0 02/069575 Al

=

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date

A 00O 0

(10) International Publication Number

6 September 2002 (06.09.2002) PCT WO 02/069575 Al
(51) International Patent Classification’: HO04L 12/28, Brittain; 30 Lost Lake Drive, Groton, MA 01450 (US).
12/56, HO4T 3/24 BEARDSLEY, Alan; 23 Loomis Street, Bedford, MA
01730 (US). FLANDERS, John; 10 Hunters Lane, Ash-
(21) International Application Number: PCT/US02/06299 land, MA 01721 (US).
(22) International Filing Date: 28 February 2002 (28.02.2002) U9 ?fg;;;sig‘g:?i l;’rﬁiv(::;JJl;f;cae{"BIi;tg:: xzcgﬁf)n
2699 (US).
(25) Filing Language: English
(81) Designated States (national): AE, AG, AL, AM, AT, AU,
(26) Publication Language: English AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
. HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
(30) Priority Data: LS, IT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ.
60/272,328 28 February 2001 (28.02.2001) US 2 Ll L, LYy VLA, VLI, AT, ALA, MY, VIV, WA, VLA,
60/272,387 28 February 2001 (28.02.2001) US NO, NZ, PL, PT, RO, RU, 5D, SE, 5G, SI, SK, SL, TJ, TM,
60/272,407 28 February 2001 (28.02.2001) US TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
(71) Applicant: GOTHAM NETWORKS, INC. [US/US]; 15 KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Discovery Way, Acton, MA 01720 (US). Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
(72) Inventors: AGGARWAL, Vijay; 25 Langelier Lane, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent

Marlboro, MA 01752 (US). BOLAND, Wayne; 169
Nagog Hill Road, Acton, MA 01720 (US). MCKINLEY,

(BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHODS AND APPARATUS FOR NETWORK ROUTING DEVICE

Network

(57) Abstract: The present invention provides systems for improved quality of service and traffic management in network routers
and other devices. This is achieved by coupling a plurality of queue processors to a plurality of input interfaces (18) that receive data
from one or more respective network connections (12). Each queue processor, in coordination with an associated scheduler (24) that
schedules dequeing of data from one or more queues (22), maintains with quality of service levels with respect to throughput, and
delivers the data for a particular output context based on priority to a respective output interface (26). Packets, cell, datagrams and
so forth passing through the router are disassembled and marked with one or more priority levels. Prior to exiting the router they are

reassembled according to marked priority levels into their constituent forms for continued routing on the network.

w0 02/069575 A1)OO0 000 00 0 O A

Published:
— with international search report

before the expiration of the time limit for amending the

claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299

METHODS AND APPARATUS FOR NETWORK ROUTING DEVICE
Reference to Related Applications

This application claims the benefit of priority of the following United States provisional
patent applications, the teachings of which are incorporated herein by reference: IMPROVED
QUALITY OF SERVICE; Serial No.: 60/272,407; Filing Date: February 28, 2001; METH-
ODS AND APPARATUS FOR PACKET ROUTING WITH IMPROVED TRAFFIC MAN-
AGEMENT AND SCHEDULING; Serial No.: 60/272,387; Filing Date: February 28, 2001;
IMPROVED PACKET REASSEMBLY; Serial No.: 60/272,328; Filing Date: February 28,
2001.

Background of the Invention

The invention pertains to computer and communication networks, and particularly, to
improving quality of service and traffic management within such networks. More particularly,
the invention relates to apparatus for efficiently forwarding data from one or more source ports
to one or more destination ports of a networking device. The invention has application in net-
work routers, switches and other traffic-bearing nodes.

Rapid advances in technology and network growth have resulted in more capacity in
the core network (the backbone network operated and maintained by carriers). Increased
broadband implementation is providing wider service capabilities in the access network (the
DSL, cable and other networks that provide interfaces to end user equipment). However, the
edge network (the interface between the core and access networks that is operated and main-
tained by Internet Service Providers), is lagging behind, thereby, leaving untapped capacity in
the core and access networks.

To date, carriers, e.g., AT&T, Sprint, have been inefficient in accessing all the additional
bandwidth that is available as a result of these new developments. Service providers, e.g.,
America On-line, Earthlink, MSN, have been forced to use a complex patchwork of solutions,
e.g., multiple routers, network devices, which are not well integrated and result in overlapping
layers of functionality and capability. Inevitably, service providers must continuously update,
modify and better integrate their network architectures, which increases overall costs and inef-
ficiency.

Current network switch architectures that are utilized in edge networks are costly, and
are comprised of complex centralized switch fabrics and central processing units. These switch
architectures are not readily scalable, and are plagued by switching conflict delays, e.g., block-
ing problems. The costly switching conflict delays make it difficult for service providers to

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299

guarantee the performance they have contracted to deliver under their existing service level

agreements, and to deliver that performance with guaranteed quality of service.

In multi-layered edge networks, the costs, inefficiencies, and complexities further
increase, because the aggregation, provisioning, switching and routing functions are not typi-
cally consolidated into a single network device. This results in the inclusion of multiple layers
of unnecessary routers.

An object of this invention is to provide improved methods and apparatus for computer
and communication networks. A related object is to provide such methods and apparatus as
provide improved quality of service and traffic management within such networks.

A further object is to provide methods and apparatus for computer and communications
networks that eliminate or reduce switching conflict delays, and that support multiple services

simultaneously, i.e., any protocol on any interface port in a network device.

Another object of this invention is to provide such methods and apparatus as facilitate
consolidation of the aggregation, provisioning, switching and routing functions into fewer or a
single network device.

A still further object is to provide such methods and apparatus as provide performance
improvements over the prior art.

Another object of this invention is to provide a highly scalable and cost-efficient archi-
tecture for network routing.

10

20

25

30

35

WO 02/069575 PCT/US02/06299

Expr

Summary of the Invention
Traffic Management

The aforementioned objects are attained by the invention, which provides methods and
apparatus for improved traffic management in network devices, e.g., routers, switches and
other traffic bearing nodes (collectively, “network devices™). This is achieved, according to
one aspect of the invention, by storing data received from each of a plurality of network con-
nections to queues (or sets of queues) based on the communication contexts (e.g., output net-
work connection) to which those data belong. Processor logic (referred to below as a “queue
processor”) associated with respective sets of the queues operates in conjunction with schedul-
ing logic associated with all of the queues to dequeue the data for output, via the same or addi-
tional network connections.

Related aspects of the invention provide devices as described above in which incoming
data is stored to the queues based on priority as well as context. Thus, for example, data per-
taining to, say, four priority levels for a given context can be stored to each of four queues
associated with that context. Therefore, in a system having 512 output contexts, each queue
processor would be associated with 2048 queues (512 contexts times 4 priority queues).

Further aspects of the invention provide network devices as described above in which
multiple queue processors and their associated sets of queues are coupled to respective input
interfaces, each of which receives data from one or more associated network connections. The
input interfaces can, according to related aspects of the invention, disassemble, or de-format
packets or other units of data received from the associated network connections, placing that
data in a form suited for storage in the queues and manipulation by the queue processors. The
queue processors (and their associated queues) are likewise coupled to an output interface that
transfers data to one or more associated network connections. The output interfaces can, con-
versely, reformat and/or reassemble data into a format suited for output on the respective net-

work connections.

For example, a network router, switch, or other device according to the foregoing
aspects of the invention can have a plurality of input interfaces, each receiving data from one
or more network connections. A set of queues and an associated queue processor are coupled
to each respective input interface. The plurality of queue processors (and associated queues)
are also coupled to a single output interface, which can include a packet reassembly unit and
network interface processor that, itself, drives data to one or more network connections.

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299

Continuing with the counts from example above, incoming data received by the input
interfaces is stored to one of the four priority queues associated with the specific output context
(of the 512 output contexts associated with the particular output interface) to which that packet
belongs. Each queue processor, with the assistance of the scheduling logic, dequeues the data
for a particular context by priority and delivers it to the output interface, which, in turn, trans-
fers the data to its intended destination network connections, e.g., LANs, MANs, WANSs,

Further aspects of the invention provide network devices as described above, which
include multiple sets of queue processors, each set having a plurality of queue processors (each
of with associated queues and common scheduling logic). As above, each set coupled to a
respective plurality of input interfaces and to a single respective output interface. The multiple
sets of queue processors of this aspect of the invention, accordingly, drive multiple output
interfaces.

Continuing the example above, a network router, switch, or other device according to
this aspect of the invention can have, say, sixteen input interfaces each of which receives (and
depacketizes) data from one or more network connections. The device can likewise have, say,
sixteen output interfaces each of which (packetizes and) drives data to those same or different
network connections. Data received by the input interfaces is stored to the queues whose set
(i.e., queue processors, queues and output interface) are associated with the network connec-
tions over which that data must be output. As above, the data is stored to the queues in accord
with context and priority. And, as above, each queue processor, with the assistance of the
scheduling logic, dequeues the data for a particular context by priority and delivers it to the
output interface, which, in turn, transfers the data to its intended destination network connec-
tions, e.g., LANs, MANs, WANs. An advantage of this configuration is that large quantities of
input data are funneled to their respective destination network connections with increased effi-
ciency and maximized throughput.

Further aspects of the invention provide systems as described above, in which received
data is stored to the queues in linked-list form. Each queue processor dequeues the data from
a selected queue by following those lists, and transmits the data to the output interface for
transfer to the appropriate network connections. The queue processors can, according to fur-
ther aspects of the invention, discard data, and maintain a list of statistics and parameters in
memory.

5

10

20

25

30

35

WO 02/069575 PCT/US02/06299

Quality of Service

Further aspects of the invention provide methods and apparatus for improved quality of
service in network devices, e.g., routers, switches and other traffic bearing nodes (collectively,

“network devices™). This is achieved, according to one aspect of the invention, by storing data

received from each of a plurality of network connections to queues (or sets of queues) based
on the communication contexts (e.g., output network connection) to which those data belong.
Processor logic (referred to below as a “queue processor”) associated with respective sets of
the queues operates in conjunction with scheduling logic associated with all of the queues to
dequeue the data for output, via the same or additional network connections, in a manner that
achieves quality of service requirements.

A scheduler that is coupled to a plurality of queues and associated processor logic
(queue processors) schedule dequeing of data from one or more queues for transfer to an output
interface to meet quality of service requirements. The scheduler interfaces with the queue
processors to identify contexts requiring service and to identify a particular priority queue from
which data is to be dequeued to an output network connection.

In a related aspect, the invention provides a scheduling table with entries that corre-
spond to time slots, say, of 130ns, in a “frame.” Each entry identifies a context that is to be
serviced in the respective time slot and can also provide control flags, such as an aggregation
mask and a master flag. The scheduler reads one table entry per slot to determine for which
context a packet is to be dequeued. This is repeated each frame. The scheduling table is preset
or dynamically programmed to service the queues (and underlying contexts) to reflect quality
of service requirements.

According to further aspects of the invention, in each time slot, a scheduler as described
above polls the queue processor to determine whether their respective queues have pending
packets for the context to be serviced during that time slot. The queue processors whose
queues hold data for a corresponding network connection can respond to the scheduler by indi-
cating the priority level of that data and, according to related aspects of the invention, whether

the corresponding queues are “starved,” i.e., not been serviced within a certain time thresh-
old.

In still further aspects, the invention provides a scheduler as described above, which
selects a specific queue processor and corresponding queue based on queue priority and on
starved status. Typically, priority queues for any given context are serviced first, with the
queue processors being handled on a round-robin basis.

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299

In another aspect, the invention provides a router, switch, or other network device as
described above that has a control flag, such as a “starved bit,” or other indicator associated
with one or more queues to indicate whether the associated queue has been dequeued within a
certain time threshold. A scheduler can respond to such an indicator by scheduling the deque-
ing of the starved queues before all other queues. In embodiments where dequeuing is nor-
mally determined by priority, this essentially results in starved queues receiving higher
effective priority than non-starved queues regardless of their initial priority level.

By way of non-limiting example, a system operating in accord with this aspect of the
invention could initially set the starve indicator to a numerical threshold value, such as zero
that is decremented each time the scheduler does not select a corresponding queue for
dequeuing. When the corresponding queue is finally dequeued, the starve indicator is incre-
mented into the positive range by a specified amount, e.g., +10.

In another aspect, the invention provides a router, switch, or other network device as
described above that has an aggregation mask, or other indicator that is associated with one or
more queues, to indicate that dequeing of data is only permitted from starved queues. The
scheduler responds to the aggregation mask by scheduling dequeuing of associated starved
queues. The advantages of this configuration include, preventing unwanted bursting, e.g., for
ATM-CBR (Asynchronous Transfer Mode — Constant Bit Rate).

In another aspect, the invention provides a router, switch, or other network device as
described above that has a master flag, or other indicator associated with one or more queues
to ensure that the responses to the scheduler from the queue processors are taken from only one
queue processor, which serves as a collecting point for responses from all queue processors
whose associated queues are starved. This advantage ensures that all queues get a chance to
notify that they are starved.

Packet Disassembly, Routing and Reassembly

Still further aspects of then invention provide methods and apparatus for improved
packet reassembly in network devices, e.g., routers, switches and other traffic bearing nodes.
Such network devices, according to one aspect of the invention, utilize an input section that
receives packets (e.g., cells, frames, datagrams) from one or more network connections and
that fragments the packets into one or more respective portions or units. A routing mechanism,
e.g., a fully meshed switch fabric, transfers the units from the input section to an output section,
whence they are routed back to the network. The output section receives the units intermingled
with one another. A reassembly unit reassembles the intermingled units into respective packets

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299

on the basis of at least a context associated with the network connection to which those respec-
tive packets will be output.

According to related aspects of the invention, the input section can associate each
received packet with an ingress priority and can transfer the units to the routing mechanism
intermingled, if at all, on the basis of that priority. The input section can also utilize the packet
classification to associate each corresponding packet with an identifier, which is used to deter-
mine further parameters for routing through the network device. These include an egress prior-
ity and a context, among others. Packets transferred from the routing mechanism to the output
section may be intermingled on the basis of those additional parameters (i.e., egress priority
and context), as well as on the basis of ingress priority. They may be further intermingled on
the basis of a slot identifiers associated with cards that make up the routing mechanism.
According to related aspects of the invention, the reassembly unit reassembles the intermingled
units into their respective packets based on all of these parameters, i.e., context, slot number,
ingress priority, and egress priority.

Still further aspects of the invention provide devices as described above in which the
output section checks units received from the routing mechanism for errors (e.g., missing unit
errors, timeout errors, and so forth) discarding packets and/or units that have errors while for-
warding to the network connection those packets that do not have errors.

Related aspects of the invention provide devices as described above in which the input
interface includes an aggregation module that associates each received packet with a priority
and an identifier, breaks each packet into one or more respective fragments, and forwards each
fragment to a standardizer module. The standardizer module, according to still further related
aspects, can utilize the identifier to determine the aforementioned parameters, e.g., from a con-
figuration table. It can reassemble the received fragments into one or more units for transfer to
the routing mechanism intermingled on the basis of priority. Each unit can, according to
aspects of the invention, have a header that includes the corresponding parameters. The rout-
ing mechanism as described above can, according to further related aspects of the invention,
store the received units into one or more queues that correspond to egress priority and transmit

the units based on that priority to the output interface.

Further aspects of the invention provide network devices as described above in which
the routing mechanism includes queues and queue processors as described above.

The output interface, according to still further aspects of the invention, can include a
reassembly processing unit and a routing switch processor. The reassembly unit can reassem-

10

20

25

30

35

WO 02/069575 PCT/US02/06299

ble the units into one or more respective packets and segment the packets into units that are
forwarded based on priority to the routing switch processor. The routing switch processor con-
verts the units into their original packet format and transfers the packets to the corresponding
network connection based on priority and context.

Further aspects of the invention provide systems as described above, in which one or
more output interfaces each comprise a reassembly processing unit and a routing switch pro-
cessor. The output interfaces receive intermingled units from different respective packets, and
utilize the reassembly unit to reassemble the units into their respective packets based on con-
text, ingress priority, egress priority, and slot number. The reassembly unit then transfers the
packets to the routing switch processor, which transfers the packets to corresponding network
connections based on egress priority.

Further aspects of the invention provide methods paralleling the operations described
above. These and other aspects of the invention are evident in the drawings, description, and
claims that follow.

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299

Brief Description of the Drawings

A more complete understanding of the invention may be attained by reference to the
drawings, in which:

Figure 1 depicts the architecture of a network router that utilizes an improved quality of
service and traffic management system according to the invention;

Figure 2 depicts the internal architecture of an input interface in a network router
according to the invention;

Figure 3 depicts the runtime representation of the operation of a system according to the
invention;

Figure 4 is a block diagram of a fast pattern processor that can be implemented as a
component of an input interface in a system according to the invention;

Figure 5 is a functional processing diagram of the fast pattern processor of Figure 4;

Figure 6 depicts the reassembly of AALS streams using the fast pattern processor of
Figure 4;

Figure 7 depicts how the fast pattern processor of Figure 4 provides Level 2 ATM cell
switching;

Figure 8 is a block diagram of a flow management unit in a system according to the
invention;

Figure 9 is a block diagram of an ingress buffer in a system according to the inven-
tion;

Figure 10 is a block diagram of a quality of service subsystem in a system according to
the invention;

Figure 11 depicts the handshake protocol between components and the interface that
performs switching in a network router according to the invention;

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
10

Figure 12 depicts the format of data in a scheduling table and the decoding of egress
requests according to the invention;

Figure 13 is a block diagram of an egress multiplexer in the output interface in a system
according to the invention;

Figure 14 is a block diagram of a reassembly processing unit in the output interface of
a system according to the invention;

Figure 15 is a block diagram of a routing switch processor and its associated memories
and interfaces in the output interface of a network router according to the invention;

Figures 16A—16D depict packet disassembly, routing and reassembly in a network
device according to the invention; and

Figures 17A-17D depict how packets and fragments thereof are interleaved during
disassembly, routing and reassembly by a network device according to the invention.

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
11

Detailed Description of the Illustrated Embodiment

The present invention provides systems for improved quality of service and traffic man-
agement in network routing devices. It has application in efficiently moving data from a source
port, e.g., on ATM, Frame Relay, Ethernet, or other such networks, to one or more destination
ports on these or other networks.

By way of overview, the illustrated embodiment comprises a board that is 2 common
processing platform for all I/O types supported within a node. An on-board host micro-pro-
cessing unit provides CPU, memory, local non-volatile storage, and I/O to the rest of the board.
The board connects the link-specific I/O cards e.g., SONET, ATM, Frame Relay, Ethernet, to
and from a mid-plane using custom logic based on a cell flow similar to ATM. Each flow
received from the I/O cards is classified and converted into a series of link-independent propri-
etary cells which are directed to other boards in the system via a mid-plane high speed cross-
connect. Cells received from other boards via the mid-plane are priority enqueued and then
scheduled for egress, merged, reassembled, and shaped for transmission to the 1/O cards.

The end-to-end process yields a highly-configurable, line-rate, level 2-3 switch for any-
to-any connection of ATM, Frame Relay, Packet-Over-SONET, 10/100/1000 Ethernet, and
TDM CES with precise bandwidth control and low latency and jitter on each flow.

FIGURE 1 illustrates a network device (or node) 10 in which the invention can be
implemented. A plurality of I/O devices 14 (e.g., conventional network interface cards, adapt-
ers and/or circuitry) receive data from a plurality of networks 12, e.g., LANs, MANs, WANS,
or other networks (regardless of whether implemented in SONET, ATM, Frame Relay, Ether-
net, and so forth), and deliver the data to a plurality of cards 16 constructed in accord with the
teachings below that route the data to plurality of networks 30 via I/O devices 28 (e.g., again
conventional network interface cards, adapters and/or circuitry). Networks 30 may of the same
or different variety as networks 12 and may constitute portions of the same network, in whole
or in part. Those skilled in the art will appreciate that the use or number of cards is merely an
illustration of one implementation and not a limitation of the invention.

With continued reference to Figure 1, each card 16 contains an input interface 18, a
plurality of queue processors 22 interconnected with the input interfaces 18 via a mid-plane
cross-connect fabric 20, a scheduler 24 that is associated with respective pluralities of queue
processors, and an output interface 26 that transfers data to one or more respective network
connections 30, via destination 1/0 devices 28.

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
12

In the illustrated embodiment, a mid-plane cross-connect 20 couples each input inter-
face 18 to a single queue processor 22 on every card 16 in the system. Incoming data, e.g.,
packets, datagrams, cells, and so forth, received via I/O devices 14 are converted into a
common format, e.g., augmented ATM cells (referred to below as “GCells”) by the input inter-
face 18. Each cell is transferred over the mid-plane cross-connect 20 to the card 16 and, par-
ticularly, the queue on that card corresponding to the output I/O device 28 and network 30 for
which the packet is destined (e.g., as determined in the conventional manner from addressing
contained in the incoming data and from routing tables (not shown) pertaining thereto).

As shown in the drawing, each card has a single input interface 18 and a plurality of
queue processors 22. In the illustrated embodiment only one queue processor is connected to
that card’s input interface. The remaining queue processors 22 are connected to the input inter-
faces 18 on other cards 16. This configuration forms a cross-connect “mesh” that allows for

flexible internal routing without congestion.

Each queue processor 22 is associated with a plurality of queues in which the received
data, from a respective input interface 18, is stored according to context and priority. Each
plurality of queue processors 22 interfaces with an associated scheduler 24 to dequeue and
send received data (whether from local input interface 18 or one located on another card 16) to
a local output interface 26. The data is selected and dequeued on a round robin basis in view
of a particular context, priority, quality of service requirements, and destination throughput all
as reflected by parameters evaluated by the scheduler 24. The respective output interface 26
then transfers the data to one or more respective network connections 30, via destination I/O
devices 28.

FIGURE 2 is a graphical representation 32 of an input interface 18 used in the illus-
trated embodiment of the invention. Three components of the input interface are the Fast Pat-
tern Processor (FPP) 38, Flow Management Unit 42, and the Ingress Buffer (IBUF) 46. FPP
38, is a commercial-off-the-shelf product, available from Agere, that receives data 34 from the
external I/O cards 36 via a POS-PHY bus. Of course, other such devices, regardless of source,
may be used instead. The FPP 38 performs AALS5 PDU reassembly, packet classification, level
2 forwarding, level 3 and level 4 forwarding and policing, all based on configuration data main-
tained in table 40.

More particularly, FPP 38 reassembles the data 34 and performs such classifications as
are necessary to forward it through the network device 10. Transaction Ids are also appended
to the data by the FPP 38. The reassembled data, known as protocol data units (PDUs) 42, are
then output from the FPP 38 as 64 byte transactions and sent to the Flow Management Unit

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
13

(FMU) 44. The FPP 38 denotes the end of transfer of each PDU 42 with a transmit command,
e.g., Tx0, Tx1, Tx2. The transmit commands include IDIDs and other classification results,
e.g., length, offset, flag bits.

Responsibilities of the FMU 44 include: 1) reordering, 2) reassembly and 3) segmenta-
tion of data into proprietary cells (GCells). The FMU 44 reassembles the data back into fuil
PDUs by loading the incoming 64 byte transactions 42 into 64 byte buffers. Each transaction
42 is buffered until the entire PDU is received, as indicated by the transmit command. The
FMU 44 then segments the PDUs into the aforementioned GCells 46, which are comprised of
a 12 byte header and a 52 byte payload. The header includes parameters such as priority, port
number, and egress ID. The reassembled linked-list of buffers that constitutes a packet is
enqueued on one of four priority output queues that are emptied one GCell at a time, in a high
to low priority scheme. The dequeued GCells 46 are sent to the Ingress Buffer (IBUF) 48.

Illustrated IBUF 48 forwards GCells 46 from the FMU 44 to the mid-plane high-speed
cross-connect (See FIGURE 1, item 20) and associated cards (See FIGURE 1, item 16) based
on card slot mask as defined in the configuration table 40.

A more in-depth understanding of the functionality of the input interface (See FIGURE
1, item 18) comprised of the elements illustrated in FIGURE 2, e.g., FPP, FMU, IBUF, may be
realized by the following discussion. It will appreciated that this discussion pertains to an
embodiment of a system utilizing the invention and that other architectures, components and
operations may be used instead to the extent consistent with the invention.

Fast Pattern Processor (FPP)

Referring to Figure 4, the Fast Pattern Processor receives data from the external I/O
Card (See FIGURE 1, item 14) via a POS-PHY or UTOPIA bus and performs the following
functions.

AALS PDU reassembly

Packet classification

Level 2 forwarding

Level 3 and Level 4 forwarding

MEE

Policing

The FPP is programmable using an Agere-proprietary functional language called
“Functional Programming Language” or FPL.

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
14

FPP Functionality

User data is received from the I/O card and is processed as it moves into Data Memory,
with the help of data structures in the Control Memory and the parse tree in the Program
Memory. The result of the processing is stored in the Control Memory. Datagrams (PDUs) are
stored in the Data Memory in one of 64K linked-listed queues. These queues are then linked
onto one of four priority queues. These priority queues are then read from the Data Memory
and processed one more time for layer three to layer 7 processing. The processed datagram is
then sent out to the FMU on a modified POS-PHY interface. This process is shown pictorially
in FIGURE 5.

Statistics are stored in the ASI memory by the FPP, via a call to the ASI. The counters
are numbered and installed in the ASI memory. Software associates counters to physical inter-
faces, logical interfaces, flows or classifications, etc. These counters’ numbers are then passed
on to the ASI, which actually increments the values in byte/cell counts or packet counts.

The FPP is a two-pass engine. The first pass is used to parse layer 2 headers as data
moves from the I/O card into the Data Memory. The second pass is used to parse layer three to
layer seven headers as data moves from the Data Memory to the FMU.

First Pass Processing

During first pass, data is stored in Data Memory by the FPP and the header of the data-
gram is sent to a compute engine to parse Layer 2 header information. Since the compute
engine can take time, multiple (up to 64) such datagram headers are processed in parallel. The
result of the processing yields four parameters, a) Queue number, b) Offset, ¢) Priority and d)
Tag. The Queue number is a 16-bit number representing which one of 64K Queues (shown in
FIGURE 5) to enqueue the datagram on. The Offset parameter determines the start byte for
‘replay’ during the second pass, within the header of the linked-listed datagram. Priority is one
of four priority classification queues the datagram: belongs on. Finally, Tag identifies the Parse
tree root for the second pass. All four parameters, along with head and tail pointers of the

packet, are stored in the Control Memory.
Second Pass Processing
During the second pass, data from priority queues are moved out of the Data Memory

and passed on to the FMU. Data to be processed is prioritized based on the priority queue; a
simple priority scheme is implemented. The data is played through one of 32 available replay

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
15

engines. As a new datagram is removed from the Data Memory, the processing starts from the

Offset (extracted during the first pass), which is stored in the Control Memory. The parsing is

started from the ROOT of the parse tree as specified in the Tag parameter derived in the first
pass. The outcome of the second pass includes a) Destination 1D, b) Offset, ¢) Parameters. The

Destination ID is a value that is stored in Program Memory and is a result of the classsification

tree lookups. This Destination ID binds the egress port in the system to this processed data-
gram. Offset is a pointer in the datagram that indicates to the RSP to ignore the datagram up to

the offset mark. This is a mechanism to normalize the datagram across the mid-plane.

AALS Reassembly

This subsection will functionally explain the process of setting up AALS assembly
streams using the FPP as shown in FIGURE 6. A stream of five cells, belonging to a single
frame (PDU), arrives at the FPP non-sequentially. The first pass processing unit will process
cells and, based on the VCI/VPI lookup, it will set up a Queue Number and an Offset for all
cells of the datagram, and store them on a predefined Queue.

When the last cell of the packet (PDU) arrives, it is enqueued on the same queue and
then that queue is linked to an output priority queue, based on the predetermined priority for
the stream. As cells are queued up in Data Memory, the Offsets of the cells are set to the base
of the cell header. This indicates to the 2nd pass processor to ignore data in the cell header.

When the priority Queue is dequeuing the datagram, it will only read the cell body and
construct a contiguous datagram. As it is constructing the datagram, three things are happening:
a) AAL5 CRC is being performed, b) the assembled datagram is being sent to the FMU, and ¢)
the datagram is being parsed for layer 3-7. The result of the parsing may produce another
Offset value, which is sent to the FMU for further normalizing the Mid-plane datagram
format.

Cell Switching

With reference to Figure 7, this section details how FPP provides Level 2 switching. For
this example, ATM is used and not Frame Relay.

In ATM cell switching, the cell is sent to the first pass processing engine with a port
number as Tag. The Parser will parse the header and return a Queue ID, Priority, and a Tag for
the second pass. The cell is stored in the queue pointed to by Queue Id, and put onto the provi-
sioned priority queue. On the second pass, when the cell is at the head of the priority queue, the

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
16

2nd pass processing engine will use the result of the 1st pass Tag and start to parse the cell. The
result in this case should be the DID value for the (L2) switching case. The Offset for the
second pass should be the start of the datagram. A similar case can be constructed for Frame
Relay, except the datagram would be multiple cells.

Packet classification

Packet classification is a secondary implicit result of parsing the VP tree. The result of
the parse always results in a DID. This value is overloaded and contains the Queue number of
the service that the corresponding datagram should experience while in the platform.

Policing

Each incoming PDU or cell stream can be monitored for in-profile or out-of-profile
according to the corresponding SLA for that stream. If an incoming stream is already marked
as out-of-profile (via DE or CLP indications), then policing bit x is set in the first pass Tag
parameter. If an incoming stream is marked as in-profile but the policer determines that the
stream is actually out-of-profile, then either the tagging bit is set or the PDU/cell is discarded.

Transmitting Host packets

Host can send Inter-Processor Communications (IPC) packets via the FPP using the
Host Interface. IPC data should be formatted by the host just like any other packet-based 1/0.
The FPP parser should be setup with the IPC parsing pattern(s) prior to sending IPC data. Data
on the Host interface is treated exactly like data from the I/O port -~ this could also be used for
diagnostics to test the part.

During its 2nd pass, the FPP replays data from SDRAM from one of four priority
queues through one of 64 possible contexts. If data from a single input flow (from the same
port) is queued up on the same priority queue, then there exists a chance that the PDUs will get
out of order when they exit the FPP. The FMU is supposed to reorder them before they are sent
to the egress.

FPP I/0 Interfaces

The FPP has four I/O interfaces (plus memory buses). Each one is listed below

5

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
17

FPP -> FMU Interface

This interface is a modified multi-PHY POS-PHY interface. The interface numbers do
not reflect the ingress port numbers; however they reflect the context numbers on the FPP
through which the data is sent. This interface could be functionally thought of as a multi-link
PPP. The next functional block, FMU, has to reorder datagrams on a priority, similar to multi-
link PPP.

FPP <-> ASI Interface
This interface is a set of three proprietary buses connecting the ASI to FPP/RSP.
FBI (Functional Bus Interface)

This is a proprietary bus and its use is abdicated by Gotham Networks. The FPP and
AST use this bus to support features like Statistics, Policing, special functions etc.

CBI (Configuration Bus Interface)

t

This is a proprietary 8-bit (modified POS-PHY L2) interface between the ASI and other
Agere devices. It is used to configure these devices and to dynamically update the FPP’s pat-
tern-matching tables. No user traffic goes on this bus.

MBI (Management Bus Interface)

This is an 8-bit POS-PHY L3 (single-PHY) interface, which allows a Host CPU to send
data through the FPP. Control information or Node IPC messages are also transmitted over this
interface.

FPP Memories

The FPP has the following three memories connected to it.

Data Memory

This memory stores user data after it is received from the I/O card via the POS-PHY or

UTOPIA interface. The data is stored in unit blocks of 64 byte buffers. The data is managed via
linked-lists of pointers, which are stored in the Control Memory. Complete datagrams, consist~

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
18

ing of multiple linked buffers, are organized into 64K queues. Each of the 64K queues is
assigned to one of four priorities by software using the FPL program. However, software does
not have any direct access to the Data Memory block.

Control Memory

This memory stores the 64K queue linked-list pointers and the Eree buffer linked list. It
also stores the four priority queues’ management pointers. It also stores additional data on a per
packet linked-list basis. All this information is manipulated by the FPP internally and is not
visible to the software.

Program Memory

This block of memory stores the parse tree, similar to a VP Tree. The parse tree is a
proprietary and patented algorithm, which allows the Host Processor to install header parse
criteria, and the FPP can then parse these headers at wire speed up to OC48 rates. Program
memory is not directly accessed by the Host Processor. FPL allows software to indirectly
install parse statements into this memory.

Flow Management Unit (FMU)} - FIGURE 8

The FPP sends data in a proprietary way on a modified POS-PHY bus. The data is inter-
leaved on up to 64 contexts or logical ports. A datagram from a single context (or logical port)
is not interrupted. However, there is a reordering issue that can occur amongst the context
streams. That is, a datagram on context y may finish before context x (logical port x), even
though the datagram on context y (logical port y) appeared later on the same physical port than
context x (fogical port x).

In the discussion that follows, the term “context™ and “logical port” are used synono-
mously. Though use of the former term is more prevelant, those skilled in the art may deem it
more aptly intepreted as the latter term.

FMU Functionality

The FMU accomplishes its functions as follows.

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
19

Reordering

Reordering is a problem introduced by the FPP during its 2nd pass. A single FPP prior-
ity Queue is played through one of 64 contexts simultaneously. A context during any given
time transfers a packet through in its entirety. However, due to the variability of the packet size,
the FMU receives end of packets in such a way that it could receive packets out of order. The
problem is very similar to multi-link PPP. There are four reorder lists, one for each FPP prior-
ity. There is no software setup or monitoring required.

Reassembly

The FMU has to reorder packets, but reordering can only be done when complete pack-
ets are assembled; therefore Reassembly is a side effect of Reordering. Reassembly is done by
stuffing the data into the 64 byte buffers. . ’

Segmentation to Gotham Cells (GCells)

The reassembled linked-list of buffers that constitutes a packet are enqueued on one of
four priority output queues in the FMU Data Memory. These queues are emptied one GCell at
atime, in a high to low priority manner. The Header space in the Data Memory not used during
the Reassembly is used to fill the Gotham Header.

Flow Memory stores 128K Flow Entries. Software will initialize each entry before a
connection is established. The DID from the FPP is used as an index into the FMU table to
extract the GCell header information. The elements of the table that software can update are
itemized below.

. Egress DID: This is the DID that is used by the RSP on the egress Card.

. Egress Priority: This is the priority that is used by the egress card’s QP in a
single chassis node. .

. Egress Destination Logical Port (logical port locator): This is the egress logical
port number for this datagram on a single chassis node. * Egress Mask: This
is a 16-bit mask that indicates which slots in the shelf are to receive the data-
gram. (Note: the Egress Mask is not directly assigned. Software will examine
the local Slot 1D to determine how to map the bits within the Egress Mask for
the FMU in each slot.)

. Drop Type: This two-bit field defines whether packet or cell dropping algo-
rithms are to be run on that flow.

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
20

Besides the above items, software has to setup the following registers in the FMU:

. Ingress card Number: This indicates the slot number of the chassis this FMU is
on.

. Chassis Number: This indicates the chassis number of the node.
FMU Interfaces
FPP Interface

The FPP presents a modified Multi-PHY POS-PHY transmit-only interface, operating
with a 32-bit data path, clocked at 100 MHz. Further details of this interface are listed in [2].
Packet fragments are sent using flow control and SOP/EOP indicators as specified by POS-
PHY standards. The port number (Multi-PHY address) on the POS-PHY interface represents
one of 64 context IDs of the FPP. This takes up 6 of 8 possible bits in the Multi-PHY address
field. After the transfer of a packet fragment with the EOP indicator set, an FPP ‘Transmit
Command’ is issued for that packet, containing the results of the first and second pass process-
ing. The FPP indicates a ‘Transmit Command’ by setting the MSB of the port number (Multi-
PHY address) on the POS-PHY interface.

IBUF Interface

This interface has two busses, a) GCell Bus and b) egress mask. The GCell Bus is a 32-
bit data bus clocked at 100MHz. The FMU is the master of the GCell Bus and provides both
clock and data. There may be control signals that indicate start and end of cell. Along with the
GCell Bus, there is a 16-bit Egress Mask, indicating which slot to send the corresponding
GCell to.

HOST Interface

Host Interface allows the Host MPU to set tables in the FMU.

FMU Memories

FIGURE 8 above shows a block diagram of the Flow Management Unit. The FMU has
three memories associated with it, a) Data Memory b) Flow Memory and c) Control Memory.

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
21

Data Memory

This is a relatively small memory responsible for storing 256K 64-byte packet frag-
ments. Software has diagnostic-only visibility into this memory.

FMU Flow Memory:

This memory stores GCell header information per DID that helps in classification and
routing of user traffic from the FPP to the egress. Software is responsible for setting up this
table. Byte, buffer and packet level information is stored in this memory.

Control Memory:

This memory keeps track of buffers of Data Memory in four priority queues. The prior-

ity information is sent along with each buffer from the FPP. Software has little or no visibility
into this memory.

| Ingress Buffer (IBUF)

The IBUF is responsible for forwarding GCells to up to 16 egress Mid-plane transceiv-
ers. It receives the GCell Bus, the local 100 MHz clock, and the Egress Mask from the FMU.
Note that this mask is bit-encoded so that more than one destination card may be selected in a
multicast scenario.

The functional block diagram of the IBUF is shown in FIGURE 9. There are no soft-
ware setups required to the IBUF. There are no memories connected to the IBUF and the inter-
faces are GCells in and out.

The mid-plane high-speed cross-connect delivers GCells to the egress portion of the
destination card. The cross-connect subsystem is responsible for reliably transferring GCells
to other slots in the shelf that have been enabled via the Egress Mask. The high-speed cross-
connect also ensures that the plesiochronous elasticity buffers do not over- or under-flow.

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
22

Queue Processors

FIGURE 3 depicts a graphical representation 50 of the interrelationship between the
queue processors 52, and an associated scheduler 56. The queue processors 52 are each associ-
ated with a plurality of queues 54 into which received data is stored per context and per prior-
ity. In one embodiment, each queue processor 52 is associated with a respective group of four
priority queues 54 for each of 512 output contexts (for a total of 2048 queues), though other
numbers and combinations can be used instead.

The data contained in each queue 54 ié normally dequeued according to its priority
level. Referring again to FIGURE 3, the scheduler 56 is coupled to the plurality of queue
processors 52 and schedules the dequeing of data from their respective queues 54 for transfer
to the corresponding output interface (see FIGURE 1, item 26). The scheduler 56 polis the
queue processors 52 to identify which has queues requiring service in accord with an order
determined by a scheduling table 58. This has a plurality of entries 60, each containing a con-
text number, aggregation mask and a master flag. The scheduler 56 reads the table entries in
round-robin fashion, visiting each entry 60 periodically, e.g., every 130ns, to determine a con-
text number to be serviced. The scheduler 56 then polis all the queue processors 52 to identify
which ones have data ready to transfer for that particular context. All queue processors 52 that
do, signal the scheduler 56, which then selects one of them to dequeue its data to the output
interface, e.g., reassembly processing unit, routing switch processor. The scheduler 56 then
moves on to the next table entry 60 and continues the process. The table 58 is loaded at con-
figuration time to include a sufficient number of entries 60 per context to ensure guaranteed
quality of service for the destination network in view of its throughput. This pre-loading of
table entries 60 makes it possible for the scheduler 56 to repeatedly poll the queue processors
52 multiple times, if necessary, with respect to a particular context.

When the queue processors 52 are polled by the scheduler 56 with a given context
number, they signal back with the priorities of the data they are holding for that context. They
also signal back to indicate whether any given queue 54 is “starved”, i.e., has not been serviced
within a specified threshold period. The scheduler 56 normally schedules queues for dequeing
based on priority, but will service starved queues before all others. This can result in starved

queues receiving higher priority than non-starved regardless of their initial priority level.

In the illustrated embodiment, the starve indicator is a counter that is initially set to a
threshold value such as, by way of non-limiting example, zero. Each time that the scheduler
56 does not schedule dequeing for a corresponding queue 54 in need of service, the starve indi-
cator is decremented. The queue is considered to be starved whenever the indicator value is

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
23

below zero. When the corresponding queue 54 is finally serviced, the starve indicator is
stepped up (well into the positive range) by a specified amount, e.g., +10. In alternate embodi-
ments, the starve indicator can be set to an initial numerical value other than zero and incre-
mented or decremented by uniform or non-uniform amounts each time the corresponding
queue is not serviced. It can be reset to the original amount or to another amount (e.g., positive
or negative) when the queue is finally serviced.

The aggregation mask that is associated with each entry 60 of the scheduling table 58,
indicates (if activated) that dequeing of data is only permitted from starved queues. The sched-
uler 56 responds to the aggregation mask by scheduling dequeing of associated starved queues.
The advantages of this configuration include, preventing unwanted bursting, e.g., for ATM-
CBR (Asynchronous Transfer Mode — Constant Bit Rate).

The master flag that is associated with each entry 60 of the scheduling table 58 is used
to indicate (if activated) that starved signaling to the scheduler 56 from the queue processors
52 is to be taken from one queue processor 52 only, e.g., QP0. It thus serves as a single set of
bandwitdh calculator for all queue processors 52 for that priority and logical port number. The
master flag is used to ensure that only the one bandwidth calculator is used for all QPs for that
logical port and the resulting bandwidth result is shared by all QPs to reflect cumulative queue
activity.

A more in-depth understanding of the functionality of the queue processors and sched-
uler may be realized by the following discussion.

QoS Subsystem (Quality of Service)

The functional diagram of the QoS module is shown in FIGURE 10. This module pro-
vides the QoS (Quality of Service) per flow on the ingress side and also the switching without
a switch fabric on the output side. Two components are the Queue Processors (QPs) and the
Global Scheduler (GS), also referred to as the scheduler. In the illustrated embodiment, there
are 16 Queue Processors on a card, which are serviced by a single Global Scheduler.

Data is stored in the QP Data Memory in linked-list fashion on logical queues. The
total number of queues Nq is equal to the product of the number of logical ports being serviced
by this card’s egress interfaces times the number of priority levels supported, plus the number
of queues dedicated to IPC traffic (= one virtual port times the number of IPC priority levels.)
Therefore, the Control Memory manages a total of Nq queues in the Data Memory. The Global
Scheduler is responsible for selecting a QP, and the corresponding queue in the QP, to dequeue,

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
24

based on the available bandwidth and the pre-defined Service Level Agreements (SLAs). Once
a queue is selected for dequeuing, the GCell at the head of the selected queue is sent to the
EMUX.

The following are the sequence and tasks performed by the QP’s:

. Receives GCells from the mid plane

. Stores GCells into QP Data Memory

. Maintains a linked-list of buffers per Queue Index in Control Memory.

. Dequeues GCells with the help of Global Scheduler

. Performs Discarding based on Tail Drop,EPD, PPD, and Frame Dropping.
. Maintains a detailed list of statistics.

QP Functions

The Queue Processor includes the following functional blocks: an Enqueue Unit, a
Dequeue Unit and a Dequeue Control Block, which are explained below.

Enqueue Unit

This unit is responsible for receiving data from the mid-plane transceivers and storing
it into the Data Memory, at an address pointed to by the head of a free list maintained in Control
Memory. The Enqueue Unit will also then attach the buffer to the corresponding queue. The
queue number is extracted from the header of the receiving cells, formed by Logical Port and
Priority Number. There can be one cell enqueued during 160 nsec time.

Dequeue Unit

The unit is responsible for dequeing data from the head of a Queue. The Queue is
selected with the help of the Global Scheduler and the Dequeue Control Block. Once a cell is
dequeued from the Data Memory, it is transmitted to the EMUX unit. The cell that is dequeued
is put back onto the tail of the Free List. The tail of the free list is in a register in the QP, while
the free list itself is in the QP Control Memory.

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
25

Dequeue Control Block

The Dequeue Control Block is responsible for ensuring the bandwidth per Priority on a
logical port is departed precisely. The DCB works with a set of data stored in the Control
Memory that represent an accumulator and a Step size value per queue on the egress port.

During a cell time slot, the DCB and the Global scheduler decide which priority on a
port will be dequeued. The DCB’s task is two fold, a) to find the queue that needs servicing,
and b) update the next-time-to-service per queue based on it being serviced or not serviced.
Once the update of the next-time-to-service is calculated for each queue, the values are stored

back in memory.
QP Mid-plane Interface

Data arrives from the Mid-plane transceivers as 32 bits every 10 nanoseconds. The data
arrives as GCells of 64 bytes in length (16 clock ticks). This interface is packet oriented,
wherein GCells comprising a packet arrive in order, per priority level. Since there are four pri-
orities, there can be up to four intermixed streams arriving at any time. There may be hardware
indicators from the Mid-plane transceivers that indicate start and end of GCell.

OP EMUX Interface

When a GCell is dequeued from QP Data Memory it is sent to the EMUX in a single
cell time. There can be only one cell going to the EMUX from the 16 QPs at any given time.
The Global Scheduler ensures this by selecting a single queue on a single QP. This interface is
also 32 bits wide and runs at 100 MHz. There may be accompanying control information like
start and end of cell indicators.

OP Global Scheduler Interface — FIGURE 11

This interface ties the QP’s to the Global Scheduler and performs the core of the switch-
ing. The interface is shown in FIGURE 11. The handshake between the Global Scheduler and
the QP runs at 160 nsec, or one GCell Time. During the GCell Time, the Global Scheduler
sends a logical port indicator to the QPs to indicate which egress logical port needs servicing.
The QPs respond with two masks, one indicating Queues that are starved, and the other indicat-
ing Queues that are not empty. These masks summarize queues that are ready to send, at each
priority level. The Global Scheduler then examines these masks and selects a QP and a queue
for subsequent dequeuing during the next GCell Time.

5

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
26

QP Memories
OP Data Memory

QP stores GCells in Data Memory. This Data Memory is preferably at least 4MB deep,
holding 64K GCells. On the upper end this memory could be 16MB, holding 256K cells. This
memory has a total bandwidth requirement of ~6.5Million GCells per second in and out. The
memory is divided into two physical banks. At any given cell time, the enqueue block is writ-
ing to one memory while the Dequeue block is reading from the other bank. The enqueue block
only writes, and the Dequeue block only reads. The Host Processor has diagnostic-only access

into this memory.
QP Control Memory

The QP Control Memory stores the following. The size of the memory is dependent on

the size of Data Memory.
. Queue Head and Tail pointers
. Free List Head and Tail pointers
. Queue Linked Lists
. Free Linked List(s)
» Statistics
. DCB parameters

The Host processor does not have direct access to the memory during run time. How-
ever it can post data for parts of the memory to install queue values. The size of the memory is
directly proportional to the number of queues and the number of cells in the data memory.

Global Scheduler, GS

The Global Scheduler is the mechanism used to schedule dequeing of data from a
Queue Processor. The whole scheduling process will select a specific Queue Processor, one (1)
of sixteen (16), and a specific QoS queue, one (1) of four (4), within the selected Queue Proces-
sor. Queue Processors are selected on a round robin scheme. The QoS queues are selected on
a priority scheme, QoS queue zero (0) has the highest priority level, and QoS queue three (3)
has the lowest priority level.

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
27

GS Functions

The Global Scheduler has to calculate the QoS and Queue Processor select every 160
ns. There are three possible criteria to consider in the selection process:

. Committed traffic available, a queue requires dequeuing to meet a SLA
. Aggregate traffic available

The three criteria are listed in order of priority.

QoS Select

The QoS select for all two criteria Committed and Aggregate are considered in parallel.
The decision as to which selects actually go to the outputs is done later. It is done on a per
GCell cycle basis. The selection is the highest priority level that has a GCell to dequeue is
selected.

QP Select

The QP select for all two criteria Committed and Aggregate are considered in parallel.
The decision as to which selects actually go to the outputs is done later. QP select is done ona
per logical port/QoS level. There are two groups of QP pointers, one for each process, Com-
mitted and Aggregate. The QP pointer values range from zero to fifteen. The current QP
pointer points to the last QP that was allowed to dequeue. The selection of the next QP pointer
will start at (current QP pointer + 1), and so on.

GS Hardware Intétfaces
GS QP Interface

The interface between the Queue Processor and the Global Scheduler is a simple
request and grant handshake., Each of the Queue Processor presents the GS with request infor-
mation, starved and ready. The request information is presented every 160ns. From the starved
and ready information the GS will generate QoS and QP selects for each of the two criteria.
Based on the priority of the criteria the proper selects are driven back to the Queue Processors.
Each of the Queue Processor will receive one of fifteen QP selects, and a four bit QoS select
bus. There are two copies of the QoS select, each copy is wired to four Queue Processors.

5

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
28

GS RPU Interface
Start of GCell

The Queue Processor will give the RPU a 10ns pulse to indicate the start of a GCell.
The Global Scheduler also gives the RPU the source Queue Processor ID of the GCell. The
Queue Processor ID is valid on the first word of the GCell, and stay valid for the entire cell
time.

Backpressure

The RPU is responsible for notifying the Global Scheduler that backpressure if required.
The Global Scheduler receives four backpressure signals from the RPU. Software will associ-
ate any group of four of the eight backpressure signals to the four QoS levels. When the
selected backpressure signal becomes true, the corresponding QoS level will stop forwarding
traffic,

GS Scheduling Table Interface

Referring to Figure 12, in the illustrated embodiment, the Global Scheduler interfaces
to a 256k x 16 asynchronous SRAM. There are two SRAM cycles every GCell time, 160ns.
The first 80ns. is always a read, the second 80ns can be either a read or a write. The first read
is to retrieve information on the next egress logical port.

If the master mode bit is set in the scheduling table entry then the starved information
from all but the master queue processor in ignored.

Bits 12 to 15 represent the QoS mask for this logical port. This information is used in
the calculation of the QoS level for the aggregate path. A zero in any bit position in the mask
will prevent the corresponding QoS level from being selected for dequeueing when not ready.

GS Host Interface

The Host interface is a PCI pass thru interface. In the illustrated embodiment, it runs at
33 MHz.

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
29

Egress Mux

This module is responsible for forwarding GCells from 16 QPs to the RPU block. The
functional block diagram of the EMUX is shown in FIGURE 13.

There are no memories connected to the EMUX and the interfaces are GCells in and
out. The Global Scheduler (GS) is responsible for enabling the appropriate QP to send GCells
through the EMUX.

Referring again to FIGURE 1, the output interface 26 is comprised of a Reassembly
Processing Unit (RPU), and a Routing Switch Processor (RSP) that transfer received data to
one or more respective network connections 30. Each output interface 26 receives all its

incoming data from a respective plurality of queue processors 22 via a single respective
EMUX.

A more in-depth understanding of the functionality of the output interface (See FIGURE
1, item 26) comprised of a RPU, and a RSP may be realized by the following discussion and by
reference to the document entitled “Router Switch Software Architecture Specification” con-
tained in the appendices of U.S. Provisional Applications 60/272,387, 60/272,407, and 60/
272,328 as well as the other documents contained in those appendices, the teachings of which

are incorporated by reference herein.

Reassembly Processing Unit (RPU) - Figure 14

This Unit is responsible for forwarding data from the EMUX to the RSP in a format that
the RSP can understand. The RPU receives GCells from the EMUX. RPU transmits packets to
the RSP in a modified POS-PHY interface. Functions performed on the RPU unit are a) Reas-
sembly, b) Reassembly Time-out (RATO) support, c) prioritization, and d) POS-PHY conver-
sion during transmit. The RPU block diagram is shown in FIGURE 14.

RPU Functionality
This section will explain each of the four functions that the RPU performs.
Reassembly

As data arrives from the EMUX, the Queue Index (Logical Port.Pri) and the QP number
are used to lookup the Tail pointer for that queue in the RPU Control Memory. The RPU gets

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
30

a cell buffer from the Free List Head and stores the data into RPU Data Memory at that cell
address. The new cell is appended to the queue and the Tail pointer updated. Similarly, the Free
List Head Pointer is updated to point to the next available free buffer. When the four items
(queue index, new queue tail, new free list head) are processed they are written back to the
Control Memory.

If a GCell is received with EOP set, the cell is enqueued and the Head and Tail pointer
are placed (or merged) onto one of the 64 output transmit lists. Once this is accomplished, the
Head and Tail pointers are cleared (the reassembly is complete), and a Transmit Command is
generated for the now-complete PDU. This mechanism implies that packets (PDUs) are for-
warded based on the arrival time of the EOP if they are on the same priority.

Prioritization

Inside the RPU are 64 independent linked-listed queues. Each queue has a Head and
Tail Pointer. 64 queues are split amongst 16 physical ports, 4 prioritized queues per physical
port. Prioritization process will first group all 64 queues in four priority groups each with 16
ports. The data is then pushed through the RSP interface in high to low priority manner. Within
each priority group there is a round robin for ports.

RATO

Reassembly Time Out is a process that allows the RPU system to ensure that a group of
buffers are not hung in a particular queue waiting for a GCell with EOP set. This can be accom-
plished in multiple ways. It involves setting a bit per reassembly Queue that gets cleared every
time a cell is added to the queue. Also asynchronously there is another process that polls each
queue, testing for 1 [and then writing a 1 in the same bit]. If, during testing, it finds the queue
is not empty and that there is a one in the RATO location, it frees up the buffers in the queue.
The polling interval could be set to be slow, in 100°s of msecs. Therefore this polling and set-
ting could be done by the Host processor also.

POS-PHY Conversion

This process involves reading a data from the Data Memory and converting it into POS-
PHY format and sending it to the RSP. Following each packet, the RSP sends a Transmit Com-
mand.

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
31

RSP Backpressure

RSP sends a two-bit backpressure indicator to the RPU. One bit indicates a full halt,
whereas the other indicates to “stop new packets”. In the first case, the RPU should not send
any data, and freeze the EMUX-RPU interface. In the second case, the RSP should stop reading
the head of the reassembly queues, i.e. do not start new packet.

EMUX (GS) Backpressure

Four bits are defined that apply backpressure to the EMUX (via GS), one per priority.
Each bit represents a condition that tells the EMUX to stop sending GCells from the corre-
sponding priority queues. The total number of free buffers in the RPU is monitored to deter-
mine if backpressure is warranted. There is one watermark per priority level (nominally 4) to
trigger backpressure when buffers become scarce. Software can set these watermarks via RPU
registers.

RPU Interfaces
EMUX Interface

This interface is purely GCells. The RPU may also apply backpressure to the EMUX
via the GS. The GCells arrive at a worst-case rate of 32G/(64*8) = 6.25M Cells per second.

GS Interface

The RPU may decide to reduce its input load when resources become scarce. To this
end, the RPU may apply a PHOLD signal to the Global Scheduler GS, at each priority level.
These signals indicate to the GS not to forward GCells at that priority until the PHOLD signal
is removed. Only whole cells are ever transferred, so at least one additional full GCell may
arrive at the EMUX after assertion of PHOLD.

RSP Interface

The RSP Interface (from the RPU to the RSP) is similar to the interface from FPP to
FMU (modified POS-PHY.) In fact the RPU emulates the FPP interface. This interface trans-
fers 32 bits of data at up to 100 MHz. In this case, the RPU acts as the Transmit master with the
RSP acting as the Transmit slave.

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
32

The RPU uses up to 64 reassembly output queues — e.g., four each for 16 physical ports
on the I/O. Each of the four queues represents a priority level on the output physical port. The
RPU will also reconstruct and send an Agere Transmit Command after each packet is sent to
the RSP.

The interface is driven by Reassembly Queues inside the RPU. In the illustrated
embodiment, there are 64 reassembly queue head and tail pointers. The queues are linked lists
of GCells in RPU Data Memory. Based on the priority of the queues, data is sent to the RSP.
The RPU is responsible for stripping the GCell headers and assigning the correct context
(Multi-PHY address) to the data blocks and the Transmit Commands.

RPU Memories
RPU Data Memory

RPU Data Memory stores data from the EMUX in a linked-list fashion. Data arrives as
GCells from the QP via the EMUX. Each of the QPs sends GCells from one of possible
Context.Pri queues (hereafter referred to as Reassembly Queue Index or RQID). Given 16 QPs
on the card, there would be 32K (=512*4*16) total such interleaved reassembly flows arriving
at RPU simultaneously. Therefore the worst-case RPU Data Memory size is 32K * MTU or
256MB of memory for an 8KB MTU. The system allows for statistically multiplexing up to
128K simultaneously-active MTU reassembly flows and hence provides 512MB of memory.
This would allow for 64K GCells, and utilize a 16-bit Cell address. The Host Processor does
not need to interface to this memory during run time. However, diagnostic access (read and
write) is provided to this memory.

RPU Control Memory

The RPU Control Memory is used to manage the RPU Data Memory and tracking reas-
sembly processing. This memory holds the following data structures.

Reassembly Head and Tuail Pointers, Free List Head and Tail Pointers

There are 128K worst-case reassemblies at any given time. For each reassembly queue
there is a head and a tail pointer, each of 16-18 bits. The RPU looks up the Queue Index
(Context.Pri) from the GCell and indexes into this part of the control memory and links the
GCell on the Tail. The size of this memory is 32k * 36.

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
33

One head/tail entry is reserved for the Free List, which holds a queue of available RPU
Data Memory cells (this could also be internal to the device). When a Cell is made available
again, after dequeing, its address is linked to the tail of the Free List.

Free List

This memory stores the linked lists of cells that are either free or in use by reassembly
queues. Each entry in this list stores the address (in RPU Data Memory) of the next Cell in the
chain. Software initializes this list at the start of time to allocate all Cells to the Free List. The
size of this space should be 512K * 18.

Routing Switch Pr RSP)— FIGURE 15

This section will explain the Agere Routing Switch Processor (RSP). It is not the intent
of this section to reproduce the RSP specifications, however the functional use of the part is
explained here. Also listed are the memories and connected interfaces.

The RSP is a complex part from Agere Inc, which is responsible for egress header
manipulation, egress traffic shaping, egress multicasting and traffic management. The RSP and
its associated memories and interfaces are shown in FIGURE 15.

RSP Functionality

Egress Traffic Management

When a complete PDU is received from a context, the DID from the Transmit Com-
mand is looked up in the DID table. The DID table returns a QID number which is looked up

in the QID table. The parameters from the QID table, and the DID table are passed on to the
Traffic Management Compute Engine. A list is compiled below.

. 16 bytes of per queue data
. PDU length

. Queue memory utilization
. 8-bit random number

The traffic management compute engine will return the following values after execut-
ing one of RED, WRED, EPD, PPD etc. These algorithms are software/microcode based and
therefore can be enhanced.

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
34

. 8 bytes of modified parameters
. accept/discard flag

When the PDU is accepted it is placed on the Queue ID associated with the PDU in the
DID table. If queue was previously empty, then it is also added to the scheduler table.

Egress Header Manipulation

The DID table entry has a parameter list pointer and a Script Editor pointer. Scripts are
stored within the RSP and the Script Parameters are stored on board. Once the PDU is being
transmitted, the table Script begins to execute on the PDU data and the parameters fetched
from the DID memory at the parameter offset. Up to 63 bytes of data can be appended to the
datagram and up to 16 bytes can be appended to the end of a PDU.

RSP Interfaces
This section will list the interfaces on the RSP.
RPU -> RSP Interface

The RPU Interface is a modified POS-PHY interface (32b @ 100 MHz), wherein the
RPU device acts as the Receive slave with the RSP acting as Receive master. The port number
(Multi-PHY address) represents the context ID of the data. Following each PDU transferred
from the RPU, a Transmit Command arrives in-band with the port number equal to the arriving
PDU’s port number plus 128.

I0C Interface

This interface is the POS-PHY or UTOPIA interface provided by the RSP to the IOC,
with an aggregate rate of 32 bits @ 100 MHz. User data is sent from this interface directly to
the IOC. The IOC interface is symmetric — that is, it is the same configuration for both transmit

and receive dataflow.
Management Output Interfuce
The Management Output Interface is strictly for sending data to the Host processor.

This is a POS-PHY interface with no multi-PHY support. This is an 8 bit wide interface with
clock rates up to 133 MHz.

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
35

RPU Backpressure Interface

The RSP has two bits that are sent back to the RPU, indicating two levels of backpres-
sure. The first backpressure bit indicates to the RPU to not start any PDUs on a fresh context,
i.e. finish all current PDU streams. The second backpressure bit indicates to stop all blocks.

10C Backpressure Interface

If an IOC requires backpressure to the RSP (for example, an Ethernet transmit FIFO is
near to overflowing), then the IOC signals the RSP to stop sending data on that port. The cur-
rent mechanism for performing this backpressure is via the UTOPIA or POS-PHY ready-poll-
ing protocol. One or more PHY devices may signal “not ready” to inform the RSP that buffers
are not available. This backpressure will cause the RSP to stop traffic on a single logical port.

AST Interface

This is an interface that communicates with the ASI, which in turn communicates with
the Host Processor. All RSP setup and configuration is done via this interface.

RSP Memories
The RSP has five memories, each explained in this section.
RSP Assembly SDRAM

Data from the RPU is received via the RPU Interface and stored in Assembly SDRAM.
Data arrives on one of 64 possible context IDs, which are reordered and assembled in Assem-
bly SDRAM. In our case there should be no reordering required since the RPU does not do
context switching. Data stored in the Assembly memory is primarily for shaping purposes.
Host processor is not expected to access this memory, except during diagnostics.

RSP SED SRAM

The Stream Editor (SED) SRAM stores per DID information. For each DID, the follow-
ing pieces of information are stored.

. Script Number: This is an 11-bit number that selects a particular script for data-
grams on the corresponding DID.

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
36

. Parameter: This is a 21-bit number that indicates a offset in the SED memory
where parameters for the script are stored. These parameters are unique infor-
mation for the particular flow. There is also a field that tells the length of the

parameters.
. Last DID: This bit indicates the last of a multicast group of DID entries.
. Header Manipulation size: There are three fields that dictate the size of header

padded at the start or end of datagram.
. Transmit QID: This 16-bit entry represents the Queue the datagram is placed on.
There are 64K such Queues in the RSP system.

Besides the DID tables, SED memory also stores the parameters needed by the SED.
The size of this memory is based strictly on the number of connections and the parameters per
connection.

RSP Scheduler Parameter SRAM

Scheduler Parameter Memory contains the parameter storage for the compute engines
that allows state to be associated with each queue. This SRAM also holds the scheduler time
slot lists for use with time based scheduled traffic. Each compute engine has 16 bytes of param-
eters that allow it to maintain state based upon each queue. Therefore for 64K queues we need
1MB of memory. This memory is 32 bits wide.

RSP Queue Entry SRAM

The Queue Entry SRAM holds all of the queue entry parameters that are used to main-
tain the operation of each queue. Each queue occupies 16 bytes of SRAM. The Queue IDs have
16 bits of addressing which is capable of supporting 64K queues. To support all queues the
external memory should be IMbytes. This memory is also 32 bits wide.

RSP Linked List SRAM

Linked List Memory contains an SRAM Map that is used to virtually link SDRAM
blocks together to form PDUs as well as link PDUs together in a queue. The Host processor is
not expected to access this memory during real time, however it may be expected to initialize
the free list at the start of time.

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
37

RSP Scheduler Configuration Table
This 1K table contains the configuration for a schduler.
RSP Port Table

This is internal memory to the RSP. Each entry of this table has a Scheduler ID. It is
assumed that multiple Scheduler IDs are associated with a particular physical port. These table
entries are prioritized per port.

RSP Logical Port Table

This is internal memory to the RSP. Each entry controls the scheduler for a logical port.
This table has 256 entries.

Described above are apparatus and method meeting the intended goals. It will be
appreciated that the above embodiments are presented for illustrative purposes only. Those
skilled in the art will appreciate that various modifications can be made to these embodiments
without departing from the scope of the present invention.

Packet Disassembly, Routing and Reassembly

Various protocols (e.g., TCP/IP, UDP, ATM, Frame Relay) govern the format of data
received for routing by a network device 10 of the type shown in Figure 1 and discussed in
detail above. For example, e-mail messages, files or other data received under the TCP proto-
col are divided into chunks, commonly referred to as packets, each of which includes Internet
source and destination addresses, among other identifiers. The individual packets may travel
different routes between their respective sources and destinations, some or all of them being
received and rerouted by the network device 10 along the way. Data transmitted per the other
protocols are similarly packetized (e.g., in units called datagrams, cells, or so forth) and may
similarly be transmitted along disparate routes before reaching the network device 10 and/or

their respective final destinations.

Regardless of the particular form and route the packets, datagrams, cells or other
chunks (hereinafter, collectively “packets” or “PDUs”) take, once they enter a node constructed
and operated in the manner of network device 10 the packets are further disassembled (or for-
matted) for routing through the device and, subsequently, reassembled (or reformatted) into
packets for continued routing to their destinations, all as discussed above. The text that follows

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
38

reviews the mechanisms for these purposes, achieving fast device throughput, while meeting
service level agreement constraints.

By way of overview, the output interface 26 utilizes a reassembly element, particularly,
RPU 264, that reassembles packets based on designators added to their disassembled constitu-
ents (referred to below as GCells) by the input section. This can include the context designator,
as well as priority designators and a slot designator. The network device 10 also utilizes a
novel two-part priority indicator—with one part (referred to as IPRI) determining priority
through the network device’s input section 18 and the second part (referred to as EPRI) deter-
mining priority through a switching and output sections to rapidly maximize a network router’s
throughput capability. FIGURES 16A-16D illustrate these and other aspects of the illustrated
system.

As discussed above, incoming network traffic 64 comprised TCP/IP, ATM, frame relay,
or other “packets” 64 originating from one or more network connections, enter the device 10
through one or more I/O cards 66. The I/O cards 66 route the various packets 64 to the corre-
sponding input interface 72 on the associated card 70. Those skilled in the art will appreciate
that packets 68 typically arrive at the input interface 72 as intermingled streams, with packets
of one stream intermingled with packets of one or more other streams.

INlustrated input interface 72 is comprised of I/O transceivers 66 and the three modules
discussed above, the FPP 74, FMU 90, and the IBUF 94, though that of other embodiments
may utilize greater or fewer modules of the same or varying functionality. By way of overview,
the incoming packets 68 are fragmented and sequentially processed (e.g., for inclusion of prior-
ity and routing information) by these three modules and then transferred to the appropriate
queue processor 98 residing in a switching mechanism 96 on a particular card 70. From there,
the fragmented packets (GCells) are routed to an appropriate output section 26 for reassembly
and, finally, retransmission onto the network.

As discussed above, the FPP 74 utilizes a two-pass processing scheme to parse headers
as the data moves from the I/O cards into memory, and then onto the FMU 90. The FPP 74
initially aggregates and assembles the incoming packets 68 into their respective PDUs or pro-
tocol data units, e.g., ATM, IP. It can also assemble them into such another format as is speci-
fied in the configuration table 40, e.g., reassembling frame relay to ATM. The protocol data
units are stored in one of 64K linked-list queues. These queues are then linked onto one of four
priority queues 74a.

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
39

The first pass processing yields the ingress-priority that corresponds to one of the four
priority classification queues 74a that a particular protocol data unit belongs on. The FPP 74
links the protocol data units to any one of the four priority queues 74a based on the ingress
priority that is derived during the first pass processing. The ingress priority determines the
priority with which the packet is processed in the input section 72, particularly, as discussed in
connection with processing by the FMU 90 below. The ingress priority will later be utilized by
the RPU 116 to reassemble the packets.

During the second pass processing, the FPP 74 utilizes the ingress priority as well as the
destination IP address, input port and format of the incoming packet 68 to determine the ingress
destination identifier or IDID. As discussed below, this is utilized by the FMU 90 to determine
routing information for a corresponding packet).

The FPP 74 then segments the protocol data units into 64 byte chunks, dequeues the
chunks based on ingress priority, and transfers the chunks 80, 82, 86, 88 to the FMU 90 for
further processing. The transfer of chunks may be interleaved with chunks of other protocol
data units. The interleaving is due to the variability of packet size, and because the FPP 74
dequeues the protocol data units based on ingress priority. When a particular chunk stream
comprising a protocol data unit is completely dequeued, the FPP 74 appends a corresponding
transmit bit 76, 78, 84 to the chunk stream to denote the end of the transfer. The transmit bits
76, 78, 84 indicate the ingress priority, IDID, and other classification results (e.g., length, offset,
discarded bits) of the associated protocol data units, which are comprised of chunk streams 80,
82, and 86 respectively.

The FMU 90 receives and reassembles the incoming chunks 80, 82, 86, 88 into com-
plete protocol data units, and queues the protocol data units based on arrival time and priority
into any one of four priority queues 90a. Protocol data units that contain errors flagged by the
FPP are dropped. The FMU 90 utilizes the IDID as an index value to look-up packet forward-
ing information in the configuration table 40. The IDID binds the egress port in the system to
the processed protocol data unit. As shown in the configuration table 40, the forwarding infor-
mation can include card number/slot, egress port number (context), egress priority, egress ID,
etc. The FMU 90 utilizes the information in the configuration table 40 to establish the exact
routing path through the system 62 for each respective packet.

Based on the configuration table 40 information, the FMU 90 segments and maps the
reassembled protocol data units into 64 byte units (GCells) 92 that comprise 52 bytes of data
and a 12 byte header. The FMU 90 loads each header with information comprising a drop
priority, bit interleave parity indicator, DID, context, ingress priority, egress priority, sequence

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
40

number, start of packet indicator, and end of packet indicator. The FMU 90 then forwards the
units (GCells) 92 one at a time to the appropriate queue processor (QP) 98 residing in a switch-
ing mechanism 96 on a particular card via the IBUF 94 as indicated in the configuration table
40. Since the units 92 are dequeued from the four priority queues 90a, at any given time the
FMU 90 may be forwarding up to four different packets to a corresponding queue processor 98
one unit 92 at a time resulting in intermingled units 92. At this point the units 92 may be inter-
mingled only by their ingress priority. The IBUF 94 transfers the units 92 across the fully-
meshed switch fabric (FIGURE 1, item 20) to the predetermined slot\QP 98 residing in a
switching mechanism 96 on a particular card.

Those skilled in the art will, of course, appreciate that practice of the invention is not
limited to embodiments in which incoming packets are segmented into 64-byte chunks (as
performed by the FPP) nor into GCells (as performed by the FMU) but rather, can be applied
wherever incoming packets are disassembled for passage through a routing mechanism 96.
Moreover, it will be appreciated that the invention is not limited to embodiment in which the
disassembled packets are routed through queue processors of the type illustrated here but,
rather, can be used with any mechanism, switching or otherwise, that moves the disassembled
packets from in input section to an output section.

As discussed above, each queue processor has four priority queues associated with each
of 512 output contexts (2048 queues per QP). The four priority queues are based on egress
priority that corresponds to priority values in the configuration table 40. The QPs receive and
store units destined for a particular context in the appropriate egress priority queue as contigu-
ous units based on the unit’s corresponding header values.

Specifically, the QP 98 receives the incoming units 92 and examines each unit’s header
to determine the context, and the egress priority level that pertain to that particular unit. The
QP 98 then loads each unit into the appropriate priority queue 100, 102, 104, 106 for a particu-
lar context 110. Although a priority queue 100 contains units having the same egress priority
and destined for the same context 110, the units 108 themselves may be intermingled based on
ingress priority, if received that way from the four priority queues 90a in the FMU 90.

As discussed above, the QPs in coordination with the global scheduler dequeue queues
based on priority, starve status, and by context. This results in units 108 being dequeued out of
sequence, and further intermingled. Therefore, when QP 98 dequeues its priority queues, the
resulting stream of units 112 that is forwarded to the output interface 26 may be intermingled
based on ingress priority, egress priority, context, and slot number.

10

15

20

25

30

35

WO 02/069575 PCT/US02/06299
41

The output interface 26 is comprised of the I/O transceivers 126, an EMUX 114, RPU
116, and a RSP 124. The EMUX 114 funnels (16 to 1) and forwards the intermingled units 112
to the RPU 116, i.e., in the manner of a multiplexer.

The RPU 116, which is discussed above, further comprises a demultiplexer 116a that
strips off each unit’s header and utilizes each unit’s ingress priority, egress priority, context,
and slot number to delineate and reassemble the intermingled units into their respective proto-
col data units. The protocol data units are stored in any of 128K linked list queues 118.

As the queues 118 are being filled, the RPU 116 utilizes an error module 116b to con-
duct error checking of the incoming increments, e.g., sequence errors, SOP, MOP, EOP, BIP,
and timeouts (frames that don’t finish). The RPU 116 drops packets that have errors. For
example, if the error module 116b detects a sequence error, due to a missing GCell, then the
entire packet will be dropped. As another example, if the last GCell (that contains the EOP
indicator) of a particular protocol data unit fails to arrive at the RPU 116 within a predeter-
mined time threshold, the entire packet would be dropped to prevent the RPU from idling in
wait for the EOP.

If no errors are detected, then when the RPU 116 receives a unit with the EOP set, the
corresponding protocol data unit is queued on one of the four egress priority queues 118a for
output to the RSP 124. This mechanism implies that protocol data units are forwarded based
on the arrival time of the EOP. The RPU 116 segments each reassembled protocol data unit
into 64 byte increments and forwards the increments 122 to the RSP 124 based on priority. The
RPU 116 also appends a transmit bit 123, which contains the egress identifier (EDID), to the
end of each stream 122. It should be appreciated that the RPU 116 output 122 mirrors that of
the FPP 74.

The RSP 124 receives and reassembles the increments 122 in linked list queues. When
the transmit bit 123 is received, the RSP 124 utilizes the egress identifier (EDID) to queue the
increments 122 based on egress priority, and to transfer the packets to the appropriate I/O cards

126 for transmittal to the respective destination network connections.

FIGURES 17A-17C illustrate the degree to which protocol data unit fragments are
interleaved at each stage through the system. Initially, an incoming packet 130 enters the
system through I/O card 132. At this point, packets (marked by source IP address, destination
IP address, and socket ID) of one stream are interleaved with packets of other streams (which
are similarly marked with their own respective source IP address, destination IP address, and
socket ID).

10

15

20

25

30

33

WO 02/069575 PCT/US02/06299
42

As detailed above, the FPP 136 associates the incoming packet 130 with an ingress
priority and IDID. The packet 130 is then fragmented into 64 byte chunks 138 that are trans-
ferred to the FMU 142. Chunks 138 enroute to the FMU 142 are interleaved only by ingress
priority, if at all.

As also detailed above, FMU 142 receives and reassembles the incoming chunks 138
into GCells 144 that are then transferred to the switch mechanism 148. The FMU 142 loads
the GCell headers with a variety of forwarding information, including drop priority, bit inter-
leave parity, datagram identifier, context, IPRI, EPRI, sequence number, start of packet, and
end of packet, which will be used by the RPU for reassembly. GCells 144 generated by the
FMU and enroute to the switch mechanism 148 are interleaved only by ingress priority, if at
all.

The switch mechanism 148 receives the incoming GCells 144, routes them as described
above, and transfers them to the RPU 154. As a result of the operation of the queue processors,
as detailed above, GCells 150 enroute to the RPU 154 are interleaved, i.e., by ingress priority,
egress priority, context, and slot number.

The RPU 154 receives the incoming GCells 150 and utilizes the ingress priority, egress
priority, context, and slot number to delineate and reassemble the GCells 150 into protocol data
units. Each protocol data unit is then segmented into increments 156 that are transferred to the
RSP 160. When passing from the RPU 154 to the RSP 160, the segments 156 are only inter-
leaved by egress priority, if at all.

The RSP 160 receives the increments 156 and reassembles the original packets 162 that
are then transferred to the I/O card 164 for forwarding to output network connections.

The above embodiments are presented for illustrative purposes only. Those skilled in
the art will appreciate that various modifications can be made to these embodiments without
departing from the scope of the present invention. Thus, for example, it will be appreciated that
disassembled packets routed through the illustrated device may be interleaved at greater or
fewer levels than so in the illustrated embodiment.

In view of the foregoing, what is claimed is:

WO 02/069575 PCT/US02/06299
43

1. A network device, comprising:

a plurality of input interfaces, each receiving data from one or more respective network

connections,

an output interface for transmitting data to one or more respective network connections,
each of which is associated with a plurality of network contexts.

a plurality of queue processors, each coupled to a respective input interface and to the
output interface, each queue processor transferring selected data received from the
respective input interface to the output interface,

the plurality of queue processors so transferring the data as to maintain quality of ser-
vice levels with respect to throughput of data from the plurality of input interfaces to
the output interface.

2. The network device of claim 1, wherein the queue processors perform any one of
receiving data, queuing data, dequeing data, discarding data, and maintaining data sta-
tistics.

3. The network device of 1, wherein each queue processor comprises a plurality of queues,

each storing data for a selected network context.

4. The network device of claim 3, wherein the queue processors dequeue data based on
parameters defined as a function of network context.

5. The network device of claim 3, further comprising a scheduler coupled to the queue
processors that schedules dequeing of data from their respective queues for transfer to
the output interface.

6. The network device of claim 5, wherein the scheduler polls each queue processor to
determine its respective status in relation to the queuing of data for selected network
contexts.

7. A network device, comprising:

a plurality of input interfaces, each receiving data from one or more respective network
connections,

WO 02/069575 PCT/US02/06299

10.

11.

44

an output interface for transmitting data to one or more respective network connections,
each of which is associated with a plurality of network contexts.

a plurality of queue processors, each coupled to a respective input interface and to the
output interface, each queue processor transferring selected data received from the
respective input interface to the output interface,

a scheduling table having a plurality of entries that define an order for potential transfer
of data to the output interface,

the plurality of queue processors transferring the data as a function of network contexts
identified in the scheduling table.

The network device of claim 7, wherein

each queue processor comprises a plurality of queues, each storing data for a selected
network context, the device further comprising

a scheduler coupled to the queue processors and to the scheduling table, the scheduler
polling the queue processors to determine their respective statuses in relation to data
queued for selected network contexts identified in the scheduling table.

The network device of claim 8, wherein the scheduler schedules transfer of data from
the queues to the output interface as a function of network contexts identified in the
scheduling table and as a function of the respective statuses of the queue processors in
relation to data queued for selected network contexts.

The network device of claim 9, wherein dequeing of data is based on a response
received from the queue processors regarding their status.

In a network device the improvement comprising,

a plurality of queue processors, each coupled to a respective input interface and associ-
ated with one or more queues that store data, each queue processor:

receiving data from the respective interface, storing the data into a queue associated
with that queue processor, and

WO 02/069575 PCT/US02/06299

12.

13.

14.

15.

16.

17.

18.

19.

20.

45

dequeing the data per context by priority from a selected queue, and transmitting the
data to an output interface that is coupled to the plurality of queue processors for trans-
ferring data therefrom to one or more network connections.

The network device of claim 11, wherein the queue processors additionally perform any
one of discarding the data, and maintaining a list of statistics and parameters in
memory.

The network device of claim 11, wherein the data is stored in linked-list queue struc-
tures.

The network device of claim 13, wherein each queue processor is associated with a
plurality of queues storing data, each queue having a different priority level, and each
respective plurality corresponding to a network connection that data is transferred to
from the queues.

The network device of claim 14, wherein the priority level has any one of four values.

The network device of claim 11, wherein a queue is selected for dequeing by a sched-
uler that is coupled to and interfaces with one or more queue processors to identify a
queue processor requiring service and a particular priority queue associated with that
queue processor that corresponds to a network context.

The network device of claim 16, wherein the scheduler polls each queue processor to
determine their respective status in relation to a corresponding network context.

The network device of claim 17, wherein the queue processors that have data for a cor-
responding network context, respond to the scheduler by indicating the priority of the
data and whether any given queue has not been serviced within a certain time thresh-
old.

The network device of claim 16, wherein the scheduler schedules dequeing of data by
selecting a specific queue processor and corresponding priority queue to dequeue.

The network device of claim 19, wherein the dequeing of data is performed according
to the priority of the data in a particular queue.

WO 02/069575 PCT/US02/06299
46

21. The network device of claim 20, wherein the scheduler selects a specific queue proces-
sor and corresponding priority queue for dequeing by evaluating which queues have
priority to send and which queues have not been serviced within a certain time thresh-

~ old.

22. The network device of claim 21, wherein the queues that have not been serviced within
a certain time threshold are starved queues.

23. In anetwork device, the improvement comprising,
a plurality of queues that store data,
one or more queue processors associated with a plurality of queues,

a scheduler coupled to the queue processors that schedules dequeing of data from one
or more queues based on priority.

24. The network device of claim 23, wherein a queue is selected for dequeing by a sched-
uler that is coupled to and interfaces with one or more queue processors to identify, a
queue processor requiring service and a particular priority queue associated with that
queue processor that corresponds to a network context.

25. The network device of claim 24, wherein the scheduler polls each queue processor to
determine their respective status in relation to a corresponding network context.

26. The network device of claim 25, wherein the queue processors that have data for a cor-
responding network context, respond to the scheduler by indicating the priority of the
data, and whether any given queue has not been serviced within a certain time thresh-
old.

27. In a network device, the improvement comprising,

a plurality of queues that store data being transferred between one or more input inter-
faces of the network device to one or more output interface of the network device,

a scheduler that schedules dequeing of data from the queues for transfer to the one or
more output interfaces, the scheduler normally scheduling dequeing to proceed in a
predetermined order,

WO 02/069575 PCT/US02/06299

28.

29.

30.

31.

32.

47

a starve indicator associated with each of one or more queues, the starve indicator rep-
resenting whether the associated queue has been dequeued within a certain time thresh-
old,

the scheduler responding to the starved indicator by scheduling dequeing of the associ-
ated queues out of sequence.

The system of claim 27, wherein the scheduler schedules a queue associated with the
starve indicator for dequeing before a queue that is not associated with the starve indi-
cator.

The system of claim 28, wherein

the starve indicator has an initial numerical value, and

wherein a queue processor modifies that value each time the scheduler does not select
the queue associated with that indicator for dequeing.

The system of claim 29, wherein
the starve indicator has an initial positive numerical value, and

wherein a queue processor decrements that value each time the scheduler does not
select the queue associated with that indicator for dequeing.

The system of claim 30, wherein the queue processor increments the starve indicator
into a positive numeric range when the associated queue is scheduled for dequeing.

In a network device the improvement comprising,

a plurality of queues that store data,

a scheduler that schedules dequeing of data from one or more queues,

an aggregation mask associated with one or more queues, the aggregation mask indicat-

ing that dequeing of data from queues is only permitted for queues that have not been
dequeued within a certain time threshold,

WO 02/069575 PCT/US02/06299

33.

34.

35.

36.

37.

48
the scheduler responding to the aggregation mask by scheduling dequeing of only asso-
ciated queues.

The system of claim 32, comprising a starve indicator associated with each of one or
more queues that have not been dequeued within a certain time threshold.

The network device of claim 33, the starve indicator has an initial numerical value, and
wherein logic modifies that value each time the associated queue is polled but not

selected for dequeuing.

The network device of claim 34, wherein the logic resets the value of the starve indica-
tor each time the associate queue is dequeued.

In a network device the improvement comprising,

a plurality of queues that store data being transferred between one or more input inter-
faces of the network device to one or more output interface of the network device,

one or more queue processors associated with a plurality of queues, each queue proces-
sor selectively dequeing data from one or more associated queues and selectively gen-

erating a status signal indicating the status of the associated queues,

a scheduler that polls the queue processors for the status of their associated queues and
that signals a selected queue processor to dequeue data from an associated queue,

a master indicator associated with a selected queue processor,

the selected queue processor generating a status signal on behalf of one or more other
queue processors in response to polling by the scheduler,

the scheduler signaling a queue processor to dequeue data based on a response of the
selected queue processor.

A network device, comprising:

a plurality of input interfaces, each receiving data from one or more respective network
connections,

WO 02/069575 PCT/US02/06299

38.

39.

49

an output interface for transmitting data to one or more respective network connec-
tions.

a plurality of queue processors, each coupled to a respective input interface and to the
output interface, each queue processor transferring selected data received from the
respective input interface to the output interface,

the plurality of queue processors so transferring the data as to maintain quality of ser-
vice levels with respect to throughput of data from the plurality of input interfaces to
the output interface,

a scheduler coupled to the queue processors that schedules dequeing of data from their
respective queues for transfer to the output interface,

the scheduler signaling a queue processor for dequeing of data based on at least one of
a priority of that data and a time period since data was last dequeued from a respective
queue associated with a particular queue processor.

The network device of claim 37, further comprising

a scheduling table having a plurality of entries, wherein each entry storing at least one
of

a context number identifying a particular output network connection to which data is to
be transferred in sequence,

an aggregation mask associated with one or more context numbers and indicating that
dequeing is only queues that have not been serviced within a certain time threshold,

master indicator indicates that signaling to the scheduler from the queue processors is
to be taken from one queue processor only, which serves as a collecting point for at least
certain responses of all the queue processors for a given context number,

the scheduler signaling a queue processor for dequeing of data by context number based
on the aggregation mask value and master indicator value.

The network device of claim 38, wherein the scheduling table lists context numbers in
an order and frequency that insures quality of service for each destination network.

WO 02/069575 PCT/US02/06299
50

40. The network device of claim 38, wherein the scheduler selects a context number from
the scheduling table and polls one or more queue processors to determine if the queue
processors are ready to transfer data for that context number, to the corresponding net-
work connections.

41. The network device of claim 40, wherein the scheduler selects an entry from the sched-
uling table at predetermined intervals to determine a context number to be serviced

42. The network device of claim 40, wherein the queue processors that have data for a cor-
responding context number, respond to the scheduler by signaling the priority of the
data for that context number, and whether any given queue has not been serviced in a
predetermined period.

43. The network device of claim 42, wherein the priority level can be any one of four pos-
sible levels.

44. The network device of claim 43, wherein the indicator showing priority level is a ready
state.

45. The network device of claim 51, wherein the scheduler selects queues that have not
been serviced for the predetermined period before servicing all other queues regardless
of priority.

46. Anetwork device, comprising:
an input section receiving any of cells, frames, datagrams, or other packets (collec-
tively, “packets™) from one or more respective network connections, and fragmenting

at least selected received packets into one or more respective units,

an output section transmitting packets to one or more respective network connections,
each of which is associated with a plurality of network contexts,

a routing mechanism, coupled to the input section and to the output section, the routing
mechanism transferring units from the input section to the output section,

the output section including a reassembly unit that reassembles into respective packets
a plurality of intermingled units received by the output section from the routing mecha-

WO 02/069575 PCT/US02/06299

47.

48.

49.

50.

51.

52.

53.

51

nism, the reassembly unit reassembling the units on the basis of at least the context
associated with the network connection to which the respective packets are directed.

The network device of claim 46, wherein the input section assigns an ingress priority to
each received packet, and transfers the units to the routing mechanism intermingled, if
at all, on at least the basis of the ingress priority.

The network device according to claim 47, wherein the input section utilizes the ingress
priority to associate each corresponding packet with an identifier that is utilized to
determine one or more routing path parameters for each unit, including an egress prior-
ity that pertains to a priority level associated with a queue in the routing mechanism that
the unit is destined for.

The network device according to claim 47, wherein the reassembly unit reassembles the
intermingled units into their respective packets based on the context and priority of the
respective units.

The network device of claim 48, wherein the routing mechanism transfers units to the
output section intermingled on at least the basis of context, slot number, ingress prior-
ity, and egress priority.

The network device according to claim 50, wherein the reassembly unit reassembles the
intermingled units into their respective packets based on the context, slot number,
ingress priority, and egress priority of the respective units.

The network device according to claim 50, wherein the output section checks the
received units for errors and timeouts, reassembles the intermingled units into their
respective packets, discards packets having errors, and forwarding the packets to their
respective destination network connections based on priority.

In a network router, the improvement comprising:

one or more output interfaces receiving intermingled portions of different respective

packets,

the one or more output interfaces including a reassembly unit that reassembles the por-
tions into their respective packets in accord with at least the context associated with the
network connection to which the respective packets are directed.

WO 02/069575 PCT/US02/06299
52

54. The network router of claim 53, wherein the one or more output interfaces include a
transfers packets received from the reassembly unit to corresponding network connec-
tions based on egress priority.

55. The network router of claim 53, wherein the reassembly unit reassembles the units
based on all or any one of a context, priority, and slot number.

56. The network router of claim 55, wherein the priority comprises at least one ingress pri-
ority, and at least one egress priority.

57. A network device, comprising:

one or more input interfaces, each receiving any of cells, frames, datagrams, or other
packets (collectively, “packets™) from one or more respective network connections, and
fragmenting at least selected received packets into one or more respective units,

P

one or more routing mechanisms, coupled to the one or more input interfaces and to one
or more output interfaces, that transfer units from the one or more input interfaces to the
one or more output interfaces,

the one or more output interfaces transmitting packets to one or more respective net-
work connections, each of which is associated with a plurality of network contexts,

the one or more output interfaces receiving intermingled units of different respective
packets and reassembling those units into their respective packets in accord with at least
the context associated with the network connection to which the respective packets are
directed,

the input interface including an aggregation module that (i) associates each received
packet with an ingress priority and identifier and that (ii) fragments each packet into
one or more respective fragments, and (iii) forwards each fragment to a standardizer.

58. The network device of claim 57, wherein the standardizer module utilizes the identifier
associated with each fragment to determine routing thereof, reassembles the fragments
into packets, segments the packets into one or more units for transfer to the one or more
routing mechanisms.

WO 02/069575 PCT/US02/06299

59.

60.

61.

62.

63.

64.

53

The network device of claim 58, wherein the standardizer module associates each unit
with at least one of a context, output slot number, and egress priority.

The network device of claim 57, wherein the one or more routing mechanisms receive
intermingled units, each having a respective ingress priority and egress priority, store
the units into one or more queues in accord with egress priority, and transmit the units
to the one or more output interfaces in accord with the egress priority level.

The network device of claim 60, wherein the reassembly unit reassembles the units into
their respective packets in accord with (i) a context associated with the network connec-
tion to which the respective packets are directed, (ii) an ingress priority and (iii) an
egress priority.

A network device, comprising:

an input interface that receives any of cells, frames, datagrams, or other packets (col-
lectively, “packets”) from one or more respective network connections and that frag-
ments at least selected received packets into one or more respective units,

a routing mechanism, coupled to the input interface and to an output interface, that
transfers the units from the input interface to the output interface,

the output interface receiving units of different respective packets that are intermingled
with one another and reassembles the units into their respective packets in accord with
at least the context associated with the network connection to which the packets are
directed,

wherein the routing mechanism includes a plurality of queues, each storing the received
units for a selected network context, the queues being associated with one or more
digital data processors that transfer units received from the respective input interface to
the output interface based on a priority scheme.

The network device of claim 62, wherein the digital data processors dequeue units as a
function of priority and context.

The network device of claim 62, wherein the routing mechanism stores the intermingled
units each having a respective ingress and egress priority level into one or more queues
that correspond to an egress priority level.

WO 02/069575 PCT/US02/06299

65.

66.

67.

68.

69.

54

The network device of claim 64, wherein at least the egress priority level has any one
of four values.

The network device of claim 62, wherein the reassembly unit reassembles the units into
their respective packets in accord with at least the context associated with the network
connection to which those units are directed, and with one or more priorities associated
with the units.

The network device of claim 66, wherein the priorities comprise at least one ingress
priority that pertains to the priority level associated routing of the unit through the input
interface and at least one egress priority that pertains to the priority level associated
with dequeuing of the unit within routing mechanism.

The network device of claim 66, wherein the reassembly unit reassembles the units into
their respective packets by all or any combination of context, priority, and slot
number.

The network device of claim 62, wherein the reassembly unit reassembles the units into
one or more respective packets based on slot number, ingress priority, egress priority
and context.

PCT/US02/06299

WO 02/069575

1/19

L 2inbi4

g

|
I
8L |
|
1

"Nanaii—{ ow4 - dad

~— —

8L

|
~— |
|
|

Ovv_ OMIBN

[4%

PCT/US02/06299

2/19

WO 02/069575

Z 2Inb14
XXXXX L vSlL z'e | ¥1919] | w919 XXXXX XXXXX x| 1wueua 7
7190 € 981 Sy | ¥L9z9| | ¥1999 XXX oK | XX LS !
1ZATA 0 6l 't 11909 11909 XXXXX XXXXX XX W1Y 0
aig Ronld #1104 spied | @iql aial Ssa1ppy Kiobare) | 1euoy #1104
ssa163 uoneunsaqg di IS Buiwodu|
_
€#10IS ,w“ O/l sEIE =]
O
C#101S / Ty
< nn
\ ANAl == NN N=T=T=nauin Ik o/l LR
L#10|S N N < /Nﬁ
8 7 vy ‘ Wm
0#10]S pieD O]
O/l a
\
123
o¢
N
[42

PCT/US02/06299

3/19

WO 02/069575

~
-
¢ 21nb14 o~ e
: e g 7d
I--2-=%~
D \\ \\\\ 7
=7
€
(NM”MH__ CCCCIToTD,
youd CTTTI T Th
LG X8O Lhguopy T Tl O O
/Mod (221607 Ofpong CTTTTTIIIIN N NN
) /// // ///
oL# . AN
: Suoud CTTITTTTTI RN
. Zapoud T TITITId — = AN
Ly by — ~ ~ ~ / /
LOG# do sad Zpapoy hwouy CrrTrTrT~ T~ J> <L YRY
sanany A JMod eabot Shwoug PTTIIIII T~ .~~~ Y
~——ITEs
00S# 8v0C Eaopd [T — — — . g = e o |
Ywopg COCIIITTIIF ~———===%2= SIS0
Xajuo fapoud LT T I T T I —~——"2=="1%
oL# \tvni ~mu_momu_ Ouopd CITTTITITIF-— " _~ZZ% zZ
Sond LTI~ ~ = 2 =5~
Lov# YUyoud CICITITITT ~ %~ ==
0peoy Mawens CrrrrrrTrr -7
00€# piod [eaibo] Ywoud Dn\nnn_uuu”_\
5
oL# -
. //
00L# TN
C} N
Lig 1 N
~o>LN
13[npayds jeqojs Cl-——Zx3y %o ~
0L# 1od [ed1boT C-——==3 e
/IX8)U07) N CF—2-7
N 95 C1-
85 Nog

WO 02/069575

4/19

PCT/US02/06299

-HOST INTF -

ASI

DATA MEMORY

POS/PHY V3

\

FAST PATTERN PROCESSOR

3L &l

CONTROL PROGRAM
MEMORY MEMORY

MODIEIED POS PHY \|

V3

FIGURE 4

PCT/US02/06299

WO 02/069575

5/19

S HINOI1A

¢ snenp Aold

Z anany) ALioud

| @nanp) Ajliold

0 ananp) Alold

ONISS300Yd
SSvd pug

JHIXQ 8nanp

ILIXQ enenp

£ ananp

Z ananp

| 8nanp

0 enemp

ONISS300Yd
SSvd st

WO 02/069575 PCT/US02/06299
6/19
e =2 A A B =
Port Number
as Tag
1st PASS
PROCESSING
l Linked
\():fsel \O:t'set \O‘l‘fset ﬁffse{ \Offset
| B [~ | = I [prory e
x \/ ~AAL5 CRC~
ASSEMBLED DATAGRAM
4
2nd PASS
PROCESSING
Offset
A\ 4
ASSEMBLED DATAGRAM | 1P |SNAPJ —To FMUm-
FIGURE 6
Offset Offset
Processing Processing FMU
Port Number Queue ID,
as Tag Priority Queue

FIGURE 7

WO 02/069575

7/19

PCT/US02/06299

FMU DATA MEMORY

FROM FPP

FLOW MANAGEMENT UNIT

TO IMUX

FLOW CONTROL
MEMORY MEMORY

FIGURE 8

WO 02/069575

8/19

PCT/US02/06299

GOTHAM CELL BUS)

EGRESS MASK BUS

INGRESS MUX

GOTHAM CELLS BP 0 >

)

GOTHAM CELLS BP 15[>

FIGURE 9

DATA MEMORY

A

FROM BP DRIVER

QUEUE PROCESSOR

TO EMUX >

Y

T

GLOBAL
SCHEDULAR

CONTROL MEMORY

other QPs

FIGURE 10

WO 02/069575

9/19

PCT/US02/06299

QP

Logical Port/Context Identifier
; (To all QP)

—QoS Mask (from all QP)—»
____Queue Not Empty Mask
(from all QP)

QP Enable

' (to individual QP)

, QoS to Dequeue
(to all QP)

GLOBAL
SCHEDULER

15

12

11

FIGURE 11

10 9 8

QoS Mask

Master

line | host

en | cycle logical port/context

FIGURE 12

WO 02/069575 PCT/US02/06299

10/19
GOTHAM CELLS QP 0J>
EGRESS MUX GOTHAM CELL TO RPU
GOTHAM CELLS QP 13\
FIGURE 13

RPU Data Memory

@@/ Reassembly Processor Memory RSPINTE)

A

Y

RPU Control
Memory

HOST INTF

FIGURE 14

ASI Interface

WO 02/069575 PCT/US02/06299
11/19
ASSEM SED
MEMORY SRAM
FMU INTF J\ RSP

IOC INTF)

HOST MBI

§

)

!

SCHED
PARAM
MEMORY

QUEUE
ENTRY
MEMORY

LINK LIST
MEMORY

POS/Phy V3

FIGURE 15

PCT/US02/06299

WO 02/069575

12/19

——
o ———
— i —

V91 2inbi4
NN\
0K L bS1 z'e | vio19 w A YK o0 | xx | wuewy
7190z € 081 s | vioro') w X000 000X | XX | ud !
vLSCL 0 6l [L1909 V N XXXXX XXHXX XX WiV 0
ala Aoy #110d spied | qIdi SS2IppPY Aoba1e) | Hp | iewnog | #3104
ssa163 ss2463 di 9DIAIDS Bujwodyj
N
()4
(44
I
I
1
T e O e v 1 R e T
I I I sc, cpcﬁ i 1T T T {1 “ //
—] 1 Ll o/l
L1 | [| HE.I:H _.:l_ o L1 LT 11 “_”/__H_ =\
O T O O /\ \/ 3 I Y | 89 ¥9
98 \ = o/ b
\ w 8/ .y / | — i
B06 4 9L ddd ! mm\
/ / |
06 vee “ /
- 0/ [4)

PCT/US02/06299

WO 02/069575

13/19

-y

Z10|s pied o) HJ ST
S
\
: \

g9 ainbi4

—

TEn[icafica))
~l—

76 ‘
010[s pIRd O] | \ﬂﬁ l%

A

4ngdl

/
V6

plodi [{far|fzdr]|fzdi]|]tdi]

6

PCT/US02/06299

WO 02/069575

14/19

*auoud T T

I I O B

“avoud [T T]

[

L
Roud [EAlediEIEdEAed el | |

0

Kyuoud [T Gz =z]

01X33U0D
1104 {eatboy

D91 ainbi4

T T

\
do 3¢
sanan \
80T

Efapong

I
I
i
i
i
I
i
i
!
1
1
i
!
1
i
i
!
I

o o
N

Zapopd CEEFTTITTTN <
TL§ 90D Loyopy CTTCLITITITh
iod fesibor Ywond CETEIITITT] O

1 3X81U0)

llma_ IH_— In: Ilmn= Il.n: Ilwn: XNW3 N
~|. \ filod |ediBo]
et e~ 7 hwows oot — S 2 27 86
\ -, Cououg /\/.\\ e
yiL ! 01%3Uo) apoug -
N _ /dog [edjbio Yuond 7
oLL T 9oL T WL
N
LN
\ : N
#IX31U0D /104 121607 m// ~ 1
aiols N
1943 Ch-—==
14dl ===
96

PCT/US02/06299

WO 02/069575

15/19

on

dol ainbi4

9T

—~

[

/
ozl

/
9zl

L :_.I_Dﬁ L]

ED_DDDD

I

~——
——

dsy

egLL

N

gort”

IX|

vl

[ed3 | [*da] [*da] [*dT]
~_ 1

(44}

T |

£Cl

8Ll
//_ ZdIZdI[Zdi[2dI[2di[Z a1 [Fdl [edT [2di [eal [Ed [eail [ed]

[EdIEdIfEd [EdIEdT[ET [EdI[EdT [edT [EQT [edl [E e [ET

IS T s e N e T e

N1

ozt

Ndd

eoLl

oLl

PCT/US02/06299

WO 02/069575

16/19

lie e

311441 Ag panes|iayu siuawbely NAad

V/1 2inbi4

liele
1114941 Ag panesisiug siuswbely Nnad

7

|
1 %9¢tl

ddd

\

el

> 3l & A
N 7 N 7
al13o0os . aiI;os
¥aav di1sia % 00 ¥aav di1s3a w 00
¥AaY 413D4N0S HaQy di 30¥N0S

oclL

8T1

PCT/US02/06299
17/19

WO 02/069575

d/1 2inb14

1 | i !
| ! ! 1
1 I 1 1
i 1 I I
I i ! |
1 ! !]
1 #107S pue 1xe3u0D/10d 291607 '14d3 _ 1 ez _
“ ._mn.: >D ..m._. Juw>mm_._wucm >=:w 5{[=20-5 " fleie ! ~=n_n= %ﬁ ﬁm>mwm._mvC_ S{i9d-5 " H ._mm_ >Q Uw>mw_hwur__ muC.wEmm‘c. Nnad |
I
1 g
) > On g
I I / ! / I
| #1015 7g] I obL ! _
! Nad ang L Nadang ! ot !
I NAd LYvLS _ Nad LYv1s I !
I ALY | ALIHVd ! _
" #0315 | #035 " "
| Lxamodaod jeoiboT 0SL " IXIINOD/UOJ [ediB07 1474] 8el I
1 aia3 / [aigd /) /)
_ I3 | a3 _ _
| aial 1 aial | aial i
1 Hdl " Mt ! 14t 1
1 | !
I ! I |
I I 1 1
i |
| " i abeys ndino | .
! | I ybnoiys Ayoud I HmS
“ _ " 103 uipy Aq I o1 ybBnoays Apoud
] ! | Paisnipe j4d3 yum | 40} UlLIpY Aq
I | i ‘Burddewdang I PaIsnIpe yd Lm
: : ‘buiddew a14Q
] | i | I 1
| ! / ! / [/
¥SL 8yl (474
] 1 MM] | 9tl
] | | |

PCT/US02/06299

WO 02/069575

18/19

llele

#1'4d3 Aq panesjiaqul sjuswibey Nad 1238 31" J4d3 paaes|i=ul Ndd

D/1 3inbi4

A

ol

Ol

— e e e e e e e e e e e e e e S e e e bt — — — — — —

A

91
#1¥0d /
#1078
¥aay di 1s3a) (Y X) aia3
¥aav di 3D¥N0s 14d3

o3
mr—-
o

—— e e e e e e Y e

Y

/

7Sl

Ndd

PCT/US02/06299

WO 02/069575

19/19

asl 2inbi

llele
J1'1441 Aq panesprsyul syuswbely Nad

.
<
991
#140d \
#1015
¥aav di 153 % o060
Haay dl 304N0sS

G /U

Y9l

Ol

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/06299

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) HO4L 12/28,12/56; HO4I 3/24
US CL 370/412, 474

B. FIELDS SEARCHED

According to International Patent Classification (IPC) or to both national classification and IPC

U.S. : 370/389, 395.1-399, 412-418, 464-465, 474

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Please See Continuation Sheet

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

B

US 5,802,051 A (PETERSEN et al) 01 September 1998 (01.09.1998), col. 4, lines 51-57.

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5,850,399 A (GANMUKHI et al) 15 December 1998 (15.12.1998), abstract and 1-45
Figure 1.
X US 5,859,835 A (VARMA et al) 12 January 1999 (12.01.1999), Figures 1 and 3. 1-45
X US 6,104,700 A (HADDOCK et al) 15 August 2000 (15.08.2000), abstract and Figure 1-45
1B.
X US 5,953,339 A (BALDWIN et al) 14 September 1999 (14.09.1999), Figure 1 and col. 1, 46 and 53
- lines 51-53.
Y 47-52 and 54-69

47-52 and 54-69

L__] Further documents are listed in the continuation of Box C.

L]

See patent family annex.

¥ Special categories of cited documents:

“A” document defining the general state of the art which is not considered to be
of particular relevance

“B” earlier application or patent published on. or after the international filing date

“L” docwment which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified)

“Q" document referring to an oral disclosure, use, exhibition or other means

“P” document published prior to the international filing date but later than the
priority date claimed

“T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

“x» document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&" document member of the same patent family

Date of the actual completion of the international search

05 June 2002 (05.06.2002)

Date of mailing oé thg mjﬁ&\l@

Name and mailing address of the ISA/US

Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703)305-3230

Authorized officer

Form PCT/ISA/210 (second sheet) (July 1998)

International application No.

INTERNATIONAL SEARCH REPORT
PCT/US02/06299

Continuation of B. FIELDS SEARCHED Item 3:
EAST
search terms: AAL, quality of service, scheduler

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

