ADJUSTABLE HIGH CHAIR

Ralph H. Thatcher, Sacramento, Calif.

Application March 10, 1951, Serial No. 214,867

20 Claims. (Cl. 155—158)

1 This invention relates to new and useful improvements in adjustable high chairs.

More particularly, the invention relates to high chairs provided with a rigid frame and a seat mounted on said frame, with the footrest, back rest and arm rests being adjustably interrelated so as to accommodate the growth of infants over a period of time and also to accommodate infants of various sizes, as in a restaurant. The adjustment of the movable members is made simultaneously and by a single means.

The construction of the high chair which is the subject of the present invention is such that by a single, simple adjustment, the elevation of the footrest, the distance between the front edge of the seat and the back rest, and the elevation of the arm rests above the level of the seat are all simultaneously adjusted in a definite relationship which follows the normal growth pattern of an infant. Thus a seat is fixed on a rigid frame at a convenient height above the floor for proper feeding of the infant, and the remainder of the chair is adjustable. The movement of the adjustable parts is interrelated by linkages to provide proper support as the body and limbs of the child develop.

One of the important features of this invention is that a rapidly growing child may be comfortably seated during meal, play or rest periods, so that his physical and mental development will not be hindered by a sense of physical discomfort or instability. Thus the use of cushions and books which have frequently been employed to adapt conventional chairs to children of different sizes are eliminated, thereby eliminating the danger of displacement of such compensating devices and removing the feeling of discomfort and instability which accompany the use thereof.

It is an important object of the present invention to provide an adjustable chair having a single means for simultaneously adjusting the position of the back rest, the foot rest, and the arm rests of the chair in such manner as to quickly, safely and comfortably accommodate an occupant through a wide range of ages and sizes.

It is also an object of the invention to provide a high chair wherein all adjustments required to seat any one of a number of children of different sizes properly and comfortably are provided in a single adjusting means.

It is a further object of the invention to provide an adjustable high chair for children which can easily be cleaned and which can be readily constructed and formed of comparatively inexpensive materials, such as tubular parts.

2 It is another object of the instant invention to provide an adjustable chair of modern, streamlined appearance, attractive, artistic design, and light weight tubular metal construction, which also incorporates a simplified adjusting mechanism to automatically make all chair adjustments required to correctly seat occupants of different sizes.

It is also an object of the present invention to provide an adjustable high chair for rapidly growing children which does not require the use of pillows or other compensating devices to accommodate the growth of the child and to make the occupant comfortable and secure to the extent required to encourage a general psychological improvement in the attitude of the child toward meals.

It is another object of this invention to provide an adjustable high chair for children which is particularly suited to the requirements of public restaurants.

Other and further objects and advantages of the instant invention will become apparent from reading of the following description of the invention and reference to the accompanying drawings, in which:

Fig. 1 is a side elevation of the high chair which is the subject of this invention illustrating the maximum and minimum adjustment positions, the solid lines showing the position of the component parts in position for the largest child and the dotted lines showing the position of such parts for the smallest child;

Fig. 2 is a front elevation of the structure of Fig. 1;

Fig. 3 is a perspective view of the chair;

Fig. 4 is a fragmentary front elevation, partially in section, showing the foot rest adjusting and locking mechanism in the release position;

Fig. 5 is a perspective view of a modified form of the invention;

Fig. 6 is a perspective view of still another modified form of the invention.

Referring now to Figs. 1 to 4, there is shown a pair of spaced, vertically-disposed, tubular inverted U-shaped frame members 10, each forming a downwardly extending front and rear leg portion 11 and 12, respectively, and a crown shaped, upper, arcuate portion 13 therebetween. Said members 10 are maintained in predetermined and spaced relationship by upper transverse rods 14 and 15 which extend through holes drilled in the upper arcuate portion 13 of members 10, and by lower transverse rods 16 and 17 which extend through similar holes drilled in the respective front and rear leg portions 11 and
12. The ends 19 of said rods are secured by cap screws, bolts or other convenient means to frame members 10. Upper rods 14 and 15 support seat 18 thereon and refer to a conventional height above floor level which will enable the chair to be used along side tables of conventional height. It will be understood, however, that a chair of different height may be employed. Seat 18 is made of any suitable material and may be made of canvas or other fabric looped around rods 14 and 15. If desired, the lower ends of frame 10 may not be supported on casters for convenient movement. It will further be understood that the ends of the frame members flare outwardly to make the chair stable and resist tendency to tip over. Pivotaly supported on rear rod 17 for free turning movement about a horizontal axis are two parallel spaced levers 21, each having a free arm adapted to swing through a predetermined arcuate section 27 of the front leg portion 11 of the frame. Affixed to and carried by the free arm 22 of each lever 21 is a footrest 23 having a bottom 24 of sufficient width and depth to comfortably accommodate the feet of the occupant. The top of the footrest may be arcuated in a position so as to provide a firm rest for the feet in any position of adjustment. Side portions 25 are secured extending upwardly to arm 22 by suitable screws. Also secured to levers 21 in a position behind foot rest 25 and at a shorter radius than the footrest from the axis of rod 17 is a horizontally disposed adjusting rod or bar 26 which functions as an actuating means for simultaneously making all chair adjustments in a manner hereinafter more fully described. A pair of aligned and spaced horizontal rods 28 is supported by and beneath footrest 23 for free sliding lateral movement. Each has an outer end 31 which is adapted to project through a hole 32 drilled in the free end of each lever 21. Thus, the free end 31 of each rod 28 is adapted to be slidably supported by lever 21 in such a manner as to effect a selective locking engagement with the plurality of cooperating holes 33 disposed at convenient intervals along the arcuate adjustment section 27 of each frame member 10, the holes 33 being equidistantly spaced and disposed along an arc which has the rod 17 as its center. The inner ends 30 of rod 28 are slidably supported by spaced bracket members 34 which are secured to the bottom of footrest 23. Brackets 34 and holes 32 form inner and outer bearing surfaces for sliding rods 28. Activating handles 35 are secured to each of the inner ends 30 of rods 28 and extend downwardly therefrom. Between brackets 34 and a washer 50 secured to rods 28 is compression spring 36 supported laterally on each of the rods concentric with the axis thereof. One end of spring 36 is maintained in pressing engagement with coating bracket 34 and the other end 39 presses against washer 50 to exert a pressure tending to extend each rod 28 outwardly. It will be observed that the outer ends 31 are continuously urged in locking engagement with cooperating holes 33 formed in adjustment section 27. It is, of course, understood that various conventional arrangements for adjustably clamping and securing arms 22 of levers 21 to the frame members 10 may be employed without departing from the scope of the instant invention.

Adjustably supported above the seat 18 is a pair of spaced and substantially horizontally disposed arm rests 31, each of which has front and rear pivotal connections 36 and 40, respectively. A vertically disposed and suitably formed back rest 41 is supported on and between rests 37 at the rear end thereof and adjacent the rear pivotal connection 40. Between the spaced frame members 10 and in a vertical plane substantially at right angles thereto, is a U-shaped rear tubular member 42 which is supported by rear member 15 for free pivotal movement about the horizontal axis of said rod. This tubular member 42 has an arcuate central portion 44 extending downwardly from horizontal rod 15 and also has oppositely disposed side portions 43 extending upwardly therefrom, the latter being adapted to provide pivotal support for the back and arm rests at 46, the points of connection therewith. In similar manner, a U-shaped front tubular member 45, supported for pivotal movement about horizontal rod 14 as an axis, has an arcuate central portion 47 of greater depth than the central portion 44 of the member 42, and also has upwardly projecting side portions 46 which are pivotally attached at the upper connections 38 to the forward ends of arm rests 37. The arcuate central portion 47 of the front tubular member 45 extends downwardly below the level of the spacing rod or bar 25 carried by levers 21, and the arcuate portion has a pair of oppositely placed elongated slots 48 formed therein to receive and permit limited sidewise engagement with spacing rod 25, the slots 48 being of sufficient length to permit free sliding movement of rod 25 throughout the normal range of adjustment of the chair. Spacing rod 25 slideably engages with oblong slots 48 of front tubular member 45 in such manner as to impart a predetermined angular displacement of members 45 in accordance with the relative adjustment of footrest 23 with respect to the floor level.

It will thus be seen that each arm rest 37, each side portion 43, each end portion 46 of the U-shaped pivoted lever or linkage member 45, and each upper arcuate portion 47 of the frame 10 comprises a parallel linkage arrangement which is adapted to automatically adjust the position of the back and arm rest in a manner which is directly related to the position of footrest 23 with respect to seat 18. All suitable parts are interrelated in such manner that the adjustments follow the normal growth development of a child.

Operation

In operation, adjusting handles 35 of the chair are first moved inwardly to the position illustrated in Fig. 4, by imparting a manual squeezing action thereto so as to compress springs 36, thereby disengaging the outer end portion 31 of rods 28 from locking engagement with holes 33 formed in front legs 11 of frame 10. The position of footrest 23 is then raised or lowered with respect to seat 18 to the position desired for correct posture and comfort for the occupant. Adjustment in the position of the footrest 23 effects a predetermined relative angular displacement of levers 21 and the spacing rod 25 carried thereby. Thus, the footrest 23 and rod 25 follow an arcuate path with rod 25, the adjusting movement of footrest 23 has been completed, handles 35 are released so that the laterally outward resilient pressure exerted by coil springs 36 will move end portions 31 of rods 28 into locking engagement with a new set of horizontally aligned holes 33 disposed along the inner faces of front legs of frames 10. Since spacing rod 26 carried by lever 21 extends through
and is always in free sliding engagement with slot 93. Any movement of footrest 23 will cause pivotal movement of the lower portion 47 of member 45. In turn, pivotal movement is imparted by the lower portion 47 of the L-shaped lever 45 to the upper end portion 46 thereof which has at all times a predetermined relationship to the relative position of the footrest 23 with respect to the seat 18. Accordingly, the upper end portions 45 of the L-shaped member 45 function as the actuator for the parallel linkage arrangement with arm rests 37 and backrest 41, with the result that the position of each and arm rests to seat 18 are adjusted with adjustment of footrest 23. For example, whenever footrest 23 is adjusted to the lowest position, arm rests 37 are raised to their highest position with respect to seat 18, and back 41 is also moved to its most rearward position, all as illustrated in solid lines in Fig. 1. Conversely, when footrest 23 is adjusted to uppermost position, arm rests 37 are moved forwardly and depressed vertically so as to be relatively closer to seat 18, and back 41 is simultaneously positioned at or near its most forward position, all as indicated by dotted lines in Fig. 1. Intermediate positions of footrest 23 simultaneously accomplish corresponding and relative adjustments of arms 37 and back 41.

While ordinarily the adjustment would be made only occasionally to accomplish the growth of the usual occupant, if temporary use by another is required, the device may be quickly reset for the new occupant by making one single and easily performed adjustment, without the use of tools. When the temporary need has passed, then the device can be restored to the former adjustment by returning footrest 23 to the previous position. Thus no loss of time or failure to restore to the precise former position is involved. All of this is accomplished without the necessity of employing auxiliary compensating devices such as pillows, or making independent adjustments of backrests 16 or arm rests 37. In addition, the adjustment is always in positive locked position with no danger of inadvertent release. The adjustments are automatically interrelated in accordance with normal infant growth.

Referring now to the modification shown in Fig. 5, an adjustable high chair 60 is shown comprising a main frame consisting of spaced, parallel L-shaped tubular members 61 which are suitably braced as by means of tubular braces 62. The L-shaped frame members 61 provide front legs 63, rear legs 64 and horizontal frame members 65. A fixed seat 66 is provided which is fixed to the horizontal members 65 by any suitable means. A back rest 67 and arms 68 are also provided which are pivotally mounted upon the horizontal frame members 65 by means of parallel links 69 at the rear and paralell links 70 at the front. The links 69 are pivotally connected at 71 to the arm rests 68 and the horizontal frame members 65. The levers 70 are pivotally connected to the arm rests 68 at 71 and they are full-encrusted at 77 to horizontal members 65. As illustrated, a tray 78 may be provided, which may be detachable and adjustably mounted on the arm rests 68 by any suitable means.

The levers 70 extend below the horizontal members 65 a substantial distance, as illustrated, and at their lower ends they are pivotally connected, at 73, to parallel curvilinear operating members or levers 73. The operating levers 70 are connected to the front legs 63 and at their outer ends they are fixed to a curved footrest 81. The connections between the operating levers 70 and the rest 61 may be by means of sleeves 82 connected to the levers 70 and to the footrest 81 and sliding along the front legs 63 as illustrated, pins 83 may be provided which are engagable with holes 84 formed in the front legs to latch the footrest at the desired elevation. Springs (not shown) may also be provided to urge pins 83 into holes 84.

In operation, pins 83 are pulled outwardly to release them from holes 84 and footrest 81 is adjusted to the desired level, e.g., from the position shown in Fig. 8 in solid lines to the position shown in broken lines. The pins are then released and allowed to engage holes 84 at the selected level. It will be apparent that the back 72 will be moved rearwardly or forwardly simultaneously, as from the solid line to the broken line position, thereby automatically adjusting the depth of the seat in proportion to the level of the footrest. It will also be seen that the curvature of the footrest provides a taut line which lies at all times in a horizontal plane, thus contributing further to the comfort of the occupant.

Referring now to the modification shown in Fig. 6, the chair seen shown, which is designated generally by numeral 90, is of a construction which is adapted to a child at a standard dining table. The chair 90 comprises a main frame consisting of spaced, parallel L-shaped tubular members 91. These, as will be seen, may be constructed of a single length of tubing to provide front legs 92, rear legs 93, base members 94 and top members 95. In this form of chair, a seat 96 is provided, which may be constructed of leather, fabric or other suitable material, and which may be braced and stiffened internally by an suitable means. The seat 96 is mounted on cross members 97 and 98 which have ends to and extend between the main frame members. An adjustable back 99 and arms 100 are provided which may be constructed of the same material as the seat and suitably stiffened. The back and arms are pivotally mounted on the frame members 94 by means of parallel links 101 and levers 102. The links 101 are formed from a continuous length of tubing and are pivotally connected to the arms and frame members at 103. The levers 102 are also formed from a continuous length of tubing and are pivotally connected at their upper ends, at 104, to the arms 100. The levers 102 are fulcrummed on the cross member 98, and they extend below the top frame member 95 and are connected at their lower ends to operating levers 110. The connections between the levers 102 and 110 are provided by pins 111 extending through levers 110 and riding in slots 112 formed in the levers 102.

The operating levers 110, as will be seen, are constructed from a continuous length of tubing and are fulcrummed at their rear ends, at 113, on the rear legs 92. At their forward ends, they are hinged in a generally polygonal shaped and are pivotally connected to form an operating levers 114. Adjustable connecting means are provided to latch the footrest at any selected level, the parts of such connecting means functioning in the same manner and being numbered in the connecting means shown in Fig. 14.

Operation of the chair of Fig. 6 will be apparent. The latching pins 83 will be pulled out to release them from holes 84, and the footrest will be moved to the desired level, as from that
shown in solid lines to that shown in broken lines. Simultaneously and automatically, the back rest 99 and arms 100 will be moved forwardly and backwardly to provide a seat of convenient depth in relation to the level of the footrest. When proper adjustment has been made, the pins 53 will be released to engage the selected holes 54 and latch the footrest, back and arms in selected position.

It will therefore be apparent to those skilled in the art that there has been provided a high chair of artistic design and simplified tubular construction wherein a quick and easily performed adjustment of the position of the footrest automatically imparts a predetermined adjustment of the back and arm rests to correctly and comfortably seat any one of a number of occupants of different ages and sizes. It will also be apparent that there has been produced an adjustable high chair which can be easily cleaned and which employs a simplified adjusting mechanism which is particularly adapted to simultaneously and automatically make all adjustments of the chair components required to correctly and comfortably accommodate occupants of different ages. There has also been provided an adjustable chair which does not require the use of pillows or other auxiliary devices to comfortably and safely seat a growing child throughout the period of most rapid growth. The relationship between the position of the footrest, the height of the back rest above the seat, and the position of the backrest, at any adjusted position is carefully balanced and calculated to give correct posture and maximum comfort. This relationship may be varied in the first instance by changing the distance between the rods 14 and 15 in the structure of Figs. 1 to 4, and by making similar adjustments in the structures of Figs. 5 and 6.

Although the foregoing invention has been illustrated and described in considerable detail and in several modifications, it will be understood that changes may be made in the structure without departing from the spirit of the invention and scope of the appended claims.

What is claimed is:
1. An adjustable high chair comprising, a rigid frame, a seat fixed to said frame, supporting means for the back and arms of the occupant, at least two levers each pivotally connected to said supporting means and to said frame providing for movement of said supporting means forwardly and rearwardly with respect to said seat and adjusting the distance of the back support from the forward edge of said seat, the two forwardmost of said levers being formed with downwardly extending projections, a footrest, second means articulately connecting said footrest with the lower ends of the projections of said two forwardmost levers on opposite sides of the chair so that raising of said footrest moves said supporting means forwardly, and third means selectively adjusting the position of said footrest relative to said frame.
2. An adjustable high chair comprising, a rigid frame, a seat fixed to said frame, supporting means for the back and arms of the occupant, second means mounting said supporting means on said frame above said seat and providing for movement of said supporting means forwardly and rearwardly with respect to said seat, said second means having a first point of pivotal connection with said frame adjacent the upper end of said frame, a footrest, third means mounting said footrest on said frame for raising and lowering movement, said third means having a second point of connection with said footrest, and fourth means operatively connecting said supporting means and footrest for moving said supporting means forwardly when said footrest is raised and moving said supporting means rearwardly when said footrest is lowered, said fourth means being operative to decrease the distance between said first point and said second point as said footrest is raised.
3. A chair according to claim 2 in which said supporting means comprises a substantially vertical back and a pair of substantially horizontal arm rests on opposite sides of said chair, said back and arm rests being operatively connected so that as said back is moved rearwardly said arm rests are simultaneously elevated.
4. A chair according to claim 2 in which said third means comprises a pair of first levers each pivoted to said frame at the back thereof and fixed to said footrest at the front of said chair and in which said fourth means comprises second levers each having a connection with one of said first levers and pivotally connected to said supporting means and to said frame;
5. A chair according to claim 2 in which said third means comprises sleeves slidable on said frame in a fixed path, in which said fourth means comprises a pair of levers on opposite sides of said chair fixed on one end to said footrest and pivotally connected at their opposite ends to said frame.
6. A chair of the character described comprising a frame for supporting the chair, a seat fixed to the upper end of said frame, a back rest, a footrest, parallelogram means pivotally mounting the back rest on the upper end of said frame for forward and rearward movement to adjust the effective depth of said seat, and linkage means pivotally connecting said footrest with said back rest, said linkage means being operable, when said footrest is raised or lowered, to move said back rest forwardly or rearwardly, respectively, said linkage means being arranged to shorten the distance between the point of pivotal connection of said parallelogram means to said frame and the point of pivotal connection of said linkage means and said footrest as said footrest is raised.
7. In an adjustable chair, the combination which comprises, a frame forming the four legs of said chair, a seat supported on said frame, a footrest, means pivotally mounted on the rear legs of said frame and articulately connected to said footrest and adapted to move said footrest in an arcuate path, means for adjustably securing said footrest to the front legs of said frame at predetermined positions, below the seat of said chair, a back and arm rest adaptively supported above the seat of said chair by a parallel linkage arrangement, and means for automatically adjusting said parallel linkage arrangement in accordance with the position of said footrest with respect to said seat of said chair.
8. In an adjustable chair, the combination which comprises, a frame having the four legs of said chair, a footrest and locking means therefor, means pivotally mounted on the rear legs of said frame and articulately connected to said footrest and adapted to move said footrest in a vertical plane along a predetermined circular arc, means for adjustably locking said footrest to the front legs of said frame at predetermined positions along said circular arc, a seat supported by said frame, back and arm supporting means...
adjustably supported above said seat by a parallel 
linking arrangement, and linkage means respon-
sive to the position of said footrest along said 
arc for actuating the said parallel linkage ar-
rangement.

8. In an adjustable chair, a frame forming the 
four legs of said chair, a footrest means ad-
justably supported below the seat of said chair 
and pivotally mounted on the rear legs of said 
frame for movement along an arcuate path, 
means for securing said foot supporting means 
to the front legs of said frame at a plurality of 
points along said arcuate path, a seat sup-
ported by said frame, a pair of arm rests and a 
back rest therebetween supported above 
said seat by a parallel linkage arrange-
ment, and linkage means for actuating said par-
allel linkage arrangement in such a manner 
that said back and arm rests have at all times 
a predetermined relationship to the position of 
said footrest along said arcuate path.

10. In an adjustable chair, the combination 
which comprises, a frame forming the four legs 
of said chair, a footrest, an adjustable support-
ning means pivotally mounted on the back legs 
of said frame adapted to move said footrest 
along an arcuate path and in juxtaposition with a 
predetermined portion of the front legs of said 
frame, means for adjustably securing the said 
footrest to said frame at a plurality of positions 
along said arcuate path, a seat supported by said 
frame, a pair of spaced arm rests and a back 
rest therebetween adjustably supported above 
said seat by a parallel linkage arrangement, and 
a slotted linkage mechanism adapted to auto-
matically impart an adjusting movement to said 
parallel linkage arrangement having at all times 
a predetermined relationship to the position of 
said footrest with respect to said seat.

11. In an adjustable high chair having a seat 
and a single footrest adjusting means adapted 
to automatically readjust the position of the 
arm and back rests in relation to said seat, the 
combination which comprises, a footrest, a pair 
of parallel and spaced levers pivotally supported 
on the frame of said chair and adapted to ad-
justably support said footrest for movement in 
an arcuate path and contiguous with a predeter-
mined portion of the frame of said chair, a means 
for adjustably securing said footrest to said 
frame at predetermined intervals along said arcuate 
path, a pair of horizontally disposed arm rests 
and a back rest therebetween adjustably sup-
ported above said seat by a parallel linkage ar-
rangement, and a slotted linkage mechanism 
adapted to impart and adjusting movement to 
said linkage arrangement having at all times a 
predetermined relationship to the position of said 
footrest along said arcuate path.

12. In an adjustable chair having tubular front 
and rear leg members and a seat supported 
thereby, the combination which comprises, a 
footrest, means pivotally mounted on the rear 
legs of said chair and articulately connected to 
said footrest, readily releasable means adapted 
to secure said footrest in locking engagement 
with said front leg members at predetermined 
positions on said front legs, a pair of spaced apart 
arm rests and a back rest therebetween adjust-
ably supported above said seat of said chair by 
a parallel linkage arrangement, and a slotted 
linkage mechanism adapted to automatically im-
port an adjustable movement to said parallel 
linkage arrangement having at all times a pre-
determined relationship to the position of said 
footrest.

13. A high chair of the character described, 
comprising, legs for supporting said chair, a seat 
fixed to the upper ends of said legs, a back rest, 
parallel levers means mounting said back rest 
on the upper ends of said legs for movement for-
wardly and rearwardly, said parallel levers means including parallel links pivotally connecting said 
back rest with the legs at the rear of said chair, 
and parallel levers each pivotally connected to 
said back rest and fulcrummed on the frame 
structure at the front of said chair and extend-
 ing below the upper end of said legs, a footrest, 
and parallel operating levers fixed at their outer 
ends to opposite ends to the rear legs of said 
chair and articulately connected immediate their 
ends of said footrest and at their inner ends to 
the lower ends of said first-mentioned levers.

14. A high chair of the character described, 
comprising, legs for supporting said chair, a seat 
fixed to the upper ends of said legs, a back rest, 
parallel levers means mounting said back rest 
on the upper ends of said legs for movement for-
wardly and rearwardly, said parallel levers means 
including parallel links pivotally connecting said 
back rest with said legs at the rear of said chair, 
and parallel levers each pivotally connected to 
said back rest and fulcrummed on the leg struc-
ture at the front of said chair and extending be-
low the upper end of said legs, a footrest, and 
parallel operating levers pivotally connecting said 
their outer ends to opposite ends of said footrest, 
and toggle means connecting the inner ends of 
said operating levers to the lower ends of said 
first-mentioned levers.

15. A high chair of the character described, 
comprising, a pair of parallel, spaced, tubular 
frame members in the form of inverted U's pro-
viding front and rear legs and a pair of spaced, 
parallel, horizontal members at the upper ends 
of said legs, a fixed seat mounted on and extend-
 ing between said horizontal members, a back rest 
and forwardly extending arm rests on opposite 
side thereof, a footrest, spaced parallel links 
pivotally connecting said back rest and arm rests 
to the rear legs of said chair, spaced parallel 
levers pivotally connected at their upper end to 
the forward portions of said arm rests, means 
pivotally mounting said levers on said horizontal 
members to provide fulcrums for said levers, the 
lower ends of said levers extending below said 
fulcrums, a pair of spaced parallel operating 
levers fixed to opposite ends of said footrest, said 
an operating levers curving upwardly and inwards 
from said footrest, and toggle connections be-
tween the inner ends of said operating levers 
and the lower ends of said first-mentioned levers.

16. A high chair of the character described, 
comprising, spaced, parallel tubular members in 
the form of inverted U's providing front and 
rear legs and spaced, horizontal members, at the 
upper ends of said legs, a fixed seat mounted 
on and extending between said horizontal mem-
bers, a back rest and arm rests, a footrest, par-
allel links pivotally connecting said back rest with said horizontal members at the rear of said chair, 
parallel levers fulcrummed on said horizontal 
members forwardly of said links, extending there-
below and thereabove, and pivotally connected 
at their upper ends to said arm rests, and par-
allel operating levers fulcrummed at their inner 
ends on the rear legs of said chair, pivotally and 
slidably connected at their mid-portions to the 
lower ends of said first-mentioned levers and
fixed to their outer ends to opposite ends of said footrest.

17. A high chair of the character described, comprising, a continuous length of tubing bent to form spaced, parallel, fixed horizontal members at the upper ends of said legs, a fixed seat mounted on and extending between said horizontal members, a back rest and arm rests, a footrest, parallel links pivotally connecting said back rest with said horizontal members at the rear of said chair, parallel levers fulcrummed on said horizontal members forwardly of said links, extending therebelow and thereabove, and pivotally connected at their upper ends to the arm rests, and parallel operating levers fulcrummed at their inner ends on the rear legs of said chair, pivotally and slidably connected at their mid-portions to the lower ends of said first-mentioned levers and fixed at their outer ends to opposite ends of said footrest.

18. An adjustable chair of the character described, comprising a rigid frame supporting said chair, a generally horizontal seat mounted on said frame, a back rest, first means mounting said back rest on said frame for substantially horizontal movement above the level of said seat, said first means having inverted U's to pivot connections with said frame adjacent the upper end of said frame, a footrest, second means mounting said footrest on said frame for substantially vertical movement relative to said frame, said second means having a second point of connection with said footrest, and third means for operatively connecting said first means and said second means below said first point to move said backrest and footrest in unison, said third means being operative to increase the distance between said first point and second point as said footrest is raised so that said footrest moves upwardly as said backrest moves forwardly and said footrest moves downwardly as said backrest moves rearwardly.

19. An adjustable high chair comprising, a rigid frame, a seat fixed to said frame, supporting first means for the back of the occupant, at least three links each pivotally connected to said supporting means and to said frame providing for movement of said first means forwardly and rearwardly and adjusting the distance of the back support from the forward edge of said seat, two of said links being positioned in an opposed pair, one on each side of said chair, each link of said opposed pair having a downward extension, a footrest, and second means articulately connecting said footrest with said downward extensions, said second means including connections with said footrest, said second means being connect to said downward extensions and said footrest to shorten the distance between the points of connection of said second means with said footrest and the points of connection of said opposed links with said frame as said footrest is raised and to move said downward extensions rearwardly and said first means forwardly as said footrest is raised.

20. In an adjustable chair, the combination which comprises, a frame forming the legs of said chair, a seat supported on said frame, a footrest, means mounted on said frame and connected to said footrest and adapted to move said footrest in a path of varying elevation relative to said frame, means for adjustably securing said footrest to said frame at a plurality of positions relative to said seat of said chair, a backrest supported substantially vertically above said seat of said chair, said seat and backrest being adjustable relative to each other in a substantially horizontal direction, and means for automatically adjusting said backrest and seat relative to one another in a horizontal direction in accordance with the position of said footrest with respect to said seat of said chair.

References Cited in the file of this patent

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>115,784</td>
<td>Wilson</td>
<td>July 4, 1871</td>
</tr>
<tr>
<td>189,306</td>
<td>Curry</td>
<td>Sept. 29, 1874</td>
</tr>
<tr>
<td>579,499</td>
<td>Shapira</td>
<td>Mar. 23, 1897</td>
</tr>
<tr>
<td>1,156,725</td>
<td>Turner</td>
<td>Oct. 12, 1915</td>
</tr>
</tbody>
</table>