
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2005/0137925A1

Lakritz et al.

US 2005O137925A1

(43) Pub. Date: Jun. 23, 2005

(54)

(76)

(21)

(22)

(60)

RESOURCE SCHEDULING AND
MONITORING

Inventors: Kenneth B. LakritZ, Winchester, MA
(US); Michael J. Frankston, Lincoln,
MA (US)

Correspondence Address:
HAMILTON, BROOK, SMITH & REYNOLDS,
P.C.
530 VIRGINA ROAD
P.O. BOX 91.33
CONCORD, MA 01742-9133 (US)

Appl. No.: 10/974,005

Filed: Oct. 25, 2004

Related U.S. Application Data

Provisional application No. 60/513,666, filed on Oct.
23, 2003.

Create
Shifts

Create
Attributes

foll
ATTRIBUTE

BRARY

Employees

- 10.

Availability

Publication Classification

(51) Int. Cl." ... G06F 17/60
(52) U.S. Cl. .. 705/8

(57) ABSTRACT

A resource Scheduling System includes a set of resources and
asSociated resource attributes, a representation of resource
demands, and a Scheduling module for generating a Schedule
of resource utilization. The representation of resource
demands and availability may include information about
time slots, calendars, and shifts. A slot is a representation of
a demand for one or more individual item. A calendar is a
representation of dates when resources are needed. Each
shift represents a set of time intervals of resource demands.
Additionally, the System keeps track of individual resource
availability and preferences and attempts to create a resource
utilization Schedule that Satisfies all constraints generated
based on the time slots, calendars, Shifts, and resource
Schedules.

Create
Calendars

CALENDAR
LIBRARY

SHIFT
SLOT

LIBRARY

EMPLOYEE
BRARY

1/2

Define Create.
Constraints Preferences

CONSTRAINT | PREFERENCE
BRARY BRARY /28

124

/34 (Optimize

Kers

134

Patent Application Publication Jun. 23, 2005 Sheet 1 of 5

Create fo.
Attributes

to H
ATTRIBUTE
LIBRARY

US 2005/0137925A1

1C4.
Create

Calendars

/08
CALENOAR
LIBRARY

O f /12 ?/2
Create Define
Slots Create Availability Create Create

Employees Constraints Preferences

5
E. EMPLOYEE CONSTRAINT | PREFERENCE

l LBRARY -- LIBRARY LIBRARY /.28
BRARY - J22 f

12. 12 ---

-

In A/ K Optimize /34 SOLVE | K / K Verify 3f

134
JA 2. /4/4.

D!SPLAY K-- SOLUTION == STATISTICS

ATTENDANCE
| Ayr

Patent Application Publication Jun. 23, 2005 Sheet 2 of 5 US 2005/013.7925A1

SHIFT &
SLOT

LIBRARY

CONSTRAINT 8
PREFERENCE
LBRARY

I
CONSTRAINT & / / 7

EMPLOYEE
LIBRARY 125

PARTIAL EMPLOYEE st PERN DATE&RANGE
SCHEDULES DATABASE DATABASE DATABASE swiTCHES

2/C

Remove Double Negations Determine Contrapositives 2 2)2

Apply Choice-Free
Negative Constraints

If New
Assignments

CP-Loop
with Assignments

Patent Application Publication Jun. 23, 2005 Sheet 3 of 5 US 2005/0137925 A1

(From Fig. 2a)

Apply Choice-Free
Positive Constraints

U

Apply CP-LOOp to 238
New Assignments

if Unfilled
No = Required Rotation

instances

Apply CR-Loop to
New Assignments

lf Unfilled
otation Instance

50
Select and Fill

a Rotation-instance

Apply CR-Loop to
New Assignments

Halt and
Display Schedule

Solution
v

Patent Application Publication Jun. 23, 2005 Sheet 4 of 5 US 2005/0137925 A1

CP-R Loop with nout 'A' (A List of Assi nments

Q: A 3O2

3OH

Constraint Propagation on HQ

21 to
- Yes Backtrack (Replace or

Remove HQ)

Add New Assignments to Q 2, O 3

- 3/2
Regularity Propagation on HQ

Add New Assignments to Q

3//

3/?

Yes

Q - Queue of Assignments

HQ - Head of Queue

Add - New Assignments Can be Added to Front or Back of Q

Patent Application Publication Jun. 23, 2005 Sheet 5 of 5

CP. With Input 'A' (An ASSionment

A/O)
List = Active "f-Then' Constraints

A/O 4
HL = Head of List

l/Oe
C = First Clause in "If" Part of HL

g O
C applies to Admi-No

y
ly fo

atch Res of "if Part? is =
J.

Satisfy H/2 atis
The Eart 22 No F

4/y
Add New Assignments

J. No
C is Next Clause H2O

f C 4 le. is Last
Yes Clause of "If No sg,

Fail and End

US 2005/0137925 A1

4//?
HL is

Required

422

US 2005/0137925 A1

RESOURCE SCHEDULING AND MONITORING

RELATED APPLICATION(S)
0001) This application claims the benefit of U.S. Provi
sional Application No. 60/513,666, filed on Oct. 23, 2003.
The entire teachings of the above application(s) are incor
porated herein by reference.

BACKGROUND OF THE INVENTION

0002 To function effectively, complex organizations
must coordinate the work Schedules of many individual
employees, different kinds of employees, and other
resources. Moreover, because skilled and experienced work
erS are often a Scarce resource, and because payroll is the
Single largest expense for many businesses, Schedules must
use employees’ time as efficiently as possible. The prefer
ences of individual employees as well as union and govern
ment regulations further constrain acceptable work patterns.
Creating a work Schedule that Satisfies requirements like
these-arising from multiple, potentially conflicting
Sources-is a challenging mathematical problem. In prac
tice, it is often impossible to find the best schedule with
pencil and paper methods, even when a relatively Small
number of employees are involved.
0003. As an example, consider the problem of staffing a
hospital ward, an emergency room, or an operating room. An
adequate Staffing pattern must Satisfy many requirements: a
certain number of doctors must always be physically
present, another number of doctors must be available on
call, and these numerical demands will be higher during
hours and days of expected peak demand. Among the
doctors present, Several must be Senior or board-certified
physicians. Physicians in training cannot legally work more
than 100 hours per week, or more than 36 hours consecu
tively. Operating room teams must be Scheduled together,
and must be present whenever a Surgeon is present. There
must be at least one physician anesthesiologist to Supervise
every three nurse anesthetists. Staff with various religious
affiliations will be unavailable on certain days of the week
and on religious holidays that vary from one religion to
another. Other employees may be unwilling or unable to
work night shifts, or to work more than half time. Some
employees may dislike each other and demand that their
Schedules not overlap. No one in the nurses union can be
required to work on three consecutive weekends, and no one
can be in two places at once.
0004. A traditional way to deal with such overwhelming
complexity is simply to avoid it. Organizations routinely
create work Schedules by disregarding individual prefer
ences and by fitting their workers into Simple fixed, repeat
ing shifts. But overly rigid Schedules are inefficient and
waste employees’ time. And when skilled workers are in
demand, businesses are at a competitive disadvantage unless
they can offer potential employees flexibility and consider
ation of their individual needs.

0005. It is therefore desirable to have systems that auto
mate the difficult process of constructing employee Sched
ules. Many currently available employee Scheduling Systems
are little more than fill-in programs. They allow a user to
enter an employee name into a work position on a single day
or on a Succession of days and then reformat the Schedule
and compile hourly work Statistics. A few more Sophisti

Jun. 23, 2005

cated programs allow users to choose from a Small number
of hard-wired Scheduling patterns or templates, and help the
user fill those in.

SUMMARY OF THE INVENTION

0006 The present invention relates to a computer method
and System for calculating work Schedules for employees in
an organization and, more generally, for calculating the
Scheduled allocation of constrained resources. Because the
System's constraint language for Specifying problems and
the automatic Scheduling algorithm used to Solve these
problems are So flexible, they may be used to Set up and
solve many NP-Complete problems. One aspect of the
present invention is a highly flexible System and method for
Setting up a very broad variety of employee Scheduling and
other resource allocation problems Subject to an unlimited
number and kinds of constraints and automatically Solving
those problems. Having constructed an acceptable Schedule,
the System may also help employers track the actual atten
dance of employees. When employees are unexpectedly
absent, the System may guide the employer in finding
Suitable available Substitutes.

0007. In one aspect of the invention, a resource sched
uling System includes a Set of resources and associated
resource attributes, a representation of resource demands,
and a Scheduling module for generating a Schedule of
resource utilization. The representation of resource demands
may include information about time slots. A slot is a
representation of a demand for one or more individual item.
The representation for resource demands may also include
calendars, which represent dates for resource utilization. The
System may automatically create calendars based on those
already entered in the System. Additionally, resource
demands may be expressed as one or more shifts, each shift
representing a set of time intervals of resource demands.
0008. A set of constraints may be generated either auto
matically by the System, or manually by a user, the Set of
constraints taking into account resource demands and
resource availability information. Such resource availability
information may include resource Schedules, which denote
when a particular resource is available for Scheduling.
0009 Resource constraints may be entered or edited by a
System user using graphic user interface that allows for easy
constraint creation. In the user interface, constraints and/or
their parts may be displayed using natural language, Such
that the user does not need to use a programming language
to create or edit a particular constraint. In order to use the
natural language for constraint creation, the user interface
presents a range of choices for each of the constraint
components and parts.
0010) System user interface may also allow for creating,
modifying and displaying descriptive attributes and for
creating an acceptable range of values of each Such attribute,
as well as for associating to each type of data object in the
System, a Subset of Said descriptive attributes that describe
objects of the type. The types of data objects may include
individual resource items, calendar Sets, shifts, slots, assign
ments, Substitutions and absences. The user interface may
also allow for assigning a name to every object, thereby
preventing two objects of the same type from having iden
tical names, and for assigning values to an object for any
attribute associated with the type of a particular object. An

US 2005/0137925 A1

object may be Switched between active and inactive Status.
Besides slots and shifts, additional classes of constraints that
limit and describe acceptable Schedules may be used.
0.011 The resource utilization system may then automati
cally construct resource Schedules, each Schedule represent
ing an assignment of individual resource items to instances
of demand for resources as denoted by a System of shifts and
Slots, Subject to the limitations of resource availability,
patterns of demand, and other constraints. Where no Such
Schedule is possible, the System may generate and present
diagnostic information, identifying resource shortages and
irreSolvable conflicts among the demands, resource avail
ability and constraints.
0012 Descriptive attribute may include names and data
types. Each data type may be one or more of the following:
an integer type, a numeric type, an enumerated type, a
Boolean type, and a String type. Thus, acceptable values for
attributes are restricted, attributes of integer type accepting
integer values only, attributes of number type accepting
values of positive or negative rational numbers only,
attributes of enumerated type accepting as values only a
finite Set of alphanumeric Strings, attributes of Boolean type
accepting only values Selected from the group consisting of
true and false, and attributes of String type accepting as
values any alphanumeric String.

0013 Resource constraints may be conditional, depend
ing on a Set of other demands and/or constraints. In general,
a constraint may be expressed as Zero or more "if clauses
and one or more “then clauses. A negative constraint may
be rewritten as a positive one to follow the same represen
tation. During the Scheduling, the System may generate a list
of resource slots and then attempt to assign individual
resources to those Slots. If no assignment is possible, a
partial Schedule may be presented to a user. Alternatively,
the System may generate diagnostic information, including
indication of resource demand and availability and/or con
Straint conflicts.

0.014. The system user interface may allow for manual
modification of resource Schedules, or for “accepting” a
particular Schedule and generating a permanent record of it.
Furthermore, a user may enter or delete resources and/or
constraints to test how those modifications will affect overall
Scheduling. In addition to Scheduling resources, the System
may keep track of resource utilization and of individual
resource attributes. For example, numeric resource attributes
may be declared cumulative, and the Scheduling System may
then Sum up those attributes acroSS an appropriate group of
Scheduled object. In Such a way, a user may be able to
generate cost or other estimates.

BRIEF DESCRIPTION OF THE DRAWINGS

0.015 The foregoing and other objects, features and
advantages of the invention will be apparent from the
following more particular description of preferred embodi
ments of the invention, as illustrated in the accompanying
drawings in which like reference characters refer to the same
parts throughout the different views. The drawings are not
necessarily to Scale, emphasis instead being placed upon
illustrating the principles of the invention.

0016 FIG. 1 is an illustration of the resource scheduling
System according to one embodiment of the invention;

Jun. 23, 2005

0017 FIGS. 2a-2b are a flow chart of a scheduling
algorithm for resource Scheduling,
0018 FIG. 3 is a flow chart of a constraint regularity
Subroutine;
0019 FIG. 4 is a flow chart of a constraint propagation
Subroutine.

DETAILED DESCRIPTION OF THE
INVENTION

0020. A description of preferred embodiments of the
invention follows.

0021. The system and methods described herein can be
used for Solving general resource Scheduling problems in a
variety of environments. In the case of employee Scheduling
problems, employees are one of the resources, but the
algorithm and System described here are highly general and
can allocate or Schedule many other kinds of resources. For
example, in Scheduling one or more hospital operating
rooms, employees, Surgical equipment, and operating rooms
are all tightly constrained resources that need to be Sched
uled and coordinated. A typical constraint might be, “No
heart Surgeon is Scheduled for a heart transplant shift
unless a Suitable operating room, an anesthesiologist, and a

sss cardiopulmonary bypass team work the same shift”.
0022. Similarly, in a factory, skilled workers, pieces of
machinery and Sub-assemblies are resources to be Scheduled
for the purpose of assembling a prescribed number of cars or
computers.

0023. An example of a less obvious kind of problem that
the System can Solve is the need for colleges to match up
classes and classrooms. In this case, the classrooms are the
resource to be allocated and the classes (or courses) are
demands on the resource.

0024 FIG. 1 is a flow chart of one embodiment of the
invention as described below. In one embodiment of the
System, the resources to be Scheduled are individual employ
ees of a busineSS or other organization. To Schedule his
employees, an employer creates a database of the employ
ees, assigning to each employee values of attributes relevant
to Scheduling, Such as the employee's Seniority, hourly pay
or possession of needed skills. Each employee designates
the days and times that he is available for work. The
employer also creates a database of Shifts, recurrent time
periods during which a particular pattern of Staffing is
required, and associates with each shift one or more slots,
each of which must be filled by one or more employees. The
employer describes which employees may work in each Slot
by associating acceptable values of employee attributes with
each slot. The employer may also create further constraints
on the work Schedule. These further constraints are in the
form of maximal or minimal Time Limits, designating how
much or how little time various classes of employees may
work during specified time periods, or in the form of
Conditional Constraints, describing patterns of work that
must or must not occur. The employer may also require that
the Schedule minimize his payroll costs, or other measures.
The employer or employees can also require that certain
parts of the Schedule be repetitive or regular, So that certain
employees always work at the Same time or in the same
location. The System uses an algorithm to construct a
Schedule that meets all these requirements, if possible. If no

US 2005/0137925 A1

Such Schedule exists because of irreSolvable conflicts among
the requirements, the algorithm helps the employer identify
those conflicts, and offerS Suggestions for resolving them.
When an acceptable Schedule has been produced, it is
printable in Several formats, including formats Suitable for
distribution to individual employees. The system also
records the actual attendance of employees, compares this
with the calculated Schedule, and helps the employer find
Substitute employees when Scheduled employees are absent.
0.025 In one embodiment of the present invention, four
Semi-permanent data structures are created and maintained:
employee library 124, shift or demand library 122, prefer
ence library 128, and constraint library 126. Two other
libraries, attribute library 104 and calendar library 108, are
used to help construct entries in the employee, shift, slot, and
constraint libraries.

0.026 Depending upon the needs of the particular user,
each of the libraries may be Supplied to the user partially
filled but allowing for user modification.
0027) Each of the libraries may be in the form of a
relational database and Support all usual database functions.
Each library entry has a unique numerical identifier. The
user can also assign an optional alphanumeric name to any
library entry. Libraries can be searched and ordered by
identifier, by name, and by various properties or attributes of
the entries.

0028. Additionally, the following functions for managing
the libraries are available:

0029)

0030)

0031)

0032)

1-Create a new entry

2-Delete an entry
3-Copy an entry

4-Modify an entry

0.033 Scheduling problems are described by copying
items from these libraries to create three more data Struc
tures-employee database 204 (FIG. 2), shift or demand
database 206, and constraint database 208. Besides creating
these three databases, the user Sets the Start and End Dates
of the time interval 210 to be scheduled. Intervals as brief as
one day or as long as Several years can be accommodated.

0034 Attributes and Classes
0035) In order to describe the details of a scheduling
problem, the user may create any number of attributes
(Step 102) using attribute library 104. Attributes are descrip
tive properties of objects used in Setting up a Scheduling
problem. Position, Seniority, and Specialty are examples of
possible attributes of employees.

0036) Each attribute is assigned one of five attribute types
by the user. An attribute may be of Boolean, integer,
numeric, enumerated, or String type. Boolean attributes take
only the values 'yes' and 'no' or “True and “False. Integer
attributes can take any whole number as a value, and the user
may further designate maximal and/or minimal permissible
values for an integer attribute. Numeric attributes can take
any floating point number as a value and the user can
designate maximal and/or minimal permissible values. For
enumerated attributes, the user must Supply a list of permis
Sible values, each of which has the form of an alphanumeric

Jun. 23, 2005

character String. For String attributes any String of alphanu
meric characters is a permissible value.

0037. The user of the system can associate attributes with
types of objects. There are Seven of these types of objects:
calendars, employees, shifts, slots, assignments, absences
and replacements. Once an attribute is associated with a type
of object, all objects of that type can be given values for that
attribute.

0038 Any attribute can also be declared private. Private
attributes express useful information about employees but
are not displayed in the general employee library displayS.
Examples of common private attributes are employee's
address, Social Security number or home telephone number.

0039. Any integer or numerical attribute can also be
declared cumulative. Cumulative attributes Support addi
tional display and Statistical procedures, involving the Sum
mation of the values of the attribute over a schedule. So, for
example, 'Hourly Salary is a useful cumulative attribute
Since Summing it acroSS a Schedule will yield the payroll cost
of the Schedule, but height and weight of employees are
usually not useful cumulative attributes.

0040 Classes
0041) Users can group objects into classes. Classes can
be created either by listing their members or by Specifying
acceptable attribute valueS or ranges of values for member
ship in the class. The members of each class are limited to
a single object type. Classes, once created, are named and
Stored in class libraries, where they can be modified and
reused. Classes of the Same type can be combined to form
new classes, using Boolean operations: union, interSection,
complementation and difference.

0042 Calendars

0043. The user can create and name any number of
'calendars (step 106). A calendar is any collection of
designated days. Some examples are the calendar of all
Tuesdays, the calendar of all weekend days, and the calendar
of all State holidayS. Calendars for each weekday, and every
day are integral to the System and always available to the
user. The System has facilities for displaying each calendar
in the typical format of a wall calendar, with days in the
calendar highlighted.

0044) Individual days or blocks of days can be added to
or removed from a calendar by highlighting and clicking on
the appropriate entries. The System also permits existing
calendars to be combined with one another using Boolean
operations: union, interSection, complementation and differ
ence. Once created and named, calendars are entered into
calendar library 108 and are available for use throughout the
System.

0045 Every calendar has a name, an alphanumeric String,
that uniquely identifies that calendar. The user may also
asSociate any user-defined attribute with calendars.
0046 Employees

0047 The user can create and name any number of
employees (step 116). Each employee has a name. The name
is an alphanumeric String, whose value uniquely identifies
that employee.

US 2005/0137925 A1

0.048. The user can associate any user-defined attribute
with employees. Among employee attributes one is given
Special treatment- Position. Position is always an enumer
ated attribute, and is intended to provide an initial Sorting of
the employees into job categories. In a hospital Staff Sched
uling problem, for example, the positions might be Doctor,
Nurse, Administrator, Technician, etc. Lists of posi

tions appropriate to a wide range of work environments can
also be supplied with the system or imported from other
Sources So that the user can find many, if not all, of the
position titles he requires within existing lists.

0049. The user may associate any other attribute either to
all employees or just to those employees with a given
position attribute value. So, for instance, doctors may have
Specialty and Board Certification attributes but not an
Hourly Salary attribute, whereas nurses may have an
Hourly Salary attribute but not a Board Certification
attribute. Similarly, every employee may have an Age and
a “Home Telephone Number attribute.
0050. The user enters employees into employee library
124, Specifying for each employee the values of the relevant
attributes. In each case, the entry of attribute values is set up
So that values outside of any Specified numerical limits, or
values not on the enumerated list of acceptable values for an
enumerated attribute, cannot be entered. The user may leave
attribute fields blank. Lists of employees can also be brought
in from other resource libraries and database Systems.
0051. The system allows each employee to specify what
times he or she is available to work (step 114); the sched
uling interval is broken down into Segments, and an
employee can designate that he is or is not available for each
of those Segments. The size of the Segments is determined by
the user. For instance, the Segments can be made 15 minutes
long each.
0.052 There are multiple ways for an employee to specify
when he is available to work and he can combine these
ways:

0053. The employee can select a single time interval or a
Set of time intervals on a graphical representation of the
Scheduling interval and declare himself available or unavail
able for the selected interval or intervals.

0.054 The employee can select a Calendar Class, a Shift
Class and a Slot Class, and declare himself available or
unavailable for every time interval occurring on a day in that
Calendar Class and during which a shift within that Shift
Class and containing a slot within that Slot Class occurs. So,
for example, an employee can declare himself unavailable
on Sundays, or for the 5 to 11 shift on weekends, or declare
himself available to work whenever there is demand for a
nurse in the emergency room.
0.055 Each time one of these operations is performed, the
graphical representation of the employee's availability
changes to reflect the change in his availability. The graphi
cal representation of availability also displays a comparison
between the employee's declared availability and those
times during which the employee could potentially work,
based on the employer's needs as expressed in the shift
database.

0056. There is an active/inactive switch associated with
each employee. When an employee is inactive, the System

Jun. 23, 2005

does not Schedule him to work. Inactive employees are
visible in the employee library but their names and attributes
are displayed in gray rather than in black. The active/
inactive Switch allows the user to enter employee informa
tion once, Save it in the employee library and have it
available for future use. By using their ability to declare
employees (and also shifts, slots and constraints) active or
inactive, users can easily experiment with modifications in
their Scheduling problems. For instance, the user can explore
the effect on payroll cost of adding or removing employees.
0057 Besides displaying employees and their attributes
in a database format, the System also allows the creation of
a virtual indeX card for each employee. The System con
tains a flexible form design feature for these cards, So that
the employee and his attributes can appear in an unlimited
range of formats. Each employee's indeX card also can
display that employee's private attributes. Displays of the
employee's availability, constraints, preferences and Time
Limits relevant to that employee (these terms are explained
below), the current Schedule of that employee, the atten
dance history of that employee, and Statistical reports on that
employee's attendance and Schedule can also be associated
with the employee's index card.
0058 Shifts
0059. The user creates a demand or shift database 122 in
Step 118 to express the pattern of his needs for employees.
This database is made up of any number of user-created
shifts. Each shift expresses the request for a certain number
and type of employee to work at Specified and recurring
times and days. The user can associate any number of user
defined attributes with shifts. Each shift may have the
following elements:

0060 Name: The user may give each shift a name,
so that it can be referred to in other parts of the
System and in the System's outputs. The name is a
unique alphanumeric character String Specified by
the user.

0061 Start time: The user must specify the time of
the day the shift begins.

0062 End time: The user must specify the time of
day the shift ends. (If the end time is earlier than the
Starting time, the shift is understood to extend from
one day into the next.) Shifts can be up to 24 hours
long.

0063 Occurrence Calendars: The user must specify,
by choosing one or more calendars from calendar
library 108, all those days on which the shift occurs.
If more than one calendar is chosen, the shift occurs
on every day contained in at least one of the calen
dars chosen.

0064 Rotation Calendar: The rotation calendar is a
Single calendar Selected from the calendar library
and specifies the size of the blocks into which the
shift is broken for scheduling purposes. The default
rotation calendar is Every Day, causing the auto
matic Scheduling algorithm to assign employees to
the shift each day, independently of other days. In an
alternative embodiment of the invention, a user may
select different default calendars. If any other rota
tion calendar is chosen, the algorithm breaks up the

US 2005/0137925 A1

Scheduling interval for the shift into blockS running
from one day of the rotation calendar up to, but not
including, the next day of the rotation calendar, and
assigns the Same employees to the shift on every day
within a block on which the shift occurs. For
example, if the rotation calendar of a shift is Sun
day, employees are assigned to the shift, for each
day the shift occurs, in one week rotations running
from one Sunday to the next. Since the user can
create additional calendars at will, he has complete
control over the Size and pattern of rotations. He can
also use different rotation calendars for different
shifts.

0065 Slots: The user may associate any number of
slots with a shift. Each of these associated slots
represents a request for one or more employees to
work during the shift. For example, a user could
asSociate a slot for five nurses, a slot for two emer
gency Specialist physicians and a slot for an on-call
neuroSurgeon with the morning emergency room
shift. Each slot associated with a shift has an active/
inactive Switch. Inactive slots are shown in gray and
are not filled by the automatic Scheduling algorithm.

0066 An Active/Inactive switch (for the entire
shift): Inactive shifts are shown in gray and none of
their slots is filled by the automatic scheduling
algorithm.

0067 Slots
0068 The user creates slot database 122 in step 120 to
express patterns of demand for employees. This library is
made up of any number of user-created slots. Each Slot
expresses a request for a certain number and type of
employee to work. The user can associate any number of
user defined attributes with slots. Each slot may have the
following elements:

0069. An (optional) name: An alphanumeric char
acter String, which appears in the System's Schedule
outputs.

0070 A Multiplicity: The multiplicity of a slot
Specifies the number of employees needed to fill the
slot. The multiplicity is either an integer or a
demand driven function. The default value of the
multiplicity of a slot is the integer 1. To create a
demand function, the user first defines and enters
values for any number of demand variables.
Demand variables are functions from dates to inte
gers. For example, a car dealer might create a
demand variable called 'Number of cars sold to
express a prediction of the number of cars he expects
to Sell on a given day based on past Sales.
0071. There are three ways to create demand
variables:

0072 1) They can be imported from demand
Variable libraries or from other programs,

0073 2) Their values can be entered day by day,
O

0074 3) Their values can be entered graphically.
0075 For any slot, the user may then define a 'slot
demand function, by algebraically combining any number

Jun. 23, 2005

of demand variables. The value of the slot demand function
corresponding to a slot on a given day defines the multi
plicity or number of employees required to fill that slot on
that day. If the rotation for a shift includes more than one
day, the multiplicity for any Slot in any day of the rotation
is the maximum value of that Slot's demand function cal
culated over all the days of the rotation.
0076 For example, a car dealership could define a
demand variable number of cars to be serviced and then set
the multiplicity of the mechanics slot to be 1+(0.1 times the
number of cars to be serviced).

0077. A switch, “Optional/Required: “Required
slots must be filled whenever a schedule is con
Structed, and receive priority in the automatic Sched
uling process. Optional slots need not be filled in an
acceptable Schedule and the automatic Scheduling
algorithm fills optional slots as needed to Satisfy
Scheduling constraints. The user may also direct the
automatic Scheduling algorithm to fill Specified
classes of optional slots where possible.

0078. A means of designating the eligible employ
ees for the slot: The user can designate the class of
employees eligible to be assigned to a slot either by
listing the eligible employees, Selecting a previously
defined class of employees or by designating the
eligible employees by attribute value.

0079. In designating the class of eligible employees by
attribute value, the user can designate a range of acceptable
values of that attribute for any number of employee
attributes, including employee name. If acceptable values
are designated for more than one attribute, eligible employ
ees for the Slot must have acceptable values for every
designated attribute.
0080 For example, if the attribute Position is given the
value range =Surgeon, and the numerical attribute Senior
ity is given the value range >=15, only employees who are
surgeons with 15 or more years Seniority are eligible to fill
the slot.

0081 Values and Ranges
0082) When the system requires the input of a value of an
attribute, the user is prompted to enter either an integer, a
floating point number, a character String, or to Select from a
list of choices, depending on whether the attribute is of
integer, numerical, String, or enumerated type. If the
attribute is of integer or numerical type and there are upper
or lower limits defined for the attribute, these limits are also
Visible, and the user is prevented from entering values
outside the limits.

0083. At some points, the system requires input not of a
Single attribute value, but a range of acceptable attribute
values. This occurs, for example, in the Specification by
attribute value of acceptable employees to fill a slot.
0084. When the system requires the input of a range of
values of a String or enumerated attribute, the user is
prompted for an attribute value, as above, and also for a
comparison operator. For String and enumerated attributes,
the only comparison operators are equal to and not equal
to.

0085. When the system requires the input of a range of
values for a numerical or integer attribute or other parameter,
the above options are available.

US 2005/0137925 A1

0.086 Alternatively, the user may enter lower and upper
bounds for the range and two comparison operators. Either
bound may be omitted. Zero and unlimited are the default
values for the lower and upper bounds. The comparison
operator for the lower bound is either greater than or
greater than or equal to and the comparison operator for the
upper bound is either less than or less than or equal to.
0087 Constraints
0088. The user can create any number of constraints (step
112) to further specify and restrict acceptable Schedules.
Constraints are archived in constraint library 126 so that,
once created, they can be reused.
0089. Each scheduling problem has associated with it a
database of constraints. The user can add or delete con
straints from this database. When the user attempts to
asSociate a constraint with a Scheduling problem the System
checks that all the terms in the constraint are defined for that
Scheduling problem. Constraints in the database of a Sched
uling problem can be toggled between active and inactive
States. Inactive constraints are ignored in the Scheduling
proceSS.

0090 AS constraints are constructed, they are immedi
ately translated into English language paraphrases that are
Visible to the user. Highlighting any part of Such a para
phrase makes visible and available for modification the
choices in the constraint entry Screen that were used to
generate that part of the constraint.
0.091 The program has a built-in library of constraint
templates. These are the grammatical forms of commonly
encountered constraints but with Some entries pre-set.
0092. These templates can be used as a short cut in
constructing commonly encountered constraints.
0093. There are four kinds of constraints:

0094) 1-Time Limits
0.095 2–Conditional Constraints
0096) 3–Preferences
O097

0.098 Time Limits
0099 Each Time Limit expresses a limitation on the
amount of time or number of assignments that one or more
employees can be Scheduled to work, counting those assign
ments with a specified class of Shifts and to a Specified class
of slots within a specified class of calendars.

4-Regularity.

0100 Examples of Time Limits are “Each nurse works at
least 10 and no more than 40 hours in every 6 week interval,
counting only the emergency room shift and only time
worked on weekends and holidays, or 'The total number of
hours worked by all the junior Surgical residents on any
weekend is between 100 and 200 hours.

0101 Each Time Limit may have the following elements:
0102) Employee Class: The user specifies the
employees to whom the Time Limit applies either by
Selecting those employees from a list, by Selecting a
pre-existing employee class, or by Specifying accept
able values of one or more employee attributes. The
default value is all employees.

Jun. 23, 2005

0.103 Interval Length: The user specifies an integer
and chooses from among hours, days, weeks,
and months. This specifies the time interval over
which the Time Limit applies.

0104 Shift Class: The user specifies a class of one
or more shifts which are to be counted in Satisfying
the Time Limit. The default value is all shifts.

0105 Slot Class: The user specifies a class of one or
more Slots which are to be counted in Satisfying the
Time Limit. The default value is all slots.

0106 Calendar Class: The user specifies a class of
one or more calendars, thereby Specifying which
days worked are to be counted in Satisfying the Time
Limit. The default value is every day.

0107 Unit of Time Measurement: The user chooses
from among minutes, hours, days, weeks,
months, shifts, and rotations. This choice speci

fies the size of the units of time counted in the Time
Limit.

0.108 Range: The user chooses at least one of two
integers-the upper and lower limits of a numeric
range. The user also chooses operators to describe
this range at its limits. The operator for the lower
limit is either greater than or 'greater than or equal
to and the operator for the upper limit is either less
than or less than or equal to.

0109) If either limit is omitted, a default value is used.
The default value for the lower limit is zero. The default
value for the upper limit is unlimited.
0110. This range specifies the number of time units that
may be worked in any interval of the Specified interval size.

0111 ASwitch, “Each/ As a Group: If the Switch is
set to “Each, the Time Limit applies to each of the
specified employees individually. If the Switch is set
to As a Group the Time Limit applies to the sum of
the times worked by the class of Specified employees
as a whole.

0112 Conditional Constraints
0113 Each Conditional Constraint expresses a restriction
on acceptable Schedules of the form if a certain pattern of
work assignments occurs in the Schedule, then another must
(or must not) occur.
0114. Some examples of Conditional Constraints are:

0115 If a doctor works three days in a row, he
doesn’t work the next two days.

0116. If Al works during any weekend between July
1 and August 31, Susan does not work during the
Same weekend

0.117) If two union members work together on at
least three Saturday mornings in three consecutive
months and a different union member works every
Sunday in one of those three months, then Some
other union member works at least three emergency
room shifts in each of the next two months

0118. Each Conditional Constraint is designated by the
user as either a weak or 'Strong Conditional Constraint,
and the user may toggle a Conditional Constraint between

US 2005/0137925 A1

these two designations. Strong Conditional Constraints must
be Satisfied in any acceptable Schedule. Weak constraints
may be violated, although the automatic Scheduling algo
rithm is designed So that they will be Satisfied in most cases.
0119) Conditional Constraints are specified by a formal
grammar and comprise a limited programming language.
However the System is Structured So that the user creates
Conditional Constraints by making a Series of choices and
Selections from lists, rather than by creating program code.
AS a constraint is constructed, an English language transla
tion of the constraint is simultaneously constructed and
displayed. The user is thus shielded from the complexity of
the underlying programming language and no programming
skill is required to use the System.
0120 In one embodiment of the invention, the user has
access to a simplified and restricted version of the full
Conditional Constraint construction mechanism, in addition
to his access to the full Conditional Constraint construction
mechanism. These simplified versions are of two types:
0121 1- The user is presented with structured and
indexed lists of frequently occurring forms of Conditional
Constraints, each form having only a few variable parts to be
Specified. For instance, the user is presented with the form:

0122) Employees in <Employee Class> don't work
<N> days in a row.

0123 The system will automatically turn this form into a
Conditional Constraint once the user specifies values for the
Employee Class and the integer N.
0.124 2- The user is presented with the Conditional
Constraint composition Screen, but with certain advanced
features unavailable. Such advanced features that may be
unavailable include the 'N AS A Group construct for
employees, and parts B and D of the Duration Specifier (see
below).
0.125 Each Conditional Constraint contains an optional
If part and a required “Then part. Whenever a schedule
satisfies the conditions in the “If part of the constraint it
must also satisfy all the conditions in the “Then part. The
If part of a constraint may be empty; in that case, the
Then part of the constraint must be satisfied by the sched
ule unconditionally.

0.126 The “If part of a Conditional Constraint consists of
an unlimited number of clauses. For the “If part of a
Conditional Constraint to be satisfied by a schedule, all these
clauses must be Simultaneously Satisfied by the Schedule.
The Then part of a Conditional Constraint consists of a
Single clause.
0127. In some embodiments of the invention, the Con
ditional Constraint language may be extended to permit
clauses to be connected with an or connective as well as an
and connective, and also to permit the 'Then part of a
constraint to contain an arbitrary number of clauses.
0128. A clause describes a class of employees and a
temporally structured pattern of times and/or shifts, and
asserts that Some or all of the described employees work (or
don’t work) within the described temporal pattern. There
fore, each clause has two principal components-an
Employee Pattern and a Time Pattern. A third component of
the clause, the connective, bridges the Employee Pattern and
the Time Pattern.

Jun. 23, 2005

0129. Tools for constructing and manipulating Condi
tional Constraints include:

0.130 1-Create a new clause,
0131)
0132 3-Copy one or more clauses.

0133) Employee Pattern

2-Delete one or more clauses, and

0134) The Employee Pattern of a clause has two parts.
0135) The first part of the Employee Pattern, the
Employee Class describes the set of employees to which
the clause refers. The Absolute Employee Class Specifier of
a clause may designate a class of employees without refer
ence to the employee class of a preceding clause in the same
constraint-an Absolute Absolute Employee Class Speci
fier—or in relation to the employee class of a preceding
clause in the same constraint-a Relative Absolute
Employee Class Specifier. If a clause is the first clause in a
constraint, it can contain only an Absolute Absolute
Employee Class Specifier.
0.136 An Absolute Absolute Employee Class Specifier
for a clause designates a class of employees using the same
mechanisms as in the description of the employee class of a
Time Limits Constraint above; thus a class of employees
may be designated by listing its members, by restricting
membership to employees who have certain attribute values,
or by importing a previously defined employee class.
0137) A Relative Absolute Employee Class Specifier
designates a class of employees for a clause in relation to the
employee class of an earlier clause of the constraint. For
example, if the preceding clause Says:

0.138 Three nurses work on a Wednesday
0.139 those three nurses comprise an employee class
that can be referenced by a Subsequent clause that
says:

0140 . . . the same employees work on the fol
lowing Friday

0.141. A relative employee class can depend on the
employee class of a preceding clause in more com
plex Ways, e.g.:

0.142 " Two nurses, not among the three who
worked Wednesday, work on the following Friday.

0.143 A Relative Employee Class is created by choosing
a preceding clause in the Same constraint So as to Select the
employee class that is being referred to, and Selecting one of:

0144 1-Same employees as employee class of
reference clause

0145 2-All employees not in employee class of
reference clause.

0146 3-Employees whose assignments caused the
reference clause to be Satisfied

0147 4-Employees other than those whose assign
ments caused the reference clause to be satisfied

0.148 5-Employees in the employee class of the
reference clause other than those whose assignments
caused the reference clause to be Satisfied

0149) 6-Employees specified by relative attribute
values.

US 2005/0137925 A1

0150. In the example above, the classes of employees
defined by these Selections are:

0151 1-All nurses
0152 2-All employees who arent nurses
0153. 3- The three nurses who worked on Wednes
day

0154) 4-All employees except for the three nurses
who worked on Wednesday

O155 5-All nurses except for the three nurses who
worked on Wednesday

0156 6-If this selection is made, the user selects
one or more attributes for employees, and describes
acceptable values for those attributes relative to the
attribute values of the employees in the employee
class of the reference clause. For example, the user
could specify the class of nurses with more Seniority
than any of the three nurses who worked on Wednes
day.

O157. In constructing a Relative Employee Class, the user
has the option of Selecting which of the preceding clauses in
the constraint is being referred to. The default selection is the
nearest preceding clause using (containing?) an Absolute
Employee Specifier. The user has a similar option for the
other Relative Class constructions described below.

0158. The second part of the Employee Pattern describes
the pattern of use of the employees in the employee class.
This Second part is created by choosing one of:

0159) 1–Each
0.160) If this option is chosen, the clause applies indi
vidually to every employee in the employee class. The
clause is Satisfied only if the condition on employee assign
ments Specified by the remainder of the clause is Satisfied by
each employee in the employee class.

0.161 2-Each of Range of above
0162) If this option is chosen, the user specifies at least
one of a minimum and maximum value of an integer range.
The clause is satisfied only if the number of employees in the
employee class of the clause that Satisfies the condition on
employee assignments specified by the remainder of the
clause is in the Specified range.

0163 3-Range total
0164. If this option is chosen, the user specifies at least
one of a minimum and maximum value of an integer range.
The clause is satisfied only if the total number of employees
in the employee class working throughout the time Specified
by the clause's Time Pattern is in the Specified range.
0.165 A clause with this option imposes no further
requirements on the employees working at any instant and,
in particular, does not require that the same employees work
throughout the time Specified, nor that the same group of
employees work together throughout.

0166 4-N as a group
0167 If this option is chosen, a total of N employees
from the employee class is Selected. The clause is Satisfied
only if the times that those N employees are all working

Jun. 23, 2005

Satisfies the condition on work assignments specified by the
remainder of the clause. The user specifies the value of N.
0168 For example, if the employee class is doctors and
remainder of the clause is works three Saturdays in March
then the clause constructed with each of the above choices
is

0169 1- Each doctor works three Saturdays in
March.

0170 2- At least 4 and (less) no more than 7
doctors each work three Saturdays in March. (Range
is 4-7)

0171 3–On three Saturdays in March, between 4
and 7 doctors are working. (Range is 4-7)

0172 4-There is a (team) group of 4 doctors who
all work on the same three Saturdays in March.
(N=4)

0173 For options 2, 3, and 4 above, whether or not the
clause is Satisfied will depend on which employees are
chosen, and the group of employees chosen may be refer
enced by Subsequent relative employee Specifiers in the
constraint. In effect, Conditional Constraints with Such vari
able parts in one or more of their clauses, create a family of
constraints, one for each way of assigning objects to the
variable parts that satisfies all the clauses in the “If part of
the constraint.

0174 For example, in the constraint
0175 “If some (one) doctor works any (one) day,
then the same employee does not work the next
day

0176 there are two variable parts, one permitting
the Substitution of any doctor, and one permitting the
substitution of any day. If there were 10 doctors and
50 days to be scheduled, the effect of this constraint
is as if 500 similar constraints without variable parts
existed-one for every doctor and every day.

0177 Connective
0.178 To indicate the connective of a clause, the user
chooses either:

0179] 1 Work(s)
0180)

0181 Time Pattern
0182. The Time Pattern of a clause describes a pattern of
times and shifts, and slots that the employees described by
the Employee Pattern must or must not be assigned to work
to satisfy the clause. The Time Pattern has four parts: a
Calendar Class, a Shift Class, a Slot Class and a Duration.
The Duration describes a temporal pattern to be worked. The
Calendar Class, Shift Class and Slot Class describe which
calendar days, shifts and slots are counted within the tem
poral pattern Specified.

0183 Calendar Class
0.184 The Calendar Class gives the user a filtering
mechanism to describe which calendar days occur within the
time specified. The Calendar Class can be described by
either an Absolute Calendar Class Specifier or a Relative
Calendar Class Specifier.

2-Doesn't work

US 2005/0137925 A1

0185. An Absolute Calendar Class is specified either by
Selecting a previously defined Calendar Class or by Selecting
any number of calendars. If this latter option is chosen, the
user Specifies whether the Calendar Class is the union or
intersection of the selected calendars. The default Calendar
Class is the every day calendar.
0186 A Relative Calendar Class is specified by selecting
a preceding reference clause in the constraint and Specifying
whether the Calendar Class of the present clause is

0187 1-identical to the Calendar Class of the
reference clause

0188 2-the complement of the Calendar Class of
the reference clause

0189 3-those days on which assignments took
place that caused the reference clause to be Satisfied

0.190 4-all days other than those days on which
assignments took place causing the reference clause
to be satisfied

0191 5-all days in the Calendar Class of the
reference clause other than those on which assign
ments took place causing the reference clause to be
Satisfied.

0.192 For example, if the reference clause is

0193)
0194 and for some instantiation of variable parts
this clause was Satisfied because Joe is assigned to
work February 7 and February 21, the Relative
Calendar Classes defined by the above options are

Joe works (some) 2. Saturdays

0195) 1-all Saturdays
0196) 2-all days except Saturdays

0197) 3-February 7 and February 21

(og. 4-all days except February 7 and February

0199 5-all Saturdays except February 7 and Feb
ruary 21

0200) Shift Pattern
0201 The Shift Pattern describes the class of shifts to
which the clause refers, and how those shifts are combined.
The first part of the Shift Pattern, the Shift Class is either an
Absolute Shift Class or a Relative Shift Class. An Absolute
Shift Class is defined either by selecting a pre-defined Shift
Class, by choosing shifts from a list, or by Selecting shifts
according to their attribute values.
0202) A Relative Shift Class is specified by selecting a
preceding reference clause and Selecting one of

0203 1-Same shifts as reference Shift Class

0204 2-Shifts not in reference Shift Class
0205 3-Shifts with assignments that caused the
reference clause to be Satisfied.

0206) 4-Shifts other than those with assignments
that caused the reference clause to be Satisfied

Jun. 23, 2005

0207 5-Shifts in the reference Shift Class other
than those with assignments that caused the refer
ence clause to be Satisfied.

0208. The second part of the Shift Pattern describes how
the members of the Shift Class determine whether a clause
is satisfied. This part is selected from:

0209) 1–Each
0210. If this option is chosen, the clause is satisfied
if the condition on shifts defined by the remaining
parts of the clause is Satisfied by each member of the
Shift Class individually.

0211 2-Each of Range of the above.
0212) If this option is chosen, the user enters at least one
of a minimum and maximum value defining an integer
range. A set of N members of the Shift Set is selected. The
clause is satisfied if the number of shifts in the Shift Class
that Satisfy the condition on shifts defined by the remaining
parts of the clause is in the range.

0213 3- All
0214) If this option is chosen, the union of the members
of the Shift Class is considered as a single shift. The clause
is satisfied if it is satisfied by this single unified shift.

0215) 4- All of N of above
0216) If this option is chosen, a set of N members of the
Shift Class is selected. The union of these N shifts is then
considered as a single shift. The clause is Satisfied if it is
satisfied by this single unified shift.
0217 For example, if the rest of the clause says Joe
works . . . 5 days in March and the Shift Class is the
morning evening and graveyard shift then the above choices
correspond to the following clauses

0218 1-Joe works 5 days in March on the morn
ing shift, 5 days in March on the evening shift and 5
days in March on the graveyard shift.

0219 2- Of the 3 shifts-the morning, evening
and graveyard-Joe works 5 days in March on either
1 or 2 of them. (Range=1 to 2)

0220 3-'Joe works 5 days in March counting all
his work on any of the morning, evening, and
graveyard shifts.

0221) 4-Joe works 5 days in March, counting all
his work on Some 2 of the morning, evening, and
graveyard shifts. (N=2)

0222. Duration
0223) The Duration of a clause describes a pattern of
times to be worked. Apattern of time consists of one or more
specified intervals of time. A Duration may be either abso
lute or relative. An Absolute Duration is a duration that does
not refer to the duration of a preceding clause. A Relative
Duration is a Duration that refers to the duration of a
preceding clause.
0224. An Absolute Duration has three parts, a Fine Pat
tern, a Large Pattern, and an optional Date Range. The Fine
Pattern is a finely detailed amount and pattern of time. The
Large Pattern is a coarser pattern within which the Fine
Pattern is distributed.

US 2005/0137925 A1

0225. Examples of Fine Patterns are:
0226) 3 consecutive shifts
0227 5 of the first 7 days
0228 the 4 rotation

0229. Examples of Large Patterns are:
0230 2 of the first 5 weeks'
0231 “4 consecutive weeks
0232 the first 6 months of the year

0233 For example, an Absolute Duration might describe,
four consecutive days in each of three consecutive months.
In this example, the Fine Pattern is four consecutive days
and the Large Pattern is each of three consecutive months.
0234. The Date Range limits the Duration to the interval
between a start and End Date.

0235 Fine Pattern
0236 A Fine Pattern is described by choices from
each of three lists, the Quantifier List, the Order List
and the Object List.

0237) The choice from the Quantifier List specifies
the number of the objects selected from the Object
List. The Quantifier List contains the following
options:

0238 1–Each–
0239). If each is chosen every one of the objects
chosen from the Object List that are within the range
specified by the Order List is in the Fine Pattern.

0240 2-'Some #-
0241 The user enters an integer N and some N of
the objects chosen from the Object List, and also
within the range Specified by the Order List, are in
the Fine Pattern

0242 3-'Some # Consecutive
0243 This choice has the same effect as 'Some #,
with the additional restriction that the N objects
Selected must be temporally consecutive.

0244. For the Quantifier List, “Each is the default value.
0245. The Order List restricts the possible choices of
objects from the Object List. The Order List contains
the following options:

0246) 1- All
0247 If All is chosen no further restriction is
placed on the choice of objects.

0248 2- Range
0249. If Range is chosen the user enters at least one
of an upper and lower limit of an integer range. This
integer range applies to the temporal order of the
objects and restricts the choice of objects to those
within the range. If the lower and upper limits of the
range are equal, the choice of objects is restricted to
the N" object in temporal order, or to objects at more
than, less than, etc., the N" temporal position,
depending on the operator Selected.

Jun. 23, 2005

0250) 3–First #–

0251) If 'First # is selected, the user enters an
integer, N. The choice of objects Selected is restricted
to the first N objects in temporal order.

0252) 4–Last #-

0253) If “Last # is selected, the user enters an
integer, N. The choice of objects Selected is restricted
to the last N objects in temporal order.

0254 For the Order List All is the default value.
0255 The selections on the Object List specify the size of
the time pattern. The Selections are:

0256 1- Instances

0257) If Instances is chosen, the objects are occur
rences of a shift in the Shift Class of the clause.

0258 2-Hours'-

0259. If 'Hours is chosen, the objects are hours of
work. The total number of hours is counted, regard
less of when the hours begin on the clock. So, for
example, the time from 3:30 to 4:30 P.M. is one hour
not (parts of) two hours.

0260 3-Days

0261) If Days is chosen, the objects are days begin
ning and ending at midnight. A day is counted as
worked if an employee works at any time during the
day.

0262. If 'Some # Consecutive and N is chosen from
the Quantifier List and Days is chosen from the
Object List, then N numerically consecutive days are
Specified.

0263. 4- Calendar Days

0264. If Calendar Days is chosen, the objects are
days, but only days within the Calendar Class of the
clause.

0265). If Some # Consecutive and N is chosen from
the Quantifier List and Calendar Days is chosen
from the Object List, then N days that occur con
secutively within the Calendar Class are Specified.
These N days need not actually be consecutive. For
example, if the Calendar Class includes only Sun
days, and Some # Consecutive and 5 are chosen,
then the Fine Pattern is 5 consecutive Sundays.

0266 5- Rotations'-
0267 If Rotations is chosen, the objects are rota
tions of any members of the Shift Class of the clause.
A rotation is counted as having been worked if any
instance within the rotation has been worked.

0268) 6–Weeks'-
0269. If Weeks is chosen, the objects are weeks,

i.e., 7 day periods starting on a particular day of the
week. (The start day of the week is selected by the
user in the initial setup of the system. The default

US 2005/0137925 A1

Start day is Sunday.) A week is counted as having
been worked if an employee works at any time
within the week.

0270 7-Months
0271) If Months is chosen, the objects are calendar
months. A month is counted as having been worked
if an employee works at any time within the month.

0272 8- The last option for the Object List requires
making a choice from each of two Sublists, then
Specifying an integer N, and an operator.

0273) Options for the first sublist are Day, Week,
Month and Rotation. Options for the second Sub

list are Week, Month and Year. Once an object is
chosen from the first Sublist, only larger objects can
be chosen from the second Sublist. For instance, if
Week is chosen from the first Sublist, then only
'Month or 'Year can be chosen from the second
Sublist.

0274 The integer N and operator specify which
objects from the first Sublist within each object from
the Second Sublist are counted. So, for example, if
day, month 12 and <= are chosen, the objects
selected are the first twelve days in the month.

0275. The default choice for the Object List of Part A is
Instances.

0276 Large Pattern
0277. The Large Pattern of a Duration is a larger time
pattern within which the Fine Pattern is distributed. A Large
Pattern is created by making a Selection from each of three
lists, the Quantifier List, the Order List and the Object List.
(These lists are distinct from the lists for the Fine Pattern,
above.)

0278. The first list for specifying a Large Pattern, the
Quantifier List, Specifies the number of objects
selected from the Object List. The Quantifier List
contains the following options:

0279) 1- Anytime
0280) If Anytime is chosen there is no restriction
on when the Fine Pattern occurs. If Anytime is
chosen no choices are made from the Order List and
Object List.

0281) 2–Each
0282) If “Each” is chosen, the Fine Pattern must
occur in every one of the objects chosen from the
Object List and within the range specified by the
Order List.

0283 3–Each of Some #-
0284. If Each of Some # is chosen, the user enters
an integer, N. The Fine Pattern must occur in each
Some N objects chosen from the object list and
within the range specified by the Order List.

0285) 4- Each of Some # Consecutive
0286 This choice has the same effect as 'Some #,
with the additional restriction that the N objects
Selected must be temporally consecutive.

11
Jun. 23, 2005

0287 5–Total # Consecutive

0288). If Total # Consecutive is chosen the user
enters an integer, N. is specified, then Some N
temporally consecutive objects chosen from the
Object List are selected. The Fine Pattern must occur
at least once in every N consecutive objects chosen
from the Object List and with the range specified by
the Order List.

0289. The default choice for the Quantifier List of the
Large Pattern is "Anytime.

0290 The Order List of the Large Pattern restricts the
possible choices of objects. The options on the Order List

C.

0291 1- All

0292. If All is chosen no further restriction is
placed on the choice of objects.

0293 2–Range

0294. If Range’ is chosen the user enters at least one
of the upper and lower limits of an integer range.
This integer range applies to the temporal order of
the objects and restricts the choice of objects to those
within the range. If the values for the lower and
upper limits of the range are the Same, both N, the
choice of objects is restricted to the N" object in
temporal order, or to objects at more than, less than,
etc., the N" temporal position, depending on the
operator Selected.

0295) 3-' First #-

0296) If 'First # is selected the user enters an
integer, N. The choice of objects Selected is restricted
to the first N objects in temporal order.

0297 4–Last #-

0298 If Last # is selected the user enters an
integer, N. The choice of objects Selected is restricted
to the last N objects in temporal order.

0299 For the Order List All is the default value.
0300. The options on the Object List of the Large Pattern,
Specify the size of the time pattern used. The options are the
same as for the Object List of the Fine Pattern, except that
the option Instances is omitted and the option “Years is
added. Thus, the options are

0301 1-Hours
0302) 2-Days.

0303 3- Calendar Days'

0304 4–Rotations’

0305 5- Weeks

0306 6–Months

0307) 7-Years

0308) 8-A choice from each of two Sublists, analo
gous to choice 8 for the object list of the Fine Pattern.

US 2005/0137925 A1

0309 The default choice for the Object List for the Large
Pattern Days'.

0310. The Date Range of the duration specifies the range
of dates from which intervals making up the Fine Pattern can
be chosen. If no start/End Date is selected, the default dates
are the start/End Dates of the constraint, if they exist.
Otherwise, the default dates are the start/End Dates of the
Scheduling problem.

0311 Relative Durations
0312. Durations can be absolute or relative. An Absolute
Duration Specifies a temporal pattern without reference to
durations in earlier clauses. A Relative Duration specifies a
pattern of intervals that Stand in a Specified relationship to
the duration of a preceding clause. Examples of Absolute
Durations are one shift on each of two consecutive days
and every day from March 10 to March 17. Examples of
Relative Durations are the next rotation and the first
Tuesday in the next month.

0313 If a clause is a second or later clause in a constraint,
the duration Specified of that clause can be relative or
absolute. Thus, the user has available all the means for
constructing an absolute Fine Pattern as well as means for
constructing Relative Fine Patterns. Similarly the user has
available all the means for constructing absolute Large
Patterns, as well as means for constructing Relative Large
Patterns.

0314. The Date Range of a Relative Duration has one
additional option, Same date range as reference duration.

0315 Relative Fine Pattern
0316 To describe a Relative Fine Pattern, the user selects
a preceding reference clause and one item from each of The
First Quantifier List; The Relation List; The First Object
List; The Second Quantifier List; and The Second Object
List.

0317. The meaning of these five parts and how they
together specify a Relative Fine Pattern of time intervals is
explained in reverse order below. In outline, the Selections
made from the Second Quantifier list and the Second Object
list are used to construct a pattern of time intervals by
referring to the intervals comprising the fine pattern of the
reference clause. The Second Quantifier list describes the
number and arrangement of time units in this pattern and the
Second Object list describes the size of the time units.
Together, the choices from these two lists create a set of
intervals 'R', the 'Reference Set.

0318. The choices from the first three lists-the First
Quantifier List, the Relation List and the First Object List
specify the Relative Fine Pattern as a set of intervals or
instances that Stand in a Specified temporal relation to the
members of the set R.

0319 Suppose that the Fine Pattern of the reference
clause is a set S of instances or time intervals. This set S
can be described as a Set of time units of any of Several sizes.
That is, it can be re-described as a set S*-a set of hours, or
a Set of instances, or a set of days, weeks, months or
years—where an hour, a day, week, month, or year is
included in S* if any part of Soccurs within that hour, day,
week, month, or year.

Jun. 23, 2005

0320 The entries for the Second Object List, correspond
to these ways of re-describing the set S. They are (1)
Instances; (2) Hours; (3) “Days'; (4) “Weeks; (5)
Months”; (6) “Years.
0321) The entries in the Second Quantifier List specify
the reference set R as a Subset of S*. They are:

0322, 1- First #
0323 If 'First # is chosen the user enters an integer,
N. R is the temporally first N members of S*.

0324 2–Last #
0325 If “Last # is chosen the user enters an integer,
N. R is the temporally last N members of S*

0326) 3–Each
0327 If “Each is chosen, R is S*
0328) 4 'Some #
0329 If 'Some # is selected the user enters an
integer, N. R is a set of some N members of S*.

0330) 5–Some # Consecutive’
0331. This option is like “Some # with the further
restriction on R that the set of N objects be tempo
rally consecutive.

0332 6–Range’
0333. If “Range is selected the user is prompted for
two integers, the upper and lower limits of an integer
range. If M and N are the limits, the set R is the M"
through N members of S*.

0334. The user's choices from the first three lists for
defining a Fine Pattern, combined with the reference set R,
construct the Relative Fine Pattern.

0335 This construction occurs in two stages. First, the
choices from the Relation List and the First Object List
create a Set, E, the Set of objects initially eligible for
inclusion in the Relative Fine Pattern. The size of the time
units in E is specified by the choice from the First Object
List, and membership in E is determined by R and the choice
from the Relation List.

0336 Lastly, the members of E included in the Relative
Fine Pattern, are specified by the choice from the First
Quantifier List.

0337 The entries in the First Object List, specify the size
of the time intervals in the set E. The options on the First
Object List are:

0338 1-Instances’
0339 2-Calendar Instances
0340 Calendar Instances are only those instances
that occur on days in the Calendar Class of the
clause.

0341) 3-Hours'
0342) 4-Days
0343 5-Calendar Days'
0344 Calendar Days are only those days that occur
on days in the Calendar Class of the clause.

US 2005/0137925 A1

0345 6–Rotations
0346) 7–Weeks
0347 8-Months
0348 9-Years

0349 The options on the Relation List define the set E by
Specifying time intervals in E by their temporal relationship
to the members of the Reference Set, R. The options on the
Relation List are:

0350 1- Before
0351) If “Before’ is selected, the set E includes only
time intervals or instances that end before every
member of the set R begins.

0352 2- After
0353) If After is selected, the set E includes only
time intervals or instances that begin after every
member of the set R ends.

0354) 3–Previous #
0355) If “Previous # is selected the user enters an
integer, N. For each member of R, the N objects of
unit size specified by the First Object List temporally
preceding that member of R are in the Set E.

0356 4–"Next #
0357) If “Next # is selected the user enters an
integer, N. For each member of R, the N objects of
unit size specified by the First Object List temporally
following that member of R are in the set E.

0358 5- Different
0359. If Different is selected, only time intervals or
instances that do not temporally overlap any member
of the set R are in the set E.

0360 6–Previous Contiguous

0361) If Previous Contiguous is selected, time
intervals or instances are in the Set E only if they end
exactly when Some member of the Set R begins.

0362) 7–Next Contiguous

0363 If Next Contiguous is selected, time inter
vals or instances are in the Set E only of they begin
exactly when some member of the set R ends.

0364 8–Earlier by #

0365. If Earlier by # is selected the user enters an
integer, N. The time intervals or instances in the Set
E are those which are Nth earlier, counting time units
of the size chosen from the First Object List, than
Some member of the set R.

0366 9- Later by #

0367 If Later by # is selected the user enters an
integer, N. The time intervals or instances in the Set
E are those which are Nth later, counting time units
of the size chosen from the First Object List, than
Some member of the set R.

13
Jun. 23, 2005

0368 10-Overlapping
0369. If 'Overlapping is selected, time intervals or
instances are in the Set E only if they temporally
overlap a member of the set R.

0370 11-'Identical
0371) If Identical is selected, the set E is the same
as the set R. This option is available only if the time
unit sizes chosen from the First and Second Object
Lists are the Same.

0372 12-Included In/Including
0373) If Included In/Including is selected, and the
time unit chosen from the First Object List is larger
than the time unit chosen from the Second Object
List, then a time interval or instance is in E only if
it temporally includes some member of R. If the time
unit chosen from the First Object List is smaller than
the time unit chosen from the Second Object List,
then a time interval or instance is in E only if it is
temporally included in some member of R.

0374. This option is available only if the choices
from the First and Second Object Lists differ.

0375. The options on the First Quantifier List allow
the user to specify which members of the set E are
actually included in the Fine Pattern. The options on
the First Quantifier list are:

0376) 1- Anytime
0377 If Anytime is chosen, no restriction is placed
on the intervals Selected, and no further choices are
made in specifying the Relative Fine Pattern.

0378] 2–Each
0379 If each is chosen, the Fine Pattern is identical
to the set E.

0380) 3 “Some #
0381) If 'Some # is selected, the user enters an
integer, N. The Fine Pattern is a set of some N
members of the set E.

0382 4-Some if consecutive
0383 If 'Some if consecutive is selected, the user
enters an integer, N. The Fine Pattern is a set of some
N temporally consecutive members of the set E.

0384 Anytime is the default selection for the First
Quantifier List.

0385) Relative Large Pattern
0386 The mechanism used to construct relative large
time patterns, is almost identical to the mechanism used to
construct relative Small time patterns. A reference Set, R, is
derived from the large time pattern of a preceding clause,
then a Set E of intervals bearing a temporal relation to
members of R, and the Relative Large Pattern is selected
from E.

0387. The only differences between the construction of a
Relative Fine Pattern and a Relative Large Pattern are:

0388 1- The reference set R is constructed from a
preceding large time pattern rather than from a

US 2005/0137925 A1

preceding Small time pattern. (Note that the refer
ence sets for the Fine Pattern and the Large Pattern
of a clause can come from different preceding
clauses. For example, in the constraint

0389)
0390)
0391 then Joe works each day after the doctor
WorkS in each week that the nurse works

0392 the Then clause has a time pattern with a
Relative Fine Pattern (each day after the doctor
worked) and a Relative Large Pattern ('each week
that the nurse works) derived from the first and
Second clauses

0393 respectively a time pattern with a Relative
Fine Pattern and a Relative Large Pattern)

0394 2- The options Instances is omitted from
the First Object List of for the Large Pattern.

If some doctor works a dayshift
and Some nurse works any shift on a Tuesday,

0395 Preferences and Optimization
0396 There are three kinds of scheduling preferences:

0397 1-Optimization Preferences-these direct
the automatic Scheduling algorithm to maximize or
minimize the total of an attribute value or other
Objective Function, Summed over some set of
assignments in a Schedule.

0398 2-Specification, by the employer, of pre
ferred employees for assignment to certain shifts,
Slots and times.

0399 3-Preferences expressed by employees for
Specific work assignments.

0400 Preferences of all three types can potentially con
flict with one another, and the System provides a mechanism
for resolving these conflicts. In one embodiment of the
System, all three kinds of preferences associated with a
Scheduling problem are maintained on a Single list which
can be reordered by the user. When two Preference Con
Straints conflict, for an assignment, the Preference Con
straint higher on the list is used and the Preference Con
Straint lower on the list is ignored for that assignment.
04.01. Optimization Preferences
0402. To express an Optimization Preference the user can
specify (step 110):

0403) 1-An Employee Class
0404 2-A Calendar Class
04.05 3-A Shift Class
0406 4-A Slot Class
0407 5–An Objective Function

0408. The user defined Objective Function of an opti
mization preference is an algebraic combination of one or
more integer or numerical employee attributes. The objec
tive function can be as Simple as a Single numerical attribute.

04.09 5-A switch-Minimize/Maximize
0410) 6-A second switch-Avoid Missing Val
ues/ Prefer Missing Values.

14
Jun. 23, 2005

0411 The meaning of an optimization preference is that
the value of the Objective Function associated with each
employee, Summed over assignments for members of the
Employee Class occurring within the Shift Class, Slot Class
and Calendar Class should be minimized or maximized by
the automatic Scheduling algorithm. For example, an opti
mization preference can direct the automatic Scheduling
algorithm to Seek a Scheduling Solution that minimizes the
total payroll cost of a class of employees or that maximizes
the Sum of years of employee experience.
0412 Some employees may not have values for the
Objective Function because they are missing values for one
or more of the attributes employed in the definition of the
objective function. If Avoid Missing Values is selected, the
automatic Scheduling algorithm will attempt to minimize the
assignments of those employees. If Prefer Missing Values
is Selected, the algorithm will attempt to maximize the
assignments of these employees. For example, a factory may
have Some employees who are paid a fixed wage and other
employees who are paid an hourly wage. If the employer
Sets up an optimization preference to minimize his payroll
costs, they System will preferentially assign employees with
lower hourly wage rates. The employees paid a fixed wage
do not have an hourly wage. By choosing avoid or prefer
missing value, the user tells the System whether to try to
maximize or minimize the assignment of employees with a
fixed Salary.
0413 Preferred Employees
0414. To express a Preferred Employees Constraint, the
user Specifies:

0415 1-An Employee Class
0416) 2-An (optional) Preference Ordering of that
Employee Class.
0417. There are two ways for the user to construct
a Preference Ordering:

0418 1- The user can manually order the list of
employees within the Employee Class.

0419 2- The user can choose an employee
attribute and Specify the order of preference for
the values of that attribute.

0420 3-A Calendar Class
0421) 4-A Shift Class
0422) 5-A Slot Class

0423 A Preferred Employees Constraint directs the auto
matic Scheduling algorithm to prefer employees in the
Employee Class to other employees for assignments within
each of the Calendar Class, the Shift Class, and the Slot
Class, and that within the Employee Class, preference for
these assignments should be made according to the Prefer
ence Ordering.
0424 Employee Specified Preferences
0425 To express an Employee Specified Preference the
user Specifies:

0426 1- The name of an Employee
0427 2-A Calendar Class
0428 3-A Shift Class

US 2005/0137925 A1

0429 4-A Slot Class
0430) 5-A switch-Prefer/* Avoid”.

0431. An Employee Specified Preference directs the
automatic Scheduling algorithm to minimize or maximize
the assignments within each of the Calendar Class, Shift
Class and Slot Class for a Single employee. In Some embodi
ments of the System, employees will be able to enter
Employee Specified Preferences directly, whereas more glo
bal constraints will be entered by the employer or system
administrator.

0432 Regularity Constraints
0433) To express a Regularity Constraint, the user speci

fies:

0434 1-An Employee Class
0435 2-A Shift Class.
0436 3-A Slot Class
0437 4-A Calendar Class

0438. The meaning of a Regularity Constraint is that, to
the extent possible, each employee in the Employee Class
should have a regular or highly repetitive Schedule of
assignments within the Shift Class, Slot Class and Calendar
Class. Whenever the automatic Scheduling algorithm assigns
an employee in the Employee Class to a qualifying slot
instance, the algorithm attempts to repeat this assignment for
any unassigned instances of the same slot in the same shift
and within the Calendar Class.

0439. In other embodiments of the program, the expres
Sive power of constraints is enlarged by permitting variable
attribute values allowing attribute values acroSS different
types of objects, and acroSS clauses in Conditional Con
Straints, to be matched and compared. For example, this
feature permits creation of clauses like:
0440 No employee with security-clearance less than
value X Works in a slot with slot-Security clearance value
greater than or equal to X.
0441 Creation and Modification of Schedules
0442. One embodiment of the invention has a facility for
creating and Storing Scheduling problems and partial and
complete Solutions to Scheduling problems. The System
allows users to create, rename and delete Scheduling prob
lems. Users may save partially or completely Solved Sched
uling problems and move from one problem to another, So
that a user can work on more than one Scheduling problem.
0443) To create a scheduling problem the user specifies:

0444 1-A starting date and ending date for the 9. 9.
problem, and a Calendar Class of dates to be Sched
uled

0445 2-A database of employees available to be
assigned

0446. 3-A class of shifts to be scheduled
0447 4-A class of slots to be scheduled

0448. Once a scheduling problem has been set up, the
user may create new constraints and preferences or associate
already created constraints and preferences with the prob
lem.

Jun. 23, 2005

0449 Once a user has specified a scheduling problem, a
class of Slot-instances is created. A slot-instance is a request
for one employee to work during a shift on a given date.
Whenever a shift in the shift database for a scheduling
problem occurs on a date in the calendar database for that
Scheduling problem, slot-instances are created for every slot
associated with the shift which is also in the slot database for
the scheduling problem. If the multiplicity of the slot is an
integer N, N slot-instances are created for that shift, Slot and
date, Signifying a request for n employees. If the multiplicity
of the slot is a demand function F, N slot-instances are
created, where N is the maximal value of F over all the days
in the calendar database and in the rotation of the shift
containing the date. (Because assignments take place one
rotation at a time, if M employees are needed for the slot on
one day in the rotation, M employees will be assigned
throughout the rotation. This set of Slot-instances over the
course of a rotation is known as a rotation-instance.)
0450 Solving a scheduling problem (step 132) consists
of assigning an employee to each of these slot-instances in
a way consistent with all the constraints, Time Limits and
other restrictions inherent in the problem. Such an assign
ment of an employee to every slot-instance in the problem
is a complete Schedule or a 'complete Solution to the
Scheduling problem.
0451. However, at various stages in solving a scheduling
problem, only Some of the slot-instances may have an
assigned employee. These States of partial assignment are
partial Schedules or partial Solutions to the Scheduling
problem (202, see FIG. 2).
0452. The state of the problem just after it has been set
up, with no employee assigned to any slot-instance, is an
empty schedule’ or empty schedule problem solution. In
order to create a complete Solution 142 to the Scheduling
problem, the user begins with an empty Schedule and
repeatedly modifies and builds partial Schedules.
0453 Two auxiliary functions-Verify 138 and Lock/
Unlock are available to the user to assist him in this process.
0454) Verify
0455. At any point during the process of constructing a
Schedule Solution the user can check whether the current
partial or complete Solution violates any active constraints,
Time Limits, employee availability requirements and Slot
requirements. In general, constraint violations occur only
after manual modification of Schedule Solutions, Since the
automatic Scheduling algorithm rejects assignments that
Violate constraints or other conditions on the problem. Given
a Schedule Solution, the Verify function provides a list of all
Violations of every active constraint, Time Limit, employee
availability requirement and slot requirement.
0456 Lock/Unlock
04.57 Each assignment of an employee to a slot-instance
in a Schedule Solution can exist in one of two States,
Locked or "Unlocked. If an assignment is locked, the
automatic Scheduling algorithm will not backtrack over that
assignment as it Searches for a complete Schedule Solution,
unless explicitly instructed to do so. Attempts to manually
modify the Schedule that would change a locked assignment
will cause a warning to appear. To manually modify a locked
assignment, the user must take explicit action to override the
lock.

US 2005/0137925 A1

0458. There are two ways to change the Locked/Un
locked Status of assignments:
0459 1-Using any schedule display format (see below),
the user may graphically Select one or more assignments and
lock or unlock all the Selected assignments.
0460) 2- The user may select a class of employees, a
class of shifts, a class of Slots, a Calendar Class and a date
range and lock or unlock all assignments for those employ
ees to slot-instances within the Shift Class, Slot Class, and
Calendar Class.

0461 The locked/unlocked status of each assignment is
displayed with a graphical icon in each Schedule display
format.

0462 Schedule Modification
0463 There are two ways to modify schedules, manually
and automatically.

0464) Manual Schedule Modification (Step 142)
0465. Using any schedule display format, the user may
Select any slot-instance in the problem and view the list of
employees who are available and qualified to fill that slot
instance, as well as lists of employees available but not
qualified for that slot-instance, qualified but not available,
and neither qualified nor available. The user can remove an
assigned employee from a slot-instance, replace one
employee with another, or assign an employee to an empty
slot. Whenever the assignment of a slot-instance is modified,
the user has the option to extend that modification to a larger
class of slot-instances. To do So, he makes a choice from two
lists of options. The first list is:

0466 1-Extend modification throughout rotation.
0467) If this option is chosen, the modified
assignment will be repeated in one slot-instance
on each day of the rotation containing the date of
the modification.

0468 2-Extend modification forward.
0469 If this option is chosen, the modified
assignment will be repeated in Some instances of
the slot on days following the date of the modi
fication on which the shift occurs.

0470 3-Extend modification backward.
0471) If this option is chosen, the modified
assignment will be repeated in Some instances of
the slot on days preceding the date of the modi
fication.

0472 4-Extend modification forward and back
ward.

0473. If this option is chosen, the modified
assignment will be repeated in Some instances of
the slot on days throughout the Schedule.

0474. The second list further specifies the set of slot
instances receiving the modified assignment. The options on
the Second list are:

0475) 1–Overwrite all.
0476. If this option is chosen, slot-instances
already assigned an employee will have that

Jun. 23, 2005

assignment changed to the new assignment if the
change is necessary to fulfill the action Specified
by the first list

0477 2–Overwrite unlocked only.
0478 If this option is chosen, only unlocked
assignments will be changed to fulfill the action
specified by the first list.

0479. 3-Don't overwrite.
0480. If this assignment is chosen, no overwriting
takes place. Only unassigned slot-instances can be
assigned to fulfill the action specified by the first
list

0481)
0482 If this option is chosen, the slots instances
eligible to be modified by the action specified by
list 1 are shown to the user in Sequence, So that he
can decide whether or not to modify the assign
ment of each of these slot-instances

4-Examine Sequentially.

0483 The user is also warned whenever one of his
manual assignments violates an active Constraint or Time
Limit.

0484 Automatic Schedule Modification
0485. At any point after a scheduling problem has been
Specified, the user can deploy the System's automatic Sched
uling algorithm to go from an empty Schedule Solution or
partial Schedule Solution to a complete Schedule Solution
142. For example, the user can manually enter the Schedule
assignments for a Specific day or week, or the assignments
for a specific employee or group of employees, and direct
the Scheduling algorithm to generate a complete Schedule
that includes his manual entries.

0486 The user can also require that a schedule solution
be consistent with a temporally preceding Schedule Solution
or attendance record for Some or all of the same employees,
shifts and Slots. For example, if a Time Limit requires that
no nurse work more than 3 Saturdays in any two months, and
nurse J has actually worked 2 Saturdays in February, this
feature would insure that nurse J was assigned no more than
1 Saturday in March.
0487. If applied to a scheduling problem with an empty
Schedule, the automatic Scheduling algorithm will Search for
and, if possible, generate a complete Schedule consistent
with the problems constraints. If no such schedule exists
because of conflicts among the problems constraints and
requirements-the algorithm will produce as nearly com
plete a partial Schedule as possible and indicate why the
Schedule cannot be completed.
0488. If the automatic scheduling algorithm is applied to
a Scheduling problem with a partial Schedule, the algorithm
will Search for and, if possible, generate a complete Schedule
that contains all the locked assignments in the partial Sched
ule.

0489 Parameters for the Automatic Scheduling Algo
rithm

0490 Prior to starting the automatic scheduling algo
rithm, the user enterS Several parameters that further
describe the problem to be solved. These parameters are:

US 2005/0137925 A1

0491 1-A Start and End Date. These two dates must
lie within the start and End Dates of the original
problem, and further delimit the problem to be sched
uled. For example, an employer might Set up his
Scheduling problem for an entire year, but then use this
feature to solve the problem a month at a time. The
default value for the Start Date parameter is the current
date if the current date is within the date range of the
problem, otherwise the default Start Date parameter is
the Start Date of the problem. The default End Date
parameter is the End Date of the Scheduling problem.

0492 2-An employee class, a Calendar Class, a Shift
Class, and a Slot Class. These classes further delimit
the employees and slot-instances to be assigned. In
each case, the default value is all.

0493 3-A choice to begin from an empty schedule, to
begin from current locked assignments only, or from all
current assignments. If either of the latter two options
is chosen, the user also indicates whether or not the
algorithm can backtrack over (i.e., modify) all current
assignment, unlocked current assignments only, or no
current assignments.

0494 4-A choice of one or more schedule solutions
or attendance records temporally preceding the Start
Date parameter. If more than one of these preceding
Schedules or records is Selected, they must not contain
conflicting assignments, and this is automatically
checked.

0495 5-A Search Depth parameter. The value of this
parameter specifies how extensive a Search for Sched
uling Solutions to undertake. Higher values of the
parameter produce more extensive Searches. More
extensive Searches are more likely to find an acceptable
Scheduling Solution or a nearly acceptable partial Solu
tion but take longer to execute. The Search depth is a
choice between a user-entered positive integer and
unlimited.

0496. In one embodiment of the invention, if the search
depth is the integer n, the Search for a Schedule Solution is
limited by permitting only N failed attempts at assigning an
employee to a rotation-instance before backtracking to an
earlier assignment, thereby limiting the breadth of the algo
rithms Search tree. In another embodiment of the program,
if the search depth is the integer N, the algorithm will
backtrack over only Nassignments before declaring a rota
tion-instance unfillable and moving on to the remaining
unassigned rotation-instances. Combinations of these two
Strategies can also be used. If the Search depth is unlimited,
there is no restriction on the Search.

0497. In alternative embodiments of the invention, the
Search depth is variable, not a constant, and depends on the
number of employees eligible and available for a rotation
instance, the point in the Search at which the rotation
instance is encountered, the amount of time used thus far by
the algorithm, and other factors.

0498 1-A fill optional slots’ parameter, specifying a
class of optional slots to fill. This class is specified by
a choice of

0499 a-Fill all optional slots. If this choice is
made, the algorithm attempts to fill all optional slots

Jun. 23, 2005

after as many required slot-instances as possible
have been assigned and as many minimum Time
Limits as possible have been reached (see below)

0500 b-Fill no optional slots. If this choice is
made, the algorithm halts after as many required
slot-instances as possible have been assigned and as
many minimum Time Limits as possible have been
reached

0501 c-Fill class of optional slot, where the class
of optional slot is specified by a Slot Class, a Shift
Class, and a Calendar Class. If this choice is made,
the algorithm attempts to fill all optional slot-in
stances in the Slot Class, associated with a shift in
the Shift Class, and occurring on a day in the
Calendar Class, after as many required slot-instances
as possible have been assigned and as many mini
mum Time Limits as possible have been reached

0502. The default value of the Fill optional slots’ param
eter is Fill no optional slots.
0503) Automatic Scheduling Algorithm
0504 FIGS. 2a and 2b illustrate the automatic schedul
ing algorithm. The Automatic Scheduling Algorithm pro
ceeds in two phases, pre-processing and search.
0505 Pre-Processing
0506 The pre-processing phase of the automatic sched
uling algorithm is a preliminary phase in which data Struc
tures that facilitate the Search phase of the algorithm are Set
up, and certain immediately apparent assignments and/or
inconsistencies are detected. The assignments made during
the pre-processing phase of the algorithm are those assign
ments that are not the result of any arbitrary choices in
making assignments and which, therefore, must be present
in any acceptable Schedule Solution. Because these assign
ments must be present, no backtracking over assignments is
necessary or possible in the pre-processing phase of the
algorithm. The pre-processing phase consists of the follow
ing steps:
0507 Using the algorithm parameters to calculate the set
of slot-instances (steps 212-214). This set consists of one or
more slot-instances for each slot in the Slot Class parameter
associated with a shift in the Shift Class parameter, for each
date between the Start Date parameter and the End Date
parameter, and in the calendar parameter, and on which the
shift occurs. The number of slot-instances generated by a
Slot on a date is the maximum value of the multiplicity of
that slot over the days in the rotation of the shift containing
the slot in which the date occurs.

0508 Calculating and associating to each slot-instance a
slot list-the list (step 216) of those employees available
throughout the duration of the shift associated with the
slot-instance on each date on which the rotation containing
the slot-instance occurs, and contained in the class of
employees acceptable for assignment to the slot associated
with the slot-instance, thereby creating a list of those indi
viduals both available and acceptable for assignment
throughout the rotation-instance containing the Slot-in
Stance.

0509 For each active constraint and preference, calcu
lating the actual values of employee classes, Calendar

US 2005/0137925 A1

Classes, Shift Classes, and Slot Classes in each active
constraint, resulting from the values of the algorithm param
eters. This step may discover that Some active constraints
either have no effect or cannot be Satisfied. For instance, if
there are no nurses in the employee parameter, the constraint
0510) If a nurse works the dayshift, a doctor works the
same shift

0511 has no effect, because the “If part of the
constraint can never be Satisfied. Such constraints
can be eliminated from the list of active constraints.

0512 Conversely, if there are no doctors in the
employee parameter, the constraint is unsatisfiable,
because the then clause of the constraint can never
be satisfied.

0513. If any constraints are found to be unsatisfi
able, this is reported to the user, with the option of
either ending the Schedule calculation or continuing
the calculation with the unsatisfiable constraints
made inactive.

0514 For each Conditional Constraint without an ante
cedent, with a consequent clause with a doesn’t work
connective, and without variable parts, removing employees
in the employee class of the clause from the slot list of every
slot-instance within a rotation-instance interSecting the time
pattern of the clause.

0515 For example, if a constraint says,
0516 'Every nurse doesn’t work the first week of
every month

0517 nurses can be removed from the slot list of
every slot-instance occurring in the first week of a
month, and from the slot list of every slot-instance
within a rotation that falls partly within the first
week of a month.

0518) If this step produces an empty slot list, the
algorithm halts, reports the unfillable slot-in
stances and offers the user the option of ending the
calculation or continuing to fill the other slot
instances

0519. After this step, this class of constraints is ignored
for the remainder of the Scheduling algorithm.
0520 For each slot-instance for which the associated slot

list contains a single employee, and for each Slot-instance
already assigned an individual by the choice of parameter 3
above, designating that employee as assigned to the slot
instance. If any of these assignment designations fails at
Steps (a) or (b) below, the algorithm halts and reports the
failure to the user.

0521. When an employee is assigned to a slot-instance
either at this step, or at later Steps in the algorithm, the
following actions take place:

0522 a- The employee is immediately assigned
throughout the rotation-instance containing the slot
instance, if this is possible. If this is impossible,
because the employee is not on the slot list of any
slot-instance on one or more days in the rotation
instance containing the slot-instance, the assignment
designation fails.

Jun. 23, 2005

0523 b-Each Time Limit with a maximum value,
with the employee in its employee class of Time
Limit and with the slot-instance in each of its Cal
endar Class, Shift Class and Slot Class is checked for
violation of the Time Limit maximum. If a maximum
value is violated, the assignment fails.

0524 c-Otherwise, the employee is removed from
the slot list of every other slot-instance that tempo
rally overlaps the newly assigned slot-instance, So
that no employee is ever assigned to work at 2 jobs
or in 2 places at the same time.

0525 d- The assignment is placed on the list of
new assignments.

0526 e- The slot-instance is removed from the list
of unassigned slot-instances.

0527. For each Conditional Constraint without an ante
cedent, with a consequent clause with a works connective,
and without variable parts, assigning every employee in the
employee class of the clause to slot-instances throughout the
time pattern of the clause (step 230).

0528 For example, if a constraint says,
0529) “Every doctor works the doctor slot in the
dayshift on every Tuesday in March

0530 each doctor must be assigned to a slot-in
stance associated with the doctor Slot in the dayshift
on each Tuesday in March.
0531. If this is impossible, because of an insuffi
ciency of slot-instances, an employee's limited
availability, a Time Limit, or another inconsis
tency-the algorithm halts and reports this failure,
allowing the user to either end the calculation or
continue with the unsatisfiable constraints inacti
Vated.

0532. After this step, this class of constraints is ignored
for the remainder of the Scheduling algorithm.

0533. For each active individual Time Limit with a
minimum value, testing whether that minimum value
can be Satisfied for each employee in the employee
class of the Time Limit and in the employee class
parameter. This test is run for every interval of length
equal to that of the time interval of the Time Limit
and falling within the Start Date and End Date
parameters. This test is accomplished by counting
the occurrences of an employee on Slot lists.

0534 For example, if a Time Limit requires that
each nurse works at least 20 shifts a month, but nurse
J is on the slot list for only 18 shifts in March, no
acceptable Schedule will be possible. An analogous
test is then run for class Time Limits with minimum
values.

0535 If one or more of the Time Limit minima
cannot be Satisfied, this failure is reported and the
user is offered a choice of either ending the Schedule
calculation or continuing the calculation and ignor
ing the unsatisfiable Time Limits.

0536 For each of the preceding comparisons
between slot list occurrences and Time Limit minima
for individual Time Limits, if there is an exact

US 2005/0137925 A1

numerical match, designate all the assignments that
cause the exact equality. For example, if a Time
Limit minimum requires Joe to work at least 20
shifts in March, and Joe is eligible to work exactly 20
shifts in March, then Joe is assigned to those 20 shift.

0537) If this set of assignments cannot be made, the
failure is reported to the user.

0538 Reordering each slot list, according to the
preferred individual orderings, individual prefer
ences, and optimizations applying to the slot list.
This reordering is performed by applying the pref
erence and optimization constraints according to the
priority established by the user in his listing of those
constraints. Constraints lower on the list cause reor
dering of a slot list only within classes of employees
for which constraints of higher priority are indiffer
ent

0539 For example, if there are 2 preferences:
0540. In the emergency room, prefer doctors with
lower salary

0541. In the emergency room, prefer doctors with
higher Seniority

0542 and the preferences are listed in that order,
then the employees on the slot list for an emergency
room slot will be ordered with lower salaries first. If
two or more doctors have the same Salary, those
doctors with the same salary will be ordered accord
ing to Seniority, with more Senior doctors first.

0543 Modifying the set of the active Conditional
Constraints. This modification takes place in 3
steps-Equality Removal, Double Negation
Removal, and Generation of Contrapositives.

0544) Equality Removal
0545 Clauses containing an “equal operator are rewrit
ten as a pair of clauses with <=and >=n place of =. So, for
example, a clause containing the expression N=5

0546)
0547) is replaced by the pair of clauses containing
the expressions “NC=5 and N>=5:

0548)
0549)

0550 Double Negation Removal (Step 212)

Joe works exactly 5 days in April

Joe works 5 or fewer days in April
Joe works 5 or more days in April.

0551 Clauses in all active constraints are rewritten to
remove double negations. A clause can be made negative in
Several ways-either by choosing doesn’t work as the
connective, or by an occurrence of a less than or less than
or equal numerical operator within the clause. Thus,

0552)
0553)
0554
0555)
0556). “Fewer than 3 doctors each work less than 5
dayshifts in April

Joe doesn’t work the dayshift in April
and

Joe works less than 30 hours in April
are both negative clauses. However, the clause

19
Jun. 23, 2005

0557 has two less than operators, and so is doubly
negated. If there were 8 doctors and 12 dayshifts in
April, this clause could be rewritten as

0558 Five or more doctors each work 7 or more
dayshifts in April.

0559 The algorithm replaces the original doubly negated
clause with this positive equivalent. Where there are more
than two negations in a clause, the same procedure is
repeatedly used to replace it with an equivalent clause with
either no negations or one negation.
0560. These rewritten constraints, with extra negations
removed from their clauses, are not visible to the user of the
program.

0561 Contrapositive Generation (Step 214)
0562. The algorithm next enlarges the set of active Con
ditional Constraints. For each active Conditional Constraint
with a non-empty antecedent, the algorithm calculates a Set
of new constraints, called the contrapositive of the original
constraint, and adds these new constraints to the list of active
constraints. Each Set of contrapositive constraints is logi
cally equivalent to the constraint it is derived from and,
therefore, imposes no further restriction on acceptable
Schedule Solutions. However adding contrapositive con
Straints Speeds up the Search procedure by causing early
pruning of branches of the Search tree that cannot lead to
Scheduling Solutions. Contrapositive constraints are not vis
ible to the user of the program.

0563) For a constraint of the form
0564)
0565 the set of contrapositive constraints is the
Single constraint

“If clause 1 then clause 2

0566 If not clause 2 then not clause 1.
0567 For example, the contrapositive of the con
Straint

0568 If Joe works any Tuesday, then Al works the
next day.

0569) is the constraint
0570) “If Al doesn't work any Wednesday, then Joe
doesn’t work the day before

0571 Obviously, any schedule solution which satisfies
the first of these constraints also Satisfies the Second, and
Vice versa, So adding the contrapositive to the list of active
constraints does not eliminate any candidate Schedule Solu
tions. However, the effect of the contrapositive constraint is
to cause Joe to be removed from the candidates for assign
ment to the slot-instances on a Tuesday as Soon as Al has
been assigned to a slot-instance on the next day. The prompt
removal of these potential assignments, which would ulti
mately lead to failure if they were tried, Speeds up the Search
procedure.

0572 A constraint with Nantecedent clauses gen
erates a Set of N contrapositive constraints:

0573 For a constraint of the form
0574. If clause 1 and clause 2 ... and clause in then
A.

US 2005/0137925 A1

0575 the contrapositive is the set of n constraints

0576 “If clause 1 and clause 2 . . . and clause (n-1)
and not Athen not clause n.

0577) If clause 1 and clause 2 and . . . clause (n-2)
and clause n and not Athen not clause(n-1)

0578 If clause 2 and ... clause n and not Athen not
clause 1.

0579. Each of the constraints in the contrapositive is
constructed by negating the consequent clause A and
moving it to the antecedent. The clauses of the
antecedent are Successively negated and moved to
the consequent.

0580 For Unconditional Constraints, i.e., con
Straints with no antecedent and a consequent clause
A, the contrapositive is

0581) “If not Athen Failure
0582 This is an instruction to the search algorithm
that whenever clause A is Satisfied by a partial
Schedule Solution, the Search must backtrack.

0583. In the above description of contrapositives,
“Not C stands for a new clause derived from clause
C. Not C is constructed so that it is the logical
negation of C, in the sense that “Not C is satisfied by
exactly those complete Schedule Solutions that do not
satisfy C. In general, 'Not C is constructed from C
by modifying the Employee Pattern:

0584) If the Employee Pattern in C requires that N or
more employees individually work a pattern of assignments,
the Employee Pattern in Not C will require that fewer than
N employees work the same pattern of assignments. In case
the Employee Pattern requires that between N and Pemploy
ees, with P-N, individually work some pattern of assign
ments, Not C will be expressed by two clauses, one requiring
that more than P employees work the pattern, and one
requiring that fewer than N employees work the pattern.
“Not C is satisfied if either of these two clauses are satisfied.
The two clauses generate two distinct contrapositives, with
one of the two clauses Standing in place of Not C in each
of the two contrapositives.
0585. If the Employee Pattern in C requires that N total
employees work Some pattern of assignments, the Employee
Pattern in Not C and a modified Duration Specifier in Not C
will require that fewer than N employees work at Some point
in the same time and shift pattern.
0586. If the Employee Pattern in C requires that N
employees as a group work a pattern of assignments, Not C
will State that no N employees as a group work that pattern.
0587. Not all Unconditional Constraints are used to gen
erate contrapositives, Since the Unconditional Constraints
without variable part are used and removed at an earlier
pre-processing Step. An Unconditional Constraint generates
a contrapositive only if its consequent clause contains a
variable part. For example, the unconditional negative con
Straint no doctor works the night Shift has no variable part.
But some doctor does not work the night shift does have a
variable part. It is satisfied by choosing a doctor who will
not work the night shift-from among the Set of doctors.

Jun. 23, 2005

Similarly, Satisfying Joe works the morning shift Some day
in January requires choosing from among the days in
January.

0588. The Search Phase (Steps 218-254)
0589 If, at the end of the pre-processing phase, there are
either unfilled required slot-instances, unsatisfied Time
Limit minima, or unfilled optional slot-instances within the
fill optional slot parameter class, the algorithm moves to
the Search phase to complete the Schedule. During the Search
phase, repeated choices of employees and slot-instances are
made in order to generate new assignments. Because these
choices are, in general, underdetermined by the available
data, arbitrary choices must be made at Some points in the
Search procedure.
0590 Choices are required at 2 points in the algorithm:

0591 1- When all the consequences of the current
assignments have been calculated, but the Schedule
is still not complete

0592 2-In order to satisfy a constraint
0593. For example, to satisfy the constraint

0594 at least one doctor works on Tuesday March
24

0595 a doctor must be selected.
0596) To satisfy the constraint

0597) 'Joe works some day in March
0598 a slot-instance in March must be selected.

0599 After making one or more assignments, the algo
rithm may discover that a contradiction has been reached
and that no acceptable Scheduling Solution containing the
current assignments is possible. In this case, the algorithm
must backtrack, removing one or more of the current assign
ments and trying a different employee or slot-instance. In
one embodiment of the program, this backtracking takes
place by replacing the most recently made assignment
(chronological backtracking). In other embodiments of the
program, the assignment to be replaced is determined in
another way, for example, by replacing the assignment that
led to the largest number of contradictions, or that caused the
largest number of employees to be deleted from a slot list
that ultimately became empty (dependency based backtrack
ing).
0600 If the algorithm needs to backtrack from an assign
ment but no Such further backtracking is possible (because
all earlier rotation-instances are unfilable) the algorithm
adds the rotation-instance under consideration to the list of
unfillable rotation-instances and removes it from the list of
unassigned rotation-instances. The algorithm then Selects
another unassigned rotation-instance to fill.
0601 Whenever any assignment is made during the pro
cessing phase, that assignment is placed on a list of new
assignments and this list of new assignments is checked
against the active Time Limits, Conditional Constraints, and
Regularity Constraints to see what further facts about
acceptable Schedules can be drawn from the presence of the
new assignments. This checking process may itself produce
new assignments and these further assignments are them
Selves checked against the active Time Limits, Conditional

US 2005/0137925 A1

Constraints and Regularity Constraints. This Subroutine
(constraint propagation) continues until no further assign
ments are generated.
0602. The processing phase of the scheduling algorithm
comprises five Steps:
0603 Drawing further consequences from the assign
ments made during the pre-processing phase. This Step
comprises two Substeps:

0604 a-Applying the CR loop (step 220) with all
assignments made thus far as the Set of new assign
mentS

0605 b-For each of comparison between slot list
occurrences and Time Limit minima for group Time
Limits, if there is an exact numerical match, find an
assignment of the employees in the employee class
of the Time Limit that exactly meets the Time Limit
if Such a matching occurs. Determining whether Such
matches exist and generating Such matches if they do
exist is accomplished by a marriage algorithm well
known to those skilled in the art.

0606 For example, if a Time Limit requires that
0607 the nurses (as a group) work at least 200
hours in each week

0608 and there are exactly 200 hours of slot-in
stances for nurses in the week of January 10-17, then
the marriage algorithm will be used to assign a nurse
to each of those slot-instances if Such an assignment
S. possible.

0609 Since more than one such group of assignments
may be possible, the Scheduling algorithm may backtrack to
this group of assignments and replace it with another group
of assignments that meets the Time Limit
0610 Making assignments as needed to satisfy any
Unconditional Constraints with variable parts (steps 228
238).

0611 For example, if the unconditional positive
constraint

0612)
0613) is not yet satisfied for one or more months, a
slot-instance will have to be Selected to assign Joe to in each
of these months. The CR loop is run after each of these
assignments. Since a choice is involved, the algorithm may
backtrack over these Selections if it later reaches a contra
diction.

Joe WorkS Some day in each month

0.614 Similarly, if the unconditional negative con
Straint

0.615 Joe does not work some day in each
month

0616) is not yet satisfied (satisfaction for negative clauses
is explained below), a day will have to be selected in each
of some months, and Joe removed from the slot lists of every
slot-instance occurring on that day, So as to prevent Joe from
working on that day.
0617 Repeatedly selecting (step 242) a rotation-instance
and assigning an eligible employee to that rotation-instance.
This Set of assignments, and every assignment made during

Jun. 23, 2005

the processing phase, is first checked for violation of a Time
Limit maximum. If Such a violation is found, the assignment
fails and backtracking takes place. Next, the CR-loop is run
with these new assignments as input. If the CR loop fails,
backtracking takes place. This proceSS is repeated until
either every required slot-instance has either been assigned
an employee or found to be unfillable.
0618. This procedure requires repeatedly choosing an
unfilled rotation-instance. In one embodiment of the inven
tion, the unassigned rotation-instance with the Smallest
number of eligible employees is chosen, with ties among
rotation-instances being broken in chronological order.
0619. This procedure also requires repeatedly choosing
an employee from among the eligible employees for a
rotation-instance. In one embodiment of the invention, the
employee chosen is that employee who has not yet been tried
for assignment to the rotation-instance, and who is in first
place on the largest number of the slot-lists of the slot
instances comprising the rotation-instance. Ties among
employees are broken by looking at Successively lower
places on the slot-lists. In other embodiments of the program
other criteria for the Selection of employees may be Substi
tuted or combined with this method of ranking. These other
criteria may include the total number of assignments for an
employee thus far and the proximity to meeting or violating
various Time Limits for individuals.

0620. If there are still Time Limits with a violated mini
mum value, repeatedly selecting unfilled rotation-instances
(steps 248,250) that increase the number of assignments that
count for one or more of these Time Limits, assigning an
eligible employee to the rotation-instance, applying the CR
loop with these assignments as input, and backtracking if the
CR loop fails, until either no such Time Limits remain or no
Such unfilled rotation-instances remain.

0621) If there are still Time Limits with violated mini
mum values after this Step, these violations are reported to
the user when the schedule is displayed. If there are still
unfilled optional slot-instances within the fill optional slot
class parameter, repeatedly Selecting unfilled optional rota
tion-instances containing Such an unfilled slot-instance,
assigning an eligible employee to the rotation instance, and
applying the CR loop with these assignments as input, until
no unfilled optional slot-instances within the fill optional
Slot class parameter remain. In one embodiment of the
program, this sequence of assignments is made without
backtracking-if an assignment causes an inconsistency, the
slot-instance of that assignment is simply left unfilled.
0622) When the processing phase is completed, algorithm
halts and a display Screen shows the employee assignments
for all assigned slot-instances and the unassigned slot
instances, if any.
0623) CR-Loop
0624. In carrying out the above steps, the algorithm
repeatedly calls a Subroutine called the Constraint and
Regularity Loop (CR-Loop) (244).
0625. The Constraint and Regularity Loop Subroutine is
illustrated in FIG. 3.

0626. When passed a list of new assignments as input
(step 302), this list becomes the initial value of an internal
queue maintained by the CR-Loop. The CR-Loop tests each

US 2005/0137925 A1

of the assignments on the queue against all the Conditional
Constraints (by calling the Constraint Propagation Subrou
tine 304), and then tests each input assignment against all the
Regularity Constraints (by calling the Regularity Propaga
tion Subroutine 312). Each of these two subroutines may
generate new assignments, which are added to the end of the
queue (steps 308,314). The CR-Loop processes the assign
ments on the queue until it is empty (Step 318).
0627 The Constraint Propagation subroutine (described
in more detail below) compares a single input assignment
with the active Conditional Constraints, and makes all
possible inferences based on the constraints and the input
assignment, detecting constraint violations, and possibly
making new assignments or removing employees from Slot
lists. Whenever new assignments are produced, they are
added to the queue of the CR-loop (steps 308,314).
0628. The Regularity Propagation subroutine 312 com
pares its input assignment with all active Regularity Con
Straints. Whenever a Regularity Constraint applies to the
input assignment, the employee in the input assignment is
assigned to every unfilled rotation-instance Specified by the
Regularity Preference, for which the employee is eligible
and which does not violate a Time Limit maximum. These
new assignments are placed on the queue of assignments for
the CR-Loop.
0629 Constraint Propagation
0630. The Constraint Propagation subroutine is illus
trated in FIG. 4.

0631 Constraint Propagation is a subroutine of the CR
Loop. Whenever one or more employees are assigned, the
algorithm repeatedly calls the Constraint Propagation Sub
routine 304, Successively passing it each of the new assign
mentS.

0632. The Constraint Propagation subroutine 304 com
pares its input assignment with the antecedent clauses of
each Conditional Constraint in every possible way (steps
406-416). Whenever all the antecedent clauses in an Con
ditional Constraint are Satisfied by an instantiation of the
variable parts of the antecedent clauses that involves the new
assignment in Some way, action is taken to Satisfy the
consequent part of the constraint, if possible.
0633) If, in this process, a Conditional Constraint either
cannot be Satisfied or leads to an immediate contradiction,
that constraint fails (steps 418 and 422). If a strong Condi
tional Constraint fails, the constraint propagation Subroutine
fails and the input assignment is withdrawn, as are any
already calculated consequences of the input assignment. If
a weak Conditional Constraint fails, the immediate effects of
that constraint are withdrawn, but the input assignment is not
withdrawn.

0634 Constraints with a positive then clause are vio
lated when the “If part of the constraint is satisfied, but no
assignment can Satisfy the Then part of the constraint (Step
418). For example, if the input assignment assigns Joe to a
slot-instance on a Tuesday, the Conditional Constraint

0635 ' If Joe works on a Tuesday, then Al works the
Same day

0636 will fail if there is no unassigned slot for
which Al is eligible, occurring on the same day as the
input assignment.

22
Jun. 23, 2005

0637 If such a constraint does not fail, it causes a new
assignment. For example, if the input assignment assigns Joe
to a slot-instance on a Tuesday, the above Conditional
Constraint will cause a new assignment, assigning Al to a
slot-instance on the same day as the input assignment.
0638 If new assignments are made, they are immediately
extended and checked according to the procedure at Step 5
of the pre-processing phase. If these StepS fail, the constraint
that caused the assignments fails. Otherwise, the new assign
ments are placed on the queue of assignments for the
CR-Loop.

06.39 Employees are removed from slot lists by con
Straints with negative then clauses. For instance, if the
input assignment assigns Joe to a slot-instance on a Tuesday,
the Conditional Constraint

0.640. If Joe works on a Tuesday, then Al doesn’t
work the same day

0641 will cause Al to be removed from the slot list of
eligible employees for all slot-instances occurring on the
Same day as the input assignment.

0642) If employees are removed from slot lists, and any
Slot list becomes empty, the constraint that caused the Slot
list to become empty fails. Also, if employees are removed
from slot lists, Time Limits involving these slot lists are
checked to see if any Time Limit minima become unsatis
fiable, and for minimum exact matches. If one or more
minima become unsatisfiable, the constraint that caused this
fails. If the slot list of a slot-instance contains only one
employee as a result of removing employees from that Slot
list, the remaining employee is assigned to that slot-instance,
and that assignment is checked and placed on the queue. If
an exact match is detected between a Time Limit minimum
and the resources necessary to Satisfy that minimum, assign
ments Satisfying the exact match are made, if possible, and
placed on the queue. If no Such assignments are possible, the
constraint causing the exact match fails.
0.643. The description of Constraint Propagation given
above depends on the notion of a clause being Satisfied by
a partial Schedule. How a clause is Satisfied depends on
whether the clause is positive or negative.
0644 Satisfaction for positive clauses is straightforward.
A partial Schedule P Satisfies positive antecedent clause, C,
for a given instantiation of the variable terms in C, if C is
true in P with these instantiations.

0.645. For example, the clause

0646) Joe works two or more days in the week of
march 10 to march 17

0647) is true in a partial schedule P only if P contains
assignments of Joe occurring on two or more days in the
week of march 10 to march 17. And the truth of the clause

0648. Some employee works two or more days in
Some week

0649 in a partial schedule P will depend on the instan
tiations of the variable parts Some employee and 'Some
week. For each employee and each week, it will be Satisfied
or not depending on whether or not that employee works at
least 2 days in that week.

US 2005/0137925 A1

0650 Similarly, if either of these two clauses occurs as
the consequent clause in a constraint, the algorithm adds
assignments to Pin order to Satisfy the clause using the same
criteria, e.g., if Joe is not already working 2 or more days in
the week of March 10 to March 17, the algorithm creates
extra assignments to make Sure that Joe does work at least
2 days in the week.
0651 Satisfaction of negative clauses by partial sched
ules is more Subtle. Simply to say that a negative clause is
satisfied by a partial schedule P if the condition expressed by
the clause is true in P would not work. For example, the
negative clause

0652)
0653) is, in some sense, satisfied by the empty partial
Solution E in which no assignments at all have been made,
because, Since E contains no assignments, E contains no
assignments of Joe to slot-instances in February. However,
as assignments are added to E by the Scheduling algorithm,
Joe may later be assigned to work in February, thereby
Violating the clause. Therefore, the proper interpretation of
Satisfaction for a negative clause C by a partial Schedule P
is to say that C is satisfied by P if every complete schedule
extending Psatisfies C. However, this version of satisfaction
is too difficult to calculate-it requires knowledge of all the
complete Schedules extending a partial Schedule, while the
task at hand is just to calculate one or more of those
Schedules.

0654) In the actual program, this hard to calculate crite
rion for Satisfaction is replaced by a simpler one-a negative
clause is satisfied by a partial schedule P when it can be
shown in Some immediate and easily calculated way that the
clause must be true in every Schedule extending P. In one
embodiment of the program, this is done by counting
available resources. So for example, the negative clause C

0655)

Joe doesn’t work in February

Joe works less than 4 days in March
0656 will obviously be satisfied by any extension of a
partial schedule P, if the total number of days in March on
which Joe is already assigned by P or for which Joe is
eligible in P is less than 4. In other embodiments of the
program, deciding the Satisfaction of negative clauses may
also involve checking potential assignments against Time
Limit maxima. For example, if there were 5 days in March
during which Joe was eligible to work, but 4 of these days
were Tuesdays, and there was also a Time Limit

0657 All employees work fewer than 3 Tuesdays
in every month

0658 then C would also be satisfied; Joe can only work
at most 2 Tuesdays plus the one non-Tuesday for which he
is eligible, So he can work at most 3 days in March.
0659 Similarly, if a negative clause occurs in the conse
quent of a constraint, the same Satisfaction criterion is used
by the algorithm to make Sure that the clause is Satisfied. For
example, to Satisfy

0660)
0661 a choice of 3 days in March must be made, and Joe
must be removed from the slot list of all slot-instances in
occurring March, except those occurring on the 4 chosen
days.

Joe works less than 4 days in March

23
Jun. 23, 2005

0662) If, as in this example, the satisfaction of a negative
Then clause involves making choices among employees or
time periods, the number of Such choices is restricted by the
Search depth parameter, and these choices may be revisited
by backtracking.

0663 To test the Conditional Constraints against a new
assignment in every possible way, each antecedent clause in
each active Conditional Constraint is Successively tested
against the new assignment (steps 416–424).
0664) If a clause is positive, the assignment is examined
to see whether the assigned employee and slot-instance fall
within the Employee Pattern and time pattern of the clause
respectively. If they do, any interpretations of the variable
parts in the clause that are made in matching the assignment
to the clause are carried over to the other clauses in the
antecedent of the constraint. Then, if all the antecedent
clauses can be Satisfied, action is taken to Satisfy the
consequent of the constraint.
0665 For example, Suppose the assignment is of Joe, a
doctor, to a slot-instance on Tuesday, March 25. In the
constraint

0666)
0667)
0668 then the same nurse doesn’t work in the next
month

If a nurse works the morning shift on any day,
and a doctor works the next day

0669 the assignment doesn’t match the first clause
Since the Employee Pattern of that clause includes only
nurses and not doctors, but it does match the Second clause.
In making that match, the variable part a doctor gets
instantiated by Joe and the variable part next day gets
instantiated by Tuesday, March 25. These instantiations get
carried back to the first clause So that any day gets
instantiated by Monday, March 24. The variable part a
nurse remains uninstantiated, and So will be checked against
all nurses. Whenever a nurse is found who works on March
24, both clauses of the antecedent will be satisfied and the
consequent clause, a negative clause, will have to be made
true by removing that nurse from the slot lists of all
slot-instances in the next month, April.
0670) If a clause is negative, all interpretations of the
variable parts of the clause which make the corresponding
positive clause impossible to Satisfy are listed. Each of these
interpretations is tested with the new assignment missing.
Only those interpretations which make the clause impossible
to satisfy with the new assignment included but not with the
new assignment excluded are kept. Each of these interpre
tations is then carried to the other antecedent clauses, and
then to the consequent clause.
0671 For example, if the assignment is as above, in the
constraint

0672)
0673)
0674 then the same nurse doesn’t work in the next
month

If a nurse works the morning shift on any day,
and no doctor works the next day

0675 there may be 15 days for which the second clause
is Satisfied, e.g., because there is no doctor who is eligible to
work on those dayS. Prior to the current assignment, there
may have been only 13 Such days. That is, Joe was eligible

US 2005/0137925 A1

to work on 2 of the 15 days, but once he received the present
assignment he became ineligible to work on 2 of those days
because of a negative Conditional Constraint or a Time
Limit triggered by the assignment. If So, the algorithm will
use just those 2 days to instantiate the variable next day in
the Second clause, and then carry that instantiation through
out the constraint as in the prior example.

0676 After all Conditional Constraints and Time Limits
have been tested against the input assignment, new assign
ments may have been made. If So, the Constraint Propaga
tion Subroutine places these new assignments on the queue
of the CR-loop and then terminates.
0677 Scheduling Diagnosis Functions
0678 Whenever the automatic scheduling algorithm can
not completely Solve a Scheduling problem, the user has
access to Several diagnostic tools that help him find the cause
of the Scheduling failure.

0679. On any schedule display format, the user can
highlight any slot-instance or rotation-instance and view the
asSociated slot-list of employees. After use of the automatic
Scheduling algorithm, the slot-list will be annotated to Show
which employees were tried in filling the slot, and why each
of these tried employees were unable to fill the slot. If the
slot-instance was assigned, the reason for the assignment
manual entry, assignment already in Schedule, Time Limit,
Regularity Constraint, Conditional Constraint, etc., will also
be shown. In the case of Conditional Constraints and Regu
larity Constraints, the assignments that triggered the con
straint will also be viewable.

0680 For each Time Limit, the user can view a list of all
employees who have reached a maximum value of the Time
Limit and where in the Schedule each maximum was
reached. The user can also view all those employees who
cannot reach a minimum value of the Time Limit and where
the failure to reach the minimum occurred.

0681 Any schedule display format can be filtered to
show only unfilable slot-instances. The user can also view
filled-slot-instances with either a numerical count or graphi
cal representation of the number of trial assignments that
were made before the slot was filled. Slot-instances or
rotation-instances that required many trial assignments rep
resent potential bottlenecks in the Scheduling problem that
the user may need to modify in order to completely Solve a
Scheduling problem.

0682 For each active constraint, the user can view a
count of the number of times that constraint caused back
tracking, and a graphic display of the slot-instances where a
given constraint caused backtracking. Constraints that cause
frequent backtracking are most likely to be responsible for
Scheduling failures, and may need to be modified or made
inactive in order to completely Solve a Scheduling problem.

0683. Whenever a partial or complete schedule is dis
played, the user has access to a display of all the input
parameters of the Automatic Scheduling Algorithm that gave
rise to that Schedule.

0684 Schedule Displays

0685 Schedules and partial schedules can be displayed
and modified using Several formats-Grids, Lists, and

24
Jun. 23, 2005

Employee Calendar DisplayS. Each of these display formats
Supports a common Set of features:

0686 1-Each display format is filterable by enter
ing an employee class, a Calendar Class, a Shift
Class, a Slot Class, and a start and End Date. Only
assignments for employees in the employee class to
slots within the Slot Class associated with shifts
within the Shift Class and occurring on a day within
the Calendar Class between the start and End Dates
dare displayed. The default values for all the above
classes is “all and the default values for the start and
End Dates for the display are the start and End Dates
of the Schedule being displayed.

0687 2-Each display format graphically shows the
locked/unlocked Status of each assignment and Sup
ports Switching the locked/unlocked Status of indi
vidual assignments and classes of assignments

0688 3-Each display format supports the means
for manual modification of assignments, and for
Viewing the inconsistencies generated by candidate
manual assignments

0689) 4-Each display format is available in a modi
fied form in the Attendance Mode of the program. In
this modified form, the display shows both scheduled
and actual attendance and Supports entry of atten
dance and Substitution for employees

O690 Grids
0691 Grids show assignments in a rectangular array.
There are two grid formats:
0692. In the first Grid format, rows are labeled by
employee names and columns by dates in the Schedule.
Within each cell of the array is a description of the corre
sponding employees assignments for that date.
0.693. In the second Grid format, rows are labeled by
shifts (and slots) and columns by dates in the Schedule.
Within each cell of the array is a description of the employee
assignments for the given shifts and Slots for that date.
0694 Lists
0695 Assignments can also be displayed in list format.
ASSignments can be listed either by day or by rotation. If
assignments are listed by day, the days within the Schedule
interval are listed chronologically. For each day, all the
assignments are displayed, showing the assigned employee,
the shift, the slot, the Starting and ending times, and the total
number of hours worked.

0696. If assignments are listed by rotation, assigned
rotations are listed chronologically by Starting date. Each
rotation assignment display shows the assigned employee,
the shift, the slot, the Starting date and ending date of the
rotation, the daily hours, the days comprising the rotation
and the total number of hours and days in the rotation.
0697 Employee Calendar Displays
0698 Employee Calendar Displays show the schedule
for a Single employee or specified employee class in a format
resembling a traditional wall calendar, and are Suitable for
printing and distribution to employees. The dates in the
Schedule range are graphically displayed in a monthly
calendar format. Time intervals during which the Selected

US 2005/0137925 A1

employee or employees work are shown as colorable hori
Zontal bands and are labeled with the shift and Slot assign
ment. Statistical Summaries of the number of days and hours
worked per week are shown at the right Side of the display.
0699 Statistics
0700. There are two statistics display screens- Group
Statistics and Individual Statistics. The statistics screens
display Statistical Summaries of any partial or complete
Schedule Solution. The Statistics Screens can be configured
and printed So as to produce Standard reports.
0701 Statistics are displayed in a rectangular array. In the
Group Statistics' screen, each row of the array is labeled by
an Absolute Employee Class Specifier chosen by the user.
Each column is labeled by Shift Class, Slot Class, and
Calendar Class specifiers chosen by the user. Each cell of the
array displays the amount of time worked by all members of
the corresponding employee class during the corresponding
shift, Slot and Calendar Classes. Time can be displayed in
units of minutes, hours, days, Shifts, or rotations.
0702. The total time for each employee class Summed
over all the Specified classes is listed at the far right of each
row and the total time for each shift, slot and Calendar Class
Summed over the Specified employee classes is shown at the
bottom of each column. If any employees or shifts are listed
in more than one class, the totals are adjusted So as to avoid
counting a shift or employee twice.

0703. The accumulated values for cumulative numerical
attributes Summed over rows and columns can also be
viewed at the right hand side of the rows or the bottom of the
columns.

0704. In the Individual Statistics screen, rows are
labeled by individual employees and columns by Shift
Class, Slot Class and Calendar Class. Each cell of the array
displays the amount of time worked by the corresponding
employee within the corresponding Shift Class, Slot Class
and Calendar Class.

0705. A modified form of the statistics screens, showing
Scheduled Statistics vs. the Statistics of actual attendance,
absences and Substitutions is available in the Attendance
Mode of the program (below). The entries for attendance,
absence and Substitution are further filterable by attribute
ranges for the attributes attached to attendance, absences and
Substitutions.

0706 Attendance
0707. The program has an additional operational state,
the Attendance Mode.

0708. In the Attendance Mode the user is able to keep
track of the actual attendance of his employees. The Atten
dance Mode becomes available once a user has generated
and accepted a Schedule. This Schedule is fixed and
archived and is used as the basis for the expected attendance.
0709. In Attendance Mode, the user can record whether
or not an employee is present for his Scheduled assignments
and, if present, enter the actual times that the employee Starts
and ends work. The program records and archives this actual
attendance, displays it and calculates Statistics based on it.
0710. When an employee has either been declared absent
for an assignment, marked late for an assignment, or if no

25
Jun. 23, 2005

assignment for a slot-instance has been made by the time the
assignment begins, the program prompts the user for a
substitute employee to fill the unfilled slot-instance and
provides lists of available and qualified Substitute employees
So that the user may manually fill the slot-instance. Alter
natively, the user may allow the Scheduling algorithm to
make one or more Substitute assignments as necessary. In
this case, the algorithm uses the actual attendance up to the
present and the Scheduled attendance form the present
forward as a partial Schedule to complete. Since actual
attendance has already occurred, the algorithm will not
backtrack over actual attendance.

0711) If an employees attributes include communication
information Such as a phone number or pager number, the
program allows the user to automatically notify Substitute
employees of their new assignments.
0712. The attendance statistics can be transferred to pay
roll, human resource management, perSonnel management
or enterprise management Software. In general any of the
data or library entries can be exchanged between the System
and other Software databases, libraries and programs using
the System's import and export features. The System can also
be configured to take advantage of the information Sharing
capabilities of the internet.
0713) While this invention has been particularly shown
and described with references to preferred embodiments
thereof, it will be understood by those skilled in the art that
various changes in form and details may be made therein
without departing from the Scope of the invention encom
passed by the appended claims.

What is claimed is:
1. A computer-implemented resource Scheduling System

comprising:

a set of resources and associated attributes,
at least one calendar representing dates for resource

utilization;
at least one slot representing demand for one or more

individual resource items;
a set of resource constraints generated based on the at

least one calendar and the at least one slot; and
a Scheduling module for generating a Schedule of resource

utilization that Satisfies at least a Subset of the resource
constraints.

2. The computer-implemented System of claim 1, further
comprising:

at least one shift representing a recurring demand for a
pattern of resource allocation.

3. The computer-implemented System of claim 2, wherein
the Scheduling module assigns individual resources to
instances of demand for resources represented by the slots
and shifts.

4. The computer-implemented System of claim 1, further
comprising:

at least one constraint.
5. The computer-implemented system of claim 4, further

comprising:

user interface for generating the at least one additional
constraint.

US 2005/0137925 A1

6. The computer-implemented System of claim 5, wherein
the user interface presents a range of choices for each
constraint condition.

7. The computer-implemented System of claim 1, wherein
at least one resource of the Set of resources has an associated
Set of time intervals during which Said resource is available
to be scheduled.

8. The computer-implemented System of claim 1, wherein
individual resource items, calendar Sets and slots are repre
Sented as objects.

9. The computer-implemented system of claim 8, wherein
each object is capable of being Switched between active and
inactive Status.

10. The computer-implemented system of claim 8,
wherein at least one attribute associated with at least one
object is of a numeric type and wherein the Scheduling
module calculates accumulated totals of Said attribute in a
Schedule involving the at least one object.

11. The computer-implemented system of claim 8, further
comprising:

a user interface for creating and Specifying objects.
12. The computer-implemented System of claim 1,

wherein the Scheduling module assigns individual resources
to instances of demand for resources represented by the
Slots.

13. The computer-implemented System of claim 1,
wherein the Scheduling module generates diagnostic infor
mation.

14. The computer-implemented system of claim 13,
wherein the diagnostic information comprises at least one of
the following: information about conflicts between resource
demands, information about resource Shortages, information
about unavailability of a schedule that satisfies all the
resource constraints.

15. The computer-implemented system of claim 11,
wherein the diagnostic information comprises at least one of
the following: information about resource utilization, infor
mation about patterns of demand, and information about
resource availability.

16. The computer-implemented system of claim 1, further
comprising:

a user interface for editing the at least one calendar.
17. The computer-implemented system of claim 1, further

comprising:
an automatic calendar generator that generates a new

calendar based on the at least one calendar.
18. The computer-implemented system of claim 1, further

comprising:
a user interface for graphically displaying a match
between demand for an individual resource and avail
ability of the resource, using rectangular array to dis
play time intervals divided among a plurality of classes.

19. The computer-implemented system of claim 1,
wherein the plurality of classes comprise one or more of the
following classes: time intervals for which the resource is
both available and in demand, time intervals for which said
resource is available and not in demand, and time intervals
for which the resource is neither available nor in demand.

20. The computer-implemented system of claim 1,
wherein at least one resource constraint is an optimization
constraint.

21. The computer-implemented System of claim 1,
wherein at least one resource constraint is a conditional
constraint.

26
Jun. 23, 2005

22. The computer-implemented System of claim 1,
wherein the Scheduling module rewrites negative constraints
as positive constraints.

23. The computer-implemented System of claim 22,
wherein the Scheduling module uses constraint propagation
for generating the Schedule of resource utilization.

24. The computer-implemented System of claim 23,
wherein the Scheduling module generates a list of require
ment slots and assigns resources to a Subset of the require
ment Slots.

25. The computer-implemented System of claim 1,
wherein the Scheduling module generates a partial Schedule
Satisfying a Subset of the resource constraints.

26. The computer-implemented System of claim 1, further
comprising:

user interface for designating a generated Schedule as
accepted and generating a permanent record of the
generated Schedule.

27. A computer-implemented method for resource utili
Zation Scheduling, Said method comprising:

recording information about a set of resource items,
asSociating attributes with the Set of resource items,
recording demand information about the Set of resource

items,

generating constraints based on the demand information;
and

generating a schedule of resource utilization based on the
generated constraints.

28. The computer-implemented method of claim 27,
wherein generating constraints based on the demand infor
mation further comprises:

providing a user interface for generating constraints.
29. The computer-implemented method of claim 28,

wherein providing the user interface for generating con
Straints further comprises:

describing constraints in a natural language, and
allowing for modification of constraint clauses expressed

in the natural language.
30. The computer-implemented method of claim 27,

wherein the demand information comprises slot information
representing individual resource demands for at least one
time slot.

31. The computer-implemented method of claim 27,
wherein at least one resource attribute comprises Schedule
information representing resource demands for a set of time
intervals for which an associated resource item is available
to be scheduled.

32. The computer-implemented method of claim 27,
wherein generating the resource Schedule further comprises:

propagating the constraints using constraint back propa
gation.

33. The computer-implemented method of claim 27,
wherein generating the resource Schedule further comprises:

generating a list of resource slots, and
assigning the resources to appropriate slots in the list of

the resource Slots.

