
(12) United States Patent
Karmarkar

US009081716B1

US 9,081,716 B1
*Jul. 14, 2015

(10) Patent No.:
(45) Date of Patent:

(54) SOLID-STATE DISKCACHE-ASSISTED
REDUNDANT ARRAY OF INDEPENDENT
DISKS

(71) Applicant: Marvel International LTD., Hamilton
(BM)

(72) Inventor: Sandeep Karmarkar, Pune (IN)

(73) Marvell International LTD., Hamilton
(BM)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is Subject to a terminal dis
claimer.

(21)

(22)

Appl. No.: 14/269,535

Filed: May 5, 2014

Related U.S. Application Data
Continuation of application No. 13/086,767, filed on
Apr. 14, 2011, now Pat. No. 8,719,621.
Provisional application No. 61/331,765, filed on May
5, 2010.

(63)

(60)

Int. C.
G06F II/00
G06F II/It
U.S. C.
CPC G06F 1 1/1076 (2013.01)
Field of Classification Search
USPC ... 714/6.24., 6.2, 6.1
See application file for complete search history.

(51)
(2006.01)
(2006.01)

(52)

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

3, 1993 Katz et al.
8, 1993 Glider et al.

5, 195,100 A
5,233,618 A

5,313,585 A 5/1994 Jeffries et al.
5,469,453 A 11/1995 Glider et al.
5,475,697 A 12/1995 Katz et al.
5,581,715 A 12/1996 Verinsky et al.
5,589,998 A 12, 1996 Yu
5,600,662 A 2, 1997 Zook
5,602,857 A 2f1997 Zook et al.
5,629,949 A 5, 1997 Zook
5,696,775 A 12/1997 Nemazie et al.
5,758,054 A 5/1998 Katz et al.
6,125,469 A 9, 2000 Zook et al.
6,367,047 B1 4/2002 McAuliffe et al.
6,381,706 B1 4/2002 Zaczek
6,546,440 B1 4/2003 Verinsky et al.
6,584,527 B2 6/2003 Verinsky et al.

(Continued)

OTHER PUBLICATIONS

Technical Brief RAID 6: Double-parity RAID, commonly known as
RAID 6, safeguards against data loss by allowing up to two consecu
tive drive failures; AMCC; <http://www.3ware.com/products/pdf
RAID 6 techbrief 112906.pdf> 2005; 2 Pages.

Primary Examiner — Sarai Butler

(57) ABSTRACT

A system including a write module to receive first data for
writing over second data stored on a first member of a stripe
of a RAID. A read module reads the second data and first
parity from a SSD or the RAID. Before receiving third data
for writing over fourth data stored on a second member of the
stripe, the read module reads the fourth data from the second
member and stores the fourth data in the SSD. A parity mod
ule generates second parity based on the first data, the second
data, and the first parity. The write module writes the second
parity on the SSD. On receiving the third data, the parity
module generates the third parity based on the third data, the
fourth data, and the second parity.

12 Claims, 4 Drawing Sheets

100

RAID System
104

RAID Control
Module

RAID Disks

US 9,081,716 B1
Page 2

(56) References Cited 7,178,086 B2 2/2007 Hassner et al.
7,313,721 B2 12/2007 Ashmore

U.S. PATENT DOCUMENTS 7,418,645 B2 8, 2008 Srivastava
7,559,009 B1 7, 2009 Ricci

6,636,908 B1 10/2003 Winokur et al. 7,617,352 B2 11/2009 Mukaida et al.

W - I orris 2006/0179345 A1 8/2006. Subbarao T14?6 6,721,828 B2 4/2004 Verinsky et al. ck
6.728.855 B2 4/2004. Thiesfeld et al. 2007,0180298 A1 8, 2007 Byrne et al. . 714f6
6,934725 B1 8, 2005 Di 2007.0245.173 A1* 10, 2007 Elliott et al. 714.52
6968.404 B2 1/2005 Vily etal 2009/02351 14 A1* 9/2009 Igashira et al. 714f6

ck 6,981,171 B2 12/2005 Hashemi 2010/025730.6 A1* 10/2010 Kawaguchi T11 103
7,111,228 B1 9, 2006 Ricci * cited by examiner

US 9,081,716 B1 Sheet 1 of 4 Jul. 14, 2015 U.S. Patent

Z "SOI

US 9,081,716 B1 U.S. Patent

as as as a as as a as as as as as as as as as as as as so as as as as as so as as as as as as as as a

U.S. Patent Jul. 14, 2015

Receive data
X to OVerWrite 204

data X on
RAID disk

206
Data X

and assoc. parity
P Cached in

SSD?

Read X and
P from SSD

Read X and 210
P from RAID

Generate 212
parity P" from
X, X, and P

Write X" and P' 214
On RAID and

SSD

Sheet 3 of 4 US 9,081,716 B1

200

216

Write data X"
Over X'?

Read X and
P" from SSD

Generate
parity P" from
X", X', and P'

Write X" and
P” On RAID
and SSD

U.S. Patent Jul. 14, 2015 Sheet 4 of 4 US 9,081,716 B1

250
250

Receive data X" to OverWrite 254
data X on member 0 of stripe S

of RAID disk

256
Data X

and assoc, parity
P Cached in

SSD?

Read X and
P from SSD

260 Read P' from
SSD and Y
from RAID

Read X and
P from RAID

Generate 262 Generate
parity P from parity P" from
X, X, and P Y', Y, and P'

Write X" and P' 264 Write Y' and P"
On RAID and On RAID and

SSD SSD

274
End

FIG. 5

US 9,081,716 B1
1.

SOLID-STATE DISK CACHE-ASSISTED
REDUNDANT ARRAY OF INDEPENDENT

DISKS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica
tion Ser. No. 13/086,767 (now U.S. Pat. No. 8,719,621), filed
on Apr. 14, 2011, which claims the benefit of U.S. Provisional
Application No. 61/331,765, filed on May 5, 2010. The entire
disclosures of the above applications are incorporated herein
by reference.

FIELD

The present disclosure relates generally to data storage
systems and more particularly to Redundant Array of Inde
pendent Disks (RAID) systems using Solid-state disks as
cache.

BACKGROUND

The background description provided herein is for the pur
pose of generally presenting the context of the disclosure.
Work of the presently named inventors, to the extent the work
is described in this background section, as well as aspects of
the description that may not otherwise qualify as prior art at
the time offiling, are neither expressly nor impliedly admitted
as prior art against the present disclosure.
A Redundant Array of Independent Disks (RAID) is a data

storage system that stores data on an array of disks and that
protects the data from disk failures using different techniques.
Depending on the techniques used, a RAID can provide dif
ferent levels of protection. The levels are identified as RAID0,
. . . , RAID5, and so on. In RAID0, data is striped across
multiple disks, but no parity or mirroring is used. Conse
quently, data is lost if a disk fails. In RAID5, data is striped
across all the disks, and parity is distributed and stored across
all the disks. Consequently, if a disk fails, data stored on the
failed disk can be rebuilt from the data and the parity stored on
the disks that are functioning normally. While RAID5 uses
single parity to protect against single disk failures, RAID6
uses dual parity to protect against two disk failures.

SUMMARY

A system comprises a write module, a read module, and a
parity module. The write module is configured to modify first
user data stored on a first member of a redundant array of
independent disks (RAID) using second user data. The read
module is configured to read the first user data and first parity
data corresponding to the first user data from a solid-state disk
associated with the RAID if at least one of the first user data
and the first parity data are stored on the solid-state disk, or
from the RAID if the at least one of the first user data and the
first parity data are not stored on the solid-state disk. The
parity module is configured to generate second parity data
based on the first user data, the second user data, and the first
parity data.

In another feature, the write module is further configured to
write the second parity data on the RAID in response to
writing the second user data on the first member and to write
the second user data and the second parity data on the solid
state disk.

In other features, the write module is further configured to
write third user data to a second member of the RAID after

10

15

25

30

35

40

45

50

55

60

65

2
writing the second user data and the second parity data on the
RAID and the solid-state disk. The third user data modifies
fourth user data stored on the second member. The read mod
ule is further configured to read the second parity data from
the solid-state disk and to read the fourth user data from the
solid-state disk if the fourth user data are stored on the solid
state disk or from the RAID if the fourth user data are not
stored on the solid-state disk. The parity module is further
configured to generate a third parity databased on the third
user data, the fourth user data, and the second parity data.

In another features, when the read module reads the fourth
user data from the RAID, the parity module is further config
ured to generate a partial parity databased on the third user
data and the second parity data read from the Solid-state disk
while the read module reads the fourth user data from the
RAID and to generate the third parity databased on the partial
parity data and the fourth user data read from the RAID.

In another feature, the write module is further configured to
write the first user data and the second parity data to the
solid-state disk before writing the second user data and the
second parity data to the RAID, to store the second user data
and the second parity data on the Solid-state disk until the
second user data and the second parity data are written on the
RAID, and to rewrite the second user data and the second
parity data from the solid-state disk to the RAID in response
a member of the RAID failing while the second user data and
the second parity data are being written to the RAID.

In other features, the system further comprises a failure
detection module configured to detect when one of the disks
of the RAID fails and a regeneration module configured to
regenerate data stored on the one of the disks based on data
stored on disks other than the one of the disks of the RAID and
to store the regenerated data on the solid-state disk.

In other features, the write module is further configured to
receive a first set of user data to write on members of a stripe
of the RAID, and in response to receiving the first set of user
data. The parity module is further configured to generate a
first set of parity data corresponding to the first set of user
data. The write module is further configured to accumulate
the first set of user data and to write the accumulated first set
of user data and the first set of parity data on the members of
the stripe.

In other features, the read module is further configured to
read from the members of the stripe a second set of user data
and a corresponding second set of parity data, wherein the
first set of user data modifies the second set of user data and to
store on the solid-state disk the second set of user data and the
second set of parity data. The parity module is further con
figured to generate the first set of parity databased on the first
set of user data, the second set of user data, and the second set
of parity data.

Further areas of applicability of the present disclosure will
become apparent from the detailed description, the claims
and the drawings. The detailed description and specific
examples are intended for purposes of illustration only and
are not intended to limit the scope of the disclosure.

BRIEF DESCRIPTION OF DRAWINGS

The present disclosure will become more fully understood
from the detailed description and the accompanying draw
ings, wherein:

FIG. 1 is a functional block diagram of a Redundant Array
of Independent Disks (RAID) system;

FIG. 2 is a functional block diagram of a RAID system that
includes a solid-state disk cache;

US 9,081,716 B1
3

FIG. 3 is a detailed illustration of a RAID control module
of the RAID system of FIG. 2; and

FIGS.4 and 5 depict flowcharts of methods for writing data
on the RAID system of FIG. 2.

DESCRIPTION

The following description is merely illustrative in nature
and is in no way intended to limit the disclosure, its applica
tion, or uses. For purposes of clarity, the same reference
numbers will be used in the drawings to identify similar
elements. As used herein, the phrase at least one of A, B, and
C should be construed to mean a logical (A or B or C), using
a non-exclusive logical OR. It should be understood that steps
within a method may be executed in different order without
altering the principles of the present disclosure.
As used herein, the term module may refer to, be part of, or

include an Application Specific Integrated Circuit (ASIC); an
electronic circuit; a combinational logic circuit; a field pro
grammable gate array (FPGA); a processor (shared, dedi
cated, or group) that executes code; other Suitable hardware
components that provide the described functionality; or a
combination of some or all of the above, such as in a system
on-chip. The term module may include memory (shared,
dedicated, or group) that stores code executed by the proces
SO.

The term code, as used above, may include Software, firm
ware, and/or microcode, and may refer to programs, routines,
functions, classes, and/or objects. The term shared, as used
above, means that Some or all code from multiple modules
may be executed using a single (shared) processor. In addi
tion, some or all code from multiple modules may be stored
by a single (shared) memory. The term group, as used above,
means that Some or all code from a single module may be
executed using a group of processors. In addition, Some or all
code from a single module may be stored using a group of
memories.
The apparatuses and methods described herein may be

implemented by one or more computer programs executed by
one or more processors. The computer programs include pro
cessor-executable instructions that are stored on a non-tran
sitory tangible computer readable medium. The computer
programs may also include stored data. Non-limiting
examples of the non-transitory tangible computer readable
medium are nonvolatile memory, magnetic storage, and opti
cal storage.

In Redundant Array of Independent Disks (RAID) systems
employing RAID levels 5 or 6 (i.e., RAID5 or RAID6), when
new data is to be written over old data stored on a disk, new
parity is computed by XORing the new data, the old data, and
parity corresponding to the old data, where XOR denotes an
exclusive OR operation. The new data and the new parity are
then stored on the RAID. To compute the new parity, the old
data and the parity corresponding to the old data (old parity)
are read from the RAID before the new parity can be com
puted and before the new data and the new parity can be
written on the RAID. Reading the old data and the old parity
from the RAID to compute the new parity degrades write
performance of the RAID. For example, a read operation
needs to be performed before a write operation can be per
formed, which delays the write operation.
As explained below in detail, the present disclosure relates

to caching old data and old parity in a solid-state disk to
increase the speed of parity computations and write opera
tions of the RAID. Additionally, the solid-state disk can be
used to pre-fetch data and corresponding parity from the
RAID to increase the speed of parity computations and write

10

15

25

30

35

40

45

50

55

60

65

4
operations of the RAID. Further, when multiple write opera
tions are to be performed on the RAID, the new data to be
written on the RAID can be accumulated on a per-stripe basis
in the Solid-state disk. A new parity is computed only once for
each accumulated Stripe. The accumulated new data and the
new parity can then be written on the disks in a single write
operation.

In addition, as explained below in detail, data recovery in
case of a disk failure can be improved by first writing the new
data and new parity on the Solid-state disk and then writing
the new data and the new parity on the RAID. The new data
and new parity may be retained in the Solid-state disk for a
predetermined period of time (e.g., until data gets written to
disks). If a disk fails during the predetermined period of time
(e.g., if the RAID fails before data gets written to RAID
disks), the new data and the new parity are simply rewritten
from the solid-state disk to the RAID. Further, the solid-state
disk can be used to store regenerated data if a disk fails. The
regenerated data can be retained in the solid-state disk until
the failed disk is replaced.

Referring now to FIG. 1, a RAID system 100 communi
cates with a host 102. The RAID system 100 includes a RAID
control module 104 and RAID disks 106. The RAID disks
106 include a plurality of disks. The RAID disks 106 are
called members of the RAID system 100. Large amount of
logically sequential data Such as a file can be segmented into
a plurality of segments. Each segment can be written on a
different member along a stripe. When the large amount of
data is requested, multiple segments on the stripe can read
concurrently.
The level of protection provided by the RAID system 100

may be RAID5 or RAID6. The RAID control module 104
controls read/write operations of the RAID disks 106 accord
ing to the commands received from the host 102. The RAID
control module 104 receives from the host 102 new user data
to be written over old user data stored on the RAID disks 106.
The RAID control module 104 reads the old user data and
corresponding parity data from the RAID disks 106. The
RAID control module 104 computes new parity data using the
new user data received from the host 102 and the old user data
and the old parity data read from the RAID disks 106. The
RAID control module 104 writes the new user data and the
new parity data on the RAID disks 106. A typical unit of user
data and parity data may be a block (e.g., 512 bytes).

Referring now to FIG. 2, a RAID system 150 communi
cates with the host 102. The RAID system 150 includes the
RAID disks 106, a RAID control module 152, and a solid
state disk 154. The RAID control module 152 controls read/
write operations of the RAID disks 106 according to the
commands received from the host 102. Additionally, the
RAID control module 152 uses the solid-state disk 154 as
cache memory to increase the speed of parity computations
and write operations as described below in detail.

Referring now to FIG. 3, the RAID control module 152
includes a write module 160, a read module 162, a parity
module 164, a failure detection module 166, and a regenera
tion module 168. The write module 160 receives from the host
102 new data to be written over old data stored on the RAID
disks 106. Suppose the write module 160 receives from the
host 102 new data X" to be written over old data X stored on
a member 0 of the RAID disks 106. The new dataX" modifies
the old data X stored on member 0.
The read module 162 reads the old data X and parity P

corresponding to the old data X from the solid-state disk 154
or from the RAID disks 106. Specifically, the read module
162 initially looks up the solid-state disk 154 to determine if
the old data X and parity P are stored on the solid-state disk

US 9,081,716 B1
5

154. A cache miss occurs if the old data X or parity Pare not
stored on the solid-state disk 154. Subsequently, if the old
data X or parity Pare not stored on the solid-state disk 154, the
read module 162 reads the old data X and/or parity P from the
RAID disks 106.
The parity module 164 generates new parity P" based on the

new data X', the old data X, and parity P. The parity module
164 XORs the new data X', the old data X, and parity P to
generate the new parity P". The write module 160 writes the
new data X and the new parity P" on the RAID disks 106.
Additionally, the write module 160 writes the new data X and
the new parity P on the solid-state disk 154.

Subsequently, the write module 160 may receive new data
X" from the host 102 to be written over the old data X" stored
on the member 0 of the RAID disks 106. When the read
module 162 looks up the solid-state disk 154 to determine if
the old data X and corresponding parity P are stored on the
solid-state disk 154, a cache hit occurs since the old data X"
and parity P are stored on the solid-state disk 154. Conse
quently, the read module 162 does not read the old dataX" and
parity P" from the RAID disks 106. Instead, the read module
162 reads the old dataX" and parity P" from the solid-state disk
154.
The parity module 164 generates new parity P" based on

the new data X", the old data X', and parity P". The parity
module 164XORs the new dataX", the old dataX", and parity
P" to generate the new parity P". The write module 160 writes
the new dataX" and the new parity P" on the RAID disks 106.
Additionally, the write module 160 writes the new data X"
and the new parity P" on the solid-state disk 154. Thus, by
caching data and corresponding parity on the solid-state disk
154, the RAID system 150 reduces the number of read opera
tions performed on the RAID disks 106 while writing data on
the RAID disks 106.

Alternatively, after writing the new data X and parity P" on
the solid-state disk 154 and the RAID disks 106, suppose the
write module 160 receives new data Y' to be written over old
dataYstored on a member 1 of the RAID disks 106, where the
members 0 and 1 are on a stripe S of the RAID system 150.
The new dataY modifies the old dataY stored on the member
1 of the RAID disks 106. Data X and data Y belong to same
stripe S but are written on different members of the stripe S
(e.g., members 0 and 1, respectively).
The read module 162 initially looks up the solid-state disk

154 to determine if the old dataY and parity P corresponding
to the old data X" are stored on the solid-state disk 154. The
read module 162 determines that while the old data Y from
member 1 is not stored in the solid-state disk 154, parity P' is
stored on the solid-state disk 154 (since the write module 160
wrote data X and parity P" on the solid-state disk 154), and a
partial cache hit occurs. Consequently, the read module 162
reads parity P" from the solid-state disk 154 and the old dataY
from the member 1 of the RAID disks 106.
The parity module 164 generates partial parity data by

XORing the new dataY' received from the host 102 and parity
P" read from the solid-state disk 154. The parity module 164
generates the partial parity data while the read module 162
reads the old data Y from the member 1 of the RAID disks
106. After the read module 162 reads the old data Y from
member 1, the parity module 164 generates new parity P" by
XORing the partial parity data and the old data Y. The write
module 160 writes the new data Y and the new parity P" on
the RAID disks 106 and the solid-state disk 154.

In response to a write operation to be performed on one
member of a stripe of the RAID disks 106, the read module
162 can pre-fetch data from other members of the stripe into
the solid-state disk 154 since a write operation to one member

10

15

25

30

35

40

45

50

55

60

65

6
of a stripe can be followed by another write operation on
another member of the stripe. For example, before receiving
the new data Y to be written on member 1, the read module
162 can read the old data Y from member 1 and store the old
data Y in the solid-state disk 154 in response to receiving the
new data X" to be written on member 0.

Accordingly, when the write module 160 receives the new
data Y' to be written on member 1 after writing the new data
X" on member 0, the read module 162 finds not only the parity
P" but also the old data Ycached in the solid-state disk 154.
Consequently, the read module 162 need not perform a read
operation on the RAID disks 106 to read the old data Y. and
the parity module 164 need not generate partial parity data.
Instead, the parity module 164 generates the new parity P" by
XORing the new data Y' received from the host 102 and the
parity P" and the old data Y received from the solid-state disk
154. The write module 160 writes the new data Y and the new
parity P" on the RAID disks 106 and the solid-state disk 154.
Thus, by pre-fetching data that may be updated and caching
the data in the solid-state disk 154, the RAID system 150 can
further reduce the number of read operations performed on
the RAID disks 106 while writing data on the RAID disks
106.

If the RAID system 150 fails while an active write opera
tion is pending, the parity of a stripe may be inconsistent with
the data in the stripe. If the inconsistency is not detected and
repaired before a disk or a block in a stripe fails, data loss can
occur since incorrect parity will be used to reconstruct the
failed disk or block in the stripe. This potential vulnerability
is known as a write hole. Write-hole prevention ensures con
sistency of parity with data in case of a Sudden failure.

For parity recovery to be successful, RAID systems may
use nonvolatile memory to retain differential parity. Differ
ential parity captures a change from old data to new data. For
example, if old data bits are 1001 and new data bits are 1100,
then the difference between the old data and the new data is
1001 XOR 1100–0101. The new data (1100) can be obtained
by adding (i.e., XOR'ing) the difference (0.101) and the old
data (1001). Recovery process involves reading the differen
tial parity retained in the nonvolatile memory, reading old
data from all the disks (i.e., data from disks undergoing write
before system crashed), computing new parity, and writing
the new parity to the disks. Write operations to the stripe are
blocked during the recovery process.
The speed of the recovery process can be increased by

writing the new data and the new parity on the solid-state disk
154 before the new data and the new parity are written on the
RAID disks 106 and by retaining the new data and the parity
in the solid-state disk 154 for a predetermined period of time
(e.g., until data get written to disks). If a disk fails during the
predetermined period of time (e.g., if RAID system fails
before data get written to RAID disks), the write module 160
simply rewrites the new data and the new parity from the
solid-state disk 154 to the RAID disks 106. Since the read
module 162 does not perform any read operations on the
RAID disks 106 in the recovery process, the speed of the
recovery process is increased.
The RAID system 150 may include a hot-spare or a spare

disk used to replace a failed disk. That is, one of the RAID
disks 106 may be a hot-spare that is used to replace a failed
disk in the RAID disks 106. The failure detection module 166
detects when a disk in the RAID disks 106 fails. The regen
eration module 168 regenerates the data that was stored on the
failed disk using the data and parity stored on the remaining
disks that are functioning properly. Specifically, the regenera
tion module 168 XORs the data and parity stored on the
remaining disks to regenerate the data that was stored on the

US 9,081,716 B1
7

failed disk. In some implementations, the parity module 164
and the regeneration module 168 may be implemented by a
single XOR engine.
The regenerated data is cached in the solid-state disk 154.

Caching the regenerated data in the solid-state disk 154
reduces the number of accesses to the RAID disks 106, which
would otherwise be performed during read/write operations
to the RAID disks 106. The regenerated data is retained in the
solid-state disk 154 until the failed disk is replaced and the
regenerated data from the failed disk is restored on the
replacement disk. The speed of regeneration can be increased
by pre-fetching the data and parity stored on the remaining
disks into the solid-state disk 154.
When multiple write operations are to be performed, the

write module 160 can accumulate in the solid-state disk 154
new data and new parity to be written on the RAID disks 106
instead of writing each of the new data and the new parity on
the RAID disks 106 in independent write operations. The
write module 160 can then write the accumulated new data
and the accumulated new parity on the RAID disks 106 in a
single write operation.

Writing data accumulated in the solid-state disk 154 to the
RAID disks 106 is called flushing. Flushing rates and
resource utilization between the solid-state disk 154, the
RAID disks 106, and the RAID control module 152 can be
improved as follows. The solid-state disk 154 can generate a
list of stripes that will be flushed to the RAID disks 106 in a
next cycle along with data maps for the stripes. Based on the
list of stripes and the data maps, the read module 162 can then
start pre-fetching old data from the RAID disks 106 into the
solid-state disk 154 before flushing begins. When flushing
begins, most of the old data will already be cached in the
solid-state disk 154, which increases the speed of flushing.
The techniques described herein improve resource pipelining
between the solid-state disk 154, the RAID disks 106, and the
RAID control module 152.

Referring now to FIG. 4, a method 200 for writing data on
the RAID system 150 is shown. Control begins at 202. At 204,
control receives dataX" to overwrite data X stored on a mem
ber of the RAID disks 106. At 206, control determines if data
X and/or associated parity Pare cached in the solid-state disk
154. At 208, control reads data X and/or associated parity P
from the solid-state disk 154 if data X and/or parity P are
cached in the solid-state disk 154. At 210, control reads data
X and/or parity P from the RAID disks 106 if data X and/or
parity P are not cached in the solid-state disk 154. In other
words, either data X or parity P can be present/absent in the
cache (i.e., the solid-state disk 154). Whatever is not present
in the cache is read from the RAID disks 106. At 212, control
generates parity P by XORing dataX", data X, and parity P. At
214, control writes data X and parity P" on the RAID disks
106 and the solid-state disk 154.
At 216, control determines if data X" is received to over

write data X" stored on the RAID disks 106. Control ends at
224 if data X" is not received. At 218, if data X" is received,
control reads data X and parity P" stored on the solid-state
disk 154 instead of reading data X and parity P" from the
RAID disks 106. At 220, control generates parity P" by XOR
ing data X", data X', and parity P". At 222, control writes data
X" and parity P" on the RAID disks 106 and the solid-state
disk 154. Control ends at 224.

Referring now to FIG. 5, a method 250 for writing data on
the RAID system 150 is shown. Control begins at 252. At 254,
control receives data X" to overwrite data X stored on the
member 0 of stripe S of the RAID disks 106. At 256, control
determines if data X and associated parity Pare cached in the
solid-state disk 154. At 258, control reads data X and/or parity

5

10

15

25

30

35

40

45

50

55

60

65

8
P from the solid-state disk 154 if data X and/or parity Pare
cached in the solid-state disk 154. At 260, control reads data
X and/or parity P from the RAID disks 106 if data X and/or
parity P are not cached in the solid-state disk 154. In other
words, either data X or parity P can be present/absent in the
cache (i.e., the solid-state disk 154). Whatever is not present
in the cache is read from the RAID disks 106. At 262, control
generates parity P" by XORing dataX", data X, and parity P. At
264, control writes data X and parity P" on the RAID disks
106 and the solid-state disk 154.
At 266, control determines if data Y is received to over

write data Y stored on the member 1 of stripe S of the RAID
disks 106. Control ends at 224 if data Y is not received. At
268, if dataY" is received, control reads dataY from the RAID
disks 106 and parity P" from the solid-state disk 154 instead of
reading parity P" from the RAID disks 106. At 270, control
generates parity P" by XORing data Y', data Y. and parity P".
At 272, control writes dataYand parity P" on the RAID disks
106 and the solid-state disk 154. Control ends at 274.
The broad teachings of the disclosure can be implemented

in a variety of forms. Therefore, while this disclosure includes
particular examples, the true scope of the disclosure should
not be so limited since other modifications will become
apparent upon a study of the drawings, the specification, and
the following claims.

What is claimed is:
1. A system comprising:
a write module configured to receive first data for writing

over second data stored on a first member of a stripe of a
redundant array of independent disks (RAID);

a read module configured to
read the second data and first parity corresponding to the

second data (i) from a solid-state disk (SSD) if the
second data and the first parity are stored on the SSD,
or (ii) from the RAID if the second data and the first
parity are not stored on the SSD, wherein the SSD is
separate from the RAID; and

in response to (i) the write module receiving the first data
and (ii) prior to the write module receiving third data
for writing over fourth data stored on a second mem
ber of the stripe, (i) read the fourth data from the
second member of the stripe, and (ii) store the fourth
data in the SSD; and

a parity module configured to generate second parity based
on (i) the first data, (ii) the second data read from the
SSD or the RAID, and (iii) the first parity read from the
SSD or the RAID:

wherein the write module is configured to write the second
parity in the SSD; and

wherein the parity module is configured to generate, in
response to the write module receiving the third data
Subsequent to receiving the first data, third parity based
on (i) the third data, (ii) the fourth data stored on the
SSD, and (iii) the second parity stored on the SSD.

2. The system of claim 1, wherein the write module is
configured to:

write the first data along with the second parity on each of
(i) the SSD and (ii) the RAID:

receive the third data subsequent to writing the first data
and the second parity on each of (i) the SSD and (ii) the
RAID; and

write the third data and the third parity on each of (i) the
SSD and (ii) the RAID.

3. The system of claim 1, wherein the parity module is
configured to:

US 9,081,716 B1
9

generate the second parity by performing an XOR opera
tion on (i) the first data, (ii) the second data, and (iii) the
first parity; and

generate the third parity by performing an XOR operation
on (i) the third data, (ii) the fourth data stored on the
SSD, and (iii) the second parity stored on the SSD.

4. A system comprising:
a write module configured to receive first data for writing

over second data stored on a member of a stripe of a
redundant array of independent disks (RAID); and

a parity module configured to generate first parity based on
(i) the first data, (ii) the second data, and (iii) second
parity corresponding to the second data;

wherein the write module is configured to
write (i) the first data and (ii) the first parity on a solid

state disk (SSD) prior to writing (i) the first data and
(ii) the first parity on the RAID, and

retain (i) the first data and (ii) the first parity on the SSD
until each of (i) the first data and (ii) the first parity is
written on the RAID,

wherein the SSD is separate from the RAID.
5. The system of claim 4, further comprising a read module

configured to read, in response to the write module receiving
the first data, the second data and the second parity (i) from
the SSD if the second data and the second parity are stored on
the SSD, or (ii) from the RAID if the second data and the
second parity are not stored on the SSD.

6. The system of claim 4, wherein the parity module is
configured to generate the first parity by performing an XOR
operation on (i) the first data, (ii) the second data, and (iii) the
second parity.

7. The system of claim 4, wherein in response to any
member of the RAID failing while the first data and the first
parity are being written on the RAID, the write module is
configured to rewrite each of (i) the first data and (ii) the first
parity from the SSD to the RAID.

8. A system comprising:
a write module configured to

receive first data for writing over second data stored on
a first stripe of a redundant array of independent disks
(RAID),

receive third data for writing over fourth data stored on
a second stripe of the RAID, and

accumulate (i) the first data and (ii) the third data in a
solid-state disk (SSD),

wherein the SSD is separate from the RAID:
a read module configured to read, from the RAID into the
SSD. (i) the second data, (ii) first parity corresponding to

5

10

15

25

30

35

40

45

10
the second data, (iii) the fourth data, and (iv) second
parity corresponding to the fourth data; and

a parity module configured to generate
third parity, by reading from the SSD, (i) the first data,

(ii) the second data, and (iii) the first parity; and
fourth parity, by reading from the SSD, (i) the third data,

(ii) the fourth data, and (iii) the second parity,
wherein the write module is configured to write, in a single

write operation,
the first data and the third parity on the first stripe of the
RAID; and

the third data and the fourth parity on the second stripe of
the RAID.

9. The system of claim 8, wherein the parity module is
configured to:

generate the third parity by performing an XOR operation
on (i) the first data, (ii) the second data, and (iii) the first
parity; and

generate the fourth parity by performing an XOR operation
on (i) the third data, (ii) the fourth data, and (iii) the
second parity.

10. A system comprising:
a failure detection module configured to detect a failed
member of a redundant array of independent disks
(RAID), wherein the RAID includes a plurality of mem
bers:

a regeneration module configured to regenerate data stored
on the failed member based on data and parity stored on
the plurality of members of the RAID other than the
failed member; and

a write module configured to
Write the regenerated data on a solid-state disk (SSD),

and
retain the regenerated data on the SSD until the regen

erated data is restored on a replacement member used
to replace the failed member of the RAID,

wherein the SSD is separate from the RAID.
11. The system of claim 10, further comprising a read

module configured to read the data and the parity stored on the
plurality of members of the RAID other than the failed mem
ber into the SSD prior to the regeneration module regenerat
ing the data stored on the failed member.

12. The system of claim 10, wherein the regeneration mod
ule is configured to regenerate the data stored on the failed
member by performing an XOR operation on the data and the
parity stored on the plurality of members of the RAID other
than the failed member.

