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GLOBAL LOAD BALANCING ACROSS
MIRRORED DATA CENTERS
Related Application

This application is based on and claims priority from Provisional Application Serial
No. 60/208,014, filed May 26, 2000.

BACKGROUND OF THE INVENTION
Technical Field

The present invention relates generally to high-performance, fault-tolerant content
delivery and, in particular, to systems and methods for balancing loads from mirrored data
centers within a global computer network.

Description of the Related Art

It is known to store Web-based content in mirrored data centers and to load-balance
such content requests to data centers based on network traffic conditions. Existing global
load balancing products use several different approaches for building a map of Internet
traffic conditions. One approach uses border gateway protocol (BGP) data. BGP-based
routing, however, can be sub-optimal because the BGP data can be very coarse. Other
approaches attempt to compute an optimal mapping in real-time and then cache the
mapping information. This technique can lead to poor turnaround time during an initial
“hit” and potentially stale mappings on successive requests. In addition, the quality of the
measurement to the endpoint tends to be noisy. Because of the deficiencies of these
mapping techniques, the resulting load balancing is less than effective.

Current load balancing devices are typically incapable of computing an optimal
map for an entire computer network such as the entire Internet. Presently, the Internet has
hundreds of millions of hosts and routers. Estimating the connectivity time of the entire
Internet to a set of mirrored data centers, such as by evaluating the network path between a
server and each and every host or router, would be incredibly time-consuming and would
consume far too much bandwidth. Such techniques, of course, are impractical when real-
time routing decisions are required.

Further, such measurements tend to be noisy and inaccurate, and they can annoy
system administrators whose firewalls are contacted. Local name servers behind firewalls
would not be reached and slow connectivity over the “last mile” (e.g., due to dial-up

connections and the like) tend to confuse the connectivity picture. Consequently, there
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remains no efficient technique in the prior art for generating an optimal network
connectivity map that can be used for providing intelligent traffic redirection in conjunction
with load balancing across mirrored data centers located around the globe.
BRIEF SUMMARY OF THE INVENTION

The invention is an intelligent traffic redirection system that does global load
balancing. It can be used in any situation where an end-user requires access to a replicated
resource. The method directs end-users to the appropriate replica so that the route to the
replica is good from a network standpoint and the replica is not overloaded. The technique

preferably uses a Domain Name Service (DNS) to provide IP addresses for the appropriate

. replica. The most common use is to direct traffic to a mirrored web site. Other uses are to

direct caches to storage servers, to direct streaming servers to signal acquisition points, to
direct logging processes to log archiving servers, to direct mail processes to mail servers,
and the like.

In a preferred embodiment, the method relies on a network map that is generated
continuously for the user-base of the entire Internet. The problems inherent in the prior art
are overcome by vastly reducing the dimensionality of the problem of estimating the
relative connectivity to a set of mirrored data centers. A "data center" is typically located at
a telecommunications facility that leases space and sells connectivity to the Internet.
Multiple content providers may host their web sites at a given data center. Instead of
probing each local name server (or other host) that is connectable to the mirrored data
centers, the network map identifies connectivity with respect to a much smaller set of proxy
points, called "core" (or "common") points. A core point then becomes representative of a
set of local name servers (or other hosts) that, from a data center's perspective, share the
point. Each set of mirrored data centers has an associated map that identifies a set of core
points.

According to a preferred embodiment of the invention, a core point is discovered as
follows. An incremental trace route is executed from each of the set of mirrored data
centers to a local name server that may be used by client to resolve a request for a replica
stored at the data centers. An intersection of the trace routes at a common routing point is
then identified. Thus, for example, the common routing point may be the first common
point for the trace routes when viewed from the perspective of the data centers (or the last

common point for the trace routes when viewed from the perspective of the local name
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server). The common routing point is then identified as the core point for the local name
server. A core point is identified for other local name servers (or other hosts) in the same
manner. Thus, a given set of mirrored data centers may have associated therewith a set of
core points that are then useﬁ,ll‘in estimating the relative connectivity to the set of data
centers, as is described below.

Once core points are identified, a systematic methodology is used to estimate
predicted actual download times to a given core point from each of the mirrored data
centers. According to the invention, ICMP (or so-called "ping" packets) are used to
measure roundtrip time (RTT) and latency between a data center and a core point. Thus,
for example, a core point may be pinged periodically (e.g., every 30 seconds) and the
associated latency and packet loss data collected. Using such data, an average latency is
calculated, preferably using an exponentially time-weighted average of all previous
measurements and the new measurement. A similar function is used to calculate average
packet loss. Using the results, a score is generated for each path between one of the data
centers and the core point. The score may be generated by modifying an average latency,
e.g., with a given penalty factor, that weights the average latency in a unique way to
provide a download prediction. Whichever data center has the best score (representing the
best-performing network connectivity for that time slice) is then associated with the core
point.

A full network map is created by generalizing a core point/data center data set to an
IP block/data center data set. This "unification" fills in and reduces the size of the network
map and enables traffic redirection to be carried out for new local name servers.

The generated network map is then used to effect traffic redirection and load
balancing. In particular, when a user's local name server makes a request for the content
provider's web site (located within a set of mirrored data centers), the method preferably
uses the network map to return to the local name server a list of web server IP addresses at
the optimal data center. If ping data is not available for the user's local name server (of it
the IP block has not been extended through unification), BGP or geo-routing can be used to
make a default routing decision. Content provider-specified load balancing preferences

may also be readily enforced across the data centers and/or within a particular data center.



WO 01/93530 PCT/US01/17176

The foregoing has outlined some of the more pertinent objects and features of the
present invention. These objects should be construed to be merely illustrative of some of

the more prominent features and applications of the invention.
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BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention and the advantages
thereof, reference should be made to the following Detailed Description taken in
connection with the accompanying drawings, in which:

Figure 1 is an illustration of a mirrored Web site that is managed by a global traffic
manager according to the present invention;

Figure 2 is a high level illustration of the components of the GTM service;

Figure 3 is a simplified illustration of a core point discovery process of the
invention;

Figure 4 is a simplified illustration of how an end user request is processed by the
global traffic redirection system of the present invention for a mirrored web site that has
been integrated into the managed service;

Figure 5 is a flowchart describing how a map is generated by the GTM system;

Figure 6 is a simplified block diagram of one implementation of the global traffic
management system of the invention; and

Figure 7 is a representative traceroute generated during the core point discovery
process.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

By way of brief background, it is known in the art for a Web content provider to
distribute or “mirror” its Web site to ensure that the site is always available and providing
acceptable performance for a global customer base. Once a Web site is distributed, global
traffic management (GTM) solutions typically are used to direct users to the various mirror
sites. GTM solutions use a variety of methods to determine which is the “best” mirrored
site in which to direct a user. Because Internet conditions are constantly changing,
however, the “best” site for a particular user also varies with these conditions. The present
invention is a GTM solution that maximizes availability and performance of a mirrored
delivery site.

In a preferred embodiment now described, the global traffic management solution is
a managed service provided by a service provider, such as a content delivery network
(CDN) service provider (CDNSP). = As is well-known, a CDN is a network of
geographically distributed content delivery nodes that are arranged for efficient delivery of
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digital content (e.g., Web content, streaming media and applications) on behalf of third
party content providers. A request from a requesting end user for given content is directed
to a "best" replica, where "best" usually means that the item is served to the client quickly
compared to the time it would take to fetch it from the content provider origin server.
Typically, a CDN is implemented as a combination of a content delivery infrastructure, a
request-routing mechanism, and a distribution infrastructure. The content delivery
infrastructure usually comprises a set of "surrogate" origin servers that are located at
strategic locations (e.g., Internet Points of Presence, network access points, and the like) for
delivering copies of content to requesting end users. The request-routing mechanism
allocates servers in the content delivery infrastructure to requesting clients in a way that,
for web content delivery, minimizes a given client’s response time and, for streaming
media delivery, provides for the highest quality. The distribution infrastructure consists of
on-demand or push-based mechanisms that move content from the origin server to the
surrogates. An effective CDN serves frequently-accessed content from a surrogate that is
optimal for a given requesting client. In a typical CDN, a single service provider operates
the request-routers, the surrogates, and the content distributors. In addition, that service
provider establishes business relationships with content publishers and acts on behalf of
their origin server sites to provide a distributed delivery system. A well-known commercial
CDN that provides web content and media streaming is provided by Akamai Technologies,
Inc. of Cambridge, Massachusetts.

Thus, in one embodiment, the present invention implements a managed service for
global load balancing of a content provider’s mirrored Web sites. Figure 1 illustrates the
basic implementation environment. In this example, the global traffic management service
100 provides global traffic management for a content provider running a pair of mirror
Web sites 102 and 104 (identified by the same domain, e.g., www.akamai.com). The GTM
service 100 provides improved responsiveness for end users 106 and 108 accessing the
Web site by directing them to the best performing mirrored site. Figure 2 illustrates the
high level technical architecture of the GTM service which, as noted above, is implemented
by a CDNSP or other entity (the “managed service provider”) as a managed service on
behalf of content providers running mirrored Web sites. Of course, one of ordinary skill
will appreciate that the inventive functionality may also be implemented in whole or in part

as a product-based solution.
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For illustrative purposes only, and with reference to Figure 2, a preferred GTM
service 200 comprises a number of components: a set of network agents 202, a set of web
server agents 204, a set of map generation servers 206, and a set of name servers 208. Each
such component typically is a server, such as a Pentium-based box running the Linux
operating system and having application software for carrying out the functions described
below, or one or more processes executing on such a machine. As will be described, data
is collected by the network agents and the web server agents and delivered to the map
generation servers. The map generation servers analyze the data, and at least one map
server produces a map that assigns name server IP address/blocks to regions. At least one
map is then uploaded to the name servers. When an end user requests access to a mirrored
site domain being managed by the service, one of the name servers hands back an IP
delegation that represents a “best” data center to which the user should connect.

The particular placement of the components as illustrated in the drawing is
representative, and there is no requirement that any particular entity own or control a
particular machine. In this embodiment, a content provider has network agents located in
or near their network segment within each respective data center that hosts the mirrored
Web site. Thus, for example, a pair of network agents 202a and 202b are dedicated to the
content provider in data center 203a, and a pair of network agents 202c and 202d are
dedicated to the content provider in data center 203b, although this is not required. These
network agents preferably share the same network connection as the content provider’s web
servers. Thus, e.g., network agents 202a and 202b in data center 203a share network
connections with the content provider’s web servers 207a-c. Where the managed service
provider operates a CDN, the set of network agents may be deployed in data centers in
which the CDN is deployed. Of course, multiple content providers may host their web sites
at a given data center and share network agents. Thus, a given network agent may collect
data once for a first content provider at a given location and then share the data across all
other content providers co-located in the same data center. A data center typically is
located at a telecommunications facility (e.g., Exodus, Frontier Global, UUUNEet, and the
like) that leases space and sells connectivity to the Internet.

A network agent has two (2) primary functions: running “core point” discovery
(CPD) to determine a set of “core” points, and monitoring network performance to each

core point. As will be seen, the inventive system continuously pre-computes optimal maps,
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preferably for the user base of the entire Internet. It is able to do this effectively because
the system reduces the scale of the problem by aggregating parts of the Internet and
representing them with “core” points. A core point typically is representative of a set of
local name servers (or other hosts) that, from the perspective of a given network location
(e.g., a data center), share the point. Typically, a core point is a router on the Internet,
although this is not a requirement. = The information collected from the core point
discovery process is fed to the map generation servers on a relatively frequent basis, e.g.,
one every thirty (30) seconds, to identify down routes, congestion, route changes, and other
network traffic conditions that may impair or effect connectivity to a data center at which a
particular mirrored site is hosted.

According to a preferred embodiment of the invention, a core (or “common”) point
is discovered as follows. An incremental trace route is executed from each of the set of
mirrored data centers to a local name server that may be used by client to resolve a request
for a replica stored at the data centers. An intersection of the trace routes at a common
routing point is then identified. Thus, for example, the common routing point may be the
first common point for the trace routes when viewed from the perspective of the data
centers (or the last common point for the trace routes when viewed from the perspective of
the local name server). The common routing point is then identified as the core point for
the local name server. A core point is identified for other local name servers (or other
hosts) in the same manner. Thus, a given set of mirrored data centers may have associated
therewith a set of core points that are then useful in estimating the relative connectivity to
the set of data centers, as is described below.

Figure 3 is a simplified diagram of the core point discovery process, in accordance
with one embodiment of the invention. For purposes of example only, in Figure 3, the data
center 300 corresponds to a data center located on the West Coast and the data center 302
corresponds to a data center located on the East Coast. Data center locations, of course, are
merely representative. Each data center can host a mirror site for a given content provider.
According to the invention, a core point 305 is discovered as follows. An incremental trace
route is executed from each of a set of mirrored data centers 300, 302 to local name servers
304, 306, 308 that may be used by a client machine 310. For example, in Figure 3, the
network agent (not shown) has executed a first set of traceroutes, between the data center

300 and the local name servers 304, 306 and 308, and a second set of traceroutes between
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the data center 302 and the local name servers 304, 306 and 308. The network path
between the respective data center and the local name server(s) contain router hops, as is
well known. To locate a core point, the network agent identifies a location at or close to
the intersection of the trace routes at a common routing point, which is shown in Figure 3
as a core point 305. For example, the common routing point may be the first common
point for the trace routes when viewed from the perspective of the data centers 300 and 302
(or the last common point for the traceroutes when viewed from the perspective of the local
name server 304). The common routing point is then identified as the core point 305 for
the local name server. Figure 7 illustrates a representative core point discovery process
trace.

For example, if two or more different paths are traced and the same route (or routes)
appears on at least a portion of all of the paths, the common routing point can lie
someW};ere along that common portion of the route. As noted above, generally the core
point is the first common point for the trace routes when viewed from the perspective of the
data centers, which is the same as the last common point for the trace routes when viewed
from the perspective of the local name server.

The core point 305 need not be situated at the “exact” intersection of the trace
routes. It can, for example, be located near or substantially near the intersection. It can
also be located adjacent to the intersection, or it can be located at any nearby point such
that measurements made to the point are representative of the measurements made at the
intersection.

The network agent identifies other core points for other local name servers (or other
hosts) in the same manner. Thus, a given set of mirrored data centers may have associated
therewith a set having one or more core points that are then useful in estimating the relative
connectivity to the set of data centers, as is described below. If network paths on the
Internet are changing frequently, a network agent preferably runs core point discovery with
some frequency.

As noted above, a network agent also performs the function of periodically
checking the core points assigned to one or more local name servers that already have been
mapped. This process is now described.

Network agents preferably make measurements to core points using Internet

Control Messaging Protocol (ICMP) (or so-called “ping” packets) to evaluate such
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information as round trip times (RTTs), packet loss, and number of router hops. Thus,
using the example in Figure 3, a given network agent periodically “pings” a core point
(e.g., every 30 seconds) and collects the associated latency and packet loss. Using such
data, the network agent calculates an average latency. In one embodiment, the network
agent calculates average latency using an exponentially time-weighted average of all
previous measurements and the new measurement. The network agent uses a similar
function to calculate average packet loss. This calculation is described in more detail
below. Using the results, the network agent generates a “score” for each path between one
of the data centers and the core point. The score is generated, for example, by modifying
an average latency with a given penalty factor that weights the average latency in a unique
way to provide a download prediction. Whichever data center has the best score
(representing the best-performing network connectivity for that time slice) is then
associated with the core point.

Referring back to Figure 2, the web server agents 204 do test downloads to either all
the web server IP addresses or to the local load balancing devices to test for availability or
“aliveness” of the mirrored sites (i.e., per data center mirror or web server). Typically, a
web server agent tests an object, e.g., a twenty (20) byte file available on the web server via
an HTTP GET request, and check for errors and download times. In a representative
embodiment, the measurements are taken periodically, e.g., every ten (10) seconds,
although preferably a customer can change the timeout. An IP address is declared “dead” if
more than a given percentage of the web server agents are unable to download the test
object within the timeout threshold. This allows customers to set a threshold on response
times so that the system can direct traffic away from data centers where performance
suffers. The web server gents are preferably dispersed in co-location facilities, which are
dispersed geographically and on a network basis. Moreover, one skilled in the art will
recognize that the described functions of the web server agent could be performed by
another 'component, such as the network agent, the map generation server, or some other
server. Moreover, neither the web server agent nor its functions (such as testing the
aliveness of a data center) are necessary for certain embodiments of the invention.

The map generation servers 206 receive data from the network agents and the web
server agents and use this data to generate maps, which describe the mirrored site that is

optimal for each IP address block. In a preferred embodiment, a map is achieved by
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evaluating web server agent data, a time-weighted average of latency and packet loss, and
BGP and geo information. Preferably, there are two (2) map generation server processes
for each customer, and maps are generated periodically, e.g., every 3-5 minutes. Although
not a limitation, preferably the map generation servers associate IP blocks with Internet
“regions” such that a given map associates an IP block with a region number. Another data
file is then used to associate region number to physical IP address. In a representative
embodiment, maps (which associate IP block to region #) are generated every few minutes
and then uploaded to the name servers.

The name servers 208 hand out to the requesting end user the IP address(es) of the
optimal data center. Typically, the name server response have a time to live (TTL) of about
five (5) minutes, although this value may be customer-configurable. In a representative
embodiment, the name servers are the same name servers used by the CDNSP to facilitate
routing of end user requests to CDN content servers.

Figure 4 illustrates how a customer web site is integrated into the traffic redirection
system of the present invention. In a representative embodiment, it is assumed that the
customer has a distributed web site of at least two (2) or more mirrored sites. The inventive
system load balances multiple subdomains/properties provided they are in the same data
centers. Integration simply requires that the customer set its authoritative name server 400
to return a CNAME to the GTM name servers 408, which, thereafter, are used to resolve
DNS queries to the mirrored customer site. Recursion is also disabled at the customer’s
authoritative name server. In operation, an end user 402 makes a request to the mirrored
site using a conventional web browser or the like. The end user’s local name server 404
issues a request to the authoritative name server 400 (or to a root server if needed, which
returns data identifying the authoritative name server). The authoritative name server then
returns the name of a name server 408 in the managed service.

The local name server then queries the name server 408 for an IP address. In response, the
name server 408 responds with a set containing one or more IP addresses that are “optimal”
for that given local name server and, thus, for the requesting end user. As described above,
the optimal set of IP addresses is generated based on network maps created by testing the
performance of representative core points on the network. The local name server selects an

IP address from the “optimal” IP address list and returns this IP address to the requesting
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end user client browser. The browser then connects to that IP address to retrieve the
desired content, e.g., the home page of the requested site.

Figure 5 is a high level flowchart illustrating how data is processed in order to
create a map. Periodically (e.g., every thirty (30) seconds), the network agents ping each
core point from each data center. This is step 500. At each network agent, a time-weighted
average of latency, and a time-weighted average of loss, is computed. This is step 502. As
will be described, the weights decay exponentially in time with a time constant that is
configurable. At step 504, the data is further processed to produce a score for each data
center per core point. At step 506, each core point is then associated with the name servers
for which the core point was a proxy. At step 508, a map generation process goes through
all of the data and decides a set of candidate data centers for each name server. At this
time, any data centers that the web server agents determine are not “alive” are discarded.
At step 510, the map generation process extends its decisions with respect to name servers
to decisions with respect to IP block. A unifying algorithm is used to provide this
functionality. This algorithm operates generally as follows. If all name servers in a BGP-
geo block have agreeing ping decisions, then the decision of what data center is “optimal”
is applied to the whole block. Conversely, if there is a disagreement, the block is broken up
into the largest possible sub-blocks so that, in each sub-block, all the name servers agree.
For any block that has no name servers, the BGP-geo candidates may be used.

Referring now back to Figure 5, at step 512, the map is produced with the candidate
for each block. If there are multiple candidates, the assignments are made to get as close to
the load balancing targets are possible. The load balancing targets are defined, usually by
the content provider, and these targets may be percentages (adding up to 100%) that
breakdown the desired traffic amount by data center. This completes the map generation
process.

As described above, step 502 involves generating a time-weighted average of
latency and a time-weighted average of loss. More generally, this aspect of the invention
provides a systematic methodology for predicting actual download times for various flow
control protocols, e.g., TCP. As is known, TCP is the most commonly used flow control
protocol on the Internet today. Other protocols are built on top of UDP. Neither TCP nor
UDP packets can be used to monitor the state of routes on the Internet, however.

According to the present invention, ICMP packets are injected into the network (e.g., by the
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network agents), at preferred points in time, and then routed to a suitably chosen
intermediate core point. The system then looks at the behavior of the Internet induced by
the ICMP probes by computing latency and packet loss. Latency is a measure of the round
trip time (RTT) between the server and the core point. From maintaining a time-series of
loss and latency, the system is able to predict effectively the amount of time it would take a
client (that uses a name server associated with the core point) to initiate and complete a
download from the server. The quality of this prediction is important for effective mapping
because when a client makes a web request and there are multiple web servers from which
to potentially server, it is important to be able to predict correctly which web server has the
best connectivity. This is a difficult problem in general because the Internet is highly
bursty and exhibits highly variable traffic conditions.

The following example illustrates how the time-weighted averages are computed in
accordance with one embodiment of the invention. Assume for purposes of example only
that a content provider (Figure 3) has mirror sites located at two data centers 300 (West
Coast) and 302 (East Coast). The network agent “pings” the core point 305 from each data
center. The network agent stores the latency and the packet loss for each measurement
made. It should be understood that latency and loss parameters are merely representative
of the types of signal transmission parameters that the network agent can track. Other
parameters that could be measured include any parameter helpful in determining the speed,
quality and/or efficiency of a network path, such as parameters indicative of outages on
paths, loss in signal strength, error-control data, route changes, and the like.

For each “ping” to/from each data center to the core point, the respective network
agent logs the data. Table 1 illustrates an example of the type of data that the network
agent gathers over the course of measurements made every 30 seconds between the data
centers and the core point. Table 1 is a table of latency measurements (data is in seconds

(s)) and shows the current measurement (t=0) followed by measurements made previously.
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Table 1
Parameter | Data Current | t-30s | t-60s | t-180s | t-240s | t-300s | Avg (s)
Center
Latency (West) 8.0 7.5 77 |82 7.6 7.7 7.78
(East) 3.0 3.5 32 |38 3.6 34 3.42
Loss (West) 0 0 1 0 1 N/A
(East) 0 0 0 0 0 N/A

As Table 1 shows, based on latency, in this example the East Coast data center
appears to have a smaller average latency to the core point than the West Coast data center.
A time-weighted average of latency, and a time- weighted average of loss, is then
computed.  The weights decay exponentially in time with a time constant that is
configurable (e.g., a time constant of 300 seconds). For a sequence of measurements made
(t; x;), where t; is the time of the i" measurement and x; is the value measured (e.g., x; can be
the latency measurement Jaz; or the loss measurement Joss;), the time-weighted average of
latency is computed as:

AverageLatency = i latxe™'¢

: i=0

Assuming that the time constant C = 300 seconds, and using the data of Table 1, the

average latency time series is computed as:

Using the data, the average latency for the data center 300 is computed as:

AverageLatency = Z (31.88)
i=0

To compute the exponentially time-weighted average, the network agent sums each
weighted latency measurement (e.g., 31.88) and divides this sum by the sum of the weight

305300 4 €030 efc.). Thus, the exponentially time weighed average

factors (i.e., €
latency for the data center 300 is computed as:

Exponentially time-weighted average = 31.88/4.0894

Exponentially time-weighted average = 7.795

As these computations show, the exponentially time-weighted average is 7.79,

which differs from the computed average of 7.78. Although this difference does not appear
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significant in this example, it can be more significant for measurements averaged out over
long periods of time, because more recent measurements will be given more weight than
older measurements. The network agent determines dynamically whether core points that
were once considered optimal are still so, whether core points that had been performing
well (for a given time period) are now degraded, and the like. The exponentially time-
weighted averaging helps also to smooth out aberrations over time in measured data and
helps to indicate trends.

Using the same information, the time-weighted average latency for the East Coast
data center 302 are computed in a similar manner. In addition, although not illustrated
here, the network agent computes a time-weighted average of loss in the same Way.

As described above, time-weighted averages are then processed to produce a score
for each data center per core point. A preferred scoring function is as follows:

Score function = average latency + {{max (100, average latency)]*(penalty factor)},
where the score is a value in milliseconds. FEach of the values has a millisecond unit,
except for the penalty factor, which is unit-less. The value “100” is a floor or base-level
value, which represents the usual round trip time required for a packet to travel between the
East Coast and the West Coast. The floor is variable. The term “max” refers to selecting
either the value “100” or the average latency, whichever is greater. That value is then
multiplied by a penalty factor, with the result then being added to the average latency to
generate the score. The penalty factor preferably is a function of the time-weighted
average loss. Thus, in one illustrative embodiment, the penalty factor is some multiple of
the time-weighted average loss. The multiplier may be varied, e.g., as a function of
percentage of loss, with the penalty factor contribution being higher for greater packet loss.

According to the invention, it has been found that a scoring function such as
described above that is based on time-weighted average latency weighted by a time-
weighted average loss penalty factor affords a good approximation or “proxy” of the
download time for an average size (e.g., 10Kbyte) file from the data center to an average
end user. Of course, the file download time would be expected to vary as the file size is
varied, but it has been found that the scoring function described above still tends to capture
which data center of the mirrored set provides better performance. In other words, the
absolute value of any given score is not as important as the data center-specific (e.g., East

Coast vs. West Coast) values.
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When the scores are provided to the map generation process, the network agent
associates the core point with the local name server(s) for which the core point serves as a

[1 ‘proxy. 2

The following describes a specific implementation of the global traffic redirection
system as a managed service offering on behalf of content providers running mirrored web
sites.  Figure 6 illustrates the overall system architecture 600. As noted above, these
processes typically run across multiple servers in the system. There are three logical
grouping of these processes. First, the PingServer 602, PingProcessor 604, and
TestPingServer 606 are running on the network agents located in the content provider’s
data centers. Second, the MapMaker 608, MapTester 610, and DBPusher 612 are running
on another set of servers. However, these may also be run on the network agent machines
if there is a shortage of servers in the network in which the global traffic management
system operates. Another set of processes, called MapNote Web 614 and MapNoteDNS
616, run together on a relatively static set of machines for all customers of the system.
Processes 602, 604, 608, 610, 612, 614 and 616 typically run continuously. An alert
processor (not shown) detects if one or more machines on the network are non-functional
and sends one or more corresponding alerts. An archive process (not shown) is used to
automatically log files and other system files periodically. A file moving process (not
shown) is used move data files. Each server may also run a generic process monitor (not
shown), which reports data to a service provider query system.

As has been described, the global traffic management system 600 collects several
pieces of data that results in a map being uploaded to the GTM name servers 615. At the
beginning, Core Point Discovery (CPD) produces a list of IP addresses in a file (signifying
the core points). This file is sent to each PingServer 602. Preferably, there is a PingServer
process 602 running on each of the network agents that are deployed in a content provider’s
data center (not shown). In this embodiment, there is a pair of machines in each data
center, only one PingServer process is primary. The other one is running but only takes
over if the primary goes down. Each PingServer process 602 pings each of the core points
approximately every 30 seconds.

Next, the ping results are sent to the PingProcessors 604. PingProcessors 604

preferably run on the same machines as the MapMakers 608, although this is not a
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requirement. The PingProcessors 604 process the ping results and drop the data files off
for the MapMaker 608. MapMakers 608 also require data from the MapNoteWeb agents
614. The MapNoteWeb agents 614 are the web server agents that do test downloads from
the content provider’s web servers. These tests are used to determine aliveness of the
webservers in the data centers as has been described.

The MapMaker 608 looks at the ping data as well as the MapNote Web data and
creates a top-level map for the top-level name servers. The map is then sent to the
MapTester 610 (which is usually running on the same machine). The MapTester 610 uses
test ping data from the TestPingServer 606 to check a given number of (e.g., a few
hundred) IP addresses in the map. This is done to make sure the map is correct, however,
this processing is optional Finally, if the map passes the test, it is queued for uploading to
the name servers 615.

DBPusher 612 is one other process that preferably runs on the same machines as the
MapMaker process 608. This process is solely responsible for pushing out a DB file to the
top-level name servers 615. This DB file completes the lookup data for the top-level name
server 615. That is, the map from the MapMaker 608 contains a mapping of IP block to a
virtual region number. The DB file is the data file that actually has a mapping of the region
number to physical IP addresses. DBPusher 612 monitors the MapNote Web data and, in
case of a failure, pushes an updated DB file to the name servers.

PingServer 602 is responsible for measuring RTT and packet loss to the list of core
points. The list of core points determined as follows. Preferably, there is a PingServer
process running for each content provider at each data center in which a content provider is
co-located. Thus, in one embodiment, the service provider deploys servers in all of a
content provider’s data centers. In another embodiment (not shown), ping data is shared
for all customers who co-locate at a particular data center, and the GTM service provider
may simply pre-deploy servers at “popular” hosting facilities to save time in integrating
new customers to use the system.

The PingServer procesé preferably is run on each of the network agents in a data
center. A leader election process (not shown) may be used to allow for the non-leader to
take over if the primary fails within that same data center. PingServer includes a process

that is used to ping a list of IP addresses, which the PingServer receives from a system
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source. Also, before the list is pinged, any IP addresses that are on a restricted list are

filtered out. In particular, the primary inputs to the PingServer process are as follows:

. Restricted tree - a list of IP addresses that are not pinged.
. Routers file - the list of IP addresses that were discovered using Core Point
Discovery.

The outputs of PingServer are as follows:

. Ping results - raw results of pinging IP addresses.

. Routers file - list of all IP addresses that PingServer used

PingProcessor is responsible for taking the raw measurement data from PingServer
and computing the time-weighted averages. The time-weighted average is computed both
for RTT and packet loss measurements for the core points. The time-weighted average is
computed as described above. The primary inputs to the PingProcessor process are as
follows:

. Ping results from PingServer

. Routers file from PingServer
The outputs of PingProcessor are as follows:

. Nameserver list

. Processed ping data

The MapMaker creates the map for the top-level name servers. MapMaker takes
the processed ping data from PingProcessor and the aliveness data from MapNoteWeb and
constructs a map. This map contains a relationship between certain IP blocks and a region

number. The inputs to MapMaker are:

. Nameserver list from PingProcessor
] Ping scores from PingProcessor
. BGP-Geo tree information

The outputs of MapMaker may include, for example:
. Debug map
. Map states file
. Map
o Ping data

18



WO 01/93530 PCT/US01/17176

MapTester is the last process before a map is uploaded to the top-level name
servers. MapTester receives a candidate map from MapMaker. It then looks-up the
mapping of a test IP addresses (that are pinged using TestPingServer, which is discussed
more fully below). If the number of differences is below some threshold, then the map is

deemed acceptable.
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The map is then uploaded to the top-level name servers. The inputs to the
MapTester process are:
. Debug map
. Test ping data
o Stats file
o Map
. Ping data
The output of the MapTester process is:
. Map
TestPingServer collects RTT and packet loss information for a small subset of IP
addresses. This data is collected to ensure that the map produced by MapMaker is valid.
MapTester, assuming the map is good, will then load the maps to the top-level name
servers. The inputs to the TestPingServer process are:
o Restricted tree
o List of IP addresses to test
The output of the TestPingServer process is:
J Test ping data
As noted above, because the MapMaker map only provides a mapping between IP
block and a region number, a separate process preferably is used to provide the mapping
between region number and the actual IP addresses of the webserver(s). DBPusher is
responsible for processing the MapNoteWeb data and creating a DB file that is uploaded to
the top-level name servers. Then, the top level name server will, after it has determined the
region number for a give IP in the map, look in the corresponding DB file to find the right
set of IP addresses to hand out. The input to DBPusher is:
o MapNote Web data
The output to DBPusher is
. DB file for name servers - this file is pushed to the name server directly by
DBPusher
MapNote Web is run on a select number of servers for all customers using the
traffic management system. MapNoteWeb uses a list of target URLs (which, for example,

could be stored in its configuration files) on which it performs test downloads. Preferably,
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these tests are simple HTTP GET requests and only time and errors are important. This
data can be interpreted to determine whether or not a data center or web server is alive on
dead. The download time is stored historically using a time-weighted average. Both the
MapMaker and DBPusher use this data. The input to MapNoteWeb is:

. Targets to measure against (stored in configuration file)
The output to MapNoteWeb is:

o Download test results

MapNoteDNS is related to MapNoteWeb, except that instead of monitoring web
servers it monitors name servers. Its basic function is to do a measurement at a name
server for certain names and report the time. If no answer comes back, the process will
attempt to ping to determine whether it is the name server or the network that caused the
failure. The inputs to MapNoteDNS are:

. Name servers to test

o What domains to test for
The output of MapNoteDNS is:

¢ DNS query results

Although not described in detail, various tests (that are not relevant to the present
invention) may be executed to determine whether or not each of the above-described
processes is running correctly.

The intelligent traffic redirection system of the present invention has numerous
advantages. The system continuously pre-computes optimal maps for the user-based of the
entire Internet (or, if desired, a given sub-portion thereof). It is able to do this effectively
because the system reduces the scale of the problem by aggregating parts of the Internet
and representing them with core points. The system is also able to make different kinds of
measurements depending upon the service being replicated. It combines these
measurements for the core points into decisions which it then extends to the entire Internet
using unification over a fallback partition of the IP address space using, e.g., BGP and geo
information. The system also is unique in its ability to balance load for cost minimization.

The system is able to pre-compute an optimal mapping for the entire Internet at all
points in time. In addition to being extremely fast in its ability to react to bad network
conditions, it is also extremely fine-grained in its response. The system is able to detect

bad server conditions quickly and is capable of interfacing with a multitude of local load
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balancers. By computing core points, the system makes superior measurements that
mitigate the problem of intruding on firewalls and other detection mechanisms. Moreover,
unlike the prior art, it can load balance load so as to minimize bandwidth costs.

The unification algorithm is advantageous in that it uses high-quality reliable
information for a subspace and extends it to the entire space rather than falling back onto
poorer quality information. This is achieved by utilizing the natural tree-like hierarchy of
CIDR-based IP addressing in conjunction with the fact that Internet routers utilize the
CIDR scheme for aggregating IP addresses to permit fast lookups. The technique enables
the redirection system to extend the benefits of high quality information from a subset of
the entire space of IP addresses. This is of great importance because the Internet is
experiencing exponential growth. The unification algorithm affords the service provider
with a means to deal intelligently with new hosts that are accessing the CDN for the first
time. Current technologies do not possess a means of extending mapping decisions in this
way. They either fall back to poor quality information or use a default technique, e.g., such
as round robin, which essentially embodies no information whatsoever.

Predicting download times using ICMP probes and time-series techniques also
provides numerous advantages. The technique does not have any restriction on the range
of file sizes and download types, and it makes intelligent use of ICMP probes of different
sizes to effectively estimate packet loss. The technique requires very little state for keeping
track of the time-series and is able to quickly compute a new estimate using an
exponentially time-weighted average of all previous measurements and the new
measurement. Rather than attempting to probabilistically model TCP flows, the inventive
technique provides a general method for extracting a good predictor of download times
based on ICMP probes.

In the preferred embodiment, the intelligent traffic redirection system is used to
direct traffic to a mirrored Web site. Generalizing, the inventive system and managed
service can be used in any situation where an end-user requires access to a replicated
resource. As described above, the system directs end-users to the appropriate replica so
that their route to the replica is good from a network standpoint and the replica is not
overloaded. An "end user" may be generalized to any respective client system, machine,
program or process. Thus, other uses of the system may include, without limitation, to

direct caches to storage servers, to direct streaming servers to signal acquisition points, to
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direct logging processes to log archiving servers, to direct mail processes to mail servers,
and the like.

Having thus described our invention, the following sets forth what we now claim.
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CLAIMS

1. A method of determining which of a set of content provider mirror sites
should receive an end user’s initial content request, comprising:

identifying a set of proxy points, wherein each proxy point represents a given point
in the Internet at which a trace originating from each of a set of mirror sites directed toward
a given name server intersect;

probing the proxy points to generate given data;

generating a download predictor score for each mirror site based on the given data;

identifying which mirror site provides a best download performance based on the
download predictor score;

associating a given name server IP address with the identified mirror site; and

in response to an end user’s initial content request to a given local name server,

returning an IP address of the identified mirror site.

2. A method of optimizing a user’s initial request to a content provider web
site that is replicated at a set of mirror sites, comprising:

responsive to an end user’s local name server making a request to the content
provider’s web site, directing the request to a global load balancing service having a
network map that estimates relative connectivity to the mirror sites from a set of proxy
points;

using the network map to return to the end user’s local name server an IP address

identifying an optimal mirror site at which the request may be serviced.

3. The method as described in Claim 2 wherein each core point represents an

intersection of trace routes that originate from a mirror site to a local name server.

4. A method of routing a user’s initial request to a content provider web site
that is replicated at a set of mirror sites, comprising:

responsive to an end user’s local name server making a request to the content
provider web site, directing the request to a global load balancing service having a network

map that estimates relative connectivity to the mirror sites from a set of proxy points;
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determining whether the network map includes data associating the end user’s local
name server to one of the mirror sites; and

if not, identifying a given mirror site to respond to the request using a default

routing mechanism.

5. The method as described in Claim 4 wherein the default routing mechanism
is BGP.

6. The method as described in Claim 4 wherein the default routing mechanism

is geo-routing.

7. A method for managing global traffic redirection for a set of content
providers operating mirrored sites, comprising:

from each of a set of data centers that host mirrored sites, executing a given network
test against each of a set of core points;

generating a time-weighted average of a given metric based on data generated by
executing the given network test;

generating a score for each data center per core point;

generating a set of candidate data centers for each of a set of name servers;

associating a candidate data center to each of a set of IP address space blocks to
generate a map,

providing the map to a name server; and

using the map to direct end user requests to a mirrored site to a given data center.

8. The method as described in Claim 7 wherein the given network test is a ping

test.

9. The method as described in Claim 7 wherein the given metric is latency or

packet loss.
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10.  The method as described in Claim 7 further including the step of discarding

from the set of candidate data centers any data center that does not meet a given operating

criteria.

11.  The method as described in Claim 10 wherein the given operating criteria is

evaluated using a file download test.
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