
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/0103262 A1

US 2011 0103262A1

Guo et al. (43) Pub. Date: May 5, 2011

(54) MULTI-LEVEL INTERCONNECTION Publication Classification
NETWORK (51) Int. Cl.

(75) Inventors: Chuanxiong Guo, Nanjing (CN); 52 He to (2009.01) 370/254
Songwu Lu, Los Angeles, CA (52) U.S. Cl. ..
(US); Lei Shi, Beijing (CN); Kun (57) ABSTRACT

A. E. Nyongguan A method and system for providing a multi-level intercon
ang, 5e11ng nection network is provided. A multi-level interconnection

network comprises basic cells that are aggregated into higher
(73) Assignee: Mr. ft Corporation, Redmond, level cells at each level of the network. At the first level, the

(US) basic cells are aggregated into first level cells. Each first level
cell is an aggregation of a number of basic cells that is one

(21) Appl. No.: 13/004,787 more than the number of devices in a basic cell. The basic
1-1. cells of a first level cell are fully connected; that is, each basic

(22) Filed: Jan. 11, 2011 cell has a first level link or connection to each other basic cell.
O O In a first level cell, each device of a basic cell has a first level

Related U.S. Application Data link to each other basic cell. The multi-level interconnection
(62) Division of application No. 12/113,114, filed on Apr. network has higher level cells that are aggregations of lower

30, 2008, now Pat. No. 7,872,990. level cells in a similar manner.

Patent Application Publication May 5, 2011 Sheet 1 of 28 US 2011/O103262 A1

Patent Application Publication May 5, 2011 Sheet 2 of 28 US 2011/O103262 A1

Patent Application Publication May 5, 2011 Sheet 3 of 28 US 2011/O103262 A1

Patent Application Publication May 5, 2011 Sheet 4 of 28 US 2011/O103262 A1

Patent Application Publication May 5, 2011 Sheet 5 of 28 US 2011/O103262 A1

Ey). & (2 reas.
RTV f /

V /

\ 424 &6) 1. 1 /

Patent Application Publication May 5, 2011 Sheet 6 of 28 US 2011/O103262 A1

Patent Application Publication May 5, 2011 Sheet 7 of 28 US 2011/O103262 A1

Patent Application Publication May 5, 2011 Sheet 8 of 28 US 2011/O103262 A1

Patent Application Publication May 5, 2011 Sheet 9 of 28 US 2011/O103262 A1

\ N -- SX2 ? 53.33. alf (O-6)<AO-GASs26 said: 33-3- e - - - - s - - -

sl- - - -

Patent Application Publication May 5, 2011 Sheet 10 of 28 US 2011/O103262 A1

Patent Application Publication May 5, 2011 Sheet 11 of 28 US 2011/O103262 A1

Patent Application Publication May 5, 2011 Sheet 12 of 28 US 2011/O103262 A1

US 2011/O103262 A1 May 5, 2011 Sheet 13 of 28 Patent Application Publication

US 2011/O103262 A1 2011 Sheet 14 of 28 9 May 5 ion icat Publi ion Patent Applica

#I AÐILI

Patent Application Publication May 5, 2011 Sheet 15 of 28 US 2011/O103262 A1

(src, dist)

identify closest common
ancestor Cell of source and

destination

1507

establish path within basic cell is identified
Cell a basic Cell

identify inter-cell link between
child cells

establish path as source-side
path Il inter-cell link il
destination-side path

return (path)

FIG. I.5

Patent Application Publication May 5, 2011 Sheet 16 of 28 US 2011/O103262 A1

failure routing (SC dist)

1601

establish initial path

1602

return (initial path)

identify level of failed link --" 1 60

N

1604

Select Source-side device

1605

establish to-proxy path

1606

establish from-proxy path

1607
establish path as initial path to .
failed link Il to-proxy path ill

from-proxy path

return (path)

FIG. I6

Patent Application Publication May 5, 2011 Sheet 17 of 28 US 2011/O103262 A1

top-down
deployment

1701

select next level starting with
highest level

number of child Cells
with at least one minimum

cell == the number of Servers
in the minimum cell

plus One

Select next child Cell

Y 1704

select next child cell
that is not full

FIG, 17

Patent Application Publication May 5, 2011 Sheet 18 of 28 US 2011/O103262 A1

(pref, n, l)

1801 1806
Y build basic cell

(pref,n)
N

1804
build network

(pref,i),n,l-1)
1803

Y 1805
Connect Cell

(pref, l)

return

FIG. I.3

Patent Application Publication May 5, 2011 Sheet 19 of 28 US 2011/O103262 A1

build basic Cell

1903

connect device (pref,i)
to its SWitch

Patent Application Publication May 5, 2011 Sheet 20 of 28 US 2011/O103262 A1

Connect Cell

2001

(pref,)

FIG. 20

Patent Application Publication May 5, 2011 Sheet 21 of 28 US 2011/O103262 A1

(src, dst)
2101

Y return
Src, dist

src and dist
in same
DCello

2102

n, n =

get link (Src, dist
2103

path a routing (src, dst)

2104

path? = routing (ndst)

2105

path F path + (n1, m2)
path?

FIG 21

Patent Application Publication May 5, 2011 Sheet 22 of 28 US 2011/0103262 A1

(src, dst)
22O1

pref = get common prefix
(src, dst)

22O2

return (link)

FIG. 22

Patent Application Publication May 5, 2011 Sheet 23 of 28 US 2011/O103262 A1

Patent Application Publication May 5, 2011 Sheet 24 of 28 US 2011/0103262 A1

failure routing

2401 2402

Y deliver packet

N

2403 2404
pkt.proxy

Y pktproxy=NULL

selfid -
N

pkt.dst

selfuid

2407

dcnidst = pktidst dcnidst = pkt.proxy

24.08
path = routing

(selfuid, dcn ldst)
2409

(n, n.)
first link (path,b)

2410 2411

Y dijdst = dcnidst

24.15

local rerouting N

2414

Oreum D Dijkstra routing
(pki, dij dst)

FIG. 24 C retum D

Patent Application Publication May 5, 2011 Sheet 25 of 28 US 2011/O103262 A1

pkt, didst Dijkstra. Outing

2501
next hop = Dijkstra route

(pkt, dij- dist)

next hop
2503

forward pkt to next hop
NULL

selfluid
and pktidst in same

Cell

N 2506

local rerouting

FIG. 25

Patent Application Publication May 5, 2011 Sheet 26 of 28 US 2011/O103262 A1

local rerouting

pkit.proxy = select proxy
(uid (nin,))
return failure

FIG. 26

Patent Application Publication May 5, 2011 Sheet 27 of 28 US 2011/0103262 A1

2704
id= get index
(pref, I)

2705
add Cell

pref id),l-1,d,

2702

i = largest index of the
existing Cells

2703
assign prefix

pref, i+1) to d,

FIG. 27

Patent Application Publication May 5, 2011 Sheet 28 of 28 US 2011/O103262 A1

pref, l

2801

in F number of Cell

m2 = smallest index of the
non-full Cells

FIG. 28

US 2011/O 103262 A1

MULTI-LEVELINTERCONNECTION
NETWORK

BACKGROUND

0001. A typical data center is a collection of servers that
run applications that service requests of clients that may be
connected to the data center via the Internet. The applications
of a data center may provide services for instant messaging,
electronic mail, Searching, gaming, Serving web pages, and so
on. A data center may also host internal services Such as a
distributed file system.
0002 Because of the rapid growth in the number of users
of the Internet and in the number of application services
provided to those users, the number of servers in large data
centers needed to Support Such rapid growth is growing at a
very rapid rate. For example, one search service has more than
450,000 servers in its data centers, with an average of over
15,000 servers per data center. The number of servers in the
data centers appears to be doubling every 14 months.
0003. Because the servers of a data center need to com
municate with each other, the servers are interconnected via a
network architecture. Some of the goals of establishing a
network architecture are scalability, fault tolerance, and high
network capacity. Scalability refers to the ability of the net
work to Support a large number of servers and allow for
incremental expansion of the network. Fault tolerance refers
to the ability of the network to continue functioning in the
presence of server, communication link, and server rack fail
ures. (A server rack failure may occur when a rack that houses
many servers loses power.) High network capacity refers to
the communication bandwidth needed to Support the appli
cations of the data center.
0004. The network architecture of typical data centers is
generally a tree-based architecture. At the lowest level of the
tree, servers are in a rack (e.g., 20-80 servers) connected to a
rack Switch. At the next higher level, server racks are con
nected using core Switches, each of which connects up to a
few hundred server racks. A two-level tree architecture thus
can Support a few thousand servers. To Sustain the rapid
growth in demand for servers, more high levels are needed
that use faster and more expensive Switches.
0005. The tree-based architecture does not scale well in
terms of supported bandwidth. The core switches, as well as
the rack switches, are bandwidth bottlenecks in a tree-based
architecture. The aggregate bandwidth of the servers in a rack
is typically one or two orders of magnitude larger than the
uplink speed of a rack switch. The bandwidth bottleneck is
even more severe at higher level core switches. The tree
based architecture is also susceptible to a “single point of
failure.” A single failure at a rack Switch may disconnect the
server rack from the network, whereas a single failure at a
core Switch may result in thousands of servers being unable to
communicate to each other. Although the chances of a “single
point of failure' impacting a tree-based network can be
reduced by using redundant Switches, this redundancy does
not solve the problem because a failure can still occur and
disconnect thousands of servers from the network.

SUMMARY

0006. A method and system for providing a multi-level
interconnection network is provided. A multi-level intercon
nection network comprises basic cells that are aggregated into
higher level cells at each level of the network. At the first level,

May 5, 2011

the basic cells are aggregated into first level cells. A basic cell,
which may be considered a Zero level cell, is a collection of
servers that are interconnected to each other Such as by a
Switch. Each first level cell is an aggregation of a number of
basic cells that is one more than the number of servers in a
basic cell. The basic cells of a first level cell are fully con
nected; that is, each basic cell has a first level link or connec
tion to each other basic cell. In a first level cell, each server of
a basic cell has a first level link to each other basic cell. Since
there is one more basic cell in a first level cell than there are
servers inabasic cell, each of the servers of each basic cell can
have a first level link to a different server in each other basic
cell. Thus, each server of a first level cell has one link to its
switch and one first level link to another server in another
basic cell of the first level cell. A first level cell contains a
number of servers that is the number of servers in a basic cell
times the number of basic cells in a first level cell.

0007. The multi-level interconnection network may also
have second level cells and higher level cells that are aggre
gations of next lower level cells in a similar manner. Each
second level cell is an aggregation of the number of first level
cells that is one more than the number of servers in a first level
cell. Since there is one more first level cell in a second level
cell than there are servers in a first level cell, each of the
servers in each first level cell can have a second level link to
one server in each other first level cell. Thus, a server of a
second level cell has one link to its switch in the basic cell, one
first level link to another basic cell of that first level cell, and
one second level link to another server in another first level
cell of the second level cell. A second level cell contains a
number of servers that is the number of servers in a first level
cell times the number of first level cells in a second level cell.
In a similar manner, a third level cell is an aggregation of a
number of second cells that is one more than the number of
servers in a second level cell.

0008. A multi-level interconnection network can use vari
ous routing techniques to route messages between source
servers and destination servers that can take advantage of the
multi-level link structure of the network. An initial routing
algorithm, referred to as the routing algorithm or routing
component, generates a path for routing a packet from a
Source server to a destination server assuming that all links
are available. The routing algorithm initially identifies the
closest common ancestor cell that contains both the Source
server and the destination server. If the closest common
ancestor cell is a basic cell, that is, both servers are within the
same basic cell, then the routing algorithm establishes a path
as an intra-basic cell path from the source server to the des
tination serverthrough the switch of the basic cell. Otherwise,
the routing algorithm identifies the inter-cell link that con
nects the child cell of the closest common ancestor cell that
contains the source server to the child cell of the closest
common ancestor cell that contains the destination server.
The server on the source side of the identified inter-cell link is
referred to as the source-side server, and the server on the
server side of the identified inter-cell link is referred to as the
destination-side server. The routing algorithm then generates
a source-side path from the source server to the Source-side
server and a destination-side path from the source-side server
to the destination server.

0009. A multi-level interconnection network can be incre
mentally deployed in a way that helps ensure a high level of
connectivity without the need to reconfigure portions of the
network that are already deployed. A deployment technique

US 2011/O 103262 A1

establishes a minimum cell with a minimum cell level that
represents the minimum unit of addition to the network. A
top-down technique for incrementally adding minimum cells
to the network assigns the first minimum cell to the first child
cell of the highest level and to the first cells within the lower
levels of the first child cell of the highest level. The top-down
technique then assigns the second minimum cell to the second
child cell of the highest level and to the first cells within the
lower levels of that second child cell. The top-down technique
continues adding one minimum cell to each child cell within
the highest level (referred to as a second highest level cell)
until the number of second highest level cells that contain a
minimum cell is one more than the number of servers in a
minimum cell. As each minimum cell is added, the top-down
technique links each minimum cell via a highest level link to
each other minimum cell in a second highest level cell. The
top-down technique then recursively adds one minimum cell
to the child cells of the first second level cell until one more
than the number of child cells has one minimum cell. When
the second level above the minimum cell has one minimum
cell in a number of child cells that is one more than the number
of servers in the minimum cell, Subsequent minimum cells are
added to fill those minimum cells that already have one cell.
When all those cells are filled, subsequent minimum cells are
added to fill other cells.
0010. This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed Subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed Subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

0.011 FIG. 1 illustrates a basic cell that contains two serv
CS.

0012 FIG. 2 illustrates a first level cell created from the
basic cell illustrated in FIG. 1.
0013 FIG. 3 illustrates a first level cell created from basic
cells with three servers.
0014 FIG. 4 illustrates a second level cell created from

first level cells as illustrated in FIG. 2.
0.015 FIG. 5 illustrates a source server and a destination
server of the second level cell illustrated in FIG. 3.
0016 FIG. 6 illustrates an inter-cell link between the first
level cells that contain the source server and the destination
SeVe.

0017 FIG. 7 illustrates a source-side path in some
embodiments.
0018 FIG. 8 illustrates a destination-side path in some
embodiments.
0019 FIG. 9 illustrates the complete path between a
Source server and a destination server in some embodiments.
0020 FIG. 10 illustrates an incremental deployment of a
second level interconnection network using a bottom-up tech
nique in some embodiments.
0021 FIG. 11 illustrates an incremental deployment of a
second level interconnection network using a top-down tech
nique in some embodiments.
0022 FIG. 12 illustrates the continued incremental
deployment of a second level interconnection network using
a top-down deployment technique in Some embodiments.
0023 FIG. 13 illustrates further continued incremental
deployment of a second level interconnection network using
a top-down technique in some embodiments.

May 5, 2011

0024 FIG. 14 is a block diagram that illustrates compo
nents of a server and an administrative system of a multi-level
interconnection network in Some embodiments.
0025 FIG. 15 is a flow diagram that illustrates high-level
processing of a routing component of the multi-level inter
connection network in Some embodiments.
0026 FIG. 16 is a flow diagram that illustrates high-level
processing of a failure routing component of the multi-level
interconnection network in Some embodiments.
0027 FIG. 17 is a flow diagram that illustrates the pro
cessing of a top-down deployment component of the multi
level interconnection network in Some embodiments.
0028 FIG. 18 is a flow diagram that illustrates the pro
cessing of a build network component for a multi-level inter
connection network in Some embodiments.
0029 FIG. 19 is a flow diagram that illustrates the pro
cessing of the build basic cell component of a multi-level
interconnection network in Some embodiments.
0030 FIG. 20 is a flow diagram that illustrates the pro
cessing of a connect cell component of the multi-level inter
connection network in Some embodiments.
0031 FIG. 21 is a flow diagram that illustrates the pro
cessing of a routing component in Some embodiments.
0032 FIG. 22 is a flow diagram that illustrates the pro
cessing of a get link component of the multi-level intercon
nection network in Some embodiments.
0033 FIG. 23 illustrates a server failure that can be
addressed using local link state information.
0034 FIG. 24 is a flow diagram that illustrates the pro
cessing of a failure routing component of the multi-level
interconnection network in Some embodiments.
0035 FIG. 25 is a flow diagram that illustrates the pro
cessing of a Dijkstra routing component in some embodi
mentS.

0036 FIG. 26 is a flow diagram that illustrates the pro
cessing of the local rerouting algorithm in some embodi
mentS.

0037 FIG. 27 is a flow diagram that illustrates the pro
cessing of an add cell component of the top-down technique
in some embodiments.
0038 FIG. 28 is a flow diagram that illustrates the pro
cessing of a get index component of the top-down technique
in some embodiments.

DETAILED DESCRIPTION

0039. A method and system for providing a multi-level
interconnection network for a data centeris provided. In some
embodiments, a multi-level interconnection network com
prises basic cells that are aggregated into higher level cells at
each level of the network. For example, a basic cell may
include a number of servers (e.g., 5) that are each directly
linked or connected to a switch. At the first level, the basic
cells are aggregated into first level cells. Each first level cell is
an aggregation of a number of basic cells that is one more than
the number of servers in a basic cell. For example, if the
number of servers in a basic cell is 5, then the number of basic
cells in a first level cell is 6. The basic cells of a first level cell
are fully connected; that is, each basic cell has a first level link
or connection to each other basic cell. In a first level cell, each
server of a basic cell has a first level link to each other basic
cell. Since there is one more basic cell in a first level cell than
there are servers in a basic cell, each of the servers of each
basic cell can have a first level link to a different server in each
other basic cell. Thus, each server of a first level cell has one

US 2011/O 103262 A1

link to its switch and one first level link to another server in
another basic cell of the first level cell. A first level cell
contains a number of servers that is the number of servers in
a basic cell times the number of basic cells in a first level cell.
For example, if the number of servers in a basic cell is 5, then
the number of basic cells in a first level cell is 6 and the
number of servers in a first level cell is 30 (i.e., 5x6).
0040. The multi-level interconnection network may also
have second level cells and higher level cells that are aggre
gations of next lower level cells in a similar manner. Each
second level cell is an aggregation of the number of first level
cells that is one more than the number of servers in a first level
cell. For example, if the number of servers in a first level cell
is 30, then the number of first level cells in a second level cell
is 31. Since there is one more first level cell in a second level
cell than there are servers in a first level cell, each of the
servers in each first level cell can have a second level link to
one server in each other first level cell. Thus, a server of a
second level cell has one link to its switch in the basic cell, one
first level link to another basic cell of that first level cell, and
one second level link to another server in another first level
cell of the second level cell. A second level cell contains a
number of servers that is the number of servers in a first level
cell times the number of first level cells in a second level cell.
For example, if the number of servers in a first level cell is 30,
then the number of first level cells in the second level cell is 31
and the number of servers in a second-level cell is 930 (30x
31). In a similar manner, a third level cell is an aggregation of
a number of second cells that is one more than the number of
servers in a second level cell. Thus, if the number of servers in
a second level cell is 930, then the number of second level
cells in the third level cell is 930 and the number of servers in
a third level cell is 865,830 (930x931). One skilled in the art
will appreciate that a multi-level interconnection network can
be used to interconnect types of devices other than servers,
Such as Switches, routers and mobile phones of users or per
sonal computing devices of users. One skilled in the art will
also appreciate that the devices of a basic cell can be con
nected using connection mechanisms other than a Switch. For
example, each device of a basic cell can be directly connected
to each other device of that basic cell, connected in a ring
structure, connected through a communication bus, and so on.
0041. In some embodiments, a multi-level interconnec
tion network can use various routing techniques to route
messages between source servers and destination servers that
can take advantage of the multi-level link structure of the
network. An initial routing algorithm, referred to as the rout
ing algorithm or routing component, generates a path for
routing a packet from a source server to a destination server
assuming that all links are available (e.g., no link or server has
failed). The routing algorithm initially identifies the closest
common ancestor cell that contains both the source server and
the destination server. For example, in a three level network,
if the source server and the destination server are in different
first level cells of the same second level cell, then the closest
common ancestor cell is that second level cell. If the closest
common ancestor cell is a basic cell, that is, both servers are
within the same basic cell, then the routing algorithm estab
lishes a path as an intra-basic cell path from the source server
to the destination server through the switch of the basic cell.
Otherwise, the routing algorithm identifies the inter-cell link
that connects the child cell of the closest common ancestor
cell that contains the source server to the child cell of the
closest common ancestor cell that contains the destination

May 5, 2011

server. The server on the source side of the identified inter-cell
link is referred to as the source-side server, and the server on
the server side of the identified inter-cell link is referred to as
the destination-side server. The routing algorithm then gen
erates a source-side path from the Source server to the source
side server and a destination-side path from the Source-side
server to the destination server. The routing algorithm may be
recursively invoked to identify the source-side path and the
destination-side path. The routing algorithm establishes the
path from the source server to the destination server as the
concatenation of the source-side path, the identified inter-cell
link, and the destination-side path.
0042. In some embodiments, a multi-level interconnec
tion network uses a fault-tolerant routing technique algo
rithm, referred to as a failure routing algorithm, to establish a
path that avoids servers and links that have failed. The failure
routing algorithm may establish an initial path from a source
server to a destination server using the routing algorithm
described above. When it is determined that a failure has
occurred along the initial path, the failure routing algorithm
identifies the level of the failed link with a source-side server
being on the source side of the failed link and a destination
side server being on the destination side of the failed link. The
source-side server and the destination-side server are in dif
ferent child cells of the level of the failed link. For example, if
the failed link is a second level link, then the source-side
server and the destination-side server are in two different first
level cells of the same second level cell. The failure routing
algorithm then selects a source-side proxy server in a sibling
cell at the same level as the child cells that contain the source
side server and the destination-side server. The failure routing
algorithm establishes a to-proxy path from the Source-side
server to the source-side proxy server and a from-proxy path
from the source-side proxy server to the destination server.
The failure routing algorithm establishes the modified path to
avoid the failure as a concatenation of a portion of the initial
path from the source server to the source-side server, the
to-proxy path, and the from-proxy path. Variations of the
failure routing algorithm that factorin other failure conditions
are described below.

0043. In some embodiments, a multi-level interconnec
tion network can be incrementally deployed in a way that
helps ensure a high level of connectivity without the need to
reconfigure portions of the network that are already deployed.
A deployment technique establishes a minimum cell with a
minimum cell level that represents the minimum unit of addi
tion to the network. The minimum cell has a minimum num
ber of servers. For example, a minimum cell may be a basic
cell or a first level cell. (A basic cell may be considered to be
a zero level cell.) The deployment technique also establishes
the highest level for the multi-level interconnection network.
Thus, once the number of servers in a basic cell is established
and the highest level is established, the maximum number of
servers for that network is established. A top-down technique
for incrementally adding minimum cells to the network oper
ates as follows. Each child cell of a parent cell may be
assigned a unique index within its parent cell including serv
ers within a basic cell. Each server can thus be uniquely
identified by the sequence of indexes from that within the
basic cell to that within the highest level cell. The top-down
technique assigns the first minimum cell to the cells with the
first index from the highest level to the level that contains the
minimum cells. The top-down technique then assigns the
second minimum cell to the child cell with the second index

US 2011/O 103262 A1

in the highest level and to cells with the first index for cells in
the lower levels. The top-down technique continues adding
one minimum cell to each child cell within the highest level
(referred to as a second highest level cell) until the number of
second highest level cells that contain a minimum cell is one
more than the number of servers in a minimum cell. As each
minimum cell is added, the top-down technique links each
minimum cell via a highest level link to each other minimum
cell in second highest level cells. As a result, when the number
of second highest level cells with one minimum cell is one
more than the number of servers in a minimum cell, the
second highest level cells can be fully connected via highest
level links.

0044. After enough second highest level cells have mini
mum cells to be fully connected, the top-down technique
assigns Subsequent minimum cells to the second highest level
cell that has the first index until that second highest level cell
is full. The top-down technique then continues to fill each
second highest level cell in index order. To fill a second
highest level cell after one minimum cell has been assigned to
it, the top-down technique assigns the next minimum cell to
the third level cell with the second index within that second
level cell and to the first index for cells at all lower levels. (The
top-down technique already assigned a minimum cell to the
first index of that third level cell.) The top-down technique
then continues by assigning Subsequent minimum cells to the
second level cell with the second index and to its third level
cells until the number of third level cells that have been
assigned one minimum cell is one more than the number of
servers in the minimum cell. As each minimum cell is
assigned, it is fully connected to other minimum cells via
third level links resulting in the third level cells being fully
connected. The top-down technique then assigns Subsequent
minimum cells to the third level cell with the first index until
it is full and then assigns further Subsequent minimum cells to
each other third level cell of the second level cell with the first
index until all are fully connected. The top-down technique
then repeats the process for the second level cell with the
second and Subsequent indexes.
0045 FIGS. 1-12 illustrate various aspects of a multi-level
interconnection network in some embodiments. FIG. 1 illus
trates a basic cell that contains two servers. The basic cell 100
includes a switch 101 and servers 110 and 111. Each server is
directly connected to the switch. Each server is provided with
a unique index within the basic cell. In this example, server
110 is assigned the index of 0, and server 111 is assigned the
index of 1.

0046 FIG. 2 illustrates a first level cell created from the
basic cell illustrated in FIG.1. The first level cell 200 includes
three basic cells 210, 211, and 212. Each basic cell is con
nected to each other basic cell via a first level link. First level
link 220 connects basic cells 210 and 211, first level link 221
connects basic cells 211 and 212, and first level link 222
connects basic cells 212 and 210. Each first level link con
nects a pair of servers of a basic cell such that each server of
a basic cell has only one first level link. Each basic cell within
a first level cell is assigned a unique index within the first level
cell. In this example, basic cell 210 is assigned the index of 0.
basic cell 211 is assigned the index of 1, and basic cell 212 is
assigned the index of 2. Each server within the first level cell
can be uniquely identified by an identifier that is a combina
tion of the index of its basic cell within the first level cell and
the index of the server within its basic cell. For example, the
servers of basic cell 210 are uniquely identified by the

May 5, 2011

sequence of 0-1 and 0-0, the servers of basic cell 211 are
uniquely identified by the sequence 1-1 and 1-0, and the
servers of basic cell 212 are uniquely identified by the
sequence 2-1 and 2-0.
0047 FIG.3 illustrates a first level cell created from basic
cells with three servers. A first level cell 300 includes basic
cells 310, 311, 312, and 313. Since a first level cell contains
one more basic cell than the number of servers in the basic
cell, first level cell 300 includes four basic cells. Each basic
cell is connected to each other basic cell through one of its
servers via a first level link so that each basic cell has one first
level link to each other basic cell of first level cell 300 and are
thus fully connected.
0048 FIG. 4 illustrates a second level cell created from the
first level cells as illustrated in FIG. 2. A second level cell 400
includes first level cells 410-416. Since a second level cell
contains one more first level cell than the number of servers in
the first level cell, the second level cell contains 7 (e.g., 6+1)
first level cells. Each first level cell is connected to each other
first level cell through one of its servers via a second level link.
For example, first level cell 410 is connected to the first level
cell 411 via second level link 421, and first level cell 410 is
connected to first level cell 412 via second level link 422.
0049 FIGS. 5-9 illustrate generating a path from a source
server to a destination server using the routing algorithm in
some embodiments. FIG. 5 illustrates a source server and a
destination server of the second level cell 400 illustrated in
FIG.3. First level cell 410 contains the source server 420, and
first level cell 414 contains the destination server 424. The
routing algorithm initially identifies the closest common
ancestor cell that contains both the source server and the
destination server. In this example, since the Source server
and the destination server are in different first level cells, the
closest common ancestor cell is second level cell 400.

0050 FIG. 6 illustrates an inter-cell link between the first
level cells that contain the source server and the destination
server. First level cell 410 and first level cell 414 are con
nected via a second level link 450. The source-side server of
second level link 450 is server 440, and the destination-side
server of second level link 450 is server 444. Thus, the second
level link 450 is in the path. The source-side path connects the
source server 420 to the source-side server 440, and the des
tination-side path connects the destination-side server 444 to
the destination server 424. The routing algorithm establishes
the path as the concatenation of the Source-side path, second
level link 450, and the destination-side path.
0051 FIG. 7 illustrates a source-side path in some
embodiments. First level cell 410 includes source server 420
and source-side server 440. To establish the source-side path,
the routing algorithm considers source-side server 440 as a
destination server of the Source-side path. The routing algo
rithm identifies the closest common ancestor cell that con
tains both the source server and the destination server. In this
example, the closest common ancestor cell is first level cell
410. The routing algorithm then identifies a link 470 between
the basic cells that contain the source server 420 and the
destination server of source-side server 440. Since link 470
does not connect to the destination server 440 of the source
side path, the routing algorithm establishes a path from a
destination-side server 441 of link 470 to destination server
440 through switch 442. Thus, the source-side path includes
link 470 and the link through switch 442.
0.052 FIG. 8 illustrates a destination-side path in some
embodiments. The destination-side path within first level cell

US 2011/O 103262 A1

414 from the destination-side server 444 to the destination
server 424 includes the link through switch 445, link 430, and
the link through switch 446.
0053 FIG. 9 illustrates the complete path between a
Source server and a destination server in some embodiments.
The complete path from the source server 420 to the destina
tion server 424 includes link 470, the link through switch 442,
link 450, the link through switch 445, link 430, and the link
through 446.
0054 FIG. 10 illustrates an incremental deployment of a
second level interconnection network using a bottom-up tech
nique in some embodiments. In this example, the minimum
cell, which is the unit of deployment, is a basic cell with two
servers. First level cell 1010 of second level cell 1000 is filled
first with basic cells. After the first level cell 1010 is full, the
bottom-up technique starts adding basic cells to first level cell
1011 until it is full and then continues to fill each other first
level cell until each is full before starting to fill the next first
level cell. After first level cell 1010 and first level cell 1011 are
full as illustrated by FIG. 10, they are connected only via
second level link 1020. The bottom-up technique suffers from
the problem that second level link 1020 represents a “single
point of failure' that would divide the network deployed so
far into two equal sized sub-networks: first level cell 1010 and
first level cell 1011.
0055 FIG. 11 illustrates an incremental deployment of a
second level interconnection network using a top-down tech
nique in some embodiments. In this example, the minimum
cell is a basic cell with two servers. The first basic cell 1120 is
added to first level cell 1110, the second basic cell 1121 is
added to first level cell 1111, and the third basic cell 1122 is
added to first level cell 1112 forming second level cell 1100.
The basic cells that have been added so far allow first level
cells 1110, 1111, and 1112 to be fully connected through links
1130, 1131, and 1132. This deployment technique has no
“single point of failure' between first level cells 1110, 1111,
and 1112 after three basic cells are added.
0056 FIG. 12 illustrates the continued incremental
deployment of a second level interconnection network using
a top-down deployment technique in some embodiments. The
4th through 9th basic cells that are added to second level cell
1100 are added to first level cells 1110, 1111, and 1112 to fill
those cells.

0057 FIG. 13 illustrates further continued incremental
deployment of a second level interconnection network using
a top-down technique in some embodiments. The 10th
through 12th basic cells are added to first level cell 1113. First
level cell 1113 has a second level link 1230, 1231, and 1232
to each of first level cells 1110, 1111, and 1112.
0058 FIG. 14 is a block diagram that illustrates compo
nents of a server and an administrative system of a multi-level
interconnection network in some embodiments. The server
1410 includes a routing subsystem 1420, a failure routing
subsystem 1430, and an application subsystem 1440. The
routing Subsystem provides a routing component 1421, a get
link component 1422, and an identifier store 1423. The iden
tifier store contains the unique identifier assigned to this
server. The failure routing subsystem includes a failure rout
ing component 1431, a Dijkstra routing component 1432, and
a local rerouting component 1433. The application Subsystem
1440 includes an application component 1441, a send packet
component 1442, and a receive packet component 1443. The
application component provides the services for the server
and invokes the send packet component to send packets of

May 5, 2011

information to other servers and the receive packet compo
nent to receive packets of information from other servers.
0059. The administration system 1450 includes a build
network subsystem 1460 and an incremental deployment
subsystem 1470. The build network subsystem includes a
build network component 1461, a build basic cell component
1462, a connect cell component 1463, a highest level store
1464, and a basic cell server number store 1465. (The server
number of cell is the maximum number of servers of the cell.)
The build network component is used to build a complete
multi-level interconnection network. The highest level store
indicates the highest level of the network, and the basic cell
server number store indicates the number of servers in the
basic cell. The incremental deployment Subsystem includes
an add cell component 1471 and a get index component 1472.
The incremental employment Subsystem may be used to
assign identifiers to minimum cells when a network is incre
mentally deployed.
0060. The servers of the multi-level interconnection net
work may include a central processing unit, memory, input
devices, output devices, storage devices, and communication
ports. The memory and storage devices are computer-read
able storage media that may be encoded with computer-ex
ecutable instructions that implement the components of
devices or an administration system, which means a com
puter-readable storage medium that contains the instructions.
In addition, the instructions, data structures, and message
structures may be transmitted via a data transmission
medium, Such as a signal on a communication link.
0061 The components of the multi-level interconnection
network may be described in the general context of computer
executable instructions, such as program modules, executed
by one or more computers or other devices. Generally, pro
gram modules include routines, programs, objects, compo
nents, data structures, and so on that perform particular tasks
or implement particular abstract data types. Typically, the
functionality of the program modules may be combined or
distributed as desired in various embodiments.
0062 FIG. 15 is a flow diagram that illustrates high-level
processing of a routing component of the multi-level inter
connection network in some embodiments. The routing com
ponent establishes a path from a source to a destination with
out considering failed links. The component is passed the
identifiers of a source server and a destination server. In block
1501, the component identifies the closest common ancestor
cell of the source server and the destination server. In decision
block 1502, if the closest common ancestor cell is a basic cell,
then the source server and the destination server are in the
same basic cell and the component continues at block 1507,
else the component continues at block 1503. In block 1503,
the component identifies an inter-cell link between the child
cells of the closest common ancestor cell that contains the
source server and the destination server. In block 1504, the
component identifies a source-side path from the Source
server to a source-side server of the identified inter-cell link.
In block 1505, the component identifies a destination-side
path from the destination-side server of the identified inter
cell link to the destination server. The component may recur
sively invoke the routing component to identify the source
side path and the destination-side path. In block 1506, the
component establishes a path from the source server to the
destination server as the concatenation of a source-side path,
the identified inter-cell link, and the destination-side path.
The component then returns the path. In block 1507, the

US 2011/O 103262 A1

component establishes a path from the source server to the
destination server as the path within the basic cell and returns
the path.
0063 FIG. 16 is a flow diagram that illustrates high-level
processing of a failure routing component of the multi-level
interconnection network in some embodiments. The compo
nent modifies a path between a source server and a destination
server when a failure along the path has been detected. The
component is passed identifiers of the Source server and a
destination server. In block 1601, the component establishes
an initial path between the source server and the destination
server by invoking the routing component of FIG. 15. In
decision block 1602, if there is a failure along the path, the
component continues to block 1603, else the component
returns the initial path. In block 1603, the component identi
fies the level of the failed link. In block 1604, the component
selects a source-side proxy server that is in a sibling cell of the
cell that contains the source-side server of the failed link. In
block 1605, the component establishes a to-proxy path from
the source-side server to the Source-side proxy server. In
block 1606, the component establishes a from-proxy path
from the source-side proxy server to the destination server. In
block 1607, the component establishes the path as the con
catenation of the initial path to the source-side server, the
to-proxy path, and the from-proxy path. The component then
returns the path.
0064 FIG. 17 is a flow diagram that illustrates the pro
cessing of a top-down deployment component of the multi
level interconnection network in some embodiments. The
component may be invoked repeatedly for each minimum cell
that is to be added next to the network. The component returns
an index of a cell in each level that is to contain the minimum
cell. The network has a highest level cell and a minimum cell
level. The minimum cell has a certain number of servers,
referred to as its server number. The component loops select
ing each level from the highest level to the level next above the
minimum cell level. In block 1701, the component selects the
next level starting with the highest level. In decision block
1702, if all such levels have already been selected, then the
component returns, else the component continues at block
1703. In decision block 1703, if the number of child cells of
the selected level that have one minimum cell already
assigned is greater than one more than the server number of
the minimum cell, then the component continues at block
1704, else the component continues at block 1705. In block
1704, the component selects the next child cell of the selected
level that is not full in index order and loops to block 1701 to
select the next level. In block 1705, the component selects the
next child cell of the selected level that has not been assigned
a minimum cell in index order and then loops to block 1701 to
select the next level.

0065. In the following, the multi-level interconnection
network, referred to as a DCell (“Data Center Cell’) or Cell,
is described. DCell uses servers equipped with multiple net
work ports and mini-switches to construct its recursively
defined architecture. In DCell, a server is connected to several
other servers and a mini-Switch via communication links,
which are assumed to be bidirectional and of the same capac
ity. A high-level DCell is constructed from many low-level
DCells. A k" level-kDCell (k is greater than or equal to 0) is
denoted as DCell.
0066. A basic cell, referred to as a DCello, is the building
block to construct larger DCells. A DCello has n servers (or
server number n) and a mini-switch. In the example of FIG.3,

May 5, 2011

n is equal to 3, and in the example of FIG.4, n is equal to 2. All
servers in a DCello are connected to the mini-switch and are
thus fully connected with each other. In a typical multi-level
interconnection network, n is a small integer (e.g., ins8). In
Some embodiments, the mini-switch may be a commodity
8-port switch with a speed of 1 Gb/s or 10 Gb/s per port.
0067. A level-1 DCell is constructed using n+1 DCells.
In a DCell, each DCello is connected to all the other DCellos
with one link, referred to as a first level link. In the example of
FIG. 3, the DCell has n+1=4 of DCells. The DCells are
connected by assigning each server an identifier that is 2-tuple
a, ao, where a and at are the level-1 and level-0 indexes,
respectively. Thus a and a take values from 0, 4) and 0.3).
The two servers with 2-tuples i, j-1 and j, i) Q are con
nected with a link for every i and everyjdi. The linking results
in a DCell as shown in FIG. 3. Therefore, each server in a
DCell has two links. One link, referred to as a level-0 link,
connects to its mini-switch, hence to other servers within its
own DCello. The other link, referred to as a level-1 link,
connects to a node in another DCello.
0068 To facilitate the DCell construction, each server in a
DCell is assigned a (k+1)-tuple a, a a, aol. The
value a is a prefix indicating which DCell contains the
server. Similarly, the valuea, a , ..., a (i>0) is a prefix
indicating which DCell, contains the server. Each server can
be equivalently identified by a unique integer identifier uid
with a value ranging from 0 to t, where t represents the
number of servers in or server number of a DCell and is
defined recursively by the following:

ligiti

gt. 1+1

where k>0, to n (which is the number of servers in a DCello),
and go-1. The value g denotes the number of DCells cells
in a DCell.
0069. A mapping between a unique integer identifier of a
server and its (k+1)-tuple is a bijection. The unique integer
identifier uid may be calculated from the (k+1)-tuple by the
following equation:

uid-aohs, '(at)
0070 The (k+1)-tuple of a server can also be derived from

its unique identifier by the inverse operation. A server in
DCell is represented as a uid, wherea indicates which
DCell contains the server and uid is the unique identifier
of the server within DCell.
0071 FIG. 18 is a flow diagram that illustrates the pro
cessing of a build network component for a multi-level inter
connection network in Some embodiments. The component
recursively assigns identifiers to basic cells and specifies links
between the servers of the network. The component has three
parts. Part I checks whether the component is at the basic cell
level (i.e., DCello). If so, it connects all the n servers to a
corresponding Switch and ends the recursion. Part II recur
sively constructs g, number of DCells. Part III intercon
nects these DCells, where any two DCells are connected
with one link. The component connects servers i,j-1 and j,
i via a link to fully connect DCells assigned to a DCell. A
similar procedure is used to connect the DCells in a DCell.
Each server in a DCell has k+1 links. The one link, called a
level-0 link, connects each server to a switch that intercon
nects the servers in a DCello. The other link, a level-1 link,
connects to a server in the same DCell but in a different

US 2011/O 103262 A1

DCello. Similarly, the level-i link connects a server to a dif
ferent DCell, within the same DCell.
0072 The component is passed a prefix, the server number
of the basic cell, and a level. In decision block 1801, if the
level is zero, then the component continues at block 1806,
else the component continues at block 1802. In blocks 1802
1804, the component loops recursively invoking the build
network component. In block 1802, the component selects
the next child cell of the passed level in index order starting
with the cell indexed by Zero (i-0). In decision block 1803, if
all such child cells have already been selected, then the com
ponent continues at block 1805, else the component continues
at block 1804. In block 1804, the component recursively
invokes the build network routine passing a prefix with the
index of the selected child cell concatenated, the server num
ber of the basic cell, and the passed level minus one (imple
menting Part II) and then loops to block 1802 to select the next
child cell. In block 1805, the component invokes a connect
cell component passing a prefix in the passed level to connect
the child cells of the passed level (implementing Part III) and
then returns. In block 1806, the component invokes a build
basic cell component (implementing Part I) to build a basic
cell and then returns.

0073 FIG. 19 is a flow diagram that illustrates the pro
cessing of the build basic cell component of a multi-level
interconnection network in some embodiments. The compo
nent is passed a prefix and the server number of the basic cell
and connects the servers of a basic cell and assigns an iden
tifier to each server within the basic cell. In block 1901, the
component selects the index of the next server of a basic cell.
In decision block 1902, if all the indexes of the servers have
already been selected, then the component returns, else the
component continues at block 1903. In block 1903, the com
ponent assigns to a server an identifier that is the prefix
concatenated with the selected index and connects that server
to the switch for the basic cell and then loops to block 1901 to
select the index of the next server.

0074 FIG. 20 is a flow diagram that illustrates the pro
cessing of a connect cell component of the multi-level inter
connection network in some embodiments. The component is
passed a prefix of a cell and a level whose child cells are to be
connected with links of that level. In block 2001, the compo
nent selects the next child cell in index order. In decision
block 2002, if all the child cells have already been selected,
then the component returns, else the component continues at
block 2003. In blocks 2003-2007, the component loops
choosing each index of a child cell that is greater than the
selected index. The component connects the child cell of the
selected index to each child cell of the chosen indexes. In
block 2003, the component chooses the next index of a child
cell that is greater than the selected identifier. In decision
block 2004, if all such indexes have already been chosen, then
the component loops to block 2001 to select the next index,
else the component continues at block 2005. In block 2005,
the component sets the identifier for one of the servers to be
connected. In block 2006, the component sets the identifier
for the other server to be connected. In block 2007, the com
ponent designates that identified servers are to be connected
and then loops to block 2003 to choose the next index.
0075. The routing algorithm follows a divide-and-conquer
approach. If the source server Src and the destination server
dst are in the same DCell but in two different DCells, the
routing algorithm first calculates the inter-cell link (n, n)
that connects the two DCells. The routing algorithm then

May 5, 2011

divides its processing in half to find the two sub-paths from
the Source server Src to the source-side server n and from the
destination-side server n to the destination server dst. The
final path is the combination of the two sub-paths and inter
cell link (n1, n).
0076 FIG. 21 is a flow diagram that illustrates the pro
cessing of a routing component in some embodiments. The
component is passed identifiers of a source server and a
destination server and returns a path from the source server to
the destination server. The component is recursively invoked
to identify a source-side path and a destination-side path. In
decision block 2101, if the source server and destination
server are in the same basic cell, the component returns the
path from the source server to the destination server through
the switch, else the component continues at block 2102. In
block 2102, the component invokes the get link component to
retrieve the inter-cell link of the closest common ancestor cell
of the source server and the destination server. In block 2103,
the component recursively invokes the routing component
passing the identifier of the source server and an identifier of
the source-side server of the identified inter-cell link. In block
2104, the component recursively invokes the routing compo
nent passing the identifier of the destination-side server of the
identified inter-cell link and the identifier of the destination
server. In block 2105, the component concatenates the
source-side path, the identified inter-cell link, and the desti
nation-side path to form the overall path and then returns that
path.
0077 FIG. 22 is a flow diagram that illustrates the pro
cessing of a get link component of the multi-level intercon
nection network in some embodiments. The component iden
tifies the inter-cell link between the source server and
destination server. In block 2201, the component identifies
the closest common ancestor cell of the source server and the
destination server based on a common prefix of the tuples
identifying the Source server and the destination server. In
block 2202, the component determines the length of the pre
fix. In block 2203, the component identifies the inter-cell link
by the source-side cell and the destination-side cell and then
returns that link. The link can be directly derived from the
identifiers of the two child cells. Ifs, and d- (s-as-d)
are the identifiers of the two child cells, then the link that
connects these two child cells is (S. d-1, d. S.)
where d -1 is the index of the source-side server of the link
in child cells, and s is the index of the destination-side
server of the link in child cell d.

0078. The multi-level interconnection network uses a dis
tributed, fault-tolerant routing algorithm without global link
state information to reduce the impact of a failure on routing.
The failure routing algorithm employs the routing algorithm
described above and a broadcast algorithm to broadcast link
state information within the child cells of a parent cell. The
failure routing algorithm addresses three types of failures:
server failure, rack failure, and link failure. A link failure is a
basic failure since all the failures result in a link failure. Link
failure management is a basic part of the failure routing
algorithm. The failure routing algorithm uses a local rerout
ing algorithm, a local link state algorithm, and a jump-up
routing algorithm to address link failure, server failure, and
rack failure, respectively.
007.9 The failure routing algorithm uses a local rerouting
algorithm to bypass failed links that are part of a path estab
lished by the routing algorithm. The local rerouting algorithm
uses local decisions when modifying a path for rerouting

US 2011/O 103262 A1

packets. The local rerouting algorithm uses an initial path
from a source serversrc to a destination server dst established
using the routing algorithm. When a server n along the path
receives a packet and determines that the link (n, n) along
the initial path has failed, the failure routing algorithm per
forms the local rerouting algorithm at the Source-side server
n of the failed link. The local rerouting algorithm at the
source-side server n first calculates the level of the failed link
(n, n), represented by 1. The source-side server n and the
destination-side server n are in the same DCell, but in two
different DCells. Since there are g, DCells inside this
DCell, the local rerouting algorithm selects a DCell that is
different from the ones that contain the source-side server n
and the destination-side server n. The local rerouting algo
rithm selects the link, represented as link (pp), that con
nects the selected DCell and the one that contains the
Source-side server n. The local rerouting algorithm reroutes
the path from the source-side servern to serverp which is a
Source-side proxy server. Upon receiving the packet, the
Source-side proxy server p uses the routing algorithm to
establish a path from the source-side proxy server p to the
destination serverdstand forwards the packet along that path.
0080. The local rerouting algorithm cannot completely
address server failures because it is based on the topology of
the network and does not use link or server state information.
An example of a failure that the local rerouting algorithm
cannot adequately address is as follows. The initial path from
a source server Src to a destination server established by the
routing algorithm may contain a sub-path through server q
represented as {(q1, q2), (q) qs)}. The level of the link(q1, q2)
may be 1 and the level of the link (q, q) may be 3. When
server q receives a packet, it determines that link (q1, q2) is
down. The cause of the link being down may have been
because server q. failed, but server q cannot determine
whether the link or the destination-side server of the link has
failed. The local rerouting algorithm selects a source-side
proxy server in another DCell and generates a path from the
source-side proxy server to the destination-side server q.
using the routing algorithm. However, the routing algorithm,
which does not factor in the unavailability of a link, will
always establish a path that includes server q, which has
failed. Another example is when the last server before the
destination server dst has failed, such last server is trapped in
a dilemma. If the destination server dst fails, it should not
perform the local rerouting algorithm, but if the link between
the last server and the destination server dst has failed, it
should perform the local rerouting algorithm.
0081. The failure routing algorithm uses local link state
information to solve this dilemma. The failure routing algo
rithm uses a link State routing algorithm (that in turn uses a
Dijkstra-based algorithm) for infra-DCell, routing and the
routing algorithm and the local rerouting algorithm for inter
DCell, routing. Within a DCell, each server broadcasts the
status of all its (k+1) links periodically or when it detects link
failure to all the other servers of that DCell. Each server thus
knows the status of all the incoming and outgoing links in its
DCell. FIG. 23 illustrates a server failure that can be
addressed using local link state information. DCells 2301,
2302, and 2303 are along possible paths from the source
server Src to the destination server dst. Upon receiving a
packet, a server m in DCell, executing the failure routing
algorithm will use the routing algorithm to calculate the
remainder of the path to the destination server dst. The failure
routing algorithm identifies the link leading out of DCell,

May 5, 2011

along the path as link (n, n). The failure routing algorithm
uses the local link state routing algorithm to perform intra
DCell routing from server m to server n. Upon determining
from the local link state information that link (n, n) is
unavailable (possibly because server n has failed), server m
uses the local rerouting algorithm to select a source-side
proxy server p. When server p receives the packet, the
failure routing algorithm uses the routing algorithm to estab
lish a path from server p to destination server dst, which
necessarily will avoid link (n, n) and server n, irrespective
of whether that link or server has failed.

I0082. The failure routing algorithm that uses local link
state routing cannot adequately address the situation when the
entire DCell, 2303 of FIG. 23 fails. In particular, the algo
rithm will route the packet endlessly around DCell, 2302
since all the re-routed paths need to go through r. To address
this situation, the failure routing algorithm using a jump-up
routing algorithm. Upon receiving the rerouted packet (im
plying link (n, n) has failed), server p checks whether link
(q1, q2) is unavailable. If link (q1, q2) is unavailable, it may be
a good indication that the entire DCell, 2303 has failed. To
avoid DCell, 2303 entirely, the jump-up routing algorithm
executing at server p selects a source-side proxy from a
DCell with a higher level (i.e., it jumps up). (However, if the
destination server dst is in the failed DCell, 2303, a packet
will not be able to reach the destination server dst with the
local rerouting algorithm or the jump-up routing algorithm.)
To remove packets from the network that may not ever be able
to reach their destination servers, the failure routing algo
rithm uses a retry count and a time-to-live count. The failure
routing algorithm adds to a packet header a retry count, which
is decremented each time a local rerouting is performed, and
a time-to-live count, which is decremented by each server that
receives the packet. When either count reaches zero, the fail
ure routing algorithm drops the packet and sends a failure
message to the Source server.
I0083 FIG. 24 is a flow diagram that illustrates the pro
cessing of a failure routing component of the multi-level
interconnection network in some embodiments. The compo
nent uses the routing algorithm, the local rerouting algorithm,
the link state routing algorithm, and the jump-up routing
algorithm. The component is invoked when a server receives
a packet. In decision block 2401, if this server is the destina
tion server, then the component delivers the packet to the
application in block 2402 and returns, else the component
continues at block 2403. In decision block 2403, if this server
is the proxy server designated in the packet, then the compo
nent sets the proxy of the packet to null in block 2404. The
component then continues at block 2405. In decision block
2405, if the proxy of the packet is null, then the component
sets a destination variable to the destination server of the
packet in block 2406, else the component sets a destination
variable to the proxy server of the packet in block 2407. In
block 2408, the component invokes the routing algorithm to
generate a path from this server to the server of the destination
variable. In block 2409, the component identifies the first link
outside of DCell, along the path. In decision block 2410, if the
first link is null, then this server and the server of the desti
nation variable are in the same DCell. If so, the component
continues at block 2411, else the component continues at
block 2412. In block 2411, the component sets a Dijkstra
destination variable to the destination variable and continues
at block 2414 to invoke a Dijkstra routing component passing
the packet and the Dijkstra destination variable before return

US 2011/O 103262 A1

ing. In decision block 2412, if there is a first link and it has
failed, then the component continues at block 2415, else the
component continues at block 2413. In block 2413, the com
ponent sets a Dijkstra destination variable to the destination
side server of the first link and invokes the Dijkstra routing
component before returning. In block 2415, the component
invokes the local rerouting component to avoid the failed link
and then returns.
0084 FIG. 25 is a flow diagram that illustrates the pro
cessing of a Dijkstra routing component in Some embodi
ments. The component is passed a packet along with an indi
cation of a destination server. In block 2501, the component
identifies the next server along a route identified by a Dijk
stra-based algorithm. In decision block 2502, if there is no
next server, then the component continues at block 2504, else
the component forwards the packet to the next server in block
2503 and then returns. In decision block 2504, if this server
and the destination server are in the same DCell, then the
component drops the packet in block 2505 and returns, else
the component continues at block 2506. In block 2506, the
component invokes a local rerouting component and then
returns.

0085 FIG. 26 is a flow diagram that illustrates the pro
cessing of the local rerouting algorithm in some embodi
ments. In block 2601, the component decrements a local
rerouting retry count of the packet. In decision block 2602, if
the retry count is Zero, then the component drops the packet in
block 2603 and returns, else the packet continues at block
2604. In block 2604, the component selects a proxy and sets
the proxy of the packet to the selected proxy. The component
then recursively invokes the failure routing component and
then returns.
I0086. In a large data center, it is unlikely that a full multi
level interconnection network is constructed at one time
because servers will typically only be added incrementally
upon demand. A straightforward way to gradually build a
multi-level interconnection network is to use a bottom-up
technique. When a DCello is full, a second DCello is started as
part of a DCell that contains both DCellos. In general, any
time a DCell is full, a new DCell is started. The bottom-up
technique ensures that no reassigning of identifiers nor rewir
ing of links is needed when new servers are added as the
network is incrementally grown. However, the bottom-up
technique may generate interim networks that are not fault
tolerant. For example, when the number of nodes in the sys
tem is 2xt, it will form two full DCells connected by a
single link. If this link fails, the network is partitioned into
two parts.
0087 To reduce the chances of having a “single point of
failure,” a top-down technique to incrementally build a multi
level interconnection network is used. When constructing a
DCell, the top-down technique starts by building many
incomplete DCells but ensures that they are fully con
nected. Thus, even interim networks are fault-tolerant. The
top-down technique uses a minimal quantum of servers to be
added at one time that is larger than 1. For example, a DCell
may be the minimum cell that can be added. Although a
DCell has 20, 30, or 42 servers when n=4, 5, or 6, the servers
can readily be placed in a single rack, which typically can
accommodate 20-80 servers. The top-down technique also
sets the highest level of the network. If the highest level is 3
and n is 6, the network can connect millions of servers.
0088 FIG. 27 is a flow diagram that illustrates the pro
cessing of an add cell component of the top-down technique

May 5, 2011

in some embodiments. The component is invoked to identify
the identifier of the next minimum cell to be added incremen
tally to the network. In this example, the minimum cell is
assumed to be a first level cell. The component is passed a
prefix of the minimum cell identifier, a current level, and the
minimum cell to be added. In decision block 2701, if the
passed level is 2, then the component continues at block 2702
to set the identifier for the minimum cell, else the component
continues at block 2704. In block 2702, the component
selects the largest index of the existing DCells within the
DCell indicated by the prefix. In block 2703, the component
assigns the prefix plus one more than the largest index to the
minimum cell and then returns. In block 2704, the component
invokes a get index component to identify the index of a child
cell of the cell identified by the passed prefix. In block 2705,
the component recursively invokes the add cell component
passing a prefix of the passed prefix plus the index of the child
cell, the next lower level, and a minimum cell. The component
then returns.
I0089 FIG. 28 is a flow diagram that illustrates the pro
cessing of a get index component of the top-down technique
in some embodiments. The component is passed a prefix and
a level. The component identifies the next child cell to which
a minimum cell is to be added and returns its index. In block
2801, the component determines the number of child cells
within the passed level. In decision block 2802, if the number
of child cells is less than the number of servers in the mini
mum cell plus one, then the component returns that number as
the index, else the component continues at block 2803. In
decision block 2803, ifall the existing child cells arefull, then
the component returns that index, else the component contin
ues at block 2804. In block 2804, the component identifies the
smallest index of a non-full child cell and returns that index.
0090 Although the subject matter has been described in
language specific to structural features and/or methodologi
cal acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the spe
cific features or acts described above. Rather, the specific
features and acts described above are disclosed as example
forms of implementing the claims. Accordingly, the invention
is not limited except as by the appended claims.

1-16. (canceled)
17. A method of incrementally deploying a multi-level

interconnection network, the method comprising:
establishing a minimum cell representing a unit of addition

to the network, the minimum cell having a minimum cell
level and having a number of devices indicated by its
server number;

establishing a maximum level for the network; and
for each level from the maximum level down to the level

next higher than the minimum level, starting with the
selection of the cell of the maximum level,
when the number of child cells of the selected cell that

have been assigned only one minimum cell is less than
one more than the server number, selecting a next
child cell that has not been assigned a minimum cell;
and

when the number of child cells of the selected cell that
have been assigned at least one minimum cell is not
less than one more than the server number, selecting a
next child cell such that the child cells with at least one
minimum cell and that are not full are selected before
selecting a child cell without any minimum cell.

US 2011/O 103262 A1

18. The method of claim 17 wherein the identifier of the
next minimum cell to add is determined from the index of the
selected child cell at each of the levels.

19. The method of claim 17 wherein a minimum cell is a
collection of one or more basic cells, each basic cell having a
number of interconnected devices.

20. The method of claim 19 wherein the devices of the
basic cell are connected via a Switch.

21. The method of claim 17 wherein the lowest level of the
interconnection network comprises basic cells with each
basic cell having a number of devices that are connected to
each other, each basic cell having the same number of
devices.

22. The method of claim 21 wherein the second lowest
level of the interconnection network comprises first level cells
with each first level cell having a number of basic cells, the
number of basic cells of a first level cell being a maximum of
one more than the number of devices of a basic cell, each pair
of basic cells of a first level cell being directly connected to
each other basic cell via only one first level link, each first
level link directly connecting a device of one basic cell of a
pair to a device of the other basic cell of the pair such that no
device is connected to more than one first level link.

23. The method of claim 22 wherein the third lowest level
of the interconnection network comprises second level cells
with each second level cell having a number of first level cells
of the second level cell that is a maximum of one more than
the number of devices within each first level cell, each pair of
first level cells of a second level cell being directly connected
to each other first level cell via only one second level link,
each second level link directly connecting a device of one first
level cell of a pair to a device of the other first level cell of the
pair such that no device is connected to more than one second
level link.

24. A computer-readable storage medium containing com
puter-executable instructions for incrementally deploying a
multi-level interconnection network, by a method compris
ing:

establishing a minimum cell representing a unit of addition
to the network, the minimum cell having a minimum cell
level and having a number of devices indicated by its
device number;

establishing a current maximum level for the network; and
for each minimum cell to be added to the interconnection

network,
for each level from the current maximum level down to

the level next higher than the minimum level, starting
with selecting the cell of the current maximum level,
when the number of child cells of the selected cell that

have been assigned only one minimum cell is less
than one more than the device number, selecting a
next child cell that has not been assigned a mini
mum cell; and

when the number of child cells of the selected cell that
have been assigned at least one minimum cell is not
less than one more than the device number, select
ing a next child cell such that the child cells with at
least one minimum cell and that are not full are
selected before selecting a child cell without any
minimum cell; and

assigning the minimum cell to the cells selected from the
currently maximum level down to the level next
higher than the minimum level.

May 5, 2011

25. The computer-readable storage medium of claim 24
wherein the network interconnect includes three levels with
the minimum cell level being lowest level.

26. The computer-readable storage medium of claim 24
wherein the network interconnect includes four levels with
the minimum cell level being the second lowest level or the
lowest level.

27. The computer-readable storage medium of claim 24
wherein the network interconnect includes five levels with the
minimum cell level being the third lowest level, the second
lowest level, or the lowest level.

28. The computer-readable storage medium of claim 24
wherein the lowest level of the interconnection network com
prises basic cells with each basic cell having a number of
devices that are connected to each other, each basic cell hav
ing the same number of devices.

29. The computer-readable storage medium of claim 28
wherein the second lowest level of the interconnection net
work comprises first level cells with each first level cell hav
ing a number of basic cells, the number of basic cells of a first
level cell being a maximum of one more than the number of
devices of a basic cell, each pair of basic cells of a first level
cell being directly connected to each other basic cell via only
one first level link, each first level link directly connecting a
device of one basic cell of a pair to a device of the other basic
cell of the pair such that no device is connected to more than
one first level link.

30. The computer-readable storage medium of claim 29
wherein the third lowest level of the interconnection network
comprises second level cells with each second level cell hav
ing a number of first level cells of the second level cell that is
a maximum of one more than the number of devices within
each first level cell, each pair of first level cells of a second
level cell being directly connected to each other first level cell
via only one second level link, each second level link directly
connecting a device of one first level cell of a pair to a device
of the other first level cell of the pair such that no device is
connected to more than one second level link.

31. A method of deploying a multi-level interconnection
network, by a method comprising:

establishing a minimum cell representing a unit of addition
to the network, the minimum cell having a minimum cell
level and having a minimum cell number of devices; and

when a minimum cell is to be added to the interconnection
network, adding the minimum cell to a cell of each level
of the interconnection network that is higher than the
minimum level so that at each level above the minimum
level one minimum cell is added to each child cell up to
one more than the minimum cell number of devices so
that the child cells with one minimum cell can be fully
connected with links of that level before additional mini
mum cells are added to that level.

32. The method of claim 31 wherein the lowest level of the
interconnection network comprises basic cells with each
basic cell having a number of devices that are connected to
each other, each basic cell having the same number of
devices.

33. The method of claim 32 wherein the second lowest
level of the interconnection network comprises first level cells
with each first level cell having a number of basic cells, the
number of basic cells of a first level cell being a maximum of
one more than the number of devices of a basic cell, each pair
of basic cells of a first level cell being directly connected to
each other basic cell via only one first level link, each first

US 2011/O 103262 A1

level link directly connecting a device of one basic cell of a
pair to a device of the other basic cell of the pair such that no
device is connected to more than one first level link.

34. The method of claim 33 wherein the third lowest level
of the interconnection network comprises second level cells
with each second level cell having a number of first level cells
of the second level cell that is a maximum of one more than
the number of devices within each first level cell, each pair of
first level cells of a second level cell being directly connected
to each other first level cell via only one second level link,

May 5, 2011

each second level link directly connecting a device of one first
level cell of a pair to a device of the other first level cell of the
pair such that no device is connected to more than one second
level link.

35. The method of claim 31 wherein the devices are serv
CS.

36. The method of claim 35 wherein the devices of a basic
cell are connected via a Switch.

c c c c c

