

Office de la Propriété Intellectuelle du Canada

Un organisme d'Industrie Canada

Canadian Intellectual Property Office

An agency of Industry Canada CA 2529252 A1 2004/12/29

(21) 2 529 252

(12) DEMANDE DE BREVET CANADIEN

CANADIAN PATENT APPLICATION (13) **A1**

- (86) Date de dépôt PCT/PCT Filing Date: 2004/06/16
- (87) Date publication PCT/PCT Publication Date: 2004/12/29
- (85) Entrée phase nationale/National Entry: 2005/12/13
- (86) N° demande PCT/PCT Application No.: GB 2004/002599
- (87) N° publication PCT/PCT Publication No.: 2004/113285
- (30) Priorité/Priority: 2003/06/19 (0314260.1) GB

- (51) Cl.Int./Int.Cl. *C07C 323/56* (2006.01), *A61K 31/192* (2006.01)
- (71) Demandeur/Applicant: ASTRAZENECA AB, SE
- (72) Inventeurs/Inventors: ANDERSSON, KJELL, SE; LINDSTEDT-ALSTERMARK, EVA-LOTTE, SE; SORENSEN, HENRIK, SE
- (74) Agent: FETHERSTONHAUGH & CO.
- (54) Titre: PROCEDE D'ELABORATION D'ACIDE RACEMIQUE 2-{[2-(4-HYDROXYPHENYL)ETHYL]THIO}-3-[4-(2-{4-[(METHYLSULFONYL)OXY]PHENOXY}ETHYL)PHENYL]-PROPANOIQUE
- (54) Title: PROCESS FOR THE PREPARATION OF RACEMIC 2-{[2-(4-HYDROXYPHENYL)ETHYL]THIO}-3-[4-(2-{4-[(METHYLSULFONYL)OXY]PHENOXY}ETHYL)PHENYL]-PROPANOIC ACID

(57) Abrégé/Abstract:

The present invention provides a process for the preparation of substantially racemic 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-hydroxyphenyl)ethyl]-3-[4-(2-{4-hydroxyphenyl)ethyl [(methylsulfonyl)oxy]phenoxy}ethyl)phenyl]-propanoic acid which comprises reacting 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-hydroxyphenyl)ethyl]-3-[4-(2-{4-hydroxyphenyl)ethyl]-3 [(methylsulfonyl)oxy]phenoxy}ethyl)phenyl]propanoic acid enriched in one enantiomer with a base in an inert solvent.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 29 December 2004 (29.12.2004)

PCT

(10) International Publication Number WO 2004/113285 A1

(51) International Patent Classification⁷: C07C 323/56, A61K 31/192

[SE/SE]; AstraZeneca R & D Molndal, S-SE-431 83 Molndal (SE).

(21) International Application Number:

PCT/GB2004/002599

(74) Agent: ASTRAZENECA; Global Intellectual Property, S-SE-151 85 Sodertalje (SE).

(22) International Filing Date: 16 June 2004 (16.06.2004)

English

English

(30) Priority Data:

(25) Filing Language:

(26) Publication Language:

0314260.1 19 June 2003 (19.06.2003) GB

- (71) Applicant (for AE, AG, AL, AM, AT, AU, AZ, BA, BB, BE, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CY, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, SZ, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW only): ASTRAZENECA AB [SE/SE]; Sodertalje, S-SE-151 85 (SE).
- (71) Applicant (for MG only): ASTRAZENECA UK LIM-ITED [GB/GB]; 15 Stanhope Gate, London, Greater London W1K 1LN (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): ANDERSSON, Kjell [SE/SE]; AstraZeneca R & D Molndal, S-SE-431 83 Molndal (SE). LINDSTEDT-ALSTERMARK, Eva-Lotte [SE/SE]; AstraZeneca R & D Molndal, S-SE-431 83 Molndal (SE). SORENSEN, Henrik

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(**54) Title:** PROCESS FOR THE PREPARATION OF RACEMIC 2-{[2-(4-HYDROXYPHENYL)ETHYL]THIO}-3-[4-(2-{4-[(METHYLSULFONYL)OXY]PHENOXY}ETHYL)PHENYL]-PROPANOIC ACID

(57) Abstract: The present invention provides a process for the preparation of substantially racemic 2-{[2-(4-hydrox-yphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)phenyl]-propanoic acid which comprises reacting 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)phenyl]propanoic acid enriched in one enantiomer with a base in an inert solvent.

WO 2004/113285 PCT/GB2004/002599

PROCESS FOR THE PREPARATION OF RACEMIC 2-{'2-(4-HYDROXYPHENYL) ETHYL!-THIO)-3-'4-(2-{4-'/METHYLSULFONYL)OXY! PHENOXY}ETHYL)PHENYL! PROPANOIC ACID

Field of the invention

The present invention relates to a process for the preparation of certain of 3-phenyl-2-arylalkylthiopropionic acid derivatives which have utility in treating clinical conditions including lipid disorders (dyslipidemias) whether or not associated with insulin resistance and other manifestations of the metabolic syndrome.

Background of the invention

Co-pending PCT application No. PCT/GB02/05743 discloses compounds of formula

10 A

$$CO_2H$$

wherein R¹ represents chloro, fluoro or hydroxy as well as optical isomers and racemates thereof as well as pharmaceutically acceptable salts, prodrugs, solvates and crystalline forms thereof which are selective PPARα modulators. These compounds are useful in treating clinical conditions including lipid disorders (dyslipidemias) whether or not associated with insulin resistance and other manifestations of the metabolic syndrome. The above compounds contain a chiral centre. Often one enantiomer is much more active than the other and the preferred enantiomer is obtained by a resolution process or by chiral chromatography. By its nature a resolution process of a racemic mixture leads to 50% of the undesired material being discarded. The situation can be improved if the undesired enantiomer can be converted back into a racemic mixture by a racemisation process. Therefore there is a need for an efficient and cost effective process for racemising the undesired isomer so that the resolution step can be repeated and reduce the material wastage in the process.

Description of the invention

25

The present invention provides a process for the preparation of substantially racemic 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}-ethyl)phenyl]-propanoic acid which comprises reacting 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)phenyl]propanoic acid enriched in one

enantiomer with a base in an inert solvent. Optionally the acid may be converted into an ester prior to racemisation or may converted into an ester during the racemisation. Suitable esters include C₁₋₆ alkyl esters for example the methyl and ethyl ester. Suitable bases include potassium hydroxide or sodium hydroxide. Suitably the racemised ester is then hydrolysed to give the racemic acid for example by base hydrolysis or by acid hydrolysis.

In one aspect the process comprises reacting 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)phenyl]propanoic acid enriched in one enantiomer with a halosilane in the presence of a nitrogenous base in the presence of an inert solvent at a temperature in the range of 0 to 150°C.

The term enriched means that one enantiomer comprises >50 %, preferably between 60 and 80% and most preferably between 80 and 100% of the 2-{[2-(4-hydroxyphenyl)-ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)phenyl]propanoic acid in a mixture of the enantiomers of this acid.

In another aspect the present invention comprises reacting a compound of formula I

15

10

enriched in one enantiomer with a chlorosilane of formula $ClSiR^1R^2R^3$ in which R^1 , R^2 , and R^3 independently represent a C_{1-6} alkyl group or aryl in the presence of a nitrogenous base in the presence of an inert solvent at a temperature in the range of 0 to 150°C to give a compound of formula II

$$O-SiR^{1}R^{2}R^{3}$$

$$O-SiR^{1}R^{2}R^{3}$$

$$SO_{2}CH_{3}$$

20

in which R¹, R², and R³ are previously defined which is hydrolysed to give a racemic compound of formula III

10 I

15

Suitable nitrogenous bases include 1,8 diazabicyclo[5.4.0] undec-7-ene, trialkylamines for example triethylamine, optionally substituted pyridines and optionally substituted imidazoles. Particularly the base is 1,8 diazabicyclo[5.4.0] undec-7-ene.

Suitable halosilanes include chlorotrialkyl silanes, for example chlorotriethylsilane and chlorodimethyl*tert*butylsilane and chlorotriarylsilanes for example chlorotriphenylsilane and mixed chloroarylalkyl silanes for example chlorodimethylphenyl silane. Particularly the chlorosilane is chlorotrimethylsilane.

In yet another aspect the present invention comprises reacting a compound of formula

$$\begin{array}{c} O \\ O \\ O \\ SO_2CH_3 \end{array}$$

enriched in one enantiomer with chlorotrimethylsilane in the presence of 1,8 diazabicyclo[5.4.0] undec-7-ene in the presence of an inert solvent at a temperature in the range of 0 to 150°C to give a compound of formula IV

which is hydrolysed to give a racemic compound of formula III

The compounds of the invention may be isolated from their reaction mixtures using conventional techniques. Hydrolysis is preferably carried out in the presence of an acid for example hydrochloric acid but basic hydrolysis may also be used.

The expression "inert solvent" refers to a solvent that does not react with the starting materials, reagents, intermediates or products in a manner that adversely affects the yield of the desired product. Suitable solvents include ethers, for example dialkyl ethers, especially diC₁₋₆ alkyl ethers, or cyclic ethers for example tetrahydrofuran or hydrocarbons for example toluene.

Aryl means phenyl or naphthyl, preferably phenyl, each of which is optionally substituted by one or more C_{1-6} alkyl, C_{1-6} alkoxy or halo.

Preferably the enriched acid contains more of the (+) enantiomer (as measured in the conditions described below).

Examples

10

¹H NMR and ¹³C NMR measurements were performed on a Varian Mercury 300 or Varian UNITY plus 400, 500 or 600 spectrometers, operating at ¹H frequencies of 300, 400, 500 and 600 MHz, respectively, and at ¹³C frequencies of 75, 100, 125 and 150 MHz, respectively. Measurements were made on the delta scale (δ).

Unless otherwise stated, chemical shifts are given in ppm with the solvent as internal standard.

Abbreviations

DMSO dimethyl sulfoxide

EtOAc ethyl acetate

DMF N, N-dimethylformamide

25 THF tetrahydrofuran

MeCN acetonitrile

MeOH methanol

TFA trifluoroacetic acid

	NH ₄ OAc	ammonium acetate
	t	triplet
	S	singlet
	d	doublet
5	q	quartet
	m	multiplet
	bs	broad singlet

Preparation of Staring Material

$2-\{[2-(4-Hydroxyphenyl)ethyl]thio\}-3-[4-(2-\{4-[(methylsulfonyl)oxy]phenoxy\}-$

o ethyl)phenyl]propanoic acid

(i) Methyl 2-chloro-3-[4-(2-hydroxyethyl)phenyl]propanoate

NH₄OAc as eluent) gave 9.7g product (yield 49%) as an oil.

- 2-(4-Aminophenyl)ethanol (11g, 81mmol) and 32ml conc HCl was dissolved in acetone and cooled to 0°C. Sodium nitrite (5.6g, 81mmol) in 20ml water was added dropwise. The temperature was kept under 0°C. After one hour, methyl acrylate (70g, 808mmol) and CuI
- 15 (1.6g, 8mmol) were added (<0°C). The reaction mixture was stirred at room temperature overnight. The solvent was evaporated and water was added. The water phase was extracted three times with EtOAc, the organic phases were pooled and washed with water, dried (MgSO₄) and evaporated under reduced pressure. The crude product was purified by flash chromatography using a 65:35 mixture of EtOAc and heptane as eluent. Further purification by preparative HPLC (using a gradient of CH₃CN/ 5%CH₃CN-waterphase containing 0.1M
 - ¹HNMR (400MHz, CDCl₃): 2.84 (t, 3H), 3.15 (dd, 1H), 3.35 (dd, 1H), 3.75 (s, 3H), 3.84 (t, 3H), 4.43 (t, 1H), 7.17 (d, 4H)
 - (ii) Methyl 3-(4-{2-[4-(benzyloxy)phenoxy]ethyl}phenyl)-2-chloropropanoate
- Triphenylphosphine (2.4g, 9mmol) was added to a solution of methyl 2-chloro-3-[4-(2-hydroxyethyl)phenyl]propanoate (2.1g, 8.5mmol) and 4-(benzyloxy)phenol (1.7g, 8mmol) in 20ml toluene under nitrogen atmosphere. The solution was warmed to 55°C and diisopropyl azodicarboxylate (1.8g, 9mmol) was added. The reaction mixture was stirred at 55°C overnight. The mixture was allowed to cool and the solvent was evaporated under reduced pressure. The crude product was purified by flash chromatography using a 80:20 mixture of heptane and EtOAc as eluent to yield 2.28g of the desired product (yield 61%) as colourless crystals.

¹HNMR (400MHz, CDCl₃): 3.05 (t, 2H), 3.16 (dd, 1H), 3.36 (dd, 1H), 3.75 (s, 3H), 4.12 (t, 2H), 4.45 (t, 1H), 5.01 (s, 2H), 6.82 (m, 2H), 6.90 (m, 2H), 7.13-7.27 (m, 4H), 7.29-7.47 (m, 5H).

- (iii) Methyl 2-chloro-3-{4-[2-(4-hydroxyphenoxy)ethyl]phenyl}propanoate
- Methyl 3-(4-{2-[4-(benzyloxy)phenoxy]ethyl}phenyl)-2-chloropropanoate (1.0g, 2.4mmol) and dimethyl sulfide (0.9g, 14mmol) was dissolved in 60ml CH₂Cl₂. Boron trifluoride etherate (2.0g, 14mmol) was added dropwise to the stirred solution. The reaction mixture was stirrred for two days at room temperature. Another equivalent (0.4g, 2.87mmol) boron trifluoride etherate was added and the stirring was continued overnight.
- Water was added. The phases were separated and the aqueous phase was extracted twice with CH₂Cl₂. The organic phases were pooled, washed (water, brine), dried (Na₂SO₄) and evaporated under reduced pressure. Futher purification by preparative HPLC using a gradient of CH₃CN/5% CH₃CN-waterphase containing 0.1M NH₄OAc gave 0.55g of the desired product (yield 52%) as an oil.
- ¹⁵ HNMR (400MHz, CDCl₃): 3.04 (t, 2H), 3.16 (dd, 1H), 3.35 (dd, 1H), 3.75 (s, 3H), 4.10 (t, 2H), 4.40 (t, 1H), 6.75 (m, 4H), 7.12-7.29 (m, 4H).
 - (iv) Methyl 2-chloro-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)phenyl]propanoate Methyl 2-chloro-3-{4-[2-(4-hydroxyphenoxy)ethyl]phenyl}propanoate (334mg, 1.0mmol) and triethylamine (303mg, 3.0mmol) was dissolved in 20ml dichlormethane and cooled to
- -20°C under nitrogen atmosphere. Methanesulfonyl chloride (114mg, 1.0mmol) was added dropwise. The mixture was allowed to reach room temperature. After 2 hours dichlormethane was added, the mixture was washed (water, brine), dried (Na₂SO₄) and evaporated under reduced pressure to yield 394mg pure product (yield 96%).
- ¹HNMR (400MHz, CDCl₃): 3.02-3.11 (m,5H), 3.15 (dd, 1H), 3.35 (dd,1H), 3.74 (s, 3H), 4.14 (t, 2H), 4.44 (t, 1H), 5.29 (s, 2H), 6.88 (d, 2H), 7.14-7.25 (m, 6H).
 - (v) Methyl 2-({2-[4-(benzyloxy)phenyl]ethyl}thio)-3-[4-(2-{4-[(methylsulfonyl)oxy]-phenoxy}ethyl)phenyl]propanoate
 - 2-[4-(Benzyloxy)phenyl]ethanethiol (334mg, 1.4mmol), methyl 2-chloro-3-[4-(2-{4-(methylsulfonyl)oxy]phenoxy}ethyl)phenyl]propanoate (394mg, 0.95mmol) and potassium
- carbonate (189mg, 1.4mmol) were dissolved in 14ml dry DMF and stirred under nitrogen atmosphere at room temperature overnight. The solvent was evaporated under reduced pressure and the residue was dissolved in toluene. The organic phase was washed (water, brine), dried (MgSO₄) and evaporated. Futher purification by preparative HPLC using a

gradient of CH₃CN/5% CH₃CN-waterphase containing 0.1M NH₄OAc gave 477mg of the desired product (yield 75%).

¹HNMR (400MHz, CDCl₃): 2.76-2.89 (m, 4H), 2.95 (dd, 1H), 3.09 (m,5H), 3.20 (dd, 1H), 3.53 (m, 1H), 3.70 (s, 3H), 4.15 (t, 2H), 5.06 (s, 2H), 6.91 (m, 4H), 7.07-7.24 (m, 8H), 7.31-7.48 (m, 5H).

- (vi) Methyl 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]-phenoxy}ethyl)phenyl]propanoate
- To a solution of methyl 2-({2-[4-(benzyloxy)phenyl]ethyl}thio)-3-[4-(2-{4-(methylsulfonyl)oxy]phenoxy}ethyl)phenyl]propanoate (477mg, 0.8mmol) and 15ml
- dichlormethane, dimethyl sulfide (239mg, 3.8mol) and boron trifluoride etherate (545mg, 3.8mmol) were added. After 18 hours of stirring water was added to the reaction. The phases were separated and the aqueous phase was extracted twice with dichlormethane. The organic phases were pooled, dried (MgSO₄) and evaporated under reduced pressure.
 - 274mg of the desired product (yield 67%) was obtained as an oil.
- ¹⁵ HNMR (400MHz, CDCl₃): 2.70-2.85 (m, 4H), 2.91 (dd, 1H), 3.05 (t, 2H), 3.10 (s, 3H), 3.17 (dd, 1H), 3.49 (m, 1H), 3.68 (s, 3H), 4.13 (t, 2H), 6.72 (d, 2H), 6.87 (d, 2H), 6.99 (d, 2H), 7.10-7.22 (m, 6H)
 - (vii) 2-{[2-(4-Hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]-phenoxy}ethyl)phenyl]propanoic acid
- Methyl 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}-ethyl)phenyl]propanoate (105mg, 0.2mmol) was dissolved in 6.5ml of a 7:1 mixture of THF and water and cooled on an ice-bath. Lithium hydroxide (9.4mg, 0.4mmol) was added. Water was added to the reaction mixture after 24 hours of stirring at room temperature. The THF was evaporated under reduced pressure and the residue was acidified with 1M hydrochloric
- acid. The water phase was extracted with EtOAc (x3), the organic phases were pooled, washed (water, brine), dried (MgSO₄) and evaporated. The crude product was purified using preparative HPLC (eluent: CH₃CN / 5% CH₃CN-waterphase containing 0.1M NH₄OAc) to give 74mg of the desired product (yield 97%) as an oil.
- ¹HNMR (400MHz, CDCl₃): 2.68-2.95 (m, 5H), 3.05 (t, 2H), 3.10 (s, 3H), 3.17 (dd, 1H), 3.47 (m, 1H), 4.12 (t, 2H), 6.70 (d, 2H), 6.86 (d, 2H), 6.97 (d, 2H), 7.12-7.21 (m, 6H). ¹³CNMR (100MHz, CDCl₃): 33.8, 35.1, 35.5, 37.2, 37.3, 48.1, 69.3, 115.6, 115.8, 123.3,

129.3, 129.4, 129.9, 132.3, 136.2, 136.9, 142.8, 154.4, 158.0, 177.2.

-8-

(viii) (-)-2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}-ethyl)phenyl]propanoic acid

The racemate of $2-\{[2-(4-hydroxyphenyl)ethyl]thio\}-3-[4-(2-\{4-[(methylsulfonyl)-$

oxy]phenoxy}ethyl)phenyl]propanoic acid was separated into its enantiomers using chiral chromatography. A Chiralpak AD JDB01+ AS003 (336 x 100 mm i.d.) and ethanol/formic acid 100/0.01% was used as mobile phase. The racemate (9 g) was dissolved in ethanol and injected onto the column. The first eluting peak was collected and UV-detected. The product (4.1 g) was obtained with an enantiomeric purity >99%. The optical rotation was found to be $[\alpha]_{D}^{20} = -33^{\circ}$ by dissolving the enantiomer in methanol to give a concentration of 0.64

g/100ml. The optical rotation was measured at 20 °C using the sodium line at 589 nm. The (+) enantiomer is isolated subsequently from the column and is used as a starting material for the racemisation reaction.

¹H NMR (500 MHz, CD₃OD): 7.17-7.22 (6H, m), 6.99 (2H, d), 6.94 (2H, d), 6.69 (2H, d), 4.17 (2H, t), 3.46 (1H, t), 3.16 (3H, s), 3.13 (1H, dd), 3.05 (2H, t), 2.69-2.88 (5H, m).

15

Example 1

stirred mixture of (+)-2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4[(methylsulfonyl)oxy]phenoxy}ethyl)-phenyl]propanoic acid (3.83g), toluene (8.65g) and
tetrahydrofuran (44g) followed by the addition of chlorotrimethylsilane (2.24g) by syringe
over 5 minutes. The resultant slurry was stirred at room temperature until the reaction was
complete (3 hours). 2N Hydrochloric acid (31.2g) was added to the reaction mixture to
hydrolyse the TMS ester, followed by brine. After separation of the aqueous layer, further
brine was added, and the pH was adjusted to pH 2.5-3.5 by the addition of 1M sodium

1,8 Diazabicyclo[5.4.0] undec-7-ene (DBU) (4.11g) was added by syringe over 5 minutes to a

bicarbonate solution. The aqueous layer was separated and the organic layer was distilled at atmospheric pressure to remove water. Ethanol was added and a vacuum distillation carried out to remove THF and give a solution of racemic 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]-phenoxy}ethyl)phenyl]-propanoic acid in ethanol.

Claims:

- 1. A process for the preparation of substantially racemic 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)-
- phenyl]propanoic acid which comprises reacting 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)phenyl]propanoic acid enriched in one enantiomer with a base in an inert solvent.
- 2. A process according to claim 1 wherein the acid is converted into an ester prior to racemisation or during the racemisation.
 - 3. A process according to claim 2 wherein the racemised ester is then hydrolysed to give the racemic acid.
- 4. A process according to claim 1 comprising reacting 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)phenyl]propanoic acid enriched in one enantiomer with a halosilane in the presence of a nitrogenous base in the presence of an inert solvent at a temperature in the range of 0 to 150°C.
- 5. A process for the preparation of substantially racemic 2-{[2-(4-hydroxyphenyl)-ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)-phenyl]propanoic acid which comprises reacting 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]-phenoxy}ethyl)phenyl]propanoic acid enriched in one enantiomer with chlorotrimethylsilane in the presence of 1,8 diazabicyclo[5.4.0] undec-7-ene in the presence of an inert solvent at a temperature in the range of 0 to 150°C.
 - 6. A process according to claim 4 comprising reacting a compound of formula I

enriched in one enantiomer with a chlorosilane of formula $ClSiR^1R^2R^3$ in which R^1 , R^2 , and R^3 independently represent a C_{1-6} alkyl group or aryl in the presence of a nitrogenous base in the presence of an inert solvent at a temperature in the range of 0 to 150°C to give a compound of formula II

in which R¹, R², and R³ are previously defined which is hydrolysed to give a racemic compound of formula III

7. A compound of formula II

$$O-SiR^{1}R^{2}R^{3}$$

$$O-SiR^{1}R^{2}R^{3}$$

$$SO_{2}CH_{3}$$

$$II$$

wherein R^1 , R^2 , and R^3 independently represent a C_{1-6} alkyl group or aryl.

WO 2004/113285 PCT/GB2004/002599 - 11 -

8. A compound of formula IV