发明名称
织造士工合成织物

摘要
本申请公开了一种织造士工合成织物，其具有在所述织物的纬向上织造的第一纬纱、第二纬纱和填充纬纱，与第一纬纱、第二纬纱和填充纬纱交织的经纱。第一纬纱与第二纬纱具有不同的横截面形状。所述织物的至少一部分具有多个纬纱组，在所述纬纱组之间分别布置并织造有填充纬纱。每一纬纱组具有两根第一纬纱和两根第二纬纱。两根第一纬纱中的一根邻近两根第二纬纱中的一根，且堆叠在另一根第二纬纱上。邻近的第二纬纱堆叠在另一根第一纬纱上。
1. 一种织造土工合成织物，其包括：
 在所述物系的纬向上织造的第一纬纱、第二纬纱和填麻纬纱，以及与所述第一纬纱、所述第二纬纱和所述填麻纬纱交织的经纱；
 所述第一纬纱与所述第二纬纱具有不同的横截面形状；
 所述物系的至少一部分具有多个纬纱组，所述纬纱组之间分别设置有填麻纬纱，每一纬纱组具有两根第一纬纱和两根第二纬纱，所述两根第一纬纱中的一根邻近所述两根第二纬纱中的一根，并且堆叠在另一根第二纬纱上，所述邻近的第二纬纱堆叠在另一根第一纬纱上；并且
 所述物系具有至少 35 的表观开口尺寸，并且能够使水以至少 30 加仑每平方英尺每分钟的速率流过所述物系。

2. 根据权利要求 1 所述的织物，在纬向上还包括脊部和谷部。

3. 根据权利要求 1 所述的织物，其中所述第一纬纱具有直线围成的横截面形状，并且所述第二纬纱和所述填麻纬纱具有基本圆形的横截面形状。

4. 根据权利要求 1 所述的织物，其中所述第一纬纱为高模量扁丝，其具有在 1% 应变时为 0.75 克/丹尼尔、在 2% 应变时为至少 1.5 克/丹尼尔、和在 5% 应变时为至少 3.75 克/丹尼尔的柔度，并且能够包含聚丙烯和聚丙烯 / 乙烯共聚物的熔融共混的混合物的组合物制成。

5. 根据权利要求 4 所述的织物，其中所述聚丙烯 / 乙烯共聚物的乙烯含量按共聚物重量计为约 8% 至约 25%。

6. 根据权利要求 1 所述的织物，其中所述织物在 1/2% 应变时为 90 磅/英寸、在 1% 应变时为 160 磅/英寸、在 2% 应变时为 300 磅/英寸、在 4% 应变时为 500 磅/英寸和在 5% 应变时为 570 磅/英寸的纬向拉伸强度。

7. 根据权利要求 1 至 6 中任一项所述的织物，其中所述物系开口尺寸为至少 40。

8. 根据权利要求 1 至 6 中任一项所述的织物，其中所述物系开口尺寸为至少 45。

9. 根据权利要求 1 至 6 中任一项所述的织物，其中所述水流流速率为至少 35 加仑每平方英尺每分钟。

10. 根据权利要求 1 至 6 中任一项所述的织物，其中所述水流流速率为至少 40 加仑每平方英尺每分钟。

11. 根据权利要求 1 至 6 中任一项所述的织物，其中所述水流流速率为至少 45 加仑每平方英尺每分钟。

12. 根据权利要求 1 至 6 中任一项所述的织物，其中所述水流流速率为至少 50 加仑每平方英尺每分钟。

13. 根据权利要求 1 至 6 中任一项所述的织物，其中所述物系开口尺寸为至少 40 并且所述织物能够使水以至少 50 加仑每平方英尺每分钟的速率流过所述织物。

14. 根据权利要求 1 至 6 中任一项所述的织物，其中所述织物被用于作为土建结构的基础。
织造土工合成织物

【0001】 相关申请的交叉引用
【0002】 本申请要求于 2010 年 4 月 12 日提交的序列号为 61/322,341 的美国临时专利申请的权益，其全部内容通过引用并入本文。

技术领域
【0003】 本发明一般涉及织造土工合成织物。更具体地，本发明涉及具有增强的水流、颗粒保持性和美观开口尺寸性质的双层单织法土工织物。

背景技术
【0004】 织造丙烯土工合成织物被用于减小水的流速以及维持土壤保持。这些织物经常被用于建立道路的稳定基础。因此，流过织物的水流和织物对土壤的保持性是重要的品质。此外，织物应当具有耐用的充分强度，特别是当织物经受负载时。
【0005】 但是，水流速和土壤保持性与织物强度不一致。通常，为了增加强度，就要减小织物的孔。结果，织物受限于可以通过织物的水的量以及因此其可以保留的土壤颗粒的尺寸。如果期望较高的流速和保持较大的颗粒尺寸，则由于较低织物密度导致织物必须在强度方面有所让步。因此，需要具有改善的耐用强度，同时维持相对高的流速和颗粒保持性的织造土工合成织物。本发明的目的是解决这个以及其他需要。

发明内容
【0006】 本发明涉及包括由单织法形成的双层织物的织造土工合成织物。所述织物包括在织物的纬向上织造的第一纬纱、第二纬纱和填充纬纱（stuffer pick），以及与第一纬纱、第二纬纱和填充纬纱交织的经纱。第一纬纱和第二纬纱具有不同的横截面形状。织物的至少一部分具有多个纬纱组，在所述纬纱组之间分别布置并织造有填充纬纱。每一纬纱组具有两根第一纬纱和两根第二纬纱。两根第一纬纱中的一根邻近两根第二纬纱中的一根，并且粘叠在另一根第二纬纱上。邻近的第二纬纱粘叠在另一根第一纬纱上。此外，织物在纬向上具有脊部和谷部。
【0007】 在一方面，第一纬纱是包含聚丙烯和聚丙烯/乙烯共聚物的混合物的高模量扁丝（tape）。在另一方面，织物具有至少 35 的 AOS，并且水能够以至少 30 加仑 / 分钟的速率流过织物。

附图说明
【0008】 图 1 是根据本发明的织造土工合成织物的横截面图。
【0009】 图 2 是将多种织造织物的水流速率和主观开口尺寸 (AOS) 进行比较的图。
【0010】 图 3 是将本发明的织造土工合成织物与由聚丙烯均聚物制成的织造物进行比较的拉伸强度 / 伸长率图。
【0011】 图 4 是将根据本发明制成的织造土工合成织物 (RS5801) 与两种常规织物的针对
多种土壤类型的孔率进行比较的粒度分布曲线。
[0012] 图 5 是将图 4 的织物的孔分布与直径进行比较的图。

具体实施方式
[0013] 图 1 示出了根据本发明的织造机 10。织物 10 在纬向或纬纱方向包括第一纬纱 20、第二纬纱 30 和填充纬纱 40。第一纬纱 20、第二纬纱 30 和填充纬纱 40 与经纱 50 交织。因为存在填充纬纱 40，所以在织物 10 的各表面上形成了脊部 60 和谷部 70。在本发明的另一方面，纱 20 和 30 与填充纬纱 40 可以沿经向取向，而纱 50 可以沿纬向取向。根据本发明制成的织物可以用于土壤保持和 / 或稳定化。发明的织物的用途包括但不限于土工工程项目，例如道路、桥梁、建筑物、墙基等的基衬。这些应用一般是指土壤结构。
[0014] 如图 1 所示，第一纬纱 20 和第二纬纱 30 包括具有不同几何横截面形状并且跨经组织 10 在经向交替的两种纱。第一纬纱 20 为具有宽度大于厚度的直线围成的横截面的扁丝纱。通常第一纬纱 20 包含约 500 丹尼尔至约 6000 丹尼尔的原纤化扁丝。在本发明的一个方面，第一纬纱 20 包含约 1000 丹尼尔至约 2900 丹尼尔的原纤化扁丝。在另一方面，第一纬纱 20 包含约 1500 丹尼尔的原纤化扁丝。此外，在另一方面，第一纬纱 20 包含约 1400 丹尼尔的原纤化扁丝。而在另一方面，第一纬纱 20 包含约 1000 丹尼尔至约 2900 丹尼尔的非原纤化扁丝。还在另一方面，第一纬纱 20 包含约 1500 丹尼尔的非原纤化扁丝。第二纬纱 30 为具有不同于第一纬纱 20 的横截面几何形状的单丝。在本发明的一个方面，第二纬纱 30 具有基本圆形的横截面形状，例如图 1 所示基本圆形的横截面形状。如所示那样，第一纬纱 20“堆叠”在第二纬纱 30 上，也可以反过来。此外，第二纬纱 30 可以是任何形状，只要沿着织物在经向上至少在某些点处在第一纬纱 20 和第二纬纱 30 之间维持有间隙 80 即可。通常，第二纬纱 30 为约 400 丹尼尔至约 1600 丹尼尔的单丝纱。
[0015] 如图 1 所示，填充纬纱 40（其在图中用阴影表示仅为辨别之目的）被系统地编织进织物 10。因为该系统性编织图案，形成了脊部 60 和谷部 70。根据本发明，织物 10 的至少一部分被纬纱组 90 跨经织物 10 在经向上编织。对于总结每组的 4 根纬纱，每一纬纱组 90 包括两根第一纬纱 20 和两根第二纬纱 30。每一组包括以堆叠形式编织在第二纬纱 30 上方的一根第一纬纱 20，以及接着以堆叠形式编织在第一纬纱 20 上方的第二纬纱 30。填充纬纱 40 被布置并且编织在各个纬纱组之间。
[0016] 第一和第二纬纱 20, 30 和填充纬纱 40 用经纱 50 织造在一起。经纱 50 包含 400 丹尼尔至 1500 丹尼尔的单丝纱。在本发明的一个方面，织物 10 中所使用的所有的纱均通过合成聚合物制作。在本发明的另一方面，纱为聚丙烯和 / 或聚乙烯的混物。而在另一方面，第一纬纱为 1400 丹尼尔的原纤化扁丝，其截面在 1% 应变时为至少 0.75 克 / 丹尼尔。在 2% 应变时为至少 1.5 克 / 丹尼尔，在 5% 应变时为至少 3.75 克 / 丹尼尔，并且均由包含聚丙烯和聚丙烯 / 乙烯共聚物的熔融共混的混合物的组合物制成。
[0017] 包含聚丙烯和聚丙烯 / 乙烯共聚物的混合物的纱、单丝、或扁丝可以包含聚丙烯组合物，所述组合物包含按重量计约 94% 至约 95% 的聚丙烯和按重量计约 5% 至约 6% 的聚丙烯 / 乙烯共聚物的熔融共混的混合物。在另一方面，纱（单丝）或扁丝可以包含按重量计约 92% 至约 95% 的聚丙烯和按重量计约 5% 至约 8% 的聚丙烯 / 乙烯共聚物的混合物。此外，在一方面，聚丙烯 / 乙烯共聚物的乙烯含量按共聚物的重量计为约 5% 至约 20%。在
另一方面，聚丙烯/乙烯共聚物的乙烯含量为约8%至约25%。此外，在另一方面，聚丙烯/乙烯共聚物的乙烯含量按共聚物的重量计为约5%至约17%。而在另一方面，聚丙烯/乙烯共聚物的乙烯含量按共聚物的重量计为约5%、约6%、约7%、约8%、约9%、约10%、约11%、约12%、约13%、约14%、约15%、约16%、约17%、约18%、约19%、约20%、约21%、约22%、约23%、约24%或约25%，或它们之间任何范围。还有一方面，聚丙烯/乙烯共聚物的乙烯含量按共聚物的重量计为约16%。这些混合物纱在本文中被称为“高模量”纱。在织物10中使用的高模量纱描述在于2011年4月12日提交的序列号13/085,165的美国专利申请中，其中通过引用并入本文。尽管织物的密度取决于其预期性质和用途，但织物10在向具有20至50根线/英寸的密度，织物10在纬纱方向或纬向具有15至40根线/英寸的密度。

[0018]可以（但非必需）将所述织物10进行压延处理，以使其织物10受到热和压力（例如使织物通过一组加热辊），以使织物压缩和/或平坦，以进一步降低织物10的总厚度。

[0019]织物10提供了用于水流的通过织物10的开口通道100。这是因为形成织物10的第一和第二纬纱20、30的不同几何形状所致。更具体地，第二纬纱30的基本圆柱形状和尺寸确保维持之前讨论的间隙80。水可以流经的开口通道100在邻近的第一和第二纬纱20、30之间延伸并可以通过间隙80。如通过ASTM标准D4491-99A测量的，利用这种织物结构，水能够以5-175加仑每平方英尺每分钟的速率流过织物10。在另一方面，水能够以约30至约150加仑每平方英尺每分钟的速率流过织物10。此外，在另一方面，水能够以约40至约150加仑每平方英尺每分钟的速率流过织物10。而在另一方面，水能够以至少30，至少35，至少40，至少45，至少50，至少55，至少60，至少65，至少70，至少75，至少80，至少90，至少95，至少100，至少105，至少110，至少120，至少125，至少130，至少135，至少140，至少145，或至少150加仑每平方英尺每分钟的速率流过织物10。

[0020]图2比较了多种造物织物的水流过织物的速率和表面开口尺寸(AOS)。AOS通过ASTM D4751测量。#13是使用以讨论的高模量聚丙烯/聚丙烯共聚物的共聚物作为第一纬纱20的本发明织物。该纬纱为11.5密耳、4600丹尼尔的原纤维化扁丝。第二纬纱、经纱和填充纬纱为1400丹尼尔的聚丙烯单丝。织物结构为33x20根线/英寸。

[0021]在另一方面，织物10具有至少35的AOS。在另一方面，织物10具有至少40的AOS。而在另一方面，织物10具有至少45的AOS。

[0022]图3示出了使用以上刚刚讨论的聚丙烯/聚丙烯共聚物的本发明织物在纬向的拉伸强度。拉伸强度根据ASTM D4595测量。如图所示，织物在纬向的拉伸强度在1/2%应变时为90磅/英寸，在1%应变时为160磅/英寸，在2%应变时为300磅/英寸，在4%应变时为500磅/英寸，在5%应变时为570磅/英寸。纬向的极限伸长率为5%。

[0023]将指定为RSS80i的发明物与分别指定为HP370和HP570的常规聚丙烯造物进行了比较。表1给出了各自织物的结构参数。

[0024]表1
<table>
<thead>
<tr>
<th>参数</th>
<th>HP370</th>
<th>HP570</th>
<th>RS580i</th>
</tr>
</thead>
<tbody>
<tr>
<td>线/英寸，经纱</td>
<td>35</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>线/英寸，纬纱</td>
<td>10.5</td>
<td>13</td>
<td>22</td>
</tr>
<tr>
<td>纱丹尼尔，经纱</td>
<td>1000</td>
<td>1360</td>
<td>1360</td>
</tr>
<tr>
<td>纱类型*, 经纱</td>
<td>单丝 PP</td>
<td>单丝 PP</td>
<td>单丝 PP</td>
</tr>
<tr>
<td>纱丹尼尔，纬纱</td>
<td>3000</td>
<td>4600</td>
<td>4600 & 565†</td>
</tr>
<tr>
<td>纱类型，纬纱</td>
<td>原纤化 PP</td>
<td>原纤化 PP</td>
<td>原纤化 PP 和单丝 PP</td>
</tr>
<tr>
<td>重量，盎司/码</td>
<td>8.2</td>
<td>14.0</td>
<td>12.5</td>
</tr>
<tr>
<td>织纹图案</td>
<td>2×2 斜纹</td>
<td>2×2 斜纹</td>
<td>具有填充纬纱的双层(见图 1)</td>
</tr>
</tbody>
</table>

[0026] * PP = 聚丙烯
[0027] + 填充纬纱
[0028] 图 4 为表 1 所呈现的 HP370、HP570 和 RS580i 织物的粒度分布曲线和聚集体级配图。曲线提供了关于多种土壤类型的孔隙度及测定结果。具体地，该对数曲线图示出了在小于 0.01 毫米 (mm) 至约 4mm 的不同粒度下，不同颗粒尺寸的累积通过百分比。如由曲线可以看到，尽管 RS580i 的孔开口比 HP570 大，但是相比于 HP370 和 HP570，这些较大开口的数量较少。
[0029] 图 5 比较了表 1 所呈现的 HP370、HP570 和 RS580i 织物的有关孔径的孔分布。根据 ASTM D6767 进行孔测试，所使用的润湿材料为表面张力为 20.1 达因 / 厘米的硅油，其以名称 SILWICK SILICON FLUID 购自 Porous Materials Inc., Ithaca, NY。如图 5 可以确定，发明织物 RS580i 比 HP570 具有数量大得多的孔尺寸小于 270 微米的小孔。对于较大的孔尺寸（即，大于 340 微米），HP570 具有较多数量的这种孔。
[0030] 如由图 2-5 可以看出，本发明织物利用更多数量的较小孔提供了更高的整体流速。因此，不同与常规织物，可以实现高流速而不增加 AOS。此外，图 2-5 表明本发明织物比常规织物具有更强的颗粒保持性，更高的拉伸和更高的液体流动。
[0031] 提供上述内容是为了阐述、解释和描述本发明的实施方案的目的。对这些实施方案的进一步修改和适合对本领域技术人员将是很明显的，可以做出这些修改和适应而不脱离本发明的精神或所附权利要求的范围。
图 5