woO 2011/081888 A1 110KV 00 RO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

oo AT
1 rld Intellectual Property Organization 2 ey
(19) World Intellectual Property Organization /g |11 1H)F 00N 00 AT OO A O
International Bureau S,/ 0
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
7 July 2011 (07.07.2011) PCT WO 2011/081888 Al
(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GO6F 9/455 (2006.01) kind of national protection available). AE, AG, AL, AM,
. o AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(21) International Application Number: CA. CH. CL. CN. CO. CR. CU. CZ. DE. DK. DM. DO
PCT/US2010/060100 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
13 December 2010 (13.12.2010) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
. . ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
(26) Publication Language: English SE, 8G, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: . o
12/651,554 4 January 2010 (04.01.2010) Us (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(71) Applicant (for all designated States except US): AVAYA GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
INC. [US/US]; 211 Mount Airy Road, Basking Ridge, NJ ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
07920 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU
(72) Inventor; and i > 2 > i it Mt > >
(75) Inventor/Applicant (for US only): LEE, Hyoungjoo LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, S, SK,
[US/US]; 199 Maplehurst Drive, Highlands Ranch, CO él\\;{, {/I[{L) &‘EP%(SFS’I\?J’TSF’TEG’ CL CM, GA, GN, GQ,
80126 (US). »ML, MR, NE, SN, TD, TG).
(74) Agent: SWARTZ, Douglas, W.; Sheridan Ross P.C., Fublished:

1560 Broadway, Suite 1200, Denver, CO 80202 (US). with international search report (Art. 21(3))

(54) Title: PACKET MIRRORING BETWEEN PRIMARY AND SECONDARY VIRTUALIZED SOFTWARE IMAGES FOR
IMPROVED SYSTEM FAILOVER PERFORMANCE

100 200

Active Device Standby Device

110 210

Gommit Gommit

Module

Module

270)

Memory NRD Module
0.

140 240

5
Copiect Data Puckets

oplet Data Packets—
Data Packets
5 175

m

2

Optional Buffer <

Lig.1
Glient(s)

(57) Abstract: Packet loss at a standby server during failover results when the primary fails. There is currently always some
amount of packet traffic that is inbound to the primary that is lost during the failover interval. With existing solutions, this packet
loss during failover is inevitable. The problem is that when this information is lost, the standby has the state of the last commit, so
the standby will have the state information that is old and representative of system state accurately only to the system state at the
time of the last commit. One solution is a method in which all inbound data packets targeted to be delivered to a primary software
application, such as a virtualized software application, running in a primary virtual machine, are continuously monitored and
copied by a Network Replication Device for simultaneous delivery to a backup image of the software application running on a
standby system.

10

15

20

25

30

WO 2011/081888 PCT/US2010/060100

PACKET MIRRORING BETWEEN PRIMARY AND SECONDARY
VIRTUALIZED
SOFTWARE IMAGES FOR IMPROVED SYSTEM FAILOVER PERFORMANCE
TECHNOLOGICAL FIELD

One exemplary aspect is directed toward improving system failover performance.
Even more particularly, one exemplary aspect is directed toward improved system failover
performance in High Availability (HA) software environment(s).

BACKGROUND

Replication of software applications using state-of-the-art Virtual Machine (VM)
platforms and technologies is a very powerful and flexible way of providing high
availability guarantees to software application users. Application vendors can take
advantage of VM technology to build reliability into their solutions by creating multiple
images (or copies) of the software application running synchronously, but independently
of one another. These images can run on the same physical device, e.g., a general purpose
application server, or within multiple, decoupled VM containers, or they can be developed
across multiple physical computers in decoupled VM containers. Multiple VM
replications schemes exists, but in general, VM solutions have a primary software image
that delivers software services for users and then a secondary or tertiary backup image at a
standby server that can take over for the primary in the event of a failure. The backup
images are generally synchronized at discrete time intervals to update the data structures
and database of the backup servers to track changes that have taken place since the last
time the data synchronization update took place. The synchronization is referred to as
“commit” and these solutions provide dramatic improvements in the ability for a software
application vendor to guarantee that its users will receive reliable access to the software
application services.

In a high availability environments, a primary (active) and secondary (passive)
systems work together to ensure synchronization of states either in tight lock step, such as
tandem and stratus fault-tolerant systems, or loose-lock step, such as less expensive
clusters. Whenever there is a state change at some level of the system, the primary sends
the summary state to the secondary which adjusts its state to synchronize with the primary
using the summary state. When the primary fails before being able to transmit any

information it has accumulated since the last checkpointing, that information is usually

10

15

20

25

30

WO 2011/081888 PCT/US2010/060100

locally replayed by the secondary based on the date it is received and tries to synchronize
itself before taking over as primary.
SUMMARY

However, there’s a critical problem in VM replication of software applications that
calls for a solution. That problem is packet loss at the standby server during failover that
results when the primary fails. There is currently always some amount of significant
packet traffic that is inbound to the primary that is lost during the failover interval. With
existing solutions, this packet loss during failover is inevitable. The problem is that when
this information is lost, the standby has the state of the last commit, so the standby will
have the state information that is old and representative of the system state accurate only
to the system state at the time of the last commit.

An existing example of an attempt to overcome this problem is link bouncing.

Remus (http://people.cs.ubc.ca/~brendan/papers/rernus-nsdi08.pdf) tried to solve the same

problem by buffering the outgoing packets in an active buffer. However, the Remus
implementation suffers from a big performance penalty, so it is not usable in most
production software environments. In Remus, the main cause of the performance penalty
is the transmission of the network packets that are subject to being lost are delayed until
the next checkpoint/commit.

Historically, baseline practice for failover with data is the use of checkpoint
intervals during which data is made current on the backup servers. However, as discussed
above, the available solutions either lose data during a failover, or at best, if they buffer
incoming data during failover, they suffer a tremendous performance penalty.

In accordance with one exemplary embodiment, a system or mechanism is
constructed that implements a method in which all inbound data network packets targeted
to be delivered to a primary software application or system, such as a virtualized software
application, running in a primary virtual machine (VM), are continuously monitored and
forked or copied by a Network Replication Device or driver (NRD) for simultancous
delivery to a backup image of the software application running on a standby system or
VM. This data is forked or copied and delivered by the NRD to the standby application
image in real-time or near real time with the goal of achieving reduced or zero application
downtime. A second exemplary benefit of the NRD is its ability to enable reduced or zero
application performance degradation as result of the packet loss during a failover event.

One exemplary embodiment assumes the VM platform/system to which the technology

2

10

15

20

25

30

WO 2011/081888 PCT/US2010/060100

will be applied includes current “state-of-the-art” checkpoint commit and failure detection
mechanisms.

With checkpoint commit and failure detection system(s) in place, the basic logic
for the network replication NRD techniques can be implemented as a network replication
driver implemented fully in hardware and/or software running co-resident on the server or
servers that are hosting the software application images and VMs. Alternatively, and
perhaps in another exemplary implementation, the NRD could be implemented as a stand-
alone “bump-in-the-wire” embedded computing device(s) that are powered and deployed
physically independent of the server or servers that host the software application VM
images. In the superset case of primary and secondary physical servers hosting primary
and secondary virtualized images of the software application, one exemplary embodiment
could also include a primary (active) and secondary (standby) NRD.

NRD can run in the active and/or standby server or appliance or at some other
location in the network. In accordance with one exemplary embodiment, the active NRD
will copy packets arriving at the VM, change the destination address to a standby
destination, and forward the packets to the standby server device. In this exemplary
embodiment, the standby destination could be a standby DOMO (Domain Zero) location
where the system is implemented in a hypervisor environment. However, in general, this
location could be anywhere within the system. The standby NRD will buffer the packets
as follows:

- On checkpoint commit, the standby NRD will clear the buffer network packets up
until the commit.

- On the failure detection, the standby NRD will deliver the buffer packet to the
newly activated standby device for virtual machine.

An exemplary embodiment uses a set of decoupled, bump-in-the-wire buffering
devices, with the operation being conceptually identical. In implementation though, the
packets are intercepted by the primary “bump” device before arrival at the primary server
that is running the primary VM. They are then forked to the secondary bump-in-the-wire
for buffering for the backup/standby software image in the event of a failover.

With the bump in the wire implementation, when the primary fails, even if it is a
catastrophic hardware failure, the bump devices could ensure none of the inbound traffic
to the primary is lost. At failure, the secondary image then could be initiated and start

handling traffic with the ability to fully recover the state of the primary because no

3

10

15

20

25

30

WO 2011/081888 PCT/US2010/060100

inbound data to the primary was lost. In addition, performance is not sacrificed because
the bump devices are not limited to mirroring data only at discrete, checkpoint commit
intervals. As part of this scenario, the secondary bump and the primary bump could, at
failover, switch roles, from primary bump to secondary and vice versa. The secondary
bump, acting like a primary after the failure, could start mirroring data to what was
previously the primary bump, which is now playing the role of the secondary.

Meanwhile, the primary server that failed can get replaced and restarted while both
bump devices continue uninterrupted operation. Once the primary server is
replaced/restarted the system now can do a recovery “swapback” where the active
“backup” server commits state, traffic, and ownership session operations back to the
replaced/restarted “primary” server. This would again be possible without losing any state
or availability, leveraging once again the two physically separate bump devices.

One exemplary advantage of this approach over prior solutions is that it enables a
multi-image, virtualized software application to provide continuous and uninterrupted
services to software application users even in the face of a catastrophic primary hardware
or software image failure.

Another exemplary aspect is directed towards the decoupling of the handling of
inbound traffic to a virtualized software image from the primary operation of that
virtualized software application. Additionally, further interesting aspects can be found in
the idea of physically decoupling this traffic handling onto a set of independently deployed
bump-in-the-wire devices that perform this coordinated buffering operation.

Another exemplary embodiment is directed toward network replication ina VM
environment, and in particular, VM replication. VM replication, which stores in buffers
one or more of network information, application data, and in general any type of data,
system data, etc.... is becoming a very dominant way of providing high access in
virtualized systems. There is one big issue however with VM replication, and yet no
perfect solution exists. The exemplary issue is packet loss during failover. Since there is
VM downtime during failover, and the standby is typically synchronized at every
checkpoint interval, packet loss during failover is inevitable.

Therefore, one exemplary embodiment is to buffer network packets at standby
server(s) in real-time. This at least provides a substantial increase in system performance.
This assumption is however predicated by the system being provided with checkpoint

commit and failure detection by other means.

4

10

15

20

25

30

WO 2011/081888 PCT/US2010/060100

In accordance with an exemplary embodiment, the basic logic for network
replication can be implemented as a network replication driver. The NRD can run in one
or more of the active and standby server, and can optionally be located at some other
location with a communications or computing network. The active NRD will copy
packets coming to the VM, change the destination address to standby address, and send
the packets to the standby device or server. The standby NRD will buffer the packets and
do the following:

- On checkpoint commit, the standby NRD will clear the buffered network packets
up until the checkpoint.

- On failure detection, the standby NRD will deliver the buffered packets to the
newly activated virtual machine.

Another aspect is directed to a technique where rather than buffering outgoing
packets, incoming network packets are copied to a standby machine, server, device, or
virtual machine. Some of the incoming packets inevitably do not reach the active machine
during failover, because that device may not exist at that time. However, the packets are
saved in a buffer for the standby machine. After the standby machine takes over, the
saved network packets can be re-played to the newly activated machine or virtual
machines, so that state loss due to network packet loss is minimized.

More specifically, virtual machine state loss occurs in the following manner.
Suppose there is just virtual machine memory replication by checkpointing. At time T,
assume the active is in the middle of the N™ checkpointing. The standby has the state of
the last checkpoint which is N-1. During the current N checkpointing, the active VM
receives one packet called “lost-packet” from a client that acknowledges this packet then
somehow dies before committing the current checkpoint. Then the standby will resume
from the state of the last checkpoint N-1. So the newly activated VM has now lost the
packet called “lost-packet.” According to an exemplary embodiment, the standby can
recover the lost packet through replaying or reading the lost packet to recreate the state
before failure.

In a high availability environments, a primary (active) and secondary (passive)
systems work together to ensure synchronization of states either in tight lock step, such as
tandem and stratus fault-tolerant systems, or loose-lock step, such as less expensive
clusters. Whenever there is a state change at some level of the system, the primary sends

the summary state to the secondary which adjusts its state to synchronize with the primary

5

10

15

20

25

30

WO 2011/081888 PCT/US2010/060100

using the summary state. When the primary fails before being able to transmit any
information it has accumulated since the last checkpointing, that information is usually
locally replayed by the secondary based on the date it is received and tries to synchronize
itself with the external before taking over for primary. It is this latter kind of
uncheckpointed data, that an exemplary aspect of the technology replicates to the
seccondary immediately, instead of holding on to the data and sending the data later from
the primary, which leads to two disadvantages:

One is it dominates the send queue and second, causes additional holdup when a
check point is sent from the primary, in the case of the Remus-style high availability, it
leads to memory resource-drainage from the active primary during times of high activity.

Hence, taking initial overhead of forking the network datagrams early on to the
sccondary is offset by the benefits of avoiding the disadvantages enumerated above. Of
course, when a state-checkpoint message from the primary arrives, these buffered
datagrams arc thrown away by the secondary after committing that state in itself.

The techniques described herein can provide a number of advantages depending on
the particular configuration. These and other advantages will be apparent from the
disclosure contained herein.

The phrases “at least one”, “one or more", and “and/or”” are open-ended
expressions that are both conjunctive and disjunctive in operation. For example, each of
the expressions “at least one of A, B and C”, “at least one of A, B, or C”, “one or more of
A, B, and C”, “one or more of A, B, or C” and “A, B, and/or C” means A alone, B alone,
C alone, A and B together, A and C together, B and C together, or A, B and C together.

The term “a” or “an” entity refers to one or more of that entity. As such, the terms
“a” (or “an”), “one or more” and “‘at least one” can be used interchangeably herein. Itis
also to be noted that the terms “comprising”, “including”, and “having” can be used
interchangeably.

The term “automatic” and variations thereof, as used herein, refers to any process
or operation done without material human input when the process or operation is
performed. However, a process or operation can be automatic even if performance of the
process or operation uses human input, whether material or immaterial, received before
performance of the process or operation. Human input is deemed to be material if such
input influences how the process or operation will be performed. Human input that

consents to the performance of the process or operation is not deemed to be “material.”

6

10

15

20

25

30

WO 2011/081888 PCT/US2010/060100

The term “computer-readable medium” as used herein refers to any tangible
storage and/or transmission medium that participate in providing instructions to a
processor for execution. Such a medium may take many forms, including but not limited
to, non-volatile media, volatile media, and transmission media. Non-volatile media
includes, for example, NVRAM, or magnetic or optical disks. Volatile media includes
dynamic memory, such as main memory. Common forms of computer-readable media
include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, or any other
magnetic medium, magneto-optical medium, a CD-ROM, any other optical medium,
punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a
PROM, and EPROM, a FLASH-EPROM, a solid statc medium like a memory card, any
other memory chip or cartridge, a carrier wave as described hereinafter, or any other
medium from which a computer can read. A digital file attachment to e-mail or other self-
contained information archive or set of archives is considered a distribution medium
equivalent to a tangible storage medium. When the computer-readable media is
configured as a database, it is to be understood that the database may be any type of
database, such as relational, hierarchical, object-oriented, and/or the like.

While circuit or packet-switched types of communications can be used with the
present system, the concepts and techniques disclosed herein are applicable to other
protocols.

Accordingly, the disclosure is considered to include a tangible storage medium or
distribution medium and prior art-recognized equivalents and successor media, in which
the software implementations of the present technology are stored.

2% ¢

The terms “determine,” “calculate” and “compute,” and variations thereof, as used
herein, are used interchangeably and include any type of methodology, process,
mathematical operation or technique.

The term “module” as used herein refers to any known or later developed
hardware, software, firmware, artificial intelligence, fuzzy logic, or combination of
hardware and software that is capable of performing the functionality associated with that
element. Also, while the technology is described in terms of exemplary embodiments, it
should be appreciated that individual aspects of the technology can be separately claimed.

The preceding is a simplified summary of the technology to provide an

understanding of some aspects thereof. This summary is neither an extensive nor

exhaustive overview of the technology and its various embodiments. It is intended neither

7

10

15

20

25

30

WO 2011/081888 PCT/US2010/060100

to identify key or critical elements of the technology nor to delineate the scope of the
technology but to present selected concepts of the technology in a simplified form as an
introduction to the more detailed description presented below. As will be appreciated,
other embodiments of the technology are possible utilizing, alone or in combination, one
or more of the features set forth above or described in detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

The exemplary embodiments will be described in detail, with reference to the
following figures, wherein:

Fig. 1 illustrates an exemplary failover system;

Figs. 2-4 illustrate exemplary timing diagrams; and

Fig. 5 illustrates an exemplary method of operation of the failover system.

DETAILED DESCRIPTION

An exemplary embodiment of the technology will be described below in relation to
a system failover environment. Although well suited for use with VM’s, the exemplary
aspects are not limited to use with any particular type of device or configuration of system
elements and those skilled in the art will recognize that the disclosed techniques may be
used in any environment in which it is desirable to provide system failover recovery.

The exemplary systems and methods will also be described in relation to software,
modules, and associated hardware and network(s). In order to avoid unnecessarily
obscuring the present disclosure, the following description omits well-known structures,
components and devices that may be shown in block diagram form, are well known, or are
otherwise summarized.

For purposes of explanation, numerous details are set forth in order to provide a
thorough understanding of the present technology. It should be appreciated however, that
the technology may be practiced in a variety of ways beyond the specific details set forth
herein.

A number of variations and modifications can be used. It would be possible to
provide or claims for some features of the technology without providing or claiming
others.

The exemplary systems and methods have been described in relation to system
failover improvements. However, to avoid unnecessarily obscuring the present disclosure,
the description omits a number of known structures and devices. This omission is not to

be construed as a limitation of the scope of the claims. Specific details are set forth to

8

10

15

20

25

30

WO 2011/081888 PCT/US2010/060100

provide an understanding of the present technology. It should however be appreciated that
the technology may be practiced in a variety of ways beyond the specific detail set forth
herein.

Furthermore, while the exemplary embodiments illustrated herein show various
components of the system collocated; certain components of the system can be located
remotely, at distant portions of a distributed network, such as a LAN, cable network,
and/or the Internet, or within a dedicated system. Thus, it should be appreciated, that the
components of the system can be combined in to one or more devices, such as a gateway,
or collocated on a particular node of a distributed network, such as an analog and/or digital
communications network, a packet-switch network, a circuit-switched network or a cable
network.

Fig. 1 outlines an exemplary computing environment 1. The computing
environment 1 includes an active device 100, a standby device 200, connected by one or
more networks 10 and links 5. Each of the active device 100 and standby device 200
include a commit module (110, 210), a device status module (120, 220), processor(s) (130,
230), memory (140, 240), servers (150, 250), database(s) (160, 260), an optional buffer
(170, 270), and an NRD module (180, 280) connected via one or more networks 10 and
links 5. The optional buffer 175 can also be located anywhere within a computing
environment 1 with the device that is currently active typically receiving data packets from
one or more clients 2 via networks 10 and links 5.

In operation, a primary system is activated (active device/system). In accordance
with the first exemplary embodiment, the active device is device 100 with standby device
being device 200. In cooperation with the commit module 110, at predetermined times,
the commit module 110 performs a commit thereby preserving state of the active device
100. (See Figs. 2-4) Upon completing this commit, and in cooperation with the processor
130 and optional buffer 170 or 175, all inbound data packets from clients 2 are copied to
the standby device 200. These packets can be stored in one or more of the buffer itself, or
for example, in database 260. More particularly, the NRD module 180 monitors all
incoming data packets from clients 2 which are continuously monitored and forked or
mirrored by the NRD module 180 for simultancous delivery to the standby device which
maintains a backup image of the software application(s) running in the active device 100.

These data packets can be forked and delivered by the NRD module 180 to the standby

10

15

20

25

30

WO 2011/081888 PCT/US2010/060100

device 200 in real-time with one exemplary goal of it achieving reduced or zero
application down time between the two devices.

As discussed, the NRD module 180 can be realized in hardware or software
running co-resident on, for example, the device or server(s) that are hosting the software
application and VMs images. In another exemplary embodiment, the NRD can be
implemented as stand alone “bump-in-the-wire” embedded computing device that is
provided and deployed physically independent of the server or servers that host the
software application via images.

In the event of a failure, standby device 200, in cooperation with processor 230 and
device status module 220, replays the copied packets to restore from the last commit to the
current state. Then, processing is able to continue from the fail over point without a loss
of data packets. At this point, the standby device 200 is now the “active device” and acts
as the primary system until the failed active device 100 is restored and brought back
online. Once the failed active device 100 is replaced/repaired/restarted, the system can
optionally do a recovery “swap back” where the active standby device 200 commits state,
traffic and ownership possession operations back to the replaced/repaired/restarted active
device 100. Again, this is possible without loss of state or data packets.

Fig. 2 outlines an exemplary timing diagram highlighting the point and time where
the last commit is made, the period during which replicated buffered packets are stored,
and a point in time which the standby utilizes the buffered data to continue operations
from the failed point. Figures 3 and 4 outline the exemplary timelines as to how, after a
failure of the active device, various activities occur until the failed device has been re-
activated. In general, figures 3 and 4 highlight processes that take place when, for
example, the standby device 200 is acting as the “primary or active” device in the event
the active device 100 has failed. The processes for recovery swap back from the standby
200 to the active device 100 are the same as when the active device 100 is the “active or
primary” device or system in operation.

As discussed, the buffer (170, 175, 270) can be located at any point within the
computing environment 1. In addition, multiple buffers can be provided as needed
provided the buffer is able to forward replicated buffered packets to the standby device(s)
or system in the event of a failure of the active device. The buffers can also cooperate
with one or more of the memories 140, 240 and databases 160, 260 depending on the

particular environment of the computing system 1.

10

10

15

20

25

30

WO 2011/081888 PCT/US2010/060100

Fig. 5 outlines an exemplary methodology for providing high availability in a
software application environment. In particular, control begins in step S100 and continues
to step S110. In step S110, a primary system is activated. Next, in step S120, a commit is
performed by the primary system to preserve state for a standby system. Then, in step
S130, all inbound traffic to the primary system is copied to one or more of a buffer or the
standby system. Control then continues to step S140.

In step S140, a determination is made whether a failure has occurred. If a failure
has occurred, control jumps to step S142. Otherwise, control continues to step S150.

In step S150, a determination is made whether the next commit state has been
reached. If it has been reached, control jumps back to step S120 with control otherwise
continuing to step S130.

In step S142, the packets copied for the benefit of the standby system are replayed
from the last commit to the current state. Then, in step S144, the standby system is able to
commence processing from the failover point without a loss of any data packets. Then, in
step S146, the standby system acts as the primary system with control continuing to step
S148 where the control sequence ends.

It will be appreciated from the preceding description, and for reasons of
computational efficiency, that the components of the system can be arranged at any
location within a distributed network of components without affecting the operation of the
system. For example, the various components can be located in a switch such as a PBX
and media server, gateway, a cable provider, enterprise system, client-server environment,
distributer network including one or more servers, in one or more communications
devices, at one or more users’ premises, or some combination thereof. Similarly, one or
more functional portions of the system could be distributed between a communications
device(s) and an associated computing device.

Furthermore, it should be appreciated that the various links, such as link 5,
connecting the elements can be wired or wireless links, or any combination thereof, or any
other known or later developed element(s) that is capable of supplying and/or
communicating data to and from the connected elements. These wired or wireless links
can also be secure links and may be capable of communicating encrypted information.
Transmission media used as links, for example, can be any suitable carrier for electrical

signals, including coaxial cables, copper wire and fiber optics, and may take the form of

11

10

15

20

25

30

WO 2011/081888 PCT/US2010/060100

acoustic or light waves, such as those generated during radio-wave and infra-red data
communications.

Also, while the flowcharts have been discussed and illustrated in relation to a
particular sequence of events, it should be appreciated that changes, additions, and
omissions to this sequence can occur without materially affecting the operation of the
System.

In yet another embodiment, the systems and methods of this technology can be
implemented in conjunction with a special purpose computer, a programmed
microprocessor or microcontroller and peripheral integrated circuit element(s), an ASIC or
other integrated circuit, a digital signal processor, a hard-wired electronic or logic circuit
such as discrete element circuit, a programmable logic device or gate array such as PLD,
PLA, FPGA, PAL, special purpose computer, any comparable means, or the like. In
general, any device(s) or means capable of implementing the methodology illustrated
herein can be used to implement the various aspects of this technology.

Exemplary hardware that can be used for the present system includes computers,
handheld devices and other hardware known in the art. Some of these devices include
processors (¢.g., a single or multiple microprocessors), memory, nonvolatile storage, input
devices, and output devices. Furthermore, alternative software implementations including,
but not limited to, distributed processing or component/object distributed processing,
parallel processing, or virtual machine processing can also be constructed to implement
the methods described herein.

In yet another embodiment, the disclosed methods may be readily implemented in
conjunction with software using object or object-oriented software development
environments that provide portable source code that can be used on a variety of computer
or workstation platforms. Alternatively, the disclosed system may be implemented
partially or fully in hardware using standard logic circuits or VLSI design. Whether
software or hardware is used to implement the systems in accordance with this technology
is dependent on the speed and/or efficiency requirements of the system, the particular
function, and the particular software or hardware systems or microprocessor or
microcomputer systems being utilized.

In yet another embodiment, the disclosed methods may be partially implemented in
software that can be stored on a computer readable storage medium, executed on

programmed general-purpose computer with the cooperation of a controller and memory,

12

10

15

20

25

30

WO 2011/081888 PCT/US2010/060100

a special purpose computer, a microprocessor, or the like. In these instances, the systems
and methods of this technology can be implemented as a program embedded on personal
computer such as an applet, JAVA® or CGI script, as a resource residing on a server or
computer workstation, as a routine embedded in a dedicated measurement system, system
component, or the like. The system can also be implemented by physically incorporating
the system and/or method into a software and/or hardware system.

Although the present disclosure describes components and functions implemented
in the embodiments with reference to particular standards and protocols, the disclosure is
not limited to such standards and protocols. Other similar standards and protocols not
mentioned herein are in existence and are considered to be included in the present
disclosure. Moreover, the standards and protocols mentioned herein and other similar
standards and protocols not mentioned herein are periodically superseded by faster or
more cffective equivalents having essentially the same functions. Such replacement
standards and protocols having the same functions are considered equivalents included in
the present disclosure.

The present disclosure, in various embodiments, configurations, and aspects,
includes components, methods, processes, systems and/or apparatus substantially as
depicted and described herein, including various embodiments, subcombinations, and
subsets thereof. Those of skill in the art will understand how to make and use the present
technology after understanding the present disclosure. The present technology, in various
embodiments, configurations, and aspects, includes providing devices and processes in the
absence of items not depicted and/or described herein or in various embodiments,
configurations, or aspects hereof, including in the absence of such items as may have been
used in previous devices or processes, ¢.g., for improving performance, achieving ease
and\or reducing cost of implementation.

The foregoing discussion has been presented for purposes of illustration and
description. The foregoing is not intended to limit the disclosure to the form or forms
disclosed herein. In the foregoing Detailed Description for example, various features of
the technology are grouped together in one or more embodiments, configurations, or
aspects for the purpose of streamlining the disclosure. The features of the embodiments,
configurations, or aspects of the technology may be combined in alternate embodiments,
configurations, or aspects other than those discussed above. This method of disclosure is

not to be interpreted as reflecting an intention that the claimed technology requires more

13

10

15

WO 2011/081888 PCT/US2010/060100

features than are expressly recited in each claim. Rather, as the following claims reflect,
inventive aspects lie in less than all features of a single foregoing disclosed embodiment,
configuration, or aspect. Thus, the following claims are hereby incorporated into this
Detailed Description, with each claim standing on its own as a separate preferred
embodiment.

Moreover, though the description of the technology has included description of one
or more embodiments, configurations, or aspects and certain variations and modifications,
other variations, combinations, and modifications ar¢ within the scope of this disclosure,
¢.g., as may be within the skill and knowledge of those in the art, after understanding the
present disclosure. It is intended to obtain rights which include alternative embodiments,
configurations, or aspects to the extent permitted, including alternate, interchangeable
and/or equivalent structures, functions, ranges or steps to those claimed, whether or not
such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are

disclosed herein, and without intending to publicly dedicate any patentable subject matter.

14

10

15

20

25

30

WO 2011/081888 PCT/US2010/060100

Claims:

1. A method for preserving state and reducing data loss comprising:
upon detecting a commit in an active device, copying all inbound
data traffic to one or more buffers until a next commit or failure;
detecting a failure; and
replaying copied data traffic to restore a standby device to a current
state of a failed device.
2. The method of claim 1, further comprising commencing processing
at the standby device from a failover point.
3. The method of claim 1, further comprising deleting all copied
inbound data traffic at the next commit.
4. The method of claim 1, further comprising performing a swap back
from the standby device to the active device.
5. The method of claim 1, wherein the active device is one or more of
one or more virtual machines, servers and computers.
6. The method of claim 1, wherein the standby device is one or more
of one or more virtual machines, servers and computers.
7. The method of claim 1, wherein a network replication device
performs the copying.
8. The method of claim 7, wherein the network replication device is
positioned upstream of the active device.
9. One or more means for performing the steps of claim 1.
10. A computer-readable storage media having stored therein
instructions that when executed cause the steps of claim 1 to be performed.
11. A system that preserves state and reduces data loss comprising:
upon detecting a commit by a commit module in an active device, a
network replication module copies all inbound data traffic to one or more buffers until a
next commit or failure;
a device status module that detects a failure; and
a second device status module that replays copied data traffic to

restore a standby device to a current state of a failed device.

15

10

15

20

25

WO 2011/081888 PCT/US2010/060100

12. The system of claim 11, wherein processing at the standby device
commences from a failover point.

13. The system of claim 11, wherein all copied inbound data traffic is
deleted at the next commit.

14. The system of claim 11, wherein the standby device is swap back to
the active device upon correction of the failure.

15. The system of claim 11, wherein the active device is one or more of
one or more virtual machines, servers and computers.

16. The system of claim 11, wherein the standby device is one or more
of one or more virtual machines, servers and computers.

17. The system of claim 11, wherein the network replication device
performs the copying to the one or more buffers, the one or more buffers collocated with
one or more of the active device, the standby device or located on a network node.

18. The system of claim 17, wherein the network replication device is
positioned upstream of the active device.

19. The system of claim 17, wherein the network replication device is
positioned upstream of the standby device.

20. The system of claim 1, wherein all inbound data traffic targeted to
be delivered to a primary software application running in a primary virtual machine on the
active device are continuously monitored and copied by the network replication module
for simultancous delivery to a backup image of the software application running on a

standby system or virtual machine.

16

WO 2011/081888

. . 100
Active Device y
110
150
Commit /V
Module Server(s)
120 160
Device Status
Module DB
130 170
Processor(s) Optional Buffer
180
Memory NRD Module
140
Copied Data Packets
Data Packets
5
10
Network(s)
2
v

Client(s)

1/3

Optional Buffer

PCT/US2010/060100
. 200
Standby Device P
210 250
V4 WV
Commit Server(s)
Module
220 26
-
Device Status =V
Module
ul
Processor(s) Optional But{‘er
Memory NRD Module
Copied Data Packets
175

Fig. 1

WO 2011/081888 PCT/US2010/060100

Last Fail Activate Next
Commit Fail Standby Commit
l Detect
P AL C K E [T S

. N
Time — Replicated Standby Device Utilizes Buffered Data to

Buffered Continue Operation From Fail Point R
Packets Dump
Buffer

\

Failed
Last Device Re-Activate Next

Commit Repaired and Failed Device Commit

T |

P A C K E [S

A 4

Fig. 2

L J

A 4

Fig. 3

Time o
. Failed Device Utilizes Buffered Data to
Replicated Continue Operation From Ready Point)
Buffered A
Packets Dump
Buffer
|
Re-Activate
Failed Device
Failed
Last Device Next
Commit Repaired and Commit
Ready
P AL C K E [T S

~
Time — Replicated A
Buffered Dump

Buffer
Packets ‘

v

Fig. 4

WO 2011/081888

313

BEGIN b
5100

Primary System
Activated

S110

5120

Perform Commit for Standby
System

Begin Copying all Inbound

5130

Traffic to Standby System

PCT/US2010/060100

S140
Failure? / /
No
N S150
C(t)m?nxit /V
State?

Replay Copied Packets to
Restore from Last Commit
to Current State

Commence Processing
from Failover Point

Acts as Primary
System

5148
END

5142

S144

5146
Standby System Y%

Fig. 5

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 10/60100

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GOGF 9/455 (2011.01)
USPC - 718/1

According to Intemnational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC: GO6F 9/455 (2011.01)
USPC: 718/1

Minimum documentation searched (classification system followed by classification symbols)

IPC: GO6F 9/455 (2011.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

USPC: 718/1; 714/100; 370/218; 370/912 (keyword limited; terms below)

restore primary main

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
pubWEST(USPT,PGPB,EPAB,JPAB,USOCRY); Google(Web); Search terms used: failover failure switchover swap preserve replicate
copy state data loss device server back-up virtual machine engine buffer stand-by incoming upstream intercept packets traffic prevent

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2008/0077686 A1 (Subhraveti) 27 March 2008 (27.03.2008), entire document especially Fig. | 1-20
1, 2; para [0038), [0052]-[0081], [0097], [0113], [0128]
Y US 7,373,543 B1 (Jain et al.) 13 May 2008 (13.05.2008), col. 3, In. 65 to col. 4, In. 67; col. 6, In. | 1-20
39-50
Y US 2009/0313311 A1 (Hoffmann et al.) 17 December 2009 (17.12.2009), para [1514] 4,14
A US 2009/0254642 A1 (Geist) 08 October 2009 (08.10.2009), entire document 1-20
A US 2009/0138541 A1 (Wing et al.) 28 May 2009 (28.05.2009), entire document 1-20
A US 2008/0109496 A1 (Holenstein et al.) 08 May 2008 (08.05.2008), entire document 1-20

I:I Further documents are listed in the continuation of Box C.

[]

* Special categories of cited documents:

the priority date claime:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international,
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0O” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

“T” later document published after the international filing date or priority
date and not in conflict with the apglication but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

21 January 2011 (21.01.2011)

Date of mailing of the international search report

07 MAR 2011

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571.273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: §71-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - wo-search-report

