PCT ' WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : (11) International Publication Number: WO 00/57276
GOGF 12/00 Al i i

(43) International Publication Date: 28 September 2000 (28.09.00)

(21) International Application Number: PCT/US00/08085 | (81) Designated States: AE, AG, AL, AM, AT, AU, AZ, BA, BB,

BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM,

(22) International Filing Date: 24 March 2000 (24.03.00) DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL,

IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU,
LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT,
(30) Priority Data: RO, RU, SD, SE, SG, S, SK, SL, TJ, T™M, TR, TT, TZ,
60/126,103 25 March 1999 (25.03.99) US UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM,
KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(71) Applicant: EXCELON CORPORATION [US/US]; 25 Mall (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
Road, Burlington, MA 01803 (US). LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
) CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(72) Inventor: LEIVENT, Jonathan, I.; Excelon Corporation, 25
Mall Road, Burlington, MA 01803 (US).
Published
(74) Agents: COHEN, Jerry et al.; Perkins, Smith & Cohen, LLP, With international search report.
30th floor, One Beacon Street, Boston, MA 02108 (US).

(54) Title: METHOD AND APPARATUS FOR POINTER RELOCATION OPTIMIZATION FOR VIRTUAL MEMORY MAPPING
AND TRANSACTION MANAGEMENT IN A DATABASE SYSTEM

QLoSTE R/ *

FRAME | | CONIENTS £]t |oo|eo
PA SEGMENT
' 186 { 1 5 S VI IR P
170
P'A'GE”“““‘FWI'} 187 2 7 | 1iaamre { W liw | N Y
: 6 wi w|Y|IN meur
: DIRECIORY, 180
* a
—_] .
PAGE FRAME N .
s
e ST N N St
72 74 176 178 B2 184
\
CACHE MEMORY, 56

(57) Abstract

For an object—oriented database system, an apparatus for virtual memory mapping and transaction management comprises at least
one permanent storage and at least one database, at least one cache, and a processing unit including means, utilizing virtual addresses, to
access data in the cache, means for mapping virtual to physical addresses, and means for retaining the cached data after a transaction. Data
retained across transations will often not need further translation, referred to as forward relocation. Making cached data usable across a
sequence of transactions often without requiring further translation, while working size of this data may be larger than a client computer’s
address space, is referred to as relocation optimization. The method uses a queue containing entities ordered by recency of use, and recycles
address space of least-recently used bindings to preserve the validity of bindings necessary for the proper function of the client application
with minimal overhead.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CcM
CN
CU
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
T
UA
UG
us
UZ
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085

Method and Apparatus for Pointer Relocation
Optimization for Virtual Memory Mapping and Transaction
Management in a Database System

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority of U.S. provisional
application Serial No. 60/126,103 entitled, "Method and
Apparatus for Pointer Relocation Optimization for Virtual
Memory Mapping and Transaction Management in a Database

System” filed March 25, 1999 by the present applicant.

FIELD OF THE INVENTION

This invention relates generally to computer systems and
more particularly to pointer management in a database system
using virtual memory mapping having a plurality of caches

having persistent data.

BACKGROUND OF THE INVENTION

In object-oriented database systems, and any other
systems having large numbers of inter-connected objects,
inter-object references, sometimes called pointers, provide a
complex structure providing access to the stored objects.
Application programs, in accessing the object-oriented
database, consume time by accessing and updating objects,
following the intricate connections between objects, using
both associative queries and direct traversal through the
database, and performing some amount of computation as each
object is visited.

Typical application areas for object-oriented databases
are computer-aided design, manufacturing, and engineering,
software development, electronic publishing, multimedia office
automation, and geographical information systems. All of
these application environments demand that an object-oriented
database system be fast.

A typical object-oriented database system has a number
of work stations or some other type of client computer
connected through a server to the object-oriented database.

Each client computer has its own cache memory in which data

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085

2

required by a client application program is placed.

Every object-oriented database system has some way to
identify an object. Currently, some systems use an “object
identifier” (OID), which embodies a reference to an object.
Some systems use pointers. An operation called
“dereferencing”, finds an object by following a pointer to the
object and by making the object available to a requesting
application.

Accessing data in the database involves copying the data
into a cache memory of a client system. The cached data in
some current systems is frequently discarded after the
completion of a transaction because the pointers referencing
the cached data become obsolete. Discarding the cached data
insures consistency of data, but it increases communication
between the client and the server computer. It also fails to
make use of the principles of locality which encourage the use
of a cache in the first place. Persistent data in the cache,
however, requires a way to keep the data and the pointers
referencing the data consistent with the database.

It remains desirable to have a way to update the data
reference pointers in order to allow caching of persistent
data in a form in which the dereferencing operation can be
performed at high speed.

It is an object of the present invention to provide a
method and apparatus for persistent caching of data in an
object-oriented database system.

It is another object of the present invention to provide
a method and apparatus having optimized pointer relocation for
cached data.

It is another object of the present invention to provide
a method and apparatus for optimized pointer relocation in
virtual memory mapping architecture for an object-oriented
database system.

SUMMARY OF THE INVENTION
The problems of pointer relocation optimization for
persistent cached data are solved by the present invention of

a method and apparatus for pointer relocation optimization for

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085

3

virtual memory mapping and transaction management in a
database system. _

There is provided an apparatus and a method for virtual
memory mapping and transaction management for an object-
oriented data base system having at least one permanent
storage means for storing data and at least one data base, at
least one cache memory for locally storing data addressed by
physical addresses, and a processing unit including means for
requesting data utilizing virtual addresses to access data in
the cache memory, means for mapping virtual addresses to
physical addresses and means for retaining the cached data
after the conclusion of a transaction. Typically, the system
has a plurality of client computers each having a cache
memory, interconnected by a network, and each permanent
storage means has a server computer. A single computer may
serve as both a client computer and a server computer. The
apparatus operates by relocating pointers to cached data in
order to provide the client application with an efficient
dereferencing operation. The apparatus further operates by
maintaining the relocated pointers across a succession of
transactions against the data held in the cache. The
apparatus achieves its optimization benefits by reducing the
frequency of pointer relocation maintenance operations to a
minimum.

The relocation operations can be segregated into three
categories: inbound relocation, forward relocation, and
outbound relocation. Inbound relocation involves the
translation of pointers on a page from their external format
to a format and state usable by the client application.
Inbound relocation occurs once for each occurrence of a
database page entering the client cache. Forward relocation
involves the translation of pointers on a page from a state,
created by either inbound relocation or a previous forward
relocation, that is no longer immediately usable by the client
application to a state that is presently usable by the client
application. Forward relocation of a particular page occurs
at most once for each occurrence of a transaction in which the

page is either read or modified, other than the first such

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
4

transaction in which the page first enters the cache.
Outbound relocation involves the translation of pointers from
the form usable by the client application to their external
form. Outbound relocation of a particular page occurs at the
end of a successful transaction in which the page was
modified, or when a modified page must otherwise be evicted
from the cache. An advantage of the present invention is the
management of address space used by the client application so
as to decrease the number of forward relocations required
across a succession of transactions.

The present invention together with the above and other
advantages may best be understood from the following detailed
description of the embodiments of the invention illustrated in

the drawings, wherein:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a typical distributed
database system configuration in which the present invention
may be utilized;

FIG. 2 is a more detailed block diagram of a portion of
the system shown in FIG. 1 with separate data repositories at
server computers and client computers;

FIG. 3 is a more detailed block diagram of a system
portion with a permanent repository of data and client on one
computer;

FIG. 4 illustrates how the system of the present
invention interacts with other processes of a computer;

FIG. 5 is a diagram of a permanent repository of data,
illustrating its division into databases, segments, clusters,
and pages;

FIG. 6 is a diagram of the persistent relocation map and
its associated database page;

FIG. 7 is a more detailed memory diagram showing the data
structure for a cluster stored in the database;

FIGS. 8A-8C are diagrams showing the data structures for
three different object tags;

FIG. 9 is a diagram showing the data structure for a
schema;

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085

5

FIG. 10 is a diagram showing the data structure of a type
entry to the schema of FIG. 9;

FIG. 11 is a diagram of the data structure for
instructions for a type description dictionary entry;

FIG. 12 is a diagram of the data structure for a client
computer for monitoring the client cache;

FIG. 13 is a diagram of the data structure of a server
computer for monitoring ownership status of database pages;

FIG. 14 is a diagram illustrating the assignment of
virtual address space to database segments;

FIG. 15 is a diagram illustrating the mapping data into
virtual memory (physical addresses of the cache to virtual
addresses) ;

FIGS. 16A-16C are diagrams illustrating the relationship
between the cache directory, the virtual memory map and the
virtual address map;

FIG. 17 is a diagram illustrating the method of
relocating a persistent address to a virtual address;

FIG. 18 is a detailed representation of the mapping of a
persistent address to a virtual address;

FIG. 19 is a first relopt queue according to principles
of the present invention;

FIG. 20 is a second relopt queue at t, according to
principles of the present invention;

FIG. 21 is the relopt queue of FIG. 20 after inbound
relocation of a first page of data;

FIG. 22 is the relopt queue of FIG. 21 after inbound
relocation of a second page of data;

FIG. 23 is a diagram of the PSR space according to
principles of the present invention;

FIG. 24 is the relopt queue of FIG. 22 after committing
the transaction; and

FIG. 25 is a third relopt queue having chained DABS
structures among the gqueue elements according to principles of

the present invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Figures 1-4 illustrate a representative basic computer

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
6

system in which the pointer relocation optimization for a
virtual memory mapping method and apparatus of the present
invention may be utilized.

Figure 1 illustrates a system in which a plurality of
client computers 40, a client and server computer 42 and one
or more server computers 44, are connected together by a
computer network 46 or other communication path such as a
computer bus. A client computer 40 is used directly by a user
and runs various application software. A server computer 44
acts as a permanent repository of data held in a database. In
general, any client computer 40 can access data stored on any
server computer 44. Some computers 42 act as both a client
computer and a server computer. Such a computer 42 can access
data stored on itself, as well as on other server computers
44 . Other client computers 40 can also access data on a client
and server computer 42. The database method and apparatus of
the present invention can be used on a system that has at
least one client and server computer 42 or at least one each
of a client computer 40 and server computer 44 connected by a
computer network or communication path 46. For simplicity, a
client computer 40 or a computer 42 when acting as a client
computer will be referred to as a “client” and a server
computer 44 or a computer 42 acting as a server will be
referred to as a “server”.

Figure 2 1is a more detailed diagram of a simplified
minimum system which may be used in practicing the present
invention. Similar reference numbers depict similar structures
throughout the drawings. A.server computer 44 comprises a
central processing unit (CPU) 50 connected to a disk or other
mass storage medium 52 which is a permanent repository of data
for one or more databases. CPU 50 moves data between disk 52
and network 46. Client computer 40 has a central processing
unit (CPU) 54 which moves data between network 46 and its
cache memory 56. CPU 54 also controls the virtual address
space which is mapped to the physical addresses of the cache
56. An application running on a client computer 40 will
manipulate data in its database by reading, writing, creating

and deleting data in the cache memory 56. A client 40 performs

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
7

all such manipulations on data in its cache memory 56 rather
than by performing transactions across computer network 46 on
data stored on a server computer 44 as is done in standard
distributed database systems. When a transaction is completed
at a client computer 40 on data in its cache memory 56, the
results of those transactions are transferred across the
network 46 to the permanent repository, or disk, 52 on the
server computer 44. The method of interaction between a client
computer 40 and server computer 44 is the same regardless of
the number of server computers 44 and client computers 40 on a
communication network.

Figure 3 depicts the special case of a combined client
and server computer 42. Such a computer can be used in the
place of either a client computer 40 or server computer 44 as
depicted in FIG. 2. Such a computer also may act as both a
typical server computer 44 and as a typical client computer 40
in the mode of operations described in conjunction with Figure
2.

A client and server computer 42 may also handle
interactions between its cache memory 56 and its permanent
data repository 52 via central processing unit (CPU) 60. This
interaction is similar to the interaction of the combination
58 (Figure 2) of a server computer CPU 50, client computer CPU
54 and a communication network 46. The cache memory 56 in a
client and server computer 42 provides the same function as
cache memory 56 of a typical client computer 40.

Figure 4 illustrates the modularity and interactions of
the virtual memory mapping database (VMMDB). The VMMDB 66 for
a client computer 40 or a client and server cbmputer 42 draws
upon the services provided by its operating system 68. In
turn, the VMMDB 66 supplies services that are used by an
application program 64. At a server computer 44, the VMMDB 66
interacts with the operating system 68 to handle read and
write requests from client computers and to monitor the
ownership of database pages.

Figure 5 illustrates the division of the permanent
repository of data 52 into at least one database 70. Each

database 70 is subsequently divided into at least one segment

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
8

74. Each segment 74 is subsequently divided into at least one
cluster 73. Each cluster 73 contains a number of pages 72
which can be addressed by a page number 71 from the beginning
of the cluster 73. Each page in turn contains a number of
addressable locations (individual bytes) addressed by an
offset from the beginning of the page. These addressable
locations can also be thought of as being addressed by an
offset from the beginning of the cluster, where this offset is
computed by multiplying the page number by the number of
addressable locations within a page and adding the offset
within the page. That is, each addressable location in the
database has an address as follows: [database, segment,
cluster, offset]. A sequence of addressable locations 72 can
contain a value or a pointer corresponding to a database
address. A pointer can point into the current or other pages
in the same database or other pages in other databases. When
a client application accesses the database, the VMMDB assigns
virtual addresses from the client's virtual address space to
pages in the database that the client application needs to
access.

Figure 6 illustrates a persistent relocation map (PRM)
140 and the indexing of the PRM 140 into pointers 142 of its
associated database page 144. Each page has an associated
structure called a metadata structure. The page and the
metadata structure are communicated between the server and the
client together each time the page is accessed. The server
maintains the pairing of the page with its metadata structure.
The metadata structure includes the PRM and various tags,
described below. The PRM and the tags describe the location
and translation of pointers on a page. The PRM 140 has a
plurality of entries (PMREs) 146, 148, each indexing into a
page of the database. The pointers 142 on the database page
are 4 byte values (8 byte values can be represented
similarly). The pointers 142 are divided into two fields, an
index field 150 and a low offset field 152. The index field
150 is the field that indexes the next pointer on the page
that has the same PRME. The function of the low offset field

152 is to differentiate among the possible addressable

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
9

locations referenced by a single PRME, which can address 4
megabytes within the target cluster. The low offset field is
added to the PRME's high offset field, giving a single offset
for use within the target cluster.

Fach PRME 146, 148 has a flags field 154, a high offset
field 156, a number field 158, and an index field 160. The
flags are a new database index flag, a new segment id flag, a
new cluster id flag, and a new mapping granularity flag.

These flags indicate which fields will follow the head word of
the PRME. A short entry PRME 146, having only a head word,
assumes a target cluster ID that is equal to the contents of
the num field 158 added to the target cluster ID of the
previous PRME in the sequence of PRMEs constituting the PRM,
or the cluster ID of the currently accessed page if there is
no previous PRME. A longer entry PRME 148 has a head word and
one or more fields following it. These additional fields are
a database index field 162, a segment ID field 164, a cluster
ID field 166, and a mapping granularity field 168. These
additional fields, together with the num field 158 in the PRME
head word, indicate how the target database, segment, cluster,
or mapping granularity of the PRME differs from that of the
previous PRME in the sequence (or, again, from the current
page if there is no previous PRME). Each of these additional
fields is present if and only if the corresponding flag in the
PRME head word indicates. As long as PRM entries are sorted so
that similar PRMEs are next to each other, shorter entries,
rather than longer entries may be used. The target of each
pointer in the list starting from the head pointer index 160
in the PRME head word and progressing through the index fields
150 of pointers is computed by taking the target database,
segment, cluster, and mapping granularity of the PRME, and
combining together the high offset field 156 of the PRME head
word with the low offset fields 152 of each pointer in
succession. The purpose of the mapping granularity field 168
is to indicate the multiple of address space needed by the
target in units of 64K bytes, e.g. 1 x 64K, 2 x 64K, etc..
Figure 7 illustrates a cluster in the database. Each

cluster of the database 70 is divided into pages. Each page

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
10

has associated with it a structure of metadata that contains
data that describes the contents of the page, and includes a
list of tags to identify the type of each object on the page.
Objects are found only on pages so application programs will
only access the pages directly, and not the metadata. The
metadata holds internal data structures used only by the
VMMDB. Each cluster is divided into at least one page 80.
The size of a page 80 is predetermined by the computer
hardware and is typically 4096 , 8192, or 16384 bytes. This
description assumes a 4096-byte page without loss of
generality, as larger pages can be subdivided into multiple
4096-byte pages. In a cluster 76 there are typically three
types of stored objects: a single object 82, a vector of
objects 84 and free space 86. An object can contain one or
more values which can include pointers. Free space 86 can be
understood as a special variable-sized object. More than three
types of objects can be used, the three shown being
representative and sufficient to implement the present
invention. For each object wholly on or overlapping onto a
page, a tag is placed in the corresponding metadata structure
associated with the page. The sequence of tags is called a tag
table 94. A single object 82 has a corresponding object tag
88. A vector of objects 84 will have a corresponding vector
tag 90. Finally, a free space object 86 will have a
corresponding free space tag 92.

Figures 8A-8C illustrate in greater detail the contents
of each of the tags described in Figure 7. An object tag 88
(Figure 8A) has a flag field 100 indicating that the tag is
for a single object, and a type code field 102. A type code
describes special characteristics of an object, making it
possible to have a variety of types of a single object, each
type having its own characteristics. Type codes will be
described in more detail in connection with the description of
Figure 9 and 10. The vector tag 90 (Figure 8B) has a flag
field 104 indicating that the tag is for a vector, a type code
field 106 similar to type code field 102, and a length field
108 for describing the length of the vector. Finally, free
space tag 92 (Figure 8C) has a flag field 110 indicating that

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
11

the tag is for free space, and a length field 112 to indicate
the length of the free space.

In the preferred embodiment of this invention, single
object tags 88 are two bytes long. Vector tags 90 are 6 bytes
long, the additional 4 bytes containing the number of elements
in the vector. Free space tags 92 are 2 bytes long. The number
of object types and tags used in an implementation of the
present invention is dependent upon the kinds of databases
used and types of manipulations performed and thus is not
limited to the example described above.

The tag table 94, shown in Figure 7, is used to find
locations within a page containing database addresses that
need to be relocated. The tag table is based on the principle
that the contents of every page comprise an end-to-end
sequence of objects, which may overlap onto the previous
and/or next page in the cluster, where each object is one of a
known number of types. In this example there are three types:
(1) a simple object, (2) a vector (one dimensional array) of
objects or (3) free space. 1In other words, a tag table is a
data structure comprising a sequence of “tags” which directly
corresponds to the sequence of objects on a page. If the
first object on the page overlaps onto the previous page, a
distinguished field in the page’s metadata is used to indicate
the distance in bytes from the head of the object to the head
of the page.

Referring now to Figure 9, a data structure called a
“schema”, which is part of a database, contains a set of type
descriptions, one for each particular object type in the
database. The schema is indexed by type codes 102 and 106
(Figure 8A-8C) A type description indicates the size of an
object and locations of pointer values in that object. The
schema is normally allocated in its own cluster in the
database. Schema 120 contains a type description 122 for each
different object type (as indicated by a type code) contained
in the corresponding database. Each type description 122
describes one object type for which a unique type code value
has been assigned. Given a type code value 102, 106 from an

object tag, the VMMDB can use the type code to index into the

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
12

schema 120 for the type description 122 corresponding to that
object type.

The metadata for a page keeps track of all pointers that
are located within that page via the tag table 94 and schema
120 (which contains type descriptions 122). The metadata also
keeps track of the page-specific assignment of the persistent
address space with the persistent relocation map.

Figure 10 illustrates the contents of a type
description 122. The type description 122, indexed by its
type code field 124, includes a size field 126 containing the
size of an object of that type, and a set 128 of fields for
indicating which locations within an object of that type
contain pointers. These fields 128 are a set of instructions
130 or directives to be interpreted by the VMMDB to find
locations of pointers within an object. They are normally not
machine instructions that the hardware CPU understands
directly.

There are two kinds of these instructions: one indicates
that a pointer is at a particular offset within an object
type, and the other indicates that a Virtual Function Table
(VIBL) pointer is found at a particular offset within an
object type. (A VIBL pointer is part of the implementation of
the C++ language, and is simply a special type of pointer for
which the VMMDB performs relocation. The VTBL points to a
table of function pointers that an application uses for calls
to virtual functions.)

Figure 11 illustrates the format of an instruction 130
(Figure 10) from a type description 122. Each instruction has
a field 132 which indicates whether this pointer is a VTBL
pointer or a pointer to be relocated. Field 134 indicates the
offset from the beginning of the object at which the pointer
resides.

Figure 12 illustrates the structure of the cache memory
56 of a client computer 40 and a structure called the cache
directory used by the client computer CPU 54 to monitor cache
memory status. A client cache memory 56 comprises a set of
page frames 170 typically within a physical cache file on the

client’s disk, or otherwise within a part of the operating

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
13

system’s swap file on the client’s disk. Each page frame 170
either is free or holds a page of a database. The client
computer maintains the cache directory 180 which monitors
which pagé frames 170 contain database pages and which page
frames are free. No two page frames hold the same page. Given
a page of a database, e.g. page “5”, cluster "n", segment “4”,
database “/A/B/C,"” the VMMDB can use the cache directory 180
to determine efficiently the page frame 170 that holds the
page (the physical location of the page), or that the page is
not in the cache. To this end, the cache directory 180
contains a frame field 172, indicating the number of the page
frame, and a contents field 174 which identifies the page
within the frame by cluster ID, segment ID, and database
index. If a page is not in the cache, there is no entry for
it.

Each page frame 170 in the cache directory 180 has four
state values associated with it. The first two indicate the
encached state 176 and the locked state 178. The encached
state can either be “encached for read” (ER) or “encached for
write” (EW). The locked state can either be “unlocked” (U),
“locked for read” (LR), or “locked for write” (LW). To say
that the state of a page is EWLR, means it is encached for
write and locked for read. To say that the state of the page
is ER, means it is encached for read and unlocked. The other
two flags of a cache directory entry are called “downgrade
when done” 182, and “evict when done” 184. The purpose of
these fields are described later in connection with the
flowcharts of operation.

Figure 13 shows an ownership table. A server 44 keeps
track of which client 40 (or clients) has a copy of a page
from a database and whether the page is encached for read or
for write at that client (or clients). The server monitors
database use with an ownership table. The ownership table 190
contains entries 192 comprising three fields. A contents field
194 indicates a page of a database, with a page number,
cluster number, segment number and database name. The owner
field 196 indicates which client or clients are currently

using that page. The owner field is preferably an array of

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
14

client names. Finally, the status field 198 indicates whether
the page is encached at a client for reading or for writing.
Only one value needs to be stored because either all clients
will have a page encached for read or only one client will
have the page encached for write.

The combination of the cache directory 180 and the
ownership table 190 help to maintain cache coherency. A client
process can only modify the contents of a page if the page
frame holding the page is locked for write by the client. A
page frame can only be locked for write if it is encached for
write. Verification of this status and locking are performed
using the cache directory at the client. If any client has a
page frame encached for write, no other client computer can
have the same page in its cache. It is possible for many
clients to have a copy of a page encached for read, but only
one client at a time can have a copy of a page encached for
write. Verification of the encached status is performed by the
server using its ownership table. If no transaction is in
progress in the client computer, all page frames in its cache
are unlocked. If a transaction is in progress at a client, a
locked page cannot become unlocked, and a page that is locked
for write cannot become locked for read. That is, a page can
be locked or upgraded from read to write by a client during a
transaction, but cannot be unlocked nor downgraded during a
transaction. Locks are released when a transaction commits.
These rules correspond to the standard 2-phase locking rules
for databases.

The advantage of this form of two-phase locking is in
the aspect of monitoring the locks at a'client computer rather
than a server computer. Furthermore, data is cached and used
at the client rather than at the server, and the overhead of
sending locking information to the server is reduced. Thus,
data can be used for more than one transaction without extra
calls to the server. That is, this caching strategy makes it
possible to retain pages within the client across
transactions. The addition of the page addressing method
described below makes accessing the pages that remain behind

in the client very fast, and it is this advantage that

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
15

embodies the major claim of this invention. Standard features
of two-phase locking can still be used, including prevention
of write locks until all data is available and provision for
“time-outs” to prevent deadlock, or other schemes to detect
deadlock.

After a page is brought into a client's cache memory 56,
the targets of all pointers on that page must be assigned
locations in the virtual address space 200 of the client
computer CPU, as illustrated in Figure 14, and the pointers
translated correspondingly before that data can be mapped to
the virtual memory to be used by a client application. This
process is called inbound relocation. These assignments are
managed using a current address binding set 210, also called a
virtual address map (VAM), with entries 212 which indicate
which database, segment, cluster, offset and length, are
assigned to a certain portion of the client's virtual address
space. The translation of a pointer during inbound relocation
requires the use of an existing virtual address map entry
(VAME) if one exists for the target of the pointer, or the
construction of a new VAME for the target and incorporation of
that VAME into the VAM. The translation also requires that a
region of the client’s virtual address space be reserved for
and assigned to the VAME if it does not yet have such a
reservation and assignment. Finally, the translation of the
pointer can write into the pointer the virtual address for the
pointer computed as the offset from the top of this assigned
region of virtual address space equal to the offset computed
from the combination of the pointer’s low offset field and its
PRME's num fieid, high offset and/or offset field, minus the
offset of the VAME within the cluster.

Virtual address map entries (VAME) 212, which are also
referred to as bound or assigned DSCO handles, are similar to
the entries 146, 148 of the persistent relocation map 140 (see
Figure 6). The virtual address map 210 indicates the regions
of the virtual address space 200 to which database regions are
assigned, while the persistent relocation map 140 indicates
the regions of the database address space. Each VAM entry 212

contains a database field 214 indicating the database in which

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
16

a region resides, a segment field 216 indicating the segment
of that database in which the region is located, a cluster
field 217 indicating the cluster in the segment of that
database, and an offset field 218 indicating the offset or
distance in addressable units (bytes) from the beginning of
the cluster at which the region begins. There is also a size
field 220 indicating the length of the region, which is
analogous to the mapping granularity field of the PRME.
Finally, there is an address field 222 which indicates the
virtual address which is assigned to the first addressable
location of the region.

In order for an application to access data pages in the
cache, that data must be mapped to virtual memory. Figure 15
illustrates schematically the relationship of the virtual
address space 200 to the cache 56 (usually implemented as a
separate file on the client’s disk, or as part of the client’s
swap file) after mapping by the client computer has been
performed. A virtual memory map 224 is constructed by the
operating system 68 of the client computer, in a manner which
is typical for most computer systems. The virtual memory map
indicates the cache file addresses to which the virtual
addresses are mapped. A virtual memory map typically has an
entry for each page including a virtual address 225, a length
226, its corresponding cache file location 228 and the read or
write protection state 227 of that page.

Figures 16A-16C illustrate the relationship among the
cache directory, the virtual address map and the operating
system's virtual memory map. The cache directory 180 (Figure
12) indicates the cache file address (page frame) in which a
database page is found in cache memory 56. The virtual address
map 210 (Figure 14) indicates the virtual address to which a
database page is assigned, or to which it will be mapped if
used by an application. The virtual memory map 224 (Figure 15)
is constructed by the operating system from information given
it by the VMMDB from the cache directory 180 and the virtual
address map 210. The VMMDB instructs the operating system to
map a database page into virtual memory, giving it the cache

file address, in which the database page is located, from the

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
17

cache directory 180 and the virtual address, to which it is to
be mapped, from the virtual address map 210.

When a database page is first brought into a cache, prior
to mapping into virtual memory, pointers in the page are still
in their external representation as threaded pointers to PRM
entries. When the page is mapped into virtual memory these
pointers need to be translated from their external form into
their corresponding virtual addresses before the application
can use the data. The translation procedure, also called
“inbound relocation”, is schematically illustrated in Figure
17.

The combination of the threaded pointers constituting
the external format of the page, and that page's PRM, encode
the target database, segment, cluster, and offset of each
pointer on the page. The database, segment, cluster and offset
can then be used to find the corresponding entry in the
virtual address relocation map 210 from which the correct
virtual address 232 can be obtained.

Figure 18 describes inbound relocation in more detail.
The PRMEs within the page’s PRM are processed in sequence,
enabling each PRME to compactly encode its target with respect
to the target of the previous PRME, if there is one, or
otherwise of the containing cluster of the page. Referring
back to Figure 6, for each PRME in the sequence, the PRME'’s
target 4 megabyte range is calculated from its num field 158,
its hi offset field 156, and any of the four additional fields
that may follow the head word, those fields being the database
index field 162, the segment ID field 164, the cluster ID
field 166, and the mapping granularity field 168. The
calculation proceeds as follows: If the PRME has a database
index field, then the target database is determined by
translation of this index using a table contained in the
source database of the page. If the PRME does not have a
database index field, the target database for this PRME is the
same as the target database of the previously processed PRME
for this page if there was one, or otherwise it is the source
database of the page itself. If the PRME has a segment ID
field, then the target segment is indicated by this ID. If

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
18

the PRME does not have a segment ID field, but does have a
database index field, then the target segment is indicated by
using the value of the num field 158 as a segment ID. If the
PRME has neither a database index field nor a segment ID
field, the target segment is the same as the target segment of
the previously processed PRME for this page if there was one,
or otherwise it is the source segment of the page itself. If
the PRME has a cluster ID field, then the target cluster is
indicated by this ID. If the PRME does not have a cluster ID
field, but does have either a database index field or a
segment ID field or both, then the target cluster is indicated
by using the value of the num field 158 as a cluster ID. TIf
the PRME does not have any of the database index, segment ID,
or cluster ID fields, then the cluster ID is computed by
adding the value of the num field 158 to the cluster ID of the
previously processed PRME for this page if there was one, or
otherwise to the ID for the source cluster of the page itself.
The mapﬁing granularity field of the PRME, if it exists,
indicates the amount of address space that is required to be
contiguous for assignments of address space to the target
region so far indicated by the target database, segment, and
cluster. If the mapping granularity field is not present, but
either of the database index field or segment ID field is
present, then the mapping granularity for the target is set to
the default value of 64 kilobytes. If none of the mapping
granularity field, database index field, or segment ID field
is present, then the mapping granularity for the target is the
same as that of the previously processed PRME for this page if
there was one, or otherwise is the default value of 64
kilobytes. The translation so far has produced a target
database, segment, cluster, and mapping granularity for the
target region.

Following translation of the PRME as described above,
the PRME’s head pointer index field 160 is traversed to find
the first pointer on the page that uses the PRME in
combination with its low offset field 152 to encode its
target. Successive pointers are linked through the index

fields 150 as indicated in Figure 6. All pointers reachable

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
19

from the head pointer index field 160 of the PRME will have
the same target database, segment, and cluster in common,
these being the values produced by the above mentioned
translation of the PRME. The actual targets of these pointers
will differ only by offset within the target cluster. The
offset of each such pointer is calculated by combining the hi
offset field 156 of the PRME with the low offset field 152 of
each pointer.

The database, segment, and the offset are then used to
find a corresponding virtual address map entry (VAME) 212,
also referred to as the assigned DSCO handle. The
corresponding VAME is the one for which the target offset is
greater than or equal to the value P of the offset field 218
but less than the sum of that offset P and the value Q of the
length field 220 of that entry. (target offset<P+ Q). The
pointer’s target virtual address can then be computed by
adding to R (the first virtual address of the VAME) the
difference P - target offset. In order to translate a virtual
address to the external format for the pointer during outbound
relocation, the opposite procedure is followed.

When a page of data is taken from the database and put
into the cache, the page is relocated inbound. That is, the
pointers in that page are translated from their external
format to virtual addresses. The process of sending a page of
data back to the server is called outbound relocation. The
process of refreshing the pointer information on a data page
remaining in the cache after this information may have become
obsolete across address space generations is called forward
relocation.

Figure 19 shows a relocation optimization gqueue (relopt
queue), a data structure used for the relocation optimization
method of the present invention. Relocation optimization, as
defined here, is the process of reducing the frequency of
forward relocations. Maintenance of cached data is achieved
through the use of the relopt gueue. The relopt queue manages
and indexes virtual address space within the PSR across
successive address space generations, where an address space

generation is typically a single transaction, but may be only

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
20

part of a transaction or a group of consecutive transactions.

Figure 23 shows the process address space of the heap and
the stack including a PSR (persistent storage region) section
where pages in the caches are made accessible to the
application, and which encompasses all targets of pointers to
persistent locations. When a client application accesses the
database, the client application assigns virtual addresses
from within the PSR portion of its virtual address space to
the pages the application needs to access. This assignment of
virtual addresses is performed only for the region of the
particular page to be accessed and the regions having the
pages that the particular page points to. An assignment of
virtual addresses is contained within each client accessing
the database so each client has its own virtual address
assignment. A typical PSR is 128 megabytes in size, although
that may vary from application to application. Each session
has a PSR.

The duration of an address space generation is under the
control of the client application, and is determined by the
client application’s requirement that the set of pointers it
reads and/or traverses within the PSR must not change until
specific points within a computation are reached. These
points, when they are indicated by the client application,
delimit the address space generations.

There is one relopt gueue per session. Each client on
the system has one session (although a single application
process may contain multiple clients, and hence multiple
sessions) and thus the terms client and session may be used
interchangeably in the description of the relopt queue.

In the present embodiment of the invention, the relopt
queue is implemented as a doubly linked list so that objects
may be inserted and removed quickly from anywhere along the
queue as needed. One end of the queue is referred to as the
head, and the other end is referred to as the tail. In the
figures illustrating the relopt queue, the right end is always
the head. The ordering of elements within the queue, due to
the function of the relopt mechanism, can also be described as

having the most-recently used (MRU) elements closer to the

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
21

head and the least-recently used (LRU) elements closer to the
tail. An informal and convenient ordering that can also be
used to describe the relopt queue is that the younger elements
are closer to the head and the older elements are closer to
the tail, although the terms older and younger here are not
meant to imply a fixed chronology. The objects in the relopt
gqueue include fingers, database segment cluster offset (DSCO)
handles, page handles, and displaced address binding sets
(DABS), each of which will be detailed below.

A finger is an element that designates a position in the
relopt queue that is important to the function of the
relocatibn optimization method. In the basic relocation
optimization method, the various fingers are an insertion
finger, a scanned finger, a displacement finger, a deletion
finger, and a modulus finger. 1In the advanced relocation
optimization method, there may be multiple insertion fingers.

In the basic relocation optimization method, the
insertion finger is fixed at the head of the queue which is
also referred to as the "youngest" end of the queue. The
insertion finger indicates the only point in the queue where
page and DSCO handles are inserted into the queue.

The finger to the left of the insertion finger is the
scanned finger. The scanned finger is by definition older
than the insertion finger and younger than the displacement
finger and the deletion finger. The scanned finger and the
insertion finger delimit a segment of the queue in which the
page handles correspond to pages on which all the pointers are
valid, and are guaranteed to remain valid for the duration of
the current address space generation without further need of
processing. The scanned finger’'s position is fixed in the
relopt queue until a new address space generation is started,
at which point the scanned finger is moved to the head of the
relopt queue, just older than the insertion finger. The
scanned finger is just older than the oldest page handle
whose generation number is the current generation and
whose scanned flag is set. Generation numbers and scanned

flags will be discussed below.

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
22

The purpose of forward relocation is to allow the client
application to access, over the course of a succession of
address space generations, quantities of persistent data that
exceed what can fit into the PSR at any one time. Note that,
in some systems, forward relocation is replaced by a
combination of outbound relocation and subsequent inbound
relocation - but this replacement is not an important
distinction with regards to the current invention, as either a
distinct forward relocation, or a combination of outbound and
inbound relocation will work similarly. Forward relocation is
the preferred method, since it incurs a cost that is less than
half of the cost of combining outbound and inbound relocation
to accomplish the same task.

The primary purpose of the current invention is to reduce
the frequency of forward relocation (or a substitute
performing the same function, as mentioned previously) in a
manner that is transparent to the client application, thereby
improving the overall performance of the combined system of
the client application and VMMDB. Whenever the combined
system has realized the benefit of not requiring a forward
relocation when it otherwise would without the current
invention in place, the system is said to have benefited from
relocation optimization, or relopt.

The relopt queue is a structure within the current
invention that has as a purpose the organizing of address
space bindings such that these bindings are roughly ordered by
recency of use, with the most-recently used (MRU) nearest the
head of the queue. Once all available virtual address space
within the PSR is consumed by bindings, older (LRU) bindings
that are not in use in the current address space generation
can be displaced, making the virtual address space that they
consumed available for use by new bindings. By preferring to
displace older bindings, and only performing such
displacements as necessary to make space available for new
bindings, the current invention combined with the temporal
locality property typical of most client applications decrease
the frequency of the situation in which a page in the client

cache contains invalid pointers when it is next used by the

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
23

client application. Since only such pages require forward
relocation, the frequency of forward relocations is reduced.
As mentioned, the relopt queue organizes address space
bindings. These bindings are represented within the queue by
objects called DSCO handles, where DSCO is an abbreviation for
database, segment, cluster, and offset. DSCO handles are also
entries in the virtual address map. Each DSCO handle refers
statically to a persistent region designated by a database,
segment, cluster, offset and size when the cluster requires
only the default mapping granularity of 64 kilobytes. A
second but similar variety of DSCO handle refers to clusters
having a mapping granularity greater than 64 kilobytes, where
the mapping granularity and size of such clusters are the same
- a simplifying implementation decision that is not crucial to
the function of the current invention. Unless otherwise
mentioned, references in this description to DSCO handles will
refer to either variety. DSCO handles do not contain separate
fields for database, segment, and cluster. Instead, they
contain a single field that refers to a cluster handle, where
that cluster handle refers to a specific cluster in a specific
segment in a specific database. Thus, DSCO handles that refer
to the same cluster can share the same cluster handle - this
is an implementation decision that reduces the size of DSCO
handles, but is not otherwise crucial to the function of the
current invention. DSCO handles also contain a virtual
address field, which can either be null or the value of a
virtual address within the PSR. If this field is null, then
the DSCO handle is in a state referred to as unassigned or
unbound. If this field is not null, then the DSCO handle is
in a state referred to as assigned or bound, and the bound
DSCO handle is also referred to as a VAME. The virtual
address space region starting at the address contained in this
field, and continuing for a number of bytes equal to the value
of the size field is considered to be reserved for use by both
pointers referring to targets within the persistent range as
well as the pages constituting persistent data within that
persistent range. This virtual address space region is also
sald to be assigned to or bound to the DSCO handle. While the

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
24

DSCO handle is assigned, the virtual address space region
assigned to it cannot be assigned to any other DSCO handle.
The bound DSCO handle is a bi-directional mapping between a
contiguous region of the process address space within the PSR
and an equal-sized contiguous region of persistent address
space. The sum of the sizes of all DSCO handles between the
displacement finger and the insertion finger is limited by the
size of the PSR.

Only bound DSCO handles appear as entries in the virtual
address map managed by the VMMDB system, and indexed by
virtual address. All DSCO handles currently existing in the
client appear as entries in another table called the DSCO map,
which is indexed by database, segment, cluster, and offset.
This DSCO map is used primarily by inbound relocation, when
translation of a PRME and pointer combination has been
completed to the point of identifying the target database,
segment, cluster, and offset of the pointer. The use of the
DSCO map by inbound relocation will be discussed in more
detail later.

All DSCO handles currently existing within the client,
whether bound or not, are elements within the relopt queue.

In addition to DSCO handles, the relopt queue contains
elements called page handles. A distinct page handle exists
for each page that is currently present in the client’s cache
and has undergone inbound relocation more recently than
outbound relocation. The placement of page handles relative
to DSCO handles within the relopt queue obeys an invariant
which states that a page handle must always appear within the
relopt queue at an older position than the DSCO handles
corresponding to the persistent regions referenced by pointers
contained on the corresponding page, and to the DSCO handle
corresponding to the persistent region in which the page
represented by the page handle is a member. The purpose of
this invariant is to allow each page handle to divide the
relopt queue into two regions relative to the position of the
page handle. The region older than the page handle does not
contain any DSCO handles that must be bound in order for the

page to be validly accessible by the client application. The

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
25

region younger than the page handle contains all DSCO handles
that must be bound in order for the page to be validly
accessible by the client application (and possibly many
others) . This division ensures that the displacement of a
bound DSCO handle for the purposes of making virtual address
space available will only affect the validity of pages
represented by page handles at older positions than the DSCO
handle being displaced.

Other elements are present in the relopt queue as well.
One class of such elements, referred to collectively as
fingers, are used to delimit segments of the relopt queue. In
the basic method of the current invention, there are five such
fingers for each relopt queue.

The first finger is called the insertion finger. It is
always fixed at the head of the relopt queue, and so is
synonymous with the head. In the advanced method of the
current invention, there can be multiple insertion fingers,
all but one of which are not fixed to the head of the queue.
The advanced method will be described later.

The second finger is called the scanned finger. The
section of the queue between the scanned finger and the
insertion finger is the scanned section. The scanned section
is made empty at the beginning of an address space generation
by moving the scanned finger to a position immediately older
than the insertion finger. During an address space
generation, elements are added to the scanned section. The
validity of elements within the scanned section is preserved
by the method for the duration of the address space generation
~ meaning that DSCO handles within the scanned section are not
displaced, and so all pointers contained on pages
corresponding to page handles within the scanned section
remain valid for the duration of the address space generation.

The third finger is called the displacement finger. The
displacement finger is always at an older position than the
scanned finger. The section of the queue between the
displacement finger and the scanned finger is the unscanned

section.

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
26

The fourth finger is called the deletion finger. It is
always fixed at the tail of the relopt queue, and so is
synonymous with the tail. The section of the queue between
the deletion finger and the displacement finger is the
displaced section. All unbound DSCO handles are in the
displaced section. Also, all page handles representing pages
containing currently invalid pointers are in the displaced
section. Note that it is just these pages that contain
invalid pointers which require forward relocation before they
can be used by the client application again during their stay
within the client cache.

At the start of the database application, that is at time
t,, the deletion, displacement, scanning and insertion fingers
are located next to each other in the queue and there are no
other elements in the relopt queue as shown in Figure 20.

The fifth finger is called the modulus finger. Unlike
the other fingers, the modulus finger is not used to delimit
sections of the queue. It is instead used as a technique to
offset integer overflow in the computation of address space
generation numbers. The function of the modulus finger is
separate from the rest of the function of the method, and will
be described later.

The final class of elements present in the relopt queue
are the displaced address binding sets. Each displaced
address binding set (DABS) is a map from virtual addresses to
DSCO handles, similar in structure to the current address
binding set. There can be multiple DABSs for each client, the
first of which is created at the first displacement of a DSCO
handle. The function of a DABS is to keep track of
information about previous bindings of DSCO handles to virtual
addresses. The DABSs are used during forward relocation.

Each DABS also has a link to the next younger DABS in the
relopt queue, if there is one.

During the course of its operation, the client
application will issue a sequence of transactions. The client
application will also issue a sequence of address space
generations, which can by default correspond exactly to the

transactions, or can, under more precise control of the client

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
27

application, correspond to portions of individual or sequences
of transactions. During the transactions, the client
application will issue requests to the client component of the
VMMDB for pages of persistent data. If a requested page
already exists in the client’s cache, the client component of
the VMMDB will determine if the page needs further translation
(forward relocation) and perform that translation if
necessary, and then the VMMDB will make the page accessible to
the client application by mapping it into the PSR and
protecting it appropriately for the desired access, as well as
updating the states of the corresponding page handle and cache
directory entry appropriately. If a requested page is not
already in the client’s cache, the client component of the
VMMDB will issue a request to the server component. Requests
to the server component for pages will often involve locking
issues with other clients that are simultaneously making
transactions against the same persistent data, but these
issues will be understood to be similar to those of the
standard two-phase locking database model, and will not be
explored further here. Once the server responds to the
client’s request, the page is placed in the client’s cache, a
page handle and cache directory entry are created for it and
properly initialized, the page undergoes inbound relocation,
and then the VMMDB will make the page accessible to the client
application as by mapping it into the PSR and protecting it
appropriately for the desired access. Thus, both inbound and
forward relocation are motivated by the client application’s
requests to access pages of persistent data, the difference
being that forward relocation only takes place for pages
already in the client’s cache, while inbound relocation always
takes place when a page is brought into the client’s cache
when not currently present there.

Figure 21 illustrates a typical relopt queue following
the first inbound relocation of a page. During inbound
relocation, the page handle corresponding to the page P, is
placed into the relopt queue just older than the insertion
finger, and the PRM for the page is processed along with

pointers contained on the page as mentioned previously. For

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
28

each pointer which has its target translated according to this
process, the target is looked up in the DSCO map. There are
three possible results of this lookup: there may be a bound
DSCO handle for the region surrounding the target, there may
be an unbound DSCO handle for the region surrounding the
target, or there may be no DSCO handle for the region
surrounding the target. If there is a bound DSCO handle for
the region surrounding the target, then the virtual address to
which it is bound, when added to the difference between the
pointer’s target’s offset and the DSCO handle'’s regions
offset, produces the virtual address translation value for the
pointer. This value is written over the external form of the
pointer. If there is an unbound DSCO handle for the region
surrounding the target, then the DSCO handle must first become
bound before processing of the pointer translation can
proceed. The process of binding an unbound DSCO handle will
be discussed in detail below. Once the DSCO handle is bound,
processing of the pointer translation continues as it did for
the bound DSCO handle. If there is no DSCO handle for the
region surrounding the target, one is created, placed into the
virtual address map, bound, and processing of the pointer
translation continues again as it did for the bound DSCO
handle. 1In all three cases, the DSCO handle is then placed
into the relopt queue just older than the insertion finger,
removing it first from its previous position in the relopt
queue unless it was just created. Inbound relocation proceeds
in this way until all pointers on the page have been
translated. In the example in Figure 21, the DSCO handles
added to the relopt queue in this way are DSCO,, DSCO,, DSCO,,
and DSCO, Inbound relocation then sets the state of the page
handle corresponding to the page to be the “in use and
scanned” state, then maps the page into the PSR at the
appropriate address with the appropriate protection, making
the page accessible to the client application, and returns
control to the client application.

Figure 22 continues the example of Figures 20 and 21 by
illustrating what happens when a second page P, is brought in

and that page is in the range covered by DSCO,, and contains

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
29

pointers that have targets covered by DSCO, and a new DSCO
handle DSCO, - (which is created, assigned, and placed in the
DSCO map and CABS, as was done for the other four DSCO
handles) the page undergoes inbound relocation, and is
inserted at the insertion finger, and then DSCO,, DSCO., and

DSCO, inserted at the insertion finger.

The states of a page handle are “in use and scanned”, “in
use but not scanned”, “not in use”, and “not in use and
displaced”. The “in use” designation in both of the first two

states corresponds to page handles of pages which are
accessible to the client application during the current
address space generation. The “scanned” designation
corresponds to page handles that are in the scanned section of
the relopt queue. The “displaced” designation corresponds to
page handles that are in the displaced section of the relopt
queue. Note that all scanned page handless are in use, and
all displaced page handles are not in use. The “in use but
not scanned” and “not in use” states correspond to page
handles in the unscanned section of the relopt queue.

Page handles are put in use individually as the requests
for pages by the client application are processed. Page
handles are taken out of use en masse when the client
application indicates that the current address space
generation is over.

As mentioned previously, the current address space
generation is ended by moving the scanned finger to a position
just older than the insertion finger, as illustrated in the
continued example of Figure 24. Merely moving the scanned
finger this way does not change the states of the page handles
to out of use. To speed up the process of taking a large
number of page handles out of use simultaneously, the current
invention uses a single global current address space
generation counter for the client in conjunction with an
address space generation field in each page handle. Both the
global counter and the fields are 32 bits wide. The global
counter takes on values in the range of 1 to 2%*-1 inclusive,
while the fields take on values in the range of 0 to 2%-1

inclusive. Whenever the current address space generation is

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
30

ended, the global counter is incremented, and if it overflows
to 0 is set immediately to 1. When a page handle is put into
either the “in use and scanned” or “in use but not scanned”
states, the address space generation field of the page handle
is set to the value of the global current address space
generation number. Thus, when the value of a page handle’s
address space generation field is equal to the value of the
global current address space generation counter, the page
handle is designated as in use. If the value of the field is
not equal to the value of the global counter, then the page
handle is either in the “not in use” or “displaced” states,
depending on its position in the relopt queue. Thus, the
single act of incrementing the global counter at the end of an
address space generation effectively changes the state of all
page handles that were in use during that address space
generation without requiring that each page handle be visited
in turn.

This process is susceptible to error due to integer
overflow, when the global counter is set to a value less than
a previous value. The possible error here is that a page
handle may exist that has as the value of its field this lower
value, set during some previous address space generation, yet
it would be erroneous to interpret the fact that the field is
now equal to the global counter as meaning that the page
handle is in use. It is the function of the modulus finger
within the present invention to prevent this erroneous
condition from occurring by setting the address space
generation field of all page handles that have not been put
into an in use state within fewer than 2%?-1 generations to
zero. The modulus finger accomplishes this task by moving
past (from older to younger position) one element in the
relopt queue per address space generation, looping back to the
tail when it passes the head. The current invention performs
this movement at the end of an address space generation, but
it is sufficient to perform it at any time. If the element
moved past by the modulus finger is a page handle, and its
address space generation field is not currently equal to the

global current address space generation counter, then the

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
31

field is set to 0, which is a value that will not be equal to
the global counter regardless of integer overflow because the
value of the global counter is maintained to be always at
least 1. The correctness of this process is based on the
restriction that there be fewer than 2%*-1 elements in the
relopt queue. This restriction is imposed indirectly by
restrictions of the computer hardware on memory consumption,
and so does not have to be imposed directly by the current
invention.

To bind an unbound DSCO, the method must find a virtual
address region with size equivalent or larger than the size
field of the DSCO handle that is not currently bound to any
other DSCO handle. The virtual address map can be queried to
determine if such a region exists. If a suitable region does
exist, and the region is of the requested size, then it is
bound to the DSCO handle. If a suitable region does exist,
and the region is larger than the requested size, a portion of
the region equal in size to the size requested is bound to the
DSCO handle, and the rest remains unbound. If not suitable
region exists, one can be created by unbinding one or more
other bound DSCO handles that are not currently needed by page
handles in use in the current address space generation. The
current invention uses the displacement finger to find such
other bound DSCO handles and unbind them with the following
displacement procedure. The element immediately younger than
the displacement finger is examined. If the element is a DSCO
handle, then it must be a bound DSCO handle, since all unbound
DSCO handles exist in the displaced section to the older side
of the displacement finger. The DSCO handle found this way is
unbound, with its virtual address field set to 0, and the
corresponding entry in the virtual address map modified to
show that the virtual address region previously bound to that
DSCO handle is now free. An entry that references the DSCO
handle is added to the youngest DABS in a way that can be
indexed by any address in the virtual address region
previously bound to the DSCO handle, and such that the start
of the virtual address region can be determined. The DSCO

handle is then placed to the immediate older side of the

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
32

displacement finger. If the size of the virtual address space
region freed by this operation, when coalesced with free
regions that may exist to either or both of its sides is
sufficient to fulfill the request for space, the request is
fulfilled in a manner equivalent to what was described above
when the region was found by querying the virtual address map.
If the coalesced free region is not large enough, then the
displacement procedure examines the next element.

If the element examined by the displacement procedure is
the scanned finger, then all remaining bound DSCO handles must
exist solely within the scanned section. Since all such bound
DSCO handles must retain their current bindings for the
duration of the current address space generation, none can be
unbound to provide free virtual address space for consumption
by other DSCO handles. 1In such a case, the client has
exhausted virtual address space, and this condition is
signaled to the client application. The client application
can then choose to end the current address space generation
and continue, or terminate the page request by aborting the
current transaction.

If the element examined by the displacement procedure is
a page handle, then this page handle must be in either the “in
use but not scanned” or “not in use” states, since all page
handles in the displaced state are to the older side of the
displacement finger in the queue, and all page handles in the
“in use and scanned” state are younger than the scanned
finger, and so unreachable by the displacement procedure. If
the page handle examined is in the “not in use” state, it is
moved to be just older than the displacement finger, set so
that its head DABS field refers to the current youngest DABS,
and set to be in the displaced state. If the page handle is
in the “in use but not scanned” state, then further processing
is required to move the page handle out of the way of the
displacement procedure so that the procedure can continue in
its attempt to find bound DSCO handles. This further
processing is called scanning. Scanning is similar to
relocation in that the object tags contained in the page’s

metadata are used to iterate through the objects on the page

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
33

to find all pointers on the page. Unlike relocation, pointer
values are not changed by scanning. Instead, the pointers
used to index into the virtual address map to find the bound
DSCO handles corresponding to the targets of the pointers.
First, the page handle itself is moved to the head of the
queue. Then, during scanning, each pointer on the page is
used to index into the virtual address map to find the
corresponding bound DSCO handle. Each DSCO handle found in
succession is then moved to the head of the queue. The DSCO
handle corresponding to the region in which the page is a
member is similarly moved. The scanning procedure thus moves
the page handle out of the way of the displacement procedure,
while maintaining the invariant that all DSCO handles required
by a page handle are at younger positions than the page
handle. Obviously, all DSCO handles moved by this position
are no longer reachable by the displacement procedure for the
duration of the current address space generation, however
other bound DSCO handles may still exist in the unscanned
section of the queue. The displacement procedure then resumes
its search by again examining the element immediately younger
than the displacement finger.

If the element examined by the displacement procedure is
a DABS, then it must be the youngest DABS since all older
DABSs can exist only in the displaced section. The DABS is
moved to be just older than the displacement finger. A new
empty DABS is created and placed in the relopt queue at a
position in the scanned section just older than the page
handle being relocated. The displaced DABSs next younger
field is set to point to the new DABS, and the new DABS
becomes the youngest. This is the only time that new DABS are
created or moved within the relopt queue, so the action of
this procedure itself ensures that only one DABS can be
younger than the displacement finger.

Returning to the description of how requests for pages by
the client application are handled by the client component of
the VMMDB, if the page requested already exists in the
client’s cache, then the page handle for it exists and is in

either the “not in use” or displaced states. The page handle

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
34

cannot be in an in use state, because then the client
application would not be requesting the page, it would instead
just use the page in its present state. If the page handle is
in the “not in use” state, then it must be within the
unscanned section of the relopt queue. The position invariant
of the relopt queue guarantees that all DSCO handles required
by the pointers on this page are at younger positions than the
page, and so must be bound. Furthermore, these DSCO handles
could not have become unbound since the point in time when
they were last used to provide translations for the pointers
on the page in some previous address space generation, because
the only process that unbinds DSCO handles is the displacement
process, and the displacement process would first have marked
the page handle itself as displaced. The current invention
will change the state of this page from “not in use” to “in
use but not scanned” without further examination or
translation of pointers or maps. This ability of the current
invention to allow a portion of the pages in the cache to be
used in successive address space generations without further
translation is its primary benefit over other procedures. The
current invention also provides that this portion of pages in
the cache will be a substantial portion, due to the
interaction of the organizational effects of keeping more
recently used page and DSCO handles at younger positions in
the queue relative to less recently used ones, with the
temporal locality property of most client applications.

If the page handle for the page being requested by the
client application is in the displaced state, then some or all
of the pointers on the page may no longer be valid with
respect to the current set of virtual address space bindings
represented in the virtual address map. Pages in this state
must first undergo forward relocation before being made
accessible to the client application. Forward relocation,
like inbound relocation and scanning, uses the object tags in
the page’s metadata to locate pointers within the page.

Unlike inbound relocation or scanning, the targets for those
pointers cannot be found by translation from the PRM (which is

only used by inbound relocation) or by indexing into the

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
35

virtual address map. Instead, forward relocation uses DABSs
to translate pointers on displaced pages. Figure 25 shows a
relopt queue with a chain of DABS starting with the head DABS
pointer of such a page handle. The page handle is first moved
to the head of the queue. For each pointer encountered on the
page, the value of the pointer is used to index into the DABS
referred to by the head DABS field of the page handle. If an
entry is found in the DABS, the DSCO handle referred to by the
entry can be in one of three states. The DSCO handle can be
bound to the same virtual address region it was bound to
immediately before the entry was added to the DABS - a
fortuitous but possible outcome. In this case, the value of
the pointer is valid and does not require translation. The
DSCO handle can be in the unbound state. In this case, the
DSCO handle must become bound, using the same process
described previously that may require the displacement
procedure, and the value of the pointer is then set to be the
start address of the newly bound virtual address space region
plus the difference between the old value of the pointer and
the start of the old virtual address space region recorded in
the DABS entry. The DSCO handle can be in the bound state,
but bound to a different virtual address region than was
recorded in the DABS entry. In this case, the value of the
pointer is set to be the start address of the bound region
plus the difference between the old value of the pointer and
the start of the old virtual address space region recorded in
the DABS entry. In all cases, the DSCO handle found is moved
to the head of the gueue.

If the DABS does not have a suitable entry for the
pointer, the next DABS in the chain reached by the next DABS
field in the DABS just examined is queried next. This
procedure repeats until either a DSCO handle is found, or the
end of the DABS chain is reached. If a DSCO handle is found,
it is treated as described in the previous paragraph. If the
end of the DABS chain is reached without finding a DSCO
handle, then the corresponding DSCO handle must not have
become displaced since the time when the page handle was

displaced, and so is still bound to the same virtual address

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
36

space region it was bound to at the time the page handle
became displaced. 1In this case, the pointer is valid and
does not require translation. The DSCO handle is still moved
to the head of the queue as with others found by different
cases within forward relocation, so as to preserve the
position invariant.

After all pointers on the page are processed by forward
relocation, the page handle is set to the “in use and scanned”
state, and the page is made accessible to the client
application by mapping it to the appropriate address and
protecting it appropriately for the request.

Modification of pages in the “in use but not scanned”
state is handled specially by the current invention. Prior to
making the page writable by the client application, the page
is scanned, similarly to what would happen if the page was
examined during the displacement procedure. This scanning is
necessary to prevent the accidental unbinding of bound DSCO
handles that must retain their current binding for the
duration of the current address space generation.

Writable pages in the cache at the end of an address
space generation that is not also the end of a transaction
have their page handles moved to a position just younger than
the displacement finger. This is done because writable pages
may have acquired new or different pointer values during since
they became writable, and the bound DSCO handles for these
pointer values may not necessarily be younger than the page
handle at its position during the address space generation.
The position immediately younger than the displacement finger
is guaranteed to be older than all currently bound DSCO
handles, satisfying the position invariant. It would seem
that, during the address space generation, the writable pages
may have violated the position invariant. Due to the fact
that all pages are in the scanned section prior to becoming
writable, there is still no way for the displacement process
to create a problem by displacing required DSCO handles. This
can be considered to be either an acceptable exception to the
invariant, or the invariant can be restated as applying only

outside the scanned section.

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
37

Outbound relocation, the one type of relocation remaining
to be discussed, occurs whenever a copy of a page containing
modifications must be sent back to the server for safe
keeping. This condition typically occurs when a transaction
is committed, for pages that were modified during the
transaction. This condition also occurs when a modified page
is evicted from the cache during a transaction, either in
order to create space in the cache for other pages needed by
the client application, or because the client application has
explicitly requested the eviction. Outbound relocation, like
all of the other forms of relocation, is performed using the
object tags contained in the metadata for the page. The
purpose of outbound relocation is to construct a new PRM for
the page (the old PRM having been discarded after being used
by inbound relocation), and translating the pointers on the
page into external form. Outbound relocation can occur for
pages with page handles in either of the four different
states. For pages with page handles in the displaced state,
outbound relocation uses the DABS chain in exactly the same
way as forward relocation. With outbound relocation, unbound
DSCO handles do not need to get bound and no DSCO handles need
to be moved to the head of the queue. For pages with page
handles in the “not in use” or “in use and scanned” states,
all required DSCO handles can be found by indexing the virtual
address map by pointer value, because all such DSCO handles
must still be bound. Again, these DSCO handles are not moved
to the head of the queue. For pages in the “in use but not
scanned” state, all DSCO handles can again be found by
indexing the virtual address map by pointer value, but these
DSCO handles must be moved to the head of the gqueue, giving
outbound relocation of such pages the same effect on the
positions of DSCO handles as scanning. Each time a pointer is
encountered during outbound relocation, and the corresponding
DSCO handle is found by one of the above procedures, a
“sample” PRME is created for the pointer and inserted into a
“sample” PRM for the outbound relocation. This sample PRME
contains all of the PRME fields 148 in Figure 6. If a sample
PRME with identical fields already exists in the sample PRM,

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
38

then that is used instead. The sample PRME, unlike a normal
PRME, also contains a tail index field. If a new sample PRME
is used, then both the head and tail indexes are set to refer
to the current pointer being translated. If an existing
sample PRME is used, the index field of the pointer referenced
by the tail index field of the PRME is set to refer to the
current pointer being translated. In both cases, the starting
virtual address of the region bound to the DSCO handle is
subtracted from the current pointer, the DSCO handle’s offset
is added to the pointer, the index field 150 of the current
pointer is set to 0. The effect of using the tail index field
of the sample PRME is to create the required threaded list of
pointers starting from the head index field in the appropriate
order.

Once pointers have been translated by outbound relocation
as above, the sample PRM is sorted by database, segment, and
cluster. The sorted sequence is then examined in consecutive
order to produce a new compact PRM for the page by eliminating
fields that are redundant with the previous PRME in the
sequence. The PRM is then placed in the metadata for the
page, and sent with the page (or a copy of the page: if the
page is only being outbound relocated due to transaction
commit, then the client retains a copy in its cache) to the
server.

The function of the deletion finger is analogous to a
garbage collection mechanism. The client application can
request that the memory overhead for elements managed by the
relopt queue should not exceed some specified threshold unless
necessary to preserve the validity of in-use pages. During
creation of elements for the relopt queue, memory consumption
is monitored. When memory consumption reaches the specified
threshold, the current invention examines the element next to
the deletion finger (younger than the deletion finger, as no
elements are older). If that element is a DSCO handle or
DABS, the element is deleted. If that element is a page
handle, the corresponding page is evicted from the cache, and
the page handle is deleted. If that element is the

displacement finger, the displacement process 1s executed

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
39

until some other element appears next to the deletion finger.
If the displacement finger is already next to the scanned
finger, then the displacement process is not executed, and the
deletion process cannot continue. If the execution of the
displacement process results in an element other than the
displacement finger appearing next to the deletion finger,
then the deletion process can be performed on that element.
The deletion process continues until either the amount of
memory consumed by relopt queue elements falls below the
specified threshold, or the deletion, displacement, and
scanned fingers all appear adjacently in the relopt queue.

Ending an address space generation increments the global
address space generation counter (subject to overflow
correction as described previously) and unmaps or otherwise by
protection makes all pages inaccessible to the client
application. Pages that were readable are no longer, and
pages that were writable are no longer either readable or
writable. Address bindings, however, are not touched, meaning
that the virtual address map remains unchanged, as do all
bound DSCO handles.

The advanced version of the current invention adds the
feature of nested address space generations. These nested
address space generations are started and stopped as needed by
the client application. The purpose of nested address space
generations is to allow the client application to specify that
a unit of work during an outer address space generation may
consume further address space that is not required when the
work is finished. Since such units of work may be nested
arbitrarily, the advanced version of the current invention
allows a correspondingly arbitrary nesting of address space
generations. When a nested address space generation is ended,
but while the next outer address space generation is still in
effect, bindings that were added during the nested generation
can be displaced as needed for use by future bindings.

The largest difference between the basic version and the
advanced version is that the advanced version has multiple
insertion fingers, with only one fixed to the head of the

queue. Also, insertion fingers can appear anywhere to the

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
40

younger side of the displacement finger. Insertion fingers to
the younger side of the scanned finger are considered active,
those to the older side of the scanned finger are considered
inactive - a flag on the insertion finger keeps track of the
active/inactive state, which is initially active for a new
insertion finger, and is set to inactive when the
corresponding nested address space generation ends. There is
no global address space generation counter in the advanced
version. Instead of an address space generation field, each
page handle has an insertion finger field that references an
insertion finger or null. The “in use” designation for page
handles is determined by examining the insertion finger field.
If the field is null, the page handle is not in use. If the
field is not null, the page handle is in use if and only if
the referenced insertion finger is current. A page handle is
then put into use by setting its insertion finger field to
refer to the insertion finger for the innermost active nested
address space generation. The modulus finger is not needed in
the advanced version.

Displacement of a page handle sets the insertion finger
field to null, instead of setting the no longer present
address space generation field. When the displacement process
encounters an insertion finger, the insertion finger is
deleted. Thus the number of insertion fingers in the relopt
gueue does not grow without bound. Earlier deletion of an
inactive insertion finger is possible using a reference
counting procedure.

When an address space generation, nested or outer, ends,
the scanned finger is moved to a position just younger than
the insertion finger corresponding to the ending address space
generation, and the insertion finger’s state is set to
inactive. When an address space generation, nested or outer,
starts, a new insertion finger is created and placed into the
relopt queue at a position immediately younger than the
scanned finger. The insertion finger has a field indicating
its nested level, which is one greater than the nested level
of the innermost nested active insertion finger at the time

the new insertion finger is created, with 0 as the level of

10

15

20

25

30

35

WO 00/57276 PCT/US00/08085
41

the outermost. Thus, successively nested address space
generations will correspond to successively older insertion
fingers with successively higher nested levels. The sections
of the relopt queue between active insertion fingers are
referred to as multiple scanned sections, with the active
insertion finger younger than such a section considered to be
the owner of the section.

An insertion finger field is added to the DSCO handles as
well. This field is set to the insertion finger owning the
scanned section that the DSCO handle is moved to during any
operation that moves DSCO handles.

Let the nested level of a page or DSCO handle be
determined by examining the insertion finger field. 1If the
field is null, or refers to an inactive insertion finger, the
nested level is considered positive infinity. Otherwise, the
nested level is that of the referenced active insertion
finger. The nested level of page and DSCO handles is used to
ensure a new invariant - that a page or DSCO handle is never
moved to a region where it will receive a higher nested level
than its current nested level. Thus, during relocation or
scanning, when moving DSCO handles, the current nested level
of the DSCO handle is examined prior to any motion, and the
DSCO handle is only moved if the insertion finger it is being
moved to has an equal or lower level than the nested level of
the DSCO handle.

During a transaction, there is always a single innermost
address space generation, and a corresponding single innermost
active insertion finger, although which insertion finger this
is changes as address space generations are started and ended
A single global variable keeps track of the current innermost
active insertion finger. The motion of page handles and DSCO
handles in the basic version is modified so that the motion
always results in insertions into the relopt queue at the
position just older than this insertion finger, and the
insertion finger of the page or DSCO handle so moved is set to
refer to this insertion finger.

When an address space generation ends, the corresponding

insertion finger’s state is set to inactive, and the scanned

10

15

WO 00/57276 PCT/US00/08085
42

finger is moved to a position just younger than it. Address
space generations must end in innermost to outermost order, so
that the scanned finger is never moved to a position younger
than an active insertion finger. As address space generations
end, the corresponding insertion finger and the contents of
its scanned section become elements of the unscanned section
due to this movement of the scanned finger. Thus, these
elements become susceptible to displacement, and may become
displaced sooner than elements still residing in scanned
sections of active insertion fingers. This order of
susceptibility to displacement provides the nesting behavior
visible to the client application.

It is to be understood that the above-described
embodiments are simply illustrative of the principles of the
invention. Various and other modifications and changes may be
made by those skilled in the art which will embody the
principles of the invention and fall within the spirit and

scope thereof.

10

15

20

25

30

WO 00/57276 PCT/US00/08085
43

What is claimed is:

1. A method of segregating data within a cache in a
database system wherein pointers in said cache are virtual
address pointers translated from persistent address pointers,
comprising the steps of:

a) providing a relocation optimization gueue having a
plurality of fingers to designate positions in said queue, and
a plurality of entries corresponding to cached data in the
cache, :

b) delimiting said queue into a plurality of sections
with said fingers, a first section for containing entries for
data used in a current transaction by a client application, a
second section for containing entries that can be used by said
client application without updating pointers, and a third
section containing entries that cannot be used by said client
application without updating pointers;

¢) servicing requests from said client application for
access to said data in said cache and for data not yet in said
cache;

d) incorporating data into said cache that is not yet in
said cache and translating pointers in said queue to update
pointer information to reflect said incorporated data in said
queue;

e) removing data from said cache as it is no longer
required by said client application and translating pointers
in said to queue to update pointer information to reflect said
removed data in said queue; and

f) updating pointers when providing access to said data
corresponding to said entries in said third section of said
queue,

thereby providing fast access to data in said cache
corresponding to said first and said second sections of said

queue.

PCT/US00/08085

WO 00/57276

T "OId

ob
m JILNAWOD
YIAYIS JILNAWED d3LNdWOD
\m anNv INTID INID
24 INFD
ot
AILNIWOD d3LNdWOD
M YIAYIS HIAYIS

a4

1/20

PCT/US00/08085

WO 00/57276

ov
.@\«l
\l\.ft — A .
o ndd
sia - ¥3LNdWOD ¥3NdWCD >w%u§%u<<
NEICER / INITD
Nn\ oY) 9¢
] S
o

2 /20

WO 00/57276

56

e

60

/

52

CACHE
MEMORY

CLIENT
AND SERVER

COMPUTER
CPU

DISK

5\46
v

42

FI1G.

3720

3

PCT/US00/08085

WO 00/57276 PCT/US00/08085

64 APPLICATION)
\ SOFTWARE
] 3 --------
66\ VIRTUAL MEMORY
MAPPING DATABASE > 40,42
(VMMDB)
a4 | E} ________
68
\ OPERATING
SYSTEM
Ny J

FIG. 4

4 /20

WO 00/57276 PCT/US00/08085

DATA REPOSITORY (5.2
: § [SEGMENT 1 h
M

&)
@

?

SEGMENT n
CLUSTER n
N
“l,
1 ,

12 PACE
73 PAGE
2% PAGe
72? PRce

FIG. b

5720

WO 00/57276

[4
‘%\ 154150y EN N EN

PCT/US00/08085

K Database Page

!52)

144

flags % hi offset I numl

¥

N4

? l low offset

i

flags | hi offset | num . }J/
|

iow offset

| — 142

Database index 162
Segment ID ’-(é4
Cluster ID = |66

low offset

mapping granulariy L~ 1LY

low offset

FIG. 6

6 /20

WO 00/57276 PCT/US00/08085

Cluster 74 ' Md’qa’eﬁ’a
| 4/%L ‘rae TALE 9% |
(Obiest A %,(')by& T A |
Paco N Qbiect B gt qz Obie T | ™
% yo Free Space ”['\ --------- _.__: e Sy To
(Ve.ctar of ” | 8¢ ———-"""‘7—0"' Oljet Tag C
/ 0 laje s € .
I Obyed Ty C.
%MNH Objad— D | 7D o
2 Free Space. Free pece Tas
Obicsr E Object Tig £

F;ﬁu7

7 /20

WO 00/57276

ORIECTTAG

PCT/US00/08085

88
FIG. 8A [, /
N ——
100 102
VECTOR TAG
\ | ~ I\ o
104 06 08
FREE SPACE TAG 92
FIG. 8C [, .
N —
o n?
-
22
TYPE DESCRIPTION
TYPE CODE 1
TYFEDECR‘FHON.
TYPECODE 2 » SCHEMA, 120
.
2
TYPE DESCRIFTION
TYPECODE N
FIG. 9

8/ 20

WO 00/57276

124 {

130
U e

DESCRIPTION, 122

}‘INSTRUCHON, 130

TYPE CODE:
126 SIZE:
INSTRUCTION 1
INSTRUCTION 2
128
® 5 @
INSTRUCTION N
132
—
VIBL
OR OFFSET WITHIN OBJECT
RELOCATE
~ J
134
FIG. 11

9 /20

PCT/US00/08085

PCT/US00/08085

WO 00/57276

Q8L "AEOLIIMA

HIVD

il L
pal 8L 8L 9L
N e A
F)
: .
Nl A| MM 9 E
AN m | m | sty / oz
NINT ALY § L
INTWD3S vd
a1 las| 1 | 2 SINANOD) v

A&w ot

95 "AOWIW IHIVO

8t
om E_A

L 3Wvid 39vd

10 / 20

PCT/US00/08085

WO 00/57276

061 ‘F18VL J
dIHSHINMO .

D14

@

[/

@

@

®

e il /q/0 % wmi
SNIVLS (SIIINMO ISvaviva - hszOumﬂ 19Vd

EEICO I
/||||/\|p||\f..l I\ v _J

861 96l péi

11 /20

PCT/US00/08085

WO 00/57276

71T "old

ol

(win) duwi
- esTIW
W nlyif

ooHds

557300
2w A BIA

9T

&

GuWHAd
LuimF gyw

0y TweiA|

CEC

ozp <] e 'dl]
81T ~— G :0
IR %7
91Z ~ 3:8
Bz~ G

PSN

209 914 {1 HNF]

£ YISO
9 1inewn? S
& FWOULYQ

o

2]

]

@00 'og

{
ong O

12 / 20

WO 00/57276

PCT/US00/08085
J 1,000
//
//
]0,000 i \\ // /
1 2000 AN ;)
'1 ~/ /)
"\\ /)\\//
\\ / /\\
/ ~
RN ~
S 4,000
/ 7 ~
/ 7 \\
/ / N
30,000 ,
//
/
/
e’
PHYSICAL
T 5
VIRTUAL CACHE), 56
ADDRESS (CACHE),
SPACE, 200
225 226 227 228
VIRT | SIZE | PROT { PHYS
300001 2000 R 1000
10000 | 2000 | R/W | 4000

VIRTUAL
MEMORY
MAP, 224

F1G.

13 /20

15

WO 00/57276

OTHER |DATABASE SEGMENT| PHYSICAL
000
176,178, 174 72
182,184,
185
FIG. 16A
OTHER VIRTUAL PHYSICAL
(226,
227)
’ 295 298
FIG. 16B
OTHER | DATABASE SEGMENT| VIRTUAL
o0o0 2
292 214,216 218 9292
A
FIG. 16C

14 / 20

PCT/US00/08085

CACHE
DIRECTORY, 180

L VIRTUAL
~ MEMORY
MAP, 224

L VIRTUAL
ADDRESS
MAP, 210

PCT/US00/08085

WO 00/57276

Tal YA

W, obl

LT ~©14d
’ ol&
o 158440 -
(wiyra) _ >
JUN = Y3lsold °
IR EL I TGN ”
<S¢ 53 &
TWaLYIA < PRV I

(w d)
Juw
Nor L »w‘.voiw_w%
iNalelgYIg

5 osT (8d)
NEF AN
ANB1S8YTd

15 /20

WO 00/57276

PERSIST eNT
RELOE AT IoN
MAP ENTRY
(PRMEY
NATARASE ! X L~ 162
PzRSIST st SEGMENT © ¥ A
ADDRESS | A‘ ' '
&7 CLesTER ! 16
{ 0
(pR), 23 e
OFF SET: A
leNgry o &
ANBRESS: O
F I G L]

16 / 20

VIRToAL ADDRESH
ReLacATIN MAP

PCT/US00/08085

ENTRY (/ARME) [22

DATABRSE: X 24
SEGMENTS Y 46
/27 awsL
CLOSTER s m;og;s
(Y, <3
OF FRET' P ’
Nan
LEVGTH Q 220
ADBRESS 1 R -~ 2212

18

PCT/US00/08085

WO 00/57276

0c "©Id

Ut 95 7P P
VA4 4%
6T "DOId
coﬁoaw «n.ccsum cejodw «Becsunca cojddw 133%.&%
| [7= parmendey |
s hdﬂ.c_
u owwm. L%o) \..w%..u vo *J\wﬁ
Sl o3sQ o) At YUY kG &ed 0%Q +S€33_or.. P svQ
\4 v v v 7 v v ¥ 7 v \%
-i: 74 oy

[

Qn&:@ *E%xwo\-@._w «row\,dd\w Ngc_mjmg +:C

17 / 20

WO 00/57276 PCT/US00/08085

a2
g
<} 4 K’ﬁf
4 2 <43
<Q
N o
S g9
< o — < &8 [y
[,
<
< < 3
<3

18 / 20

PCT/US00/08085

WO 00/57276

P 1 I A T A A A G

¢c¢ "OId

S 95 oo

Ivde waﬁw%s %8&%

19 /7 20

WO 00/57276 PCT/US00/08085

20 / 20

INTERNATIONAL SEARCH REPORT

Int. .ational application No.
PCT/US00/08085

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) :GO6F 12/00
US CL : 711/203, 202, 154
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.s. : 711/203, 202, 154, 163, 205, 206, 3

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

IEEE Online

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 5,649,139 A (WEINREB et al) 15 July 1997, Fig. 1-4; Fig. 8; | 1
col. 2, line 26 to col. 5, line58; col. 16, lines 40-55; col. 17, lines
10 to col. 18, line 56

AP US 5,903,725 A (COLYER) 11 May 1999, abstract, fig. 1-2, col. | 1
6, lines 47 to col. 8, line 10.

A US 5, 687,368 A (NILSEN) 11 November 1997, col. 9, line 4 to | 1
col. 10, line 57.

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority
aw - L . date and not in conflict with the application but cited to understand
A document defining the general state of the art which is not considered the principle or theory underlying the invention
to be of particular relevance -
o X" document of particular relevance; the claimed invention cannot be
E carlier document published on or after the intemational filing date considered novel or cannot be considered to involve an inventive step
"L" document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other i
special reason (as specified) "y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document 1s
"o" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
P doc\uqen} publishedprior to the international filing date but later than ~ »g» document member of the same patent family
the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
31 MAY 2000 06 JULZ”U
Name and mailing address of the ISA/US Authorized officer .
Commissioner of Patents and Trademarks
Box PCT JO! w
Washington, D.C. 20231) HN W. CABECA
Facsimile No. (703) 305-3230 Telephone No. (703) 305-0134

Porm PCT/ISA/210 (second sheet) (July 1998) »

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

