(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/048874 A2

31 March 2016 (31.03.2016) WIPO I PCT
(51) International Patent Classification: (74) Agent: COOPER, William, J.; Cooper Legal Group,
GO6F 11/20 (2006.01) LLC, 6505 Rockside Road, Suite 330, Independence, OH
(21) International Application Number: HI3LUS).
PCT/US2015/051179 (81) Designated States (unless otherwise indicated, for every
. . kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, 151", AU, Ag, BA, BB, BG, BH), BN, BR, BW, BY,
21 September 2015 (21.09.2015) BZ, CA. CH. CL, CN, CO. CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(30) Priority Data: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
2709/DEL/2014 22 September 2014 (22.09.2014) IN PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
14/559,343 3 December 2014 (03.12.2014) US SD, SE, SG, SK, SL, SM, ST, 8V, 8Y, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(71) Applicant: NETAPP, INC. [US/US]; 495 E. Java Drive, . L
Sunnyvale, CA 94089 (US). (84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventors: RAMASUBRAMANIAM, Vaiapuri; 495 E. GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
Java Drive, Sunnyvale, CA 94089 (US). KADAYAM, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
Harihara; 495 E. Java Drive, Sunnyvale, CA 94089 (US). TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
SARFARE, Parag; 495 E. Java Drive, Sunnyvale, CA DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
94089 (US). CHO, Yong Eun; 495 E. Java Drive, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
Sunnyvale, CA 94089 (US). PATEL, Chaitanya; 495 E. SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
Java Drive, Sunnyvale, CA 94089 (US). KEREMANE, GW,KM, ML, MR, NE, SN, TD, TG).
Hrishikesh; 495 E. Java Drive, Sunnyvale, CA 94089 Published:

(US). DESHMUKH, Prachi;
Sunnyvale, CA 94089 (US).

495 E. Java Drive,

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: SYSTEM AND METHOD FOR HANDLING MULTI-NODE FAILURES IN A DISASTER RECOVERY CLUSTER

wO 2016/048874 A2 || N0F V00 00O 000 O A

(57) Abstract: A system and method for handling multi-node failures in a disaster recovery cluster is provided. In the event of an er -
ror condition, a switchover operation occurs from the failed nodes to one or more surviving nodes. Data stored in non-volatile ran -
dom access memory is recovered by the surviving nodes to bring storage objects, e.g., disks, aggregates and/or volumes into a con -
sistent state.

WO 2016/048874 PCT/US2015/051179

UNITED STATES PATENT APPLICATION

SYSTEM AND METHOD FOR HANDLING MULTI-NODE
FAILURES IN A DISASTER RECOVERY CLUSTER

10

15

20

25

WO 2016/048874 PCT/US2015/051179

SYSTEM AND METHOD FOR HANDLING MULTI-NODE
FAILURES IN A DISASTER RECOVERY CLUSTER

RELATED APPLICATION

The present application claims priority to U.S. Non-Provisional Patent
Application No.: 14/559,343, titled “SYSTEM AND METHOD FOR HANDLING
MULTI-NODE FAILURES IN A DISASTER RECOVERY CLUSTER’, filed on
December 3, 2014, and Indian patent application titled “SYSTEM AND METHOD
FOR HANDLING MULTI-NODE FAILURES IN A DISASTER RECOVERY
CLUSTER?”, filed on September 22, 2014 and accorded Indian Application No.
2709/DEL/2014. U.S. Non-Provisional Patent Application No.: 14/559,343 and
Indian Application No. 2709/DEL/2014 are incorporated herein by reference.

BACKGROUND INFORMATION

Technical Field
The present disclosure relates to clustered storage systems and, more

specifically, to managing multiple failures in a clustered storage system

Background Information

A storage system typically includes one or more storage devices, such as
disks, into which information (i.e. data) may be entered, and from which data may be
obtained, as desired. The storage system (i.e., node) may logically organize the data
stored on the devices as storage containers, such as files, logical units (luns), and/or
aggregates having one or more volumes that hold files and/or luns. To improve the
performance and availability of the data contained in the storage containers, a
plurality of nodes may be interconnected as a cluster configured to provide storage
service relating to the organization of the storage containers and with the property that
when one node fails another node may service data access requests, i.e., operations,

directed to the failed node’s storage containers.

Nodes may be arranged in a high availability (HA) pair to enable takeover
operations in the event of a failure of one of the nodes. HA pairs at differing sites

may be further configured into a disaster recovery (DR) group to provide switchover

2

10

15

20

25

30

WO 2016/048874 PCT/US2015/051179

operations in the event of a failure at a particular site. Conventional clustering systems
may be arranged for a single failover; however, in the event of multiple nodes failing,
conventional failover systems may not support continued operations without loss of

data.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages described herein may be better understood
by referring to the following description in conjunction with the accompanying
drawings in which like reference numerals indicate identically or functionally similar
elements, of which:

Fig. 1 is a block diagram of a high availability cluster arrangement;

Fig. 2 is a block diagram of a node;

Fig. 3 is a block diagram of a storage operating system;

Fig. 4 is a schematic block diagram of an illustrative buffer tree of a file that
may be advantageously used with the present invention;

Fig. 5 is a schematic block diagram of an illustrative buffer tree of a file that
may be advantageously used with the present invention;

Fig. 6 is a schematic block diagram of an exemplary aggregate;

Fig. 7 is a schematic block diagram of an exemplary on-disk layout of the
aggregate;

Fig. 8 is a schematic block diagram illustrating a collection of management
processes;

Fig. 9 is a flowchart detailing the steps of a procedure for performing a
switchover operation; and

Fig. 10 is a flowchart detailing the steps of a procedure for performing a

switchover operation in a rolling disaster.

DESCRIPTION

The aspects described herein provide a system and method for handling multi-
node failures in a disaster recovery cluster. In an aspect a system is described for
handling asymmetric configurations where a surviving site has fewer nodes than the
failed site. In such an aspect, a single node may need to handle multiple disaster

recovery partners. To ensure the capability of a node to handle multiple disaster

10

15

20

25

30

WO 2016/048874 PCT/US2015/051179

recovery partners, a user configurable object limit option may be set within a
management host associated with the node. If the object limit option is set, then the
number of objects, such as volumes, that a particular node may host is reduced;
however, the node may handle a plurality of other failed nodes’ workload in the event
of an error condition. Should the object limit option not be set, then the number of
objects, e.g., volumes, is increased, but it is possible in the event of multiple failures

that data may be inaccessible until returned to service.

Disaster Recovery Group

Fig. 1 is a block diagram of a disaster recover (DR) group 100 comprising of
nodes 200 disposed at multiple sites, e.g., site A and site B. The sites may be
physically remote from one another. The nodes 200 at each site (e.g., Site A, Site B)
may arranged as a cluster 110 composed of a high availability (HA) pair (e.g., a local
node and HA partner node) interconnected by an HA interconnect 120. Such HA
partner arrangement may provide redundancy within the site that if one node should
fail, the other node may assume its role by performing a takeover (TO) operation.
Similarly, nodes within a site may be paired with nodes of another site to create (DR)
pairs (e.g., a local node and DR partner node interconnected via switches 125 (e.g.,
Fibre Channel (FC) switches). Such DR partner arrangement may provide
redundancy across sites, such that if the site within which a node resides should fail, a
node at the other may assume its role by performing a switchover (SO) sequence (i.e.,

a cross-cluster takeover)

Whether a node is a local node, a HA partner node, a DR partner node, or an
DR auxiliary Node (i.e., the HA partner node of a DR partner node) depends on the
perspective one looks at the system. For example, from the perspective of node
200A1, node 201A1 is the local node, node 200A2 is the HA partner node, node
200B1 is the DR partner node, and node 200B2 is the DR auxiliary node. Likewise,
from the perspective of node 200B1, node 200B1 is the local node, node 200B2 is the
HA partner node, node 200A1 is the DR partner node, and node 200A2 is the DR
auxiliary node. While much of the description below, is from the perspective of node
200A1 (such that node 200A1 is the local node), in some cases perspectives from
other nodes, such as node 200B1, are utilized for illustrative purposes. It should be

understood that the choice of perspective, and thus the roles of certain nodes, is

10

15

20

25

30

WO 2016/048874 PCT/US2015/051179

simply clarity of illustration, and that specific nodes are not limited to specific roles,

but instead may simultaneous fulfill multiple roles.

Each node 200 is coupled to a shared storage fabric 110 via a switch 125, e.g.
via the node’s related switch 125, including a plurality of storage devices (e.g., disks)
upon which data may be stored. Clients (not shown) may access data stored in the
shared storage fabric 110 by interacting with the nodes 200 in accordance with a
client/server model of information delivery. In response to requests (e.g., data access
requests) from the clients the nodes 200 may perform operations (e.g., service data
access requests directed to storage devices of the shared storage fabric, and logical

storage containers organized thereon

In a given pool, disks may be organized as Redundant Array of Independent
(or Inexpensive) Disks (RAID) groups. The RAID groups may be implemented at a
raid level, such as RAID-4 where reliability/integrity of stat storage is increased by
redundant writing of data “stripes” across a given number of storage devices in the
RAID group, and parity information with respect to the striped data being stored on
dedicated storage device. Likewise, a RAID groups may be implemented using
another type of RAID implementation, such as RAID double-parity (RAID-DP)
which implements double parity stripes within a RAID-6 type layout. In alternative
aspects, storage devices may be organized in a synchronized RAID mirror that
mirrors aggregates. Such a synchronized RAID mirroring arrangement provides a
mirrored copy of the data to the DR partner. It should be understood that a wide

variety of other levels and types of RAID may alternatively be utilized.

One or more RAID groups may be organized into aggregates (AGGRs) that
represent a collection of storage. The aggregates may include a root aggregate that
contains a root volume storing special directories and configuration files, as well as
data aggregates which store user data. While each aggregate may be physically
accessible to multiple nodes 200, each aggregate is generally “owned” by a single
node which is arranged to perform operations (e.g., service data access requests)
directed to that aggregate. Illustratively, individual aggregates may be owned by
particular node. Thus, for example aggregate 130A1 one may be owned by node
2001A1, etc. It should be noted that while a single aggregate is shown for each node,
in alternative aspects of the present invention varying numbers of aggregates may be

associated with a single node. During take over operations, a failed nodes’ aggregates,

5

10

15

20

25

30

WO 2016/048874 PCT/US2015/051179

volumes and/or disks may be serviced by a surviving node. Thus, for example should
node 200A1 fail, the aggregate 130A1 may be serviced by surviving node 200A2.
Further, in the event of a larger error condition affecting an entire site, aggregates may
be switched over to the alternative site. Various examples described below are
directed towards handling situations where multiple nodes have failed in a cluster

environment.

To facilitate access to data stored in the shared storage fabric 110, the nodes
200 may further “virtualize” the storage space. For example, a file system, e.g. a
Write Anywhere File Layout (WAFL®) file system, may logically organize the data
stored on into a hierarchical structure of named storage containers, such as directories
and files. Each file may be implemented as set of disk blocks configured to store
data, whereas the directory may be implemented as a specially formatted file in which
names and links to other files and directories are stored. Further, information may
organized into a hierarchical structure of storage containers, such as blocks, that are
exported as named logical unit numbers (luns). The nodes 200 may service requests
based on file-based access protocols, such as the Common Internet File System
(CIFS) protocol or Network File System (NIS) protocol, to permit access to certain
storage containers, such as files and directories. Likewise, the nodes 200 may service
requests based on block-based access protocols, such as the Small Computer Systems
Interface (SCSI) protocol encapsulated over TCP (iSCSI) and SCSI encapsulated over
Fibre Channel (FCP), to permit access to form of other types storage containers, such

as blocks or luns.

Each node 200 may log ongoing operation (e.g. data access requests) directed
to the storage devices of the aggregates 130 owned by the node. Illustratively, such
logged operations may include operations have been received and acted upon
(processed) not yet been committed (i.e., persistently stored) to the storage devices.
This information is illustratively maintained in a non-volatile random access memory
(NVRAM) 225 of the node 200, or more specifically a local portion of the NVRAM
225 of the node 200. During normal operation data in the NVRAM (e.g., 225A1) of a
local node (e.g., node 200A1) is mirrored to the NVRAM (e.g., 225A2) of the HA
partner node (e.g., node 200A2) and maintained in the NVRAM of the HA partner
node. As part of a takeover sequence performed by the HA partner node (e.g.,

200A2) in response to a failure of the local node (e.g., node 200A1), the HA partner

10

15

20

25

30

WO 2016/048874 PCT/US2015/051179

node may assumes the identity of the failed node, accesses the storage devices utilized
by the failed node, reply the mirrored operations maintained in its NVRAM (e.g.,
225A2).

Similarly, during normal operation data in the NVRAM (e.g., 225A1) of a
local node (e.g., node 200A1) is mirrored to the NVRAM (e.g., 225B1) of the DR
partner node (e.g., node 200B1) and maintained in the NVRAM of the DR partner
node. As part of a switchover sequence performed by the DR partner node (e.g.,
200B1) in response to a failure of the site (e.g., Site A) of the local node (e.g., node
200A1), the DR partner node may assumes the identity of the failed node and reply
the mirrored operations maintained in its NVRAM (e.g., 225B1). Since the DR
partner node (e.g., 200B1) itself has an HA partner node (e.g., auxiliary node 200B2),
it should be understood that data in the NVRAM (e.g., 225A1) of a local node (e.g.,
node 200A1) mirrored to the DR partner node (e.g., 200B1) may further be mirrored
to the auxiliary node (e.g., node 200B2), thereby allowing that node to also be able to

take over for the node, in case of multiple failures.
Node

Fig. 2 is a block diagram of a node 200 that may be utilized in the disaster DR
group 100 of Fig. 1 (e.g., as node 200A1, 200A2, 200B1 or 200B2). The node 200
includes one or more processors 210, a memory 220, local storage 230, a network
adapter 270, a virtual interface (VI) adaptor 240, an HA interface 250, a storage
adapter 260, and a NVRAM 225 interconnected by a system interconnect, such as

bus.

The processor(s) 210 and in some implementations, the adapters/interfaces
240-270 may include processing elements and/or logic circuitry configured to execute
software programs and manipulate the data structures. In some cases, the processing
elements of the adapters/interfaces 240-270 may be configured to offload some or all
of the packet processing and storage access operations, respectively, from the
processor(s) 210 to thereby increase the performance of the storage service provided

by the node 200.

The memory 220 may include memory locations for storing at least some of
the software programs and manipulate the data structures. Among these programs

may be a storage operating system 225 that functionally organizes the node 200 by,

10

15

20

25

30

WO 2016/048874

among other things invoking operations in support of the storage service implemented
by the node. In an aspect, the storage operating system is the NetApp® Data
ONTAP™ operating system available from NetApp Inc., Sunnyvale, California that
implements the WAFL® file system. However, a variety of other types of storage
operating systems that implement other types of file systems may alternatively be

utilized.

The local storage 230 may include one or more local storage devices, such as
solid state drives illustratively embodied as flash storage devices, utilized by the node
to persistently store configuration information provided by one or more processes that
execute on the node 200. The network adapter 240 may include one or more ports
adapted to couple the node 200 to the clients over a network, which may, for example,
take the form of an Ethernet network or a FC network. As such, the network adapter
240 may include a network interface controller (NIC) that may include a TCP/IP
offload engine (TOE) and/or an iSCSI host bus adapter (HBA). Likewise, the storage
adapter 250 may include one or more ports adapted to couple the node 200, via a
switch (e.g., FC switch) 125, to storage devices of the shared storage fabric 110,
cooperates with the storage operating system 300 executing on the node 200 to
service operations (e.g. data access requests) directed to the storage devices of the
shared storage fabric 110. In one implementation, the storage adaptor takes the form

of a FC host bus adaptor (HBA).

As discussed above, NVRAM 225 may log information such as ongoing
operations (e.g. data access requests) serviced by the node 200, including operations
have not yet been committed (i.e., persistently stored) to the storage devices. Such
information may be maintained in a local portion of the NVRAM 225. Further, to
permit TO and SO operations, the NVRAM may also store mirrored copies of
information, such as logged operations serviced by the other nodes of the DR group
(e.g., the nodes HA partner node, DR partner node, and Auxiliary node). Such
information may be maintained in respective other portions of the NVRAM 225. In
order to persistently store the logged information, the NVRAM 225 may include a
back-up battery or be designed to intrinsically have last-state retention capability (e.g.,
include non-volatile semiconductor memory such as storage class memory) that
allows the NVRAM to maintain information through system restarts, power failures,

and the like.

PCT/US2015/051179

10

15

20

25

30

WO 2016/048874 PCT/US2015/051179

A HA interface 260 may include port circuitry adapted to couple the node 200
to an HA partner node of a cluster via the HA interconnect 120. The HA interface
260 may be utilized to mirror (copy) the information, such as the operations (e.g. data
access requests), maintained in the NVRAM of the node 200 to the NVRAM of its
HA partner node, for example, utilizing remote direct memory access (RDMA)
protocol. The operations may be processed by the file system of the node 200 and

logged in the NVRAM 300 on a per-operation (e.g., per request basis).

Further, a metro cluster (MC) virtual interface (VI) adaptor 270 may include
port circuitry adapted to couple the node 200 to an a DR partner node, via switches
(e.g., FC switches) 120. In one implementation, the MC VI adaptor 270 may be a FC
VI adaptor. Similar to the HA interface, the MC VI adaptor may be utilized to mirror
(copy) information, such as the operations (e.g. data access requests), maintained in
the NVRAM of the node 200 to the NVRAM of its DR partner node. The MC VI
adaptor 270 may copy (“mirror”) the operations from the NVRAM of the node 200 to
an NVRAM the DR partner node on a per-operation (e.g., per request basis).

Storage Operating System

To facilitate access to the disks 140, the storage operating system 300
implements a write-anywhere file system that cooperates with one or more
virtualization modules to “virtualize” the storage space provided by disks 140. The
file system logically organizes the information as a hierarchical structure of named
directories and files on the disks. Fach “on-disk” file may be implemented as set of
disk blocks configured to store information, such as data, whereas the directory may
be implemented as a specially formatted file in which names and links to other files
and directories are stored. The virtualization module(s) allow the file system to
further logically organize information as a hierarchical structure of blocks on the disks
that are exported as named logical unit numbers (luns). It is expressly contemplated
that any appropriate storage operating system may be enhanced for use in accordance

with the inventive principles described herein.

Fig. 3 is a schematic block diagram of the storage operating system 300 that
may be advantageously used with the present invention. The storage operating
system comprises a series of software layers organized to form an integrated network

protocol stack or, more generally, a multi-protocol engine that provides data paths for

10

15

20

25

30

WO 2016/048874 PCT/US2015/051179

clients to access information stored on the node using block and file access protocols.
The multi-protocol engine includes a media access layer 312 of network drivers (e.g.,
gigabit Fthernet drivers) that interfaces to network protocol layers, such as the IP
layer 314 and its supporting transport mechanisms, the TCP layer 316 and the User
Datagram Protocol (UDP) layer 315. A file system protocol layer provides multi-
protocol file access and, to that end, includes support for the Direct Access File
System (DAFES) protocol 318, the NFS protocol 320, the CIES protocol 323 and the
Hypertext Transfer Protocol (HT'TP) protocol 334. A VI layer 326 implements the VI
architecture to provide direct access transport (DA'T) capabilities, such as RDMA, as
required by the DAFS protocol 318. An iSCSI driver layer 328 provides block
protocol access over the TCP/IP network protocol layers, while a FC driver layer 330
receives and transmits block access requests and responses to and from the node. The
FC and iSCSI drivers provide FC-specific and iSCSI-specific access control to the
blocks and, thus, manage exports of luns to either iSCSI or FCP or, alternatively, to

both iSCSI and FCP when accessing the blocks on the node 200.

In addition, the storage operating system 300 includes a series of software
layers organized to form a storage server that provides data paths for accessing
information stored on the disks 140 of the node 200. To that end, the storage server
includes a file system module 360, a RAID system module 380 and a disk driver
system module 390. The RAID system 380 manages the storage and retrieval of
information to and from the volumes/disks in accordance with I/O operations, while
the disk driver system 390 implements a disk access protocol such as, e.g., the SCSI

protocol.

The file system 360 implements a virtualization system of the storage
operating system 300 through the interaction with one or more virtualization modules
illustratively embodied as, e.g., a virtual disk (vdisk) module (not shown) and a SCSI
target module 335. The vdisk module enables access by administrative interfaces,
such as a user interface of a management framework 810 (see 'ig. 8), in response to a
user (system administrator) issuing commands to the node 200. The SCSI target
module 335 is generally disposed between the FC and iSCSI drivers 328, 330 and the
file system 360 to provide a translation layer of the virtualization system between the

block (lun) space and the file system space, where luns are represented as blocks.

10

10

15

20

25

30

WO 2016/048874 PCT/US2015/051179

The file system 360 is illustratively a message-based system that provides
logical volume management capabilities for use in access to the information stored on
the storage devices, such as disks. That is, in addition to providing file system
semantics, the file system 360 provides functions normally associated with a volume
manager. These functions include (i) aggregation of the disks, (ii) aggregation of
storage bandwidth of the disks, and (iii) reliability guarantees, such as mirroring
and/or parity (RAID). The file system 360 illustratively implements the file system
(hereinafter generally the “write-anywhere file system™) having an on-disk format
representation that is block-based using, e.g., 4 kilobyte (KB) blocks and using index
nodes (“inodes”) to identify files and file attributes (such as creation time, access
permissions, size and block location). The file system 360 uses files to store meta-
data describing the layout of its file system; these meta-data files include, among
others, an inode file. A file handle, i.e., an identifier that includes an inode number, is

used to retrieve an inode from disk.

Broadly stated, all inodes of the write-anywhere file system are organized into
the inode file. A file system (fs) info block specifies the layout of information in the
file system and includes an inode of a file that includes all other inodes of the file
system. Each logical volume (file system) has an fsinfo block that is preferably stored
at a fixed location within, e.g., a RAID group. The inode of the inode file may directly
reference (point to) data blocks of the inode file or may reference indirect blocks of
the inode file that, in turn, reference data blocks of the inode file. Within each data
block of the inode file are embedded inodes, each of which may reference indirect

blocks that, in turn, reference data blocks of a file.

Further exemplary storage operating system 300 modules include a disaster
recovery coordinator (DRC) 370, a disaster recovery switchover monitor (DRSOM)
372 and a management host 374. The DRC 370 implements cluster wide disaster
recovery operations. In an example, each node may include DRC module 370;
however, only one instantiation of the DRC module 370 is active at any point in time.
The DRC module 370 cooperates with DRSOM modules 372 on each of the nodes to
implement the various switchover operations described further below. DRSOM
module 372 implements node specific switchover operations. That is, the DRC 370
coordinates the operations of the various DRSOMs 372 executing on each of the

nodes in the event of a switchover operation. As will be appreciated by those skilled

11

10

15

20

25

30

WO 2016/048874 PCT/US2015/051179

in the art, the functionality of the DRC 370 and DRSOMs 372 are to be taken as
exemplary only. In alternative examples, the functionality maybe arranged differently
between the two modules and/or the modules may be combined into a single module
or have the functionality distributed among a plurality of different modules. As such,
the description of a DRC module 370 operating on cluster wide operations, while
DRSOM module 372 operates on node level operations should be taken as exemplary
only.

The management host 374 implements various management functionalities and
stores management information in accordance with an illustrative aspect of the
disclosure. Illustratively, the management host 374 stores an object limit option 376.
The object limit option 376 is utilized in accordance with aspects of the disclosure to
determine a maximum number of objects, such as volumes, that a particular node may
service. Illustratively, each particular node may have specific limits for various
objects, such as volume discount, aggregates, etc. In a high-availability configuration,
a single node may double the number of objects when it takes over its a failed partner
node. That is, if N/2 is the per node limit for an object, then in takeover mode, the
limit for that object count is N, i.e., N/2 for the local node and N/2 for the partner
node. However, in a disaster recovery group such as that described above in relation
to Fig. 1, it is possible that three nodes may fail leaving a single surviving node. If
each of the nodes was operating using its maximum assigned number of volumes,
then the single surviving node could potentially need to service a total of 2N volumes.
If the node object limit is not set on a particular node, then it would operate with a
limit of N objects in normal operation; however, in the event of the other three nodes
failing, the surviving node could not takeover and/or switchover from the failed nodes
as it could need to handle up to 4N objects, which exceed the storage operating
system’s maximum object limitation. In accordance with an aspect of the disclosure,
the object limit option 376 enables an administrator to decide between additional
disaster recovery capability or ability to service additional volumes (or objects) on a
given node.

Should the object limit option be set for a particular node, then a maximum of
N/2 number of volumes is supported for that node. That is, setting the object limit
option 376 causes the total number of the volumes that may be serviced by a single
node to be reduced in half. However, in the event of a failure of the other three nodes

within a disaster recovery group, the surviving node would be able to handle up to 2N

12

10

15

20

25

30

WO 2016/048874 PCT/US2015/051179

volumes. As each of the nodes could be serving at most N/2 volumes, the surviving
node would be able to process all volumes during the switchover operation. This
provides support for a double failure, the failure of a site within a disaster recovery
group as well as the failure of a notes high-availability partner.

If the object limit option is not set, then each node may support a maximum
number of N volumes. Thus, in the event of a single failure, for example, the failure
of a high-availability partner, a node may service up to 2N volumes. However, should
the object limit option 376 be disabled, then no double failover operations would be
permitted.

As used herein, the term “storage operating system" generally refers to the
computer-executable code operable on a computer to perform a storage function that
manages data access and may, in the case of a node 200, implement data access
semantics of a general purpose operating system. The storage operating system can
also be implemented as a microkernel, an application program operating over a
general-purpose operating system, such as UNIX® or Windows XP®, or as a general-
purpose operating system with configurable functionality, which is configured for

storage applications as described herein.

In addition, it will be understood to those skilled in the art that the invention
described herein may apply to any type of special-purpose (e.g., file server, filer or
storage serving appliance) or general-purpose computer, including a standalone
computer or portion thereof, embodied as or including a storage system. Moreover,
the teachings of this invention can be adapted to a variety of storage system
architectures including, but not limited to, a network-attached storage environment, a
storage area network and disk assembly directly-attached to a client or host computer.
The term “storage system” should therefore be taken broadly to include such
arrangements in addition to any subsystems configured to perform a storage function
and associated with other equipment or systems. It should be noted that while this
description is written in terms of a write any where file system, the teachings of the
present invention may be utilized with any suitable file system, including a write in

place file system.

The in-core and on-disk format structures of an exemplary file system,
including the inodes and inode file, are disclosed and described in U.S. Patent No.

5,819,292 titled METHOD FOR MAINTAINING CONSISTENT STATES OF A

13

10

15

20

25

30

WO 2016/048874 PCT/US2015/051179

FILE SYSTEM AND FOR CREATING USER-ACCESSIBLE READ-ONLY
COPIES OF A FILE SYSTEM by David Hitz et al., issued on October 6, 1998.

Fig. 4 is a schematic block diagram of an illustrative buffer tree of a file that
may be advantageously used with the present invention. The buffer tree is an internal
representation of blocks for a file (e.g., file 400) loaded into the memory 224 and
maintained by the write-anywhere file system 360. A root (top-level) inode 402, such
as an embedded inode, references indirect (e.g., level 1) blocks 404, Note that there
may be additional levels of indirect blocks (e.g., level 2, level 3) depending upon the
size of the file. The indirect blocks (and inode) contain pointers 405 that ultimately
reference data blocks 406 used to store the actual data of the file. That is, the data of
file 400 are contained in data blocks and the locations of these blocks are stored in the
indirect blocks of the file. Fach level 1 indirect block 404 may contain pointers to as
many as 1024 data blocks. According to the “write anywhere” nature of the file

system, these blocks may be located anywhere on the disks 140.

A file system layout is provided that apportions an underlying physical
volume into one or more virtual volumes (or flexible volume) of a storage system,
such as node 200. An example of such a file system layout is described in U.S. Patent
Application Serial No. 10/836,817 titled Extension of Write Anywhere File System
Layout, by John K. Edwards et al. and assigned to Network Appliance, Inc. The
underlying physical volume is an aggregate comprising one or more groups of disks,
such as RAID groups, of the node. The aggregate has its own physical volume block
number (pvbn) space and maintains meta-data, such as block allocation structures,
within that pvbn space. Each flexible volume has its own virtual volume block
number (vvbn) space and maintains meta-data, such as block allocation structures,
within that vvbn space. Each flexible volume is a file system that is associated with a
container file; the container file is a file in the aggregate that contains all blocks used
by the flexible volume. Moreover, each flexible volume comprises data blocks and
indirect blocks that contain block pointers that point at either other indirect blocks or

data blocks.

In one aspect, pvbns are used as block pointers within buffer trees of files
(such as file 400) stored in a flexible volume. This “hybrid” flexible volume example
involves the insertion of only the pvbn in the parent indirect block (e.g., inode or

indirect block). On a read path of a logical volume, a “logical” volume (vol) info

14

10

15

20

25

30

WO 2016/048874 PCT/US2015/051179

block has one or more pointers that reference one or more fsinfo blocks, each of
which, in turn, points to an inode file and its corresponding inode buffer tree. The
read path on a flexible volume is generally the same, following pvbns (instead of
vvbns) to find appropriate locations of blocks; in this context, the read path (and
corresponding read performance) of a flexible volume is substantially similar to that
of a physical volume. Translation from pvbn-to-disk,dbn occurs at the file

system/RAID system boundary of the storage operating system 300.

In an illustrative dual vbn hybrid flexible volume, both a pvbn and its
corresponding vvbn are inserted in the parent indirect blocks in the buffer tree of a
file. That is, the pvbn and vvbn are stored as a pair for each block pointer in most
buffer tree structures that have pointers to other blocks, e.g., level 1(1.1) indirect
blocks, inode file level O (1.O) blocks. Fig. 5 is a schematic block diagram of an
illustrative buffer tree of a file 500 that may be advantageously used with the present
invention. A root (top-level) inode 502, such as an embedded inode, references
indirect (e.g., level 1) blocks 504. Note that there may be additional levels of indirect
blocks (e.g., level 2, level 3) depending upon the size of the file. The indirect blocks
(and inode) contain pvbn/vvbn pointer pair structures 508 that ultimately reference

data blocks 506 used to store the actual data of the file.

The pvbns reference locations on disks of the aggregate, whereas the vvbns
reference locations within files of the flexible volume. The use of pvbns as block
pointers 508 in the indirect blocks 504 provides efficiencies in the read paths, while
the use of vvbn block pointers provides efficient access to required meta-data. That
is, when freeing a block of a file, the parent indirect block in the file contains readily
available vvbn block pointers, which avoids the latency associated with accessing an
owner map to perform pvbn-to-vvbn translations; yet, on the read path, the pvbn is

available.

Fig. 6 is a schematic block diagram of an illustrative aggregate 600 that may
be advantageously used with the present invention. Luns (blocks) 602, directories
604, gtrees 606 and files 608 may be contained within flexible volumes 610, such as
dual vbn flexible volumes, that, in turn, are contained within the aggregate 600. The
aggregate 600 is illustratively layered on top of the RAID system, which is
represented by at least one RAID plex 650 (depending upon whether the storage

configuration is mirrored), wherein each plex 650 comprises at least one RAID group

15

10

15

20

25

30

WO 2016/048874

660. Each RAID group further comprises a plurality of disks 630, e.g., one or more
data (D) disks and at least one (P) parity disk.

Whereas the aggregate 600 is analogous to a physical volume of a
conventional storage system, a flexible volume is analogous to a file within that
physical volume. That is, the aggregate 600 may include one or more files, wherein
each file contains a flexible volume 610 and wherein the sum of the storage space
consumed by the flexible volumes is physically smaller than (or equal to) the size of
the overall physical volume. The aggregate utilizes a physical pvbn space that defines
a storage space of blocks provided by the disks of the physical volume, while each
embedded flexible volume (within a file) utilizes a logical vvbn space to organize
those blocks, e.g., as files. Fach vvbn space is an independent set of numbers that
corresponds to locations within the file, which locations are then translated to dbns on
disks. Since the flexible volume 610 is also a logical volume, it has its own block

allocation structures (e.g., active, space and summary maps) in its vvbn space.

A container file is a file in the aggregate that contains all blocks used by a
flexible volume. The container file is an internal (to the aggregate) feature that
supports a flexible volume; illustratively, there is one container file per flexible
volume. Similar to a pure logical volume in a file approach, the container file is a
hidden file (not accessible to a user) in the aggregate that holds every block in use by
the flexible volume. The aggregate includes an illustrative hidden meta-data root

directory that contains subdirectories of flexible volumes:
WAFL/fsid/filesystem file, storage label file

Specifically, a physical file system (WAFL) directory includes a subdirectory
for each flexible volume in the aggregate, with the name of subdirectory being a file
system identifier (fsid) of the flexible volume. Each fsid subdirectory (flexible
volume) contains at least two files, a filesystem file and a storage label file. The
storage label file is illustratively a 4KB file that contains meta-data similar to that
stored in a conventional raid label. In other words, the storage label file is the analog
of a raid label and, as such, contains information about the state of the flexible volume
such as, e.g., the name of the flexible volume, a universal unique identifier (uuid) and

fsid of the flexible volume, whether it is online, being created or being destroyed, etc.

16

PCT/US2015/051179

10

15

20

25

30

WO 2016/048874 PCT/US2015/051179

Fig. 7 is a schematic block diagram of an on-disk representation of an
aggregate 700. The storage operating system 300, e.g., the RAID system 380,
assembles a physical volume of pvbns to create the aggregate 700, with pvbns 1 and 2
comprising a “physical” volinfo block 702 for the aggregate. The volinfo block 702
contains block pointers to fsinfo blocks 704, each of which may represent a snapshot
of the aggregate. Fach fsinfo block 704 includes a block pointer to an inode file 706
that contains inodes of a plurality of files, including an owner map 710, an active map
712, a summary map 714 and a space map 716, as well as other special meta-data
files. The inode file 706 further includes a root directory 720 and a “hidden” meta-
data root directory 730, the latter of which includes a namespace having files related
to a flexible volume in which users cannot “see” the files. The hidden meta-data root
directory includes the WAFL/fsid/ directory structure that contains filesystem file 740
and storage label file 790. Note that root directory 720 in the aggregate is empty; all
files related to the aggregate are organized within the hidden meta-data root directory

730.

In addition to being embodied as a container file having level 1 blocks
organized as a container map, the filesystem file 740 includes block pointers that
reference various file systems embodied as flexible volumes 750. The aggregate 700
maintains these flexible volumes 750 at special reserved inode numbers. Each
flexible volume 750 also has special reserved inode numbers within its flexible
volume space that are used for, among other things, the block allocation bitmap
structures. As noted, the block allocation bitmap structures, e.g., active map 762,

summary map 764 and space map 766, are located in each flexible volume.

Specifically, each flexible volume 750 has the same inode file
structure/content as the aggregate, with the exception that there is no owner map and
no WAFL/fsid/filesystem file, storage label file directory structure in a hidden meta-
data root directory 780. To that end, each flexible volume 750 has a volinfo block
752 that points to one or more fsinfo blocks 754, each of which may represent a
snapshot, along with the active file system of the flexible volume. Each fsinfo block,
in turn, points to an inode file 760 that, as noted, has the same inode structure/content
as the aggregate with the exceptions noted above. Each flexible volume 750 has its

own inode file 760 and distinct inode space with corresponding inode numbers, as

17

10

15

20

25

30

WO 2016/048874

well as its own root (fsid) directory 770 and subdirectories of files that can be

exported separately from other flexible volumes.

The storage label file 790 contained within the hidden meta-data root directory
730 of the aggregate is a small file that functions as an analog to a conventional raid
label. A raid label includes physical information about the storage system, such as the
volume name; that information is loaded into the storage label file 790. Illustratively,
the storage label file 790 includes the name 792 of the associated flexible volume 750,
the online/offline status 794 of the flexible volume, and other identity and state
information 796 of the associated flexible volume (whether it is in the process of

being created or destroyed).

VLDB

Fig. 8 is a schematic block diagram illustrating a collection of management
processes that execute as user mode applications 800 on the storage operating system
300 to provide management of configuration information (i.e. management data) for
the nodes of the cluster. To that end, the management processes include a
management framework process 810 and a volume location database (VLDB) process
830, each utilizing a data replication service (RDB 850) linked as a library. The
management framework 810 provides an administrator 870 an interface via a
command line interface (CLI) and/or a web-based graphical user interface (GUI).

The management framework is illustratively based on a conventional common
interface model (CIM) object manager that provides the entity to which users/system

administrators interact with a node 200 in order to manage the cluster 100.

The VLDB 830 is a database process that tracks the locations of various
storage components, including data containers such as flexible volumes, (hereafter
“volumes”) within the cluster 100 to thereby facilitate routing of requests throughout

the cluster.
Multi-Node Failures

Fig. 9 is a flowchart detailing the steps of a procedure 900 for performing a
switchover operation when one node may need to handle multiple disaster recovery
partners. The procedure 900 begins in step 905 and continues to step 910 where an

error condition occurs that causes a switchover operation to be initiated. The error

18

PCT/US2015/051179

10

15

20

25

30

WO 2016/048874 PCT/US2015/051179

condition may be the result of natural disaster, power failure, software and/or
hardware failure, etc. Illustratively, the switchover operation will be described in
terms of site A of Fig. 1 failing with site B being the surviving site. However, it
should be noted that this description is for exemplary purposes only and that the
principles of the present disclosure may be utilized for bidirectional switchover, i.e., if
site B suffers an error condition, site A may function as a surviving site. In response
to the initiation of the switchover operation, the DRC determines that a candidate
node is not capable of switch over operation in step 915. As will be appreciated by
those skilled in the art, if all nodes are capable of switchover operation, a switchover
operation proceeds normally. However should the DRC, working in conjunction with
the DRSOMs executing on each node, determined that one of the candidate nodes is
not capable of switchover operation, then it may be necessary to identify an
alternative node. A node may not be capable of processing the switchover operation
if, for example, its object limit option is disabled and the switchover operation would
result in more than the maximum number of objects being serviced by the node.
Alternatively, the candidate node may be suffering an error condition or otherwise be

unavailable for processing operations during the switchover.

In response to determining that a candidate node is not capable, the procedure
continues to step 920 to identify an alternate node capable of switchover operation.
This alternate node may be a surviving node of a particular site or in an N-way
configuration may be one of a plurality of nodes on a site that is not currently being
utilized for switchover operations. A determination is then made in step 925 whether
the alternate node is capable of handling the load. That is, a determination is made
whether the alternate nodes servicing of switchover objects would cause the node to
exceed its maximum number of objects being serviced. This may occur due to, for
example, the object limit option being disabled on a particular node, thereby setting
its maximum object limit at 2N. Should a double failure be occurring, the alternate
node could potentially need to service up to 4N volumes. In such a case, the
procedure branches to step 950 and returns an error message indicating that
switchover operation is not possible. The procedure then completes in step 945. It
should be noted by returning the error message 950 and not entering into a switchover
mode, data connectivity may be lost. Client connectivity to data may return when the

underlying error condition is corrected so that additional nodes are brought online to

19

10

15

20

25

30

WO 2016/048874 PCT/US2015/051179

service the various volumes engaged in the switchover operation. Further,
administrator may modify the object limit option to be activated, thereby causing a
alternate node that was incapable of handling the load to become one capable of

handling the load.

However, if in step 925 it is determined that the alternate node is capable of
handling the load, the procedure branches to step 930 were the switchover operation is
performed. This may occur by, for example, the selected node taking ownership of the
disks, aggregates and volumes of the failed node using conventional operations. Once
the switchover operation has been completed, the surviving node then replays the
NVRAM in step 935. Illustratively, the NVRAM within the selected node has been
receiving mirroring operations of the failed nodes as described above in relation to
NVRAM mirroring. As such, the selected surviving node may replay the data
contained within the NVRAM to bring the aggregates, volumes and disks to a fully
consistent state. Once he disks are brought to a consistent state, the surviving node
then brings the switchover objects online in step 940. At this point, the surviving node
is capable of processing data access request directed to the objects, e.g., volumes,

aggregates and/or disks. The procedure 900 then completes in step 945.

Fig. 10 is a flowchart detailing the steps of a procedure 1000 for performing a
switchover operation in a rolling disaster. Illustratively, a rolling disaster scenario is
when nodes fail sequentially in the disaster site. A rolling disaster is illustratively
deemed a single disaster, so that the switchover operation should succeed in the DR
site even if the node object limi option is off as long as the DR site nodes are not in
takeover mode. The procedure 1000 begins in step 1005 and continues to step 1010
where an error condition occurs that causes a switchover operation to occur. As noted
above, the error condition may be the result of natural disaster, hardware and/or
software failure, etc. For the purpose of the example described herein with relation to
procedure 1000, assume that node 200A2 had previously failed and node 200A1 was
servicing all aggregates, volumes and disks that were previously owned by node
200A2. The error condition then occurs that results in node 200A1 going offline. As
a result of the error condition, nodes 200B1 and 200B2 (i.e., site B) perform a

switchover operation to manage the data sets from site A

20

10

15

20

25

30

WO 2016/048874 PCT/US2015/051179

The surviving nodes assume ownership of the storage devices from the failed
nodes in step 1015. This may be accomplished using conventional disk ownership
techniques as are well known in the art. Continuing the example described above,
node 200B1 will assume ownership of disks (and associated aggregates/volumes) that
were originally owned by node 200A1, while node 200B2 will assume ownership of
disks that were originally owned by node 200A2. As node 200B2’s partner (node
200A2) was not active, it may not have been receiving NVRAM mirroring operations,
as described above. Thus, the NVRAM is then copied from one surviving node to the
other surviving node in step 1020. [llustratively, the NVRAM from node 200B1 is
copied to node 200B2 so that node 200B2 has the requisite data to render the data sets

that were switched over to it into a fully consistent state.

Each surviving node then replays the appropriate portion of the NVRAM in
step 1025. Again, using the above example, node 200B1 would replay the NVRAM
portions directed to disks that were managed by node 200A1. Similarly, node 200B2
would replay those portions of NVRAM directed to the disks previously managed by
node 200A2. Once the NVRAM has been replayed, the surviving nodes bring online
the switched over objects (disks, aggregates, volumes, etc.) in step 1030. The

procedure 1000 then completes in step 1035.

It should be noted that in an alternative aspect, node 200A2 may have
rebooted and begun assuming ownership of aggregates from node 200A1 at the time
when the switchover operation occurs. In such an example, the disks originally
owned by node 200A1 would be transferred to node 200B1 and the disks originally
owned by node 200A2 would be transferred to node 200B2, even they may currently
be owned by node 200A1. In such a case, the copying of the NVRAM from node
200B1 to node 200B2 ensures that node 200B2 has the appropriate data to replay to
the disks that it has taken over.

The foregoing description has been directed to specific aspects of the
disclosure. It will be apparent, however, that other variations and modifications may
be made to the described examples, with the attainment of some or all of their
advantages. For instance, it is expressly contemplated that the components and/or
elements described herein can be implemented as software encoded on a tangible

(non-transitory) computer-readable medium (e.g., disks and/or CDs) having program

21

WO 2016/048874 PCT/US2015/051179

instructions executing on a computer, hardware, firmware, or a combination thereof,
Accordingly this description is to be taken only by way of example and not to
otherwise limit the scope of the aspects herein. Therefore, it is the object of the
appended claims to cover all such variations and modifications as come within the

true spirit and scope of the aspects of the disclosure herein.

22

WO 2016/048874 PCT/US2015/051179

What is claimed is:

1. A method comprising:

determining that a candidate node is not available for a switchover
operation;

identifying an alternate node for the switchover operation;

determining whether the identified alternate node is capable of
handling a load from a plurality of other nodes;

in response to determining that the identified alternate node is capable
of handling the local from the plurality of other nodes, performing a
switchover operation to transfer ownership of one or more objects from the
plurality of other nodes to the identified alternate node; and

recovering data from a non-volatile memory to the one or more
objects; and

bringing online the one or more objects.

2. The method of claim 1 wherein the one or more objects comprise volumes.
3. The method of claim 1 or claim 2 wherein the one or more objects comprise
aggregates.

4. The method of any one of claims 1 to 3 wherein the plurality of other nodes

comprises a first node arranged in a high availability pairing with a second node.

5. The method of claim 4 further comprising:
detecting a failure on the first node; and

performing a failover operation from the first node to the second node.

6. The method of claim 5 further comprising, detecting an error condition on the

second node.

7. The method of any one of claims 1 to 6 wherein recovering data from the non-
volatile memory further comprises replaying a portion of data stored in the non-

volatile memory that was mirrored from the plurality of other nodes.

23

WO 2016/048874 PCT/US2015/051179

8. The method of any one of claims 1 to 7 wherein the one or more objects are

stored on magnetic storage media.

9. The method of any one of claims 1 to 8 wherein the one or more objects are

stored on storage devices operatively interconnected with a shared switching fabric.

10. A system comprising:

a first high availability pair comprising of a first and a second node
operatively interconnected by a first cluster interconnect, the first node
associated with first data storage objects and the second node associated with
second data storage objects;

a second high availability pair comprising of a third and a fourth node
operatively interconnected by a second cluster interconnect, the third node
associated with third data storage objects and the fourth node associated with
fourth data storage objects, the first and second high availability pairs
organized as a disaster recovery group;

wherein the first node is configured to perform a takeover operation of
the second data storage objects in response to an error condition of the second
node; and

wherein the third node is configured to perform a switchover operation
to manage the first data storage objects and the fourth node is configured to
perform a switchover operation to manage the second data storage objects in

response to a subsequent error condition affecting the first node.

11. The system of claim 10 wherein the third node is further configured to recover
a portion of data stored in a third non-volatile memory, wherein the recovery of data

causes the third node to write the data to the first data storage objects.

12. The system of claim 10 of claim 11 wherein the fourth node is further
configured to recover a portion of data stored in a fourth non-volatile memory,
wherein the recovery of data causes the fourth node to write the data to the fourth data

storage objects.

24

WO 2016/048874 PCT/US2015/051179

13. The system of any one of claims 10 to 12 wherein the first, second, third and

fourth data storage objects comprise volumes.

14, The system of any one of claims 10 to 13 wherein the first, second, third and

fourth data storage objects comprise aggregates.

15. The system of any one of claims 10 to 14 wherein the first, second, third and

fourth nodes are operatively interconnected with a shared switching fabric.

16. The system of claim 15 wherein the first data objects are stored on storage

devices operatively interconnected with the shared switching fabric.

17. The system of claim 16 wherein ownership of the storage devices is modified

to conform to the node managing the first data objects stored thereon.

18. The system of any one of claims 10 to 17 wherein the third node further
comprises a storage operating system having a management host module, the

management host module storing an object limit option for the third node.

19. Computer software including program instructions executable on a processor, the
computer software comprising:
program instructions that determine that a candidate node is not
available for a switchover operation;
program instructions that identify an alternate node for the switchover
operation;
program instructions that determine whether the identified alternate
node is capable of handling a load from a plurality of other nodes;
in response to determining that the identified alternate node is capable
of handling the local from the plurality of other nodes, program instructions
that perform a switchover operation to transfer ownership of one or more
objects from the plurality of other nodes to the identified alternate node;
program instructions that recover data from a non-volatile memory to

the one or more objects; and

25

WO 2016/048874 PCT/US2015/051179

program instructions that bring online the one or more objects.

20. The computer software of claim 19 wherein the program instructions that
recover data from the non-volatile memory further comprise program instructions that
replay a portion of data stored in the non-volatile memory that was mirrored from the

plurality of other nodes.

26

PCT/US2015/051179

WO 2016/048874

1/9

'y

l "OId

—— e — — — — — — -

280€l ¥99

{

_

_ ———

“ Zv00Z 300N

_

| —
oot AR

m ~| Vel

| MS WYY AN

A

)

ork

o148v4 HOLIMS

190€1 ¥o9v

CVOEL ¥OOV
vl
0ll

d
_ ovU_ orlh

JYVHS
1V0EL ¥o9V

orl

| VSl | 1v00C 3AON

gol} d{41sSnio

A

|
1
!
_
I
_
I
|
}

29002 3JAON
29622 SasT
29521
WYY AN MS
b
4071
4
18900 JAON | 1852}
MS
19522
WYY AN
g3.s

IVGece
AVH AN

<o_ I ¥31SN10

L T T T ————

————— ——— — —— ———— — —— —— — — — —— — —— — —— —— —— — 2"

PCT/US2015/051179

WO 2016/048874

2/9

300N
d3INLYVd VH
WOYH4/0L
0G¢ 09¢
d01dvdy JOV4H3LNI
JOVHOLS VH

¢ Old

400N
d3INLdEVd dd
WOY4/01

0z
¥O0Ldvay
¥3LSNT0 W

SIN3ITO
NO¥H/0L

062 ore
JOVHOLS ¥3Ldvay
Y00 HHOMLIN

73
WY AN

00€

W31LSAS ONILVE3d0

dOVHO0LS

022 AHOWIN

[\
(S)40SS3004d

PCT/US2015/051179

WO 2016/048874

3/9

¢ Old

ZIe Zie
SS300Y SS300Y
o VIQ3an VREN
06¢ p— —
HIAINA MSIa @_m @_m
0¢ce
04 _ |
91€ Sle | 9le
dol dan | 4oL
— 8z¢ 9z¢
o sost| | | | m
— ee ¢ee | oz
GEe dliH | S410 | S4N 81¢
1394V1 I1SOS s4va
09¢
WILSAS 3714
9/ 1IWIT103rg0 2l 0./€
= HOLINOW ¥IAOHILIMS HOLYNIQH00D
LSO INSNISYNYIY AY3IA0DTY HILSYSIA | A¥IAODTY ¥ALSYSIA

WO 2016/048874 PCT/US2015/051179

4/9

INODE 402
POINTER |, . o | POINTER
405 405
/ : \
INDIRECT BLOCK INDIRECT BLOCK
LE\1/EL 404 404
BLOCKS | | | POINTER |, , .| POINTER POINTER |, o + | POINTER
405 405 405 405
LEVEL | | DATA DATA DATA DATA
0 BLOCK| eee |BLOCK| |BLOCK| e |BLOCK
BLOCKS | | 406 406 406 406
FIG. 4 FILE 400
INODE 502
PVBN/VVBN PVBN/VVBN
POINTER PAIR | * * ¢ | POINTER PAIR
208 208
/ : \
L]
EvEL ([INDRECTBLOCK 504 INDIRECT BLOCK 504
1 < ||PvBNAVVEN PVBN/VVBN|| |[PVBN/VVBN| [PVBN/VVBN
BLOCKS | || POINTER POINTER POINTER POINTER
PAR |...| PAR PAR |...| PAR
508 508 508 508
LEVEL || DATA DATA DATA DATA
0 BLOCK| ees |BLOCK| |BLOCK| eee |BLOCK
BLOCKS | | 506 506 506 506
FIG. 5 FILE 500

WO 2016/048874 PCT/US2015/051179

5/9

0.
=
O
oo
OB
o
<
P o
o (\
2|
L)
=
35
o)
= §8|
ol L b @
o m
| |5
ek
L - ©
- 3| :
<
© > Q
L i LL.
o Q.
o -
© &
< OI L
~— Ll
© a:gl
wl |5
=
)
eed
e x x|
L Do
d
m
<
H M
= N
L.
N =5 \!
o.
>
@)
xXo
o8
a

PCT/US2015/051179

6/9

WO 2016/048874

96/ 131V1S ANV ALILN3AI <«—H 06/ 3114 739v1 39VHOLS
b6/ ISNLVLS INITH40/ANITINO-
Yot 1 0¥ 34 W3LSASTTIA
[-
6. JAVYN INNTOA 3181X374 ERET .
08, 05 INNTOA 31dIXT 14 - 0el
AHOLO3MIa AHOLO3MIa
100Y 100¥
V1vQ v1vd
V13N e
NIAQIH | NIAQIH |« / Ol
0L, 0.
AHOLOFMIC AHOLOZMIa
100Y |« 100Y |-
99/ 91/
dvIN dVI —
0VdS |« ¥/ JOVdS |- 0.
— M007d — MO0
97 04NISH vz O4NISH
dvIN dVIN .
AYYINNINS : ASYINNS | :
797 4 09/ G/ 261 71) 1 907 ¥0Z 207
dviA 3714 MO0 0019 || JYIN —{ 34 %0074 %0014
JAILOY |« JAONI |« O4ANISH |« O4NITOA ALY T JAONI O4NISH |« O4NITOA
: 0bL X
e dviN | 00.
06/ INNTOA I19IX314 <] YINMO

WO 2016/048874

PCT/US2015/051179

719

800~
GLI

ADMINISTRATOR [g
870 WEB (GUI)

MANAGEMENT
FRAMEWORK ~ |o—sf Y300
810 830

FIG. 8

WO 2016/048874

8/9

(START }x905

A\

PCT/US2015/051179

900

ERROR OCCURS THAT CAUSES A SWITCHOVER -910

\

DETERMINE THAT A CANDIDATE NODE IS NOT 915
CAPABLE OF SWITCHOVER OPERATION

\

SWITCHOVER OPERATION

IDENTIFY ALTERNATE NODE CAPABLE OF I\gzo

925

CAPABLE
OF HANDLING
LOAD?

\

YES

A

RETURN ERROR 950 PERFORM SWITCHOVER
MESSAGE 930 OPERATION
\
9351 REPLY NVRAM I
A
BRING ONLINE THE
940-"| SWITCHED OVER OBJECTS

Y

(COMPLETE >-.g45

FIG. 9

WO 2016/048874

PCT/US2015/051179

9/9

1000

(START }—;1905

Y

ERROR OCCURS THAT CAUSES A SWITCHOVER

l“1010

\

SURVIVING NODES ASSUME OWNERSHIP OF
STORAGE DEVICES FROM FAILED NODES

10156

COPY NVRAM FROM ONE SURVIVING NODE TO
OTHER SURVIVING NODE

1020

\

EACH SURVIVING NODE REPLAYS APPROPRIATE
PORTIONS OF NVRAM

"~ 1025

\

BRING ONLINE THE SWITCHED OVER
OBJECTS

'\1030

\

(COMPLETE 1035

FIG. 10

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings

