WO 03/065639 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
7 August 2003 (07.08.2003) PCT

(10) International Publication Number

WO 03/065639 A2

(51) International Patent Classification’: HO04L 9/00 (74)
(21) International Application Number: PCT/CA03/00110
(22) International Filing Date: 30 January 2003 (30.01.2003) (81)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
2,369,304 30 January 2002 (30.01.2002) CA
(84)
(71) Applicant (for all designated States except US): CLOAK-
WARE CORPORATION [CA/CA]; 260 Hearst Way,
Suite 311, Kanata, Ontario K2L. 3H1 (CA).

(72) Inventors; and
(75) Inventors/Applicants (for US only): ZHOU, Yongxin
[CA/CA]; c/o Cloakware Corporation, 260 Hearst Way,

Agents: LEDWELL, Kent, M. et al.; Gowling Lafleur
Henderson LLP, 160 Elgin Street, Suite 2600, Ottawa, On-
tario K1P 1C3 (CA).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,
SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
EBuropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI,
SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Suite 311, Kanata, Ontario K2L. 3H1 (CA). CHOW, Stan- Published:

ley, T. [CA/CA]; 3338 Carling Avenue, Nepean, Ontario —
K2H 2A8 (CA).

without international search report and to be republished
upon receipt of that report

[Continued on next page]

(54) Title: SYSTEM AND METHOD OF HIDING CRYPTOGRAPHIC PRIVATE KEYS

(57) Abstract: The invention
relates to a system and method

20
//———_— of hiding cryptographic private

keys. While public/private key
encryption systems are considered

Generate private and public keys

to be secure, the private keys
ultimately must be stored in some
location - in fact, in some digital

commerce systems the private

\ key is sent to the end user as part
21 of an executable file such as an

audio player and audio file. Thus,

Generate two positive integers d, and d, such that attackers can obtain access to the
d=d. +d private key. The broad concept of
Y 2 the invention is to split the private

K key up into parts which are
292 obfuscated, but still kept in a form
that allows the encrypted data to

be decrypted. One technique for
obfuscating the private key uses

Done x modulo arithmetic.

23

w0 03/065639 A2 NN 000 0 0O 0RO

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 03/065639 PCT/CA03/00110

System And Method Of Hiding Cryptographic Private Kevs

FIELD OF THE INVENTION
The invention relates to software and data cryptography. In particular, the

invention relates to a system and method of hiding cryptographic private keys.

BACKGROUND OF THE INVENTION

In recent years, public/private-key cryptosystems have been widely used for
protection of commercial data transmitted via the Internet. In addition to their use in
encrypting and decrypting messages, they are used in creating and verifying digital
signatures and for key exchanges. Public/private-key variants include the Rivest-Shamir-
Adleman (RSA) and the ElGamal cryptosystems. The RSA cryptosystem is described in
United States patent 4,405,829.

Based on standard RSA and ElGamal algorithms, a variety of extensions have
been constructed. Threshold cryptography addresses single-secret sharing and related
function sharing for multiple players. Chaum developed a blind signature scheme to
allow one party to get a message signed by another party without leaking information
about the content of the message to the other party (D. Chaum, Security without
idenfification: transaction systems to make big brother obsolete, Communications of the
ACM 28(10, pp. 1030-1044, 1985.).

The RSA is a well-known and widely-used public key cryptosystem. The security
of RSA is based on the intractability of the integer factorization problem. The key
generation algorithm for RSA public key encryption is performed as follows:

1. Generate two large prime number p and q, each with roughly the same size (at
least 100 digits). Let n=pq.

2. Select an integer e such that e is an odd integer greater than 1, less that n, and e
and (p-1)(g-1) are relatively prime, i.e.,

(e, (p-1)(q-1)) =1.

3. Compute an integer d such that (de-1) is evenly divisible by (p-1)(q-1), i.e,,

de =1 (mod (p-1)(g-1)).

4. The public key is e. n is the modulus.

5. The private key is d.

10

15

20

25

30

WO 03/065639 PCT/CA03/00110

In this specification, the public and private key pairs will some times be referred to
as (e, n) and (d, n), respectively.
The RSA public key e and modulus n are used to encrypt a message m to get
cipher message c:
¢ =m° (mod n)
and private key d and modulus n are used to decrypt the cipher message c to obtain
message m:
m = ¢* (mod n).
The ElGamal cryptosystem is a public key cryptosystem whose security is based
on the hardness of the Diffie-Hellman problem. The key generation process is as follows:
1. The server chooses a large prime p and a generator o of the group (Z/(p))* of
integers modulo p.

2. The server selects a random integer a with 1 < a < (p - 2) and computes o’ mod

3. The public key is (p, a, o) and the private key is a.

For a message m, the enciphered message is a pair of integers (y;, y,) such that
y, =a*mod p and y, =m (¢*)* mod p, where k is a random integer between 1 and p - 2,
inclusive. The decryption is performed by computing y, " y, mod p.

For all these cryptosystems and their applications, the basic assumption of security
is that a given private key and its associated decrypting process are physically inaccessible
except to the holder of the private key. However, there are many applications which
require that programs perform decryption on hostile hosts. For example, in applications
including e-books and other digital rights management systems, an encrypted document
will often be downloaded to the end user with a private key embedded in it. In this
scenario, if the decrypting process is standard, an attacker can find the private key, and the
decrypted message, by observing this executing process using debugging tools, program
tracing tools, and the like.

Figure 1 shows an example of a typical cryptosystem 10. The cryptosystem 10
comprises a server 11, a communications channel 12, and a client 13. The server 11
comprises a key generation unit 14 and a program P 17 used to encrypt messages m into

ciphers ¢ and decrypt ciphers ¢ back to messages m. The key generation unit 14 is used to

2-

10,

15

20

25

30

WO 03/065639 PCT/CA03/00110

create a private key 15 and a public key 16. The private key 15 is embedded 18 into the
program P 17. Wheen the user is authenticated or otherwise obtains permission from the
server 11, the public key 16 and program P 17 are then downloaded to the client 13. The
public key 16 is entered into program P 17 by a user. The client comprises the public key
16, program P 17, and application 19.

Cryptosystem applications typically begin with a server generating a private and
public key pairs (d, n) and (e, n), respectively. Next a program P 17 is generated which is
intended to execute on a client’s machine. The private key (d, n) is embedded in P, and
part of P’s code is able to decrypt cipher messages ¢ encrypted by the public key (e, n).

After P 17 has been installed on the client’s machine 13, a message m is created
which is intended neither to be publically acknowledged, nor to be exposed, to the user of
the client 13. The message m is encrypted by program P 17 on the server 11 using the
public key 16. This encryption process produces a cipher ¢ which is sent to the client 13
via the communications channel 12. The cipher c is decrypted by program P 17 on the
client 13 using the embedded private key 18. The decrypted message m is then passed on
to the appropriate application 19 in the client 13. The application 19 may for example be
an audio player, video player or e-book application.

The message m is not intended to be exposed to the user of the client 13 other than
indirectly through the application 19. That is, it is preferable that the message m is played
or otherwise processed by the application 19, but that it not be available to an outside
observing for copying or transferring to others. However, the decryption of message m
causes the states of P 17 to be changed according to the contents of message m. These
changes in states may be observed by a hostile user of client 13 using techniques as
described above. The observation by the hostile user may expose the embedded private
key d and the message m.

In this situation, the client is a legitimate but untrusted party, from the server’s
point of view. In this scenario, it is desirable to have communication security between the
server and the client to protect message c. It is also desirable to have means for protecting

the private key d and the decrypted message m from the client.

10

15

20

25

30

WO 03/065639 PCT/CA03/00110

SUMMARY OF THE INVENTION

It is an object of the present invention to solve one or more of the problems
described above by providing a means for BLIND USE OF PRIVATE KEYS, in the sense
that private keys can be used without béing revealed. For example, by means of the
instant invention, standard RSA and ElGamal cryptosystems can be modified to permit
BLIND USE OF THEIR PRIVATE KEYS. | This method can be employed so that
breaking the resulting communication security is equivalent to solving the Discrete
Logarithm Problem (DLP), which is generally agreed to be infeasible to solve in practice.

In a private/public key cryptography system, the private and public keys are
compliments of one another and the private key can decipher data that has been encoded
using the public key. The system is secure because the private key cannot easily be
resolved from a knowledge of the public key and/or an encoded file.

The private key contains all the information needed to decode the encoded file.
The broad concept of the invention is to divide this private information into two or more
parts and then to obfuscate at least one of these parts, but still keep it in a form for which
it is useful. Observers cannot resolve the obfuscated portions of the private key back to
the original private key yet the obfuscated portions of the private key can still be used to
decipher the ciphered data. A number of techniques are presented for doing this.

The entire deciphering program and data application (such as an audio or video
player) are also preferably cloaked using tamper resistant software encoding techniques.
In this way the unencoded data is never easily observable.

One aspect of the invention is broadly defined as a method for blind use of private
cryptographic keys comprising the steps of: splitting the private key up into parts; and
obfuscating at least one of the parts of the private key; whereby the private key is
restructured so that it can be used without being revealed to an observer.

Another aspect of the invention is defined as a system for secure communication
comprising: a first computer; a second computer; a communication network for
interconnecting the first computer with the second computer; the first computer being
operable to: generate a private and public key pair; split the private key into a first part
and a second part; encrypt a message using the public key; transmit to the second

computer: the public key; the first part of the private key; a program for decrypting

-4-

10

15

20

25

30

WO 03/065639 PCT/CA03/00110

messages; obfuscate the second part of the private key; and transmit the encrypted
message and the obfuscated second part of the private key to the second computer;
whereby the second computer can decipher the cipher using the first part of the private

key and the obfuscated second part of the private key.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows an example of a typical cryptosystem;

Figure 2 shows an example of a method of key generation for us in hiding a
private key of a cryptosystem, in accordance with an embodiment of the present
invention;

Figure 3 shows an example of a method of message encryption and decryption
when hiding a private key of a cryptosystem, in accordance with an embodiment of the
present invention; and

Figure 4 shows an example of a method of hiding a private key in a program, in

accordance with an embodiment of the present invention.

DETAILED DESCRIPTION OF THE EMBODIMENTS OF THE INVENTION

In this description, RSA cryptosystems will be described. However, the invention
applies to other cryptosystems, including Diffie-Hellman cryptosystems such as the
ElGamal cryptosystem, as will be described below.

Figure 2 shows an example of a method of key generation (20) for use in hiding a
private key (d, n) of a cryptosystem, in accordance with an embodiment of the present
invention. The method begins with the server 11 generating private 15 and public 16 key
pairs (d, n) and (e, n), respectively (21). Next, the server selects two positive integers d,
and d, such that d =d, + d, (22). The key generation method is done (23). Key
information (e, n, d,) may now be distributed to the client 13, that will save save (e, n, d,)
for future use. The server 11 may also create deciphering program P 17 for installation on
client 13.

Figure 3 shows an example of a method of message encryption and decryption
(30) when hiding a private key d of a cryptosystem 10 in the manner of Figure 2, in

accordance with an embodiment of the present invention. The method begins with

-5-

10

15

20

25

30

WO 03/065639 PCT/CA03/00110

computing the cipher text ¢ of a plain text m (31), where ¢ = m® (mod n). Next, the cipher
text ¢’ of cipher text ¢ is computed (32), where ¢’ = c® (mod n). The server passes ¢ and
¢’ to the client. The client receives ¢ and ¢’ and program P 17 computes the plain text m
(33) by performing the calculation m = (¢’ " ¢**) (mod n). The method is done (34).

The difficulty of finding d based on the information available to the client 13 is
equivalent to the difficulty of solving the discrete logarithm problem (DLP). The reason
is that finding d requires finding d, from ¢’, which is a DLP.

This protocol may be used to send out messages through common (i.e., shared,
open or public) communication channels 12 because it ensures the safety of the private 4
keyd.

Means for protecting the private key d and the decrypted message m from the
client is related to the production of tamper resistant software (TRS), and to methods of
software obfuscation in general. Deployed in program P, the methods can be used to
create a tamper resistant environment for the application of TRS technologies. The goal
is make it very difficult for a user of client 13 to extract the private key d from P and hard
to understand the decryption process as well as the usage of decrypted messages. (See
PCT/CAOO/OO678, PCT/CA/00943, WO 01/79969, Canadian Patent Application No.
2,327,911, and WO 99/01815 for examples of suitable TRS encoding techniques.)

Since RSA and Diffie-Hellman cryptosystems involve modular exponentiation
operations, which are computationally expensive, using a fast implementation algorithm,
such as addition chains, is desirable.

The addition chain concept was developed to compute powers (i.e., to perform
exponentiation) efficiently. An addition chain for number d is a sequence of positive
integers

l=ay,4a,,a,...,a=d
with the property that foreachi1=1,2,...,r,
& =a+a
for some k, jwithk <j < 1.

For two positive integers m and d, computing md is equivalent to computing some

m®s. Each positive integer d has many addition chains. Its binary addition chain

is one of them. Finding an efficient way to perform exponéntiation 1s identical to

-6-

10

15

20

25

30

WO 03/065639 PCT/CA03/00110

finding a éhortest addition chain for d. Each addition chain can be represented by a
special directed acyclic graph G = (V, E). Each number a, in the chain is represented by a
node v; € V. The relation a; = a; + a, is represented by two edges (v;, v;) € E and (v, v;) €
E.

For three positive integers m, n and k, an addition chain of m x n + k can be
obtained from addition chains of m, n and k. The source vertex and sink vertex
are two important controllers of an addition chain. These two controllers can be
used to obfuscate the decryption process.

If R is an associative ring with unity and G is a group, one defines the group

ring RG to be the set of all the element of the form

Y 1,8
geG
with addition
Y rg+ Y sg=) (r;+s)8
geG geG geG

and multiplication

Y rg* L sy L (1, +s)gh
geG heG geG

wherer, € R, s, € R forallg,h e G.

A group ring is an associative ring. An invertible element u € RG is called a
unit of RG. The set of all units of a group ring is a group under the multiplication
operation of the group ring. The units so defined, are used to create mappings with
which to obfuscate the decryption process.

After both public and private keys have been generated, the server 11 can do some
pre-calculation on the private key d. Let 1 be the binary size of d. In practice, 1 could be
512 or 1024 bits long. .

Based on the equation m = ¢ (mod n), where c is the cipher message, n is -
the modulus and m is the original message, there are a number of mathematical forms for

the representation of the private key d. Two criteria may be set for any such form of

-

10

15

20

25

30

WO 03/065639 PCT/CA03/00110

representation: the first criterion is that it should facilitate key obfuscation, and the
second is that it should facilitate fast computation as much as possible.

For any positive integer t < d, a private key d can be represented as

d=d, +d,+ " +d,
where d, are positive integers, fori=1,...,t.
Therefore
m = ¢* (mod n) = c* (mod n) ' ¢* (mod n) " c* (mod n)

In this way computing m becomes a process of computing t modular
exponentiation operations and t - 1 modular multiplications. The original key d is not
involved directly. This representation of d is referred to as the summand representation.

Let p(d) denote the number of partitions of d into summands. The lower boundary
of p(d) is 2[vd].

Another representation of d can be obtained from its binary representation, which
is itself an encoding of an additive partition. For a given integer d it can also be written in
the form

d=dl1 *(2)+d2* 29+ +dj * 25+ +dt* (29
where d; and i are integers, forall j=1,2,...,t. Let1(d) be the number of bits of d.
Then the number of binary representations of d is the number of partitions of 1(d) into
summands. This form of representation will be referred to as binary representation.

The directed graph of an addition chain for d provides with yet another
representation of d. For a given number d, there are many addition chains corresponding
to d. In fact, determining the shortest addition chain for d is np-hard. The term graph
representation refers to a directed graph representation of an addition chain for d.

Since any power can be represented in any one of the three fofms above, and all
d;s in the summand representation, all d;s and is in the binary representation, and all
nodes in the graph representation are part of a power, they can be represented in other
forms. For example, d;s in summand representation could be represented as instances of a
graph representation. On the other hand, each node in a graph representation could be
denoted by a binary representation. For a given private key, these combinations can

create many different representations.

10

15

20

25

30

WO 03/065639 PCT/CA03/00110

Program P is created by the server, and the way of decrypting a message is also
designed by the server. Therefore the server can encode private key d and decode it in the
decrypting process in P. Two ways of encoding a key include linear mapping and group

ring mapping. Note that all three key representations mentioned above can be

- implemented using arrays, although elements in their cells or elements will have different

interpretations, depending on the intent (i.e., depending on which of the above
representations is being used). The server may insert random values into these arrays for
further obfuscation.

The basic idea behind the linear mapping method is to use an invertible matrix to
encrypt the array elemeﬁts. First, select a prime number p which is greater than all of the
array elements of a key representation, and then set the base ring of the matrix to be
Z=(p), where Z is the integer domain. An invertible matrix H will bé selected over Z=(p).

Some number of random values can be inserted into the private key bits. These
values can be used for row or column bits in the matrix H.

The following will describe the use of a group ring to perform the encoding. Let
G be a finite group, G = {g, &, ", g}, With order |G].

A first approach employs group ring ZG, where Z is the ring of the integers.

Let f be a bijection from ZG to ZG. There exist many such kinds of maps. For
example, one can choose a unit u from U(ZG) and define f by

f(x) =u'xu
for any x € ZG. Since u is invertible, map f is a bijection.

We show that each segment of length |G| in the array of a key representation can

be encoded by f. Let

S={a[i],ali+1]," ", a[i +|Gl]}
be a segment of the integer array of a key representation. Then an element x5 € ZG can be
defined by

xS =a[i]g, +afi+1]g, + " +ai +[Gllging
Acting f on xg we get f(xg). Suppose
f(xs) =b,g, +byg, + 7"+ bggg

Then we have an encoded segment S’ of segment S, viz.:

S”={b, by, """, bg}

-9-

10

15

20

25

30

WO 03/065639 PCT/CA03/00110

Since f'is invertible, S can be recovered from S’.

Key-representation arrays may be partitioned into segments of length |G|, thus
producing encoded arrays. |

There is another way to do array encoding: instead of working on the integer
ring Z, work on the Galois field GF(2') and use the group ring GF(2")G to encode the key
representation array, where 1 is an integer called the word length. In this way, an array can
be partitioned into segments and each segment has |G| words, while each word has 1 bits.
It is well known that each word can be regarded as an element in the Galois field GF(2").-

Following the same procedure, each segment can be encoded into a new segment
by applying f which is a bijection from GF(2)G to itself. Then the whole array
can be encoded, segment by segment.

For a given array representing a key, different methods (linear mapping or group
ring mapping) may be applied on it. For the same mapping, different parameters can be
selected. For example, different matrices for linear mappings, different types of groups,
and different representations of the same type of group, and different rings for group ring
mappings. Applying different methods, or the same method with different parameters,
makes it more difficult to find the private key, and more difficult to understand the
decryption process.

In program P, based on the key hiding scheme above, and the encoded key
representation, above, the decrypted message will be represented by a message array
mixed with some false values. Only by finding the right pieces and combining them
together in the correct way can the true decrypted message be determined. This tamper
resistant environment provides a way to apply tamper-resistant technologies (which is
recommended to fully obfuscate the decryption process.

Figure 4 shows an example of a method of hiding a private key d in a program P
(40), in accordance with an embodiment of the present invention. The method begins
with a generated private key d. A series of components are created to describe d (41).
Entropy may be added to the components (42). For example, entropy may be added as
random values in the components. Alternatively, entropy may not be added. However, it
is preferable to add entropy to further obfuscate the private key component representation

of d. The components are then flattened into one component (43). For example, the

-10-

10

15

20

25

30

WO 03/065639 PCT/CA03/00110

components may be flattened into an array. The method is done (44) and this flattened
component is then used to represent d in program P. The following description will
describe features of this method in more detail.

An example of a method to hide d based on its binary representation is provided.
A binary representation for private key d of RSA will be described. At this stage, d is
assumed to have been generated as a big integer. More precisely, let d be the key with
binary size keySize. Two integer arrays will be used to describe d: keyCoefficients[] and
keyExponents[] with the same size keyPartitionSize.

The two arrays can be filled in the following way. Based on the bit size of
keySize, the keyPartitionSize can be determined. Then keyPartitionSize of values {p,, p,,
", PreyPantitionsize) ar€ randomly chosen such that their sum is keySize.

The bit-vector of d is partitioned into keyPartitionSize consecutive bit-vectors v,
of bit length p, with value w;, and let

keyCoefficient[i] = w;
and let keyExponents[i] be the bit position of the low-order bit of v, in the bit vector of d,
where1=0, .. ., keyPartitionSize - 1. Then

keyPartitionSize

d= Y keyCoefficients[i] x 2evExponents(i

i=1

Some randomness may be injected into both arrays in order to obfuscate key d.
Two arrays are created to store true values and entropy for keyCoefficients[] and
keyExponents[], called coefficientsAndEntropy[] and exponentsAndEntropy(],
respectively.

Values of array coefficientsAndEntropy[] based on the keySize may be set, and
an entropyNumber of random values may be determined based on the keyPartitionSize.
Then these values may be randomly inserted into the array coefficientsAndEntropy(].

In this way, coefficientsAndEntropy[] contains both real data and random values,
The indices of the spurious (random) entries will be stored in an array called

coefficientEntropyNumberIndices(].

-11-

10

15

20

25

30

WO 03/065639 PCT/CA03/00110

Now a way to set the elements of exponentsAndEntropy[] will be described. The
same number of random values entropyNumber will be used. All the random values must
lie between 1 and keySize, since the values in keyExponents[] is an ascending chain.
exponentsAndEntropy[] can be constructed from keyExponents[] and these random
values.

A group ring mapping may be used to encode the two arrays. A non-Abelian
group G with order |G| is selected and a unit u from ZG is found. Then a map is defined
from ZG to ZG by

f(x) =xu
for any x € ZG. Since u is invertible, map f is a bijection.

Two two-dimensional arrays may be created for this purpose: namely,
coefficientGRElements[] and exponentGRElements[][]. Each sub-array in these two
dimensional arrays is a group ring element.

Based on the order of G, the two arrays coefficientGRElements[] and
exponentGRElements[][] may be set, whose elements are assigned from
coefficientsAndEntropy[] and exponentsAndEntropy(], respectively. Then map f may be
applied to this group ring elements to form two new arrays denoted by the same names,
coefficientGRElements[] and exponentGRElements{][], which is the last step of private
key pre-calculation. |

Since the group G is selected by the server, the group table can be related to the
private key bits, which makes it more difficult to find private key d.

After this pre-calculation, all of the information related to recovery of the private
key is hidden and scattered inltwo obscured arrays which will be flattened to a one
dimensional array in program P, using known compiler techniques for array addressing.
Program P will use this array to perform decryption.

The ElGamal cryptosystem is a public key cryptosystem whose security is based
on the hardness of the Diffie-Hellman problem. The key generation process is as follows:

1. The server chooses a large prime p and a generator a of the group

(Z=(p))* of integers modulo p.

2. The server selects a random integer a with 1 < a < (p - 2) and compﬁtes

a* mod p.

-12-

10

15

20

25

30

WO 03/065639 PCT/CA03/00110

3. The server’s public key is (p, a, a*) and the private key is a.
For a message m, the enciphered message is a pair of integers (y,, ¥,) such that
y, =0 mod p and y?* =m " (¢*)* mod p, where k is a random integer between 1 and p - 2,
inclusive.

The decryption is performed by computing y,* * y, mod p. As with RSA, in the
decrypting process, the private key of ElGamal is used in the form of a power (for
exponentiation). Therefore all of the techniques mentioned above for RSA cryptosystem
can be applied to the ElGamal cryptosystem.

The method provides a way for hiding cryptographic keys and messages by
splitting and obfuscating the private keys and their corresponding decryption process.
The method can be combined with other forms of program obfuscation and techniques
for the generation of tamper-resistant software to produce implementations in which
both private keys and messages would be difficult for an attacker to discover.

Protection of the software application P could be effected by means of tamper-
resistant encoding techniques known in the art. Preferrably, TRS encoding techniques
described by Cloakware in co-pending applications should be used to protect the data-
flow, control-flow, mass data and processing (referred to as "white-box cryptography").

Data-flow refers to the ‘ordinary computation’ of a program: addition, subtraction,
multiplication, division, Boolean computations, masking operations, and the like: the
scalar data-flow of a program. Data-flow encoding alters the frame of reference for the
data in the program, so that an attacker cannot easily determine how the program is
operating. For example, a transform can be effected on each integral variable in a
program, changing it to a geometric sum. Details on the various forms of data-flow
encoding are available in the co-pending patent application titled: Tamper Resistant
Software Encoding, filed under the Patent Co-operation Treaty on June 8, 2000, under
Serial No. PCT/CA00/00678, by Stanley Chow, Harold Johnson, and Yuan Gu.

Control flow encoding is used to encode and protect the control logic, branch, and
subroutine structure of the program by altering these structures and the decision branches
that access them. Various control flow encoding techniques are described in the co-
pending patent application filed under the Patent Cooperation Treaty application no.

PCT/CA00/00943, titled: Tamper Resistant Software - Control Flow Encoding.

-13-

10

15

20

25

30

WO 03/065639 PCT/CA03/00110

The term mass data refers to aggregate data structures of various kinds, such as
arrays, character strings, records with named fields, discrete unions, records linked by
pointers and residing in dynamic or ‘heap’ storage, I/O buffers, command buffers, and the
like. Accordingly, mass-data encoding protects the contents of these data structures.

Mass data encoding generally relies on the random or pseudo-random dispersion
of data being stored, throughout the available memory or an area of the available memory.
This dispersion makes it very difficult for an attacker to locate certain pieces of data he is
searching for, and also distributes the data values with respect to one another. Details on
mass data encoding appear in: Tamper Resistant Software - Mass Data Encoding, filed
under the Patent Co-operation Treaty on April 12, 2001, under Serial No.
PCT/CA01/00493); inventors: Stanley Chow, Harold Johnson, and Yuail Gu.

White-box cryptography protects cryptographic computations so that they can be
performed without revealing internal data such as encoding constant or secret keys.
White-box cryptography is described in the co-pending patent application filed under the
Patent Cooperation Treaty application no. PCT/CA01/00493, titled: Tamper Resistant
Software - Mass Data Encoding.

While particular embodiments of the present invention have been shown and
described, it is clear that changes and modifications may be made to such embodiments
without departing from the true scope and spirit of the invention.

The method steps of the invention may be embodiment in sets of executable
machine code stored in a variety of formats such as object code or source code. Such
code is described generically herein as programming code, or a computer program for
simplification. Clearly, the executable machine code may be integrated with the code of
other programs, implemented as subroutines, by external program calls or by other
techniques as known in the art.

The embodiments of the invention may be executed by a computer processor or
similar device programmed in the ménner of method steps, or may be executed by an
electronic system which is provided with means for executing these steps. Similarly, an
electronic memory means such computer diskettes, CD-ROMs, Random Access Memory

(RAM), Read Only Memory (ROM) or similar computer software storage media known

-14-

10

15

WO 03/065639 PCT/CA03/00110

in the art, may store code to execute such method steps. As well, electronic signals

representing these method steps may also be transmitted via a communication network.
While exemplary embodiments described herein focus on particular

public/private-key cryptosystems, it would be clear to one skilled in the art that the

invention may be applied to other public/private-key cryptosystems. The protected

software of the invention can be stored on any suitable storage device and executed on

any manner of computing device. It is just as mobile as any other software application,

and can be downloaded to users over the Internet or via email, transferred from a personal

computer (PC) to a laptop, or stored on a CD ROM or hard disk drive. Accordingly, the

invention could be applied to:

1. computers such as personal computers, personal digital assistants, laptop
computers and other similar devices;

2. network and system components such as servers, routers, gateways and other
similar devices; and

3. all manner of appliances having computer or processor control including

electronic books, mp3 players, CD readers and players, DVD players and the like.

-15-

10

15

20

25

30

35

40

WO 03/065639 PCT/CA03/00110

WHAT IS CLAIMED IS: :

1. A method for blind use of private cryptographic keys comprising the steps of:

splitting said private key up into parts; and

obfuscating at least one of said parts of said private key;

whereby said private key is restructured so that it can be used without being revealed to an
observer.

2. The method of claim 1, in which said step of splitting comprises the step of:
partitioning said private key by exploiting mathematical properties of said private key.

3. The method as claimed in claim 2, wherein said splitting comprises breaking the
private key into a first part and a second part.

4. The method as claimed in claim 2, wherein said splitting comprises breaking the
private key into multiple parts.

5. The method as claimed in claim 2, wherein said splitting comprises breaking the
private key into an addition chain.

6. The method as claimed in claim 2, wherein said splitting comprises breaking the
private key into a base-2 polynomial.

7. The method of claim 1, wherein said step of splitting comprises the steps of:
generating a private and public key pair (d, €); and
generating partial private keys based on said private key d, and containing all of
the information in said private key d.

8. The method of claim 7, wherein d =d, + d,.

9. The method of claim 8, further comprising the steps of:

sending key information (e, n, d,) to a client;

encrypting a message using said public key e to form a private key encrypted
message C;

encrypting said public key encrypted message ¢ using partial private key d, to
form a partial private key encrypted message c¢’; and

sending said public key e, and said encrypted messages ¢ and ¢’ to the client.

10. The method of claim 9, wherein the private key encrypted message is computed
using the formula ¢ = m® (mod n).

11. The method of claim 10, wherein the partial private key encrypted message is
computed using the formula ¢’ = ¢® (mod n).

-16-

10

15

20

25

30

35

40

WO 03/065639 PCT/CA03/00110

12. The method of claim 11, further comprising the step of decrypting the private key
encrypted message using said partial private key d, and the partial private key
embedded in said partial private key encrypted message ¢’.

13. The method of claim 12, wherein the public key encrypted message is decrypted
using the formula m = (¢’ ¢*) (mod n).

14. The method of claim 1, wherein said steps of splitting and obfuscating comprise
the steps of:

generating a series of components containing all of the information in said private key d;
and

obfuscating one or more of said series of components.

15. The method of claim 14, wherein the step of creating comprises the step of
converting d into an array of integers obtained using the summand representation:
d=d,+d,+ " +d,
where d, are positive integers, fori=1,...,t.

16. The method of claim 14, wherein the step of creating comprises the step of
converting d into an array of integers using binary representation:
d=d1*Q)+d2* 29+ +dj* @)+ +dt* (29
where d; and i; are integers, forallj=1,2,...,t.

17. The method of claim 14, wherein the step of creating comprises the step of
converting d into an array of integers using a directed graph representation of an
addition chain for d.

18. The method of claim 14, wherein the step of creating comprises the step of
converting d into an array of integers using a combination of two or more of a
summand representation, a binary representation and a graph representation.

19. The method of claim 14, wherein the step of obfuscating comprises the step of
using an invertible matrix to encode elements of an array of integers representing
the series of components.

20. The method of claim 19, wherein the step of encoding comprises the steps of:

selecting a prime number p which is greater than all of the array elements;

setting the base ring of the invertible matrix to be Z/(p), where Z is the integer domain;
and

selecting an invertible matrix H over Z/(p).

21. The method of claim 20, further comprising the steps of:

-17-

10

15

20

25

30

35

40

WO 03/065639 PCT/CA03/00110

inserting random values into private key bits of the array; and
using the random values for row or column bits in matrix H.

22. The method of claim 14, wherein the step of obfuscating comprises the step of
using a group ring to encode elements of an array of integers representing the
series of components.

23. The method of claim 22, wherein the step of encoding comprises the steps of:

employing a group ring ZG, where Z is the ring of the integers and G is a group of the
array elements; and

selecting a bijection f from ZG to ZG to encode segments of the array elements.

24. The method of claim 22, wherein the step of encoding comprises the steps of:

employing a Galois field group ring GF(2)G, where G is a group of the array elements
and 1 is the number of bits of |G|; and

selecting a bijection f from GF(2")G to GF(2)G encode segments of the array elements.

25. The method of claim 14, wherein the step of obfuscating comprises the step of
encoding elements of an array of integers representing the series of components
using a combination of one or more of linear mappings and group ring mappings,
and one or more parameters of mappings.

26. The method of claim 14, wherein the step of creating comprises the steps of:
converting d of size keySize into a binary representation:
d=dl1 * Q) +d2* 29+ - +dj* 29+ - +dt* (29
determining a keyPartitionSize value based upon the bit size of keySize;
creating a keyCoefficients integer array of size keyPartitionSize to store coefficients of the
binary representation of d;
creating a keyExponents integer array of size keyPartitionSize to store exponents of the
binary representation of d;
choosing keyPartitionSize of values {p,, P2, ", Preyparitionsize} Such that their sum is
keySize;
partitioning a bit-vector of d into keyPartitionSize consecutive bit-vectors v; of bit length
p; with value w;, where
keyCoefficient[i] = w;
and keyExponents[i] are the bit position of a low-order bit of v; in the bit vector of d,
where i=0, ..., keyPartitionSize - 1; and

defining d such that:
keyPartitionSize
d= L keyCoefficients[i] x 2*Exporenslil
i=1

-18-

10

15

20

25

30

35

40

WO 03/065639 PCT/CA03/00110

27. The method of claim 26, further including the step of injecting random values into
both arrays, the step of injecting comprising the steps of:

creating a coefficientsAndEntropy array to store true values and entropy for the
keyCoefficients integer array, and an exponentsAndEntropy array for storing true
values and entropy for keyExponents integer array;

setting values of the coefficientsAndEntropy array based on the keySize;

determining an entropyNumber of random values based on the keyPartitionSize;

randomly inserting these random values into the coefficientsAndEntropy array; and

storing indices of the random values in a coefficientEntropyNumberIndices array.

28. The method of claim 27, further including the step of setting the elements of the
exponentsAndEntropy array, comprising the steps of:

using the same number of random values entropyNumber;

having the random values lie between 1 and keySize; and

constructing the exponentsAndEntropy array from the keyExponents array and the
random values.

29. The method of claim 28, further comprising the step of encoding the
coefficientsAndEntropy array and the exponentsAndEntropy array, comprising the
steps of:

selecting a non-Abelian group G with order |G;

selecting a unit u from ZG; ‘

defining a bijection f(x) = xu from ZG to ZG;

creating a coefficientGRElements two-dimensional array and an exponentGRElements
two-dimensional array, wherein each sub-array in these two dimensional arrays is
a group ring element; ‘

setting the coefficientGRElements array based on the order of G, with elements assigned
from coefficientsAndEntropy;

setting the elementsexponentGRElements array based on the order of G, with elements
assigned from exponentsAndEntropy;

applying map f to the coefficientGRElements array to form a finalCoefficientGRElements
array;

applying map f to the elementexponentGRElements array to form a
finalElementexponentGRElements array; and

flattening the finalCoefficientGRElements array and the
finalElementexponentGRElements array to a one dimensional array in a
cryptosystem program.

30. A method of hiding a private key comprising the steps of:
generating a private and public key pair;

splitting said private key into a first part and a second part;
providing to a client:

-19-

10

15

20

25

30

35

40

WO 03/065639 PCT/CA03/00110

said public key;
said first part of said private key; and
a program for decrypting messages;

using said public key and said modulus to encrypt a message into a cipher;

obfuscating said second part of said private key; and

providing said cipher and said obfuscated second part of said private key to said client;
whereby said client can decipher said cipher using said first part of said private key and

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

said obfuscated second part of said private key.

The method of claim 30, wherein said first part of said private key is embedded
into said program for decrypting messages.

The method of claim 31, wherein said step of obfuscating said second part of said
private key comprises the step of generating a second cipher using said second
part of the private key to encrypt said first cipher.

The method of claim 31, wherein said executable program is protected using
tamper resistant software encoding techniques.

The method of claim 32, wherein said private key is an RSA private key.

The method of claim 32 wherein said step of obfuscating comprises the step of
inserting entropy into said series or set of components.

The method of claim 35 wherein said step of obfuscating comprises the step of
mixing random or pseudo-random values in with said series or set of components.

The method of claim 35 wherein said step of obfuscating comprises the step of
inserting entropy into said series or set of components by means of a linear

mapping.

The method of claim 35 wherein said step of obfuscating comprises the step of
inserting entropy into said series or set of components by means of a group ring

mapping.

The method of claim 32 wherein said step of obfuscating comprises the step of
encrypting said series or set of components.

The method of claim 2, in which said private key is restructured by obfuscating
the parts into which it is partitioned, within a public application.

The method of claim 40 wherein said step of obfuscating comprises the steps of

-20-

10

15

20

25

30

35

40

WO 03/065639 PCT/CA03/00110

obfuscating said private key by:

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

generating coefficient and exponent arrays which define said private key; and
storing said coefficient and exponent arrays.

The method of claim 40 wherein said step of obfuscating comprises the step of
expanding said private key into an arithmetic series.

The method of claim 40 wherein said step of obfuscating comprises the step of
expanding said private key into an exponential series.

The method of claim 40 wherein said step of obfuscating comprises the step of
reducing said private key into a set of modulo coordinates.

The method of claim 40 wherein said step of obfuscating comprises the step of:
expanding said private key into an addition chain.

The method of claim 40 wherein said step of obfuscating comprises the step of:
expanding said private key into the sum of a set of numbers.

The method of claim 40 wherein said step of obfuscating comprises the step of:
expanding said private key into the product of a set of factors.

The method of claim 40 wherein said step of obfuscating comprises the step of:
expanding said private key into a base-2 polynomial series.

The method of claim 40 wherein said step of obfuscating comprises the step of:

.expanding said private key using number splitting.

The method of claim 40 wherein said step of obfuscating comprises the step of:
splitting said private key arithmetically; and
transmitting an arithmetic component of said private key to a decrypting party.

The method as claimed in claim 1, further comprising the step of embedding
another one of said parts of said private key in an executable program.

A system for secure communication comprising:

a first computer;
a second computer;
a communication network for interconnecting said first computer with said second

computer;

said first computer being operable to:

generate a private and public key pair;

21-

10

15

WO 03/065639 PCT/CA03/00110

split said private key into a first part and a second part;
encrypt a message using said public key;
transmit to said second computer:
said public key;
said first part of said private key;
a program for decrypting messages;
“obfuscate said second part of said private key; and
transmit said encrypted message and said obfuscated second part of said private
key to said second computer;
whereby said second computer can decipher said cipher using said first part of said private
key and said obfuscated second part of said private key.

53. A computer readable memory for storing software code executable to perform the
method of hiding a private key comprising the steps of:

splitting said private key up into parts; and

obfuscating at least one of said parts of said private key.

-22-

WO 03/065639 PCT/CA03/00110
172

/—»'10 /’12

Communications Channel

A
11 \ cipher | ¢ 13\ cipher | ¢
‘ Client
Server 14 17 ien 16
/ 17 L\
Key Program Public] Program
Generation P Key message P
Y v /|18 m 18
Private | [Public | | [4/ o al)
Key Key Application
|) A 19
15 / 16 /
message m
Figure 1
Prior Art

/’—20

Generate private and public keys
l \ 21

Generate two positive integers d, and d, such that
d=d, +d,

| S 2

Done —\

23

Figure 2

WO 03/065639

2/2

//~30

Compute cipher text ¢ of a plain text m, using (e, n)

l N

Compute cipher text ¢’ of cipher text c, using (d,, n)

l N

Comput plaintext m from cipher texts ¢ and ¢', using
(dy, n)

Done \

Figure 3

/«——540

Create a series of components to describe d

41

!

Add entropy to components

N
l k42

Flatten components into one component

l N 43

Done \

44

Figure 4

l N

PCT/CA03/00110

31

32

33

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

