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Beschreibung

ALLGEMEINER STAND DER TECHNIK

1. ERFINDUNGSGEBIET

[0001] Die Erfindung betrifft den Bereich der Com-
putersysteme und insbesondere Laufzeitumgebun-
gen virtueller Maschinen (siehe „Java Native Inter-
face Specification", 16. Mai 1997, Sun Microsystems, 
Inc., Mountain View, CA).

[0002] Solaris, Sun, Sun Microsystems, das 
Sun-Logo, Java und alle Markenzeichen und Logos 
auf der Basis von Java sind Markenzeichen oder ein-
getragene Markenzeichen von Sun Microsystems, 
Inc., in den Vereinigten Staaten und anderen Staa-
ten.

2. STAND DER TECHNIK

[0003] Die von Sun Microsystems® entwickelte Pro-
grammiersprache JavaTM weist den Vorzug gegenü-
ber anderen Programmiersprachen auf, dass sie ein 
„write once, run anywhere"TM-Sprache ist. Die Pro-
grammiersprache Java stellt einen weitgehend platt-
formunabhängigen Apparat für Anwendungen oder 
„Applets" bereit, die in der Form von Bytecode-Klas-
sendateien zu entwerfen, zu verteilen und auszufüh-
ren sind. Die Java-Virtuelle-Maschine führt die Auflö-
sung der Bytecodes in dem von der erforderlichen 
Plattform abhängigen Befehlssatz aus, so dass alle 
Computerplattformen, welche eine Java-Virtuel-
le-Maschine enthalten, in der Lage sind, dieselben 
Bytecode-Klassendateien auszuführen. Werden 
Funktionen benötigt, die nicht durch die Program-
miersprache Java unterstützt werden, dann kann 
eine Java-Anwendung, die in der virtuellen Maschine 
ausgeführt wird, native Codefunktionen aufrufen, die 
in angeschlossenen Bibliotheken implementiert sind. 
Ein nativer Code ist nicht Gegenstand der Java Pro-
grammierung und der Ausführungsbeschränkungen, 
so dass mehr an plattformspezifischer Programmier-
barkeit auf Kosten eines weniger gut kontrollierten 
Ausführungsverhaltens erreicht wird. Eine Verarbei-
tungsumgebung für Java-Anwendungen und Applets 
sowie die Verwendung von nativen Codes werden 
nachfolgend ausführlicher beschrieben.

Die Verarbeitungsumgebung

[0004] Die Programmiersprache Java ist eine objek-
torientierte Programmiersprache, bei der jedes Pro-
gramm eine oder mehrere Objektklassen und 
Schnittstellen umfasst. Anders als viele Program-
miersprachen, in denen ein Programm in einen ma-
schinenabhängigen, ausführbaren Programmcode 
kompiliert wird, werden die in der Programmierspra-
che Java geschriebenen Klassen in maschinenunab-
hängige Bytecode-Klassendateien kompiliert. Jede 

Klasse enthält Code und Daten in einem plattformun-
abhängigen Format, das als Klassendateiformat be-
zeichnet wird. Das Computersystem, welches als das 
Ausführungsmittel dient, enthält ein Programm, das 
als virtuelle Maschine bezeichnet wird, welche für 
das Ausführen des Codes in jeder Klasse verantwort-
lich ist.

[0005] Anwendungen können als autonome Ja-
va-Anwendungen oder als Java-„Applets" entworfen 
werden, die durch ein Applet-Tag in einem HTML-(hy-
pertext markup language)-Dokument identifiziert und 
durch eine Browser-Anwendung geladen werden. 
Die mit einer Anwendung oder einem Applet ver-
knüpften Klassendateien können auf dem lokalen 
Computersystem oder auf einem Server, auf den 
über ein Netz zugegriffen werden kann, gespeichert 
werden. Jede Klasse wird durch den „Klassen-Loa-
der" nach Bedarf in die Java-Virtuelle-Maschine gela-
den.

[0006] Um einem Client den Zugriff auf Klassenda-
teien von einem Server auf einem Netz zu gewähren, 
wird eine Webserver-Anwendung auf dem Server 
ausgeführt, um auf HTTP-(hypertext transport proto-
col)-Anforderungen anzusprechen, die URLs (univer-
sal resource locators) zu den HTML-Dokumenten 
enthalten, die auch als „Webseiten" bezeichnet wer-
den. Wenn eine Browser-Anwendung, die auf einer 
Client-Plattform ausgeführt wird, ein HTML-Doku-
ment empfängt (z.B. als ein Ergebnis einer Anforde-
rung eines HTML-Dokuments durch Absenden eines 
URL an den Webserver), dann parst die Browser-An-
wendung die HTML und initiiert automatisch das He-
runterladen der spezifizierten Bytecode-Klassenda-
teien, wenn er in dem HTML-Dokument auf ein App-
let-Tag trifft.

[0007] Die Klassen eines Java-Applet werden auf 
Anforderung aus dem Netz (auf einem Server gespei-
chert) oder aus einem lokalen Dateisystem geladen, 
wenn während des Ausführens der Java-Applets 
zum ersten Mal Bezug darauf genommen wird. Die 
virtuelle Maschine lokalisiert und lädt jede Klassen-
datei, parst das Klassendateiformat, teilt Speicher für 
die verschiedenen Komponenten der Klasse zu und 
verbindet die Klasse mit anderen bereits geladenen 
Klassen. Dieser Prozess macht den Code in der 
Klasse durch die virtuelle Maschine leicht ausführbar.

[0008] Java-Anwendungen und Applets machen oft 
Gebrauch von Klassenbibliotheken. Klassen in den 
Klassenbibliotheken können das enthalten, was als 
„native Methoden" bezeichnet wird. Anwendungen 
und Applets können zuweilen auch Klassen enthal-
ten, die native Methoden aufweisen. Eine native Me-
thode spezifiziert das Schlüsselwort „nativ", den Na-
men der Methode, den Rückgabetyp der Methode 
und beliebige Parameter, die der Methode angepasst 
sind. Im Gegensatz zu einer „Standardmethode" (d.h. 
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einer nicht nativen Methode), die in der Programmier-
sprache Java geschrieben ist, gibt es keinen Rumpf 
zu einer nativen Methode in der jeweiligen Klasse. 
Die Programme einer nativen Methode werden viel-
mehr durch einen kompilierten nativen Code (d.h. 
den Code, der in der Programmiersprache C oder 
C++ geschrieben und in die Binärform kompiliert ist) 
durchgeführt, der in der Laufzeit dynamisch mit einer 
gegebenen Klasse in der virtuellen Maschine verbun-
den ist, wobei eine für die gegebene Plattform spezi-
fische Verbindungseinrichtung verwendet wird, wel-
che die verbundenen Bibliotheken unterstützt.

[0009] In der SolarisTM- oder UNIX-Umgebung kann 
zum Beispiel die verbundene Bibliothek, welche die 
Binärform des nativen Codes enthält, als 
„Shared-Objekt"-Bibliothek implementiert werden, 
die als eine „.so"-Datei geschrieben ist. In einer Win-
dows-Umgebung kann die verbundene Bibliothek die 
Form einer dynamisch verbundenen (oder dyna-
misch ladefähigen) Bibliothek annehmen, die als eine 
„.dll"-Datei geschrieben wird. Der native Code kann 
verwendet werden, um Funktionen auszuführen, die 
ansonsten durch die Programmiersprache Java nicht 
unterstützt würden, wie z.B. das Ankoppeln an eine 
spezialisierte Hardware (z.B. Display-Hardware) 
oder Software (z.B. Datenbanktreiber) einer gegebe-
nen Plattform. Der native Code kann auch zum Be-
schleunigen von rechenaufwändigen Funktionen, wie 
z.B. des Rendering, verwendet werden.

[0010] Eine Klasse, die eine native Methode enthält, 
enthält auch einen Aufruf, die jeweilige verbundene 
Bibliothek zu laden:  
System.loadLibrary(„Sample");  
wobei „Sample" der Name der verbundenen Biblio-
thek ist, die gewöhnlich in einer Datei gespeichert ist, 
die in Abhängigkeit vom Host-Betriebssystem (z.B. 
UNIX, Windows usw.) als „libSample.so" oder 
„Sample.dll" bezeichnet wird. Die verbundene Biblio-
thek wird gewöhnlich zu dem Zeitpunkt geladen, zu 
dem die zugehörige Klasse in der virtuellen Maschine 
instantiiert wird.

[0011] Die verbundene Bibliothek des nativen Co-
des wird mit Stub- und Header-Informationen der zu-
gehörigen Klasse kompiliert, um die verbundene Bi-
bliothek zu befähigen, die Methodensignatur der na-
tiven Methode in der Klasse zu erkennen. Die Imple-
mentierung der nativen Methode wird dann als eine 
native Codefunktion (wie z.B. eine C-Funktion) in der 
verbundenen Bibliothek bereitgestellt. In der Laufzeit, 
wenn die native Methode aufgerufen wird, wird die 
Steuerung auf die Funktion in der verbundenen Bibli-
othek übertragen, die der aufgerufenen Methode ent-
spricht (z.B. durch Hinzufügen eines Nativmetho-
den-Rahmens auf den Nativmethoden-Stapel). Der 
native Code in der verbundenen Bibliothek führt die 
Funktion aus und gibt die Steuerung der Java-An-
wendung oder dem Applet zurück.

[0012] Fig. 1 veranschaulicht die Kompilierungs- 
und Laufzeitumgebungen für ein Verarbeitungssys-
tem. In der Kompilierungsumgebung erzeugt ein 
Software-Entwickler Quelldateien 100 (z.B. in der 
Programmiersprache Java), welche die Programmie-
rer-lesbaren Klassendefinitionen einschließlich der 
Datenstrukturen, Methodenimplementierungen und 
Bezugnahmen auf andere Klassen enthalten. Die 
Quelldateien 100 werden einem Java-Compiler 101
bereitgestellt, der die Quelldateien 100 in kompilierte 
„.class"-Dateien 102 kompiliert, welche Bytecodes 
enthalten, die durch eine Java-Virtuelle-Maschine 
ausführbar sind. Die Bytecode-Klassendateien 102
werden auf einem Server gespeichert (z.B. in einem 
temporären oder permanenten Speicher) und sind für 
das Herunterladen über ein Netz verfügbar. Alternativ 
können die Bytecode-Klassendateien 102 in einem 
Verzeichnis auf der Client-Plattform lokal gespeichert 
werden.

[0013] Die Java-Laufzeitumgebung enthält eine Ja-
va-Virtuelle-Maschine (JVM) 105, die in der Lage ist, 
die Bytecode-Klassendateien auszuführen und nati-
ve Betriebssystem(„O/S")-Aufrufe zum Betriebssys-
tem 109 auszuführen, wenn das bei der Ausführung 
notwendig ist. Die Java-Virtuelle-Maschine 105 stellt 
sowohl eine Abstraktionsebene zwischen der Ma-
schinenunabhängigkeit der Bytecode-Klassen und 
dem maschinenabhängigen Befehlssatz der zugrun-
deliegenden Computer-Hardware 110 als auch die 
plattformabhängigen Aufrufe des Betriebssystems 
109 bereit.

[0014] Der Klassen-Loader und Bytecode-Prüfer 
(„Klassen-Loader") 103 ist verantwortlich für das La-
den der Bytecode-Klassendateien 102 und erforderli-
chenfalls für das Unterstützen von Klassenbibliothe-
ken 104 in die Java-Virtuelle-Maschine 105. Der 
Klassen-Loader 103 überprüft auch die Bytecodes ei-
ner jeden Klassendatei, um für das richtige Ausfüh-
ren und das Durchsetzen von Sicherheitsregeln zu 
sorgen. Im Kontext des Laufzeitsystems 108 führt 
entweder ein Interpreter 106 die Bytecodes direkt aus 
oder ein „Just-in-time"- (JIT)-Compiler 107 übersetzt 
die Bytecodes in den Maschinencode, so dass sie 
durch den Prozessor (oder Prozessoren) in der Hard-
ware 110 ausgeführt werden können. Der native Co-
de, z.B. in der Form einer verbundenen Bibliothek 
111, wird geladen, wenn eine Klasse (z.B. aus den 
Klassenbibliotheken 104), welche die zugehörige na-
tive Methode enthält, in der virtuellen Maschine in-
stantiiert ist.

[0015] Das Laufzeitsystem 108 der virtuellen Ma-
schine 105 unterstützt eine generelle Stapelarchitek-
tur. Die Art und Weise, wie diese generelle Stapelar-
chitektur durch die zugrundeliegende Hardware 110
unterstützt wird, wird durch die spezifische Imple-
mentierung der virtuellen Maschine bestimmt und 
spiegelt den Weg wider, auf dem die Bytecodes inter-
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pretiert oder JIT-kompiliert werden. Andere Elemente 
des Laufzeitsystems schließen das Thread-Manage-
ment (d.h. das Scheduling) und die Datenmüllsam-
melverfahren ein.

[0016] Fig. 2 veranschaulicht die Laufzeitdatenbe-
reiche, welche die Stapelarchitektur im Laufzeitsys-
tem 108 unterstützen. In Fig. 2 umfassen die Lauf-
zeit-Datenbereiche 200 einen oder mehrere Thread-
bezogene Datenbereiche 207. Jeder Thread-bezo-
gene Datenbereich 207 umfasst ein Programmzäh-
lerregister (PC REG) 208, ein Zeigerregister lokaler 
Variablen (VARS REG) 209, ein Rahmen-Register 
(FRAME REG) 210, ein Operandenstapel-Zeigerre-
gister (OPTOP REG) 211, einen Stapel 212 (z.B. für 
Standardmethoden) und optional einen Nativmetho-
denstapel 216. Der Stapel 212 umfasst einen oder 
mehrere Rahmen 213, die einen Operandenstapel 
214 und lokale Variablen 215 enthalten. Der Nativme-
thoden-Stapel 216 umfasst einen oder mehrere Na-
tivmethoden-Rahmen 217.

[0017] Die Laufzeit-Datenbereiche 200 weisen au-
ßerdem einen gemeinsam genutzten Heap 201 auf. 
Der Heap 201 ist der Laufzeitdatenbereich, aus dem 
für alle Instanzen und Arrays Speicher zugewiesen 
wird. Der gemeinsam genutzte Heap 201 umfasst ei-
nen Methodenbereich, der von allen Threads ge-
meinsam genutzt wird. Der Methodenbereich 202
umfasst einen oder mehrere klassenbezogene Da-
tenbereiche 203 zum Speichern von Informationen, 
die aus jeder geladenen Klassendatei extrahiert wer-
den. Zum Beispiel können die klassenbezogenen 
Datenbereiche 203 Klassenstrukturen, wie z.B. einen 
Konstantenpool 204, Feld- und Methodendaten 205
und einen Code für Methoden sowie Konstruktoren 
206 umfassen.

[0018] Eine virtuelle Maschine kann viele Threads 
zur gleichzeitigen Ausführung unterstützen. Jeder 
Thread hat seinen eigenen Thread-bezogenen Da-
tenbereich 207. An einem beliebigen Punkt führt je-
der Thread den Code einer einzelnen Methode, der 
„aktuellen Methode" für diesen Thread, aus. Ist die 
„aktuelle Methode" keine native Methode, dann ent-
hält das Programmzählregister 208 die Adresse des 
Befehls der virtuellen Maschine, der aktuell ausge-
führt wird. Ist die „aktuelle Methode" eine native Me-
thode, dann ist der Wert des Programmzählregisters 
208 unbestimmt. Das Rahmen-Register 210 zeigt auf 
die Lage der aktuellen Methode im Methodenbereich 
202.

[0019] Jeder Thread weist einen eigenen Stapel 
212 auf, der zur gleichen Zeit wie der Thread erzeugt 
wird. Der Stapel 212 speichert einen oder mehrere 
Rahmen 213, die mit den Standardmethoden ver-
knüpft sind, welche durch den Thread aufgerufen 
werden. Die Rahmen 213 werden sowohl für das 
Speichern von Daten und Teilergebnissen verwendet 

als auch für das Ausführen des dynamischen Verbin-
dens, die Rückgabe von Werten für Methoden und 
das Abfertigen von Ausnahmen. Jedes Mal, wenn 
eine Standardmethode aufgerufen wird, wird ein neu-
er Rahmen erzeugt und auf den Stapel geschoben, 
und ein existierender Rahmen wird vom Stapel ent-
nommen und zerstört, wenn seine Methode abge-
schlossen ist. Ein Rahmen, der durch einen Thread 
erzeugt wird, ist für diesen Thread lokal und im Nor-
malfall kann auf ihn direkt kein Bezug durch irgendei-
nen anderen Thread genommen werden.

[0020] Nur ein Rahmen, nämlich der Rahmen für die 
Methode, die aktuell ausgeführt wird, ist an einem be-
liebigen Punkt in einem gegebenen Steuerungs-
thread aktiv. Dieser Rahmen wird als der „aktuelle 
Rahmen" bezeichnet, und seine Methode ist als „ak-
tuelle Methode" bekannt. Ein Rahmen hört auf, aktu-
ell zu sein, wenn seine Methode eine andere Metho-
de aufruft oder wenn seine Methode abgeschlossen 
wird. Wird eine Methode aufgerufen, dann wird ein 
neuer Rahmen erzeugt, und er wird aktuell, wenn die 
Steuerung auf die neue Methode übergeht. Beim Me-
thodenrücksprung gibt der aktuelle Rahmen die Er-
gebnisse seines Methodenaufrufs – sofern vorhan-
den – an den vorhergehenden Rahmen zurück. Der 
aktuelle Rahmen wird dann abgelegt, während der 
vorhergehende Rahmen zum aktuellen wird.

[0021] Jeder Rahmen 213 weist seinen eigenen 
Satz lokaler Variablen 215 und seinen eigenen Ope-
randenstapel 214 auf. Das Zeigenegister der lokalen 
Variablen 209 enthält einen Zeiger auf die Basis ei-
nes Arrays von Wörtern, welche die lokalen Variablen 
215 des aktuellen Rahmens enthalten. Das Operan-
denstapel-Zeigerregister 211 zeigt auf den Kopf des 
Operandenstapels 214 des aktuellen Rahmens. Die 
meisten virtuellen Maschinenbefehle entnehmen aus 
dem Operandenstapel des aktuellen 'Rahmens Wer-
te, wirken auf sie ein und geben die Ergebnisse dem-
selben Operandenstapel zurück. Der Operandensta-
pel 214 wird auch verwendet, um Argumente auf Me-
thoden zu übertragen und Methodenergebnisse zu 
empfangen.

[0022] Der native Methodenstapel 216 speichert 
Nativmethoden-Rahmen 217 zur Unterstützung nati-
ver Methoden. Jeder Nativmethoden-Rahmen stellt 
einen Mechanismus für die Thread-Ausführungs-
steuerung, Methodenargumente und Methodener-
gebnisse bereit, die zwischen den Standardmetho-
den und nativen Methoden zu übergeben sind, wel-
che als native Codefunktionen in einer verbundenen 
Bibliothek implementiert sind.

[0023] Da die nativen Methoden durch den nativen 
Code eher in einer verbundenen Bibliothek und nicht 
wie eine Standardmethode in einer Klasse imple-
mentiert sind, sind die nativen Methoden nicht den 
Einschränkungen unterworfen, die durch die Pro-
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grammiersprache Java und den Bytecode-Prüfer auf-
erlegt werden. Das bedeutet, dass der native Code in 
einer verbundenen Bibliothek, anders als Bytecodes 
für kompilierte Java-Anwendungen und Applets, an-
fällig gegenüber einem unerwünschten und nicht zu-
lässigen Verhalten sein kann, das sich über die Lauf-
zeit hinweg ungeprüft fortsetzt. Zum Beispiel können 
im nativen Code wegen des Auftretens von „wilden"
Zeigern (d.h. ein Zeiger, dessen Wert einen vorge-
schriebenen Bereich überschreitet, wie z.B. ein Zei-
ger auf das neunte Element eines Achtelement-Ar-
rays) und durch das Verwenden von Speicherzu-
griffsmechanismen, die ungeeignete (d.h. einge-
schränkte oder bereichsüberschreitende) Speicher-
plätze adressieren können, Speicherzugriffsfehler 
vorkommen.

[0024] Das Verwenden nativer Methoden macht 
deshalb einen Bereich von Programmierfehlern mög-
lich, die hauptsächlich auf dem Einsatz von Zeigern 
beruhen, welche das Debugging einer speziellen Vir-
tuell-Maschine-Implementierung schwieriger ma-
chen.

[0025] Außerdem kann der native Code Spensyste-
maufrufe (d.h. Aufrufe, die eine nicht spezifizierte 
Zeitdauer auf ein äußeres Ereignis, das stattfinden 
wird, warten können) enthalten. Wenn eine virtuelle 
Maschine ihr eigenes Thread-Management und 
Scheduling implementiert, dann kann ein Sperrsyste-
maufruf, der auftritt, wenn die Steuerung auf eine na-
tive Codefunktion in einer verbundenen Bibliothek 
übertragen wurde, die Ausführung der gesamten vir-
tuellen Maschine sperren.

[0026] Die meisten Virtuell-Maschine-Implementie-
rungen vermeiden die mit dem nativen Code ver-
knüpften Sperrprobleme durch Verwenden des „nati-
ven Threading". Das bedeutet, dass multiple Threads 
der virtuellen Maschine und das Programm oder die 
Programme (d.h. Anwendungen und/oder Applets), 
welche die Maschine ausführt, als Threads der zu-
grundeliegenden Plattform, z.B. als UNIX-Threads, 
implementiert werden. In diesem Schema können die 
Threads der virtuellen Maschine gleichzeitig ausge-
führt werden. Wenn jedoch das native Threading ver-
wendet wird, dann muss die virtuelle Maschine die 
Kontrolle über das Thread-Scheduling an das zu-
grundeliegende Betriebssystem abtreten. Das native 
Threading hat somit zur Folge, dass das Verhalten 
des Threads vom Betriebssystem und der Hardware 
abhängig wird. Ein effektives Debugging von Fehlern, 
die durch die Gleichzeitigkeit bedingt sind, wird in ei-
ner Virtuell-Maschine-Implementierung problema-
tisch, weil mit dem nativen Threading die relative 
Zeitsteuerung der Thread-Ausführung über die ver-
schiedenen Betriebssysteme und Hardware-Plattfor-
men hinweg variieren kann.

[0027] Die Fig. 3A und Fig. 3B sind Blockdiagram-

me, welche die Verwendung eines Thread in Lauf-
zeitumgebungen veranschaulichen. Fig. 3A enthält 
eine virtuelle Maschine, die kein natives Threading 
verwendet. Fig. 3B enthält eine virtuelle Maschine, 
die das native Threading verwendet.

[0028] In Fig. 3A läuft das Betriebssystem 109 auf 
der Hardware 110, und die virtuelle Maschine 105
läuft auf dem Betriebssystem 109. In der virtuellen 
Maschine 105 werden mehrere Anwendungen 
und/oder Applets, wie z.B. Applet1 (300) und Applet2 
(301), ausgeführt. Applet1 und Applet2 können für 
sich je eine oder mehrere Bytecode-Klassendateien 
umfassen. Mit Applet2 ist eine verbundene Bibliothek 
(LIB) verknüpft, um die nativen Methoden zu unter-
stützen. Die Bibliothek 302 wird zu der Zeit geladen 
und verbunden, in der die Klasse von Applet2, wel-
che die verknüpften nativen Methoden enthält, in der 
virtuellen Maschine 105 instantiiert wird. Der native 
Code der Bibliothek 302 läuft direkt auf dem Betriebs-
system 109, welches die Bibliothekverbindungsein-
richtung und die Hardware 110 unterstützt.

[0029] In der virtuellen Maschine 105 werden mul-
tiple Threads zur Ausführung abgearbeitet. Zum Bei-
spiel kann Applet1 zwei Threads, T1 und T2, aufwei-
sen, Applet2 kann zwei Threads, T5 und T6, aufwei-
sen und die virtuelle Maschine selbst kann zwei 
Threads, T3 und T4, aufweisen, welche Prozesse der 
virtuellen Maschine, wie z.B. das Sammeln von Da-
tenmüll, durchführen. Die Threads T1 – T6 werden 
durch den VM-Thread-Scheduler 303 in der virtuellen 
Maschine 105 verwaltet und terminiert. Der 
VM-Thread-Scheduler 303 wählt zum Beispiel auf 
Basis von Prioritäten und Zeitschlitzverfahren aus, 
welcher Thread aus der Gruppe T1 bis T6 der aktuell 
auszuführende Thread der virtuellen Maschine TVM 
auf der Ebene des Betriebssystems sein soll.

[0030] Die Java-Virtuelle-Maschine unterstützt das 
„kooperative Scheduling", wobei die Threads, die 
ausgeführt werden, anderen Threads Prozessones-
sourcen in bestimmten Intervallen oder dann überge-
ben, wenn eine mit der Ausführung des aktuellen 
Thread verknüpfte Verzögerung wahrscheinlich ist. 
Zum Beispiel kann ein Thread höherer Priorität eine 
Yield-Operation nutzen, um den aktuellen Thread zu 
verdrängen. Das Ausnutzen von Prozessonessour-
cen muss in den Standardmethoden nicht explizit 
programmiert werden. Die virtuelle Maschine kann 
Yields in den Übersetzungsprozess oder in den kom-
pilierten Code an geeigneten Punkten bei der Aus-
führung, so z.B. bei Methodenaufrufen und innerhalb 
von Schleifen (z.B. bei Rückverzweigungen), einset-
zen, um das kooperative Scheduling zu implementie-
ren.

[0031] Das Betriebssystem 109 kann zu jeder belie-
bigen Zeit viele Threads, einschließlich des ausge-
wählten Virtuell-Maschine-Threads TVM, bedienen. 
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Zum Beispiel kann das Betriebssystem 109 Threads 
TA – TZ enthalten, die andere Anwendungen oder 
andere Prozesse des Betriebssystems unterstützen. 
Der OS-Thread-Scheduler 304 bestimmt, welcher 
Thread aus der Gruppe TA – TZ und TVM durch die 
zugrundeliegende Hardware 110 zu irgendeinem 
Zeitpunkt auszuführen ist. Wenn die Hardware 110
multiple Prozessoren unterstützt, dann können durch 
den OS-Thread-Scheduler 304 multiple Threads ter-
miniert werden, um gleichzeitig auf verschiedenen 
Prozessoren ausgeführt zu werden.

[0032] In der Implementierung von Fig. 3A kann ein 
Virtuell-Maschine-Thread (z.B. T1 – T6) die Ausfüh-
rungssteuerung auf eine verbundene Bibliothek (z.B. 
LIB 302) übertragen, um eine Funktion für eine native 
Methode auszuführen, z.B. kann, wie in der Darstel-
lung gezeigt, der Thread T6 eine native Methode von 
Applet2 aufrufen, die durch den nativen Code in Bibli-
othek 302 unterstützt wird. Der Thread T6 ist in der 
Lage, die Steuerung der Bibliothek 302 zu überge-
ben, weil der Thread T6 als Virtuell-Maschine-Thread 
TVM aktuell auf das Betriebssystem 109 übertragen 
wurde. Andere Threads der virtuellen Maschine müs-
sen entsprechend dem kooperativen Scheduling auf 
den Thread T6 warten, um zugelassen zu werden.

[0033] Die Übergabe der Steuerung auf die Biblio-
thek 302 kann jedoch Ausführungsprobleme der vir-
tuellen Maschine verursachen. Klassen, die in der vir-
tuellen Maschine ausgeführt werden, rufen gewöhn-
lich nur Methoden von anderen Klassen auf und lö-
sen in der Regel keine Aufrufe direkt auf das System 
aus. Der native Code jedoch kann in Abhängigkeit 
von seiner Funktion häufig sperrende Systemaufrufe 
auslösen: Da der native Code unabhängig als ein 
kompilierter Code in einer verbundenen Bibliothek 
ausgeführt wird, werden Interpreter und Compiler 
umgangen und können kein kooperatives Scheduling 
erzwingen, bis die Steuerung einer Standardmetho-
de zurückgegeben wird. Die virtuelle Maschine muss 
sich deshalb auf den Programmierer des nativen Co-
des stützen, um explizite Yield()-Aufrufe im nativen 
Code bereitzustellen.

[0034] Löst der native Code der Bibliothek 302 ei-
nen Sperrsystemaufruf, wie z.B. einen I/O-Aufruf 
zum Herunterladen einer Datei, aus, dann sperrt der 
Thread T6 in der virtuellen Maschine und somit der 
Thread TVM auf der Betriebssystemebene so lange, 
bis der Systemaufruf abgeschlossen ist, d.h., bis das 
Herunterladen beendet ist. Die gesamte Ausführung 
der virtuellen Maschine ist für die Dauer des System-
aufrufs auch gesperrt, da die Ausführungssteuerung 
durch den nativen Code der Bibliothek 302 aufrecht-
erhalten wird. Da die Sperrsystemaufrufe bis zu ih-
rem Abschluss eine relativ lange Zeit benötigen kön-
nen, ist es unerwünscht, dass alle Threads der virtu-
ellen Maschine 109 gleichermaßen gesperrt sind. Die 
Leistungsfähigkeit von Applet1, Applet2 und der vir-

tuellen Maschine 105 kann durch Sperrsystemaufru-
fe der Bibliothek 302 verringert werden. Aus diesem 
Grund verwenden viele Virtuelle-Maschine-Imple-
mentierungen das native Threading wie in Fig. 3B
dargestellt.

[0035] In Fig. 3B implementiert der 
VM-Thread-Scheduler 303 multiple Threads der vir-
tuellen Maschine als Threads auf der Betriebssys-
temebene. Diese Threads werden als Threads TVM1 
–TVMn gekennzeichnet. Der VM-Thread-Scheduler 
303 bestimmt, welche Virtuell-Maschine-Threads (T1 
– T6) dem Betriebssystem 109 zu einem gegebenen 
Zeitpunkt als OS-Threads TVM1 – TVMn übergeben 
werden. In dem extremen Fall, in dem jeder Thread 
der virtuellen Maschine 105 als ein individueller 
Thread des zugrundeliegenden Betriebssystems 109
implementiert wird, kann die virtuelle Maschine 105
auf ein Implementieren des VM-Thread-Schedulers 
303 verzichten und kann sich vollständig auf den 
OS-Thread-Scheduler 304 für das Thread-Schedu-
ling verlassen.

[0036] Die Implementierung von Fig. 3B erlaubt es, 
dass multiple Threads gleichzeitig in der virtuellen 
Maschine 105 aktiv sind. Das bedeutet, dass ein 
Sperrsystemaufruf durch den nativen Code der Bibli-
othek 302 nicht ein vollständiges Sperren der virtuel-
len Maschine 105 zur Folge hat. Vielmehr wird ein 
Thread aus der Gruppe TVM1 – TVMn, nämlich der 
Thread, welcher die Steuerung der Bibliothek 302
übergeben hat (d.h. der Betriebssystem-Thread, wel-
cher dem Virtuell-Maschine-Thread T6 entspricht), 
gesperrt, aber der Rest der Threads TVM1 – TVMn 
ist zur Ausführung frei.

[0037] Durch das Implementieren multipler Threads 
der virtuellen Maschine als OS- oder native Threads 
überträgt die virtuelle Maschine 105 jedoch die Steu-
erung über das Scheduling der Threads in der virtu-
ellen Maschine vom VM-Thread-Scheduler 303 ge-
wissermaßen auf den OS-Thread-Scheduler 304. 
Zwischen den Threads der virtuellen Maschine kön-
nen wegen des relativen Mangels an Steuerung, die 
durch den VM-Thread-Scheduler 303 ausgeübt wird, 
Synchronisationsfehler auftreten. Die Angelegenheit 
wird dadurch erschwert, dass dann, wenn die virtuel-
le Maschine 105 und Applet1 und Applet2 auf einem 
unterschiedlichen Betriebssystem 109 und/oder ei-
ner unterschiedlichen Hardware 110 mit unterschied-
lichen Zeitsteuerungsparametern und Scheduling-
prozessen ausgeführt werden, Synchronisationsfeh-
ler wegen des Zugreifens des nativen Threadings auf 
den OS-Thrad-Scheduler 304 nicht auftreten werden 
oder auf eine unterschiedliche Weise auftreten kön-
nen. Somit lassen sich Fehler nicht einfach wiederho-
len, und das Debugging des Systems wird schwieri-
ger.
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Objektorientiertes Programmieren

[0038] Im Folgenden wird zu Zwecken der Bezug-
nahme eine allgemeine Beschreibung der Prinzipien 
des objektorientierten Programmierens gegeben. 
Das objektorientierte Programmieren ist ein Verfah-
ren zum Erzeugen von Computerprogrammen durch 
Zusammenfassen bestimmter fundamentaler Bau-
blöcke und durch Erzeugen von Beziehungen unter 
und zwischen den Baublöcken. Die Baublöcke in ob-
jektorientierten Programmsystemen werden als „Ob-
jekte" bezeichnet. Ein Objekt ist eine Programmein-
heit, die eine Datenstruktur (eine oder mehrere In-
stanzvariable) und die Operationen (Methoden), wel-
che die Daten nutzen oder beeinflussen können, zu-
sammenfasst. Somit besteht ein Objekt aus Daten 
und einer oder mehreren Operationen oder Prozedu-
ren, die an diesen Daten ausgeführt werden können. 
Das Zusammenfügen von Daten und Operationen in 
einen einheitlichen Block wird als „Kapselung" be-
zeichnet.

[0039] Ein Objekt kann angewiesen werden, eine 
seiner Methoden auszuführen, wenn es eine „Nach-
richt" empfängt. Eine Nachricht ist ein Befehl oder 
eine Anweisung, die an das Objekt gesendet wurde, 
eine bestimmte Methode auszuführen. Eine Nach-
richt besteht aus einer Methodenauswahl (z.B. Me-
thodenname) und null oder mehreren Argumenten. 
Eine Nachricht teilt dem empfangenden Objekt mit, 
welche Operationen auszuführen sind.

[0040] Ein Vorteil des objektorientierten Program-
mierens ist die Art und Weise, in der die Methoden 
aufgerufen werden. Wird eine Nachricht an ein Ob-
jekt gesendet, dann ist es nicht nötig, dass die Nach-
richt dem Objekt vorschreibt, wie ein bestimmtes Ver-
fahren auszuführen ist. Es ist lediglich nötig zu for-
dern, dass das Objekt die Methode ausführt. Das ver-
einfacht die Programmentwicklung beträchtlich.

[0041] Die objektorientierten Programmiersprachen 
beruhen vorwiegend auf einem „Klassen"-Schema. 
Ein Beispiel für ein auf Klassen beruhendes objekto-
rientiertes Programmierschema wird allgemein be-
schrieben in „Smalltalk-80: The Language" von Adele 
Goldberg und David Robson, 1989 veröffentlicht von 
Addison-Wesley Publishing Company.

[0042] Eine Klasse legt einen Typ eines Objekts 
fest, das üblicherweise sowohl Felder (d.h. Variable) 
als auch Methoden für die Klasse enthält. Eine Ob-
jektklasse wird verwendet, um eine bestimmte In-
stanz eines Objekts zu erzeugen. Eine Instanz eines 
Objekts enthält die für die Klasse festgelegten Vari-
ablen und Methoden. Aus einer Objektklasse können 
multiple Instanzen derselben Klasse erzeugt werden. 
Jede Instanz, die aus der Objektklasse erzeugt wird, 
gilt als Instanz desselben Typs oder derselben Klas-
se.

[0043] Zur Veranschaulichung kann eine Objekt-
klasse die Instanzvariablen „Name" und „Gehalt" und 
eine Methode „Gehalt bestimmen" einschließen. Für 
jeden Angestellten in einer Organisation können In-
stanzen der Angestellten-Objektklasse erzeugt oder 
instantiiert werden. Jede Objektinstanz gilt als eine 
vom Typ „Angestellter". Jede Angestellten-Objektins-
tanz enthält die Instanzvariablen „Name" und „Ge-
halt" sowie die Methode „Gehalt bestimmen". Die mit 
den Variablen „Name" und „Gehalt" verknüpften Wer-
te in jeder Angestellten-Objektinstanz enthalten den 
Namen und das Gehalt eines Angestellten in der Or-
ganisation. An die Angestellten-Objektinstanz des 
Angestellten kann eine Nachricht gesendet werden, 
um die Methode „Gehalt bestimmen" aufzurufen, um 
das Gehalt des Angestellten (d.h. den Wert, der mit 
der Variablen „Gehalt" im Angestellten-Objekt des 
Angestellten verknüpft ist) zu verändern.

[0044] Es kann eine Hierarchie von Klassen derart 
definiert werden, dass eine Objektklassen-Definition 
eine oder mehrere Unterklassen aufweist. Eine Un-
terklasse erbt die Definition ihrer Eltern (und Großel-
tern usw.). Jede Unterklasse in der Hierarchie kann 
zum Verhalten, das durch ihre Elternklasse bestimmt 
ist, beitragen oder es verändern. Einige objektorien-
tierte Programmiersprachen unterstützen die multiple 
Vererbung, wo eine Unterklasse eine Klassendefiniti-
on von mehr als einer Elternklasse erben kann. An-
dere Programmiersprachen, wie z.B. die Program-
miersprache Java, unterstützen nur eine einfache 
Vererbung; in der eine Unterklasse darauf beschränkt 
ist, die Klassendefinition von nur einer Elternklasse 
zu erben. Die Programmiersprache Java stellt auch 
einen Mechanismus bereit, der als ein „Interface" be-
kannt ist, welcher einen Satz von Konstanten und ab-
strakten Methodenvereinbarungen umfasst. Eine Ob-
jektklasse kann die in einem Interface definierten ab-
strakten Methoden implementieren. Sowohl einfache 
als auch mehrfache Vererbung sind für ein Interface 
verfügbar. Das heißt, ein Interface kann eine Inter-
face-Definition von mehr als einem Eltern-Interface 
erben.

[0045] Ein Objekt ist ein generischer Begriff, der in 
der objektorientierten Programmierumgebung ver-
wendet wird, um auf einen Modul zu verweisen, der 
einen verwandten Code und verwandte Variablen 
enthält. Eine Softwareanwendung kann unter Ver-
wendung einer objektorientierten Programmierspra-
che geschrieben werden, wobei die Funktionalität 
des Programms unter Verwendung von Objekten im-
plementiert wird.

KURZDARSTELLUNG DER ERFINDUNG

[0046] Es ist eine Aufgabe der vorliegenden Erfin-
dung, ein verbessertes Verfahren und eine verbes-
serte Vorrichtung für das Übersetzen und Ausführen 
eines nativen Codes in einem Computersystem be-
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reitzustellen, welche Synchronisationsfehler zwi-
schen multiplen Threads der virtuellen Maschine ver-
meiden.

[0047] Diese Aufgabe wird gemäß den unabhängi-
gen Ansprüche 1, 11 und 19 gelöst.

[0048] Es werden ein Verfahren und eine Vorrich-
tung zum Übersetzen und Ausführen eines nativen 
Codes in einer Virtuell-Maschine-Umgebung bereit-
gestellt, um Zeigerüberprüfung, Thread-Steuerung 
und andere vorteilhafte Fähigkeiten zuzulassen. Das 
Debugging einer Virtuell-Maschine-Umgebung wird 
durch die Binärübersetzung des nativen Codes er-
leichtert, welcher eine größere Plattformunabhängig-
keit und eine größere Kontrolle über das Thread-Ma-
nagement und -Scheduling ermöglicht sowie ein 
Identifizieren von Speicherzugriffsfehlern im nativen 
Code erlaubt. Wenn der native Code in einer Virtu-
ell-Maschine-Umgebung auszuführen ist, dann wird 
der native Code in eine Zwischenform übersetzt. Die-
se Zwischenform wird bearbeitet, um zu bestimmen, 
wo Speicherzugriffs- und Sperrsystemaufrufe auftre-
ten. Zulässigkeitsprüfungen werden in die Speicher-
zugriffsaufrufe eingefügt, um festzustellen, ob der 
Speicheranteil, auf den durch jeden Aufruf zugegrif-
fen werden soll, im erlaubten Bereich liegt. Wilde Zei-
ger und andere Quellen von Speicherzugriffsfehlern, 
die mit dem nativen Code verknüpft sind, können so 
identifiziert werden. Sperrsystemaufrufe werden 
durch nichtsperrende Varianten ersetzt und 
„Yield"-Operationen können in die Systemaufrufe 
und Schleifen eingesetzt werden.

[0049] Der korrigierte native Code, der Speicherzu-
griffs-Zulässigkeitsprüfungen und nichtsperrende 
Systemaufrufe einschließt, wird durch die virtuelle 
Maschine kompiliert oder interpretiert, um die durch 
den nativen Code bestimmten Routinen auszufüh-
ren. Da der überarbeitete native Code andere 
Threads nicht sperrt, kann das Thread-Scheduling 
durch die virtuelle Maschine statt durch das zugrun-
deliegende Betriebssystem verwaltet werden, und 
ein kooperatives Scheduling kann ausgeführt wer-
den.

KURZBESCHREIBUNG DER ZEICHNUNGEN

[0050] Fig. 1 ist ein Blockdiagramm von Kompilie-
rungs- und Laufzeitumgebungen.

[0051] Fig. 2 ist ein Blockdiagramm der Lauf-
zeit-Datenbereiche einer Ausführungsform einer vir-
tuellen Maschine.

[0052] Fig. 3A ist ein Blockdiagramm einer Lauf-
zeitumgebung, die eine virtuelle Maschine aufweist, 
welche multiple Applets und einen nativen Code un-
terstützt, die über eine verbundene Bibliothek imple-
mentiert sind.

[0053] Fig. 3B ist ein Blockdiagramm einer Lauf-
zeitumgebung, die eine virtuelle Maschine aufweist, 
welche native Thread-Operationen verwendet.

[0054] Fig. 4 ist ein Blockdiagramm einer Ausfüh-
rungsform eines Computersystems, das in der Lage 
ist, eine geeignete Ausführungsumgebung für eine 
Ausführungsform der Erfindung bereitzustellen.

[0055] Fig. 5 ist ein Flussdiagramm eines Binärü-
bersetzungsprozesses entsprechend einer Ausfüh-
rungsform der Erfindung.

[0056] Fig. 6A ist ein verallgemeinertes Flussdia-
gramm eines beispielhaften Ausführungsblocks, der 
den Binärübersetzungsprozess eines Blocks eines 
nativen Codes in eine Zwischenform entsprechend 
einer Ausführungsform der Erfindung veranschau-
licht.

[0057] Fig. 6B veranschaulicht das verallgemeiner-
te Steuerungs-Flussdiagramm von Fig. 6A mit Modi-
fikationen, die entsprechend einer Ausführungsform 
der Erfindung ausgeführt sind.

[0058] Fig. 7 ist ein Blockdiagramm eines Compu-
tersystems, das eine virtuelle Maschine aufweist, die 
eine Binärübersetzung des nativen Codes entspre-
chend einer Ausführungsform der Erfindung verwirk-
licht.

AUSFÜHRLICHE BESCHREIBUNG DER ERFIN-
DUNG

[0059] Die Erfindung ist ein Verfahren und eine Vor-
richtung zum Übersetzen und Ausführen eines nati-
ven Codes in einer Virtuell-Maschine-Umgebung. In 
der folgenden Beschreibung werden zahlreiche spe-
zifische Details dargelegt, um eine gründlichere Be-
schreibung der Ausführungsformen der Erfindung zu 
erreichen. Es ist jedoch für einen Fachmann offen-
sichtlich, dass die Erfindung ohne diese spezifischen 
Details betrieben werden kann. In anderen Fällen 
wurden gut bekannte Merkmale nicht ausführlich be-
schrieben, um die Erfindung nicht unkenntlich zu ma-
chen.

[0060] Obwohl die Erfindung hier mit Bezug auf die 
Programmiersprache Java und die Java-Virtuel-
le-Maschine diskutiert wird, kann die Erfindung in ei-
ner beliebigen Virtuell-Maschine-Umgebung, welche 
native Methoden oder Funktionen einschließt, imple-
mentiert werden.

Ausführungsform der Computer-Ausführungsumge-
bung (Hardware)

[0061] Eine Ausführungsform der Erfindung kann 
als Computer-Software in der Form eines computer-
lesbaren Codes auf einem Mehrzweck-Computer, 
8/22



DE 699 22 015 T2    2005.12.01
wie z.B. dem in Fig. 4 veranschaulichten Computer 
400, oder in der Form von Bytecode-Klassendateien 
implementiert werden, die in einer auf einem derarti-
gen Computer laufenden Java-Laufzeitumgebung 
ausführbar sind. Eine Tastatur 410 und eine Maus 
411 sind an einen bidirektionalen Systembus 418 ge-
koppelt. Die Tastatur und die Maus führen die Nut-
zer-Eingabewerte in das Computersystem ein und 
übermitteln diese Nutzer-Eingabewerte dem Prozes-
sor 413. Andere geeignete Eingabegeräte können 
zusätzlich zu oder anstatt der Maus 411 und der Tas-
tatur 410 verwendet werden. Die an den bidirektiona-
len Bus 418 gekoppelte I/O(Eingabe/Ausgabe)-Ein-
heit 419 verkörpert solche I/O-Elemente wie einen 
Drucker, A/V(AudioNideo)-I/O usw.

[0062] Der Computer 400 enthält neben Tastatur 
410, Maus 411 und Prozessor 413 einen Videospei-
cher 414, Hauptspeicher 415 und Massenspeicher 
412, die alle an den bidirektionalen Systembus 418
gekoppelt sind. Der Massenspeicher 412 kann so-
wohl feste als auch auswechselbare Medien, wie z.B. 
magnetische, optische oder magneto-optische Spei-
chersysteme, oder irgendeine andere verfügbare 
Massenspeichertechnologie enthalten. Der Bus 418
kann zum Beispiel Adressleitungen zum Adressieren 
des Videospeichers 414 oder des Massenspeichers 
415 enthalten. Der Systembus 418 enthält zum Bei-
spiel auch einen Datenbus zur Datenübertragung 
zwischen und unter den Komponenten, wie z.B. Pro-
zessor 413, Hauptspeicher 415, Videospeicher 414
und Massenspeicher 412. Alternativ können Multip-
lex-Daten/Adress-Leitungen anstelle der separaten 
Daten- und Adressleitungen verwendet werden.

[0063] In einer Ausführungsform der Erfindung ist 
der Prozessor 413 ein von Motorola produzierter Mi-
kroprozessor, wie z.B. der 680x0-Prozessor, oder ein 
von Intel produzierter Prozessor, wie z.B. der 80x86- 
oder Pentium-Prozessor, oder ein SPARC-Mikropro-
zessor von Sun Microsystems, Inc. Es kann jedoch 
ein beliebiger anderer geeigneter Mikroprozessor 
oder Mikrorechner verwendet werden. Der Haupt-
speicher 415 enthält einen dynamischen Schreib-Le-
se-Speicher (DRAM). Der Video-Speicher 414 ist ein 
Video-Schreib-Lese-Speicher mit zwei Anschlüssen. 
Ein Anschluss des Video-Speichers 414 ist an den Vi-
deo-Verstärker 416 gekoppelt. Der Video-Verstärker 
416 wird als Treiber für den Kathodenstrahlröh-
ren(CRT)-Rastermonitor 417 verwendet. Der Vi-
deo-Verstärker 416 ist vom Stand der Technik her gut 
bekannt und kann durch jede geeignete Anlage reali-
siert werden. Diese Schaltung wandelt die im Video-
speicher 414 gespeicherten Pixeldaten in ein Raster-
signal um, das zur Verwendung durch den Monitor 
417 geeignet ist. Der Monitor 417 ist ein Monitortyp, 
der für die Wiedergabe grafischer Bilder geeignet ist. 
Alternativ könnte der Videospeicher als Treiber für ei-
nen Flachbildschirm oder eine Flüssigkristallanzeige 
(LCD) oder irgendein anderes geeignetes Datenwie-

dergabegerät verwendet werden.

[0064] Der Computer 400 kann auch eine an den 
Bus 418 gekoppelte Kommunikationsschnittstelle 
420 enthalten. Die Kommunikationsschnittstelle 420
stellt eine Zweiweg-Datenkommunikationskopplung 
über eine Netzverbindung 421 an ein lokales Netz 
422 bereit. Ist die Kommunikationsschnittstelle 420
zum Beispiel eine dienstintegrierende digitale 
Netz(ISDN)-Karte oder ein Modem, dann stellt die 
Kommunikationsschnittstelle 420 eine Datenkommu-
nikationsverbindung zum entsprechenden Telefonlei-
tungstyp bereit, welche einen Teil der Netzverbin-
dung 421 ausmacht. Ist die Kommunikationsschnitt-
stelle 420 eine Lokalnetz(LAN)-Karte, dann stellt die 
Kommunikationsschnittstelle 420 eine Datenkommu-
nikationsverbindung über die Netzverbindung 421 an 
ein kompatibles LAN bereit.

[0065] Die Kommunikationsschnittstelle 420 könnte 
auch ein Kabelmodem oder eine Funk-Schnittstelle 
sein. In einer solchen Ausführung sendet und emp-
fängt die Kommunikationsschnittstelle 420 elektri-
sche, elektromagnetische oder optische Signale, die 
digitale Datenströme mitführen, welche verschiedene 
Informationstypen verkörpern.

[0066] Die Netzverbindung 421 stellt eine Daten-
kommunikation durch ein oder mehrere Netze zu an-
deren Datengeräten bereit. Zum Beispiel kann die 
Netzverbindung 421 eine Verbindung durch das loka-
le Netz 422 zum lokalen Server-Computer 423 oder 
zu Dateneinrichtungen herstellen, die durch einen In-
ternet-Dienstanbieter (ISP) 424 betrieben werden. 
ISP 424 wiederum stellt Datenkommunikationsdiens-
te durch das weltweite Paketdatenkommunikations-
netz bereit, das jetzt gewöhnlich als „Internet" 425 be-
zeichnet wird. Lokales Netz 422 und Internet 425 nut-
zen beide elektrische, elektromagnetische oder opti-
sche Signale, welche digitale Datenströme tragen. 
Die Signale durch die verschiedenen Netze und die 
Signale auf der Netzverbindung 421 sowie durch die 
Kommunikationsschnittstelle 420, welche die digita-
len Daten vom und zum Computer 400 tragen, sind 
beispielhafte Formen von Trägerwellen, welche die 
Informationen transportieren.

[0067] Der Computer 400 kann durch das (die) 
Netz(e), die Netzverbindung 421 und die Kommuni-
kationsschnittstelle 420 Nachrichten senden und Da-
ten einschließlich des Programmcodes empfangen. 
In dem Beispiel Internet könnte ein entfernt liegender 
Server-Computer 426 einen angeforderten Code für 
ein Anwendungsprogramm über Internet 425, ISP 
424, lokales Netz 422 und Kommunikationsschnitt-
stelle 420 übertragen.

[0068] Der empfangene Code kann, sobald er emp-
fangen wurde, durch den Prozessor 413 ausgeführt 
und/oder im Massenspeicher 412 oder einem ande-
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ren Permanentspeicher zur späteren Ausführung ge-
speichert werden. Auf diese Weise kann der Compu-
ter 400 einen Anwendungscode in der Form einer 
Trägerwelle erhalten. Entsprechend einer Ausfüh-
rungsform der Erfindung enthalten solche herunter-
geladenen Anwendungen ein oder mehrere Elemen-
te einer Laufzeitumgebung, wie z.B. die virtuelle Ma-
schine, Klassen-Loader, Bytecode-Klassendateien, 
Klassenbibliotheken und die Vorrichtung zum Über-
setzen und Ausführen des hier beschriebenen nati-
ven Codes.

[0069] Der Anwendungscode kann durch irgendei-
ne Form eines Computerprogrammprodukts verkör-
pert werden. Ein Computerprogrammprodukt um-
fasst ein Medium, das eingerichtet ist, einen compu-
terlesbaren Code oder Daten zu speichern oder zu 
transportieren, oder in welches computerlesbarer 
Code oder Daten eingebettet sein können. Einige 
Beispiele für Computerprogrammprodukten sind 
CD-ROM-Platten, ROM-Karten, Disketten, Magnet-
bänder, Computer-Festplattenlaufwerke, Server in ei-
nem Netz und Trägerwellen.

[0070] Die oben beschriebenen Computersysteme 
dienen nur als Beispiel. Eine Ausführungsform der 
Erfindung kann in irgendeinem Typ von Computer-
system oder Programmier- oder Verarbeitungsumge-
bung implementiert werden, wobei die eingebetteten 
Geräte (z.B. Web-Telefone usw.) und „Dünn"-Cli-
ent-Verarbeitungsumgebungen (z.B. Netzcomputer 
(NC) usw.), die eine virtuelle Maschine unterstützen, 
eingeschlossen sind.

Binärübersetzung des nativen Codes

[0071] Wie zuvor beschrieben wurde, können die in 
einer virtuellen Maschine ausgeführten Klassen nati-
ve Methoden enthalten, welche durch native Code-
funktionen in einer verbundenen Bibliothek imple-
mentiert werden. Entsprechend einer Ausführungs-
form der Erfindung wird der native Code der verbun-
denen Bibliothek durch Komponenten der virtuellen 
Maschine verarbeitet und ausgeführt, um ein koope-
ratives Scheduling zu erlauben und Debugging-Fä-
higkeiten bereitzustellen, die gegenüber den Ausfüh-
rungsprozessen nativer Methoden vom Stand der 
Technik erweitert sind. Die Verarbeitung des nativen 
Codes schließt als ein Teil eines Binärübersetzungs-
prozesses das Einfügen von Überprüfungen von 
Speicherzugriffsfehlern, die z.B. durch „wilde" Zeiger 
erzeugt sein könnten, und das Ersetzen von Sperr-
systemaufrufen durch nicht-sperrende Varianten ein, 
um ein kooperatives Scheduling in der virtuellen Ma-
schine zu erlauben, ohne das native Threading zu 
benötigen.

[0072] Die Binärübersetzung wird in der virtuellen 
Maschine gewöhnlich während der Debugging-Ope-
rationen aktiviert und während des normalen Be-

triebs deaktiviert. Zum Beispiel hat ein Aufruf „Sys-
tem.loadLibrary()", wenn er aktiviert wird, die Binärü-
bersetzung der spezifizierten Bibliothek für eine inter-
pretierte oder kompilierte Ausführung innerhalb der 
virtuellen Maschine zur Folge. Bei Deaktivierung wird 
die spezifizierte Bibliothek geladen und standardge-
mäß verbunden. In einigen Ausführungsformen ist es 
auch möglich, dass die Binärübersetzung die gesam-
te Zeit über statt nur während der Debugging-Prozes-
se ausgeführt wird.

[0073] Fig. 5 ist ein Flussdiagramm eines Verfah-
rens zum Ausführen einer Binärübersetzung entspre-
chend einer Ausführungsform der Erfindung. In 
Schritt 500 wird der jeweilige native Code aus der 
verbundenen Bibliothek erhalten. Dieser Schritt kann 
zum Beispiel die Bestimmung der Quelldatei aus der 
verbundenen Bibliothek umfassen, wenn die jeweili-
ge Klasse in der virtuellen Maschine instantiiert wird, 
und er kann das Lesen der Binärform des nativen Co-
des (d.h. des Maschinencodes) aus der Quelldatei 
umfassen. Die Binärübersetzung kann auch vor der 
Ausführung in der virtuellen Maschine vorgenommen 
werden.

[0074] In Schritt 501 wird die Binärform des nativen 
Code durch eine Binärübersetzungskomponente der 
virtuellen Maschine in eine Zwischenform, wie z.B. 
Bytecodes, einen abstrakten Syntaxbaum oder einen 
Ablaufsteuerungsgraphen, übersetzt. Die Bytecodes 
können ähnlich wie die Standard-Bytecodes, die zum 
Beispiel durch einen Java-Compiler (Element 101
von Fig. 1) erzeugt wurden, implementiert werden. 
Abstrakte Syntaxbäume und Ablaufsteuerungsgra-
phen sind Darstellungen der Programmausführung, 
welche die Ausführungsoperationen als Knoten eines 
Baums oder Graphen spezifizieren. Gewöhnlich ist 
die Zwischenform (die hier auch als die „übersetzte 
Form" bezeichnet wird) eine, welche das Identifizie-
ren der Speicherzugriffspunkte und/oder -Aufrufe 
und Verzweigungsoperationen vereinfacht.

[0075] In Schritt 502 werden die Orte der Speicher-
zugriffsaufrufe bestimmt, und es werden in das Sig-
nal Überprüfungen während des Ausführens einge-
fügt, wenn der Speicherzugriffsaufruf versucht, auf 
einen Teil eines Speichers zuzugreifen, der einge-
schränkt oder anderweitig bereichsüberschreitend 
ist. Das Signal kann zum Beispiel das Anzeigen einer 
Fehlernachricht (z.B. in einer Dialogbox), das Proto-
kollieren eines Fehlers in einer Log-Datei, das Auslö-
sen einer Ausnahme oder irgendeine Kombination 
der vorangehenden Maßnahmen umfassen. Das De-
bugging von wilden Zeigern und anderen Speicher-
zugriffsfehlern, die mit dem nativen Code verknüpft 
sind, kann deshalb während der Ausführung ermittelt 
werden, indem jedes unzulässige Speicherzu-
griffsereignis dann angezeigt wird, wenn es auftritt. 
Als Teil der Speicherzugriffsüberprüfungen werden 
die Anteile des Speichers, auf die ein Zugriff durch 
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Elemente des nativen Codes zulässig ist, für den Ver-
gleich mit Zeigerwerten aufgespürt.

[0076] Im Schritt 503 werden Sperrsystemaufrufe in 
der Zwischenform identifiziert und es werden, wo es 
möglich ist, nicht-sperrende Varianten der System-
aufrufe eingesetzt. In Schritt 504 werden 
„Yield"-Funktionen in Aufrufe und Schleifen einge-
setzt. Die Yield-Punkte (d.h. die Punkte für das Ein-
setzen von Yield()-Funktionen) für Schleifen können 
zum Beispiel auf Basis von Rückverzweigungs-Ope-
rationen bestimmt werden. Die Schritte 503 und 504
bewirken, dass das Ausführen der virtuellen Maschi-
ne und beliebiger laufender Anwendungen und/oder 
Applets so weit wie möglich frei wird von der Abhän-
gigkeit von den Aktivitäten des nativen Codes. Die 
anderen Threads der virtuellen Maschine werden 
nicht durch Systemaufrufe des nativen Codes ge-
sperrt, und bei den Aufrufen sowie in den Schleifen 
werden Yield-Punkte eingerichtet, um anderen war-
tenden Threads Verarbeitungsressourcen zu liefern. 
Die virtuelle Maschine ist somit in der Lage, ein koo-
peratives Scheduling von allen zugeordneten 
Threads auszuführen. Dieses kooperative Schedu-
ling ermöglicht eine Synchronisation oder ein zuver-
lässiges Identifizieren und Korrigieren von durch 
Gleichzeitigkeit bedingten Fehlern unabhängig vom 
zugrundeliegenden Betriebssystem und der Hard-
ware.

[0077] Im Schritt 505 wird der revidierte native Code 
in seiner Zwischen- oder übersetzten Form durch die 
virtuelle Maschine kompiliert oder interpretiert, um 
die Funktionen darin auszuführen. In einigen Ausfüh-
rungsformen kann ein weiterer Übersetzungsschritt 
ausgeführt werden, um die Zwischenform in Byte-
codes zu übersetzen, die für das Interpretieren oder 
Kompilieren durch den Standard-Interpreter oder 
JIT-Compiler geeignet sind. Das Scheduling von 
Threads, die mit dem Ausführen von nativen Code-
funktionen verknüpft sind, kann durch den 
VM-Thread-Scheduling-Prozess wie ein beliebiger 
anderer interpretierter oder kompilierter Prozess der 
virtuellen Maschine gesteuert werden. Da die Spei-
cherzugriffsüberprüfungen ausgeführt werden, wer-
den Verletzungen protokolliert. Wo es nötig ist, kön-
nen separate asynchrone Threads erzeugt werden, 
um unabhängig von den anderen Threads in der vir-
tuellen Maschine zuzulassen, dass eine weitere Ver-
arbeitung stattfindet.

[0078] In einigen Beispielen kann der native Code in 
Schritt 501 vollständig geparst werden. Bestimmte 
Aspekte des Codes, wie z.B, der Beginn einer Routi-
ne oder einer berechneten Verzweigung, können un-
bekannt sein, bis der übersetzte Code in Schritt 505
ausgeführt wird (d.h., wenn die Routine tatsächlich 
aufgerufen wird). Aus diesem Grunde kann der Über-
setzungsprozess vom Schritt 505 zum Schritt 501 zu-
rückkehren, wie es durch den Rückkopplungspfeil 

506 angezeigt ist, um auf Basis der neuen Informati-
onen, die während des Ausführens bestimmt wurden, 
den zuvor nicht geparsten nativen Code zu parsen 
und zu übersetzen (oder Teile des bereits geparsten 
Codes erneut zu parsen).

[0079] In den Fig. 6A und Fig. 6B ist ein Beispiel ei-
ner verallgemeinerten Zwischenform einer nativen 
Methode dargestellt, die eine Binärübersetzung 
durchläuft. Fig. 6A ist ein verallgemeinertes Steue-
rungs-Flussdiagramm eines beispielhaften Ausfüh-
rungsblocks, das eine Binärübersetzung eines 
Blocks eines nativen Codes in eine Zwischenform 
entsprechend einer Ausführungsform der Erfindung 
veranschaulicht. Fig. 6B veranschaulicht das verall-
gemeinerte Steuerungs-Flussdiagramm von Fig. 6A
mit Modifikationen, die entsprechend einer Ausfüh-
rungsform der Erfindung ausgeführt sind. In dieser 
Ausführungsform beruht das Identifizieren von 
Yield-Punkten in Schleifen auf dem Auftreten von 
Rückverzweigungsoperationen.

[0080] Zum Kennzeichnen der dargestellten Opera-
tionen dient in Fig. 6A und Fig. 6B die folgende Le-
gende: 

[0081] In Fig. 6A beginnt der Ausführungsblock mit 
einer allgemeinen Operation 600 gefolgt von einer 
Leseoperation 603. Auf die Leseoperation 603 folgen 
nacheinander die allgemeinen Operationen 605, 606
und 607. Nach der allgemeinen Operation 607 wird 
eine Schreiboperation 610 ausgeführt, gefolgt von 
den allgemeinen Operationen 612 und 613 sowie der 
Verzweigungsoperation 614. Die Verzweigungsope-
ration springt entweder nach vorn zur allgemeinen 
Operation 616, oder sie springt zurück zur allgemei-
nen Operation 606. Von der allgemeinen Operation 
616 wird der Methodenaufruf 618 ausgeführt, gefolgt 
von der allgemeinen Operation 619, dem Sperrsyste-
maufruf 621A und der allgemeinen Operation 622.

[0082] Die Operationen, die für den Binärüberset-
zungsprozess von Interesse sind, sind die Leseope-
ration 603, die Schreiboperation 610, die Verzwei-
gungsoperation 614, der Methodenaufruf 618 und 
der Sperrsystemaufruf 621A, die alle hervorgehoben 
sind. Die Leseoperation 603 und die Schreiboperati-
on 610 werden als speicherzugriffsbezogene Opera-
tionen für das Einfügen von Zeigerüberprüfungen be-

RD = Speicherleseoperation
WR = Speicherschreiboperation
BR = Verzweigungsoperation (z.B. „if")
MC = Methoden-(Funktions-)Aufruf
BSC = Sperrsystemaufruf
OP = andere allgemeine Operation (sonstiges)
CHK = Zeigerüberprüfungsoperation
YLD = Yield-Operation
NBSC = nicht-sperrender Systemaufruf
FLAG = Signalzugriffsverletzung
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stimmt. Die Verzweigungsoperation 614 und der Me-
thodenaufruf 618 werden für das Einfügen von 
Yield()-Aufrufen bestimmt. Der Sperrsystemaufruf 
621A ist für das Ersetzen durch eine nichtsperrende 
Systemaufrufvariante bestimmt. 

[0083] In Fig. 6B werden die Modifikationen für der 
Zwischenform des Ausführungsblocks von Fig. 6A
veranschaulicht. Die Leseoperation 603 wird durch 
die Zeigerüberprüfungsoperation 601, die Verzwei-
gungsoperation 602, die Leseoperation 603 und die 
Flag-Operation 604 ersetzt. Die Überprüfungsopera-
tion 601 bestimmt, ob der Zeigerwert im zulässigen 
Bereich liegt, und auf sie folgt die Verzweigungsope-
ration 602. Die Verzweigungsoperation 602 führt ent-
weder die Leseoperation 603 aus, wenn der Zeiger 
zulässig ist, oder sie führt eine Flag-Operation 604
aus, um zu melden, dass die Zeigerüberprüfung ei-
nen unzulässigen Zeiger anzeigt. Die Operationen 
603 und 604 führen beide zur Operation 605.

[0084] Ähnlich zu dem oben beschriebenen Einfü-
gen, das für die Leseoperation 603 durchgeführt wird, 
ist die Leseoperation 610 Gegenstand einer Überprü-
fung und Flag-Einfügung. Die Leseoperation 610
wird durch die Zeigerüberprüfungsoperation 608, die 
Verzweigungsoperation 609, die Leseoperation 610
und die Flag-Operation 611 ersetzt. Die Überprü-
fungsoperation 608 bestimmt, ob der Zeigerwert im 
zulässigen Bereich liegt, und auf sie folgt die Ver-
zweigungsoperation 609. Die Verzweigungsoperati-
on 609 führt entweder die Schreiboperation 610 aus, 
wenn der Zeiger zulässig ist, oder sie führt eine 
Flag-Operation 611 aus, um zu melden, dass die Zei-
gerüberprüfung einen unzulässigen Zeiger anzeigt. 
Die Operationen 610 und 611 führen beide zur Ope-
ration 612.

[0085] Die Rückverzweigungsoperation 614 weist 
eine in die Rücksprungschleife zur Operation 606
eingefügte Yield-Operation 615 auf. Die eingefügte 
Yield-Operation 615 lässt für andere Threads die 
Möglichkeit zu, Prozessorressourcen zu erhalten, be-
vor die Schleife, die durch die Verzweigungsoperati-
on 614 gebildet wird, noch einmal beginnt. Das ver-
hindert, dass ein langer Schleifen-Rekursionspro-
zess den anderen Threads die Prozessonessourcen 
wegnimmt und fördert das kooperative Scheduling. 
Auf die gleiche Weise wird die Yield-Operation 617
vor dem Methodenaufruf 618 eingefügt, um nötigen-
falls ein Ausführen anderer Threads zu erlauben, be-
vor eine neue Methode durch den aktuellen Thread 
initiiert ist.

[0086] Der Sperrsystemaufruf 621A wird in Fig. 6B
durch einen nicht-sperrenden Systemaufruf 621B er-
setzt. Wahlweise kann eine Yield-Operation 620 vor 
dem Systemaufruf eingefügt werden. Wenn nötig 
kann ein nicht-sperrender Systemaufruf 621B einen 
neuen asynchronen Thread erzeugen, um Aktivitäten 

der übersetzten Funktion als ein unabhängig ausge-
führter Thread weiterzuführen. Wenn er durch die vir-
tuelle Maschine interpretiert oder kompiliert ist, bietet 
der revidierte Ausführungsblock von Fig. 6B bedeu-
tende Vorteile beim Debugging und Scheduling ge-
genüber der nativen Methodenausführung vom 
Stand der Technik.

[0087] Fig. 7 ist ein Blockdiagramm, das eine Lauf-
zeitumgebung veranschaulicht, die eine Binärüber-
setzung entsprechend einer Ausführungsform der Er-
findung implementiert. In Fig. 7 läuft das Betriebs-
system 109 über der Hardware 110, und die virtuelle 
Maschine 105 läuft über dem Betriebssystem 109. 
Die Ausführung des Betriebssystems 109 wird durch 
die Hardware 110 unterstützt. Wie in Fig. 3A und 
Fig. 3B umfassen die virtuelle Maschine 105 und das 
Betriebssystem 109 den VM-Thread-Scheduler 303
bzw. den OS-Thread-Scheduler 304 zum Verwalten 
der Thread-Ausführung. Zusätzlich umfasst die virtu-
elle Maschine 105 den Binärübersetzungsprozess 
701.

[0088] In der virtuellen Maschine 105 werden mul-
tiple Anwendungen und/oder Applets, wie z.B. 
Applet1 (300) und Applet2 (301), ausgeführt. Applet1 
und Applet2 können jedes eine oder mehrere Byte-
code-Klassendateien umfassen. Eine verbundene 
Bibliotheksdatei (LIB) 302 ist mit Applet2 verknüpft, 
um native Methoden zu unterstützen. Der native 
Code der Bibliotheksdatei 302 ist geparst und durch 
den Binärübersetzungsprozess 701 der virtuellen 
Maschine 105 übersetzt, um die übersetzte Biblio-
thek 700 zu erzeugen.

[0089] Die übersetzte Bibliothek 700 umfasst die 
Zwischenform des nativen Codes einschließlich von 
Speicherzugriffsüberprüfungen, Yields und 
nicht-sperrenden Aufrufvarianten. Wird eine native 
Methode von Applet2 durch den Thread T6 aufgeru-
fen, dann wird die übersetzte Bibliothek 700 in der vir-
tuellen Maschine 105 interpretiert oder kompiliert, um 
die gewünschte Funktion auszuführen. In Abhängig-
keit von der Zwischenform der übersetzten Bibliothek 
700 kann sich der Interpretations- oder Kompilie-
rungsprozess für die übersetzte Bibliothek von dem 
Interpretations- und Kompilierungsprozess, der auf 
die Klassen von Applet1 oder Applet2 angewendet 
wird, unterscheiden oder nicht unterscheiden. Die all-
gemeine Handhabung der und die ausgeübte Kon-
trolle über die Bibliothek 700 durch die virtuelle Ma-
schine 105 entsprechen jedoch denen von Applet1 
und Applet2. In einigen Ausführungsformen kann die 
übersetzte Bibliothek 700 im Thread T6 über Rah-
men im Stapel 212 statt über den Nativmetho-
den-Stapel 216 verarbeitet werden. Tatsächlich kann 
die übersetzte Bibliothek 700 ausgeführt werden, als 
ob die übersetzte Bibliothek 700 zusätzliche Stan-
dardmethoden ohne die Mängel des unveränderten 
nativen Codes bereitstellen würde.
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[0090] Da die übersetzten Nativcode-Funktionen 
der verbundenen Bibliothek durch die virtuelle Ma-
schine 105 statt eines separaten verbundenen Bibli-
otheksprozesses ausgeführt werden, der durch das 
Betriebssystem 109 durchgeführt wird, und weil 
Sperraufrufe in der übersetzten Bibliothek 700 nicht 
vorkommen, kann ein kooperatives Scheduling durch 
den VM-Thread-Scheduler 303 vollzogen werden. 
Somit ist das native Threading, wie es in Fig. 3B im-
plementiert ist, nicht notwendig. Die Synchronisation 
von Thread-Ereignissen in der virtuellen Maschine 
105 ist unabhängig vom zugrundeliegenden Be-
triebssystem und der Hardware, und ein Debugging 
kann ohne Berücksichtigung der auf dem Betriebs-
system beruhenden Gleichzeitigkeitsprobleme 
durchgeführt werden.

[0091] Somit wurden in Verbindung mit einer oder 
mehreren spezifischen Ausführungsformen ein Ver-
fahren und eine Vorrichtung zum Übersetzen und 
Ausführen eines nativen Codes in einer Virtuell-Ma-
schine-Umgebung beschrieben. Die Erfindung ist 
durch die Ansprüche und durch deren vollständigen 
Umfang an Äquivalenten festgelegt.

Patentansprüche

1.  Verfahren zum Übersetzen und Ausführen ei-
nes nativen Codes in einem Computersystem (400), 
wobei das Verfahren ein Erlangen eines nativen Co-
des aus einer Bibliothek (302) umfasst, gekennzeich-
net durch ein Parsen des nativen Codes in eine Zwi-
schenform, ein Verarbeiten der Zwischenform in eine 
übersetzten Form (700), die ein kooperatives Sche-
duling aller Threads in einer virtuellen Maschine 
(105) ermöglicht, und ein Ausführen der übersetzten 
Form (700) des nativen Codes.

2.  Verfahren nach Anspruch 1, bei dem das Ver-
arbeiten in einer virtuellen Maschine (105) durchge-
führt wird.

3.  Verfahren nach Anspruch 1, bei dem das Ver-
arbeiten ein Identifizieren eines Sperrsystemaufrufs 
in der Zwischenform und ein Ersetzen des Sperrsys-
temaufrufs (621A) durch eine nicht-sperrende Vari-
ante des Systemaufrufs (621B) umfasst.

4.  Verfahren nach Anspruch 1, bei dem das Ver-
arbeiten ein Identifizieren eines Speicherzugriffvor-
gangs in dem Zwischenformat und ein Hinzufügen ei-
ner Überprüfung auf eine Speicherzugriffsverletzung 
zu dem Speicherzugriffvorgang umfasst.

5.  Verfahren nach Anspruch 2, bei dem das Aus-
führen der übersetzten Form weiterhin ein Kompilie-
ren der übersetzten Form (700) durch die virtuelle 
Maschine (105) umfasst.

6.  Verfahren nach Anspruch 2, bei dem das Aus-

führen der übersetzten Form (700) ein Interpretieren 
der übersetzten Form (700) durch die virtuelle Ma-
schine (105) umfasst, um die Funktionen darin aus-
zuführen.

7.  Verfahren nach Anspruch 1, bei dem die Verar-
beitung ein Identifizieren eines Yield-Punktes in der 
Zwischenform und ein Einfügen einer Yield-Funktion 
an dem Yield-Punkt umfasst.

8.  Verfahren nach Anspruch 7, bei dem der 
Yield-Punkt ein Methodenaufruf umfasst.

9.  Verfahren nach Anspruch 7, bei dem der 
Yield-Punkt eine Schleife umfasst.

10.  Verfahren nach Anspruch 9, bei dem die 
Schleife ein Identifizieren einer Rückverzweigung 
umfasst.

11.  Computerprogrammprodukt, das ein compu-
ternutzbares Medium mit einem computerlesbaren 
Code, der darin enthalten ist, zum Übersetzen und 
Ausführen eines nativen Codes umfasst, wobei das 
Computerprogrammprodukt einen computerlesbaren 
Code umfasst, der dazu eingerichtet ist, ein Compu-
ter zu veranlassen, einen nativen Code aus einer Bi-
bliothek (302) zu erlangen, gekennzeichnet durch 
computerlesbaren Code, der dafür eingerichtet ist, ei-
nen Computer zu veranlassen, den nativen Code in 
eine Zwischenform zu parsen, computerlesbaren Co-
de, der dazu eingerichtet ist, einen Computer zu ver-
anlassen, die Zwischenform in eine übersetzte Form 
(700) zu verarbeiten, die ein kooperatives Scheduling 
aller Threads in einer virtuellen Maschine (105) er-
laubt, und computerlesbaren Code, der dazu einge-
richtet ist, einen Computer zu veranlassen, die über-
setzte Form (700) des nativen Codes auszuführen.

12.  Computerprogrammprodukt nach Anspruch 
11, bei dem der computerlesbare Code, der dazu ein-
gerichtet ist, einen Computer zu veranlassen, die 
übersetzte Form (700) auszuführen, in einer virtuel-
len Maschine (105) ausgeführt wird.

13.  Computerprogrammprodukt nach Anspruch 
11, bei dem der computerlesbare Code, der dazu ein-
gerichtet ist, einen Computer zu veranlassen, die 
Zwischenform zu verarbeiten, einen computerlesba-
ren Code umfasst, der dazu eingerichtet ist, einen 
Computer zu veranlassen, einen Sperrsystemaufruf 
(621A) in der Zwischenform zu identifizieren, und ei-
nen computerlesbaren Code, der dazu eingerichtet 
ist, einen Computer zu veranlassen, den Sperrsyste-
maufruf durch eine nicht-sperrende Variante (621B) 
des Systemaufrufs zu ersetzten.

14.  Computerprogrammprodukt nach Anspruch 
11, bei dem der computerlesbare Code, der dazu ein-
gerichtet ist einen Computer, zu veranlassen, die 
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Zwischenform zu verarbeiten, folgendes umfasst:  
einen computerlesbaren Code, der dazu eingerichtet 
ist, einen Computer zu veranlassen, einen Speicher-
zugriffsvorgang in der Zwischenform zu identifizieren, 
und einen computerlesbaren Code, der dazu einge-
richtet ist, einen Computer zu veranlassen, eine 
Überprüfung nach einer Speicherzugriffsverletzung 
zu dem Speicherzugriffsvorgang hinzuzufügen.

15.  Computerprogrammprodukt nach Anspruch 
11, bei dem der computerlesbare Code, der dazu ein-
gerichtet ist, einen Computer zu veranlassen, die 
Zwischenform zu verarbeiten, einen computerlesba-
ren Code umfasst, der dazu eingerichtet ist, einen 
Computer zu veranlassen, in dem Zwischenformat 
einen Yield-Punkt zu identifizieren, und einen compu-
terlesbaren Code, der dazu eingerichtet ist, einen 
Computer zu veranlassen, eine Yield-Funktion an 
dem Yield-Punkt einzufügen.

16.  Computerprogrammprodukt nach Anspruch 
15, bei dem der computerlesbare Code, der dazu ein-
gerichtet ist, einen Computer zu veranlassen, den 
Yield-Punkt zu identifizieren, einen computerlesba-
ren Code umfasst, der dazu eingerichtet ist, einen 
Computer zu veranlassen, ein Methodenaufruf zu 
identifizieren.

17.  Computerprogrammprodukt nach Anspruch 
15, bei dem der computerlesbare Code, der dazu ein-
gerichtet ist, den Computer zu veranlassen, einen 
Yield-Punkt zu identifizieren, einen computerlesba-
ren Code umfasst, der dazu eingerichtet ist, einen 
Computer zu veranlassen, eine Schleife zu identifi-
zieren.

18.  Computerprogrammprodukt nach Anspruch 
17, bei dem der computerlesbare Code, der dazu ein-
gerichtet ist, einen Computer zu veranlassen, die 
Schleife zu identifizieren, einen computerlesbaren 
Code umfasst, der dazu eingerichtet ist, einen Com-
puter zu veranlassen, eine Rückverzweigung zu 
identifizieren.

19.  Vorrichtung, die eine Klasse umfasst, die eine 
native Methode umfasst, wobei die native Methode 
durch einen nativen Code in einer Bibliothek (320) 
unterstützt wird, da 
durch gekennzeichnet, daß  
eine virtuelle Maschine (105) die Klasse verarbeitet, 
wobei die virtuelle Maschine (105) dazu eingerichtet 
ist, den nativen Code in einer übersetzten Form (700) 
auszuführen, und die virtuelle Maschine (105) folgen-
des umfasst:  
einen Thread-Scheduler, der ein kooperatives Sche-
duling implementiert, und eine Übersetzungseinrich-
tung, die dazu eingerichtet ist, den nativen Code in 
eine Zwischenform und die Zwischenform in die über-
setzte Form (700) zu übertragen, wobei die übersetz-
te Form (700) eine Form ist, die für kooperatives 

Scheduling aller Threads in der virtuellen Maschine 
(105) geeignet ist.

20.  Vorrichtung nach Anspruch 19, bei dem die 
Übersetzungseinrichtung weiterhin dazu eingerichtet 
ist, ein Sperrsystemaufruf (621A) in der Zwischen-
form durch eine nichtsperrenden Variante (621B) des 
Systemaufrufs zu ersetzen.

21.  Vorrichtung nach Anspruch 19, bei dem die 
Übersetzungseinrichtung weiterhin dazu eingerichtet 
ist, eine Speicherzugriffsüberprüfung bei einem Spei-
cherzugriffsvorgang in der Zwischenform einzufügen.

22.  Vorrichtung nach Anspruch 19, bei dem die 
Übersetzungseinrichtung weiterhin dazu eingerichtet 
ist, einen Yield-Vorgang an einem Yield-Punkt in der 
Zwischenform einzufügen.

23.  Vorrichtung nach Anspruch 22, bei welcher 
der Yield-Punkt ein Methodenaufruf ist.

24.  Vorrichtung nach Anspruch 22, bei welcher 
der Yield-Punkt eine Schleife ist.

25.  Vorrichtung nach Anspruch 24, bei der die 
Schleife durch eine Rückverzweigung identifiziert 
wird.

Es folgen 8 Blatt Zeichnungen
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