PCT
WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4 : C07D 487/04, A61K 31/505 // C07D 213/86, 401/04 (C07D 487/04, 249:00 C07D 239:00)

(11) International Publication Number: WO 85/ 02846 A1
(43) International Publication Date: 4 July 1985 (04.07.85)

(21) International Application Number: PCT/EP84/00410
(22) International Filing Date: 18 December 1984 (18.12.84)
(31) Priority Application Number: 566,093
(32) Priority Date: 27 December 1983 (27.12.83)
(33) Priority Country: US

(72) Inventors: CHIPKIN, Richard, Eric; 51, Grove Street, Bloomfield, NJ 07003 (US). WITKOWSKI, Joseph, Theodore; 5, Martha Drive, Morris Township, NJ 07960 (US).

(74) Agent: ANTONY, Fritz; P.O. Box 601, CH-6002 Luzern (CH).
(81) Designated States: AT (European patent), BE (European patent), CH (European patent), DE (European patent), FR (European patent), GB (European patent), JP, NL (European patent), SE (European patent).

Published
With international search report.
Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: 4,7-DIMETHYL-2-(4-PYRIDINYL)-1,2,4-TRIAZOLO[1,5-a]PYRIMIDIN-5(4H)-ONE

(57) Abstract

The compound 4,7-dimethyl-2-(4-pyridinyl)-1,2,4-triazolo[1,5-a]pyrimidin-5(4H)-one and the pharmaceutically acceptable salts and solvates thereof are analgesic and anti-inflammatory agents. Methods for preparing and using the compound are described.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>DE</td>
<td>Germany, Federal Republic of</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
4,7-DIMETHYL-2-(4-PYRIDINYL)-1,2,4-
TRIAZOL[1,5-a]PYRIMIDIN-5(4H)-ONE

This invention is the novel chemical compound 4,7-dimethyl-2-(4-pyridinyl)-1,2,4-triazolo[1,5-a]-pyrimidin-5(4H)-one having the structural formula:

![Chemical Structure](image)

and pharmaceutically acceptable salts thereof and pharmaceutically acceptable solvates of the compound and of such salts. The invention also covers pharmaceutical compositions containing the compound or its pharmaceutically acceptable salts or solvates in combination with a pharmaceutically acceptable carrier and a method for treating pain or inflammation in a mammal comprising administering an effective amount of the compound or its salts or solvates to said mammal.

The compound 4,7-dimethyl-2-(4-pyridinyl)-1,2,4-triazolo[1,5-a]pyrimidin-5(4H)-one may be prepared by condensing 5-(methylamino)-3-(4-pyridinyl)-1H-1,2,4-triazole with an alkyl acetoacetate,
preferably ethyl acetoacetate. Other lower alkyl esters, such as methyl, propyl, n-butyl, etc. may also be used. The condensation produces two isomeric products. The production of the desired isomer may be maximized by performing the condensation without the use of a solvent at elevated temperature. For example in a preferred method, a 2 to 5 molar excess of the alkyl acetoacetate may be utilized in place of a solvent.

The starting material, 5-(methylamino)-3-(4-pyridinyl)-1H-1,2,4-triazole may be prepared by known methods. For example, methods described in Acta Chemica Scandinavica, **19**, 1135 (1965) and art recognized modifications thereof may be utilized.

The compound of the invention, 4,7-dimethyl-2-(4-pyridinyl)-1,2,4-triazolo[1,5-a]pyrimidin-5(4H)-one can form salts with pharmaceutically acceptable acids such as hydrochloric, methanesulfonic, sulfuric, phosphoric and the like. The salts are prepared by contacting the free base form with a sufficient amount of the desired acid to produce a salt in the conventional manner. The free base form may be regenerated by treating the salt forms with a base. For example, dilute aqueous base solutions may be utilized. Dilute aqueous sodium hydroxide, potassium carbonate, ammonia, and sodium bicarbonate solutions are suitable for this purpose. The free base form differs from the respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but the salts are otherwise equivalent to the respective free base form.

The compound of the invention and its corresponding salts can exist in unsolvated as well as
solvated forms, including hydrated forms. A preferred hydrate is the dihydrate. In general, the solvated forms, with pharmaceutically acceptable solvents such as water, ethanol and the like are equivalent to the unsolvated forms.

For preparing pharmaceutical compositions from the compounds described by this invention, inert, pharmaceutically acceptable carriers can be either solid or liquid. Solid form compositions include powders, tablets, dispersible granules, capsules, cachets and suppositories. A solid carrier can be one or more substances which may also act as diluents, flavoring agents, solubilizers, lubricants, suspending agents, binders or tablet disintegrating agents; it can also be an encapsulating material. The powders and tablets preferably contain from 5 or 10 to about 70 percent of the active ingredient. Suitable solid carriers are magnesium carbonate, magnesium stearate, talc, sugar, lactose, pectin, dextrin, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, a low melting wax, cocoa butter and the like.

For preparing suppositories, a low melting wax such as a mixture of fatty acid glycerides or cocoa butter is first melted, and the active ingredient is dispersed homogeneously therein as by stirring. The molten homogeneous mixture is then poured into conveniently sized molds, allowed to cool and thereby solidify.

Liquid form compositions include solutions, suspensions and emulsions. As an example may be mentioned water or water-propylene glycol solutions for parenteral injection. Liquid preparations can also be
formulated in solution with aqueous polyethylene glycol. Aqueous solutions suitable for oral use can be prepared by adding the compound to water and adding suitable colorants, flavors, stabilizing, sweetening, solubilizing and thickening agents as desired.

The quantity of active compound in a unit dose of composition may be varied or adjusted from 1 mg to 1000 mg according to the particular application and the potency of the active ingredient. The compositions can, if desired, also contain other therapeutic agents.

The dosages may be varied depending upon the requirements of the patient, the severity of the condition being treated and the particular compound being employed. Determination of the proper dosage for a particular situation is within the skill of the art. Generally, treatment is initiated with smaller dosages which are less than the optimum dose of the compound. Thereafter, the dosage is increased by small increments until the optimum effect under the circumstances is reached. For convenience, the total daily dosage may be divided and administered in portions during the day if desired.

The analgesic effect of the compound of the invention 4,7-dimethyl-2-(4-pyridinyl)-1,2,4-triazolo[1,5-a]pyrimidin-5(4H)-one, (Compound) was measured using two methods that have been well-described in the literature as indicative of pain-relieving efficacy. First, the Compound was evaluated for its ability to block writhing induced by the intraperitoneal injection of a noxious agent (acetic acid). This method has been described by others (see references, infra). Briefly, groups of five mice (CF1 male, 20-26 g) were injected intraperitoneally with 0.6% aqueous acetic acid (10 ml/kg) at fifteen minutes
after the oral administration of various doses of either the Compound or vehicle (0.4% aqueous methylcellulose, injection volume was 20 ml/kg po). The mice were then placed in a large observation beaker, and the number of writhes for each animal was counted during a 10 minute period three minutes after the acetic acid treatment. (A writh is defined as a sequence of arching of the back, pelvic rotation and hindlimb extension.) A mouse was considered protected if it had 50% less incidence of writhes than the average of the concomittantly run vehicle control group. At each drug dose the number of mice protected was divided by the total number of mice in the group at that dose and multiplied by 100 to give the Percent Protected for that dose. These data were used to determine the ED$_{50}$ and 95% confidence limits according to Litchfield and Wilcoxon (infra).

The second test used to determine the analgesic effects of the Compound was the rat yeast-paw test (Randall and Selitto, infra). Male, Sprague-Dawley rats (150-200 g) from Charles River Breeding Laboratories Inc. (Wilmington, MA) were used throughout. Groups of rats were first tested for their reaction times to withdraw from pressure applied with an accelerating (20 mm Hg/sec) bullet-shaped piston to each rear paw (preyeast reaction time). Subsequently, the right rear paw was inflamed by a subplantar injection (0.1 ml) of a 20% Brewer's yeast solution (w/v in distilled H$_2$O). Sixty minutes later the latency to withdrawal was measured again (postyeast reaction time). The Compound or vehicle was then administered and reaction times were redetermined at appropriate intervals (postdrug reaction times). A 15-sec cutoff was employed.
The ED_{75} was defined as that dose needed to increase the response latencies of the inflamed paws to 7 seconds. This time was chosen because it is the approximate response latency of a normal, non-inflamed paw. In comparison, the latency of the inflamed paw of a vehicle-treated rat was approximately 1.5 sec. The ED_{75} and its 95% confidence limits were calculated using a regression analysis according to Brownlee (infra).

The ED_{50} of the Compound in the mouse acetic acid writhing test was determined to be 34.0 mg/kg po, with 95 percent confidence limits being between 10.2 and 56.6 mg/kg po.

The ED_{75} of the Compound in the rat yeast-paw test was determined to be 12.3 mg/kg po at 30 minutes post-treatment, with 95 percent confidence limits being between 5.7 and 26.4 mg/kg po.

References

Mouse Acetic Acid Writhing Test

Rat Yeast-Paw Test

The compound of the invention and the pharmaceutically acceptable salts thereof are orally effective analgesic agents. The amount and frequency of administration will be regulated according to the judgement of the attending clinician considering such factors as age, condition and size of the patient as well as severity of the symptom being treated. A typical recommended dosage regimen is oral administration of from 75 to 1200 mg/day, preferably 150 to 600 mg/day, in two to four divided doses to achieve relief of the symptoms.

The compound of the invention and the pharmaceutically acceptable salts thereof are also useful for treating inflammation. The anti-inflammatory use may be demonstrated by standard test procedures known in the art.
PREPARATIVE EXAMPLE 1

4-Pyridinecarboxylic acid 2-[(methylamino)-
iminomethyl]hydrazide

Methylcarbamimidothioic acid methyl ester monohydriodide (33.0 gm) (prepared by the procedure given in Chem. Abstr., 56,5831g, 1962). was added to cold aqueous 1N sodium hydroxide (142 ml). 4-
Pyridinecarboxylic acid hydrazide (19.5 gm) was added to the cold solution with stirring. The reaction mixture was allowed to warm to room temperature and stirred for 72 hours. The solid product was collected by filtration, washed with a small amount of cold water and vacuum dried to give 24.0 gm. Recrystallization from methanol and vacuum drying at 100°C gave 4-
pyridinecarboxylic acid 2-[(methylamino)iminomethyl]hydrazide with m.p. 212-215°C dec.

Anal. Calculated for C₈H₁₁N₅O: C, 49.73; H, 5.74; N, 36.25. Found: C, 49.58; H, 5.63; N, 36.38.

PREPARATIVE EXAMPLE 2

5-(Methylamino)-3-(4-pyridinyl)-1H-1,2,4-triazole

A solution of 4-pyridinecarboxylic acid 2-
[(methylamino)iminomethyl]hydrazide (6.50 g) in aqueous 1N sodium hydroxide (45 ml) was heated at reflux for 2.5 hours. The solution was cooled in an ice bath and neutralized by addition of glacial acetic acid. The solid product was collected by filtration and vacuum dried to give 4.37 gm. Recrystallization from methanol and vacuum drying at 100°C gave 5-(methylamino)-3-(4-
pyridinyl)-1H-1,2,4-triazole. m.p. 228-230°C. Anal. Calculated for C₈H₉N₃: C, 54.84; H, 5.18; N, 39.98. Found: C, 54.75; H, 5.15; N, 40.09.
EXAMPLE

4,7-Dimethyl-2-(4-pyridinyl)-1,2,4-
triazolo[1,5-a]pyrimidin-5(4H)-one

A mixture of 5-(methylamino)-3-(4-pyridinyl) -
1H-1,2,4-triazole (10.5 gm) and ethyl acetoacetate
(30.0 ml) was heated with stirring in an oil bath at
180°C for 30 minutes. The mixture was cooled and
ethanol (100 ml) was added. The solid material was
collected by filtration and vacuum dried to give 13.3
gm of a mixture of isomers. This material was
recrystallized three times from ethanol to give 4,7-
dimethyl-2-(4-pyridinyl)-1,2,4-triazolo[1,5-
a]pyrimidin-5(4H)-one, m.p. 195-197°C, after vacuum
drying at 100°C.

Anal. Calculated for C_{12}H_{11}N_{5}O: C, 59.74;
H, 4.60; N, 29.03. Found: C, 59.48; H, 4.67; N, 29.35.

Alternatively, column chromatography of the
mixture of isomers on silica gel and elution with ethyl
acetate gave 4,7-dimethyl-2-(4-pyridinyl)-1,2,4-
triazolo[1,5-a]pyrimidin-5(4H)-one, after recrystal-
lization from ethanol and vacuum drying at 100°C.
Elution with ethyl acetate:methanol (4:1) gave the
isomeric product, 4,5-dimethyl-2-(4-pyridinyl)-1,2,4-
triazolo[1,5-a]pyrimidin-7(4H)-one, m.p. 263-267°C,
after recrystallization from ethanol and vacuum
drying. Anal. Calculated for C_{12}H_{11}N_{5}O: C, 59.74;
H, 4.60; N, 29.03. Found: C, 59.58; H, 4.67; N, 29.24.

The following formulations exemplify some of
the dosage forms of the compositions of this
invention. In each, the term "active compound"
designates the compound, 4,7-dimethyl-2-(4-pyridinyl)-
1,2,4-triazolo [1,5-a]pyrimidin-5(4H)-one or a
pharmaceutically acceptable salt, or a solvate of the compound or such salt.

Pharmaceutical Dosage Form Examples

Example A

Tablets

<table>
<thead>
<tr>
<th>No.</th>
<th>Ingredient</th>
<th>mg/tablet</th>
<th>mg/tablet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Active Compound</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>2.</td>
<td>Lactose USP</td>
<td>122</td>
<td>113</td>
</tr>
<tr>
<td>3.</td>
<td>Corn Starch, Food Grade, as a 10% paste in Purified Water</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>4.</td>
<td>Corn Starch, Food Grade</td>
<td>45</td>
<td>40</td>
</tr>
<tr>
<td>5.</td>
<td>Magnesium Stearate</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

Total 300 700

Procedure

Mix item nos. 1 and 2 in a suitable mixer for 10-15 minutes. Granulate the mixture with item no. 3. Mill the damp granules through a coarse screen (e.g., 1/4") if needed. Dry the damp granules. Screen the dried granules if needed and mix with item no. 4 and mix for 10-15 minutes. Add item no. 5 and mix for 1-3 minutes. Compress the mixture to appropriate size and weight on a suitable tablet machine.
Example B

Capsules

<table>
<thead>
<tr>
<th>No.</th>
<th>Ingredient</th>
<th>mg/capsule</th>
<th>mg/capsule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Active Compound</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>2.</td>
<td>Lactose USP</td>
<td>106</td>
<td>123</td>
</tr>
<tr>
<td>3.</td>
<td>Corn Starch, Food Grade</td>
<td>40</td>
<td>70</td>
</tr>
<tr>
<td>4.</td>
<td>Magnesium Stearate NF</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Total 250 700

Procedure
Mix item nos. 1, 2 and 3 in a suitable blender for 10-15 minutes. Add item no. 4 and mix for 1-3 minutes. Fill the mixture into suitable two-piece hard gelatin capsules on a suitable encapsulating machine.

Example C

Parenteral

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>mg/vial</th>
<th>mg/vial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Compound Sterile Powder</td>
<td>100</td>
<td>500</td>
</tr>
</tbody>
</table>

Add sterile water for injection or bacteriostatic water for injection for reconstitution.
Example D

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>mg/vial 100</th>
<th>mg/vial 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Compound</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>Methylparaben</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Propylparaben</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Sodium Bisulfite</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Disodium Edetate</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Sodium Sulfate</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Water for Injection q.s. ad</td>
<td>1.0 ml</td>
<td>1.0 ml</td>
</tr>
</tbody>
</table>

Procedure
1. Dissolve parabens in a portion (85% of the final volume) of the water for injection at 65-70°C.

2. Cool to 25-35°C. Charge and dissolve the sodium bisulfite, disodium edetate and sodium sulfate.

3. Charge and dissolve the active compound.

4. Bring the solution to final volume by adding water for injection.

5. Filter the solution through a 0.22 membrane and fill into appropriate containers.

6. Terminally sterilize the units by autoclaving.

The relevant teachings of all published references cited herein are incorporated by reference.
CLAIMS:
1. The compound 4,7-dimethyl-2-(4-pyridinyl)-1,2,4-triazolo[1,5-a]pyrimidin-5(4H)-one, having the structural formula

![Structural formula]

pharmaceutically acceptable salts thereof, and pharmaceutically acceptable solvates of the compound and of such salts.

2. The compound or salt as defined in claim 1 in the form of a pharmaceutically acceptable solvate.

3. The solvate as defined in claim 2, said solvate being a hydrate.

4. The solvate as defined in claim 3, said solvate being a dihydrate.

5. A pharmaceutical composition comprising as an active ingredient a compound as defined in any one of claims 1 to 4, in combination with a pharmaceutically acceptable carrier.

6. Process for preparing pharmaceutical compositions comprising mixing a compound as defined in any one of claims 1 to 4 with a suitable pharmaceutically acceptable carrier.
7. A method for treating pain in a mammal which comprises administering an effective amount of a compound as defined in any one of claims 1 to 4.

8. A method for treating inflammation in a mammal which comprises administering an effective amount of a compound as defined in any one of claims 1 to 4.

9. A method for making 4,7-dimethyl-2-(4-pyridinyl)-1,2,4-triazolo[1,5-a]pyrimidine-5(4H)-one having the structural formula:

\[
\begin{array}{c}
\text{CH}_3 \\
\text{O} \\
\text{N} \\ (I)
\end{array}
\]

and its pharmaceutically acceptable salts and pharmaceutically acceptable solvates of the compound and of such salts comprising:

reacting 5-(methylamino)-3-(4-pyridinyl)-1H-1,2,4-triazole with an alkyl acetoacetate followed by isolating the compound of formula I and, if desired, converting it to a pharmaceutically acceptable salt, or a solvate of the compound or of such salt.

10. The process of claim 8 wherein the reaction is carried out at elevated temperature.
INTERNATIONAL SEARCH REPORT

International Application No PCT/EP 84/00410

I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC

IPC: C 07 D 487/04; A 61 K 31/05 // C 07 D 213/86; 401/04

(C 07 D 487/04; 249:00, 239:00)

II. FIELDS SEARCHED

Minimum Documentation Searched

Classification System	Classification Symbols
IPC 4 | C 07 D 487/00; A 61 K 31/00

Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, 11 with indication, where appropriate, of the relevant passages 12</th>
<th>Relevant to Claim No. 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GB, A, 1070243 (SMITH KLINE & FRENCH) 1 June 1967 see page 3, lines 20-22 and claim 1; formula IV</td>
<td>1,5</td>
</tr>
<tr>
<td>A</td>
<td>GB, A, 1284485 (ICI). 9 August 1972 see page 1, lines 9-58</td>
<td>1,5</td>
</tr>
</tbody>
</table>

* Special categories of cited documents: 16
"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier document but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
"Z" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search 27th March 1985

Date of Mailing of the International Search Report 24 APR. 1985

International Searching Authority EUROPEAN PATENT OFFICE

Signature of Authorized Officer G.L.M. Naaldenberg

Form PCT/ISA/210 (second sheet) (January 1985)
V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE

This international search report has not been established in respect of certain claims under Article 17(2) (e) for the following reasons:

1. Claim numbers 7, 8, because they relate to subject matter not required to be searched by this Authority, namely:

PCT Rule 39.1(iv) Methods for treatment of the human or animal body by surgery or therapy, as well as diagnostic methods

2. Claim numbers, because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claim numbers, because they are dependent claims and are not drafted in accordance with the second and third sentences of PCT Rule 5.4(a).

VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This International Searching Authority found multiple inventions in this international application as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application.

2. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims:

3. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:

4. As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority did not invite payment of any additional fee.

Remark on Protest

- The additional search fees were accompanied by applicant's protest.
- No protest accompanied the payment of additional search fees.
This Annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 16/04/85.

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB-A- 1070243</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>GB-A- 1284485</td>
<td>09/08/72</td>
<td>CH-A- 544765</td>
<td>15/01/74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 955255</td>
<td>24/09/74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT-A- 303726</td>
<td>15/11/72</td>
</tr>
</tbody>
</table>

For more details about this annex:
see Official Journal of the European Patent Office, No. 12/82