
J. GAYNOR.
GLOBE MANIPULATOR.
APPLICATION FILED MAY 6, 1908.

UNITED STATES PATENT OFFICE.

JOSEPH GAYNOR, OF NEW YORK, N. Y.

GLOBE-MANIPULATOR.

No. 895,625.

Specification of Letters Patent.

Patented Aug. 11, 1908.

Application filed May 6, 1908. Serial No. 431,102.

To all whom it may concern:

Be it known that I, JOSEPH GAYNOR, a citizen of the United States, residing at New York city, (Brooklyn,) county of Kings, State of New York, have invented new and useful Improvements in Globe-Manipulators, of which the following is a specification.

This invention relates to a globe manipulator of the class described in Patent No. 10 869,836, issued to me October 29, 1907.

The object of the present invention is more particularly to provide a ready adjustment of the manipulator to varying distances between the operator and the globe to be 15 turned.

A further object is to so construct the clasp that it will obtain a firm hold upon the globe during the screwing and unscrewing

operation.

In the accompanying drawing: Figure 1 is a front elevation, partly in section, of a globe manipulator embodying my invention; Fig. 2 a side view of one of the removable stemsections; Fig. 3 a detail of the coupling be-25 tween two adjoining stem-sections; Fig. 4 a similar view of the handle coupling; Fig. 5 a detail of the lower end of one of the stemsections; Fig. 6 a cross section on line 6—6, Fig. 3; Fig. 7 a cross section on line 7—7, Fig 30 3, and Fig. 8 a longitudinal section through the clasp.

Briefly stated, the globe manipulator, as more fully described in the patent hereinabove referred to, consists of a stem carrying 35 a frame 10 to which is pivoted at 11 a toothed wheel 12 which may be rotated by an intergearing wheel 13 operable by means of a spindle turning in the stem. Wheel 12 imparts rotary motion by wheel 14 to the clasp 40 15 that is adapted to grasp the globe to be manipulated. Clasp 15, together with its wheel 14, turns in an arm 16 that may be set at various angles by means of a pin 17 engaging either one of a number of openings 18 45 formed in frame 10. After the clasp has been set to the angle desired, it is rotated through wheels 13, 12, 14 to couple or uncouple the bulb.

In practice, the light bulbs are located at 50 varying heights above the floor and consequently at varying distances from the operator, so that it is desirable to provide means for readily adjusting the reach of the instrument. To effect this adjustment the stem

ble sections which are adapted to be coupled to each other so that by removing or adding a suitable number of sections, the aggregate length of the stem may be varied. Each section is composed of a tubular rod 19 within 60 which is rotatable a spindle 20. The rod 19 of the uppermost section carries the frame 10, while the spindle of such section carries the wheel 13. All the other stem-sections are provided at their upper end with up- 65 wardly extending tubular sleeves 21 adapted to receive the lower ends of the adjoining sections. A spring-catch 22 mounted on sleeve 21 and adapted to engage a perforation 23 of the stem-section telescoped by the 70 sleeve, serves to removably connect the ad-

joining stem-sections to each other.

The spindles of the various stem-sections are so constructed that when the latter are coupled, the spindles will also become auto- 75 matically coupled so that the rotating movement imparted by the operator to the lowermost spindle is transmitted to the uppermost spindle and consequently to the clasp 15. To accomplish this result, each spindle is pro- 80 vided with a lower squared section adapted to be received within a correspondingly squared socket formed in the upper end of the spindle next below. As shown, each spindle 20 is rotatably centered within tubu- 85 lar rod 19 by bearings 24, and is made hollow for the purpose of reducing its weight. Into the lower end of spindle 20 is tightly fitted a pin 25 projecting below rod 19 and made of angular form throughout its exposed end. 90 Pin 25 is adapted to be received by a squared socket 26 formed at the upper end of the adjoining stem section, so that when the sections are coupled by means of the sleeves 21, the spindles will become simultaneously 95 coupled. To rotate the sectional spindle, constructed as described, there is provided a handle 27 having a squared bore 28 for the reception of the pin 25 of the lowermost stem-section. Handle 27 is removably attached 100 to this pin by a spring catch 29, so that as the stem is held with one hand and the handle is turned with the other hand, the desired rotating movement is imparted to clasp 15.

It will be seen that by the construction de- 105 scribed, any suitable number of stem-sections may be attached to each other, so as to readily vary the aggregate length of the tool. Furthermore, the coupling means are such 55 is composed of a suitable number of separa- | that the necessary rigidity between adjoining 110

stem-sections is obtained, while the necessary co-action between adjoining spindle-sec-

tions is insured.

Clasp 15 is composed of a suitable number of resilient jaws 30 fast on a hub 31. Near their base the jaws inclose a ring 32 grasped by the lower ends of frames 33, the upper ends of which are connected to jaws 30 at a suitable distance below their top, as at 34. 10 Frames 33 are surrounded by soft rubber pads 35, while the upper ends of the jaws, above such pads, are surrounded by anti-friction caps 36 made of harder rubber. These caps permit the clasp to be readily slipped over a bulb without breaking the same, while the soft rubber pads will obtain a firm hold on the bulb after the clasp has become seated. In this way any slipping of the clasp around the bulb, during the rotation of the latter, is prevented. To permit the clasp to be set to bulbs of different sizes, ring 32 is engaged by hooks 37 passing through jaws 30 and carrying nuts 38 on their outer threaded ends. By manipulating these nuts, ring 32 may be 25 drawn down to contract jaws 30 by frames 33, and thereby reduce the diameter of the clasp to the desired extent.

I claim:

1. A device of the character described, comprising a series of tubular rods, inclosed rotatable spindles, means for coupling the rods, means for simultaneously coupling the spindles, and a clasp operatively connected to one of said spindles, substantially as specing field.

2. A device of the character described, comprising a pair of tubular rods, a first spindle rotatable in the first rod and having a projecting angular end, a second spindle rotatable in the second rod and having a squared socket adapted to receive said end,

and a clasp operatively connected to one of said spindles, substantially as specified.

3. A device of the character described, comprising a pair of tubular rods, a first spindle rotatable in the first rod and having a projecting angular end, a second spindle rotatable in the second rod and having a squared socket adapted to receive said end, a clasp operatively connected to one of said spindles, and a handle adapted to be operably connected to the other spindle, substantially as specified.

4. A device of the character described, comprising a series of tubular rods, inclosed 55 bearings, spindles rotatable therein, means for coupling the rods, means for simultaneously coupling the spindles, and a clasp operatively connected to one of said spindles, substantially as specified.

5. A device of the character described, comprising a clasp having spring jaws, soft rubber pads at the lower ends of said jaws, and anti-friction pads at the upper ends thereof, substantially as specified.

6. A device of the character described, comprising a clasp having spring jaws, a ring inclosed thereby, frames connected to said jaws and to the ring, and pads mounted on the frames, substantially as specified.

7. A device of the character described, comprising a clasp having spring jaws, a ring inclosed thereby, frames connected to said jaws and to the ring, pads mounted on the frames, and means for adjusting the ring, 75 substantially as specified.

Signed by me at New York city, (Manhattan,) N. Y., this 5th day of May, 1908.

JOSEPH GAYNOR.

Witnesses:

W. R. Schulz, Frank v. Briesen.