发明名称
多颜色的、多香味的烛

摘要
本发明涉及多颜色、多香味的烛，其包含燃料固化块和埋于其中的芯，其中燃料固化块包含串于芯上且部分或全部埋于燃料固化块中的外部燃料部中的两个、三个或更多个不同燃料构件，其中所述不同燃料构件中的第一构件与第二构件相邻并且具有不同的香味和不同的颜色。本发明还描述了一种制备该烛的方法。本发明还涉及烛用于传达多颜色和/或多香味的体验的用途，以及相应的方法。
1. 一种多颜色、多香味的烛 (1)，包含燃料固化块和埋于其中的芯 (10)，其中所述燃料固化块包含：外部燃料部分 (20) 以及或于所述芯上并且部分或全部埋于所述外部燃料部分中的两个、三个或更多个不同燃料构件，其中所述不同燃料构件中的第一构件 (51) 具有第一香味和第一颜色，并且所述不同燃料构件中的第二构件 (52) 具有第二香味和第二颜色，其中所述第一和第二构件相邻，所述第一和第二香味不同并且所述第一和第二颜色不同。

2. 根据权利要求 1 的烛，其中所述燃料固化块的所述外部燃料部分具有与所述第一香味和所述第二香味不同的香味。

3. 根据权利要求 1 或 2 的烛，其中所述燃料固化块包含串于所述芯上并且完全埋于所述燃料固化块的所述外部燃料部分中的两个、三个或更多个不同燃料构件。

4. 根据前述权利要求中任一项的烛，包含

 第三不同燃料构件 (53)，其具有第三香味和第三颜色，所述第三香味与所述第一和第二香味不同，并且所述第三颜色与所述第一和第二颜色不同，以及

 任选的第四不同燃料构件 (54)，其具有第四香味和第四颜色，所述第四香味与所述第一、第二和第三香味不同，并且所述第四颜色与所述第一、第二和第三颜色不同，以及

 任选的第五不同燃料构件，其具有第五香味和第五颜色，所述第五香味与所述第一、第二、第三和第四香味不同，并且所述第五颜色与所述第一、第二、第三和第四颜色不同，以及其中优选所述燃料固化块的所述外部燃料部分具有与所述第三香味以及如果存在的所述第四及第五香味不同的香味。

5. 根据前述权利要求中任一项的烛，其中所述不同燃料构件中的一个、两个或全部具有通孔并且通过所述通孔串于所述芯上。

6. 根据前述权利要求中任一项的烛，其中所述不同燃料构件中的至少两个或更多个固定于所述芯，优选使得相邻的不同燃料构件的相邻面间隔开。

7. 根据前述权利要求中任一项的烛，其中所述外部燃料部分中以及各个不同燃料构件中的芳香材料的总量基于所述外部燃料部分或各燃料构件的总重量为 0.1wt% 至 20wt%，优选 0.5wt% 至 10wt%。

8. 根据前述权利要求中任一项的烛，其中各个不同燃料构件包含一种或更多种熔点在 45℃ 至 80℃ 的范围内的蜡，所述蜡的总量基于各燃料构件的总重量在 60wt% 至 98wt% 的范围内，优选在 65wt% 至 95wt% 的范围内，更优选在 70wt% 至 90wt% 的范围内。

9. 根据前述权利要求中任一项的烛，其中所述外部燃料部分包含一种或更多种熔点在 45℃ 至 80℃ 的范围内的蜡，所述蜡的总量基于所述外部燃料部分的总重量在 60wt% 至 98wt% 的范围内，优选在 65wt% 至 95wt% 的范围内，更优选在 70wt% 至 90wt% 的范围内。

10. 根据前述权利要求中任一项的烛，其中所述外部燃料部分和各个不同燃料构件包含一种或更多种蜡作为主要燃料组分，所述蜡选自石蜡、硬脂蜡、微晶蜡、加洛巴蜡、蜂蜡、棕榈蜡、大豆蜡、鲸蜡、地蜡及其混合物。

11. 根据前述权利要求中任一项的烛，其中各个不同燃料构件包含添加剂，所述添加剂选自乙烯醋酸乙烯酯、凡土林、聚乙烯蜡、聚（α-烯烃）、脂肪酸（优选 C12 至 C18 饱和羧
酸，更优选选自月桂酸、肉豆蔻酸、棕榈酸和/或硬脂酸）以及其混合物，所述添加剂基于各燃料构件的总重量优选在 0.5wt%至 20wt%的范围内，更优选在 1wt%至 10wt%的范围内。

12. 根据前述权利要求中任一项的烛，其中所述外部燃料部包含添加剂，所述添加剂选自乙烯醋酸乙烯酯、凡士林、聚乙烯蜡、聚（α-烯烃）、脂肪酸（优选 C12 至 C18 饱和羧酸，更优选选自月桂酸、肉豆蔻酸、棕榈酸和/或硬脂酸）以及其混合物，所述添加剂基于所述外部燃料部的总重量优选在 0.5wt%至 20wt%的范围内，更优选在 1wt%至 10wt%的范围内。

13. 根据前述权利要求中任一项的烛，其中所述外部燃料部和所述不同燃料构件中的每一个均包含相同的燃料，优选相同的蜡，更优选所述外部燃料部和所述不同燃料构件具有相同的蜡的组成。

14. 根据权利要求 1 至 12 中任一项的烛，其中固态的所述外部燃料部隐藏所述不同燃料构件中至少之一的三维形状，其中
所述外部燃料部和所述不同燃料构件中的所述至少之一彼此适应为使得在所述烛的燃烧期间，所述外部燃料部在所述不同燃料构件上方形成熔池，使得露出所述不同燃料构件的三维形状。

15. 根据权利要求 1 至 12 或 14 中任一项的烛，其中所述外部燃料部的熔融温度比所述不同燃料构件中的每一个的燃料的熔融温度低，优选在 3℃至 6℃。

16. 根据前述权利要求中任一项的烛，其中基本上，优选仅在所述烛的外表面上感知到所述外部燃料部的香味，
并且任选地在所述烛表面上可视觉感知到所述不同燃料构件的颜色中的一种、两种或更多种，优选使得所述烛具有大理石外观。

17. 根据前述权利要求中任一项的烛，其中所述外部燃料部在所述不同燃料构件的所有侧上的厚度为至少 2mm，优选至少 3mm，更优选在 4mm 至 20mm 的范围内，甚至更优选在 4mm 至 10mm 的范围内。

18. 根据前述权利要求中任一项的烛，其中在所述烛的任意部分中，所述不同燃料构件和所述外部燃料部的所述外表面之间的最短距离为至少 2mm，优选至少 3mm，更优选在 4mm 至 20mm 的范围内，甚至更优选在 4mm 至 10mm 的范围内。

19. 根据前述权利要求中任一项的烛，其中在各个不同燃料构件中的着色剂的总量基于各燃料构件的总重量在 0.001wt%至 0.5wt%的范围内，优选在 0.002wt%至 0.1wt%的范围内，更优选在 0.005wt%至 0.01wt%的范围内。

20. 根据前述权利要求中任一项的烛，其中所述不同燃料构件通过浇铸所述外部燃料部使而被所述外部燃料部完全包埋。

21. 根据前述权利要求中任一项的烛，其中所述烛为柱状烛或容器烛。

22. 一种制造优选根据前述权利要求中任一项的烛的方法，包括如下步骤：
(a) 提供
芯，
二个、三个或更多个不同燃料构件，其中所述不同燃料构件中的第一构件为第二构件具有不同的香味和不同的颜色，以及
液态或熔融状态的外部燃料部。
(b) 将所述不同燃料构件串于所述芯上，使得所述不同燃料构件中的第一构件与第二构件相邻，优选使得不同燃料构件以所述芯为中心，

(c) 将串于所述芯上的所述不同燃料构件置于模具或容器中，

(d) 优选在比所述外部燃料部的熔融温度高 5℃至 30℃的范围内、更优选 10℃至 30℃的范围内、最优先 10℃至 20℃的范围内的温度下，浇铸所述外部燃料部，使得所述外部燃料部部分地、优选全部地包埋串于所述芯上的两个、三个或更多个不同燃料构件，

(e) 使所述模具或容器中的所述外部燃料部固化，以及

(f) 如果使用模具，则从所述模具中移出所述烛。

23. 根据权利要求 22 的方法，其中将步骤 (c) 中串于所述芯上的所述不同燃料构件布置于所述模具或容器中，使得所述不同燃料构件和所述外部燃料部的所述外表面之间的最短距离为至少 2mm，优选至少 3mm，更优选在 4mm 至 20mm 的范围内，甚至更优选在 4mm 至 10mm 的范围内。

24. 根据权利要求 22 或 23 的方法可获得的或获得的烛。

25. 根据权利要求 1 至 21 或 24 中任一项的烛用于传达多颜色和 / 或多香味的体验的用途。

26. 一种传达多颜色和多香味体验的方法，包括如下步骤：
- 燃烧根据权利要求 1 至 21 或 24 中任一项的烛，
- 优选使得在所述烛的整个截面内形成所述外部燃料部的熔融燃料池。
多颜色的、多香味的烛

【0001】本发明涉及多颜色的、多香味的烛，其包含燃料固化块和埋于其中的芯，其中燃料固化块包含两个、三个或更多个不同燃料构件，所述燃料构件还于芯上并部分地或全部地埋于燃料固化块的外部燃料部中，其中所述不同燃料构件中的第一构件与第二构件相邻并且具有不同的香味和不同的颜色。

【0002】本发明还描述了生产该烛的方法。本发明还涉及该烛用于传达多颜色和／或多香味的体验的用途，以及相应的方法。

【0003】加香烛是一门具有悠久历史的技术。该技术的演变见证了烛从其简陋的功能型的形式到今天的多彩的、装饰性形式。

【0004】US 2008/0070174 公开了具有（可移动的）茶光烛的多层柱状烛。它还公开了一种烛，该烛具有固化蜡（其可为彩色的和／或有香味的）填充芯，以及数个环形层蜡（例如三种颜色－香味类型），其中每层熔融后与填充芯接触使其与填充芯融合。不同的颜色和／或香味的蜡环并不于芯上，而且根据 US 2008/0070174 的烛也不提供单独的或连续的不同香味的感知。特别地，当在其 US 2008/0070174 的烛表面上嗅闻时，所有的香味均可被感知。

【0005】US 6203313 提出了一种包含至少两种不同堆叠的蜡的烛，每个蜡构件具有限定于其中的通孔，以及自所述蜡的构造的通孔的芯。

【0006】US 6079975 教导了一种多层烛，其每层具有不同的香味，当烛燃烧时，所述香味将相互混合形成一种全新且不同的香气。此外，US 6079975 还描述了三层熔的制造，其中具有香味的第一烛部分由模具中获得，随之被置于第二个较大的模具中，然后填充具有第二香味的熔融的烛材料。随后将所述双层烛从模具中移出并插入第三个更大的模具中，然后加入具有第三香味的第三熔融烛材料。

【0007】US 2008/0081305 公开了一种从上方可见具有两个不同区域的烛，所述区域可具有不同的香味或不同的颜色。US 2008/0081305 还公开了制造烛中的一种方法，其包括制造含烛芯的固体内部或芯部的第一步。然后将待形成外部／体相的熔融燃料浇入具有合适尺寸的容器中。然后，将含芯的固体芯部插入包含熔融体相的容器中。

【0009】US 2007/0003895 涉及一种在单个烛中具有多种香味的烛。特别地，该烛包括在烛燃烧期间同时熔融的多个内部段。每个内部段包含不同的香味，使得烛燃烧将香味混合在一起并提供一种新的组合香味。根据 US2007/0003895 的烛可如下形成：首先形成具有高熔点的蜡的单独的内部段，然后按预先的布置将这些内部部分置于模具内部，其后将熔点较低的蜡浇入模具中。固化于内部段之间。内部段通过外部部分分隔开使得内部段保持隔离。内部段可以全部为相同颜色或者可以为相互不同的颜色，外部部分可以与内部部分中
的一个或更多个具有相同的颜色或不同的颜色。
[0010] 本发明的目的是提供一种优选以依次（连续的）方式来传达或赋予多感官体验的烛。特别地，所述烛在使用时燃烧期间传达多种、优选至少三种连续的不同香味感受、以及与所述香味感受相结合的至少两种优选三种或更多种不同的视觉、特别是颜色的感受。因而这种烛主要是同时提供一种香味和视觉感受。香味的改变应该伴有显著的视觉改变，优选为颜色及任选的另外的视觉信号。优选地，可在烛外表面或顶部感知到主要的或者是单独的一种香味（香味类型）而不是不同香味的混合。
[0011] 本发明涉及多种颜色、多香味的烛，其包含燃料固化块和埋于其中的芯，
[0012] 其中所述燃料固化块包含外部燃料部，以及串于芯上并且部分或全部埋入外部燃料部中的两个、三个或更多个不同燃料构件，
[0013] 其中
[0014] 所述不同燃料构件中的第一构件具有第一香味和第一颜色，以及
[0015] 所述不同燃料构件中的第二构件具有第二香味和第二颜色，
[0016] 其中所述第一和第二构件相邻，所述第一和第二香味不同并且所述第一和第二颜色不同。
[0017] 根据本发明的烛传达多种连续香味效果以及与香味效果相结合的、至少两种不同的视觉特别是颜色效果。
[0018] 燃料固化块的外部燃料部限定烛的外形。
[0019] 优选地，根据本发明的烛的燃料固化块的外部燃料部具有与所述第一香味和所述第二香味不同的香味。这种烛传达了至少三种不同的香味效果。
[0020] 在根据本发明的烛中，燃料固化块优选包含串于芯上的两个、三个或更多个不同燃料构件，所述燃料构件完全埋于燃料固化块的外部燃料部中。这种烛在烛燃烧期间依次传达至少三种不同的香味效果。根据本发明的烛在燃烧期间香味的混合在很大程度上或者基本上得到避免。
[0021] 虽然可以说，外部燃料部与不同燃料构件的香味混合是不可避免的，但是这种混合只在烛的燃烧期间发生在这种程度上，使得不同燃料构件中的香味的嗅觉特征得到明确表示，由此在本发明烛的燃烧期间产生明显的香味过渡。将不同燃料构件单独地并依次定位位于芯上，对确保这些不同燃料构件中的香味在燃烧期间依次强烈地表现出来是重要的。
[0022] 优选地，两个直接相邻的不同燃料构件均不含有相同香味，并且优选地，两个直接相邻的不同燃料构件均不含有相同颜色。
[0023] 在优选的实施方案中，根据本发明的烛包含
[0024] - 第三不同燃料构件，其具有第三香味和第三颜色，所述第三香味与所述第一和第二香味不同，并且第三颜色与第一和第二颜色不同，以及
[0025] - 任选的第四不同燃料构件，其具有第四香味和第四颜色，所述第四香味与所述第一、第二和第三香味不同，并且所述第四颜色与所述第一、第二和第三颜色不同，以及
[0026] - 任选的第五不同燃料构件，其具有第五香味和第五颜色，所述第五香味与所述第一、第二、第三和第四香味不同，并且所述第五颜色与所述第一、第二、第三和第四颜色不同，以及
[0027] 其中燃料固化块的外部燃料部优选具有与第三以及如果存在的第四和第五香味
不同的香味。
[0028] 这种烛连续地赋予三种、四种、五种、六种或更多种不同的香味效果。
[0029] 根据本发明的烛优选不具有无香味的燃料构件，特别是不具有无香味的蜡封。
[0030] 在根据本发明的优选烛中，不同燃料构件中的一个、两个、或全部具有通孔并且通过通孔连于芯上。
[0031] 本发明的不同燃料构件在尺寸和形状上不受限制，并且可通过连续的或不连续的方式连于芯上（即构件可邻接或分隔开）。
[0032] 不同燃料构件可采用动物、海生物（鱼、海星、贝类、蟹类）、蔬菜、水果（苹果、柠檬、橘子片、菠萝等）、花、心、太阳、月亮、星、几何形状（立方体、柱、棱锥、圆锥等）等形状。
[0033] 如芯串过蜡构件的通孔，则在不同燃料构件堆叠于芯上时，不同燃料构件可在（至少基本上）垂直于芯的方向上相对彼此横向移动。更优选地，将芯的尺寸调整为紧密地容纳在不同燃料构件的通孔中。
[0034] 在一个进一步优选的实施方案中，在根据本发明的烛中，所述不同燃料构件中的至少两个或更多个固定于芯，优选使得相邻的不同燃料构件的相邻面间隔开（即不邻接）。
[0035] 更优选不同燃料构件固定于芯，使得不同燃料构件沿芯不可移动，优选不同燃料构件与芯熔合。
[0036] 所述芯优选基本垂直地、优选垂直地延伸穿过烛和/或优选在烛中心。
[0037] 优选地，芯（通过通孔或不通过通孔）在不同燃料构件中相对于芯的轴中心地取向。
[0038] 如果不同燃料构件间隔开，则优选各个所述不同燃料构件之间的距离在1mm至20mm范围内，优选2mm以上，更优选3mm以上，甚至更优选4mm以上。在一些优选的实施方案中，所述各个不同燃料构件之间的距离在4mm至10mm的范围内。
[0039] 根据本发明的烛的不同燃料构件可优选地通过采用本领域已知方法，通过将液态或熔融的不同燃料构件组合物浇铸在期望形的模具中，或者将不同燃料构件的组合物压入希望形式的模具中而获得。
[0040] 烛制作常用的芯可用于本发明。多种类的芯均适用于本发明的烛。适用于根据本发明的各种烛的芯可得自公司如Heinz Verhaegh Corporation。
[0041] 与芯用途相关的关于燃烧性能的技术方面可得自Heinz Verhaegh Corporation，并且包含在附录的参考文献中。
[0042] 芯任选地用蜡涂覆或以使芯变硬，由此使得在烛制造期间更易于将芯置于需要的位
置。用蜡涂覆芯同样有助于填充可能存在于芯中的气穴以使得芯更平稳的燃烧。
[0043] 涂覆芯或对芯涂底漆尤其与罐装烛相关。在柱状烛中，熔池可从烛侧面溢出，而芯在烛内为固态的部分依然以直立的姿态挺立地保持。在罐装烛中，熔池保留，并且根据熔池的高度或深度，露出的芯可在熔池中过度弯曲以浸没自身，从而熄灭火焰。因此，涂覆在芯上的蜡通常具有比熔池温度更高的熔点。这个要求有助于使芯在熔池中保持其直立的姿态。通常，芯可分为以下主要类型：
[0044] 扁平芯。这些扁平编结成编织的芯，通常由三束纤维制成，在燃烧时非常稳定，并且在火焰中卷曲以实现自我修整效果。其为最常用的芯，并且在锥形和柱形烛中可广泛见到。
方形芯。这些结编或编织的芯在火焰中同样会弯曲，但其比扁平芯更为圆也略微更结实。其更优选用于蜂蜡并且可有助于抑制芯的粘结，其在含有某些类型的颜料和芳香材料时可发生。方形芯最常用于锥形和柱形应用中。

[0046] 含核芯，这些结编或编织的芯采用芯材料以在燃烧时保持芯直或直立。芯具有圆形截面，不同芯材料的使用提供了其在范围的圆性效果。最常见芯的芯材料为铅、纸、锌或锡。含核芯可以于罐装烛、柱状烛、许愿灯及祈祷烛。

[0047] 与现有技术的其中各色芯层均具有独立的可从表面嗅觉感知到的香味的层状芯相比，本发明使得在外部燃料部中具有附加的香味以及对于各燃料构件具有单独的香味。

[0048] 本发明的一个特定方面涉及燃料从不同燃料构件的扩散同时限制其香味释放程度，以免影响外部燃料部中的香味气味特征。通过控制工艺条件，燃料扩散以受控的方式发生，使得燃料扩散从不同燃料构件发生同时限制其香味释放的程度，以免影响外部燃料部中的香味气味特征。

[0049] 这里使用的术语“燃料扩散”不应理解为严格的物理化学意义上的。此处使用的“燃料扩散”涉及燃料迁移现象，由此燃料从较高燃料浓度区域移动到较低燃料浓度区域。因而，在本文中，术语“扩散”同样包含迁移现象。

[0050] 本发明使得能够在烛表面上产生彩色效果，而不过度影响外部燃料部的香味。优选地，由于外部燃料部浇铸在不同燃料构件上，所以得到的烛在表面上具有一致的平滑度，从表面上只能嗅觉感知到外部燃料部的香味。

[0051] 燃料扩散并迁移到外部燃料部的量还受限于外部燃料部在温度降至其熔融温度以下而固化之前的时间段。虽然有理由假定一定量的芳香物也在这个过渡时刻被提取，但是其并未构成足够的量以改变外部燃料部香味的嗅觉特征。如下列所详述的，在控制组成和过程参数时可获得该结果。

[0052] 烛中主要的芳香物扩散很大程度基于消耗的原理，即蜡在燃烧期间熔融，毛细作用意味着芳香物随着熔融的蜡释放，并且将燃烧的芯吸入其周围环境中。

[0053] 本发明无需特殊设计的烛模具，本发明的多颜色、多香味的烛的形状或尺寸不受限制。因而，本发明的烛也可具有圆锥形、球形、立方形、卵形等形状。

[0054] 本发明一个方面也涉及一种多颜色、多香味的烛，其中成品烛上的颜色层在一个单独的浇铸操作中形成并且每层具有不同的色调。在燃烧期间形成熔池时，可感知到不同燃料构件的形状，从而为消费者的体验增加视觉要素。

[0055] 在另一方面，本发明涉及制备外部燃料部的外表面具有层状外观的烛，其显示出强的和弱的色调，由此层状外观在一个单独的浇铸操作中形成，其表现为最终烛模制工艺时间的大幅减少。为使着色剂在烛外表面显现，使用足够量的着色剂，并且在外部燃料部的熔融相完全固化前通过有限程度的燃料扩散到达成品烛表面。

[0056] 本发明提供了一种简单、经济的方法以获得多种颜色、多香味的烛，而无需特别设计的模具和工艺步骤。所得烛在烛表面可具有层状外观或熔合的颜色。

[0057] 这里使用的“构件”“部分”或“段”涉及其中在构件、部分或段之间至少一个属性区别于其他的范围或区域。

[0058] 根据本发明的烛包含至少两种、优选三种或更多种不同的香味。一种香味可以是单独的芳香材料或其混合物（香料、香油、精油）。本发明使用的芳香材料可选自用于产生
香味的一大类香料。

0059 这里使用的术语“芳香物”、“香味”和“芳香材料”可交换使用，涉及包含在烛燃料中并释放到气氛/环境中的具有香味的材料。

0060 在一个优选的实施方案中，在本发明的烛中外部燃料部和各个不同燃料构件中的芳香材料的总量基于外部燃料部各燃料构件的总重量在0.1wt%至20wt%的范围内，优选在0.5wt%至10wt%的范围内。

0062 优选来自天然原材料如精油、浸膏及净油及香树脂的提取物选自：香树油、当归籽油、当归根油、当归香油、陈香油、罗勒油、肉豆蔻油、月桂油、艾蒿油、安息香树脂、香柠檬油，蜂蜡净油、槐木焦油、苦杏仁油、香草芹油、布枯叶油、卡鲁瓦油、杜松油、蓖麻油、樟脑油、依兰油、小豆蔻油、香草木油、肉桂油、金合欢净油、海狸香净油、雪松叶油、柏木油、水犀油、香茅油、柠檬油、香脂油、苍果油、广木香根油、枯茗油、柏树油、印蒿油、苏蓬草油、维罗籽油、brouits香净油、槐苔净油、檀香醇油、龙蒿油、柠檬桉油、桉树叶油、熏衣草油、冷杉油、白松香油、白松香树脂、香叶油、圆柚油，愈创木油，古芸香胶油、蜡菊净油、蜡菊油、姜油、细辛根净油、鸢尾根油、茉莉净油、菖蒲油、蓝甘菊油、罗马甘菊油、胡萝卜籽油、香茅木油、松叶油、薄荷油、葛缕子油、岩蔷薇油、岩蔷薇净油、岩蔷薇树脂、杂薰衣草净油、杂薰衣草油、薰衣草净油、薰衣草油、柠檬草油、柑叶当归油、白柠檬蒸馏油、白柠檬压缩油、芳樟油，山苍子油、月桂叶油、肉豆蔻油，牛至油、柑橘油、香厚壳桂皮油、含羞草净油、黄葵油、鼠尾草油、肉豆蔻油，没药净油、没药油、桃金娘油、丁香油、丁香花油、橙花油、乳香净油、乳香油，愈伤草油、橙花净油，橙皮油，牛至油，东印度香叶油，广藿香油，紫苏子油，秘鲁香脂油、欧芹叶油、欧芹籽油、苦菊叶油、薄荷油，辣椒油，皮门塔油，松树油，甜薄荷油，玫瑰净油，花梨木油，玫瑰油，迷迭香油，达尔马提亚鼠尾草油，西班牙鼠尾草油，檀香木油，芹菜籽油，穗薰衣草油，八角油，苏合香油，万寿菊油，冷杉叶油，茶树油，松节油，百里香油，薰衣草净油，晚香玉净油，香草提取物，紫罗兰叶净油，马鞭草油，岩兰油，刺柏油，发酵时的酵母油，苦艾油，冬青油，依兰油，海索草油，灵猫香油，肉桂叶油，肉皮油。

0063 在一个优选的实施方案中，根据本发明的烛的含有一种或多种芳香材料可接受的载体，所述载体优选选自：邻苯二甲酸二乙酯、柠檬酸三乙酯，肉豆蔻酸异丙酯和/或苯甲酸甲酯。

0064 优选使用相对于芳香物组合物的一定量的载体以有助于外部燃料部和各个不同燃料构件在燃料特别是蜡中的分散。优选地，芳香物载体总重量和芳香材料总量的重量比在1：10至10：1的范围内，优选在1：5至5：1的范围内，更优选在1：3至3：1的范围内。

0065 在另一个优选的实施方案中，根据本发明的烛的含有一种或多种芳香材料，所述芳香材料的Clog P值为至少3，优选为至少4，更优选为至少5。

0066 更优选地，根据本发明的烛至少含有一种、两种、三种、四种、五种、六种、七种、八种或更多种选自以下的芳香材料（这里在一些情况下给出常规工业产品名和不同公司的
注册商标：

[0067] α-己基肉桂醛、2-异丁酸苯氧乙酯 (Phenirat)、二氢月桂烯醇 (2,6-二甲基-7-辛烯-2-醇)、二氢茉莉酚酸甲酯 (优选顺式异构体的重量含量 > 60) (Hedione, Hedione HC)、4,6,6,7,8-六甲基-1,3,4,6,7,8-六氢环戊二烯并 [g] 苄并吡喃 (Galaxolid)、四氢芳樟醇 (3,7-二甲基辛-3-醇)、乙基芳樟醇、水杨酸苄酯、2-甲基-3-(4-叔丁基-苯基) 丙醛 (铃兰醛)、肉桂醇、4,7-喹亚甲基-3a,4,5,6,7,7a-六氢-5-茚基乙酸酯和 / 或 4,7-亚甲基-3a,4,5,6,7,7a-六氢-6-茚基乙酸酯 (Herbaflorat)、乙酸苯仲乙酯 (1-苯基乙酸酯)、八氢-2,3,8,8-四甲基-2-萘乙醇和 / 或 2-乙酮基-1,2,3,4,6,7,8-八氢-2,3,8,8-四甲基萘 (Iso E Super)、水杨酸苯酯、4-叔-丁基环己基乙酸酯 (Oryclon)、2-叔-丁基环己基乙酸酯、α-紫罗兰酮 (4-(2,2,6-三甲基-2-环己稀-1-基)-3-丁烯-2-酮)、香豆素乙酸松油酯、4-(4-羟基-4-甲基戊基)-3-环己烯羧基醛 (新铃兰醛)、α-戊基肉桂醛、(E)-和 / 或 (Z)-3-环己基环十五碳 -5-烯酮 (Muscenone)、15-十碳 -11-烯内酯和 / 或 15-十碳 -12-烯内酯 (Globalide)、15-环十五内酯 (大环内酯类)、1-5,6,7,8-四氢-3,5,5,6,8,8-六甲基-2-萘基乙酮 (吐纳麝香)、2-异丁基-4-甲基四氢-2H-吡喃-4-醇 (Florol)、2-乙基-4-(2,2,6-三甲基-3-环己烯-1-基)-2-丁烯-1-醇 (Sandelol)、薄荷醇 (优选左旋薄荷醇或外消旋薄荷醇，特别优选左旋薄荷醇)、茴香脑、香叶醇、橙花醇、芳樟醇、香茅醇、香茅醛、羟基香茅醛、乙酸芳樟酯、2-苯乙基酮、2,2-二甲基-3-(3-甲基苯基)-丙醇 (Majantol)、玫瑰氧化物 (4-甲基-2-(2-甲基-1-丙烯基) 四氢吡喃)、庚酸烯丙酯、4-甲基苯乙酮、特木倍醇 (1-(2,2,6-三甲基环己基)-己-3-醇)、丙癸基丙烯醇 (Floropal) (2,4,6-三甲基-4-苯基-1,3-二烯烷)、苯基丙烯醇、甲基肉桂酸, 3a, 6, 6, 9-四甲基十二氢萘并 [2,1-b] 吡喃 (Ambroxid)、苯基乙酸酯, 甜瓜醛, 薄荷酮, 异薄荷酮, 乙酸戊酯, 乙酸异戊酯, 香 -己烯醇, 顺式 - 己烯醇, 乙酸己酯, 丁酸异戊酯, 丁酸丁酯, 桉叶油素, 新洋茉莉醛, 十一烷双酸乙稀, 2,6-壬二烯醇。

[0068] 选自以上的优选在 1013 毫巴下具有 250℃或更高的沸点的芳香材料的总量基于根据本发明的组合物或产品中芳香材料的总量优选为至少 10wt %，更优选至少 20wt %。

[0069] 据认为常用于空气清新剂的芳香物，优选为烛设计的如 Maxessences™ 芳香物 (Symrise) 特别适用于本发明。

[0070] 烛芳香物的制造和组成在 US 7288515 有描述，在此通过引用将其全部内容并入本文。

[0071] 优选地，外部燃料部的总质量与不同燃料构件的总质量的重量比在 20:1 至 1:2 的范围内，更优选在 15:1 至 1:1 的范围内，甚至更优选在 10:1 至 2:1 的范围内，最优选在 8:1 至 3:1 的范围内。如果不同燃料构件的总质量过小，则多感官体验不足以显著。如果外部燃料部的总质量过小，则特别是在生产烛期间可能产生不希望的程度的香味和 / 或颜色的混合。此外，由于相对于不同燃料构件的表面来说外部燃料部的厚度不足，所以在烛的外表面可感知到多于一种的香味。

[0072] 通常，所有常用于烛制作的蜡（天然的或合成的）均适合于本发明的上下文中。

[0073] 根据本发明，优选如烛 ; 各个不同燃料构件包含一种或更多种蜡，所述蜡在 45℃至 80℃的范围内，优选在 50℃至 70℃的范围内，更优选在 50℃至 65℃的范围内，优
选所述蜡的总量基于各燃料构件的总重量在 60wt％至 98wt％的范围内，更优选在 65wt％至 95wt％的范围内，甚至更优选在 70wt％至 90wt％的范围内。

[0074] 根据本发明，优选如下烛；外部燃料部包含一种或更多种蜡，所述蜡的熔点在 45℃至 80℃的范围内，优选在 50℃至 70℃的范围内，更优选在 50℃至 65℃的范围内，优选所述蜡的总量基于外部燃料部的总重量在 60wt％至 98wt％的范围内，更优选在 65wt％至 95wt％的范围内，甚至更优选在 70wt％至 90wt％的范围内。

[0075] 优选的蜡选自石蜡、硬脂蜡、微晶蜡、加洛巴蜡、蜂蜡、棕榈蜡、大豆蜡、鲸蜡、地蜡及其混合物。

[0076] 商业的蜡烛或石蜡的混合物也可用于本发明。适合的品级可自供应商如 Reed Wax。天然蜡如棕榈蜡可自供应商如 Megasuryamas（印度尼西亚）或 Lipidchem（马来西亚）。

[0077] 在一个优选的实施方案中，使用两种或更多种不同的蜡，其中优选所述蜡中的一种为地蜡。

[0078] 根据本发明，地蜡在柱状烛中特别有用，这是由于其增加了烛的（蜡的）硬度，使得烛更稳定、更耐用而且其同样改变了烛燃烧时的烛燃烧速度及火焰行为。当外部燃料部的主要成分为石蜡时，地蜡特别使得烛的脱膜更加容易。

[0079] 因而，在一个优选的实施方案中，根据本发明的烛为柱状烛，其中外部燃料部（及任选的不同燃料构件中的一个、两个或更多个）包含地蜡，优选地蜡以及一种或更多种石蜡。

[0080] 在瓶装烛中，蜡通常具有较低的熔点并且倾向于粘附或粘在瓶壁上。在这里，“粘附性”是用于瓶装烛的蜡的正向的期望属性。

[0081] 烛添加剂通常可用作蜡的结晶改性剂，以帮助控制烛燃料的熔融温度、硬度、收缩、光泽和不透明度，特别结合上面提及的蜡。例如，蜡的结晶改性剂通常用于帮助将芳香物固定在燃料中，特别蜡，以防止芳香物从蜡中渗出。

[0082] 烛添加剂为优选包含于烛燃料中的成分，其量通常相比较小以提供一些附加的功能性益处。在聚乙烯蜡和聚-α-烯烃的情况下，可以说它有助于将芳香物固定在烛组合物中，特别当芳香物的剂量高于 3％由此在室温下在烛表面会形成油滴或小滴。无论是经济的还是实用性的原因，烛添加剂均不被考虑作为主要燃料源。

[0083] 优选地包含在根据本发明的烛中的优选烛添加剂选自乙烯醋酸乙烯酯、凡士林、聚乙烯蜡、聚-α-烯烃（α-烯烃聚合物和共聚物；如 Wybar 103、Wybar 260（Baker Petrolite）、脂肪酸（优选 C12 至 C18 饱和羧酸，更优选选自月桂酸、肉豆蔻酸、棕榈酸和/或硬脂酸）以及其混合物。

[0084] 在聚乙烯蜡和聚-α-烯烃具有比主要燃料源高的熔点的情况下，其在辅助稳定火焰或燃烧速度上是有用的。不管其熔点如何，石蜡更易通过毛细作用以液态沿烛芯向上移动。因此，全部用石蜡制成的烛比用石蜡结合其他蜡和烛添加剂制成的烛燃烧得快。

[0085] 在本发明的上下文中，烛添加剂优选地包含在根据本发明的烛中，但并非必要地存在于所有的情形中。

[0086] 根据本发明优选以下烛：其中各个不同燃料构件包含选自如下的添加剂；乙烯醋酸乙烯酯、凡士林、聚乙烯蜡、聚（α-烯烃）、脂肪酸（优选 C12 至 C18 饱和羧酸，更优选地
说明书

选自月桂酸、肉豆蔻酸、棕榈酸和/或硬脂酸）及其混合物，基于各燃料构件的总重量优选在 0.5wt% 至 20wt% 的范围内，更优选在 1wt% 至 10wt% 的范围内。

【0087】根据本发明优选以下组分：外部燃料部包含选自如下的添加剂：乙烯基酸乙稀酯、凡士林、聚乙烯蜡、聚（α-烯烃）、脂肪酸（优选 C12 至 C18 饱和羧酸，更优选地选自月桂酸、肉豆蔻酸、棕榈酸和/或硬脂酸）以及其混合物，基于外部燃料部的总重量优选在 0.5wt% 至 20wt% 的范围内，更优选在 1wt% 至 10wt% 的范围内。

【0088】聚-α-烯烃优选用于根据本发明的蜡中以增加蜡烛体中芳香物的量（较高的芳香物的量，避免/减少芳香材料迁移至蜡烛外表面，“发汗”），聚-α-烯烃还增加蜡的光泽。

【0089】在一个优选的实施方案中，基于本发明的蜡中，外部燃料部和所述不同燃料构件中的每一个包含相同的燃料，优选相同的蜡，更优选外部燃料部和不同燃料构件具有相同的燃料组成，特别是相同的蜡组成。尽管在本发明中可有效地引入使用不同组分的蜡，但是使用同性组分的蜡的一个优势是维持燃烧期间火焰状态的稳定。

【0090】在根据本发明的蜡的另一个优选实施方案中，固体外部燃料部隐藏所述不同燃料构件中至少之一的三维形状，其中外部燃料部和所述不同燃料构件中的至少一个，优选两个、三个或更多个彼此此应为使得在蜡烛燃烧期间，由于外部燃料部在所述不同燃料构件上方形成熔池，使得露出所述不同燃料构件的三维形状。

【0091】因而，根据本发明的蜡在燃料期间，优选地外部燃料部和不同燃料构件中一个或更多个通过燃烧蜡烛的熔池从顶部及从侧面是清楚可见的（“3D 效果”）。优选地，由于外部燃料部和不同燃料构件中一个或更多个的熔融温度不同，所以所述不同燃料构件中的一个、两个、三个或更多个的三维形状以浮雕（relief）的形式变得可见，即浅浮雕（浮雕）。

【0092】该 3D 效果从透视图中可尤其很好地感受到，特别是从相对于蜡烛 45° 角处，优选地当燃烧所述蜡烛使得在蜡的整个横截面上形成来自外部燃料部的熔融燃料池时，熔融燃料池的高度优选为 5mm, 更优选 10mm，所述熔池接触优选露出至少一个不同燃料构件的整个横截面。

【0093】在根据本发明的蜡的另一优选实施方案中，外部燃料部的熔融温度比所述不同燃料构件中的每一个的燃料的熔融温度低，优选低 3℃ 至 6℃。在使用具有上述范围内的熔融温度差异的燃料特别是蜡时，上面提及的“3D 效果”尤其明显。

【0094】如果使用具有熔融范围的燃料或蜡，则通过熔点的加权平均值计算使用的燃料或蜡的熔点。例如，如果燃料组合物由 90wt% 熔点（m.p.）为 58℃ 的燃料和 10wt% 熔点（m.p.）为 60℃ 的燃料组成，则加权平均熔点为 58.2℃。如果使用具有 52℃ 至 55℃ 的熔点的蜡，则认为所述蜡具有计算的平均熔点 53.5℃。

【0095】在另一个优选的实施方案中，根据本发明的蜡，基本上优选仅仅在蜡外表面上感知到外部燃料部的香味。

【0096】在根据本发明的蜡的另一个优选的实施方案中，在蜡的外表面上可视觉感知到不同燃料构件中的一种、两种或更多种颜色，优选使得蜡具有大理石的（具大理石纹脉的）外观。

【0097】在本发明的一个优选的蜡中，在蜡外表面只能嗅觉感知到一种香味，只有在蜡燃烧期间，才感知到与各个不同燃料构件相关的香味。如果通过浇铸所述外部燃料部，即将液态或熔融的外部燃料部浇在不同燃料构件之上和周围以将不同燃料构件完全埋置使得根
据本发明的原中不同燃料构件完全埋于外部燃料物中，则特别有效地实现这点。

【0098】当温度高于外部燃料部的熔点不高于30℃，优选在5℃至30℃的范围内，更优选在10℃至30℃的范围内，最优选在10℃至20℃的范围内时，液态或熔融的外部燃料部优选地浇铸（浇）在不同燃料构件之上。

【0099】浇注地选用不同燃料构件的熔点不高于30℃，优选在5℃至30℃的范围内，更优选在10℃至30℃的范围内，最优选在10℃至20℃的范围内时，液态或熔融的外部燃料部优选地浇铸（浇）在不同燃料构件之上。

【0100】浇注温度很重要。根据本发明的一个优选的实施方案，如果外部燃料物在刚刚高于其熔点下例如高于其熔点2℃至3℃下浇铸，则熔融的燃料将在浇铸于模具中之后在短时间内硬化，通常没有足够的时间使得不同燃料构件中的颜色扩散到炉外表面到需要的厚度。根据本发明的一个优选的实施方案，如果外部燃料物在刚刚高于其熔点下浇铸，还可能发生不同燃料构件没有完全被外部燃料物隐藏，或者外部燃料物可能不具有需要的足够的厚度。

【0101】在高于外部燃料部熔点30℃或更高时，存在更长的时间使燃料块通过冷却至室温而硬化。该延长的时间段使得不同燃料构件的外表面熔融至显著的程度。在下面给出的具有海星形状的不同燃料构件的例子中，海星最易受损的区域为其臂状物突出的边缘。一旦这些突出的边缘熔融掉，海星的形状（即轮廓和/或三维形状）受到不利影响。当燃料物形成熔池时，海星的形状不会非常明显。根据本发明的一个优选实施方案，对不同燃料构件形状上的所述不利影响可被最小化，即大部分或完全消除。

【0102】在根据本发明的另一个优选的实施方案的灼中，外部燃料物在不同燃料构件的所有侧边的厚度为至少2mm，优选至少3mm，更优选在4mm至20mm的范围内，甚至更优选在4mm至10mm的范围内。

【0103】在根据本发明的另一个优选的实施方案的灼中，在灼的任何部位，不同燃料构件和外部燃料物的外表面之间的最短距离为至少2mm，优选至少3mm，更优选在4mm至20mm的范围内，甚至更优选在4mm至10mm的范围内。

【0104】因此，不同燃料构件的外表面和燃料物内壁或底的内部直径之间的最短距离为至少2mm，优选至少3mm，更优选在4mm至20mm的范围内，甚至更优选在4mm至10mm的范围内。

【0105】在一个特别优选的实施方案中，本发明涉及一种多颜色、多香味的灼，包含燃料固化块和埋于其中的芯，其中所述燃料固化块包含外部燃料物以及烧于芯上并且全部埋于外部燃料物中的两个、三个或更多不同燃料构件，其中

【0106】所述不同燃料构件中的第一构件具有第一香味和第一颜色，并且

【0107】所述不同燃料构件中的第二构件具有第二香味和第二颜色，

【0108】燃料固化块的外部燃料物具有与所述第一和所述第二香味不同的香味，

【0109】其中外部燃料物和所述不同燃料构件中的每一个包含一种或更多种蜡，所述蜡具有50℃至65℃的范围内的熔点，其量基于相应的燃料构件的总重量为65wt%至95wt%，

【0110】以及

【0111】其中在本发明的灼中，外部燃料物及所述不同燃料构件中的每一个中的芳香材料的总量基于外部燃料物或各燃料构件的总重量在0.5wt%至10wt%的范围内，

【0112】所述外部燃料物和各个不同燃料构件优选另外包含一种或更多种载体，所述载体
选自邻苯二甲酸二乙醇酯和/或肉豆蔻酸异丙酯，

[0114] 以及

[0115] 其中外部燃料部在不同燃料构件所有侧上的厚度在4mm至20mm的范围内，优选在4mm至10mm的范围内。

[0116] 在本发明的上下文中，优选可在油中分散的和可溶于油的染料。

[0117] 合适的品级可得自Clariant的Fat系列，例如Fat棕、Fat蓝、Fat黄等。

[0118] 染料或颜料属于着色剂，其可用于本发明的固态、着色、成形的蜡基物品中。荧光着色剂也可用作本发明的着色剂。特别优选可溶于油的染料。

红 91 (C. I. Solvent Red 91)、索引号：溶剂红 164 (C. I. Solvent Red 164) 和索引号：溶剂
蓝 98 (C. I. Solvent Blue 98)。

[0121] 在烛燃料在一段长时间内保持在或高于所述燃料的熔融温度下的制造过程中，热
降解是一个主要担心的问题。通常向烛燃料中添加抗氧化剂和紫外吸收剂作为稳定剂以防
止 (光) 降解、变质和/或变色，特别是在烛的制备和储藏期间。此外，香味烛可能会在制
备期间和烛燃料期间，由于暴露在热和光之下而遭受不希望有的香味特征变化。

[0122] 合适的紫外吸收剂为，例如，有机紫外吸收剂，其来自一类化合物，包含 4- 氨基苯
甲酸及其衍生物、水杨酸衍生物、二苯甲酮衍生物、二苯甲酰甲烷衍生物、二苯基丙烯酸酯、
3- 吡啶 -4- 基丙烯酸及其酯、苯并吡喃衍生物、亚苯基二酸酯衍生物，聚合物紫外吸收剂
含有一种或更多种有机硅自由基、肉桂酸衍生物、樟脑衍生物、三苯胺基 -s- 三嗪衍生物、
2- 羟基苯基苯并三唑衍生物、苯基苯并吡啶酸衍生物及其盐、邻氨基苯甲酸薄荷基酯、苯
并三唑衍生物、吲哚衍生物。

[0123] 本发明的上下文中，其它适合的紫外吸收剂包括在 US 4260732 和 US4404257 中描
述的二苯甲酮衍生物、苯并三唑衍生物、苯甲酸酯、水杨酸苯酯、巴豆酸的衍生物、丙二酸酯
和氨基丙烯酸酯，以及在 US 5439958 中公开的哌啶化合物，以及在 WO 2000/022037 中描
述的紫外吸收剂。

[0124] 当使用时，优选紫外吸收剂的添加水平为蜡的约 0.01wt％至约 0.5wt％。例如，可
期望添加 UV (“紫外稳定剂”) 以帮助保护着色剂免受紫外降解。

[0125] 合适的抗氧化剂在 US 7220288 及其中引用的已有技术中有述。

[0126] 优选的抗氧化剂为叔丁基氢醌、正十八烷基 3,5-二叔 - 己基 -4- 羟基苯甲酸酯、
丁基羟基苯甲酸、苯酚二亚磷酸酯、丁基化羟基苯甲酸酯和磷酸酯化合物。所有的抗氧化
剂均为市售。优选地，根据本发明的烛中（一种或更多种）抗氧化剂的总量在 0.015wt％
至 2.5wt％的范围内，更优选在 0.1wt％至 0.75wt％的范围内并且最优选在 0.2wt％至
0.5wt％的范围内，每种情况下均基于蜡的总重量。

[0127] 除芳香材料之外，外部燃料部和/或不同燃料构件中的一个、两个或更多个可还
包含挥发性材料。

[0128] 还可在本发明的烛中包含挥发性臭味冲冲剂或挥发性气味中和材料，如防臭味芳
香材料或气味中和香薰材料。

[0129] 根据本发明的烛还可包含驱虫剂。

[0130] 优选地，根据本发明的烛为柱状烛或容器烛。

[0131] 本发明的烛也可置于容器中。所述容器可以是任何适合于保持烛的容器。容器可
包含任何数量的不同材料，例如但不限于熔点高于约 100℃的聚合物（包括但不限于聚
对苯二甲酸乙二醇酯、聚碳酸酯和聚甲基丙烯酸甲酯）、以及优选的玻璃、金属、陶瓷或其组
合。烛容器可以是任何尺寸或形状。

[0132] 在一个优选的实施方案中，容器由透明材料制成，优选由透明的（任选着色的）、
更优选透明的玻璃或聚合物制成。

[0133] 之前或之后提及的与根据本发明的烛相关的（尤其）优选的方面和实施方案优选
地与之前或之后提及的根据本发明的烛相关的其他（尤其）优选的方面和实施方案结合。

[0134] 之前或之后提及的与根据本发明的烛相关的（尤其）优选的方面和实施方案也应
用于（尤其）优选的根据本发明的用途和方法中。

[0135] 本发明不限于专门的烛模具，各种形式的烛制备的常用装置均可使用。除不同的烛之外，本发明还可用于容器等。

[0136] 根据本发明的烛可不使用特别设计的模具而铸造，形状或尺寸不受限制。

[0137] 本发明还涉及制备的方法，优选地根据一个或更多个（优选的）实施方案来说明。本发明优选的烛，包括如下步骤：

[0138] (a) 提供芯。

[0139] (b) 将所述不同燃料构件串于芯上，使得所述不同燃料构件中的第一构件和第二构件具有不同的香味和不同的颜色，以及

[0140] 液态或熔融态的外部燃料部。

[0141] (c) 将所述芯上的不同燃料构件置于模具或容器内。

[0142] (d) 优选在比所述外部燃料部的熔融温度高 5℃至 30℃的温度的范围内，更优选在 10℃至 30℃的范围内，优选在 10℃至 20℃的温度的范围内浇铸所述外部燃料部，使得内部燃料部分地，优选全部地隐藏于芯上的不同燃料构件中的两个、三个或更多个。

[0143] (e) 使模具或容器中的外部燃料部固化，以及

[0144] (f) 如果使用模具的话，将烛从模具中移出。

[0145] 优选在不高于外部燃料部熔点 30℃的温度下、优选在 10℃至 20℃的范围内，将液态或熔融的外部燃料部浇铸（浇）在不同燃料构件之上。在该温度的范围内，获得了根据本发明烛的外部燃料部的最佳燃料扩散结果。在所述温度的范围内浇铸外部燃料部，在避免不同燃料构件过度变形的意义上，生成缆上的最佳燃料扩散效果和颜色效果，从而确保不同燃料构件的外形（轮廓）和三维形状在烛燃烧期间在视觉上不同并可很好地感知到。

[0146] 在不高于不同燃料构件熔点 30℃的温度下、优选在 10℃至 20℃的范围内，优选将液态或熔融的外部燃料部浇铸（浇）在不同燃料构件之上。

[0147] 优选地，在根据本发明的方法中，将步骤 (c) 中串于芯上的不同燃料构件置于模具或容器中，使得不同燃料构件和外部燃料部的外表面之间最短的距离为至少 2mm，优选在 3mm，更优选在 4mm 至 20mm 的范围内，甚至更优选在 4mm 至 10mm 的范围内。

[0148] 本发明还涉及一种根据本发明的方法可获得的或获得的烛。

[0149] 本发明还涉及根据本发明的烛用于传达（赋予）一种多颜色和/或多香味的体验的用途。

[0150] 本发明还涉及一种传达（赋予）多颜色和多香味体验的方法，包括如下步骤：

[0151] - 燃烧根据本发明的烛。

[0152] - 优选使用于整个烛横截面上形成外部燃料部的熔池。

[0153] - 更优选持续燃烧所述烛 30 分钟以上，优选一小时以上，更优选三小时以上。

[0154] 参照附图 1 至 3，现在将更详细地说明本发明，其中

[0155] 图 1 为根据本发明的多颜色、多香味烛的一个非限制性实例的示意性截面图；
图 2 为根据本发明的多颜色、多香味烛的另一个非限制性实例的示意性立体图；
图 3 为根据本发明的多颜色、多香味烛的另一个非限制性实例的示意性的俯视图。
参考图 1，提供具有芯 10 的多颜色、多香味的烛 1。烛 1 包含外部燃料部 20 和四个不同燃料构件 51、52、53 和 54。烛 1 在一个实施方案中被制成柱状烛，在另外一个实施方案中为容器烛。
在一个实施方案中，所述不同燃料构件中的第一构件 (51) 具有第一香味（玫瑰）、第一颜色（红色）和第一形状（花），所述不同燃料构件中的第二构件 (52) 具有第二香味（海风）、第二颜色（橙色）和第二形状（海星），所述不同燃料构件的第三构件 (53) 具有第三香味（柠檬 - 青柠）、第三颜色（绿黄色）和第三形状（柠檬），所述不同燃料构件的第四构件 (54) 具有第四香味（蓝莓）、第四颜色（蓝色）和第四形状（柱形）。外部燃料部 20 不含任何着色剂（即外部燃料部 20 由于使用的石蜡而具有不透明的白色的外观）且具有第五香味（薰衣草）。
在图 1 中，所有不同燃料构件均固定于芯 10。不同燃料构件 51 和 54 相对于相邻的不同燃料构件 52 和 53 的相邻面分别间隔开。与此相反，相邻的不同燃料构件 52 和 53 相对于它们共有的相邻面以连续的方式固定于芯 10 上。
图 1 还示出四个不同燃料构件 51、52、53 和 54 被外部燃料部 20 所完全包围，并且四个不同燃料构件沿芯轴的高度（厚度）可变。在图 1 的实施方案中，在四个不同燃料构件中，不同燃料构件 51 具有最小的高度，而不同燃料构件 53 具有最大的高度。
当点燃芯 10 时，烛 1 的燃烧阶段开始。在燃烧阶段期间，外部燃料部 20 和随后的不同燃料构件 (51, 52, 53, 54) 将熔融并燃烧。
参考图 2，根据本发明提供容器烛 500，包含容器材料 100 和多颜色、多香味的烛 1。所述烛 1 包含芯 10、不同燃料构件 52 及外部燃料部 20。容器 100 为透明玻璃瓶。
在图 2 中，通过火焰 200 点燃芯 10，这使得外部燃料部 20 部分熔融，从而在整个烛横截面形成顶部外部燃料部 20 的熔融燃料池（液态）。当顶部燃料部分 20 为液态时，外部燃料部 20 的较低部位仍为固体。从而，在烛 1 燃烧期间，外部燃料部 20 和不同燃料构件 52 可通过燃烧的烛外部燃料部 20 的熔池清晰可见（“3D 效果”）。由于外部燃料部 20 和不同燃料构件 52 的熔融温度不同，不同燃料构件 52 的三维形状，本案例中为五角星形，以浮雕的形式变得可见。
为了清楚起见，应当注意另一不同燃料构件 53 固定于芯 10 上并置于容器 100 底部附近。由于不同燃料构件 53 完全埋于固体外部燃料部 20 中，且外部燃料部 20 的熔池（还）未到达不同燃料构件的上表面，所以从图 2 的透视图中看不到所述不同燃料构件 53。
图 3 中的俯视图对应于图 2 中火焰刚刚熄灭时的烛。图 3 示出具有芯 10 的多颜色、多香味的烛 1。不同燃料构件 52 的外形可通过在整个烛的横截面内延伸的外部燃料部 20 的熔池清楚明显地看到。
本发明优选的实施方案和更多的方面记载于所附的专利权利要求书和下面的实施例中。
实施例更详细地描述了本发明，而非对权利要求保护范围进行限制。除非另有说明，否则所有的数据，特别是数量和百分比，均涉及重量。
[0171] 在如下实施例中，对于不同的 / 柱状烛，使用扁平编织的棉质芯，而对于容器（罐状）烛，使用来自 Heinz Verhaegh 公司的 Stabilo 系列芯。

[0172] 在实施例中，使用了油溶性染料的溶液。使用邻苯二甲酸二乙醇酯、肉豆蔻酸异丙酯、石蜡油或液体的矿物油作为溶剂。

[0173] 实施例 1

[0174] 在本实验中，具有 5cm 直径的不同燃料构件通过穿过烛模具中心的芯不连续地保持在一起。烛模具具有 6cm 的内部直径并且形状为柱形。

[0175] 第一烛在 70°C 至 80°C 的温度下浇铸，第二烛在 80°C 至 90°C 的温度下浇铸。无色的外部燃料部对于第一烛熔融至温度 70°C 至 80°C 并且对于第二烛熔融至温度 80°C 至 90°C。然后熔融的外部燃料部在各自的烛模具中直到完全覆盖不同燃料构件。一旦烛完全固化后，将其从烛模具中移出。

[0176] 在 80°C 至 90°C 浇铸完成的烛比在 70°C 至 80°C 浇铸完成的烛表现出更强的层状颜色色调。两个烛均表现出层状颜色色调的变化（蓝、绿和红），赋予多层烛的外观强的和弱的颜色色调。这证明在较高温度下，发生了更明显的不同燃料构件的染料扩散。同样地，由于外部燃料部熔体积升的更大的时间意味着萃取出的染料有更长的时间扩散在烛表面。

[0177] 不同燃料构件的蜡的组成与外部燃料部的相同。

[0178] 虽然认识到更高的浇注温度在成品烛上提供更强的颜色显示，但是当浇注温度比蜡的熔融温度高 30°C 时，颜色倾向于融合形成二次色。

[0179] 不同燃料构件的配方

<table>
<thead>
<tr>
<th>成分</th>
<th>供应商</th>
<th>wt.%</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>石蜡（熔点 60°C-62°C）</td>
<td>Epicem</td>
<td>84</td>
<td>部分 A</td>
</tr>
<tr>
<td>Vybar 103（聚 α烯烃）</td>
<td>Baker Petrolite</td>
<td>1</td>
<td>(70°C-80°C)</td>
</tr>
<tr>
<td>硬脂酸</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>地蜡</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>油溶性染料 (1%溶液)</td>
<td></td>
<td>0.5</td>
<td>部分 B</td>
</tr>
<tr>
<td>芳香物 (薄荷、玫瑰或海洋)</td>
<td></td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>总量</td>
<td></td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

[0180] 程序：

[0181] 1) 熔融部分 A 的成分。混匀。（70°C 至 80°C）

[0182] 2) 相应添加部分 B 的成分。混匀。

[0183] 3) 将熔融体浇铸在模具中以形成不同燃料构件。

[0184] 4) 如果不同燃料构件需要通过芯保持，则可通过插入望向芯直径的小柱棒或类似物体来形成穿过不同燃料构件的中空的区域。产生的中空区域无需位于不同燃料构件的中心。
5) 如果需要，烛芯可以需要的空间间隔通过固化的着色的不同燃料构件。

外部燃料部的配方

<table>
<thead>
<tr>
<th>成分</th>
<th>供应商</th>
<th>wt.%</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>石蜡（熔点 60℃-62℃）</td>
<td>Epichem</td>
<td>84</td>
<td>部分 A</td>
</tr>
<tr>
<td>Vybar 103（聚 α 烯烃）</td>
<td>Baker Petrolite</td>
<td>1</td>
<td>(70℃-90℃)</td>
</tr>
<tr>
<td>硬脂酸</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>地蜡</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>芳香物（天然薰衣草油，不含芳香溶剂）</td>
<td></td>
<td>6</td>
<td>部分 B</td>
</tr>
<tr>
<td>总量</td>
<td></td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

程序:
1) 熔融部分 A 的成分。混匀。（70℃至 90℃）
2) 加入部分 B。混匀。
3) 在期望温度下将熔融体浇铸在包含不同燃料构件的烛模具中。
4) 一旦烛完全固化，可将其从烛模具中移出。

在该实验中，外部燃料部的熔融体是无色的。因而在产品烛的颜色效果是由于熔融的外部燃料部的温度通过从不同燃料构件中的染料扩散而产生的。两个烛均在外部燃料部的表面上在视觉上表现出薰衣草香的特征。

由两个视觉可见的部分（例如，埋于蜡盘中的花或星）形成三个不同燃料构件被视为三个不同燃料构件。各构件只包含一种香味。这表示各不同燃料构件中可具有大于一种颜色，但只有一种香味。（在当前实施例中：第一圆盘具有薄荷香味，第二圆盘具有玫瑰香味，第三圆盘具有海洋香味（海风）。圆盘具有如下的优点：不同燃料构件和成品烛的外径（= 焊杆中焊的内部直径）的距离是均匀的，产生成品烛外表面的均匀一致的染料扩散效果。考虑到这点，可在成品烛的周围感知成品烛形成的颜色带。尽管其在带内的颜色可能具有轻微的较强的和较弱的色调。

实施例 2

在本实验中，一套不同燃料构件的染料剂量为 0.002％，另一套的染料剂量为 0.005％。对于不同燃料构件和外部燃料部，使用与实施例 1 相同的蜡的组成。

这些不同燃料构件通过芯置于烛的中心，并且它们不接触烛模具的壁。烛模具的内部直径为 2.3cm。不同燃料构件的外表面和烛模具内壁之间的距离为 4mm。对于不同燃料构件和外部燃料部，使用实施例 1 中所述的工艺参数，浇铸温度设在 70℃至 80℃。

相比于具有较低染料剂量的烛，具有较高染料剂量的烛表现出较强强度的色调。因而使用染料的剂量可改变以改变化成烛的颜色效果。由于相比实施例 1 中的烛模具，本实验使用的烛模具尺寸较小，所以本发明证明了颜色效果在不同尺寸的烛中是可再现的。

实施例 3
在本实验中，烛模内壁与不同燃料构件的外表面间的最近距离为 1cm。在本实验中，使用实施例 1 的蜡组成的配方及烛模具。

不同燃料构件各自具有 4cm 直径，并且形式为蓝色的星、橙红色的心和绿色的太阳。不同燃料构件薄于芯并置于具有 6cm 内径的模具中。

在 80℃至 90℃浇铸的产物烛表现出比实施例 1 制备出的烛更少得多的染料扩散程度。本实验证明了用于染料扩散的烛模具内壁和不同燃料构件的外表面之间的距离对成品烛的颜色效果有影响。

在烛燃烧期间，在熔池中可见不同燃料构件的形状。

实施例 4

在本实施中，本发明用于容器烛配方中。

不同燃料构件和外部燃料部均使用相同的棕榈蜡组合物。

<table>
<thead>
<tr>
<th>成分</th>
<th>供应商</th>
<th>不同的燃料段 wt.%</th>
<th>外部燃料 wt.%</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>棕榈蜡 5401A</td>
<td>Lipidchem</td>
<td>97</td>
<td>97</td>
<td>部分 A (70℃-80℃)</td>
</tr>
<tr>
<td>（熔点 52℃-56℃）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>油溶性染料</td>
<td></td>
<td>0.5</td>
<td></td>
<td>部分 B</td>
</tr>
<tr>
<td>（1%溶液）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>香料</td>
<td>Symrise</td>
<td>2.5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>总量</td>
<td></td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

程序：
1) 熔融部分 A 的成分。（70℃至 80℃）
2) 加入相应的部分 B 的成分。混匀。
3) 将混合物转移至模具中。通过芯保持的不同燃料构件（具有三种不同的香味和不同的颜色的圆盘，每个直径 5cm）置于容器的中心。（内部直径 6.5cm）。外部燃料基础在 70℃至 80℃浇铸在不同燃料构件之上，然后使其冷却至室温。

制成的烛表现出层状外观，其颜色具有弱的和强的色调。该实验证明本发明可用在容器烛中也可使用蜡（这里为天然来源）。

实施例 5

在本实施例中，本发明用在容器烛配方中且不同燃料构件为各种形状和尺寸。
成分	构件 A/wt.%	构件 B/wt.%	构件 C/wt.%	备注
Vybar 103 (聚 α 烯烃) (Baker Petrolite) | 1 | 1 | 1 | 部分 A (70℃-80℃)
地蜡 | 2 | - | 2 |
硬脂酸蜡 | - | 95.5 | - |
石蜡（熔点 58℃） | 93.5 | - | 93.5 | |
油溶性着色料（1% 溶液） | 0.5 | 0.5 | 0.5 | 部分 B
红橙（Maxessence™香料） | 3 | - | - |
苹果肉桂（Maxessence™香料） | - | 3 | - |
草莓柠檬（香料，Symrise） | - | 3 | - |
总量 | 100 | 100 | 100 | |

构成 C 是最下部的构件，具有红色和草莓形状，构件 B 具有深绿色和贝壳形状，构件 C 为最上部的构件，具有橙色和海星形状。三个不同燃料构件（以各种组合与芯一起保持于罐中。然后，将下列配方的外部燃料部浇铸在不同燃料构件之上。

成分	供应商	wt.%	备注
SM 8382（棕榈蜡/低熔点石蜡，熔点 52℃-55℃） | Megasuryamas | 96 | 部分 A (70℃-80℃)
Vanilla Bourbon（香料） | Symrise | 4 |
总量 | | 100 | |

使用高 75mm、顶部内部直径 55mm 和底部内部直径 25mm 的玻璃罐。罐中的成品烛向直径减小的区域表现出独特的红染料的扩散。

当烛燃烧时，在紧邻火焰的区域周围开始形成熔池。

随着烛持续燃烧，不同燃料构件的海星形状开始清晰可见。

本实验表明不同燃料构件可在燃烧期间添加视觉效果。不同燃料构件的海星清晰可见，这证明当在不低于外部燃料部熔点 30℃以上的合适的温度范围下浇铸外部燃料部时，不同燃料构件并未受到过度影响。熔池中海星状不同燃料构件的 3D 效果是在海星状不同燃料构件中使用比外部燃料部更硬质的蜡的最好的例证。熔点的差异优选在 3℃至 6℃的范围内。

实施例 6
外部燃料部对于第一烛熔融至 70°C 至 80°C 的温度，对于第二烛熔融至 80°C 至 90°C。然后以熔铸形式将外部燃料部浇铸烛模具中，直至完全覆盖各个模具中所有的不同燃料构件。一旦烛完全固化，将其从烛模具中移出。

不同燃料构件的配方

<table>
<thead>
<tr>
<th>供应商</th>
<th>%</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edenor ST 1 MY</td>
<td>5</td>
<td>部分 A</td>
</tr>
<tr>
<td>(棕榈蜡/硬脂酸)</td>
<td></td>
<td>(60°C-70°C)</td>
</tr>
<tr>
<td>地蜡</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Vybar 103（聚 α 烯烃）</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>石蜡（熔点 54°C）</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>油溶性染料（1%溶液）</td>
<td>1</td>
<td>部分 B</td>
</tr>
<tr>
<td>香草香（香料）</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>总量</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

程序：
1) 将熔融部分 A 的成分。混匀。（60°C 至 70°C ）
2) 加入相应的部分 B 的成分。混匀。
3) 将熔融体浇铸在模具中以形成不同燃料构件。
4) 通过芯保持蜡段；可通过插入适合所需芯直径的小柱棒或类似物体来形成穿过蜡段的中空区域。产生的中空区域位于不同燃料构件的中心。
5) 将烛芯以期望的空间间隔穿过固化的不同燃料构件。

外部燃料部的配方

<table>
<thead>
<tr>
<th>供应商</th>
<th>%</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edenor ST 1 MY</td>
<td>5</td>
<td>部分 A</td>
</tr>
<tr>
<td>(棕榈蜡/硬脂酸)</td>
<td></td>
<td>(70°C-90°C)</td>
</tr>
<tr>
<td>地蜡</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Vybar 103（聚 α 烯烃）</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>石蜡（熔点 54°C）</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>薄荷油（香料）</td>
<td>5</td>
<td>部分 B</td>
</tr>
<tr>
<td>总量</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
程序：
1) 熔融部分 A 的成分。混匀。（70℃至 90℃）
2) 加入部分 B。混匀。
3) 在需要的温度下将熔融的外部燃料部浇铸在包含不同燃料构件的模模具中。
4) 一旦模模完全固化，可将其从模具中移出。
在该实验中，外表面燃料的熔融体是无色的。因而成品模的着色效果是由于熔融
的外部燃料部的温度通过从不同燃料构件中的燃料扩散而产生的。
第一模在 70℃至 80℃的温度下浇铸（根据本发明优选的），第二模在 80℃至 90℃
的温度下浇铸（根据本发明非优选的）。
在 70℃至 80℃下浇铸的模表现出其强的蓝、红、黄色的二次蜡段要素。
在 80℃至 90℃下浇铸的模表现出由蓝、红、黄色的原色形成的二次色。对比在
70℃至 80℃浇铸的模，在相应的区域可看到绿、红橙和黄橙色的成分。较高的温度使得更多
的染料释放以及模固化所需的延长的时间，这意味着从三个二次色段释放出的染料可混合
以形成二次色，赋予模模大理石外观。
在本实验中，通过穿过模模具中心的舰，将分别具有蓝、红和黄色的不同燃料构件
不连续地保持在一起，并且它们不触及模模具壁。不同燃料构件具有 1.5cm 直径，模模具的
内部直径为 2.3cm。二次蜡段的总重量为 6 克，成品模的重量为 30 克。
图 1