS

Abstract: The present invention relates to Akkermansia muciniphila or fragments thereof for treating a metabolic disorder in a subject in need thereof. The present invention also relates to a composition, a pharmaceutical composition and a medicament comprising Akkermansia muciniphila or fragments thereof for treating a metabolic disorder. The present invention also relates to the use of Akkermansia muciniphila or fragments thereof for promoting weight loss in a subject in need thereof.
USE OF AKKERMANSIA FOR TREATING METABOLIC DISORDERS

FIELD OF INVENTION

The present invention relates to the treatment of metabolic disorders, such as, for example, metabolic disorders related to overweight and obesity, such as, for example, Diabetes Mellitus. The present invention more specifically relates to a composition comprising Akkermansia spp for treating a metabolic disorder.

BACKGROUND OF INVENTION

Obesity is a worldwide problem, with an estimated number of obese adults of about 250 million. This epidemic of obesity is correlated with a great increase in the prevalence of obesity-related disorders, such as, for example, Diabetes, hypertension, cardiac pathologies and liver diseases. Due to these highly disabling pathologies, obesity is currently considered in western countries as one of the most important public health problem. There is thus a real need of compositions and methods for treating or preventing obesity and/or obesity-related disorders.

Obesity and obesity-related diseases are associated with (i) metabolic dysfunctions (with an impact on glucose homeostasis and lipid metabolism for example); (ii) low grade inflammatory state associated to higher blood lipopolysaccharides (LPS) levels (also referred as metabolic endotoxemia); and (iii) impaired gut barrier function (i.e. increased gut permeability). In order to treat obesity, impact on at least one, preferably 2 and more preferably 3 of these 3 factors is thus needed.

The human gut is colonized by a diverse, complex and dynamic community of microbes representing over 1000 different species, which continuously interact with the host (Zoetendal, Rajilic-Stojanovic and de Vos, Gut 2008, 57: 1605-1615). The homeostasis
of the gut microbiota is dependent on host characteristics (age, gender, genetic background...) and environmental conditions (stress, drugs, gastrointestinal surgery, infectious and toxic agents...), but also on the day-to-day dietary changes. Growing evidences support the role of gut microbiota in the development of obesity and related disorders (Delzenne & Cani, Annu. Rev. Nutr. 2011, 31: 15-31).

Therefore, treatment with products that target the gut microbiota appeared as promising therapeutic tools for treating obesity and related disorders. These products may consist of living microbes, such as in the case of most probiotics, or contain dead microbes or fragments thereof. In addition, these products may comprise substrates that are used by the gut microbiota, such as in the case of prebiotics, or contain compounds that change the balance of the intestinal microbiota, such as specific antimicrobial compounds.

For example, WO 2008/076696 describes the gut microbiota as a therapeutic target for treating obesity and related disorders. WO 2008/076696 specifically describes methods for altering the abundance of Bacteroides and/or Firmicutes in the gut of a subject, by administering antibiotics and/or probiotics to the subject.

Moreover, EP 2 030 623 relates to the prevention and/or treatment of metabolic disorders, such as, for example, obesity related disorders, by regulating the amount of Enterobacteria in the gut. EP 2 030 623 discloses reducing the amount of Enterobacteria in the gut by administering probiotic bacteria, such as, for example, Bifidobacterium, Lactococcus, Streptococcus, Enterococcus or Lactobacillus.

Furthermore, the Applicant described that the gut microbiota is modified in prebiotic-treated obese mice (Everard et al., Diabetes, 2011 Nov;60(11):2775-86). Moreover, prebiotics (1) improve glucose and lipid metabolisms in obese mice, (2) reduce plasma LPS and improve gut barrier function (e.g. reduction of inflammation) in obese mice, (3) induce an increased enteroendocrine L-cell number in obese mice, and (4) improve leptin sensitivity and glucose homeostasy in diet-induced obese and diabetic mice.

Among the modification induced by prebiotic treatment of obese mice is a considerable alteration of the gut microbiota composition, characterized by (i) a decreased abundance of Bacteroidetes, Lactobacillus spp and bacteria of the Bacteroides-Prevotella group;
and (ii) an increased abundance of *Bifidobacterium* spp., of bacteria of the *E. rectale*/*C. coccoides* group and of *Akkermansia muciniphila*, belonging to the Verrucomicrobia. *A. muciniphila*, a bacteria firstly identified in 2004 by the Applicant, represents approximately 1 to 3% of the total microbiota of healthy adults (Derrien et al, International Journal of Systematic and Evolutionary Microbiology, 2004, 54:1469-1476; Derrien et al Applied Environmental Microbiology 2008, 74, 1646-1648.).

Indirect evidences suggested a relationship between the abundance of *A. muciniphila* and intestinal dysfunctions or obesity-related disorders. For example, WO 2011/107481 describes that the absence of *Akkermansia muciniphila* in the gut of a subject, combined with the presence of *Bacteroides capillosus* and *Clostridium leptum* indicates that this subject is suffering from ulcerative colitis. Moreover, Hansen and colleagues showed that the administration of an antibiotic, Vancomycin, to neonatal NOD mice (the NOD mouse model is a model for Diabetes) suppresses clinical onset of Diabetes and propagates *Akkermansia muciniphila* (Hansen et al., Diabetologia, 2012 Aug;55(8):2285-94). However, this may be an indirect effect due to the insensitivity of intestinal *Akkermansia* spp. to the used antibiotic.

These results thus showed that the complete composition of the gut microbiota is modified following the administration of prebiotic in mice. More specifically, no evidence suggested a specific role of one bacterial species, such as, for example, *Akkermansia muciniphila*, in the beneficial response to prebiotics administration. Moreover, to the Applicant knowledge, no beneficial effect of the direct administration of *Akkermansia muciniphila* has never been described, nor suggested.

Here, the Applicant surprisingly showed that repeated administration of *Akkermansia muciniphila* impacts the three underlying dysfunctions associated with obesity and related disorders, i.e. metabolic dysfunctions, low grade inflammatory state associated to higher blood lipopolysaccharides (LPS) levels and impaired gut barrier function. The present invention thus relates to the use of *Akkermansia muciniphila* for treating obesity and related disorders.
SUMMARY

The present invention thus relates to Akkermansia muciniphila or fragments thereof for treating a metabolic disorder in a subject in need thereof. In one embodiment of the invention, said metabolic disorder is obesity. In another embodiment of the invention, said metabolic disorder is selected from the group comprising metabolic syndrome, insulin-deficiency or insulin-resistance related disorders, Diabetes Mellitus (such as, for example, Type 2 Diabetes), glucose intolerance, abnormal lipid metabolism, atherosclerosis, hypertension, cardiac pathology, stroke, non-alcoholic fatty liver disease, hyperglycemia, hepatic steatosis, dyslipidemia, dysfunction of the immune system associated with overweight and obesity, cardiovascular diseases, high cholesterol, elevated triglycerides, atherosclerosis, asthma, sleep apnoea, osteoarthritis, neuro-degeneration, gallbladder disease and cancer.

In one embodiment of the invention, viable cells of Akkermansia muciniphila are administered to the subject in need thereof.

In one embodiment of the invention, Akkermansia muciniphila is orally administered.

In one embodiment of the invention, an amount of Akkermansia muciniphila ranging from about 1×10^2 to about 1×10^{15} cfu, preferably from about 1×10^3 to about 1×10^{12} cfu, more preferably from about 1×10^5 to about 1×10^{10} cfu, and even more preferably from about 1×10^6 to about 1×10^9 cfu is administered to the subject.

In one embodiment of the invention, Akkermansia muciniphila is administered at least once a day.

In one embodiment of the invention, Akkermansia muciniphila is co-administered with another probiotic strain and/or with one or more prebiotics.

Another object of the invention is a composition for treating a metabolic disorder comprising Akkermansia muciniphila or fragments thereof as described hereinabove in association with an excipient. In one embodiment, said composition is a nutritional composition. In one embodiment of the invention, said composition is orally administered.

The present invention also relates to a pharmaceutical composition for treating a metabolic disorder comprising Akkermansia muciniphila or fragments thereof as hereinabove described in association with a pharmaceutically acceptable vehicle.
Another object of the present invention is a medicament for treating a metabolic disorder comprising *Akkermansia muciniphila* or fragments thereof as hereinabove described.

Another object of the present invention is the use of *Akkermansia muciniphila* or fragments thereof for promoting weight loss in a subject in need thereof.

The present invention also relates to a cosmetic composition comprising *Akkermansia muciniphila* or fragments thereof for promoting weight loss in a subject in need thereof.

DEFINITIONS

In the present invention, the following terms have the following meanings:

- "**Treatment**" means preventing (i.e. keeping from happening), reducing or alleviating at least one adverse effect or symptom of a disease, disorder or condition. This term thus refers to both therapeutic treatment and prophylactic or preventative measures; wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder. In one embodiment of the invention, those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in whom the disorder is to be prevented.

- "**Effective amount**" refers to level or amount of agent that is aimed at, without causing significant negative or adverse side effects to the target, (1) delaying or preventing the onset of a metabolic disorder; (2) slowing down or stopping the progression, aggravation, or deterioration of one or more symptoms of the metabolic disorder; (3) bringing about ameliorations of the symptoms of the metabolic disorder; (4) reducing the severity or incidence of the metabolic disorder; (5) curing the metabolic disorder; or (6) restoring the normal amount and/or proportion of *Akkermansia muciniphila* in the gut of the subject to be treated. An effective amount may be administered prior to the onset of a metabolic disorder, for a prophylactic or preventive action. Alternatively or additionally, the effective amount may be administered after initiation of the metabolic disorder, for a therapeutic action.
"Akkermansia muciniphila" refers to the strictly anaerobic mucin-degrading bacteria identified by Derrien (Derrien et al, International Journal of Systematic and Evolutionary Microbiology, 2004, 54:1469-1476). Cells are oval-shaped, non-motile and stain Gram-negative. Akkermansia muciniphila may also be referred as Akkermansia spp. or Akkermansia-like bacteria. It belongs to the Chlamydiae/Verrucomicrobia group; Verrucomicrobia phylum. If the taxonomy should change, the skilled artisan would know how to adapt the changes in the taxonomy to deduce the strains that could be used in the present invention. Moreover, the complete genome of Akkermansia muciniphila has been determined by the Applicant (van Passel et al, PLoS One 6, 2011: e16876). It is generally accepted that strains with a genome similarity of about 70% can be considered as the same species.

"Probiotics" refers to microbial cell preparations (such as, for example, living microbial cells) or components of microbial cells which, when administered in an effective amount, provide a beneficial effect on the health or well-being of a subject. By definition, all probiotics have a proven non-pathogenic character. In one embodiment, these health benefits are associated with improving the balance of human or animal microbiota in the gastro-intestinal tract, and/or restoring normal microbiota.

"Prebiotic" refers to a substance, such as, for example, a food substance, which may not be digested by humans, but which may be used by bacteria of the gut microbiota and which is intended to promote the growth of probiotic bacteria in the intestine.

"Overweight" refers to a subject situation wherein said subject has a Body Mass Index (BMI) ranging from 25 to 30. As used herein, BMI is defined as the individual's body mass (in kg) divided by the square of his/her height (in meter). "Obesity" refers to a subject situation wherein said subject has a BMI superior or equal to 30.
- "Subject" refers to an animal, preferably a mammal, more preferably a human. In one embodiment of the invention, a subject may also refer to a pet, such as, for example, a dog, a cat, a guinea pig, a hamster, a rat, a mouse, a ferret, a rabbit and the like.

5 - "About" preceding a figure means plus or less 20%, preferably 10% of the value of said figure

- "Fragment" may refer to cellular components, metabolites, secreted molecules and compounds resulting from the metabolism of Akkermansia muciniphila and the like. Fragments may be obtained, for example, by recovering the supernatant of a culture of Akkermansia muciniphila or by extracting cell components or cell fractions, metabolites or secreted compounds from a culture of Akkermansia muciniphila. The term fragment may also refer to a degradation product. A fragment may correspond to a component in the isolated form or to any mixture of one or more components derived from Akkermansia muciniphila.

15

DETAILED DESCRIPTION

This invention relates to Akkermansia muciniphila or a fragment thereof for treating metabolic disorders in a subject in need thereof.

As used herein, a metabolic disorder is a disorder related to an altered metabolic homeostasis, such as, for example, an altered glucidic or lipidic homeostasis.

In one embodiment of the invention, said metabolic disorder is obesity.

Examples of other metabolic disorders include, but are not limited to, metabolic syndrome, insulin-deficiency or insulin-resistance related disorders, Diabetes Mellitus (such as, for example, Type 2 Diabetes), glucose intolerance, abnormal lipid metabolism, atherosclerosis, hypertension, cardiac pathology, stroke, non-alcoholic fatty liver disease, hyperglycemia, hepatic steatosis, dyslipidemia, dysfunction of the immune system associated with overweight and obesity, cardiovascular diseases, high
cholesterol, elevated triglycerides, atherosclerosis, asthma, sleep apnoea, osteoarthritis, neuro-degeneration, gallbladder disease and cancer.

In another embodiment, said metabolic disorder is an overweight and/or obesity related metabolic disorder, i.e. a metabolic disorder that may be associated to or caused by overweight and/or obesity. Examples of overweight and/or obesity related metabolic disorder include, but are not limited to metabolic syndrome, insulin-deficiency or insulin-resistance related disorders, Diabetes Mellitus (such as, for example, Type 2 Diabetes), glucose intolerance, abnormal lipid metabolism, atherosclerosis, hypertension, cardiac pathology, stroke, non-alcoholic fatty liver disease, hyperglycemia, hepatic steatosis, dyslipidemia, dysfunction of the immune system associated with overweight and obesity, cardiovascular diseases, high cholesterol, elevated triglycerides, atherosclerosis, asthma, sleep apnoea, osteoarthritis, neuro-degeneration, gallbladder disease and cancer.

In one embodiment of the invention, living strains of *Akkermansia muciniphila* are used in the present invention, preferably the living strains are derived from cells in stationary phase of growth.

In one embodiment of the invention, *Akkermansia muciniphila* may be in the form of viable cells. In another embodiment of the invention, *Akkermansia muciniphila* may be in the form of non-viable cells.

The present invention also relate to a composition comprising an effective amount of *Akkermansia muciniphila* for treating a metabolic disorder.

In one embodiment of the invention, the effective amount of *Akkermansia muciniphila* corresponds to the amount of the bacteria sufficient for restoring a normal amount and/or proportion of *Akkermansia muciniphila* within the gut of the subject. Indeed, the Applicant showed that the gut of obese or overweight subject is depleted in *Akkermansia muciniphila* (see Examples). In one embodiment of the invention, the normal amount and/or proportion of *Akkermansia muciniphila* corresponds to the
amount, and/or to the proportion of *Akkermansia muciniphila* present in the gut of a healthy subject.

As used herein, the term "healthy subject" is used to define a subject which is not affected by the disease to be treated. For example, if *Akkermansia muciniphila* is used for treating obesity, the healthy subject is not affected by obesity. Preferably, the healthy subject shares common characteristics with the subject to be treated, such as, for example, same gender, age, sex, diet, drugs intake or geolocation.

In one embodiment of the invention, the normal proportion of *Akkermansia muciniphila* in the gut ranges from about 0.1 % to about 10% (in number of *Akkermansia muciniphila* cells to the total number of bacteria cells of the gut), preferably from about 0.3 % to about 5%, more preferably from about 1 % to about 3%.

In one embodiment of the invention, the effective amount of *Akkermansia muciniphila* ranges from about 1.10^2 to about 1.10^15 cfu, preferably from about 1.10^4 to about 1.10^12 cfu, more preferably from about 1.10^5 to about 1.10^10 cfu, and even more preferably from about 1.10^6 to about 1.10^9 cfu, wherein cfu stands for "colony forming unit".

In one embodiment of the invention, the composition of the invention comprises an amount of *Akkermansia muciniphila* ranging from about 1.10^2 to about 1.10^15 cfu/g of the composition, preferably from about 1.10^4 to about 1.10^12 cfu/g of the composition, more preferably from about 1.10^5 to about 1.10^10 cfu/g of the composition and even more preferably from about 1.10^6 to about 1.10^9 cfu/g of the composition. In one embodiment of the invention, the composition of the invention comprises an amount of *Akkermansia muciniphila* ranging from about 1.10^2 to about 1.10^15 cfu/mL of the composition, preferably from about 1.10^4 to about 1.10^12 cfu/mL of the composition, more preferably from about 1.10^5 to about 1.10^10 cfu/mL of the composition and even more preferably from about 1.10^6 to about 1.10^9 cfu/mL of the composition.

The present invention also relates to a pharmaceutical composition comprising an effective amount of *Akkermansia muciniphila* and at least one pharmaceutically acceptable excipient. In one embodiment of the invention, the pharmaceutical
composition of the invention is for treating a metabolic disorder. In another embodiment of the invention, the pharmaceutical composition is for restoring a normal proportion of Akkermansia muciniphila in the gut of a subject in need thereof.

As used herein the term "pharmaceutically acceptable excipient" refers to an excipient that does not produce an adverse, allergic or other untoward reaction when administered to an animal, preferably a human. It may include any and all solvents, dispersion media, coatings, isotonic and absorption delaying agents and the like. For human administration, preparations should meet sterility, pyrogenicity, general safety and purity standards as required by FDA Office of Biologies standards.

The present invention also relates to a medicament comprising an effective amount of Akkermansia muciniphila. In one embodiment of the invention, the medicament of the invention is for treating a metabolic disorder. In another embodiment of the invention, the medicament is for restoring a normal proportion of Akkermansia muciniphila in the gut of a subject in need thereof.

The present invention also relates to a method for treating a metabolic disorder in a subject in need thereof, wherein said method comprises administering an effective amount of Akkermansia muciniphila to the subject.

Another object of the invention is a method for restoring a normal proportion of Akkermansia muciniphila in the gut of a subject in need thereof, wherein said method comprises administering an effective amount of Akkermansia muciniphila to the subject.

In one embodiment, the method of the invention comprises administering an effective amount of the composition, of the pharmaceutical composition or of the medicament of the invention to the subject.

In one embodiment of the invention, Akkermansia muciniphila, or the composition, pharmaceutical composition or medicament is administered at least once a week, preferably at least twice a week, more preferably at least once a day, and even more preferably at least twice a day.
In one embodiment of the invention, the daily amount of *Akkermansia muciniphila* administered per day ranges from 1.10^2 to about 1.10^{15} cfu/day, preferably from about 1.10^4 to about 1.10^{12} cfu/day, more preferably from about 1.10^5 to about 1.10^{10} cfu/day and even more preferably from about 1.10^6 to about 1.10^9 cfu/day.

In one embodiment of the invention, the subject is overweight. In another embodiment, the subject is obese.

In one embodiment of the invention, the subject is diagnosed with a metabolic disorder, such as, for example, with an overweight and/or obesity related metabolic disorder.

In another embodiment, the subject is at risk of developing a metabolic disorder, such as, for example, an overweight and/or obesity related metabolic disorder. In one embodiment, said risk is related to the fact that the subject is overweight or obese. In another embodiment, said risk corresponds to a predisposition, such as, for example, a familial predisposition to a metabolic disorder, such as, for example, to an overweight and/or obesity related metabolic disorder.

In one embodiment of the invention, the subject presents a deregulation of the gut microbiota composition. Preferably, the gut microbiota of said subject is depleted in *Akkermansia muciniphila* strains. In one embodiment, the proportion of *Akkermansia muciniphila* in the gut of the subject is inferior to 1%, preferably inferior to 0.5%, more preferably inferior to 0.1%, in number of *Akkermansia muciniphila* cells to the total number of bacterial cells in the gut.

The present invention also relates to the cosmetic use of *Akkermansia muciniphila* for promoting weight loss in a subject.

Another object of the invention is thus a cosmetic composition comprising a cosmetically effective amount of *Akkermansia muciniphila*, and the use thereof for promoting weight loss in a subject. As used herein, a "cosmetically effective amount"
refers to the amount of a cosmetic composition necessary and sufficient for promoting a cosmetic effect, such as, for example, for inducing weight loss in a subject.

The present invention also relates to a method for promoting weight loss in a subject in need thereof, wherein said method comprises administering a cosmetically effective amount of Akkermansia muciniphila to said subject.

In one embodiment, the method of the invention comprises administering a cosmetically effective amount of the composition or of the cosmetic composition of the invention to the subject.

In one embodiment of the invention, the cosmetically effective amount of Akkermansia muciniphila ranges from about 1.10^2 to about 1.10^{15} cfu, preferably from about 1.10^4 to about 1.10^{12} cfu, more preferably from about 1.10^5 to about 1.10^{10} cfu and even more preferably from about 1.10^6 to about 1.10^9 cfu.

In one embodiment of the invention, Akkermansia muciniphila, or the composition or cosmetic composition is administered at least once a week, preferably at least twice a week, more preferably at least once a day, and even more preferably at least twice a day.

In one embodiment of the invention, the daily amount of Akkermansia muciniphila administered per day ranges from 1.10^2 to about 1.10^{15} cfu/day, preferably from about 1.10^5 to about 1.10^{12} cfu/day, more preferably from about 1.10^9 to about 1.10^{10} cfu/day.

In one embodiment, said subject is not an obese subject. In another embodiment, said subject is overweight.

In one embodiment of the invention, the composition, the pharmaceutical composition, the cosmetic composition or the medicament further comprises additional probiotic strains, such as, for example, bacterial probiotic strains; prokaryotes probiotics other than bacteria; or fungal strains, preferably yeast strains. In one embodiment, said additional probiotic strains are selected from those naturally present in the gut of the
subject, preferably in the human gut, more preferably in the gut of healthy human subjects.

Examples of bacterial probiotic strains that may be used in the present invention include, but are not limited to *Lactobacillus, Lactococcus, Bifidobacterium, Veillonella, Desemzia, Coprococcus, Collinsella, Citrobacter, Turicibacter, Sutterella, Subdoligranulum, Streptococcus, Sporobacter, Sporacetigenium, Ruminococcus, Roseburia, Proteus, Propionobacterium, Leuconostoc, Weissella, Pedicoccus, Streptococcus, Prevotella, Parabacteroides, Papillibacter, Oscillospira, Melissococcus, Dorea, Dialister, Clostridium, Cedecea, Catenibacterium, Butyrivibrio, Buttiauxella, Bulleidia, Bilophila, Bacteroides, Anaerovorax, Anaerostipes, Anaerofilum, Enterobacteriaceae, Firmicutes, Atopobium, Alistipes, Acinetobacter, Slackie, Shigella, Shewanella, Serratia, Mahella, Lachnospira, Klebsiella, Idiomarina, Fusobacterium, Faecalibacterium, Eubacterium, Enterococcus, Enterobacter, Eggerthella.*

Examples of prokaryote strains that may be used in the present invention include, but are not limited to *Archaea, Firmicutes, Bacteroidetes* (such as, for example, *Allistipes, Bacteroides ovatus, Bacteroides splachnicus, Bacteroides stercoris, Parabacteroides, Prevotella ruminicola, Porphyromonadaceae*, and related genus), *Proteobacteria, Betaproteobacteria* (such as, for example, *Aquabacterium* and *Burkholderia*), *Gammaproteobacteria* (such as, for example, *Xanthomonadaceae*), *Actinobacteria* (such as, for example, *Actinomycetaceae* and *Atopobium*), *Fusobacteria, Methanobacteria, Spirochaetes, Fibrobacters, Deferrribacteres, Deinococcus, Thermus, Cyanobacteria, Methanbrebivibacteria, Peptostreptococcus, Ruminococcus, Coprococcus, Subdoligranulum, Dorea, Bulleidia, Anaerofustis, Gemella, Roseburia, Dialister, Anaerotruncus, Staphylococcus, Micrococccus, Propionobacteria, Enterobacteriaceae, Faecalibacteria, Bacteroides, Parabacteroides, Prevotella, Eubacterium, Bacilli* (such as, for example, *Lactobacillus salivanas* and related species, *Aerococcus, Granulicatella, Streptococcus bovis* and related genus and *Streptococcus intermedius* and related genus), *Clostridium* (such as, for example, *Eubacterium hallii, Eubacterium limosum* and related genus) and *Butyrivibrio*.
Examples of fungal probiotic strains, preferably yeast probiotic strains that may be used in the present invention include, but are not limited Ascomycetes, Zygomycetes and Deuteromycetes, preferably from the groups Aspergillus, Torulopsis, Zygosaccharomyces, Hansenula, Candida, Saccharomyces, Clavispora, Bretanomyces, Pichia, Amylomyces, Zygosaccharomyces, Endomyces, Hyphopichia, Zygosaccharomyces, Kluyveromyces, Mucor, Rhizopus, Yarrowia, Endomyces, Debaryomyces, and/or Penicillium.

In one embodiment of the invention, the composition, the pharmaceutical composition, the cosmetic composition or the medicament further comprises a prebiotic.

Examples of prebiotics that may be used in the present invention include, but are not limited to, inulin and inulin-type fructans, oligofructose, xylose, arabinose, arabinofuranan, ribose, galactose, rhamnose, cellobiose, fructose, lactose, salicin, sucrose, glucose, esculin, tween 80, trehalose, maltose, mannose, mellibiose, mucus or mucins, raffinose, fructooligosaccharides, galacto-oligosaccharides, amino acids, alcohols, and any combinations thereof.

Other non-limiting examples of prebiotics include water-soluble cellulose derivatives, water-insoluble cellulose derivatives, unprocessed oatmeal, metamucil, all-bran, and any combinations thereof.

Examples of water-soluble cellulose derivatives include, but are not limited to, methylcellulose, methyl ethyl cellulose, hydroxyethyl cellulose, ethyl hydroxyethyl cellulose, cationic hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methylcellulose, hydroxypropyl methylcellulose, and carboxymethyl cellulose.

Akkermansia muciniphila or the composition, pharmaceutical composition, cosmetic composition or medicament of the invention may be administered by several routes of administration. Examples of adapted routes of administration include, but are not limited to, oral administration, rectal administration, administration via
esophagogastroduodenoscopy, administration via colonoscopy, administration using a nasogastric or orogastric tube and the like.

According to an embodiment, Akkermansia muciniphila or the composition, pharmaceutical composition, cosmetic composition or medicament of the invention is in a form adapted to oral administration. According to a first embodiment, the form adapted to oral administration is a solid form selected from the group comprising tablets, pills, capsules, soft gelatin capsules, sugarcoated pills, orodispersing/orodispersing tablets, effervescent tablets or other solids. According to a second embodiment, the form adapted to oral administration is a liquid form, such as, for example, a drinkable solution, liposomal forms and the like.

In one embodiment, the composition, pharmaceutical composition, cosmetic composition or medicament of the invention further comprises excipients, diluent and/or carriers selected with regard to the intended route of administration. Examples of excipients, diluent and/or carriers include, but are not limited to, water, phosphate buffer saline, anaerobic phosphate buffer saline, sodium bicarbonate, juice, milk, yogurt, infant formula, dairy product, coloring agents, such as, for example, titane dioxide (E171), iron dioxide (E172) and brilliant black BN (E151); flavoring agents; thickeners, such as, for example, glycerol monostearate; sweeteners; coating agents, such as, for example, refined colza oil, soya oil, peanut oil, soya lecithin or fish gelatin; diluting agents, such as, for example, lactose, monohydrated lactose or starch; binding agents, such as, for example, povidone, pregelatinized starch, gums, saccharose, polyethylene glycol (PEG) 4000 or PEG 6000; disintegrating agents, such as, for example, microcrystalline cellulose or sodium carboxymethyl starch, such as, for example, sodium carboxymethyl starch type A; lubricant agents, such as, for example, magnesium stearate; flow agent, such as, for example, colloidal anhydrous silica, etc...
yogurt, fruit or vegetable juice or concentrate thereof, powders, malt or soy or cereal based beverages, breakfast cereal such as muesli flakes, fruit and vegetable juice powders, cereal and/or chocolate bars, confectionary, spreads, flours, milk, smoothies, confectionary, milk product, milk powder, reconstituted milk, cultured milk, yoghurt, drinking yoghurt, set yoghurt, drink, dairy drink, milk drink, chocolate, gels, ice creams, cereals, reconstituted fruit products, snack bars, food bars, muesli bars, spreads, sauces, dips, dairy products including yoghurts and cheeses, drinks including dairy and non-dairy based drinks, sports supplements including dairy and non-dairy based sports supplements.

In one embodiment of the invention, the composition, pharmaceutical composition, cosmetic composition or medicament is in the form of a food additive, drink additive, dietary supplement, nutritional product, medical food or nutraceutical composition.

Akkermansia muciniphila is a strictly anaerobic bacterium. Therefore, in the embodiment where viable or living strains are used, prolonged contact with oxygen should be avoided. Examples of means for avoiding prolonged contact with oxygen include, but are not limited to, freeze of the bacterial cells or packaging in a sealed container and the like.

The Applicant herein showed that obesity and related disorders are associated with an increased gut permeability and with impaired mucus production, epithelium barrier, immune system and/or antibacterial compounds production by the subject; and that the administration of *A.muciniphila* may restore these parameters.

Therefore, the present invention also relates to *Akkermansia muciniphila* for decreasing gut permeability and/or for restoring impaired mucus production and/or for restoring epithelium barrier and/or for restoring immune system and/or for decreasing the production of antibacterial compounds. Another object of the invention is a method for decreasing gut permeability and/or for restoring impaired mucus production and/or for restoring epithelium barrier and/or for restoring immune system and/or for decreasing
the production of antibacterial compounds in a subject in need thereof, comprising administering an effective or cosmetically effective amount of *Akkermansia muciniphila* to a subject in need thereof.

The Applicant surprisingly showed that the administration of *A.muciniphila* controls gut barrier by regulating mucus layer thickness and the production of colon antimicrobial peptides (such as, for example, Reglllgamma). In addition, they also showed that *A.muciniphila* regulates the production of acylglycerols that belongs to the endocannabinoids family involved in the control of inflammation, gut barrier and gut peptides secretion (GLP-1 and GLP-2).

Therefore, the present invention also relates to *Akkermansia muciniphila* for controlling gut barrier function, and to a method for controlling gut barrier function comprising administering an effective or cosmetically effective amount of *Akkermansia muciniphila* to a subject in need thereof. In one embodiment, *Akkermansia muciniphila* regulates mucus layer thickness (which may be decreased in obesity or other metabolic disorders). In another embodiment, the administration of *Akkermansia muciniphila* induces the production of colon antimicrobial peptides, such as, for example, Reglllgamma. In another embodiment, the administration of *Akkermansia muciniphila* induces the production of compounds of the endocannabinoids family, such as, for example, acylglycerols selected from the group comprising 2-oleoylglycerol, 2-palmitoylelglycerol and 2-arachidonoylglycerol. In another embodiment, the administration of *Akkermansia muciniphila* regulates mucus turnover.

Another object of the invention concerns *Akkermansia muciniphila* for use in treating metabolic dysfunction associated with or caused by a metabolic disorder. Still another object of the invention is thus a method for treating metabolic dysfunction associated with or caused by a metabolic disorder in a subject in need thereof, comprising administering an effective amount or a cosmetically effective amount of *Akkermansia muciniphila* to a subject in need thereof.

The Applicant also showed that the administration of *Akkermansia muciniphila* controls fat storage and adipose tissue metabolism. Therefore, another object of the invention
concerns *Akkermansia muciniphila* for use in controlling fat storage and adipose tissue metabolism. Another object of the invention is also a method for controlling fat storage and adipose tissue metabolism comprising administering an effective amount or a cosmetically effective amount of *Akkermansia muciniphila* to a subject in need thereof.

In one embodiment, said control does not involve any change in food intakes. In one embodiment of the invention, administration of *Akkermansia muciniphila* abolishes metabolic endotoxemia. In another embodiment, administration of *Akkermansia muciniphila* lowers fat mass. In another embodiment, administration of *Akkermansia muciniphila* increases mRNA expression of adipocyte differentiation and lipid oxidation, preferably without affecting lipogenesis.

The Applicant also showed that the administration of *Akkermansia muciniphila* regulates adipose tissue metabolism and glucose homeostasis. The present invention thus relates to *Akkermansia muciniphila* for use in the regulation of adipose tissue metabolism and glucose homeostasis; and to a method for regulating adipose tissue metabolism and glucose homeostasis comprising administering an effective amount or a cosmetically effective amount of *Akkermansia muciniphila* to a subject in need thereof. In one embodiment of the invention, the administration of *Akkermansia muciniphila* reverses diet-induced fasting hyperglycemia. In another embodiment, the administration of *Akkermansia muciniphila* induces a reduction of at least 10%, preferably of at least 30%, more preferably of at least 40% of hepatic glucose-6-phosphatase expression. In another embodiment, the administration of *Akkermansia muciniphila* induces a reduction of the insulin-resistance index. In one embodiment, said reduction of the insulin-resistance index is of at least 5%, preferably of at least 10%, more preferably of at least 15%.

Finally, the Applicant showed that the administration of *Akkermansia muciniphila* leads to the normalization of adipose tissue CD11c subpopulation of macrophages. The amount of cells of this population of macrophages is increased in metabolic disorders such as, for example, obesity and Type 2 Diabetes, and is a hallmark of inflammation related to these metabolic disorders. Therefore, the present invention also relates to *Akkermansia muciniphila* for treating inflammation, preferably low grade inflammation,
associated with or caused by metabolic disorders; and to a method for treating inflammation related to metabolic disorders comprising administering an effective amount or a cosmetically effective amount of *Akkermansia muciniphila* to a subject in need thereof. In one embodiment of the invention, the administration of *Akkermansia muciniphila* decreases the amount of CD11c macrophages in the adipose tissue.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a combination of graphs showing that *Akkermansia muciniphila* abundance is decreased in obese and diabetic mice, whereas prebiotic treatment restores it to basal levels and improves metabolic endotoxemia and related disorders. (a) *Akkermansia muciniphila* abundance (Log_{10} of bacteria/g of cecal content) measured in the cecal content of leptin-deficient (ob-ob) obese mice (n = 5) and their lean littermates (lean) (n = 5). (b) *Akkermansia muciniphila* abundance (Logio of bacteria/g of cecal content) measured in the cecal content of obese mice fed a normal chow diet (ob-CT) or treated with prebiotics (ob-Pre) for 5-weeks (n = 10). (c) *Akkermansia muciniphila* abundance (Logio of bacteria per g of cecal content) measured in the cecal content of control diet-fed mice (CT) or CT diet-fed mice treated with prebiotics (CT-Pre) added in tap water and HF diet-fed mice (HF) or HF diet-fed mice treated with prebiotics (HF-Pre) added in tap water for 8-weeks (n = 10). (d) Portal vein serum LPS levels (n = 7-9). (e) Adipose tissue macrophages infiltration marker CD11c mRNA (n = 10). (f) Pearson’s correlation between log values of portal vein LPS levels and *Akkermansia muciniphila* abundance (Log_{10} of bacteria per g of cecal content), *inset* indicates Pearson’s correlation coefficient (r) and the corresponding P value. (g) Total fat mass gain measured by time-domain nuclear magnetic resonance (n = 10). Data in a-c are shown as boxplots. *P<0.05*, by two-tailed student i-test. Data in c-g have been obtained in the same group of mice. Data in d,e and g are shown as mean ± s.e.m. Data with different superscript letters are significantly different (P<0.05), according to the post-hoc ANOVA one-way statistical analysis.
Figure 2 is a combination of graphs and pictures showing that *Akkermansia muciniphila* changes gut microbiota composition, counteracts diet-induced gut barrier dysfunction, changes intestinal level of endocannabinoids and improves metabolic disorders in diet-induced obese mice. Mice were treated by daily oral gavage with *Akkermansia muciniphila* (10⁹ bacterial cells suspended in 200 μl sterile anaerobic phosphate buffer saline (PBS)) and fed a control diet (CT-Akk) or a HF-diet (HF-Akk) compared to mice fed a control diet (CT) or a high-fat diet (HF) and treated by daily oral gavage with an equivalent volume of sterile anaerobic PBS for 4-weeks (n = 10). (a) PCA analysis based on MITChip phylogenetic fingerprints of the gut microbiota from the cecal contents of control groups (CT in red and HF in green) and *Akkermansia muciniphila* treated groups (CTA in blue and HFA in yellow). (b) Portal vein serum LPS levels (n = 6-10). (c) Total fat mass gain measured by time-domain nuclear magnetic resonance (n = 10). (d) Insulin resistance index was determined by multiplying the area under the curve (from 0 min to 15 min) of both blood glucose and plasma insulin obtained following an oral glucose load (2g of glucose per kg of body weight) performed after 4 weeks of treatment (n = 10). (e) Adipose tissue macrophages infiltration marker CD11c mRNA (n = 10). (f) Adipocyte differentiation (CCAAT/enhancer-binding protein-cc, encoded by Cebpa), lipogenesis (acyl-CoA carboxylase, encoded by Acc1; fatty acid synthase, encoded by Fasn) and lipid oxidation (carnitine palmitoyltransferase-1, encoded by Cpt1; acyl-CoA-oxidase encoded by Acox1; peroxisome proliferator-activated receptor gamma coactivator, encoded by Pgc1a; and peroxisome proliferator-activated receptor alpha, encoded by Ppara) markers mRNA expression were measured in the visceral fat depots (mesenteric fat) (n = 10). (g) Ileum 2-palmitoylglycerol (2-PG), 2-oleoylglycerol (2-OG), 2-arachidonoylglycerol (2-AG) (expressed as % of the control) (n = 10). (h) Mucus layer thickness measured by histological analyses following alcian blue staining. Representative alcian blue images used for the mucus layer thickness measurements, bars = 40 μm (n = 7-8). (i) Colon regenerating islet-derived 3-gamma (Reg3g, encoded by Reg3g) mRNA expression (n = 10). Data in a-i have been obtained in the same group of mice. Data in b-i are shown as mean ± s.e.m. Data with different superscript letters are significantly different (P<0.05), according to the post-hoc ANOVA one-way statistical analysis.
Figure 3 is a combination of graphs and pictures showing that prebiotic-treated mice exhibited inverse relationship between *Akkermansia muciniphila* and adipose tissue macrophage infiltration or fat mass gain. (a) Pearson’s correlation between adipose tissue CD14c mRNA levels and *Akkermansia muciniphila* abundance (Log$_{10}$ of bacteria per g of cecal content) measured in the cecal content of control diet-fed mice (CT) or CT diet-fed mice treated with prebiotics (CT-Pre) added in tap water and HF diet-fed mice (HF) or HF diet-fed mice treated with prebiotics (HF-Pre) added in tap water for 8-weeks, inset indicates Pearson’s correlation coefficient (r) and the corresponding P value. (b) Subcutaneous, mesenteric and epididymal fat depots weight (g per 100g of body weight) (n = 10). (c) Pearson’s correlation between adipose tissue mass gain and cecal content *Akkermansia muciniphila* abundance (Log$_{10}$ of bacteria per g of cecal content), inset indicates Pearson’s correlation coefficient (r) and the corresponding P value. Data in a-c have been obtained in the same group of mice, and are shown as mean ± s.e.m. Data with different superscript letters are significantly different (P<0.05), according to the post-hoc ANOVA one-way statistical analysis.

Figure 4 is a combination of graphs and pictures showing that daily oral gavage with *Akkermansia muciniphila* increases cecal abundance of this bacteria and changes gut microbiota composition. *Akkermansia muciniphila* abundance expressed as (a) % of total 16S RNA or (b) Log$_{10}$ DNA copies measured in mice treated by daily oral gavage with *Akkermansia muciniphila* (109 bacterial cells suspended in 200 µl sterile anaerobic phosphate buffer saline (PBS)) and fed a control diet (CT-Akk) or a HF-diet (HF-Akk) compared to mice fed a control diet (CT) or a high-fat diet (HF) and treated by daily oral gavage with an equivalent volume of sterile anaerobic PBS for 4-weeks (n = 10). (c) RDA plot based on MITChip phylogenetic fingerprints of the gut microbiota, CT-Akk is noted CTK and HF-fed mice that received *Akkermansia muciniphila* is noted HFA.

Figure 5 is a combination of graphs and pictures showing that *Akkermansia muciniphila* treatment reduces fat mass without affecting food intake. (a) Subcutaneous, mesenteric and epididymal fat depots weight (g per 100g of body weight) of mice treated by daily oral gavage with *Akkermansia muciniphila* (109 bacterial cells
suspended in 200 μl sterile anaerobic phosphate buffer saline (PBS)) and fed a control diet (CT-Akk) or a HF-diet (HF-Akk) or mice fed a control diet (CT) or a high-fat diet (HF) and treated by daily oral gavage with an equivalent volume of sterile anaerobic PBS for 4-weeks (n = 10). (b) Cumulative food intake (g) over the 4-weeks of treatment. Data are shown as mean ± s.e.m. Data with different superscript letters are significantly different (P<0.05), according to the post-hoc ANOVA one-way statistical analysis.

Figure 6 is a combination of graphs showing that Akkermansia muciniphila treatment normalizes fasted glycemia and reduces fasted hepatic G6pc mRNA expression. (a) Fasted glycemia measured in mice treated by daily oral gavage with Akkermansia muciniphila (10^9 bacterial cells suspended in 200 μl sterile anaerobic phosphate buffer saline (PBS)) and fed a control diet (CT-Akk) or a HF-diet (HF-Akk) or mice fed a control diet (CT) or a high-fat diet (HF) and treated by daily oral gavage with an equivalent volume of sterile anaerobic PBS for 4-weeks (n = 10). (b) Glucose-6 phosphatase (encoded by G6pc) mRNA expression levels measured in the liver at the end of the 4-weeks period (n = 10). Data are shown as mean ± s.e.m. Data with different superscript letters are significantly different (P<0.05), according to the post-hoc ANOVA one-way statistical analysis.

Figure 7 is a combination of graphs showing that Akkermansia muciniphila treatment has minor effects on antibacterial peptides content in the ileum and IgA levels in the faeces. Antibacterial peptides mRNA expression of (a) Regenerating islet-derived 3-gamma (Reg3γ, encoded by Reg3g), (b) Phospholipase A2 group IIA (encoded by Pla2g2α), (c) a-defensins (encoded by Defa) and (d) Lysozyme C (encoded by Lyzl) measured in the ileum of mice treated by daily oral gavage with Akkermansia muciniphila (10^9 bacterial cells suspended in 200 μl sterile anaerobic phosphate buffer saline (PBS)) and fed a control diet (CT-Akk) or a HF-diet (HF-Akk) or mice fed a control diet (CT) or a high-fat diet (HF) and treated by daily oral gavage with an equivalent volume of sterile anaerobic PBS for 4-weeks (n = 10). (e) Fecal IgA levels (g/g of feces). Data are shown as mean ± s.e.m. Data with different superscript letters
are significantly different (P<0.05), according to the post-hoc ANOVA one-way statistical analysis.

5 EXAMPLES

The present invention is further illustrated by the following examples.

Materials and Methods

Mice

ob/*ob experiment: ob*/*ob* versus lean study: Six-week-old *ob*/*ob* (n=5/group) mice (C57BL/6 background, Jackson-Laboratory, Bar Harbor, ME, USA) were housed in a controlled environment (12-h daylight cycle, lights-off at 6-pm) in groups of two or three mice/cage, with free access to food and water. The mice were fed a control diet (A04, Villemoisson-sur-Orge, France) for 16 weeks. Cecal content was harvested immersed in liquid nitrogen, and stored at -80 °C, for further *Akkermansia muciniphila* analysis.

ob/*ob prebiotic study: Six-week-old *ob*/*ob* (n=10/group) mice (C57BL/6 background, Jackson-Laboratory, Bar Harbor, ME, USA) were housed in a controlled environment (12-h daylight cycle, lights-off at 6-pm) in groups of two mice/cage, with free access to food and water. The mice were fed a control diet (Ob-CT) (A04, Villemoisson-sur-Orge, France) or a control diet supplemented with prebiotics, such as oligofructose (Ob-Pre) (Orafti, Tienen, Belgium) for 5-weeks as previously described (Everard et al. Diabetes 60, 2775-2786 (2011)). This set of mice has been previously characterized in Everard et al (Everard et al. Diabetes 60, 2775-2786 (2011)).

*High-Fat prebiotic experiment: A set of 10-week-old C57BL/6J mice (40 mice, n=10/group) (Charles River, Brussels, Belgium) were housed in groups of five mice/cage, with free access to food and water. The mice were fed a control diet (CT) (A04, Villemoisson-sur-Orge, France) or a control diet and treated with prebiotics, such as oligofructose (Orafti, Tienen, Belgium) (0.3g/mouse/day) added in tap water (CT-Pre), or fed a high-fat diet (HF) (60% fat and 20% carbohydrates (kcal/lOOG), D12492,
Research diet, New Brunswick, NJ, USA) or a HF diet and treated with oligofructose (0.3g/mouse/day) added in tap water (HF-Pre). Treatment continued for 8 weeks.

HFD Akkermansia muciniphila treatment: A set of 10-week-old C57BL/6J mice (40 mice, n=10/group) (Charles River, Brussels, Belgium) were housed in groups of 2 mice/cage, with free access to food and water. The mice were fed a control diet (CT) (AIN 93Mj; Research diet, New Brunswick, NJ, USA) or a high-fat diet (HF) (60% fat and 20% carbohydrates (kcal/100g), D12492, Research diet, New Brunswick, NJ, USA). Mice were treated with an oral administration of Akkermansia muciniphila by oral gavage at the dose 1.10^9 cfu/0.2ml suspended in sterile anaerobic phosphate buffer saline (CT-Akk and HF-Akk) and control groups were treated with an oral gavage of an equivalent volume of sterile anaerobic phosphate buffer saline (CT and HF). Treatment continued for 4 weeks.

A. muciniphila Muc^T^ (ATCC BAA-835) was grown anaerobically in a mucin-based basal medium as previously described (Derrien et al Int J Syst Evol Microbiol 54, 1469-1476 (2004)) and then washed and suspended in anaerobic phosphate buffer saline, including 25% (v/v) glycerol, to an end concentration of 1.10^{10} cfu/ml.

Food and water intake were recorded once a week. Body composition was assessed by using 7.5MHz time domain-nuclear magnetic resonance (TD-NMR) (LF50 minispec, Bruker, Rheinstetten, Germany).

All mouse experiments were approved by and performed in accordance with the guidelines of the local ethics committee. Housing conditions were specified by the Belgian Law of April 6, 2010, regarding the protection of laboratory animals (agreement number LA1230314).

Tissue sampling

The animals have been anesthetized with isoflurane (Forene®, Abbott, Queenborough, Kent, England) before exsanguination and tissue sampling, then mice were killed by cervical dislocation. Adipose depots (epididymal, subcutaneous and mesenteric), liver were precisely dissected and weighed; the addition of the three adipose tissues corresponds to the adiposity index. The intestinal segments (ileum, cecum and colon),
the cecal content and the adipose tissues were immersed in liquid nitrogen, and stored at -80 °C, for further analysis.

Mucus layer thickness
Proximal colon segments were immediately removed and fixed in Carnoy's solution (ethanol-acetic acid-chloroform, 6/3/1 v/v/v) for two hours at 4°C. Then the samples were immersed in ethanol 100% for 24 hours prior to processing for paraffin embedding. Paraffin sections of 5μm were stained with alcian blue. A minimum of 20 different measurements were made perpendicular to the inner mucus layer per field by an investigator blinded to the experimental groups. 5 to 19 randomly selected fields were analyzed for each colon for a total of 2146 measurements by using an image analyzer (Motic-image Plus 2.0ML, Motic, China).

RNA preparation and Real-time qPCR analysis
Total RNA was prepared from tissues using TriPure reagent (Roche). Quantification and integrity analysis of total RNA was performed by running 1 µg of each sample on an Agilent 2100 Bioanalyzer (Agilent RNA 6000 Nano Kit, Agilent). cDNA was prepared by reverse transcription of 1 µg total RNA using a Reverse Transcription System kit (Promega, Leiden, The Netherlands). Real-time PCRs were performed with the StepOnePlus™ real-time PCR system and software (Applied Biosystems, Den Ijssel, The Netherlands) using Mesa Fast qPCR™ (Eurogentec, Seraing, Belgium) for detection according to the manufacturer's instructions. RPL19 was chosen as the housekeeping gene. All samples were run in duplicate in a single 96-well reaction plate, and data were analyzed according to the 2^-ΔCT method. The identity and purity of the amplified product was checked through analysis of the melting curve carried out at the end of amplification. Primer sequences for the targeted mouse genes are presented in the Table 1 below.

<table>
<thead>
<tr>
<th>Primers</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPL-19 Forward</td>
<td>GAAGGTCAAAGGGAATGTGTTCA (SEQ ID NO : 1)</td>
</tr>
<tr>
<td>Reverse</td>
<td>CCTGTTGCTCACTTGT (SEQ ID NO : 2)</td>
</tr>
</tbody>
</table>
Insulin resistance index

Insulin resistance index was determined by multiplying the area under the curve (0 min and 15 min) of both blood glucose and plasma insulin obtained following an oral glucose load (2g of glucose per kg of body weight) performed after 4 weeks (A. muciniphila study) of treatment. Food was removed two-hours after the onset of the

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward</th>
<th>Sequence</th>
<th>Reverse</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reg3g</td>
<td>TTCCTGTCTCCATGATCAAA</td>
<td>(SEQ ID NO : 3)</td>
<td>CATCCACCTCTGTGGGTTC</td>
<td>(SEQ ID NO : 4)</td>
</tr>
<tr>
<td>Lyzl</td>
<td>GCCAAGGTCTACAATCGTTGTGAGTTG</td>
<td>(SEQ ID NO : 5)</td>
<td>CAGTCAGCAGCTTGACACCAGC</td>
<td>(SEQ ID NO : 6)</td>
</tr>
<tr>
<td>Pla2g2a</td>
<td>AGGATTCCCCAAAGGATGCCAC</td>
<td>(SEQ ID NO : 7)</td>
<td>CAGCCGTTTCAGCAGGAGTTCTGG</td>
<td>(SEQ ID NO : 8)</td>
</tr>
<tr>
<td>CDllcc</td>
<td>ACGTCAGTACAAGGAGATGTTGGA</td>
<td>(SEQ ID NO : 9)</td>
<td>ATCTATTTGACAGGAGCAGCC</td>
<td>(SEQ ID NO : 10)</td>
</tr>
<tr>
<td>Defa</td>
<td>GGTGATCATCAGCAGCCAGCATCAGT</td>
<td>(SEQ ID NO : 11)</td>
<td>AAGAGACTAAAATGAGGCAGC</td>
<td>(SEQ ID NO : 12)</td>
</tr>
<tr>
<td>Fasn</td>
<td>TTCAAGACGAAAATGATGC</td>
<td>(SEQ ID NO : 13)</td>
<td>AATTGTGGGATCAGGAGAGC</td>
<td>(SEQ ID NO : 14)</td>
</tr>
<tr>
<td>Cptla</td>
<td>AGACCGTGAGGAACTCAAACCTAT</td>
<td>(SEQ ID NO : 15)</td>
<td>TGAAGAGTCGCTCCCACTT</td>
<td>(SEQ ID NO : 16)</td>
</tr>
<tr>
<td>Pgclα</td>
<td>AGCCGTGACCTGACAACGAG</td>
<td>(SEQ ID NO : 17)</td>
<td>GCTGATCTGCCAGTTCTGG</td>
<td>(SEQ ID NO : 18)</td>
</tr>
<tr>
<td>Ppara</td>
<td>CAACGGCGTCAAGACGAACGA</td>
<td>(SEQ ID NO : 19)</td>
<td>TGACGGTCTCCACGGACAT</td>
<td>(SEQ ID NO : 20)</td>
</tr>
<tr>
<td>Acox1</td>
<td>CTATGGGATCGCCAGAAAGG</td>
<td>(SEQ ID NO : 21)</td>
<td>AGTCGAAAGCATCAGCAAG</td>
<td>(SEQ ID NO : 22)</td>
</tr>
<tr>
<td>Accl</td>
<td>TGTGGACGCTGTTGGTAGAA</td>
<td>(SEQ ID NO : 23)</td>
<td>GGTCCTATTATTGTCCACAGAC</td>
<td>(SEQ ID NO : 24)</td>
</tr>
<tr>
<td>Cebpα</td>
<td>GAGCCGAGATAAAGGCCAACA</td>
<td>(SEQ ID NO : 25)</td>
<td>GCACCGGCGTGTCATT</td>
<td>(SEQ ID NO : 26)</td>
</tr>
<tr>
<td>G6pc</td>
<td>AGGAAGGATGGAGGAGGAA</td>
<td>(SEQ ID NO : 27)</td>
<td>TGGAACCAGATGGGAAGAG</td>
<td>(SEQ ID NO : 28)</td>
</tr>
</tbody>
</table>
daylight cycle and mice were treated after 6-h-fasting period as previously described (Everard et al. Diabetes 60, 2775-2786 (2011)).

Biochemical analyses

Portal vein blood LPS concentration was measured by using Endosafe-MCS (Charles River Laboratories, Lyon, France) based on the Limulus amaebocyte Lysate (LAL) kinetic chromogenic methodology that measures color intensity directly related to the endotoxin concentration in a sample. Serum were diluted 1/10 with endotoxin free buffer to minimize interferences in the reaction (inhibition or enhancement) and heated 15 min at 70°C. Each sample was diluted 1/70 or 1/100 with endotoxin-free LAL reagent water (Charles River Laboratories) and treated in duplicate and two spikes for each sample were included in the determination. All samples have been validated for the recovery and the coefficient variation. The lower limit of detection was 0.005 EU/ml. Plasma insulin concentration was determined in 25 µl of plasma using an ELISA kit (Mercodia, Upssala, Sweden) according to the manufacturer instructions.

Fecal IgA levels were determined using an ELISA kit (E99-103, Bethyl Laboratories, Montgomery, TX). Freshly collected feces were frozen at -80°C then diluted in 50mM Tris, pH 7.4, 0.14M NaCl, 1% bovine serum albumin, 0.05% Tween 20. A 1/250 dilution was used to measure IgA by ELISA following the manufacturer instructions.

DNA isolation form mouse cecal samples

The cecal content of mice collected post mortem was stored at -80°C. Metagenomic DNA was extracted from the cecal content using a QIAamp-DNA stool mini-kit (Qiagen, Hilden, Germany) according to manufacturer's instructions.

Measurement of endocannabinoids intestinal levels

Ileum tissues were homogenised in CHCl₃ (10 ml), and deuterated standards were added. The extraction and the calibration curves were generated as previously described (Muccioli et al, Mol Syst Biol, 2010, 6, 392), and the data were normalised by tissue sample weight.
qPCR: primers and conditions

The primers and probes used to detect *Akkermansia muciniphila* were based on 16S rRNA gene sequences: *F-Akkermansia muciniphila* CCTTGCCTTTGGCTTCAGAT (SEQ ID NO: 29), *R-Akkermansia muciniphila* CAGCACGTGAAGGTGGGGAC (SEQ ID NO: 30). Detection was achieved with StepOnePlus™ real-time PCR system and software (Applied Biosystems, Den Ijssel, The Netherlands) using Mesa Fast qPCR™ (Eurogentec, Seraing, Belgium) according to the manufacturer’s instructions. Each assay was performed in duplicate in the same run. The cycle threshold of each sample was then compared to a standard curve (performed in triplicate) made by diluting genomic DNA (five-fold serial dilution) (DSMZ, Braunshweig, Germany). The data are expressed as Log of bacteria/g of cecal content.

MITChip: PCR primers and conditions

DNA extracted from cecal contents was analyzed using the Mouse Intestinal Tract Chip (MITChip), a phylogenetic microarray consisting of 3,580 different oligonucleotides probes targeting two hypervariable regions of the 16S rRNA gene (VI and V6 regions). Analysis of the MITChip were performed as previously described (Everard et al. Diabetes 60, 2775-2786 (2011); Geurts et al. Front Microbiol. 2, 149 (2011)). Briefly, Microbiota analysis was carried out on level 2 corresponding to genus-like level. Multivariate analysis was performed by representational difference analysis (RDA) as implemented in the CANOCO 4.5 software package (Biometris, Wageningen, The Netherlands) on average signal intensities for 99 bacterial groups (levels 2). All environmental variables were transformed as log (1+X). A Monte-Carlo permutation test based on 999 random permutations was used to test the significance. P values < 0.05 were considered significant.

Statistical analysis

Data are expressed as means ± s.e.m. Differences between two groups were assessed using the unpaired two-tailed Student's t-test. Data sets involving more than two groups were assessed by ANOVA followed by Newman-Keuls post hoc tests. Correlations were analyzed using Pearson's correlation. Data with different superscript letters are
significantly different P<0.05, according to the post-hoc ANOVA statistical analysis. Data were analyzed using GraphPad Prism version 5.00 for windows (GraphPad Software, San Diego, CA, USA). Results were considered statistically significant when P<0.05.

Results

We found that abundance of \textit{A. muciniphila} was 3300-fold lower in leptin-deficient obese mice versus their lean littermates (Fig. 1a). Consistently, we found a 100-fold decrease in high-fat (HF)-fed mice (Fig. 1c). In both models, prebiotics completely restore \textit{A. muciniphila} count (Fig. 1b,c). In HF-fed mice, prebiotics abolished metabolic endotoxemia (Fig. 1d), normalized adipose tissue CD11c subpopulation of macrophages (Fig. 1e) and lowered fat mass (Fig. 1g and Fig.3b). These results were significantly and inversely correlated with \textit{A. muciniphila} (Fig. 1f and Fig.3a,c). Nevertheless, it remained to demonstrate whether molecular mechanisms underlying the onset of these disorders rely on the lack of \textit{A. muciniphila} and in contrast if the improvement after prebiotic treatment results from its higher abundance.

To address this question, \textit{A. muciniphila} was orally administered to control or HF-fed mice during four weeks, thereby increasing \textit{A. muciniphila} (Fig. 4a,b). By using a phylogenetic-microarray (MrfChip) (Everard et al. Diabetes 60, 2775-2786 (2011); Geurts et al. Front Microbiol. 2, 149 (2011)), we found that both HF-diet and \textit{A. muciniphila} colonization significantly affected the complex relationship among bacteria within the gut microbiota composition, as shown by principal component analyses (PCA) (Fig. 2a) and supported by relative changes of different taxa (Fig. 4c).

We found that \textit{A. muciniphila} treatment normalized diet-induced metabolic endotoxemia, adiposity and adipose tissue CD11c marker (Fig. 2b,c,e and Fig. 5a), without any changes in food intake (Fig. 5b). Accordingly, we hypothesized that \textit{A. muciniphila} would impact on adipose tissue metabolism, and found that under HF-diet, \textit{A. muciniphila} increased mRNA expression of markers of adipocyte differentiation and lipid oxidation without affecting lipogenesis (Fig. 2f). Together, these data further suggest that \textit{A. muciniphila} controls fat storage and adipose tissue metabolism.
We next discovered that colonization with *A.muciniphila* completely reversed diet-induced fasting hyperglycemia, by a mechanism associated with a 40% reduction of hepatic glucose-6-phosphatase expression (Fig. 6a,b), thereby suggesting reduced gluconeogenesis. Notably, the insulin-resistance index was similarly reduced after treatment (Fig. 2d). Collectively, these results suggest that *A.muciniphila* contributes to regulation of adipose tissue metabolism and glucose homeostasis. One explanation would be that *A.muciniphila* plays key roles at different levels of the regulation of gut barrier function. Recent data suggest that intestinal cells also contribute to the maintenance of gut barrier by secreting antimicrobial peptides thereby shaping microbial communities (Pott et al, EMBO Rep (2012)).

To further elucidate how *A.muciniphila* colonization affects gut barrier function; we measured the expression of Paneth and epithelial cells antibacterial markers in the ileum. We found that *A.muciniphila* increased Reg3γ (regenerating islet-derived 3-gamma, RegIIIγ) expression under control diet, whereas this effect was not observed in HF-fed mice (Fig. 7a). Pla2g2a, Defa expression were similar between groups, whereas Lyz1 expression tends to be lower after bacteria administration (Fig. 7b,c,d). IgA are secreted in intestinal lumen and are known to restrict mucosal bacterial penetration (Vaishnava, S., et al. Science 334, 255-258 (2011)), here we found that fecal IgA levels were not affected by the treatments (Fig. 7e). Thereby, suggesting that *A.muciniphila* controls gut barrier function by other mechanisms involving its epithelial signalling (Derrien et al. Front Microbiol 2, 166 (2011)). We may not rule out that the endocannabinoid system plays a crucial role in this context; since we found that *A.muciniphila* treatment increased 2-oleoylglycerol, 2-palmitoylglycerol and 2-arachidonoylglycerol intestinal levels (Fig. 2g). Importantly, 2-oleoylglycerol has been shown to stimulate glucagon-like peptide-1 (GLP-1) release from intestinal L-cells suggesting that both GLP-1 and GLP-2 might improve gut barrier and glucose homeostasis in this context (Hansen, et al. J Clin Endocrinol Metab 96, E1409-1417 (2011)). Moreover, 2-arachidonoylglycerol reduces gut permeability and 2-palmitoylglycerol (Alhouayek et al FASEB J 25, 2711-2721 (2011); Ben-Shabat, et al. Eur.J.Pharacol. 353, 23-31 (1998)) potentiates 2-arachidonoylglycerol anti-inflammatory effects. Therefore, whether the increased levels of these three
endocannabinoids observed after \textit{A.muciniphila} colonization constitutes a molecular event linking these metabolic features warrants further investigations.

Recent evidences support that interactions between gut microbiota and mucus layer are dynamic systems affecting the biology of mucus barrier (Belzer et al, ISME J 6, 1449-1458 (2012); Johansson et al, Proc Natl Acad Sci U S A 108 Suppl 1, 4659-4665 (2011)). Thus we investigated the impact of \textit{A.muciniphila} colonization on the inner mucus layer thickness. Remarkably, we found a 46% thinner mucus layer in HF-fed mice (Fig. 2h), whereas \textit{A.muciniphila} colonization counteracts this decrease (Fig. 2h). Together these novel findings support the idea that the presence of \textit{A.muciniphila} within mucus layer is a crucial mechanism to control mucus turnover (Belzer et al, ISME J 6, 1449-1458 (2012)). We next examined whether \textit{A.muciniphila} also affects \textit{Reg3g} expression in the colon epithelial cells. Strikingly, \textit{Reg3g} expression was reduced by about 50% under HF-diet. \textit{A.muciniphila} completely blunted this effect and even more increased \textit{Reg3g} expression by 400% as compared to HF-fed mice (Fig. 2i). Thus this links the colonization of the colon, but not ileum, by \textit{A.muciniphila} with the fundamental immune mechanism by which Regllly promotes host-bacterial mutualism and regulates the spatial relationships between microbiota and host (Vaishnava, S., et al. Science 334, 255-258 (2011)). It is important to note that in germ-free mice \textit{A.muciniphila} induces gene expression in the colon rather than the ileum (Derrien et al. Front Microbiol 2, 166 (2011)).

In summary, our findings not only provide substantial insights into the intricate mechanisms by which \textit{A.muciniphila} regulates the crosstalk between the host and the gut microbiota, but also provide a rationale for considering the development of a treatment using this human mucus-colonizer for the prevention or the treatment of obesity and associated metabolic disorders.
CLAIMS

1. *Akkermansia muciniphila* or fragments thereof for treating a metabolic disorder in a subject in need thereof.

2. *Akkermansia muciniphila* or fragments thereof for treating a metabolic disorder according to claim 1, wherein said metabolic disorder is obesity.

3. *Akkermansia muciniphila* or fragments thereof for treating a metabolic disorder according to claim 1, wherein said metabolic disorder is selected from the group comprising metabolic syndrome, insulin-deficiency or insulin-resistance related disorders, Diabetes Mellitus (such as, for example, Type 2 Diabetes), glucose intolerance, abnormal lipid metabolism, atherosclerosis, hypertension, cardiac pathology, stroke, non-alcoholic fatty liver disease, hyperglycemia, hepatic steatosis, dyslipidemia, dysfunction of the immune system associated with overweight and obesity, cardiovascular diseases, high cholesterol, elevated triglycerides, atherosclerosis, asthma, sleep apnoea, osteoarthritis, neuro-degeneration, gallbladder disease and cancer.

4. *Akkermansia muciniphila* or fragments thereof for treating a metabolic disorder according to any one of claims 1 to 3, wherein viable cells of *Akkermansia muciniphila* are administered to the subject in need thereof.

5. *Akkermansia muciniphila* or fragments thereof for treating a metabolic disorder according to any one of claims 1 to 4, wherein *Akkermansia muciniphila* is orally administered.

6. *Akkermansia muciniphila* or fragments thereof for treating a metabolic disorder according to any one of claims 1 to 5, wherein an amount of *Akkermansia muciniphila* ranging from about 1.10^2 to about 1.10^{15} cfu, preferably from about 1.10^4 to about 1.10^{12} cfu, more preferably from about 1.10^5 to about 1.10^{10} cfu, and even more preferably from about 1.10^6 to about 1.10^9 cfu is administered to the subject.
7. *Akkermansia muciniphila* or fragments thereof for treating a metabolic disorder according to any one of claims 1 to 6, wherein *Akkermansia muciniphila* is administered at least once a day.

8. *Akkermansia muciniphila* or fragments thereof for treating a metabolic disorder according to any one of claims 1 to 7, wherein *Akkermansia muciniphila* is co-administered with another probiotic strain and/or with one or more prebiotics.

9. A composition for treating a metabolic disorder comprising *Akkermansia muciniphila* or fragments thereof according to any one of claims 1 to 8 in association with an excipient.

10. Composition according to claim 9, wherein said composition is a nutritional composition.

11. Composition according to claim 9 or 10, wherein said composition is orally administered.

12. A pharmaceutical composition for treating a metabolic disorder comprising *Akkermansia muciniphila* or fragments thereof according to any one of claims 1 to 9 in association with a pharmaceutically acceptable vehicle.

13. A medicament for treating a metabolic disorder comprising *Akkermansia muciniphila* or fragments thereof according to any one of claims 1 to 9.

14. Use of *Akkermansia muciniphila* or fragments thereof for promoting weight loss in a subject in need thereof.

15. A cosmetic composition comprising *Akkermansia muciniphila* or fragments thereof for promoting weight loss in a subject in need thereof.
FIG. 1A-D
FIG. 2A-F
FIG. 2G-I
Figure 3

(a) Scatter plot showing the relationship between CD11c mRNA expression and Log₁₀ bacteria/g cecal content with Akkermansia muciniphila.

(b) Bar charts comparing subcutaneous, mesenteric, and epididymal adipose tissue weight across different groups indicated by CT, CT-Pre, HF, and HF-Pre.

(c) Scatter plot illustrating the correlation between adipose tissue gain and Log₁₀ bacteria/g cecal content with Akkermansia muciniphila.
FIG. 4
FIG. 5
FIG. 6
FIG. 7
INTERNATIONAL SEARCH REPORT

PCT/EP2012/073011

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61K35/74 A61P3/00

ADD.

According to International Patent Classification (IPC) onto both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal , BIOSIS, EMBASE, FSTA, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>MURI EL DERRI EN ET AL: "Modul ati on of Mucosal Immune Response, Tol erance, and Prol iferati on i n Mi ce Col oni zed by the Muci n-Degrad er Akkermansi a muc ni phi l a", FRONTIERS IN MICROBIOLOGY, vol. 2, January 2011 (2011-01), XP055074491, DOI: 10.3389/fmi.2011.00166 abstract page 2, right column, paragraph 4-page 3, left column, paragraph 2</td>
<td>I-9, II-13,15</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) on which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"A" document member of the same patent family

Date of the actual completion of the international search 8 August 2013

Date of mailing of the international search report 19/08/2013

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax. (+31-70) 340-3016

Authorized officer Habedanck, Robert

Form PCT/ISA/210 (second sheet) (April 2006)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>M. DERRI EN ET AL: "Akkermansi a mucini phila gen. nov., sp. nov., a human intest mal mucini n-degradi ng bacterium", INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol. 54, no. 5, September 2004 (2004-09), pages 1469-1476, ISSN: 1466-5026, DOI: 10.1099/lj s.0.02873-0 page 54, left col unmn, paragraph 3-ri ght col umn, paragraph 5; figure 3; table e 1</td>
<td>1-9 , 12 , 13 , 15</td>
</tr>
<tr>
<td>A</td>
<td>EP 2 030 623 A1 (NESTEC SA [CH])</td>
<td>1-15</td>
</tr>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2008290737 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101827600 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2030623 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2190438 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011123501 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009024429 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010172874 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008076696 A2</td>
</tr>
</tbody>
</table>