(19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(19 DE 699 22 015 T2 2005.12.01

(12) Ubersetzung der europiischen Patentschrift

(97) EP 1 104 564 B1
(21) Deutsches Aktenzeichen: 699 22 015.7
(86) PCT-Aktenzeichen: PCT/US99/18158
(96) Europaisches Aktenzeichen: 99 939 131.1
(87) PCT-Verdéffentlichungs-Nr.: WO 00/10081
(86) PCT-Anmeldetag: 10.08.1999
(87) Veroffentlichungstag
der PCT-Anmeldung: 24.02.2000
(97) Erstveroffentlichung durch das EPA: 06.06.2001
(97) Veroffentlichungstag
der Patenterteilung beim EPA: 17.11.2004
(47) Veroffentlichungstag im Patentblatt: 01.12.2005

1) ntcl”: GO6F 9/45

(30) Unionsprioritat:
134073 13.08.1998 us

(73) Patentinhaber:
Sun Microsystems, Inc., Palo Alto, Calif., US

(74) Vertreter:
BOEHMERT & BOEHMERT, 28209 Bremen

(84) Benannte Vertragsstaaten:
AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LI, LU, MC, NL, PT, SE

(72) Erfinder:
UNGAR, David, Palo Alto, US

(54) Bezeichnung: VERFAHREN UND VORRICHTUNG ZUM UBERSETZEN UND AUSFUHREN VON ARTEIGENEM
CODE IN EINER UMGEBUNG MIT VIRTUELLEN MASCHINEN

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europa-
ischen Patents kann jedermann beim Europaischen Patentamt gegen das erteilte europédische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begriinden. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebihr entrichtet worden ist (Art. 99 (1) Europaisches Patentliibereinkommen).

Die Ubersetzung ist gemaR Artikel Il § 3 Abs. 1 IntPatUG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht gepruft.

DE 699 22 015 T2 2005.12.01

Beschreibung
ALLGEMEINER STAND DER TECHNIK
1. ERFINDUNGSGEBIET

[0001] Die Erfindung betrifft den Bereich der Com-
putersysteme und insbesondere Laufzeitumgebun-
gen virtueller Maschinen (siehe ,Java Native Inter-
face Specification", 16. Mai 1997, Sun Microsystems,
Inc., Mountain View, CA).

[0002] Solaris, Sun, Sun Microsystems, das
Sun-Logo, Java und alle Markenzeichen und Logos
auf der Basis von Java sind Markenzeichen oder ein-
getragene Markenzeichen von Sun Microsystems,
Inc., in den Vereinigten Staaten und anderen Staa-
ten.

2. STAND DER TECHNIK

[0003] Die von Sun Microsystems® entwickelte Pro-
grammiersprache Java™ weist den Vorzug gegend-
ber anderen Programmiersprachen auf, dass sie ein
Jwrite once, run anywhere"™-Sprache ist. Die Pro-
grammiersprache Java stellt einen weitgehend platt-
formunabhangigen Apparat fir Anwendungen oder
LApplets" bereit, die in der Form von Bytecode-Klas-
sendateien zu entwerfen, zu verteilen und auszufih-
ren sind. Die Java-Virtuelle-Maschine fiihrt die Auflo-
sung der Bytecodes in dem von der erforderlichen
Plattform abhangigen Befehlssatz aus, so dass alle
Computerplattformen, welche eine Java-Virtuel-
le-Maschine enthalten, in der Lage sind, dieselben
Bytecode-Klassendateien auszufihren. Werden
Funktionen bendtigt, die nicht durch die Program-
miersprache Java unterstitzt werden, dann kann
eine Java-Anwendung, die in der virtuellen Maschine
ausgefihrt wird, native Codefunktionen aufrufen, die
in angeschlossenen Bibliotheken implementiert sind.
Ein nativer Code ist nicht Gegenstand der Java Pro-
grammierung und der Ausfiihrungsbeschrankungen,
so dass mehr an plattformspezifischer Programmier-
barkeit auf Kosten eines weniger gut kontrollierten
Ausfuhrungsverhaltens erreicht wird. Eine Verarbei-
tungsumgebung fiir Java-Anwendungen und Applets
sowie die Verwendung von nativen Codes werden
nachfolgend ausflhrlicher beschrieben.

Die Verarbeitungsumgebung

[0004] Die Programmiersprache Java ist eine objek-
torientierte Programmiersprache, bei der jedes Pro-
gramm eine oder mehrere Objektklassen und
Schnittstellen umfasst. Anders als viele Program-
miersprachen, in denen ein Programm in einen ma-
schinenabhangigen, ausfuhrbaren Programmcode
kompiliert wird, werden die in der Programmierspra-
che Java geschriebenen Klassen in maschinenunab-
hangige Bytecode-Klassendateien kompiliert. Jede

Klasse enthalt Code und Daten in einem plattformun-
abhangigen Format, das als Klassendateiformat be-
zeichnet wird. Das Computersystem, welches als das
Ausfuhrungsmittel dient, enthalt ein Programm, das
als virtuelle Maschine bezeichnet wird, welche fir
das Ausfliihren des Codes in jeder Klasse verantwort-
lich ist.

[0005] Anwendungen kénnen als autonome Ja-
va-Anwendungen oder als Java-,Applets" entworfen
werden, die durch ein Applet-Tag in einem HTML-(hy-
pertext markup language)-Dokument identifiziert und
durch eine Browser-Anwendung geladen werden.
Die mit einer Anwendung oder einem Applet ver-
knlipften Klassendateien kénnen auf dem lokalen
Computersystem oder auf einem Server, auf den
Uber ein Netz zugegriffen werden kann, gespeichert
werden. Jede Klasse wird durch den ,Klassen-Loa-
der" nach Bedarf in die Java-Virtuelle-Maschine gela-
den.

[0006] Um einem Client den Zugriff auf Klassenda-
teien von einem Server auf einem Netz zu gewahren,
wird eine Webserver-Anwendung auf dem Server
ausgefuhrt, um auf HTTP-(hypertext transport proto-
col)-Anforderungen anzusprechen, die URLs (univer-
sal resource locators) zu den HTML-Dokumenten
enthalten, die auch als ,Webseiten" bezeichnet wer-
den. Wenn eine Browser-Anwendung, die auf einer
Client-Plattform ausgefuhrt wird, ein HTML-Doku-
ment empfangt (z.B. als ein Ergebnis einer Anforde-
rung eines HTML-Dokuments durch Absenden eines
URL an den Webserver), dann parst die Browser-An-
wendung die HTML und initiiert automatisch das He-
runterladen der spezifizierten Bytecode-Klassenda-
teien, wenn er in dem HTML-Dokument auf ein App-
let-Tag trifft.

[0007] Die Klassen eines Java-Applet werden auf
Anforderung aus dem Netz (auf einem Server gespei-
chert) oder aus einem lokalen Dateisystem geladen,
wenn wahrend des Ausflihrens der Java-Applets
zum ersten Mal Bezug darauf genommen wird. Die
virtuelle Maschine lokalisiert und |adt jede Klassen-
datei, parst das Klassendateiformat, teilt Speicher flr
die verschiedenen Komponenten der Klasse zu und
verbindet die Klasse mit anderen bereits geladenen
Klassen. Dieser Prozess macht den Code in der
Klasse durch die virtuelle Maschine leicht ausfihrbar.

[0008] Java-Anwendungen und Applets machen oft
Gebrauch von Klassenbibliotheken. Klassen in den
Klassenbibliotheken kénnen das enthalten, was als
,native Methoden" bezeichnet wird. Anwendungen
und Applets kénnen zuweilen auch Klassen enthal-
ten, die native Methoden aufweisen. Eine native Me-
thode spezifiziert das Schllisselwort ,nativ", den Na-
men der Methode, den Rilckgabetyp der Methode
und beliebige Parameter, die der Methode angepasst
sind. Im Gegensatz zu einer ,Standardmethode"” (d.h.

2/22

DE 699 22 015 T2 2005.12.01

einer nicht nativen Methode), die in der Programmier-
sprache Java geschrieben ist, gibt es keinen Rumpf
zu einer nativen Methode in der jeweiligen Klasse.
Die Programme einer nativen Methode werden viel-
mehr durch einen kompilierten nativen Code (d.h.
den Code, der in der Programmiersprache C oder
C++ geschrieben und in die Binarform kompiliert ist)
durchgefihrt, der in der Laufzeit dynamisch mit einer
gegebenen Klasse in der virtuellen Maschine verbun-
den ist, wobei eine fir die gegebene Plattform spezi-
fische Verbindungseinrichtung verwendet wird, wel-
che die verbundenen Bibliotheken unterstutzt.

[0009] In der Solaris™- oder UNIX-Umgebung kann
zum Beispiel die verbundene Bibliothek, welche die
Binarform des nativen Codes enthalt, als
~Shared-Objekt"-Bibliothek implementiert werden,
die als eine ,.so"-Datei geschrieben ist. In einer Win-
dows-Umgebung kann die verbundene Bibliothek die
Form einer dynamisch verbundenen (oder dyna-
misch ladefahigen) Bibliothek annehmen, die als eine
»-dll"-Datei geschrieben wird. Der native Code kann
verwendet werden, um Funktionen auszufiihren, die
ansonsten durch die Programmiersprache Java nicht
unterstutzt wirden, wie z.B. das Ankoppeln an eine
spezialisierte Hardware (z.B. Display-Hardware)
oder Software (z.B. Datenbanktreiber) einer gegebe-
nen Plattform. Der native Code kann auch zum Be-
schleunigen von rechenaufwandigen Funktionen, wie
z.B. des Rendering, verwendet werden.

[0010] Eine Klasse, die eine native Methode enthalt,
enthalt auch einen Aufruf, die jeweilige verbundene
Bibliothek zu laden:

System.loadLibrary(,Sample");

wobei ,Sample" der Name der verbundenen Biblio-
thek ist, die gewdhnlich in einer Datei gespeichert ist,
die in Abhangigkeit vom Host-Betriebssystem (z.B.
UNIX, Windows usw.) als ,libSample.so" oder
~>ample.dll" bezeichnet wird. Die verbundene Biblio-
thek wird gewohnlich zu dem Zeitpunkt geladen, zu
dem die zugehdrige Klasse in der virtuellen Maschine
instantiiert wird.

[0011] Die verbundene Bibliothek des nativen Co-
des wird mit Stub- und Header-Informationen der zu-
gehdrigen Klasse kompiliert, um die verbundene Bi-
bliothek zu befahigen, die Methodensignatur der na-
tiven Methode in der Klasse zu erkennen. Die Imple-
mentierung der nativen Methode wird dann als eine
native Codefunktion (wie z.B. eine C-Funktion) in der
verbundenen Bibliothek bereitgestellt. In der Laufzeit,
wenn die native Methode aufgerufen wird, wird die
Steuerung auf die Funktion in der verbundenen Bibli-
othek Ubertragen, die der aufgerufenen Methode ent-
spricht (z.B. durch Hinzufiigen eines Nativmetho-
den-Rahmens auf den Nativmethoden-Stapel). Der
native Code in der verbundenen Bibliothek fuhrt die
Funktion aus und gibt die Steuerung der Java-An-
wendung oder dem Applet zurtick.

[0012] Fig.1 veranschaulicht die Kompilierungs-
und Laufzeitumgebungen fir ein Verarbeitungssys-
tem. In der Kompilierungsumgebung erzeugt ein
Software-Entwickler Quelldateien 100 (z.B. in der
Programmiersprache Java), welche die Programmie-
rer-lesbaren Klassendefinitionen einschlief3lich der
Datenstrukturen, Methodenimplementierungen und
Bezugnahmen auf andere Klassen enthalten. Die
Quelldateien 100 werden einem Java-Compiler 101
bereitgestellt, der die Quelldateien 100 in kompilierte
..class"-Dateien 102 kompiliert, welche Bytecodes
enthalten, die durch eine Java-Virtuelle-Maschine
ausflihrbar sind. Die Bytecode-Klassendateien 102
werden auf einem Server gespeichert (z.B. in einem
temporaren oder permanenten Speicher) und sind flur
das Herunterladen Uber ein Netz verfugbar. Alternativ
kénnen die Bytecode-Klassendateien 102 in einem
Verzeichnis auf der Client-Plattform lokal gespeichert
werden.

[0013] Die Java-Laufzeitumgebung enthalt eine Ja-
va-Virtuelle-Maschine (JVM) 105, die in der Lage ist,
die Bytecode-Klassendateien auszufiihren und nati-
ve Betriebssystem(,0/S")-Aufrufe zum Betriebssys-
tem 109 auszufuhren, wenn das bei der Ausflhrung
notwendig ist. Die Java-Virtuelle-Maschine 105 stellt
sowohl eine Abstraktionsebene zwischen der Ma-
schinenunabhangigkeit der Bytecode-Klassen und
dem maschinenabhangigen Befehlssatz der zugrun-
deliegenden Computer-Hardware 110 als auch die
plattformabhangigen Aufrufe des Betriebssystems
109 bereit.

[0014] Der Klassen-Loader und Bytecode-Prifer
(,Klassen-Loader") 103 ist verantwortlich fir das La-
den der Bytecode-Klassendateien 102 und erforderli-
chenfalls fur das Unterstitzen von Klassenbibliothe-
ken 104 in die Java-Virtuelle-Maschine 105. Der
Klassen-Loader 103 tberprift auch die Bytecodes ei-
ner jeden Klassendatei, um fir das richtige Ausfuh-
ren und das Durchsetzen von Sicherheitsregeln zu
sorgen. Im Kontext des Laufzeitsystems 108 flihrt
entweder ein Interpreter 106 die Bytecodes direkt aus
oder ein ,Just-in-time"- (JIT)-Compiler 107 Ubersetzt
die Bytecodes in den Maschinencode, so dass sie
durch den Prozessor (oder Prozessoren) in der Hard-
ware 110 ausgefihrt werden kénnen. Der native Co-
de, z.B. in der Form einer verbundenen Bibliothek
111, wird geladen, wenn eine Klasse (z.B. aus den
Klassenbibliotheken 104), welche die zugehérige na-
tive Methode enthalt, in der virtuellen Maschine in-
stantiiert ist.

[0015] Das Laufzeitsystem 108 der virtuellen Ma-
schine 105 unterstitzt eine generelle Stapelarchitek-
tur. Die Art und Weise, wie diese generelle Stapelar-
chitektur durch die zugrundeliegende Hardware 110
unterstutzt wird, wird durch die spezifische Imple-
mentierung der virtuellen Maschine bestimmt und
spiegelt den Weg wider, auf dem die Bytecodes inter-

3/22

DE 699 22 015 T2 2005.12.01

pretiert oder JIT-kompiliert werden. Andere Elemente
des Laufzeitsystems schlieRen das Thread-Manage-
ment (d.h. das Scheduling) und die Datenmillsam-
melverfahren ein.

[0016] Fig. 2 veranschaulicht die Laufzeitdatenbe-
reiche, welche die Stapelarchitektur im Laufzeitsys-
tem 108 unterstitzen. In Fig. 2 umfassen die Lauf-
zeit-Datenbereiche 200 einen oder mehrere Thread-
bezogene Datenbereiche 207. Jeder Thread-bezo-
gene Datenbereich 207 umfasst ein Programmzah-
lerregister (PC REG) 208, ein Zeigerregister lokaler
Variablen (VARS REG) 209, ein Rahmen-Register
(FRAME REG) 210, ein Operandenstapel-Zeigerre-
gister (OPTOP REG) 211, einen Stapel 212 (z.B. fiir
Standardmethoden) und optional einen Nativmetho-
denstapel 216. Der Stapel 212 umfasst einen oder
mehrere Rahmen 213, die einen Operandenstapel
214 und lokale Variablen 215 enthalten. Der Nativme-
thoden-Stapel 216 umfasst einen oder mehrere Na-
tivmethoden-Rahmen 217.

[0017] Die Laufzeit-Datenbereiche 200 weisen au-
Rerdem einen gemeinsam genutzten Heap 201 auf.
Der Heap 201 ist der Laufzeitdatenbereich, aus dem
fur alle Instanzen und Arrays Speicher zugewiesen
wird. Der gemeinsam genutzte Heap 201 umfasst ei-
nen Methodenbereich, der von allen Threads ge-
meinsam genutzt wird. Der Methodenbereich 202
umfasst einen oder mehrere klassenbezogene Da-
tenbereiche 203 zum Speichern von Informationen,
die aus jeder geladenen Klassendatei extrahiert wer-
den. Zum Beispiel kdnnen die klassenbezogenen
Datenbereiche 203 Klassenstrukturen, wie z.B. einen
Konstantenpool 204, Feld- und Methodendaten 205
und einen Code fur Methoden sowie Konstruktoren
206 umfassen.

[0018] Eine virtuelle Maschine kann viele Threads
zur gleichzeitigen Ausflihrung unterstitzen. Jeder
Thread hat seinen eigenen Thread-bezogenen Da-
tenbereich 207. An einem beliebigen Punkt fihrt je-
der Thread den Code einer einzelnen Methode, der
-aktuellen Methode" fir diesen Thread, aus. Ist die
.aktuelle Methode" keine native Methode, dann ent-
halt das Programmzahliregister 208 die Adresse des
Befehls der virtuellen Maschine, der aktuell ausge-
fuhrt wird. Ist die ,aktuelle Methode" eine native Me-
thode, dann ist der Wert des Programmzahiregisters
208 unbestimmt. Das Rahmen-Register 210 zeigt auf
die Lage der aktuellen Methode im Methodenbereich
202.

[0019] Jeder Thread weist einen eigenen Stapel
212 auf, der zur gleichen Zeit wie der Thread erzeugt
wird. Der Stapel 212 speichert einen oder mehrere
Rahmen 213, die mit den Standardmethoden ver-
knupft sind, welche durch den Thread aufgerufen
werden. Die Rahmen 213 werden sowohl fur das
Speichern von Daten und Teilergebnissen verwendet

als auch fur das Ausfiihren des dynamischen Verbin-
dens, die Rickgabe von Werten fir Methoden und
das Abfertigen von Ausnahmen. Jedes Mal, wenn
eine Standardmethode aufgerufen wird, wird ein neu-
er Rahmen erzeugt und auf den Stapel geschoben,
und ein existierender Rahmen wird vom Stapel ent-
nommen und zerstort, wenn seine Methode abge-
schlossen ist. Ein Rahmen, der durch einen Thread
erzeugt wird, ist fur diesen Thread lokal und im Nor-
malfall kann auf ihn direkt kein Bezug durch irgendei-
nen anderen Thread genommen werden.

[0020] Nur ein Rahmen, namlich der Rahmen fir die
Methode, die aktuell ausgefihrt wird, ist an einem be-
liebigen Punkt in einem gegebenen Steuerungs-
thread aktiv. Dieser Rahmen wird als der ,aktuelle
Rahmen" bezeichnet, und seine Methode ist als ,ak-
tuelle Methode" bekannt. Ein Rahmen hért auf, aktu-
ell zu sein, wenn seine Methode eine andere Metho-
de aufruft oder wenn seine Methode abgeschlossen
wird. Wird eine Methode aufgerufen, dann wird ein
neuer Rahmen erzeugt, und er wird aktuell, wenn die
Steuerung auf die neue Methode Gbergeht. Beim Me-
thodenrticksprung gibt der aktuelle Rahmen die Er-
gebnisse seines Methodenaufrufs — sofern vorhan-
den — an den vorhergehenden Rahmen zurtick. Der
aktuelle Rahmen wird dann abgelegt, wahrend der
vorhergehende Rahmen zum aktuellen wird.

[0021] Jeder Rahmen 213 weist seinen eigenen
Satz lokaler Variablen 215 und seinen eigenen Ope-
randenstapel 214 auf. Das Zeigenegister der lokalen
Variablen 209 enthélt einen Zeiger auf die Basis ei-
nes Arrays von Wértern, welche die lokalen Variablen
215 des aktuellen Rahmens enthalten. Das Operan-
denstapel-Zeigerregister 211 zeigt auf den Kopf des
Operandenstapels 214 des aktuellen Rahmens. Die
meisten virtuellen Maschinenbefehle entnehmen aus
dem Operandenstapel des aktuellen 'Rahmens Wer-
te, wirken auf sie ein und geben die Ergebnisse dem-
selben Operandenstapel zurlick. Der Operandensta-
pel 214 wird auch verwendet, um Argumente auf Me-
thoden zu Ubertragen und Methodenergebnisse zu
empfangen.

[0022] Der native Methodenstapel 216 speichert
Nativmethoden-Rahmen 217 zur Unterstitzung nati-
ver Methoden. Jeder Nativmethoden-Rahmen stellt
einen Mechanismus fur die Thread-Ausflihrungs-
steuerung, Methodenargumente und Methodener-
gebnisse bereit, die zwischen den Standardmetho-
den und nativen Methoden zu Ubergeben sind, wel-
che als native Codefunktionen in einer verbundenen
Bibliothek implementiert sind.

[0023] Da die nativen Methoden durch den nativen
Code eher in einer verbundenen Bibliothek und nicht
wie eine Standardmethode in einer Klasse imple-
mentiert sind, sind die nativen Methoden nicht den
Einschréankungen unterworfen, die durch die Pro-

4/22

DE 699 22 015 T2 2005.12.01

grammiersprache Java und den Bytecode-Prufer auf-
erlegt werden. Das bedeutet, dass der native Code in
einer verbundenen Bibliothek, anders als Bytecodes
fur kompilierte Java-Anwendungen und Applets, an-
fallig gegenuber einem unerwinschten und nicht zu-
Iassigen Verhalten sein kann, das sich Uber die Lauf-
zeit hinweg ungeprift fortsetzt. Zum Beispiel kdnnen
im nativen Code wegen des Auftretens von ,wilden"
Zeigern (d.h. ein Zeiger, dessen Wert einen vorge-
schriebenen Bereich Uberschreitet, wie z.B. ein Zei-
ger auf das neunte Element eines Achtelement-Ar-
rays) und durch das Verwenden von Speicherzu-
griffsmechanismen, die ungeeignete (d.h. einge-
schrankte oder bereichstberschreitende) Speicher-
platze adressieren konnen, Speicherzugriffsfehler
vorkommen.

[0024] Das Verwenden nativer Methoden macht
deshalb einen Bereich von Programmierfehlern mog-
lich, die hauptsachlich auf dem Einsatz von Zeigern
beruhen, welche das Debugging einer speziellen Vir-
tuell-Maschine-Implementierung schwieriger ma-
chen.

[0025] AuRerdem kann der native Code Spensyste-
maufrufe (d.h. Aufrufe, die eine nicht spezifizierte
Zeitdauer auf ein aulleres Ereignis, das stattfinden
wird, warten kdnnen) enthalten. Wenn eine virtuelle
Maschine ihr eigenes Thread-Management und
Scheduling implementiert, dann kann ein Sperrsyste-
maufruf, der auftritt, wenn die Steuerung auf eine na-
tive Codefunktion in einer verbundenen Bibliothek
Ubertragen wurde, die Ausfiihrung der gesamten vir-
tuellen Maschine sperren.

[0026] Die meisten Virtuell-Maschine-Implementie-
rungen vermeiden die mit dem nativen Code ver-
knupften Sperrprobleme durch Verwenden des ,nati-
ven Threading". Das bedeutet, dass multiple Threads
der virtuellen Maschine und das Programm oder die
Programme (d.h. Anwendungen und/oder Applets),
welche die Maschine ausfihrt, als Threads der zu-
grundeliegenden Plattform, z.B. als UNIX-Threads,
implementiert werden. In diesem Schema kdnnen die
Threads der virtuellen Maschine gleichzeitig ausge-
fuhrt werden. Wenn jedoch das native Threading ver-
wendet wird, dann muss die virtuelle Maschine die
Kontrolle Uber das Thread-Scheduling an das zu-
grundeliegende Betriebssystem abtreten. Das native
Threading hat somit zur Folge, dass das Verhalten
des Threads vom Betriebssystem und der Hardware
abhangig wird. Ein effektives Debugging von Fehlern,
die durch die Gleichzeitigkeit bedingt sind, wird in ei-
ner Virtuell-Maschine-Implementierung problema-
tisch, weil mit dem nativen Threading die relative
Zeitsteuerung der Thread-Ausfiihrung Uber die ver-
schiedenen Betriebssysteme und Hardware-Plattfor-
men hinweg variieren kann.

[0027] Die Fig. 3A und Fig. 3B sind Blockdiagram-

me, welche die Verwendung eines Thread in Lauf-
zeitumgebungen veranschaulichen. Fig. 3A enthalt
eine virtuelle Maschine, die kein natives Threading
verwendet. Fig. 3B enthalt eine virtuelle Maschine,
die das native Threading verwendet.

[0028] In Fig. 3A lauft das Betriebssystem 109 auf
der Hardware 110, und die virtuelle Maschine 105
l&uft auf dem Betriebssystem 109. In der virtuellen
Maschine 105 werden mehrere Anwendungen
und/oder Applets, wie z.B. Applet1 (300) und Applet2
(301), ausgefihrt. Applet1 und Applet2 kénnen flr
sich je eine oder mehrere Bytecode-Klassendateien
umfassen. Mit Applet2 ist eine verbundene Bibliothek
(LIB) verknlpft, um die nativen Methoden zu unter-
stutzen. Die Bibliothek 302 wird zu der Zeit geladen
und verbunden, in der die Klasse von Applet2, wel-
che die verknlpften nativen Methoden enthalt, in der
virtuellen Maschine 105 instantiiert wird. Der native
Code der Bibliothek 302 |auft direkt auf dem Betriebs-
system 109, welches die Bibliothekverbindungsein-
richtung und die Hardware 110 unterstitzt.

[0029] In der virtuellen Maschine 105 werden mul-
tiple Threads zur Ausfiihrung abgearbeitet. Zum Bei-
spiel kann Applet1 zwei Threads, T1 und T2, aufwei-
sen, Applet2 kann zwei Threads, T5 und T6, aufwei-
sen und die virtuelle Maschine selbst kann zwei
Threads, T3 und T4, aufweisen, welche Prozesse der
virtuellen Maschine, wie z.B. das Sammeln von Da-
tenmiill, durchfiihren. Die Threads T1 — T6 werden
durch den VM-Thread-Scheduler 303 in der virtuellen
Maschine 105 verwaltet und terminiert. Der
VM-Thread-Scheduler 303 wahlt zum Beispiel auf
Basis von Prioritdten und Zeitschlitzverfahren aus,
welcher Thread aus der Gruppe T1 bis T6 der aktuell
auszufiihrende Thread der virtuellen Maschine TVM
auf der Ebene des Betriebssystems sein soll.

[0030] Die Java-Virtuelle-Maschine unterstitzt das
.kooperative Scheduling", wobei die Threads, die
ausgefuhrt werden, anderen Threads Prozessones-
sourcen in bestimmten Intervallen oder dann iberge-
ben, wenn eine mit der Ausfiihrung des aktuellen
Thread verknipfte Verzégerung wahrscheinlich ist.
Zum Beispiel kann ein Thread hoherer Prioritat eine
Yield-Operation nutzen, um den aktuellen Thread zu
verdrangen. Das Ausnutzen von Prozessonessour-
cen muss in den Standardmethoden nicht explizit
programmiert werden. Die virtuelle Maschine kann
Yields in den Ubersetzungsprozess oder in den kom-
pilierten Code an geeigneten Punkten bei der Aus-
fuhrung, so z.B. bei Methodenaufrufen und innerhalb
von Schleifen (z.B. bei Riickverzweigungen), einset-
zen, um das kooperative Scheduling zu implementie-
ren.

[0031] Das Betriebssystem 109 kann zu jeder belie-
bigen Zeit viele Threads, einschlief3lich des ausge-
wahlten Virtuell-Maschine-Threads TVM, bedienen.

5/22

DE 699 22 015 T2 2005.12.01

Zum Beispiel kann das Betriebssystem 109 Threads
TA — TZ enthalten, die andere Anwendungen oder
andere Prozesse des Betriebssystems unterstitzen.
Der OS-Thread-Scheduler 304 bestimmt, welcher
Thread aus der Gruppe TA — TZ und TVM durch die
zugrundeliegende Hardware 110 zu irgendeinem
Zeitpunkt auszufiihren ist. Wenn die Hardware 110
multiple Prozessoren unterstitzt, dann kénnen durch
den OS-Thread-Scheduler 304 multiple Threads ter-
miniert werden, um gleichzeitig auf verschiedenen
Prozessoren ausgeflihrt zu werden.

[0032] In der Implementierung von Fig. 3A kann ein
Virtuell-Maschine-Thread (z.B. T1 — T6) die Ausfuh-
rungssteuerung auf eine verbundene Bibliothek (z.B.
LIB 302) Ubertragen, um eine Funktion fur eine native
Methode auszufiihren, z.B. kann, wie in der Darstel-
lung gezeigt, der Thread T6 eine native Methode von
Applet2 aufrufen, die durch den nativen Code in Bibli-
othek 302 unterstitzt wird. Der Thread T6 ist in der
Lage, die Steuerung der Bibliothek 302 zu (berge-
ben, weil der Thread T6 als Virtuell-Maschine-Thread
TVM aktuell auf das Betriebssystem 109 ibertragen
wurde. Andere Threads der virtuellen Maschine mus-
sen entsprechend dem kooperativen Scheduling auf
den Thread T6 warten, um zugelassen zu werden.

[0033] Die Ubergabe der Steuerung auf die Biblio-
thek 302 kann jedoch Ausflihrungsprobleme der vir-
tuellen Maschine verursachen. Klassen, die in der vir-
tuellen Maschine ausgefihrt werden, rufen gewdhn-
lich nur Methoden von anderen Klassen auf und 16-
sen in der Regel keine Aufrufe direkt auf das System
aus. Der native Code jedoch kann in Abhangigkeit
von seiner Funktion haufig sperrende Systemaufrufe
auslésen: Da der native Code unabhéangig als ein
kompilierter Code in einer verbundenen Bibliothek
ausgefuhrt wird, werden Interpreter und Compiler
umgangen und kénnen kein kooperatives Scheduling
erzwingen, bis die Steuerung einer Standardmetho-
de zurlickgegeben wird. Die virtuelle Maschine muss
sich deshalb auf den Programmierer des nativen Co-
des stutzen, um explizite Yield()-Aufrufe im nativen
Code bereitzustellen.

[0034] Lost der native Code der Bibliothek 302 ei-
nen Sperrsystemaufruf, wie z.B. einen |/O-Aufruf
zum Herunterladen einer Datei, aus, dann sperrt der
Thread T6 in der virtuellen Maschine und somit der
Thread TVM auf der Betriebssystemebene so lange,
bis der Systemaufruf abgeschlossen ist, d.h., bis das
Herunterladen beendet ist. Die gesamte Ausfuhrung
der virtuellen Maschine ist fur die Dauer des System-
aufrufs auch gesperrt, da die Ausfihrungssteuerung
durch den nativen Code der Bibliothek 302 aufrecht-
erhalten wird. Da die Sperrsystemaufrufe bis zu ih-
rem Abschluss eine relativ lange Zeit bendétigen kon-
nen, ist es unerwiinscht, dass alle Threads der virtu-
ellen Maschine 109 gleichermalien gesperrt sind. Die
Leistungsfahigkeit von Applet1, Applet2 und der vir-

tuellen Maschine 105 kann durch Sperrsystemaufru-
fe der Bibliothek 302 verringert werden. Aus diesem
Grund verwenden viele Virtuelle-Maschine-Imple-
mentierungen das native Threading wie in Fig. 3B
dargestellt.

[0035] In Fig. 3B implementiert der
VM-Thread-Scheduler 303 multiple Threads der vir-
tuellen Maschine als Threads auf der Betriebssys-
temebene. Diese Threads werden als Threads TVM1
—-TVMn gekennzeichnet. Der VM-Thread-Scheduler
303 bestimmt, welche Virtuell-Maschine-Threads (T1
— T6) dem Betriebssystem 109 zu einem gegebenen
Zeitpunkt als OS-Threads TVM1 — TVMn lbergeben
werden. In dem extremen Fall, in dem jeder Thread
der virtuellen Maschine 105 als ein individueller
Thread des zugrundeliegenden Betriebssystems 109
implementiert wird, kann die virtuelle Maschine 105
auf ein Implementieren des VM-Thread-Schedulers
303 verzichten und kann sich vollstandig auf den
OS-Thread-Scheduler 304 fir das Thread-Schedu-
ling verlassen.

[0036] Die Implementierung von Fig. 3B erlaubt es,
dass multiple Threads gleichzeitig in der virtuellen
Maschine 105 aktiv sind. Das bedeutet, dass ein
Sperrsystemaufruf durch den nativen Code der Bibli-
othek 302 nicht ein vollstadndiges Sperren der virtuel-
len Maschine 105 zur Folge hat. Vielmehr wird ein
Thread aus der Gruppe TVM1 — TVMn, namlich der
Thread, welcher die Steuerung der Bibliothek 302
Ubergeben hat (d.h. der Betriebssystem-Thread, wel-
cher dem Virtuell-Maschine-Thread T6 entspricht),
gesperrt, aber der Rest der Threads TVM1 — TVMn
ist zur Ausfuhrung frei.

[0037] Durch das Implementieren multipler Threads
der virtuellen Maschine als OS- oder native Threads
Ubertragt die virtuelle Maschine 105 jedoch die Steu-
erung Uber das Scheduling der Threads in der virtu-
ellen Maschine vom VM-Thread-Scheduler 303 ge-
wissermallen auf den OS-Thread-Scheduler 304.
Zwischen den Threads der virtuellen Maschine kén-
nen wegen des relativen Mangels an Steuerung, die
durch den VM-Thread-Scheduler 303 ausgetibt wird,
Synchronisationsfehler auftreten. Die Angelegenheit
wird dadurch erschwert, dass dann, wenn die virtuel-
le Maschine 105 und Applet1 und Applet2 auf einem
unterschiedlichen Betriebssystem 109 und/oder ei-
ner unterschiedlichen Hardware 110 mit unterschied-
lichen Zeitsteuerungsparametern und Scheduling-
prozessen ausgefiihrt werden, Synchronisationsfeh-
ler wegen des Zugreifens des nativen Threadings auf
den OS-Thrad-Scheduler 304 nicht auftreten werden
oder auf eine unterschiedliche Weise auftreten kon-
nen. Somit lassen sich Fehler nicht einfach wiederho-
len, und das Debugging des Systems wird schwieri-
ger.

6/22

DE 699 22 015 T2 2005.12.01

Objektorientiertes Programmieren

[0038] Im Folgenden wird zu Zwecken der Bezug-
nahme eine allgemeine Beschreibung der Prinzipien
des objektorientierten Programmierens gegeben.
Das objektorientierte Programmieren ist ein Verfah-
ren zum Erzeugen von Computerprogrammen durch
Zusammenfassen bestimmter fundamentaler Bau-
blécke und durch Erzeugen von Beziehungen unter
und zwischen den Baubldocken. Die Baubltcke in ob-
jektorientierten Programmsystemen werden als ,Ob-
jekte" bezeichnet. Ein Objekt ist eine Programmein-
heit, die eine Datenstruktur (eine oder mehrere In-
stanzvariable) und die Operationen (Methoden), wel-
che die Daten nutzen oder beeinflussen kénnen, zu-
sammenfasst. Somit besteht ein Objekt aus Daten
und einer oder mehreren Operationen oder Prozedu-
ren, die an diesen Daten ausgefiihrt werden kénnen.
Das Zusammenfligen von Daten und Operationen in
einen einheitlichen Block wird als ,Kapselung" be-
zeichnet.

[0039] Ein Objekt kann angewiesen werden, eine
seiner Methoden auszufiihren, wenn es eine ,Nach-
richt" empfangt. Eine Nachricht ist ein Befehl oder
eine Anweisung, die an das Objekt gesendet wurde,
eine bestimmte Methode auszufihren. Eine Nach-
richt besteht aus einer Methodenauswahl (z.B. Me-
thodenname) und null oder mehreren Argumenten.
Eine Nachricht teilt dem empfangenden Objekt mit,
welche Operationen auszuflihren sind.

[0040] Ein Vorteil des objektorientierten Program-
mierens ist die Art und Weise, in der die Methoden
aufgerufen werden. Wird eine Nachricht an ein Ob-
jekt gesendet, dann ist es nicht nétig, dass die Nach-
richt dem Objekt vorschreibt, wie ein bestimmtes Ver-
fahren auszufiihren ist. Es ist lediglich nétig zu for-
dern, dass das Objekt die Methode ausflihrt. Das ver-
einfacht die Programmentwicklung betrachtlich.

[0041] Die objektorientierten Programmiersprachen
beruhen vorwiegend auf einem ,Klassen"-Schema.
Ein Beispiel fur ein auf Klassen beruhendes objekto-
rientiertes Programmierschema wird allgemein be-
schrieben in ,Smalltalk-80: The Language" von Adele
Goldberg und David Robson, 1989 verdéffentlicht von
Addison-Wesley Publishing Company.

[0042] Eine Klasse legt einen Typ eines Objekts
fest, das Ublicherweise sowohl Felder (d.h. Variable)
als auch Methoden fiir die Klasse enthélt. Eine Ob-
jektklasse wird verwendet, um eine bestimmte In-
stanz eines Objekts zu erzeugen. Eine Instanz eines
Objekts enthalt die fir die Klasse festgelegten Vari-
ablen und Methoden. Aus einer Objektklasse kdnnen
multiple Instanzen derselben Klasse erzeugt werden.
Jede Instanz, die aus der Objektklasse erzeugt wird,
gilt als Instanz desselben Typs oder derselben Klas-
se.

[0043] Zur Veranschaulichung kann eine Objekt-
klasse die Instanzvariablen ,Name" und ,Gehalt" und
eine Methode ,Gehalt bestimmen" einschlieRen. Fir
jeden Angestellten in einer Organisation kénnen In-
stanzen der Angestellten-Objektklasse erzeugt oder
instantiiert werden. Jede Objektinstanz gilt als eine
vom Typ ,Angestellter". Jede Angestellten-Objektins-
tanz enthalt die Instanzvariablen ,Name" und ,Ge-
halt" sowie die Methode ,,Gehalt bestimmen". Die mit
den Variablen ,Name" und ,,Gehalt" verknipften Wer-
te in jeder Angestellten-Objektinstanz enthalten den
Namen und das Gehalt eines Angestellten in der Or-
ganisation. An die Angestellten-Objektinstanz des
Angestellten kann eine Nachricht gesendet werden,
um die Methode ,Gehalt bestimmen" aufzurufen, um
das Gehalt des Angestellten (d.h. den Wert, der mit
der Variablen ,Gehalt" im Angestellten-Objekt des
Angestellten verknlpft ist) zu verandern.

[0044] Es kann eine Hierarchie von Klassen derart
definiert werden, dass eine Objektklassen-Definition
eine oder mehrere Unterklassen aufweist. Eine Un-
terklasse erbt die Definition ihrer Eltern (und GroRel-
tern usw.). Jede Unterklasse in der Hierarchie kann
zum Verhalten, das durch ihre Elternklasse bestimmt
ist, beitragen oder es verandern. Einige objektorien-
tierte Programmiersprachen unterstiitzen die multiple
Vererbung, wo eine Unterklasse eine Klassendefiniti-
on von mehr als einer Elternklasse erben kann. An-
dere Programmiersprachen, wie z.B. die Program-
miersprache Java, unterstitzen nur eine einfache
Vererbung. in der eine Unterklasse darauf beschrankt
ist, die Klassendefinition von nur einer Elternklasse
zu erben. Die Programmiersprache Java stellt auch
einen Mechanismus bereit, der als ein ,Interface" be-
kannt ist, welcher einen Satz von Konstanten und ab-
strakten Methodenvereinbarungen umfasst. Eine Ob-
jektklasse kann die in einem Interface definierten ab-
strakten Methoden implementieren. Sowohl einfache
als auch mehrfache Vererbung sind fur ein Interface
verfugbar. Das heif’t, ein Interface kann eine Inter-
face-Definition von mehr als einem Eltern-Interface
erben.

[0045] Ein Objekt ist ein generischer Begriff, der in
der objektorientierten Programmierumgebung ver-
wendet wird, um auf einen Modul zu verweisen, der
einen verwandten Code und verwandte Variablen
enthalt. Eine Softwareanwendung kann unter Ver-
wendung einer objektorientierten Programmierspra-
che geschrieben werden, wobei die Funktionalitat
des Programms unter Verwendung von Objekten im-
plementiert wird.

KURZDARSTELLUNG DER ERFINDUNG

[0046] Es ist eine Aufgabe der vorliegenden Erfin-
dung, ein verbessertes Verfahren und eine verbes-
serte Vorrichtung fiir das Ubersetzen und Ausfiihren
eines nativen Codes in einem Computersystem be-

7/22

DE 699 22 015 T2 2005.12.01

reitzustellen, welche Synchronisationsfehler zwi-
schen multiplen Threads der virtuellen Maschine ver-
meiden.

[0047] Diese Aufgabe wird gemal den unabhangi-
gen Anspriche 1, 11 und 19 geldst.

[0048] Es werden ein Verfahren und eine Vorrich-
tung zum Ubersetzen und Ausfilhren eines nativen
Codes in einer Virtuell-Maschine-Umgebung bereit-
gestellt, um Zeigertberprifung, Thread-Steuerung
und andere vorteilhafte Fahigkeiten zuzulassen. Das
Debugging einer Virtuell-Maschine-Umgebung wird
durch die Binaribersetzung des nativen Codes er-
leichtert, welcher eine grofiere Plattformunabhangig-
keit und eine gréRere Kontrolle tiber das Thread-Ma-
nagement und -Scheduling ermdglicht sowie ein
Identifizieren von Speicherzugriffsfehlern im nativen
Code erlaubt. Wenn der native Code in einer Virtu-
ell-Maschine-Umgebung auszufuhren ist, dann wird
der native Code in eine Zwischenform Ubersetzt. Die-
se Zwischenform wird bearbeitet, um zu bestimmen,
wo Speicherzugriffs- und Sperrsystemaufrufe auftre-
ten. Zulassigkeitsprifungen werden in die Speicher-
zugriffsaufrufe eingefligt, um festzustellen, ob der
Speicheranteil, auf den durch jeden Aufruf zugegrif-
fen werden soll, im erlaubten Bereich liegt. Wilde Zei-
ger und andere Quellen von Speicherzugriffsfehlern,
die mit dem nativen Code verknUpft sind, kdnnen so
identifiziert werden. Sperrsystemaufrufe werden
durch nichtsperrende Varianten ersetzt und
,Yield"-Operationen kénnen in die Systemaufrufe
und Schleifen eingesetzt werden.

[0049] Der korrigierte native Code, der Speicherzu-
griffs-Zulassigkeitsprifungen und nichtsperrende
Systemaufrufe einschlie3t, wird durch die virtuelle
Maschine kompiliert oder interpretiert, um die durch
den nativen Code bestimmten Routinen auszufiih-
ren. Da der Uberarbeitete native Code andere
Threads nicht sperrt, kann das Thread-Scheduling
durch die virtuelle Maschine statt durch das zugrun-
deliegende Betriebssystem verwaltet werden, und
ein kooperatives Scheduling kann ausgeflihrt wer-
den.

KURZBESCHREIBUNG DER ZEICHNUNGEN

[0050] Fig. 1 ist ein Blockdiagramm von Kompilie-
rungs- und Laufzeitumgebungen.

[0051] Fig.2 ist ein Blockdiagramm der Lauf-
zeit-Datenbereiche einer Ausfihrungsform einer vir-
tuellen Maschine.

[0052] Fig. 3A ist ein Blockdiagramm einer Lauf-
zeitumgebung, die eine virtuelle Maschine aufweist,
welche multiple Applets und einen nativen Code un-
terstutzt, die Uber eine verbundene Bibliothek imple-
mentiert sind.

[0053] Fig. 3B ist ein Blockdiagramm einer Lauf-
zeitumgebung, die eine virtuelle Maschine aufweist,
welche native Thread-Operationen verwendet.

[0054] Fig. 4 ist ein Blockdiagramm einer Ausfih-
rungsform eines Computersystems, das in der Lage
ist, eine geeignete Ausflihrungsumgebung flr eine
Ausfuhrungsform der Erfindung bereitzustellen.

[0055] Fig. 5 ist ein Flussdiagramm eines Binari-
bersetzungsprozesses entsprechend einer Ausflh-
rungsform der Erfindung.

[0056] Fig. 6A ist ein verallgemeinertes Flussdia-
gramm eines beispielhaften Ausfiihrungsblocks, der
den Binaribersetzungsprozess eines Blocks eines
nativen Codes in eine Zwischenform entsprechend
einer Ausflhrungsform der Erfindung veranschau-
licht.

[0057] Fig. 6B veranschaulicht das verallgemeiner-
te Steuerungs-Flussdiagramm von Fig. 6A mit Modi-
fikationen, die entsprechend einer Ausfiihrungsform
der Erfindung ausgefihrt sind.

[0058] Fig. 7 ist ein Blockdiagramm eines Compu-
tersystems, das eine virtuelle Maschine aufweist, die
eine BinarUbersetzung des nativen Codes entspre-
chend einer Ausfiihrungsform der Erfindung verwirk-
licht.

AUSFUHRLICHE BESCHREIBUNG DER ERFIN-
DUNG

[0059] Die Erfindung ist ein Verfahren und eine Vor-
richtung zum Ubersetzen und Ausfiihren eines nati-
ven Codes in einer Virtuell-Maschine-Umgebung. In
der folgenden Beschreibung werden zahlreiche spe-
zifische Details dargelegt, um eine griindlichere Be-
schreibung der Ausfihrungsformen der Erfindung zu
erreichen. Es ist jedoch fir einen Fachmann offen-
sichtlich, dass die Erfindung ohne diese spezifischen
Details betrieben werden kann. In anderen Fallen
wurden gut bekannte Merkmale nicht ausfiihrlich be-
schrieben, um die Erfindung nicht unkenntlich zu ma-
chen.

[0060] Obwohl die Erfindung hier mit Bezug auf die
Programmiersprache Java und die Java-Virtuel-
le-Maschine diskutiert wird, kann die Erfindung in ei-
ner beliebigen Virtuell-Maschine-Umgebung, welche
native Methoden oder Funktionen einschliet, imple-
mentiert werden.

Ausfiuhrungsform der Computer-Ausfiihrungsumge-
bung (Hardware)

[0061] Eine Ausfiihrungsform der Erfindung kann
als Computer-Software in der Form eines computer-
lesbaren Codes auf einem Mehrzweck-Computer,

8/22

DE 699 22 015 T2 2005.12.01

wie z.B. dem in Fig. 4 veranschaulichten Computer
400, oder in der Form von Bytecode-Klassendateien
implementiert werden, die in einer auf einem derarti-
gen Computer laufenden Java-Laufzeitumgebung
ausflihrbar sind. Eine Tastatur 410 und eine Maus
411 sind an einen bidirektionalen Systembus 418 ge-
koppelt. Die Tastatur und die Maus fiihren die Nut-
zer-Eingabewerte in das Computersystem ein und
Ubermitteln diese Nutzer-Eingabewerte dem Prozes-
sor 413. Andere geeignete Eingabegerate kdnnen
zusatzlich zu oder anstatt der Maus 411 und der Tas-
tatur 410 verwendet werden. Die an den bidirektiona-
len Bus 418 gekoppelte I/O(Eingabe/Ausgabe)-Ein-
heit 419 verkdrpert solche 1/0-Elemente wie einen
Drucker, A/V(AudioNideo)-1/O usw.

[0062] Der Computer 400 enthalt neben Tastatur
410, Maus 411 und Prozessor 413 einen Videospei-
cher 414, Hauptspeicher 415 und Massenspeicher
412, die alle an den bidirektionalen Systembus 418
gekoppelt sind. Der Massenspeicher 412 kann so-
wohl feste als auch auswechselbare Medien, wie z.B.
magnetische, optische oder magneto-optische Spei-
chersysteme, oder irgendeine andere verfligbare
Massenspeichertechnologie enthalten. Der Bus 418
kann zum Beispiel Adressleitungen zum Adressieren
des Videospeichers 414 oder des Massenspeichers
415 enthalten. Der Systembus 418 enthalt zum Bei-
spiel auch einen Datenbus zur Datenubertragung
zwischen und unter den Komponenten, wie z.B. Pro-
zessor 413, Hauptspeicher 415, Videospeicher 414
und Massenspeicher 412. Alternativ kdnnen Multip-
lex-Daten/Adress-Leitungen anstelle der separaten
Daten- und Adressleitungen verwendet werden.

[0063] In einer Ausfliihrungsform der Erfindung ist
der Prozessor 413 ein von Motorola produzierter Mi-
kroprozessor, wie z.B. der 680x0-Prozessor, oder ein
von Intel produzierter Prozessor, wie z.B. der 80x86-
oder Pentium-Prozessor, oder ein SPARC-Mikropro-
zessor von Sun Microsystems, Inc. Es kann jedoch
ein beliebiger anderer geeigneter Mikroprozessor
oder Mikrorechner verwendet werden. Der Haupt-
speicher 415 enthalt einen dynamischen Schreib-Le-
se-Speicher (DRAM). Der Video-Speicher 414 ist ein
Video-Schreib-Lese-Speicher mit zwei Anschllssen.
Ein Anschluss des Video-Speichers 414 ist an den Vi-
deo-Verstarker 416 gekoppelt. Der Video-Verstarker
416 wird als Treiber fur den Kathodenstrahlréh-
ren(CRT)-Rastermonitor 417 verwendet. Der Vi-
deo-Verstarker 416 ist vom Stand der Technik her gut
bekannt und kann durch jede geeignete Anlage reali-
siert werden. Diese Schaltung wandelt die im Video-
speicher 414 gespeicherten Pixeldaten in ein Raster-
signal um, das zur Verwendung durch den Monitor
417 geeignet ist. Der Monitor 417 ist ein Monitortyp,
der fur die Wiedergabe grafischer Bilder geeignet ist.
Alternativ kdnnte der Videospeicher als Treiber fir ei-
nen Flachbildschirm oder eine FlUssigkristallanzeige
(LCD) oder irgendein anderes geeignetes Datenwie-

dergabegerat verwendet werden.

[0064] Der Computer 400 kann auch eine an den
Bus 418 gekoppelte Kommunikationsschnittstelle
420 enthalten. Die Kommunikationsschnittstelle 420
stellt eine Zweiweg-Datenkommunikationskopplung
Uber eine Netzverbindung 421 an ein lokales Netz
422 bereit. Ist die Kommunikationsschnittstelle 420
zum Beispiel eine dienstintegrierende digitale
Netz(ISDN)-Karte oder ein Modem, dann stellt die
Kommunikationsschnittstelle 420 eine Datenkommu-
nikationsverbindung zum entsprechenden Telefonlei-
tungstyp bereit, welche einen Teil der Netzverbin-
dung 421 ausmacht. Ist die Kommunikationsschnitt-
stelle 420 eine Lokalnetz(LAN)-Karte, dann stellt die
Kommunikationsschnittstelle 420 eine Datenkommu-
nikationsverbindung Uber die Netzverbindung 421 an
ein kompatibles LAN bereit.

[0065] Die Kommunikationsschnittstelle 420 kénnte
auch ein Kabelmodem oder eine Funk-Schnittstelle
sein. In einer solchen Ausfuhrung sendet und emp-
fangt die Kommunikationsschnittstelle 420 elektri-
sche, elektromagnetische oder optische Signale, die
digitale Datenstrome mitfihren, welche verschiedene
Informationstypen verkdrpern.

[0066] Die Netzverbindung 421 stellt eine Daten-
kommunikation durch ein oder mehrere Netze zu an-
deren Datengeraten bereit. Zum Beispiel kann die
Netzverbindung 421 eine Verbindung durch das loka-
le Netz 422 zum lokalen Server-Computer 423 oder
zu Dateneinrichtungen herstellen, die durch einen In-
ternet-Dienstanbieter (ISP) 424 betrieben werden.
ISP 424 wiederum stellt Datenkommunikationsdiens-
te durch das weltweite Paketdatenkommunikations-
netz bereit, das jetzt gewdhnlich als ,Internet" 425 be-
zeichnet wird. Lokales Netz 422 und Internet 425 nut-
zen beide elektrische, elektromagnetische oder opti-
sche Signale, welche digitale Datenstréme tragen.
Die Signale durch die verschiedenen Netze und die
Signale auf der Netzverbindung 421 sowie durch die
Kommunikationsschnittstelle 420, welche die digita-
len Daten vom und zum Computer 400 tragen, sind
beispielhafte Formen von Tragerwellen, welche die
Informationen transportieren.

[0067] Der Computer 400 kann durch das (die)
Netz(e), die Netzverbindung 421 und die Kommuni-
kationsschnittstelle 420 Nachrichten senden und Da-
ten einschliel3lich des Programmcodes empfangen.
In dem Beispiel Internet kdnnte ein entfernt liegender
Server-Computer 426 einen angeforderten Code flr
ein Anwendungsprogramm uber Internet 425, ISP
424, lokales Netz 422 und Kommunikationsschnitt-
stelle 420 Ubertragen.

[0068] Der empfangene Code kann, sobald er emp-
fangen wurde, durch den Prozessor 413 ausgefihrt
und/oder im Massenspeicher 412 oder einem ande-

9/22

DE 699 22 015 T2 2005.12.01

ren Permanentspeicher zur spateren Ausflihrung ge-
speichert werden. Auf diese Weise kann der Compu-
ter 400 einen Anwendungscode in der Form einer
Tragerwelle erhalten. Entsprechend einer Ausflh-
rungsform der Erfindung enthalten solche herunter-
geladenen Anwendungen ein oder mehrere Elemen-
te einer Laufzeitumgebung, wie z.B. die virtuelle Ma-
schine, Klassen-Loader, Bytecode-Klassendateien,
Klassenbibliotheken und die Vorrichtung zum Uber-
setzen und Ausfiihren des hier beschriebenen nati-
ven Codes.

[0069] Der Anwendungscode kann durch irgendei-
ne Form eines Computerprogrammprodukts verkor-
pert werden. Ein Computerprogrammprodukt um-
fasst ein Medium, das eingerichtet ist, einen compu-
terlesbaren Code oder Daten zu speichern oder zu
transportieren, oder in welches computerlesbarer
Code oder Daten eingebettet sein kdnnen. Einige
Beispiele fir Computerprogrammprodukten sind
CD-ROM-Platten, ROM-Karten, Disketten, Magnet-
bander, Computer-Festplattenlaufwerke, Server in ei-
nem Netz und Tragerwellen.

[0070] Die oben beschriebenen Computersysteme
dienen nur als Beispiel. Eine Ausfihrungsform der
Erfindung kann in irgendeinem Typ von Computer-
system oder Programmier- oder Verarbeitungsumge-
bung implementiert werden, wobei die eingebetteten
Gerate (z.B. Web-Telefone usw.) und ,Dinn"-Cli-
ent-Verarbeitungsumgebungen (z.B. Netzcomputer
(NC) usw.), die eine virtuelle Maschine unterstutzen,
eingeschlossen sind.

Binaribersetzung des nativen Codes

[0071] Wie zuvor beschrieben wurde, kdnnen die in
einer virtuellen Maschine ausgefiihrten Klassen nati-
ve Methoden enthalten, welche durch native Code-
funktionen in einer verbundenen Bibliothek imple-
mentiert werden. Entsprechend einer Ausflihrungs-
form der Erfindung wird der native Code der verbun-
denen Bibliothek durch Komponenten der virtuellen
Maschine verarbeitet und ausgefiihrt, um ein koope-
ratives Scheduling zu erlauben und Debugging-Fa-
higkeiten bereitzustellen, die gegeniber den Ausfiih-
rungsprozessen nativer Methoden vom Stand der
Technik erweitert sind. Die Verarbeitung des nativen
Codes schliefdt als ein Teil eines Binaribersetzungs-
prozesses das Einfiigen von Uberpriifungen von
Speicherzugriffsfehlern, die z.B. durch ,wilde" Zeiger
erzeugt sein kénnten, und das Ersetzen von Sperr-
systemaufrufen durch nicht-sperrende Varianten ein,
um ein kooperatives Scheduling in der virtuellen Ma-
schine zu erlauben, ohne das native Threading zu
bendtigen.

[0072] Die Binaribersetzung wird in der virtuellen
Maschine gewdhnlich wahrend der Debugging-Ope-
rationen aktiviert und wahrend des normalen Be-

triebs deaktiviert. Zum Beispiel hat ein Aufruf ,Sys-
tem.loadLibrary()", wenn er aktiviert wird, die Binaru-
bersetzung der spezifizierten Bibliothek fiir eine inter-
pretierte oder kompilierte Ausflihrung innerhalb der
virtuellen Maschine zur Folge. Bei Deaktivierung wird
die spezifizierte Bibliothek geladen und standardge-
maM verbunden. In einigen Ausfiihrungsformen ist es
auch mdglich, dass die Binariibersetzung die gesam-
te Zeit Uber statt nur wahrend der Debugging-Prozes-
se ausgefihrt wird.

[0073] Fig.5 ist ein Flussdiagramm eines Verfah-
rens zum Ausfuhren einer Binaribersetzung entspre-
chend einer Ausfuhrungsform der Erfindung. In
Schritt 500 wird der jeweilige native Code aus der
verbundenen Bibliothek erhalten. Dieser Schritt kann
zum Beispiel die Bestimmung der Quelldatei aus der
verbundenen Bibliothek umfassen, wenn die jeweili-
ge Klasse in der virtuellen Maschine instantiiert wird,
und er kann das Lesen der Binarform des nativen Co-
des (d.h. des Maschinencodes) aus der Quelldatei
umfassen. Die Binartbersetzung kann auch vor der
Ausfuhrung in der virtuellen Maschine vorgenommen
werden.

[0074] In Schritt 501 wird die Binarform des nativen
Code durch eine Binariibersetzungskomponente der
virtuellen Maschine in eine Zwischenform, wie z.B.
Bytecodes, einen abstrakten Syntaxbaum oder einen
Ablaufsteuerungsgraphen, tbersetzt. Die Bytecodes
kénnen ahnlich wie die Standard-Bytecodes, die zum
Beispiel durch einen Java-Compiler (Element 101
von Fig. 1) erzeugt wurden, implementiert werden.
Abstrakte Syntaxbdume und Ablaufsteuerungsgra-
phen sind Darstellungen der Programmausfihrung,
welche die Ausfiihrungsoperationen als Knoten eines
Baums oder Graphen spezifizieren. Gewdhnlich ist
die Zwischenform (die hier auch als die ,Ubersetzte
Form" bezeichnet wird) eine, welche das Identifizie-
ren der Speicherzugriffspunkte und/oder -Aufrufe
und Verzweigungsoperationen vereinfacht.

[0075] In Schritt 502 werden die Orte der Speicher-
zugriffsaufrufe bestimmt, und es werden in das Sig-
nal Uberpriifungen wahrend des Ausfiihrens einge-
fugt, wenn der Speicherzugriffsaufruf versucht, auf
einen Teil eines Speichers zuzugreifen, der einge-
schrankt oder anderweitig bereichsiberschreitend
ist. Das Signal kann zum Beispiel das Anzeigen einer
Fehlernachricht (z.B. in einer Dialogbox), das Proto-
kollieren eines Fehlers in einer Log-Datei, das Ausl6-
sen einer Ausnahme oder irgendeine Kombination
der vorangehenden MalRhahmen umfassen. Das De-
bugging von wilden Zeigern und anderen Speicher-
zugriffsfehlern, die mit dem nativen Code verknUpft
sind, kann deshalb wahrend der Ausfihrung ermittelt
werden, indem jedes unzulassige Speicherzu-
griffsereignis dann angezeigt wird, wenn es auftritt.
Als Teil der Speicherzugriffsiiberpriifungen werden
die Anteile des Speichers, auf die ein Zugriff durch

10/22

DE 699 22 015 T2 2005.12.01

Elemente des nativen Codes zulassig ist, fur den Ver-
gleich mit Zeigerwerten aufgespdrt.

[0076] Im Schritt 503 werden Sperrsystemaufrufe in
der Zwischenform identifiziert und es werden, wo es
moglich ist, nicht-sperrende Varianten der System-
aufrufe eingesetzt. In Schritt 504 werden
»Yield"-Funktionen in Aufrufe und Schleifen einge-
setzt. Die Yield-Punkte (d.h. die Punkte fur das Ein-
setzen von Yield()-Funktionen) fir Schleifen kénnen
zum Beispiel auf Basis von Rickverzweigungs-Ope-
rationen bestimmt werden. Die Schritte 503 und 504
bewirken, dass das Ausfiihren der virtuellen Maschi-
ne und beliebiger laufender Anwendungen und/oder
Applets so weit wie mdglich frei wird von der Abhan-
gigkeit von den Aktivitdten des nativen Codes. Die
anderen Threads der virtuellen Maschine werden
nicht durch Systemaufrufe des nativen Codes ge-
sperrt, und bei den Aufrufen sowie in den Schleifen
werden Yield-Punkte eingerichtet, um anderen war-
tenden Threads Verarbeitungsressourcen zu liefern.
Die virtuelle Maschine ist somit in der Lage, ein koo-
peratives Scheduling von allen zugeordneten
Threads auszufiihren. Dieses kooperative Schedu-
ling ermoglicht eine Synchronisation oder ein zuver-
I&ssiges Identifizieren und Korrigieren von durch
Gleichzeitigkeit bedingten Fehlern unabhangig vom
zugrundeliegenden Betriebssystem und der Hard-
ware.

[0077] Im Schritt 505 wird der revidierte native Code
in seiner Zwischen- oder Ubersetzten Form durch die
virtuelle Maschine kompiliert oder interpretiert, um
die Funktionen darin auszuftihren. In einigen Ausfiih-
rungsformen kann ein weiterer Ubersetzungsschritt
ausgefiihrt werden, um die Zwischenform in Byte-
codes zu ubersetzen, die fir das Interpretieren oder
Kompilieren durch den Standard-Interpreter oder
JIT-Compiler geeignet sind. Das Scheduling von
Threads, die mit dem Ausflihren von nativen Code-
funktionen verkniupft sind, kann durch den
VM-Thread-Scheduling-Prozess wie ein beliebiger
anderer interpretierter oder kompilierter Prozess der
virtuellen Maschine gesteuert werden. Da die Spei-
cherzugriffsiiberprifungen ausgefihrt werden, wer-
den Verletzungen protokolliert. Wo es nétig ist, kon-
nen separate asynchrone Threads erzeugt werden,
um unabhangig von den anderen Threads in der vir-
tuellen Maschine zuzulassen, dass eine weitere Ver-
arbeitung stattfindet.

[0078] In einigen Beispielen kann der native Code in
Schritt 501 vollstandig geparst werden. Bestimmte
Aspekte des Codes, wie z.B, der Beginn einer Routi-
ne oder einer berechneten Verzweigung, kénnen un-
bekannt sein, bis der uUbersetzte Code in Schritt 505
ausgefihrt wird (d.h., wenn die Routine tatsachlich
aufgerufen wird). Aus diesem Grunde kann der Uber-
setzungsprozess vom Schritt 505 zum Schritt 501 zu-
ruckkehren, wie es durch den Ruckkopplungspfeil

506 angezeigt ist, um auf Basis der neuen Informati-
onen, die wahrend des Ausfiihrens bestimmt wurden,
den zuvor nicht geparsten nativen Code zu parsen
und zu Ubersetzen (oder Teile des bereits geparsten
Codes erneut zu parsen).

[0079] Inden Fig. 6A und Fig. 6B ist ein Beispiel ei-
ner verallgemeinerten Zwischenform einer nativen
Methode dargestellt, die eine Binarubersetzung
durchlauft. Fig. 6A ist ein verallgemeinertes Steue-
rungs-Flussdiagramm eines beispielhaften Ausfiih-
rungsblocks, das eine Binarubersetzung eines
Blocks eines nativen Codes in eine Zwischenform
entsprechend einer Ausfihrungsform der Erfindung
veranschaulicht. Fig. 6B veranschaulicht das verall-
gemeinerte Steuerungs-Flussdiagramm von Fig. 6A
mit Modifikationen, die entsprechend einer Ausflh-
rungsform der Erfindung ausgefiihrt sind. In dieser
Ausfihrungsform beruht das Identifizieren von
Yield-Punkten in Schleifen auf dem Auftreten von
Ruckverzweigungsoperationen.

[0080] Zum Kennzeichnen der dargestellten Opera-
tionen dient in Fig. 6A und Fig. 6B die folgende Le-
gende:

RD = Speicherleseoperation

WR = Speicherschreiboperation

BR = Verzweigungsoperation (z.B. ,if")

MC = Methoden-(Funktions-)Aufruf

BSC = Sperrsystemaufruf

OoP = andere allgemeine Operation (sonstiges)
CHK = Zeigeruberprifungsoperation

YLD = Yield-Operation

NBSC = nicht-sperrender Systemaufruf

FLAG = Signalzugriffsverletzung

[0081] In Fig. 6A beginnt der Ausfliihrungsblock mit
einer allgemeinen Operation 600 gefolgt von einer
Leseoperation 603. Auf die Leseoperation 603 folgen
nacheinander die allgemeinen Operationen 605, 606
und 607. Nach der allgemeinen Operation 607 wird
eine Schreiboperation 610 ausgeflhrt, gefolgt von
den allgemeinen Operationen 612 und 613 sowie der
Verzweigungsoperation 614. Die Verzweigungsope-
ration springt entweder nach vorn zur allgemeinen
Operation 616, oder sie springt zuriick zur allgemei-
nen Operation 606. Von der allgemeinen Operation
616 wird der Methodenaufruf 618 ausgefuhrt, gefolgt
von der allgemeinen Operation 619, dem Sperrsyste-
maufruf 621A und der allgemeinen Operation 622.

[0082] Die Operationen, die flir den Binariberset-
zungsprozess von Interesse sind, sind die Leseope-
ration 603, die Schreiboperation 610, die Verzwei-
gungsoperation 614, der Methodenaufruf 618 und
der Sperrsystemaufruf 621A, die alle hervorgehoben
sind. Die Leseoperation 603 und die Schreiboperati-
on 610 werden als speicherzugriffsbezogene Opera-
tionen fUr das Einflgen von Zeigeruberprufungen be-

11/22

DE 699 22 015 T2 2005.12.01

stimmt. Die Verzweigungsoperation 614 und der Me-
thodenaufruf 618 werden fir das Einfligen von
Yield()-Aufrufen bestimmt. Der Sperrsystemaufruf
621A ist fur das Ersetzen durch eine nichtsperrende
Systemaufrufvariante bestimmt.

[0083] In Fig. 6B werden die Modifikationen fir der
Zwischenform des Ausfiihrungsblocks von Fig. 6A
veranschaulicht. Die Leseoperation 603 wird durch
die Zeigeruberprifungsoperation 601, die Verzwei-
gungsoperation 602, die Leseoperation 603 und die
Flag-Operation 604 ersetzt. Die Uberpriifungsopera-
tion 601 bestimmt, ob der Zeigerwert im zulassigen
Bereich liegt, und auf sie folgt die Verzweigungsope-
ration 602. Die Verzweigungsoperation 602 fihrt ent-
weder die Leseoperation 603 aus, wenn der Zeiger
zulassig ist, oder sie fiihrt eine Flag-Operation 604
aus, um zu melden, dass die Zeigeruberprifung ei-
nen unzuldssigen Zeiger anzeigt. Die Operationen
603 und 604 flihren beide zur Operation 605.

[0084] Ahnlich zu dem oben beschriebenen Einfii-
gen, das fiir die Leseoperation 603 durchgefiihrt wird,
ist die Leseoperation 610 Gegenstand einer Uberpri-
fung und Flag-Einfigung. Die Leseoperation 610
wird durch die Zeigerlberpriifungsoperation 608, die
Verzweigungsoperation 609, die Leseoperation 610
und die Flag-Operation 611 ersetzt. Die Uberprii-
fungsoperation 608 bestimmt, ob der Zeigerwert im
zulassigen Bereich liegt, und auf sie folgt die Ver-
zweigungsoperation 609. Die Verzweigungsoperati-
on 609 fuhrt entweder die Schreiboperation 610 aus,
wenn der Zeiger zuldssig ist, oder sie flhrt eine
Flag-Operation 611 aus, um zu melden, dass die Zei-
geruberprufung einen unzulassigen Zeiger anzeigt.
Die Operationen 610 und 611 fihren beide zur Ope-
ration 612.

[0085] Die Rickverzweigungsoperation 614 weist
eine in die Rucksprungschleife zur Operation 606
eingefugte Yield-Operation 615 auf. Die eingefligte
Yield-Operation 615 lasst fur andere Threads die
Méoglichkeit zu, Prozessorressourcen zu erhalten, be-
vor die Schleife, die durch die Verzweigungsoperati-
on 614 gebildet wird, noch einmal beginnt. Das ver-
hindert, dass ein langer Schleifen-Rekursionspro-
zess den anderen Threads die Prozessonessourcen
wegnimmt und férdert das kooperative Scheduling.
Auf die gleiche Weise wird die Yield-Operation 617
vor dem Methodenaufruf 618 eingefugt, um nétigen-
falls ein Ausfiihren anderer Threads zu erlauben, be-
vor eine neue Methode durch den aktuellen Thread
initiiert ist.

[0086] Der Sperrsystemaufruf 621A wird in Fig. 6B
durch einen nicht-sperrenden Systemaufruf 621B er-
setzt. Wahlweise kann eine Yield-Operation 620 vor
dem Systemaufruf eingefligt werden. Wenn ndétig
kann ein nicht-sperrender Systemaufruf 621B einen
neuen asynchronen Thread erzeugen, um Aktivitaten

der Ubersetzten Funktion als ein unabhangig ausge-
fuhrter Thread weiterzufiihren. Wenn er durch die vir-
tuelle Maschine interpretiert oder kompiliert ist, bietet
der revidierte Ausfihrungsblock von Fig. 6B bedeu-
tende Vorteile beim Debugging und Scheduling ge-
genuber der nativen Methodenausfihrung vom
Stand der Technik.

[0087] Fig. 7 ist ein Blockdiagramm, das eine Lauf-
zeitumgebung veranschaulicht, die eine Binariber-
setzung entsprechend einer Ausfiihrungsform der Er-
findung implementiert. In Fig. 7 |auft das Betriebs-
system 109 Uber der Hardware 110, und die virtuelle
Maschine 105 lauft Gber dem Betriebssystem 109.
Die Ausfiihrung des Betriebssystems 109 wird durch
die Hardware 110 unterstitzt. Wie in Fig. 3A und
Fig. 3B umfassen die virtuelle Maschine 105 und das
Betriebssystem 109 den VM-Thread-Scheduler 303
bzw. den OS-Thread-Scheduler 304 zum Verwalten
der Thread-Ausflihrung. Zusatzlich umfasst die virtu-
elle Maschine 105 den Binariibersetzungsprozess
701.

[0088] In der virtuellen Maschine 105 werden mul-
tiple Anwendungen und/oder Applets, wie z.B.
Applet1 (300) und Applet2 (301), ausgefuhrt. Applet1
und Applet2 kénnen jedes eine oder mehrere Byte-
code-Klassendateien umfassen. Eine verbundene
Bibliotheksdatei (LIB) 302 ist mit Applet2 verknipft,
um native Methoden zu unterstitzen. Der native
Code der Bibliotheksdatei 302 ist geparst und durch
den BinarUbersetzungsprozess 701 der virtuellen
Maschine 105 Ubersetzt, um die Ubersetzte Biblio-
thek 700 zu erzeugen.

[0089] Die ubersetzte Bibliothek 700 umfasst die
Zwischenform des nativen Codes einschlie3lich von
Speicherzugriffsiiberprifungen, Yields und
nicht-sperrenden Aufrufvarianten. Wird eine native
Methode von Applet2 durch den Thread T6 aufgeru-
fen, dann wird die Gibersetzte Bibliothek 700 in der vir-
tuellen Maschine 105 interpretiert oder kompiliert, um
die gewunschte Funktion auszufihren. In Abhangig-
keit von der Zwischenform der Gbersetzten Bibliothek
700 kann sich der Interpretations- oder Kompilie-
rungsprozess fiir die Ubersetzte Bibliothek von dem
Interpretations- und Kompilierungsprozess, der auf
die Klassen von Applet1 oder Applet2 angewendet
wird, unterscheiden oder nicht unterscheiden. Die all-
gemeine Handhabung der und die ausgelibte Kon-
trolle Gber die Bibliothek 700 durch die virtuelle Ma-
schine 105 entsprechen jedoch denen von Applet1
und Applet2. In einigen Ausfihrungsformen kann die
Ubersetzte Bibliothek 700 im Thread T6 Uber Rah-
men im Stapel 212 statt Uber den Nativmetho-
den-Stapel 216 verarbeitet werden. Tatsachlich kann
die Ubersetzte Bibliothek 700 ausgefuhrt werden, als
ob die Ubersetzte Bibliothek 700 zusatzliche Stan-
dardmethoden ohne die Mangel des unveranderten
nativen Codes bereitstellen wiirde.

12/22

DE 699 22 015 T2 2005.12.01

[0090] Da die Ubersetzten Nativcode-Funktionen
der verbundenen Bibliothek durch die virtuelle Ma-
schine 105 statt eines separaten verbundenen Bibli-
otheksprozesses ausgefiihrt werden, der durch das
Betriebssystem 109 durchgefihrt wird, und weil
Sperraufrufe in der bersetzten Bibliothek 700 nicht
vorkommen, kann ein kooperatives Scheduling durch
den VM-Thread-Scheduler 303 vollzogen werden.
Somit ist das native Threading, wie es in Fig. 3B im-
plementiert ist, nicht notwendig. Die Synchronisation
von Thread-Ereignissen in der virtuellen Maschine
105 ist unabhangig vom zugrundeliegenden Be-
triebssystem und der Hardware, und ein Debugging
kann ohne Berucksichtigung der auf dem Betriebs-
system beruhenden Gleichzeitigkeitsprobleme
durchgefiihrt werden.

[0091] Somit wurden in Verbindung mit einer oder
mehreren spezifischen Ausfihrungsformen ein Ver-
fahren und eine Vorrichtung zum Ubersetzen und
Ausfuhren eines nativen Codes in einer Virtuell-Ma-
schine-Umgebung beschrieben. Die Erfindung ist
durch die Anspruche und durch deren vollstandigen
Umfang an Aquivalenten festgelegt.

Patentanspriiche

1. Verfahren zum Ubersetzen und Ausfiihren ei-
nes nativen Codes in einem Computersystem (400),
wobei das Verfahren ein Erlangen eines nativen Co-
des aus einer Bibliothek (302) umfasst, gekennzeich-
net durch ein Parsen des nativen Codes in eine Zwi-
schenform, ein Verarbeiten der Zwischenform in eine
Ubersetzten Form (700), die ein kooperatives Sche-
duling aller Threads in einer virtuellen Maschine
(105) ermdoglicht, und ein Ausfihren der Gbersetzten
Form (700) des nativen Codes.

2. Verfahren nach Anspruch 1, bei dem das Ver-
arbeiten in einer virtuellen Maschine (105) durchge-
fuhrt wird.

3. Verfahren nach Anspruch 1, bei dem das Ver-
arbeiten ein Ildentifizieren eines Sperrsystemaufrufs
in der Zwischenform und ein Ersetzen des Sperrsys-
temaufrufs (621A) durch eine nicht-sperrende Vari-
ante des Systemaufrufs (621B) umfasst.

4. Verfahren nach Anspruch 1, bei dem das Ver-
arbeiten ein Identifizieren eines Speicherzugriffvor-
gangs in dem Zwischenformat und ein Hinzufiigen ei-
ner Uberpriifung auf eine Speicherzugriffsverletzung
zu dem Speicherzugriffvorgang umfasst.

5. Verfahren nach Anspruch 2, bei dem das Aus-
fuhren der Ubersetzten Form weiterhin ein Kompilie-
ren der Ubersetzten Form (700) durch die virtuelle
Maschine (105) umfasst.

6. Verfahren nach Anspruch 2, bei dem das Aus-

fuhren der Ubersetzten Form (700) ein Interpretieren
der Ubersetzten Form (700) durch die virtuelle Ma-
schine (105) umfasst, um die Funktionen darin aus-
zufuhren.

7. Verfahren nach Anspruch 1, bei dem die Verar-
beitung ein Identifizieren eines Yield-Punktes in der
Zwischenform und ein Einfligen einer Yield-Funktion
an dem Yield-Punkt umfasst.

8. Verfahren nach Anspruch 7, bei dem der
Yield-Punkt ein Methodenaufruf umfasst.

9. Verfahren nach Anspruch 7, bei dem der
Yield-Punkt eine Schleife umfasst.

10. Verfahren nach Anspruch 9, bei dem die
Schleife ein Identifizieren einer Ruckverzweigung
umfasst.

11. Computerprogrammprodukt, das ein compu-
ternutzbares Medium mit einem computerlesbaren
Code, der darin enthalten ist, zum Ubersetzen und
Ausflihren eines nativen Codes umfasst, wobei das
Computerprogrammprodukt einen computerlesbaren
Code umfasst, der dazu eingerichtet ist, ein Compu-
ter zu veranlassen, einen nativen Code aus einer Bi-
bliothek (302) zu erlangen, gekennzeichnet durch
computerlesbaren Code, der dafiir eingerichtet ist, ei-
nen Computer zu veranlassen, den nativen Code in
eine Zwischenform zu parsen, computerlesbaren Co-
de, der dazu eingerichtet ist, einen Computer zu ver-
anlassen, die Zwischenform in eine Ubersetzte Form
(700) zu verarbeiten, die ein kooperatives Scheduling
aller Threads in einer virtuellen Maschine (105) er-
laubt, und computerlesbaren Code, der dazu einge-
richtet ist, einen Computer zu veranlassen, die Uber-
setzte Form (700) des nativen Codes auszufiihren.

12. Computerprogrammprodukt nach Anspruch
11, bei dem der computerlesbare Code, der dazu ein-
gerichtet ist, einen Computer zu veranlassen, die
Ubersetzte Form (700) auszufihren, in einer virtuel-
len Maschine (105) ausgefihrt wird.

13. Computerprogrammprodukt nach Anspruch
11, bei dem der computerlesbare Code, der dazu ein-
gerichtet ist, einen Computer zu veranlassen, die
Zwischenform zu verarbeiten, einen computerlesba-
ren Code umfasst, der dazu eingerichtet ist, einen
Computer zu veranlassen, einen Sperrsystemaufruf
(621A) in der Zwischenform zu identifizieren, und ei-
nen computerlesbaren Code, der dazu eingerichtet
ist, einen Computer zu veranlassen, den Sperrsyste-
maufruf durch eine nicht-sperrende Variante (621B)
des Systemaufrufs zu ersetzten.

14. Computerprogrammprodukt nach Anspruch
11, bei dem der computerlesbare Code, der dazu ein-
gerichtet ist einen Computer, zu veranlassen, die

13/22

DE 699 22 015 T2 2005.12.01

Zwischenform zu verarbeiten, folgendes umfasst:
einen computerlesbaren Code, der dazu eingerichtet
ist, einen Computer zu veranlassen, einen Speicher-
zugriffsvorgang in der Zwischenform zu identifizieren,
und einen computerlesbaren Code, der dazu einge-
richtet ist, einen Computer zu veranlassen, eine
Uberpriifung nach einer Speicherzugriffsverletzung
zu dem Speicherzugriffsvorgang hinzuzufiigen.

15. Computerprogrammprodukt nach Anspruch
11, bei dem der computerlesbare Code, der dazu ein-
gerichtet ist, einen Computer zu veranlassen, die
Zwischenform zu verarbeiten, einen computerlesba-
ren Code umfasst, der dazu eingerichtet ist, einen
Computer zu veranlassen, in dem Zwischenformat
einen Yield-Punkt zu identifizieren, und einen compu-
terlesbaren Code, der dazu eingerichtet ist, einen
Computer zu veranlassen, eine Yield-Funktion an
dem Yield-Punkt einzufliigen.

16. Computerprogrammprodukt nach Anspruch
15, bei dem der computerlesbare Code, der dazu ein-
gerichtet ist, einen Computer zu veranlassen, den
Yield-Punkt zu identifizieren, einen computerlesba-
ren Code umfasst, der dazu eingerichtet ist, einen
Computer zu veranlassen, ein Methodenaufruf zu
identifizieren.

17. Computerprogrammprodukt nach Anspruch
15, bei dem der computerlesbare Code, der dazu ein-
gerichtet ist, den Computer zu veranlassen, einen
Yield-Punkt zu identifizieren, einen computerlesba-
ren Code umfasst, der dazu eingerichtet ist, einen
Computer zu veranlassen, eine Schleife zu identifi-
zieren.

18. Computerprogrammprodukt nach Anspruch
17, bei dem der computerlesbare Code, der dazu ein-
gerichtet ist, einen Computer zu veranlassen, die
Schleife zu identifizieren, einen computerlesbaren
Code umfasst, der dazu eingerichtet ist, einen Com-
puter zu veranlassen, eine Ruckverzweigung zu
identifizieren.

19. Vorrichtung, die eine Klasse umfasst, die eine
native Methode umfasst, wobei die native Methode
durch einen nativen Code in einer Bibliothek (320)
unterstutzt wird, da
durch gekennzeichnet, daf}
eine virtuelle Maschine (105) die Klasse verarbeitet,
wobei die virtuelle Maschine (105) dazu eingerichtet
ist, den nativen Code in einer Uibersetzten Form (700)
auszufihren, und die virtuelle Maschine (105) folgen-
des umfasst:
einen Thread-Scheduler, der ein kooperatives Sche-
duling implementiert, und eine Ubersetzungseinrich-
tung, die dazu eingerichtet ist, den nativen Code in
eine Zwischenform und die Zwischenform in die Gber-
setzte Form (700) zu Ubertragen, wobei die Ubersetz-
te Form (700) eine Form ist, die fir kooperatives

Scheduling aller Threads in der virtuellen Maschine
(105) geeignet ist.

20. Vorrichtung nach Anspruch 19, bei dem die
Ubersetzungseinrichtung weiterhin dazu eingerichtet
ist, ein Sperrsystemaufruf (621A) in der Zwischen-
form durch eine nichtsperrenden Variante (621B) des
Systemaufrufs zu ersetzen.

21. Vorrichtung nach Anspruch 19, bei dem die
Ubersetzungseinrichtung weiterhin dazu eingerichtet
ist, eine Speicherzugriffstiberpriifung bei einem Spei-
cherzugriffsvorgang in der Zwischenform einzufligen.

22. Vorrichtung nach Anspruch 19, bei dem die
Ubersetzungseinrichtung weiterhin dazu eingerichtet
ist, einen Yield-Vorgang an einem Yield-Punkt in der
Zwischenform einzufligen.

23. Vorrichtung nach Anspruch 22, bei welcher
der Yield-Punkt ein Methodenaufruf ist.

24. Vorrichtung nach Anspruch 22, bei welcher
der Yield-Punkt eine Schleife ist.

25. Vorrichtung nach Anspruch 24, bei der die
Schleife durch eine Rickverzweigung identifiziert
wird.

Es folgen 8 Blatt Zeichnungen

14/22

DE 699 22 015 T2 2005.12.01

Anhangende Zeichnungen

I d4NoId

* . BIVMAQIVH
o1l :

W3LSASSE3RI13d

WILSASLISZANV
801

YT TNJINOD
HNIL-NI-Lsnl

UHLTAIADLNI

a

Lot
INIHOSYW 3T3NLYIA

NIMIHLONEIE
ENERERERY IR

/
sol

d34NY4-3C0I3..A8
®

NIMIHLOgIg
Y -N3ISSY™

7
il

— 430VO1-NISSVIA |

j40)1

ONNg3IONNLIFZANVT

€01

N3131va-3d02
-31A9 NISSVTA

(AN}

ATNINOD
} 101

N3I3Lvd113No
N3SSYA

0ot

ONNG3IONNSONNYIITIJINOA

15/22

DE 699 22 015 T2 2005.12.01

S80Z 3000 NIAOHL3W
/NFHOIMNYLSNOA

_ SOC N3Lva

-N3IAOH13IW/a134

¥GZ 100d
“N3ILNV.LSNOMX

} 3SSY™

>

€02 zo0z HOIZ¥3ENIAOHLIW

102 dVaH

¢ UNOId

U QvayH.L

91z 13dV.1S

N3IAQOHLIN-ALLYN €12

GlZ $1Z213dVLS

J18VIIVANIANVHEIHO
3IVAHOT

2tz 13dvils

} [oau dordo] [oay amvaal
Noas suva) Tomiod N o

N
I GVIUHLL 80t

/

00¢ JHOIFYIGNILVQ-1I3ZINV1

16/22

DE 699 22 015 T2 2005.12.01

100 301

ya -
ILE" APPLET2 |
| APPLET] I i “‘i 3/[?2

105 VIRTUELLE MASCHINE

\)
LT T] . |

VM THREAD-SCHEDULER

BETRIEBSSYSTEM |
' Ta) |TB].. @ ‘TVMl
109 | |
N ¥ - 304
0S THREAD-SCHEDULER %
110
N HARDWARE

FIGUR 3A

17/22

DE 699 22 015 T2 2005.12.01

300 301
Z L
PLET1 I APPLET2 l
AP 307
~ /
105]
N R
M @] [>
. . BIB
h / v 303
VM THREAD-SCHEDULER

BETRIEBSSYSTEM

18/22

DE 699 22 015 T2 2005.12.01

— YTAUIS .

ooy

1Z¥ ONNQA
-NIg43A
“Z13N
N
44’
vy
gst
LINYILNI

1A

UTAAIS

9¢k

P

'}

(A8 4

1147

Siy

AL

H3IHOII3AdS
N3ISSVWN. §

— m:.r<._.w<._._

d3HOI3dS H3IHOI3dS
g -1dNVH - O3AIA
j
o HIMYYLS
-/
157

¥0SS3Z0¥d
/7
c1p
o/1
61¥

19/22

DE 699 22 015 T2 2005.12.01

— 300
NATIVEN CODE AUS
VERBUNDENER BIBLIOTHEK
ERHALTEN :
501

NATIVEN BINARCODE IN
ZWISCHENFORM PARSEN

UBERPRUFUNGEN VON
SPEICHERZUGRIFFSVERLETZUNGEN
(z.B. WILDE ZEIGER) HINZUFUGEN

SPERRSYSTEMAUFRUFE DURCH NICHT >0

SPERRENDE VARIANTEN ERSETZEN

IELDS IN AUFRUFE UND SCHLEIFEN EIN-
SETZEN (z.B. BE| RUCKVERZWEIGUNGEN)

REVIDIERTEN CODE ZUR AUSFUHRUNG

KOMPILIEREN ODER INTERPRETIEREN

FIGUR 5

20/22

DE 699 22 015 T2 2005.12.01

OP (600} OP (600)
-UBERPRUFUNG + RD(E03) CHK (§0U)
Y :;{(602)
QP (605) "'j
v v
- OP (606) RD(603) FLAG({604)
Y
OP (607) OP (605)
v
«UBERPRUFUNG*| WR (610) —p- OF (606)
OP (612) CP (607)
Y
OP (613) _ CHK (08)
*YTELD" L BR(614) BR(609)
gp (618) .) WR (610) FLAG(611)
v Y ome]
“YTELD" MC (618) —— . CF (612)
(METHODE) Y .
OP (619) «— CP (613)
* .
+NICHT SPERREN + BSC(621A) — BR{(614) ——
“ (SYSTEMAUFRUF) :
OP (622) <4— — YLD (615)
' - OP(616) !
S
FIGUR 6A YLD (617)
LEGENDE: FIG: 6A-6B Mc (513’(;13 HODE)
RD = Speicherleseoperation vy
WR = Speicherschreiboperation QP (619) %—
BR = Verzweigungsoperation (z.B. ,if")
MC = Methoden-(Funktions-)Aufruf YLD (620)
BSC = Sperrsystemaufruf
OP = andere allgemeine Operation (sonstiges) NBSC (621B)—
CHK = Zeigertiberprilffungsoperation (SYSTEMAUFRUF
YLD = Yield-Operation OF (622) < |
NBSC = nicht-sperrender Systemaufruf :
FLAG = Signalzugriffsverletzung *

FIGUR 6B

21/22

DE 699 22 015 T2 2005.12.01

300 301
- / . s . .
APPLET1 I I APPLET2 I 700 302
A
VIRTUELLE MASCHINE UBERSETZTE
105 BIBLIOTHEK
N |
1l |T2 |T3| lT4I ITSI : BIB
303
VM THREAD-SCHEDULER

109 BETRIEBSSYSTEM

304

OS THREAD-SCHEDULER

N HARDWARE

FIGUR 7

22/22

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

