
(19) United States
US 20100317430A1

(12) Patent Application Publication (10) Pub. No.: US 2010/0317430 A1
Multerer et al. (43) Pub. Date: Dec. 16, 2010

(54) DISCOVERY AND DISTRIBUTION OF GAME
SESSION INFORMATION

(75) Inventors: Boyd C. Multerer, Seattle, WA
(US); Darren L. Anderson,
Bellevue, WA (US); Mark D.
VanAntwerp, Seattle, WA (US);
Dinarte R. Morais, Redmond, WA
(US); Paul E. Newson, Kirkland,
WA (US); Mitsuo Koikawa,
Minato-ku (JP)

Correspondence Address:
LEE & HAYES, PLLC
601 W. RIVERSIDEAVENUE, SUITE 1400
SPOKANE, WA99201 (US)

(73) Assignee: Microsoft Corporation, Redmond,
WA (US)

(21) Appl. No.: 12/862,568

104

102(2)
COMPUTING
DEVICE

MATCH MAKING
SYSTEM

COMPUTING
DEVICE

(22) Filed: Aug. 24, 2010
Related U.S. Application Data

(63) Continuation of application No. 10/184,225, filed on
Jun. 28, 2002, now Pat. No. 7,803,052.

Publication Classification

(51) Int. Cl.
A63F 9/24 (2006.01)

(52) U.S. Cl. ... 463/29: 463/42
(57) ABSTRACT

Discovery and distribution of game session security informa
tion includes receiving a request to generate a new game
session from a computing device and maintaining a record of
a game session identifier for the new game session and a game
session key for the new game session, and making the new
game session available for other computing devices to join. A
request for information describing one or more of a plurality
of game sessions may also be received and responded to with
the information describing the one or more game sessions as
well as a session key that can be used to communicate with at
least one of the one or more other computing devices that are
part of the game session.

102(c)
COMPUTING

DEVICE

Patent Application Publication Dec. 16, 2010 Sheet 1 of 13 US 2010/0317430 A1

104
MATCH MAKING

SYSTEM

COMPUTING
DEVICE

102(2) - - 102(c)
COMPUTING COMPUTING

DEVICE DEVICE

Patent Application Publication Dec. 16, 2010 Sheet 2 of 13 US 2010/0317430 A1

120

MATCH MAKING
INTERFACE

122

124 MATCH MAKING DATABASE

GAME SESSION ID (XNKID)
GAME SESSION KEY (XNKEY)

Patent Application Publication Dec. 16, 2010 Sheet 3 of 13 US 2010/0317430 A1

162
HOST COMPUTING DEVICE SENDS HOST

IDENTIFIER AND DESCRIPTION OF GAME TO
MATCH MAKING SYSTEM

164

MATCH MAKING SYSTEM GENERATES NEW
GAME SESSION ID AND GAME SESSION KEY

166
MATCH MAKING SYSTEM ADVERTISES NEW
GAME SESSION WITH GAME DESCRIPTIONAS

BEING AVAILABLE

168
MATCH MAKING SYSTEM RETURNS GAME

SESSION ID AND GAME SESSION KEY TO HOST
COMPUTING DEVICE

Patent Application Publication Dec. 16, 2010 Sheet 4 of 13 US 2010/0317430 A1

2O2

HOST COMPUTING DEVICE GENERATES NEW GAME
SESSION ID AND GAME SESSION KEY

204

HOST COMPUTING DEVICE SENDS HOST IDENTIFIER,
DESCRIPTION OF GAME, GAME SESSION ID, AND GAME

SESSION KEY TO MATCH MAKING SYSTEM

2O6
MATCH MAKING SYSTEM ADVERTISES NEW GAME
SESSION WITH GAME DESCRIPTIONAS BEING

AVAILABLE

Patent Application Publication Dec. 16, 2010 Sheet 5 of 13 US 2010/0317430 A1

232

COMPUTING DEVICE SENDS GAME SESSION SEARCH
REQUEST TO MATCH MAKING SYSTEM

234
MATCH MAKING SYSTEM IDENTIFIES CURRENT GAME

SESSION(S) THAT SATISFY SEARCH REQUEST
PARAMETERS

236

MATCH MAKING SYSTEM RETURNS, TO COMPUTING
DEVICE, INFORMATION DESCRIBING IDENTIFIED GAME

SESSION(S), INCLUDING GAME SESSION KEY(S)

Patent Application Publication Dec. 16, 2010 Sheet 6 of 13 US 2010/0317430 A1

26
262

COMPUTING DEVICE RECEIVES INVITATION TO JOIN
GAME SESSION HOSTED BY A HOSTING COMPUTING

DEVICE

264

COMPUTING DEVICE SENDS ACCEPTANCE TO MATCH
MAKING SYSTEM

266

MATCH MAKING SYSTEM SENDS GAME SESSION KEY
TO COMPUTING DEVICE

Patent Application Publication Dec. 16, 2010 Sheet 7 of 13 US 2010/0317430 A1

302

COMPUTING DEVICE SENDS REQUEST FOR GAME DATA
EXCHANGE INFORMATION TO MATCH MAKING SYSTEM

304

MATCH MAKING SYSTEM IDENTIFIES GAME SESSION
CORRESPONDING TO REGUEST

306

MATCH MAKING SYSTEM IDENTIFIES LOCATION OF
DESIRED GAME DATA

MATCH MAKING SYSTEM SENDS LOCATION AND GAME
SESSION KEY TO THE COMPUTING DEVICE

Patent Application Publication Dec. 16, 2010 Sheet 8 of 13 US 2010/0317430 A1

350
MESSAGE LENGTH

PROTOCOL VERSION

SESSION ID (XNKID)
TITLED

HOST ADDRESS (XNADDR)
AVAILABLE PUBLIC SLOTS

AVAILABLE PRIVATE SLOTS

CURRENTLY FILLED PUBLIC SLOTS

CURRENTLY FILLED PRIVATE SLOTS

NUMBER OF ATTRIBUTES

ATTRIBUTE 1 OFFSET

ATTRIBUTE 2 OFFSET

ATTRIBUTE a OFFSET

360
SESSION ID (XNKID)

KEY EXCHANGE KEY (XNKEY)

22, 2

Patent Application Publication Dec. 16, 2010 Sheet 9 of 13 US 2010/0317430 A1

370 -
MESSAGE LENGTH

PROTOCOL VERSION

SESSION ID (XNKID)
TITLED

380 -
MESSAGE LENGTH

PROTOCOL VERSION

TITLED

SEARCH PROCEDURE INDEX

NUMBER OF PARAMETERS

PARAMETER 1 OFFSET

PARAMETER 2 OFFSET

PARAMETER b OFFSET

Patent Application Publication Dec. 16, 2010 Sheet 10 of 13 US 2010/0317430 A1

390
RESULT LENGTH

SESSION ID (XNKID)
HOST ADDRESS (XNADDR)

KEY EXCHANGE KEY (XNKEY)
AVAILABLE PUBLIC SLOTS

AVAILABLE PRIVATE SLOTS

CURRENTLY FILLED PUBLIC SLOTS

CURRENTLY FILLED PRIVATE SLOTS

NUMBER OF ADDITIONAL ATTRIBUTES

ATTRIBUTE 1 OFFSET

ATTRIBUTE 2 OFFSET

ATTRIBUTE O OFFSET

Patent Application Publication Dec. 16, 2010 Sheet 11 of 13 US 2010/0317430 A1

402(1) - 402(2)- 402(n) -

EAEA AA EAA

4O6

428
KEY

DISTRIBUTION
CENTER

404

41 O a
Sly (ATAy DATA CENTER SECURITY GATEWAY

(SECURE ZONE)

MATCH
PRESENCE NOTIFICATION STATISTICS
SERVER(s) SERVER(s) MAKING SERVER(s)

SERVER(s)

|

|
-- 412- 408 -

W

MONITORING |
SERVER(S) PRIVATE NETWORK

414 420 424 |
PRESENCE AND MATCH MAKING STATISTICS
NOTIFICATION

FRONT DOOR FRONT DOOR
FRONT DOOR

416 - 418 422 - 426 - |

Patent Application Publication Dec. 16, 2010 Sheet 12 of 13

| | | | |

VIDEO ADAPTER
527 —

DATA MEDIA
INTERFACES

PROGRAM 530
MODULES

PROGRAM 532
DATA

it -) O - \

PRINTER \ MOUSE"

NETWORK
ADAPTER

SYSTEM BUS

PROCESSING
UNIT

540

in -
KEYBOARD

- 536 534
& OTHER DEVICE(s)

REMOTE
COMPUTING

REMOTE
558 - APPLICATION

PROGRAMS
506 -

SYSTEMMEMORY

OTHER PROGRAM

MoDULES 530

PROGRAM
DATA 532

- 538

22, f4

US 2010/0317430 A1

Patent Application Publication Dec. 16, 2010 Sheet 13 of 13 US 2010/0317430 A1

3D GRAPHICS VIDEO
PROCESSING ENCODER
UNIT 62O 622

AUDIO
PROCESSING
UNIT 624

FLASH ROM MEMORY
MEMORY CONTROLLER
604 602

USB HOST
CONTROLLER

630

SYSTEM POWER
SUPPLY MODULE

650
PORTABLE HARD DISK

MEDIA DRIVE DRIVE
609 608

DUAL DUAL
CONTROLLER FRONT PANEL CONTROLLER

PORT I/O PORT
SUBASSEMBLY SUBASSEMBLY SUBASSEMBLY

640(1) 642 640(2)

CONTROLLER CONTROLLER O O CONTROLLER CONTROLLER
636(1) 636(2) 636(3) 636(4)

634(3 631-633 634(7)

634 (2 634(4 634 (6 6348 634,634(2) (4) (6) (8)

22, ts

US 2010/0317430 A1

DISCOVERY AND DISTRIBUTION OF GAME
SESSION INFORMATION

RELATED APPLICATIONS

0001. This application is a continuation of and claims
priority to U.S. patent application Ser. No. 10/184,225, filed
Jun. 28, 2002, entitled “Discovery and Distribution of Game
Session Information.” which is hereby incorporated by refer
ence herein in its entirety.

TECHNICAL FIELD

0002 This invention relates to game consoles, and par
ticularly to discovery and distribution of game session infor
mation.

BACKGROUND

0003 Traditionally, gaming systems with a dedicated con
sole were standalone machines that accommodated a limited
number of players (e.g., 2-4 players). Personal computer
based gaming grew in popularity in part due to the ability to
play games online with many remote players over the Inter
net. Thus, one trend for dedicated gaming consoles is to
provide capabilities to facilitate gaming over a network, Such
as Internet-based online gaming.
0004 Network-based or online gaming can be imple
mented in a centralized-server approach or a peer-to-peer
approach. In the centralized-server approach, gaming sys
tems connect to one or more centralized servers and interact
with one another via this centralized server(s). In the peer-to
peer approach, gaming systems connect to one another and
interact with one another directly. However, even in the peer
to-peer approach, a centralized server(s) may be employed to
assist in the communication.
0005 One problem encountered in employing such a cen
tralized server(s) is to protect network traffic between the
gaming systems from tampering or observation by other
devices on the network. Gamers are notorious for developing
creative cheating mechanisms, making the network traffic a
ripe target for Such users. Unfortunately, previous console
based gaming systems typically did not provide for secure
communications with one another.
0006. The discovery and distribution of game session
information described below solves these and other prob
lems.

SUMMARY

0007 Discovery and distribution of game session infor
mation is described herein.
0008 According to one embodiment, a request to generate
a new game session is received from a computing device. A
record of a game session identifier for the new game session
and a game session key for the new game session are main
tained, and the new game session is made available for other
computing devices to join.
0009. According to another embodiment, a request is
received from a computing device for information describing
one or more of a plurality of game sessions that are being
hosted by one or more other computing devices and that are
currently available for play. The request is responded to with
the information describing the one or more game sessions as
well as a session key that can be used to communicate with at
least one of the one or more other computing devices that are
part of the game session.

Dec. 16, 2010

0010. According to yet another embodiment, an identifier
of a location where game data is stored is received from a
computing device. A record of the location and a game ses
Sionkey are maintained, and the game data location and game
session key are made available to other computing devices.

BRIEF DESCRIPTION OF THE DRAWINGS

0011. The same numbers are used throughout the docu
ment to reference like components and/or features.
0012 FIG. 1 is a block diagram of an exemplary environ
ment in which the discovery and distribution of game session
information can be used.
0013 FIG. 2 is a block diagram illustrating an exemplary
match making system in additional detail.
0014 FIG. 3 is a flowchart illustrating an exemplary pro
cess for creating a new game session.
0015 FIG. 4 is a flowchart illustrating another exemplary
process for creating a new game session.
0016 FIG. 5 is a flowchart illustrating an exemplary pro
cess for distributing informationallowing a computing device
to join a game session.
0017 FIG. 6 is a flowchart illustrating an exemplary pro
cess for distributing informationallowing a computing device
to join a game session it has been invited to join.
0018 FIG. 7 is a flowchart illustrating an exemplary pro
cess for facilitating information exchange among computing
devices.
0019 FIG. 8 illustrates an exemplary message structure
for communicating a game session creation request.
0020 FIG. 9 illustrates an exemplary message structure
for communicating a response to a game session creation
request.
0021 FIG. 10 illustrates an exemplary message structure
for communicating a request to delete a game session
0022 FIG. 11 illustrates an exemplary message structure
for communicating a game session search request.
0023 FIG. 12 illustrates an exemplary message structure
for communicating a response to a game session search
request.
0024 FIG. 13 is a block diagram of an exemplary online
gaming environment.
0025 FIG. 14 illustrates a general computer environment,
which can be used to implement the techniques described
herein
0026 FIG. 15 shows functional components of a game
console in more detail

DETAILED DESCRIPTION

0027. The discussion herein assumes that the reader is
familiar with basic cryptography principles, such as encryp
tion, decryption, authentication, hashing, and digital signa
tures. For a basic introduction to cryptography, the reader is
directed to a text written by Bruce Schneier and entitled,
Applied Cryptography: Protocols, Algorithms, and Source
Code in C.” published by John Wiley & Sons, copyright 1994
(second edition 1996), which is hereby incorporated by ref
CCC.

0028 FIG. 1 is a block diagram of an exemplary environ
ment 100 in which the discovery and distribution of game
session information can be used. Multiple computing devices
102(1), . . . , 102(c) are coupled to a match making system
104. The coupling between devices 102 and system 104, as
well as between devices 102, can be any of a variety of

US 2010/0317430 A1

couplings allowing communication between system 104 and
each of devices 102 and/or between devices 102. In one
implementation, the coupling includes the Internet, and may
also optionally include one or more other networks (e.g., a
local area network (LAN) or wide area network (WAN)). For
example, each of computing devices 102 may be situated on
a home-based LAN and each home-based LAN coupled to
system 104 via the Internet. The couplings can be imple
mented using any of a variety of network types and technolo
gies, including wire and/or wireless networks.
0029 Computing devices 102 allow their respective users
to play games with one another. Online gaming typically
refers to two or more game consoles communicating with one
anotherto allow the user(s) of the consoles to play games with
one another. This communicating is typically performed over
the Internet, but could alternatively be over other networks as
well (in place of or in addition to the Internet).
0030 Match making system 104 maintains information
about multiple game sessions being hosted by the computing
devices 102, allowing players to search for game sessions,
create new game sessions, join game sessions, quit game
sessions, and obtain information used by the computing
devices to communicate data to one another. The hosting
device of a game session is the device responsible for initiat
ing a game session, Such as by having match making System
104 (or alternatively some other device) create a new game
session. A game session refers to one instance of a game title
including one or more players. When all players of the game
Session have ended the Session (e.g., quit the game Session,
logged out of system 104, powered-down their devices, etc.),
then the game session ends. A game session can include
multiple rounds of play, or alternatively a new game session
may be created for each round of play. Information regarding
multiple game sessions for each of multiple different game
titles can be maintained by system 104 concurrently. Players
can leave (quit) a game session and join a game session. Once
the session reaches a particular point in the gameplay, the
ability to join the session can be restricted, or alternatively
players may be able to join and leave the game session at will
during gameplay, so that the players at the end of the game
session can be different than the players at the beginning of
the game session. Restrictions on the ability to join and leave
the game session can vary by game title, based on the desires
of the game title designer.
0031 When a player using a computing device joins a
game session, that computing device is also referred to as
joining the game session. The device being used by each
player that is playing a game session is also referred to as a
member of the game session.
0032 Computing device 102 can be a dedicated game
console, a game console incorporating additional functional
ity (e.g., digital video recording functionality so that it can
operate as a digital VCR, channel tuning functionality so that
it can tune and decode television signals (whether they be
broadcast signals, cable signals, satellite signals, etc.), and so
forth), a desktop PC, a workstation, a portable computer, a
cellular telephone, an Internet appliance, a server computer,
etc. Additionally, different types of devices 102 may use
match making system 104 concurrently. For example, a user
on a dedicated game console may join a game session and
play against a user on a portable computer, or a user on a
dedicated game console manufactured by one manufacturer
may join a game session and play againstauser on a dedicated
game console manufactured by another manufacturer.

Dec. 16, 2010

0033 FIG. 2 is a block diagram illustrating an exemplary
match making system 104 in additional detail. Match making
system 104 includes a match making interface 120 and a
match making database 122. Match making interface 120
receives requests regarding creating, joining, quitting,
searching, etc. game sessions. When Such a request is
received, match making interface 120 generates the appropri
ate commands to be issued to match making database 122 in
order to carry out the request. Alternatively, match making
interface 120 may simply forward the requests to match mak
ing database 122.
0034. Match making database 122 maintains multiple
records 124 storing information regarding the various game
sessions that are currently being managed by match making
system 104. The game sessions managed by match making
system 104 are typically those game sessions that are created
by match making system 104. Some game sessions managed
by matchmaking system 104 may be open and thus additional
players can join the sessions, while other game sessions may
be closed and thus additional players cannotjoin the sessions.
The records 124 can be maintained using any of a variety of
data structures. In one exemplary implementation, the infor
mation regarding each game session is stored as an entry in
one of one or more tables.
0035. Match making system 104 is designed to facilitate
establishing of game sessions between or among computing
devices. In most of the discussions herein, match making
system 104 is described as managing game sessions but not
managing the transfer of data between or among the member
devices of the game session. Rather, the computing devices
transfer the data between or among themselves, or via another
server device (not shown in FIG.2). Alternatively, some game
data transfer may occur via match making system 104.
0036) A variety of different information can be maintained
in records 124 for each game session. In one implementation,
this information includes at least a game session ID (XNKID)
and a game session key (XNKEY). The game session ID
uniquely identifies a particular game session managed by
match making system 104. The game session key is a cryp
tographic key associated with the game session. This crypto
graphic key is made available to all of the members of the
game session, and is used by the members of the game session
to securely communicate data to one another. It should be
noted that an additional key may be used by each of the
computing devices to communicate securely with match
making system 104; however, this additional key(s) is differ
ent than the game session key illustrated in FIG. 2.
0037. The game sessionID as well as the game session key
can be generated by match making system 104 or the hosting
computing device 102. Alternatively, one of the game session
ID and the game session key may be generated by match
making system 104 and the other generated by the hosting
computing device 102.
0038 Although a single database 122 is illustrated in FIG.
2, it is to be appreciated that the records maintained by data
base 122 may be distributed across multiple server devices
(referred to as partitioning). Partitioning can be performed in
a variety of manners, and in one implementation is performed
by using one or more fields in a given row of a table and
applying an algorithm, such as a hash function, to the data in
that field(s) in order to generate a partition number for a
particular record. Different fields can be used, such as the
game title identifier, game session ID, game session key,
combinations thereof, and so forth. The partition number

US 2010/0317430 A1

identifies the one of the multiple server devices on which the
record is stored (or to be stored).
0039 FIG. 3 is a flowchart illustrating an exemplary pro
cess 160 for creating a new game session. In process 160, both
of the game session ID and the game session key are gener
ated by match making system 104. Process 160 may be per
formed in Software, firmware, hardware, or combinations
thereof. Process 160 is discussed with additional reference to
components of FIGS. 1 and 2.
0040. Initially, the host computing device sends an iden

tifier of itself as well as a description of the game for which the
new session is to be created to match making system 104 (act
162). The host identifier includes, for example, a network
address structure for the host computing device that can be
communicated to other computing devices that join the game
session in order to allow those computing devices to commu
nicate with the host device. In one implementation this host
identifier is a fully qualified address (XNADDR), which is
discussed in more detail below.

0041. The description of the game includes the title of the
game as well as one or more attributes of the game. An
attribute is a piece of data associated with a game session, or
a playerina game session. The attributes of the game can vary
by game based on the desires of the game title designer. For
example, the attributes may indicate the skill level of the
player that initiates creating the new session, the desired skill
level of other players that may join the new session, the game
location where the play will occur (for example, during the
day, at night, at a particular stadium, in a particular city, on a
particular track, weather conditions, etc.), objects to be used
during play (for example, types of cars, types of airplanes or
spaceships, etc.), characteristics of the various characters in
the game (for example, special powers that are available,
magical spells that are available, etc.), and so forth. Addition
ally, rather than including the game title, the game title may be
inherent in the request (for example, a different request type
may be used for each game title).
0042. The host computing device 102 can identify its
desire to create a new game session in a variety of different
manners. In one implementation, a predefined session ID
value is sent in act 162 to indicate to match making system
104 that a new game session is to be created (for example, a
session ID value of Zero). Alternatively, a special command
may be defined for use by host computing device 102 to
request creation of a new game session. In yet another alter
native, the request may be inherent in Some other command,
or due to the result of another operation. For example, if a
computing device requests to join a game session with a set of
attributes for which no current game session satisfies, then
match making system 104 may automatically create a new
game session with that set of attributes.
0043. Match making system 104 then generates a new
game session ID and game session key (act 164). The new
game session ID can be generated in a variety of different
manners. In one implementation, matchmaking interface 120
generates a random number or pseudo random number to use
as the game session ID (e.g., using the cryptographically
strong random number generator in the Win32(R) application
programming interface). In the event that the random number
is the same as another game session ID currently being used
by match making system 104, then match making interface
120 generates a new random number to use as the game
session ID (this generation of new random numbers continues

Dec. 16, 2010

until a random number is generated that is not the same as
another game session ID currently being used by match mak
ing system 104).
0044. The new game session key generated in act 164 can
also be generated in a variety of different manners. In one
exemplary implementation, match making interface 120 gen
erates a random number or pseudo random number to use as
the game session key (e.g., using the cryptographically strong
random number generator in the Win32(R) application pro
gramming interface). Alternatively, any of a variety of con
ventional cryptographic processes can be used to generate the
game session key.
0045. Match making system 104 then advertises the new
game session, along with the game description, as being
available (act 166). In one implementation, this advertising
comprises adding a record of the game session to its database
and thus making the game session available for searching by
other computing devices. Alternatively, this advertising may
comprise pushing the game session to one or more computing
devices. For example, a computing device may register search
criteria (e.g., game sessions with a particular player, particu
lar skill level, or other attributes) with match making interface
120, requesting interface 120 to send a notification of any new
game session that satisfies the search criteria to the computing
device.

0046) Match making system 104 returns the game session
ID and the game session key to the host computing device (act
168). By returning the game sessionID and the session key to
the host computing device, the host computing device can
identify the newly created game session, Such as when receiv
ing Subsequent communications regarding the game session
from other members of the session. Alternatively, in situa
tions where the computing device is permitted to host only a
single game sessionata time, the game session ID need not be
returned to the host computing device and the host device can
simply assume that any Subsequent communications received
regarding a hosted game session are for this newly created
game session.
0047 FIG. 4 is a flowchart illustrating another exemplary
process 200 for creating a new game session. In process 200,
both of the game session ID and the game session key are
generated by the host computing device 102. Process 200
may be performed in Software, firmware, hardware, or com
binations thereof. Process 200 is discussed with additional
reference to components of FIGS. 1 and 2.
0048. Initially, the host computing device 102 generates a
new game session ID and a new game session key for a new
game session (act 202). The desire to create a new game
session can be identified by the host computing device 102 in
a variety of manners analogous to act 162 discussed above
with reference to FIG. 3. The new game session ID and new
game session key can be generated in a variety of manners,
analogous to act 164 discussed above with reference to FIG.
3. The host computing device 102 then sends an identifier of
the host computing device 102, a description of the game for
the new game session, as well as the game session ID and
game session key generated in act 202, to match making
system 104 (act 204). Match making system 104 receives this
information from the host computing device 102 and adver
tises the new game session with the game description as being
available (act 206). This advertising can be performed in a
variety of manners, analogous to act 166 discussed above
with reference to FIG. 3.

US 2010/0317430 A1

0049 FIG. 5 is a flowchart illustrating an exemplary pro
cess 230 for distributing information allowing a computing
device to join a game session. Process 230 may be performed
in software, firmware, hardware, or combinations thereof.
Process 160 is discussed with additional reference to compo
nents of FIGS. 1 and 2.
0050. A computing device desiring to join a game session
sends a game session search request to match making system
104 (act 232). In one implementation, this game session
search request includes the desired game title as well as one or
more additional search parameters. Alternatively, the desired
game title need not be included (for example, in a situation
where a player indicates that he or she simply wants to play
any game). In another alternative, the one or more additional
search parameters need not be included (for example, in a
situation where a player indicates that he or she wants to play
a particular game title without concern for any attributes of
the game).
0051. Match making system 104 receives the game ses
sion search request and identifies Zero or more current game
sessions that satisfy the search request parameters (act 234)
and that have open slots for players to fill. In one implemen
tation, match making system 104 returns only game sessions
having a number of open slots equal to or greater than the
number of current players using the computing device. If
greater than a threshold number of game sessions satisfy the
search request parameters, then a Subset of those game ses
sions are returned. Match making system 104 then returns, to
the requesting computing device, information describing the
identified game sessions (act 236). This information includes
the game session key for each of the identified game sessions,
thereby allowing the computing device to communicate
securely with the other computing device(s) in the game
session. This information also includes the descriptive infor
mation provided by the host computing device when creating
the game session (e.g., in act 162 of FIG.3 or act 204 of FIG.
4). Thus, the descriptive information returned can include
additional attributes of the game beyond what were indicated
in the search request parameters.
0052. It should be noted that multiple acts may also be
performed in place of act 236. For example, rather than
returning the game session keys for all of the identified game
sessions, only the game identifiers and descriptive informa
tion may be returned to the computing device. A player at the
computing device can select one of the identified game ses
sions, in response to which the computing device sends a
request for the game session key for the selected game session
to the match making system 104. The match making system
104 then returns the requested game session key to the com
puting device.
0053 Returning to FIG. 1, a user of a computing device
102 may be able to invite a particular user of another com
puting device (e.g., a friend of the user's) to join a game
session. Such an invitation may be sent via match making
system 104, or alternatively another system (e.g., Such as a
presence and notification system, discussed below with ref
erence to FIG. 13). An invitation to join a game session
includes the game session ID for the session, allowing the
invited user to search for and have identified the appropriate
game session.
0054 FIG. 6 is a flowchart illustrating an exemplary pro
cess 260 for distributing information allowing a computing
device to join a game session it has been invited to join.
Process 260 may be performed in software, firmware, hard

Dec. 16, 2010

ware, or combinations thereof. Process 260 is discussed with
additional reference to components of FIGS. 1 and 2.
0055. Initially, a computing device receives an invitation
to join a game session hosted by a hosting computing device
(act 262). The computing device sends an acceptance of the
invitation to the matchmaking system 104 (act 264). The
acceptance in act 264 may be a specific type of request, or
alternatively may be a game search request with a single
search parameter that is the game session ID of the game
session the computing device was invited to join. The match
making system 104 responds by sending the game session key
for that game session to the computing device (act 266).
0056. In one implementation, a host computing device is
able to have a game session created that includes both public
and private slots. As part of the creation process, the host
computing device identifies to matchmaking system 104 how
many public slots are to be included for the game session and
how many private slots are to be included for the game ses
Sion. Each slot can be filled by a single player. Match making
system 104 maintains a record of these different slots, and
allows a public slot to be filled by searching (e.g., per process
230 of FIG. 5) and allows a private slot to be filled by invita
tion (e.g., per process 260 of FIG. 6). Thus, when the game
session is created, the user can set aside particular slots in the
game for his or her friends (whom he or she can Subsequently
invite), without fear of all the slots being filled by strangers.
Match making system 104 may alternatively allow variations
on these rules, such as allowing an invited user to fill a public
slot if all of the private slots have been filled, allow a non
invited user to fill a private slot if the private slot has been
empty for at least a threshold amount of time, and so forth.
0057. In addition to maintaining a record of game ses
sions, match making system 104 (or alternatively another
system operating in cooperation with system 104), can main
tain records of other information stored on the individual
computing devices 102. For example, certain games titles
maintain information about the game play (e.g., various char
acteristics about the environment of the game, such as the
number of fish or obstacles in particular parts of a lake, a
number of extra computer-generated characters or animals
that are part of a particular scene, weather patterns (e.g., how
rough water is in a particular location), and so forth). The
computing devices that are playing in this environment typi
cally want to share this information for uniformity of game
play amongst the various players, even though the players
may not be playing against one another in a head-to-head
environment.

0.058 Match making system 104 can facilitate the
exchange of information for Such game titles by maintaining
a record of identifiers of the information to be shared as well
as indications of where the information is stored (e.g., do all
computing devices store the information, or do only selected
ones of the computing devices (and if so, which computing
devices store the information)). These identifiers can be
stored, for example, as attributes of a game session. Thus,
rather than performing a search request to obtain information
describing game sessions that the user may join, a search
request for this game data location(s) may be performed in
response to a request from a computing device (which may or
may not already be in the game session). The game session
key can also be returned to the various computing devices
playing the game, in order to allow the devices to exchange
the game data directly in a secure manner if necessary. A
computing device, having obtained a location(s) for game

US 2010/0317430 A1

data from match making system 104, can then access the
location(s) (e.g., the computing devices at those locations) to
obtain the data from the location. In one implementation, the
location is a fully qualified address (XNADDR) of a comput
ing device.
0059 FIG. 7 is a flowchart illustrating an exemplary pro
cess 300 for facilitating information exchange among com
puting devices. Process 300 may be performed in software,
firmware, hardware, or combinations thereof. Process 300 is
discussed with additional reference to components of FIGS. 1
and 2.
0060. Initially, a computing device sends a request for
game data exchange information to match making system
104 (act 302). The request can identify a particular game
session by its game session ID, for example. The match
making session identifies the game session corresponding to
the request (act304), and identifies the location of the desired
game data (act306). The location of the desired game data can
be, for example, a particular one or more of the computing
devices in the game session. The match making system then
sends the location and game session key to the computing
device (act308), giving the computing device the information
it can use to obtain the game data with the appropriate com
puting device via a secure connection. Alternatively, if the
session key has already been communicated to the computing
device, then the session key need not be sent in act 308.
0061 Returning to FIG.2, various attributes can be stored
in records 124, and used by match making system 104 in
creating and searching game sessions. An attribute is a piece
of data associated with a game session or a player in a game
session. In one implementation, each attribute has an attribute
value that is identified by an attribute ID. An example format
of a 32-bit attribute ID is shown in Table I below. The attribute
ID uniquely identifies the attribute within a game session, and
different bit-ranges of the ID also describe the attribute. The
description can specify what entity the attribute relates to,
what kind of data is used to represent attribute values and
what namespace the attribute is associated with.
0062. In one implementation, an attribute can be associ
ated with a global namespace or a title-specific namespace.
Global attributes are those attributes predefined by the match
making System, and have a common meaning across games.
Title-specific attributes are defined by the game and only have
meaning within that game. Thus, it is possible for two differ
ent game titles to use the same attribute ID to refer to two
different and unrelated attributes. As these title-specific
attributes are scoped by the title ID, the attributes are not
confused with one another.

TABLE I

Field Bit(s) Description

Namespace 31 Indicates whether the attribute is title-specific
(e.g., a value of O) or global (e.g., a value of 1).

Reserved 28-30 Reserved for future use.
Attribute 24-27 Indicates the type of attribute (e.g., 0001 for user
Type attribute and 0000 for game session attribute). Other

values are reserved for future use.
Attribute 20-23 Indicates the type of data stored in the attribute
Data Type value (e.g., 0000 for integer, 0001 for string,

O010 for binary, 1111 for null). Other values are
reserved for future use.

Reserved 16-19 Reserved for future use.
Attribute 0-15 Unique identifier of the attribute within its
Specifier namespace (title-defined for attributes in the title

specific namespace).

Dec. 16, 2010

0063 FIGS. 8-12 illustrate exemplary message formats
for communicating requests and responses between a game
console 102 of FIG. 1 and match making system 104. Each
message format includes multiple fields or portions that can
include various data as discussed below.

0064 FIG. 8 illustrates an exemplary message structure
350 for communicating, from game console 102 to match
making system 104, a game session creation request. The
message link field contains the length of the message struc
ture 350. The protocol version field contains the protocol
version of the match making protocol being used. The session
ID field contains the game session ID of the corresponding
game session. The title ID field contains an identifier of the
game title of the corresponding game session.
0065. The host address field contains an address structure
of the host computing device. In one implementation, this
address structure is referred to as a fully qualified address
(XNADDR) for the host computing device. The fully quali
fied address of the host computing device includes sufficient
information to allow other computing devices to access the
host computing device even though the host computing
device may be situated behind a network address translation
(NAT) device, such as a network router.
0066. The fully qualified address for a computing device
includes: the Ethernet MAC address for the computing
device; the local IP address of the computing device (this is
the IP address that the computing device believes it has, and
may be different than the IP address from which the match
making System receives data packets from the computing
device (e.g., due to a NAT device, such as a router, situated
between the computing device and the match making system
(or an intermediary acting on behalf of the match making
system, such as security gateway 404 of FIG. 13, discussed
below)); the IP address and port from which the match mak
ing system (or intermediary) receives data packets from the
computing device (this may be the same as the local IP
address of the computing device, or alternatively different
(e.g., the address of a NAT device)); a logical device number
(an identifier assigned to the match making system (or inter
mediary) to uniquely identify the match making system (or
intermediary) within a cluster of multiple match making sys
tems (or intermediaries)); a Security Parameters Index (SPI)
value (e.g., SPI and/or SPI); and a computing device id. The
contents of the fully qualified address can be determined
based on information embedded in data packets received
from the computing device as well as information received in
establishing a secure connection between the computing
device and the match making system (or intermediary).
0067. The value SPI refers to a value generated by the
computing device that the device includes in the header of
each data packet sent via a secure communications channel to
the match making system (or intermediary). The first data
packet sent by the game console to the match making system
(or intermediary) to establish a secure communications chan
nel includes an SPI value of Zero to indicate to match making
system (or intermediary) that a new communications channel
is to be established. Subsequent data packets include a non
Zero value generated by the game console. Similarly, the
match making system (or intermediary) generates a value
SPI that it includes in the header of each data packet sent via
the secure communications channel to the game console. The
SPI value allows the game console to identify the secure
communications channel between the game console and the
match making system (or intermediary) as the particular

US 2010/0317430 A1

channel to which the data packets sent by the game console
correspond, and the SPI value similarly allows the match
making system (or intermediary) to identify the secure com
munications channel between the game console and the
match making system (or intermediary) as the particular
channel to which the data packets sent by the match making
system (or intermediary) correspond. Each secure communi
cations channel, even though between the same game console
and match making system (or intermediary), typically has
different SPI values.

0068. The available public slots field specifies the number
of searchable player slots available in this game. As players
join or leave the game, the value in the available public slots
field is updated accordingly. The available private slots field
specifies the number of private player slots available in this
game. As players join or leave the game, the value in the
available private slots field is updated accordingly. A private
player slot can be taken only by a player that has received an
invitation to the game session.
0069. The currently filled public slots field specifies the
number of public slots that are currently filled by players. As
players join or leave the game, the value in this currently filled
public slots field is updated accordingly. The currently filled
private slots field specifies the number of private slots that are
currently filled by players. As players join or leave the game,
the value in this currently filled private slots field is updated
accordingly. The number of attributes field specifies the num
ber of attributes associated with this game session. The
attributes offset fields specify the offsets to the attributes
associated with this game session. The attributes can be
arranged in any order. Each attribute offset identifies (e.g., is
a pointerto) a region of the message that includes the attribute
ID and attribute value.

0070 FIG. 9 illustrates an exemplary message structure
360 for communicating, from match making system 104 to
game console 102, a response to a game session creation
request. The session ID field contains the game session ID
assigned to this game session. The key exchange key field
contains the game session key assigned to this game session.
0071 FIG. 10 illustrates an exemplary message structure
370 for communicating, from game console 102 to match
making system 104, a request to delete a game session. The
message link field contains the length of the message struc
ture 370. The protocol version field contains the protocol
version of the match making protocol being used. The session
ID field contains the game session ID of the corresponding
game session. The title ID field contains an identifier of the
game title of the corresponding game session.
0072 FIG. 11 illustrates an exemplary message structure
380 for communicating, from game console 102 to match
making system 104, a game session search request. The mes
sage link field contains the length of the message structure
380. The protocol version field contains the protocol version
of the match making protocol being used. The title ID field
contains an identifier of the game title of the corresponding
game session. The search procedure index field specifies
which stored procedure in the match making system is to be
used to perform the search. Different search procedure
indexes can be used to specify different types of searches to be
performed. Such as searching based on the game session ID

Dec. 16, 2010

(e.g., when responding to invitations to join games) or
searches based on other parameters.
0073. The number of parameters field specifies the num
ber of parameters that are being sent with this game session
search request. The parameters can be arranged in any order.
Each parameter includes a data type indicator followed by the
parameter data.
0074 FIG. 12 illustrates an exemplary message structure
390 for communicating, from match making system 104 to
game console 102, a response to a game session search
request. The result link field contains the total length of the
search result message structure 390, including any attributes.
The session ID field contains the game session ID of the
corresponding game session. The host address field contains
an address structure of the host computing device. In one
implementation, this address structure is referred to as a fully
qualified address (XNADDR) for the host computing device.
(0075. The available public slots field specifies the number
of searchable player slots available in this game. The avail
able private slots field specifies the number of private player
slots available in this game. The currently filled public slots
field specifies the number of public slots that are currently
filled by players. The currently filled private slots field speci
fies the number of private slots that are currently filled by
players. The number of additional attributes field specifies the
number of attributes associated with this game session. The
attributes can be arranged in any order. Each attribute offset
identifies (e.g., is a pointer to) a region of the message that
includes the attribute ID and attribute value.

0076. In one implementation, match making database 122
of FIG. 2 uses multiple tables to store the data for various
game sessions. These tables and the data stored in each is
discussed below in Tables II-X below. These tables include: a

match sessions table (Table II) that includes a master list of all
game sessions being managed by match making system 104;
a match attributes table (Table III) that includes a list of
session attributes for all current game sessions being man
aged by match making system 104; a match attribute infor
mation table (Table IV) that includes a list of valid, title
specific attributes used to monitor the number of title-specific
attributes a given title is using (an attribute limit may option
ally be imposed on titles, or fees charged based on number of
attributes); a match titles table (Table V) that includes infor
mation about each game title certified to use match making
system 104; a match session security gateway lookup table
(Table VI) that includes information that allows a reverse
lookup from the security gateway address to the associated
game session ID (security gateways are discussed in more
detail below with reference to FIG. 13); a match configuration
table (Table VII) includes configuration information used by
the match making database application; a match Zones table
(Table VIII) includes a complete list of network Zones (e.g., a
set of network Zones established within a network in which
match making system 104 of FIG. 1 is implemented. Such as
data center 410 of FIG. 13); a match Zone map (Table IX)
includes definitions of which network address prefixes reside
in which Zones; and a match Zone distances table (Table X)
includes distances (e.g., network latencies) between pairs of
ZOS.

US 2010/0317430 A1

Field

i Session id

i title id
b host address
I Zone id
b key exchange key

i public available
i private available
i public current
i private current
dt session expiration

f selection probability

dt change probability

TABLE II

Description

Contains the game session ID that uniquely identifies the
game session within the scope of the title ID.
Identifies the game title being played in this session.
Contains an XNADDR structure.
Host Address mapped to a proximity Zone.
Game session key - shared by all participants in the
session. Can be used to secure communications among
participants, or establish additional peer-to-peer keys
among participants.
Number of public slots open for this session.
Number of private slots open for this session.
Current number of players occupying public slots.
Current number of players occupying private slots.
Specifies the time when this session will be removed
from the database, if it is not proactively removed by the
host.
Contains a selection probability that is adjusted over time
as this session is returned in search results. The
probability also decays over time.
Contains the last time that the selection probability was
updated.

Dec. 16, 2010

TABLE III TABLE VI

Field Description
Field Description

i Sg ip IP Address of the security gateway.
i attribute id Contains the attribute ID that uniquely identifies this bid Remainder of SGADDR minus the SGIP address.

- i title id Title ID of the associated session.
attribute within the session. bi Session id Session ID of the associated session.

i title id Identifies the game title that the attribute (and the vc db list Semi-colon separated list of db names.

session) is associated with.
SV value Contains the attribute value.

bi Session id Contains the session ID that uniquely identifies the TABLE VII
session that this attribute is associated with.

Field Description
bi user puid User ID (e.g., a Passport User ID (PUID) assigned by

Microsoft (R) Passport) of the player that this WC Ilalile Name of the configuration item.
Vc value Value of the configuration item.

attribute is associated with. If this is a session

attribute, then this column will contain Zero.
i user flags Guest account information related to bi user puid. user Ilag user p TABLE VIII

Field Description

TABLE IV i ZoneID Unique identifier for the Zone.

Field Description

i title id Identifies the game title that defines this attribute. TABLE IX
i attribute id Contains the attribute ID that uniquely identifies the

attribute for the title. Field Description

i prefix Network address prefix.
ti prefix length Number of bits in i prefix that are significant.

TABLEV i ZoneID Zone that this prefix resides in.

Field Description

i title id Unique identifier for the title. TABLE X
i publisher id Unique identifier of the publisher of this title.
i maximum attributes Maximum number of attributes that this title is Field Description

allowed to define and store.
i Session expiration Specifies the expiration time for all sessions i ZoneID1 Source Zone ID.

created for this title. i ZoneID2 Destination zone ID.
vc db list Semi-colon separated list of db names. i distance The distance (network latency) between the two zones.

US 2010/0317430 A1

0077. In one implementation, a set of application pro
gramming interfaces (APIs) are made available to the game
titles to employ the match making functionality. These APIs
are exposed to the game titles on the computing devices and
allow game sessions to be created and searched. A set of game
session host APIs to Support hosting of game sessions
includes:

0078 XOnlineMatchSessionCreate
(0079 XOnlineMatchSessionUpdate
0080 XOnlineMatchSessionDelete
0081 XOnlineMatchGetSessionInfo

A set of game session client APIs to Support searching game
sessions includes:

0082 XOnlineMatchSearch
0083 XOnlineMatchSessionFindFrom ID
0084. XOnlineMatchSearchGetResults
0085 XOnlineMatchSearchParse

I0086. The game title on a computing device host of a game
session first calls XOnlineMatchSessionCreate to create a
new game session. The base session information and a struc
ture containing any desired attributes are passed in. The API
will format and send the game session request to the match
making system. An online task handle is returned. After the
session create task has completed, the caller can then use the
task handle to retrieve the game session ID and game session
key (key exchange key) using the XOnlineMatchGetSession
Info API. If the session information or attributes change,
XOnlineMatchSessionUpdate can be called to send the
updates to the server. Again, a task handle is returned. XOn
lineMatchSessionDelete is called when the host no longer
wishes to advertise the game session on the server.

XOnlineMatchSessionCreate

0087. This function initializes a hosted game session and
returns an asynchronous task handle.

HRESULT XOnlineMatchSessionCreate(
INDWORD dwPublicCurrent,
INDWORD dwPublicAvailable,
INDWORD dwPrivateCurrent,
INDWORD dwPrivate Available,
INDWORD dwNumAttributes,
IN PXONLINE ATTRIBUTE pAttributes,
IN HANDLE hWorkEvent,
OUTPXONLINETASK HANDLE phTask
);

0088 XOnlineMatchSessionCreate Parameters
I0089 dwPublicCurrent The number of players in the

session currently occupying public slots.
0090 dwpublicAvailable The number of available
public slots.

(0091 dwPrivateCurrent The number of players in the
session currently occupying private slots.

0092 dwprivate Available The number of available
private slots.

0093 dwNumAttributes. The number of attributes
that will be advertised for this session. This number
should take into account user-specific attributes that may
be duplicated in the case that multiple users are sitting at
the console.

0094 pAttributes—An array of attribute structures
describing the attributes of the session.

Dec. 16, 2010

0095 hWorkEvent. This is the handle to a caller-cre
ated event object. The caller can periodically check this
event to determine if there is work to do. The caller can
also pass in NULL if they plan on using a polling model.

0.096 phTask On input this parameter should point to
a valid task handle variable. On Successful return, this
variable will be filled in with a valid handle.

0097 XOnlineMatchSessionCreate Return Value
0.098 S OK Game session was successfully created,
handle is returned in phTask.

XOnlineMatchSessionUpdate

0099. This function is used to change session information
and attributes on the server after a session has already been
created.

HRESULT XOnlineMatchSessionUpdate(
INXNKID SessionID,
INDWORD dwPublicCurrent,
INDWORD dwPublicAvailable,
INDWORD dwPrivateCurrent,
INDWORD dwPrivate Available,
INDWORD dwNumAttributes,
IN PXONLINE ATTRIBUTE pAttributes,
IN HANDLE hWorkEvent,
OUTPXONLINETASK HANDLE phTask
);

01.00 XOnlineMatchSessionUpdate Parameters
0101 SessionID—Identifies the session that is being
updated. This value can be retrieved from XOnline
MatchSessionGetInfo.

01.02 dwPublicAvailable The number of available
public slots.

(0103 dwPrivateCurrent The number of players in the
session currently occupying private slots.

01.04 dwPrivate Available The number of available
private slots.

01.05 dwNumAttributes. The number of attributes
that will be advertised for this session. This number
should take into account user-specific attributes that may
be duplicated in the case that multiple users are sitting at
the console.

010.6 pAttributes—An array of attribute structures
describing the attributes of the session.

01.07 hWorkEvent. This is the handle to a caller-cre
ated event object. The caller can periodically check this
event to determine if there is work to do. The caller can
also pass in NULL if they plan on using a polling model.

0.108 phTask On input this parameter should point to
a valid task handle variable. On Successful return, this
variable will be filled in with a valid handle.

0109 XOnlineMatchSessionUpdate Return Value
0110 S OK The function was successful.

XOnlineMatchSessionDelete

0111. This function is used to remove a session and all of
its attributes from the server.

HRESULT XOnlineMatchSessionDelete(
INXNKID SessionID,

US 2010/0317430 A1

-continued

IN HANDLE hWorkEvent,
OUTPXONLINETASK HANDLE phTask
);

0112 XOnlineMatchSessionDelete Parameters
0113 SessionID—Identifies the session being deleted.
This value is retrieved from XOnlineMatchSessionGet
Info after a session is created.

0114 hWorkEvent. This is the handle to a caller-cre
ated event object. The caller can periodically check this
event to determine if there is work to do. The caller can
also pass in NULL if they plan on using a polling model.

0115 phTask On input this parameter should point to
a valid task handle variable. On Successful return, this
variable will be filled in with a valid handle.

0116 XOnlineMatchSessionDelete Return Value
0117 S OK The function was successful.

XOnlineMatchGetSessionInfo

0118. This function is used to retrieve the session infor
mation from a task handle after XOnlineMatchSessionCreate
has successfully completed.

HRESULTXOnlineMatchGetSessionInfo(
INXONLINETASK HANDLE hTask,
OUT XNKID *pSessionID,
OUT XNKEY *pKeyExchangeKey
);

0119 XOnlineMatchGetSessionInfo Parameters
I0120 hTask Online task handle returned by XOnline
MatchSessionCreate.

I0121 pSessionID—Address of an XNKID variable that
will receive the session ID.

0.122 pKeyExchangeKey—Address of an XNKEY
variable that will receive the key exchange key.

(0123 XOnlineMatchGetSessionInfo Return Value
0.124 S OK The session ID and key were success
fully returned.

0.125 To perform a game search, a game title calls XOn
lineMatchSearch. The game title passes in the procedure
index, the maximum number of search results it wishes to
receive and any parameters to be passed to the search stored
procedure on the database. The game also specifies the maxi
mum buffer size that the search results can occupy. This
buffer size is allocated internally by the API, and any search
results that do not fit in this buffer will be dropped. The game
title can optionally specify an event handle that will be sig
naled when there is any work to do.
0126 XOnlineMatchSearch returns an online task handle.
When the search task has indicated completion, the game can
retrieve an array of search results by calling XOnlineMatch
SearchGetResults with the task handle. The search results can
be accessed individually at this point. Any extended attributes
returned can be parsed using XOnlineMatchSearchParse. The
game knows beforehand the order and types of the attributes
returned. Each individual search result contains the
XNADDR, XNKID and XNKEYused to connect to the game
session host.

Dec. 16, 2010

I0127. In the case where a specific game session ID is
already known via Some out-of-band mechanism such, the
XOnlineMatchSessionFindEromD API can be used to
retrieve a single session using the session ID. Once this task
has completed, the caller uses XOnlineMatchSearchGetRe
sults to retrieve the XNADDR, XNKID and XNKEY of the
requested session.

XOnlineMatchSearch

0128. This function creates a new game session search,
sends it to the server and returns an asynchronous task
handle for monitoring the progress of the request. This
function allocates a buffer for the search results inter
nally, using the size passed in by the caller.

HRESULT XOnlineMatch Search (
INDWORD dwProcedureIndex,
INDWORD dwNumResults,
INDWORD dwNumAttributes,
IN PXONLINE ATTRIBUTE pAttributes,
INDWORD dwResultsLen,
IN HANDLE hWorkEvent,
OUTPXONLINETASK HANDLE phTask
);

0129 XOnlineMatchSearch Parameters
0.130 dwProcedureIndex Identifies the stored proce
dure for this title that will be run on the database to
execute the search.

0131 dwNumResults—Specifies that maximum num
ber of search results that the game is interested in pro
cessing.

0.132 dwNumAttributes—The number of parameters
that will be passed as part of this request, and ultimately
passed to the stored procedure.

0.133 pAttributes—An array of parameter values.
0.134 dwResultsLen This parameter specifies the
amount of buffer space that this API will allocate to hold
search results. These APIs will attempt to fill up the
buffer space specified by this parameter.

0.135 hWorkEvent. This is a handle to a caller-created
event object. This object becomes signaled when there is
work to do. This parameter is optional and the caller may
pass in NULL instead, indicating that the caller will poll.

0.136 phTask Upon successful return, this parameter
will point to a handle that uniquely identifies this search.
This handle is used in subsequent API calls.

0.137 XOnlineMatchSearch Return Value
0.138 S OK Search was created successfully.

XOnlineMatchSessionFindEromD

0.139. This function retrieves information for a single,
specified session. This function assumes that the session
ID is retrieved via Some out-of-band mechanism, Such as
invitations. This function is essentially a short-hand
form of XOnlineMatchSearch, where the procedure
index, parameters and maximum results are fixed. All of
the events that occur under the covers for XOnline
MatchSearch, will also occur for this API. The returned
task handle is used to allow the API to periodically
perform its work. It is identical to the handle returned by
XOnlineMatchSearch.

US 2010/0317430 A1

HRESULT XOnlineMatchSessionFindFromID(
INXNKID SessionID,
IN HANDLE hWorkEvent,
OUTPXONLINETASK HANDLE phTask
);

0140 XOnlineMatchSession FindFromlD Parameters
0141 SessionID The XNKID of the session to get.
0.142 hWorkEvent. This is a handle to a caller-created
event object. This object becomes signaled when there is
work to do. This parameteris optional and the caller may
pass in NULL instead, indicating that the caller will poll.

0.143 phTask Upon successful return, this parameter
will point to a handle that uniquely identifies this search.
This handle is used in subsequent search API calls.

0144 XOnlineMatchSession FindFromID Return Value
0145 S. OK Search request was sent successfully.

XOnlineMatchSearchGetResults

0146 This function is used to retrieve a set of search
results for a specified search request. This function is
called after the task handle obtained from a previous call
to XOnlineMatchSearch indicates successful comple
tion.

HRESULT XOnlineMatchSearchGetResults.(
INXONLINETASK HANDLE hTask,
OUTPXMATCH SEARCHRESULT **pirgpSearchResults,
OUT DWORD *pdwReturned Results
);

0147 XOnlineMatchSearchGetResults Parameters
0.148 hTask—An online task handle returned from a
previous call to XOnlineMatchSearch.

0149 prgpSearchResults—Receives a pointer to an
array of search result structures.

0150 pdwReturnedResults—Receives the number of
search result structures pointed to by
prgpSearchResults.

0151 XOnlineMatchSearchGetResults Return Value
0152 S OK Search results were successfully
returned.

XOnlineMatchSearchParse

0153. This function is used to retrieve extended
attributes from a particular search result. The caller must
know the exact order and type of the extended attributes.

HRESULT XOnlineMatchSearchParse(
IN PXMATCH SEARCHRESULT pSearchResult,
INDWORD dwNumSession Attributes,
IN PXONLINE ATTRIBUTE SPEC pSession AttributeSpec,
OUT PVOID pGuery Session

0154 XOnlineMatchSearchParse Parameters
0155 pSearchResult Specifies the search result being
parsed.

10
Dec. 16, 2010

0156 dwNumSessionAttributes—Specifies the num
ber of extended attributes in the search result.

0157 pSession AttributeSpec Identifies the types of
each of the attributes.

0158 pGuerySession—Buffer to contain the attributes.
0159 FIG. 13 is a block diagram of an exemplary online
gaming environment 400. Multiple game consoles 402(1),
402(2),..., 402(n) are coupled to a security gateway 404 via
a network 406. Network 406 represents any one or more of a
variety of conventional data communications networks. Net
work 406 will typically include packet switched networks,
but may also include circuit switched networks. Network 406
can include wire and/or wireless portions. In one exemplary
implementation, network 406 includes the Internet and may
optionally include one or more local area networks (LANs)
and/or wide area networks (WANs). At least a part of network
406 is a public network, which refers to a network that is
publicly-accessible. Virtually anyone can access the public
network.

(0160. In some situations, network 406 includes a LAN
(e.g., a home network), with a routing device situated
between game console 402 and security gateway 404. This
routing device may perform network address translation
(NAT), allowing the multiple devices on the LAN to share the
same IP address on the Internet, and also operating as a
firewall to protect the device(s) on the LAN from access by
malicious or mischievous users via the Internet.
0.161 Security gateway 404 operates as a gateway
between public network 406 and a private network 408. Pri
vate network 408 can be any of a wide variety of conventional
networks, such as a local area network. Private network 408,
as well as other devices discussed in more detail below, is
within a data center 410 that operates as a secure Zone. Data
center 410 is made up of trusted devices communicating via
trusted communications. Thus, encryption and authentication
within secure Zone 410 is not necessary. The private nature of
network 408 refers to the restricted accessibility of network
408 access to network 408 is restricted to only certain indi
viduals (e.g., restricted by the owner or operator of data center
410).
0162 Security gateway 404 is a cluster of one or more
security gateway computing devices. These security gateway
computing devices collectively implement security gateway
404. Security gateway 404 may optionally include one or
more conventional load balancing devices that operate to
direct requests to be handled by the security gateway com
puting devices to appropriate ones of those computing
devices. This directing or load balancing is performed in a
manner that attempts to balance the load on the various Secu
rity gateway computing devices approximately equally (or
alternatively in accordance with some other criteria).
(0163 Also within data center 410 are: one or more moni
toring servers 412; one or more presence and notification
front doors 414, one or more presence servers 416, and one or
more notification servers 418 (collectively implementing a
presence and notification service); one or more match making
front doors 420 (e.g., interfaces 120 of FIG. 2) and one or
more match making servers 422 (e.g., databases 122 of FIG.
2) (collectively implementing a match making system); and
one or more statistics front doors 424 and one or more statis
tics servers 426 (collectively implementing a statistics Ser
vice). The servers 416, 418, 422, and 426 provide services to
game consoles 402, and thus can be referred to as service
devices. Other service devices may also be included in addi

US 2010/0317430 A1

tion to, and/or in place of one or more of the servers 416,418,
422, and 426. Additionally, although only one data center is
shown in FIG. 13, alternatively multiple data centers may
exist with which game consoles 402 can communicate. These
data centers may operate independently or alternatively may
operate collectively (e.g., to make one large data center avail
able to game consoles 402).
0164 Game consoles 402 are situated remotely from data
center 410, and access data center 410 via network 406. A
game console 402 desiring to communicate with one or more
devices in the data centerestablishes a secure communication
channel between the console 402 and security gateway 404.
Game console 402 and security gateway 404 encrypt and
authenticate data packets being passed back and forth,
thereby allowing the data packets to be securely transmitted
between them without being understood by any other device
that may capture or copy the data packets without breaking
the encryption. Each data packet communicated from game
console 402 to security gateway 404, or from security gate
way 404 to game console 402 can have data embedded
therein. This embedded data is referred to as the content or
data content of the packet. Additional information may also
be inherently included in the packet based on the packet type.
0165. The secure communication channel between a con
sole 402 and security gateway 404 is based on a security
ticket. Console 402 authenticates itself and the current user(s)
of console 402 to a key distribution center 428 and obtains,
from key distribution center 428, a security ticket. Console
402 then uses this security ticket to establish the secure com
munication channel with security gateway 404. In establish
ing the secure communication channel with security gateway
404, the game console 402 and security gateway 404 authen
ticate themselves to one another and establish a session Secu
rity key that is known only to that particular game console 402
and the security gateway 404. This session security key is
used to encrypt data transferred between the game console
402 and the security gateway cluster 404, so no other devices
(including other game consoles 402) can read the data. The
session security key is also used to authenticate a data packet
as being from the security gateway 404 or game console 402
that the data packet alleges to be from. Thus, using Such
session security keys, secure communication channels can be
established between the security gateway 404 and the various
game consoles 402.
0166 Once the secure communication channel is estab
lished between a game console 402 and the security gateway
404, encrypted data packets can be securely transmitted
between the two. When the game console 402 desires to send
data to a particular service device in data center 410, the game
console 402 encrypts the data and sends it to security gateway
404 requesting that it be forwarded to the particular service
device(s) targeted by the data packet. Security gateway 404
receives the data packet and, after authenticating and decrypt
ing the data packet, encapsulates the data content of the
packet into another message to be sent to the appropriate
service via private network 408. Security gateway 404 deter
mines the appropriate service for the message based on the
requested service(s) targeted by the data packet.
0167 Although discussed herein as primarily communi
cating encrypted data packets between security gateway 404
and a game console 402, alternatively some data packets may
be partially encrypted (some portions of the data packets are
encrypted while other portions are not encrypted). Which
portions of the data packets are encrypted and which are not

Dec. 16, 2010

can vary based on the desires of the designers of data center
410 and/or game consoles 402. For example, the designers
may choose to allow Voice data to be communicated among
consoles 402 so that users of the consoles 402 can talk to one
another—the designers may further choose to allow the Voice
data to be unencrypted while any other data in the packets is
encrypted. Additionally, in another alternative, some data
packets may have no portions that are encrypted (that is, the
entire data packet is unencrypted). It should be noted that,
even if a data packet is unencrypted or only partially
encrypted, all of the data packet can still be authenticated.
0168 Similarly, when a service device in data center 410
desires to communicate data to a game console 402, the data
center sends a message to security gateway 404, via private
network 408, including the data content to be sent to the game
console 402 as well as an indication of the particular game
console 402 to which the data content is to be sent. Security
gateway 404 embeds the data content into a data packet, and
then encrypts the data packet So it can only be decrypted by
the particular game console 402 and also authenticates the
data packet as being from the security gateway 404.
0169. Each security gateway device in security gateway
404 is responsible for the secure communication channel with
typically one or more game consoles 402, and thus each
security gateway device can be viewed as being responsible
for managing or handling one or more game consoles. The
various security gateway devices may be in communication
with each other and communicate messages to one another.
For example, a security gateway device that needs to send a
data packet to a game console that it is not responsible for
managing may send a message to all the other security gate
way devices with the data to be sent to that game console. This
message is received by the security gateway device that is
responsible for managing that game console and sends the
appropriate data to that game console. Alternatively, the Secu
rity gateway devices may be aware of which game consoles
are being handled by which security gateway devices—this
may be explicit, Such as each security gateway device main
taining a table of game consoles handled by the other security
gateway devices, or alternatively implicit, such as determin
ing which security gateway device is responsible for a par
ticular game console based on an identifier of the game con
sole.

0170 Monitoring server(s) 412 operate to inform devices
in data center 410 of an unavailable game console 402 or an
unavailable security gateway device of security gateway 404.
Game consoles 402 can become unavailable for a variety of
different reasons, such as a hardware or software failure, the
console being powered-down without logging out of data
center 410, the network connection cable to console 402
being disconnected from console 402, other network prob
lems (e.g., the LAN that the console 402 is on malfunction
ing), etc. Similarly, a security gateway device of security
gateway 404 can become unavailable for a variety of different
reasons, such as hardware or software failure, the device
being powered-down, the network connection cable to the
device being disconnected from the device, other network
problems, etc.
0171 Each of the security gateway devices in security
gateway 404 is monitored by one or more monitoring servers
412, which detect when one of the security gateway devices
becomes unavailable. In the event a security gateway device
becomes unavailable, monitoring server 412 sends a message
to each of the other devices in data center 410 (servers, front

US 2010/0317430 A1

doors, etc.) that the security gateway device is no longer
available. Each of the other devices can operate based on this
information as it sees fit (e.g., it may assume that particular
game consoles being managed by the security gateway device
are no longer in communication with data center 410 and
perform various clean-up operations accordingly). Alterna
tively, only certain devices may receive Such a message from
the monitoring server 412 (e.g., only those devices that are
concerned with whether security gateway devices are avail
able).
0172 Security gateway 404 monitors the individual game
consoles 402 and detects when one of the game consoles 402
becomes unavailable. When security gateway 404 detects that
a game console is no longer available, security gateway 404
sends a message to monitoring server 412 of the unavailable
game console. In response, monitoring server 412 sends a
message to each of the other devices in data center 410 (or
alternatively only selected devices) that the game console is
no longer available. Each of the other devices can then operate
based on this information as it sees fit.
0173 Presence server(s) 416 hold and process data con
cerning the status or presence of a given user logged into data
center 410 for online gaming. Notification server(s) 418
maintains multiple queues of outgoing messages destined for
a player logged in to data center 410. Presence and notifica
tion front door 414 is one or more server devices that operate
as an intermediary between security gateway 404 and servers
416 and 418. One or more load balancing devices (not shown)
may be included in presence and notification front door 414 to
balance the load among the multiple server devices operating
as front door 414. Security gateway 404 communicates mes
sages for servers 416 and 418 to the front door 414, and the
front door 414 identifies which particular server 416 or par
ticular server 418 the message is to be communicated to. By
using front door 414, the actual implementation of servers
416 and 418, such as which servers are responsible for man
aging data regarding which users, is abstracted from security
gateway 404. Security gateway 404 can simply forward mes
sages that target the presence and notification service to pres
ence and notification front door 414 and rely on front door
414 to route the messages to the appropriate one of server(s)
416 and server(s) 418.
0.174 Match making server(s) 422 hold and process data
concerning the matching of online players to one another, as
discussed above. Match front door 420 includes one or more
server devices (and optionally a load balancing device(s)) and
operates to abstract match server(s) 422 from security gate
way 404 in a manner analogous to front door 414 abstracting
server(s) 416 and server(s) 418.
0175 Statistics server(s) 426 hold and process data con
cerning various statistics for online games. The specific sta
tistics used can vary based on the game designer's desires
(e.g., the top ten scores or times, a world ranking for all online
players of the game, a list of users who have found the most
items or spent the most time playing, etc.). Statistics front
door 424 includes one or more server devices (and optionally
a load balancing device(s)) and operates to abstract statistics
server(s) 426 from security gateway 404 in a manner analo
gous to front door 414 abstracting server(s) 416 and server(s)
418.

0176 Thus, it can be seen that security gateway 404 oper
ates to shield devices in the secure Zone of data center 410
from the untrusted, public network 406. Communications
within the secure Zone of data center 410 need not be

Dec. 16, 2010

encrypted, as all devices within data center 410 are trusted.
However, any information to be communicated from a device
within data center 410 to a game console 402 passes through
security gateway cluster 404, where it is encrypted in Such a
manner that it can be decrypted by only the game console 402
targeted by the information.
0177 FIG. 14 illustrates a general computer environment
500, which can be used to implement the techniques
described herein. The computer environment 500 is only one
example of a computing environment and is not intended to
Suggest any limitation as to the scope of use or functionality
of the computer and network architectures. Neither should the
computer environment 500 be interpreted as having any
dependency or requirement relating to any one or combina
tion of components illustrated in the exemplary computer
environment 500.
0.178 Computer environment 500 includes a general-pur
pose computing device in the form of a computer 502. Com
puter 502 can be, for example, a match making system 104 or
computing device 102 of FIG. 1, a match making interface
120 or match making database 122 of FIG. 2, a server 412,
416,418,422, and/or 426 of FIG. 13, or a front door 414, 420,
or 424 of FIG. 13. The components of computer 502 can
include, but are not limited to, one or more processors or
processing units 504 (optionally including a cryptographic
processor or co-processor), a system memory 506, and a
system bus 508 that couples various system components
including the processor 504 to the system memory 506.
(0179 The system bus 508 represents one or more of any of
several types of bus structures, including a memory bus or
memory controller, a peripheral bus, an accelerated graphics
port, and a processor or local bus using any of a variety of bus
architectures. By way of example, such architectures can
include an Industry Standard Architecture (ISA) bus, a Micro
Channel Architecture (MCA) bus, an Enhanced ISA (EISA)
bus, a Video Electronics Standards Association (VESA) local
bus, and a Peripheral Component Interconnects (PCI) bus
also known as a Mezzanine bus.
0180 Computer 502 typically includes a variety of com
puter readable media. Such media can be any available media
that is accessible by computer 502 and includes both volatile
and non-volatile media, removable and non-removable
media.
0181. The system memory 506 includes computer read
able media in the form of Volatile memory, such as random
access memory (RAM) 510, and/or non-volatile memory,
such as read only memory (ROM) 512. A basic input/output
system (BIOS) 514, containing the basic routines that help to
transfer information between elements within computer 502,
such as during start-up, is stored in ROM 512. RAM 510
typically contains data and/or program modules that are
immediately accessible to and/or presently operated on by the
processing unit 504.
0182 Computer 502 may also include other removable/
non-removable, Volatile/non-volatile computer storage
media. By way of example, FIG. 14 illustrates a hard disk
drive 516 for reading from and writing to a non-removable,
non-volatile magnetic media (not shown), a magnetic disk
drive 518 for reading from and writing to a removable, non
volatile magnetic disk 520 (e.g., a “floppy disk’), and an
optical disk drive 522 for reading from and/or writing to a
removable, non-volatile optical disk 524 such as a CD-ROM,
DVD-ROM, or other optical media. The hard disk drive 516,
magnetic disk drive 518, and optical disk drive 522 are each

US 2010/0317430 A1

connected to the system bus 508 by one or more data media
interfaces 527. Alternatively, the hard disk drive 516, mag
netic disk drive 518, and optical disk drive 522 can be con
nected to the system bus 508 by one or more interfaces (not
shown).
0183 The disk drives and their associated computer-read
able media provide non-volatile storage of computer readable
instructions, data structures, program modules, and other data
for computer 502. Although the example illustrates a hard
disk 516, a removable magnetic disk 520, and a removable
optical disk 524, it is to be appreciated that other types of
computer readable media which can store data that is acces
sible by a computer. Such as magnetic cassettes or other
magnetic storage devices, flash memory cards, CD-ROM,
digital versatile disks (DVD) or other optical storage, random
access memories (RAM), read only memories (ROM), elec
trically erasable programmable read-only memory (EE
PROM), and the like, can also be utilized to implement the
exemplary computing system and environment.
0184 Any number of program modules can be stored on
the hard disk 516, magnetic disk 520, optical disk 524, ROM
512, and/or RAM 510, including by way of example, an
operating system 526, one or more application programs 528,
other program modules 530, and program data 532. Each of
Such operating system 526, one or more application programs
528, other program modules 530, and program data 532 (or
Some combination thereof) may implement all or part of the
resident components that Support the distributed file system.
0185. A user can enter commands and information into
computer 502 via input devices such as a keyboard 534 and a
pointing device 536 (e.g., a “mouse'). Other input devices
538 (not shown specifically) may include a microphone, joy
Stick, game pad, satellite dish, serial port, Scanner, and/or the
like. These and other input devices are connected to the pro
cessing unit 504 via input/output interfaces 540 that are
coupled to the system bus 508, but may be connected by other
interface and bus structures, such as aparallel port, game port,
or a universal serial bus (USB).
0186. A monitor 542 or other type of display device can
also be connected to the system bus 508 via an interface, such
as a video adapter 544. In addition to the monitor 542, other
output peripheral devices can include components such as
speakers (not shown) and a printer 546 which can be con
nected to computer 502 via the input/output interfaces 540.
0187 Computer 502 can operate in a networked environ
ment using logical connections to one or more remote com
puters, such as a remote computing device 548. By way of
example, the remote computing device 548 can be a personal
computer, portable computer, a server, a router, a network
computer, a peer device or other common network node,
game console, and the like. The remote computing device 548
is illustrated as a portable computer that can include many or
all of the elements and features described herein relative to
computer 502.
0188 Logical connections between computer 502 and the
remote computer 548 are depicted as a local area network
(LAN) 550 and a general wide area network (WAN) 552.
Such networking environments are commonplace in offices,
enterprise-wide computer networks, intranets, and the Inter
net

0189 When implemented in a LAN networking environ
ment, the computer 502 is connected to a local network 550
via a network interface or adapter 554. When implemented in
a WAN networking environment, the computer 502 typically

Dec. 16, 2010

includes a modem 556 or other means for establishing com
munications over the wide network 552. The modem 556,
which can be internal or external to computer 502, can be
connected to the system bus 508 via the input/output inter
faces 540 or other appropriate mechanisms. It is to be appre
ciated that the illustrated network connections are exemplary
and that other means of establishing communication link(s)
between the computers 502 and 548 can be employed.
0190. In a networked environment, such as that illustrated
with computing environment 500, program modules depicted
relative to the computer 502, or portions thereof, may be
stored in a remote memory storage device. By way of
example, remote application programs 558 reside on a
memory device of remote computer 548. For purposes of
illustration, application programs and other executable pro
gram components such as the operating system are illustrated
herein as discrete blocks, although it is recognized that Such
programs and components reside at various times in different
storage components of the computing device 502, and are
executed by the data processor(s) of the computer.
0191 Various modules and techniques may be described
herein in the general context of computer-executable instruc
tions, such as program modules, executed by one or more
computers or other devices. Generally, program modules
include routines, programs, objects, components, data struc
tures, etc. that perform particular tasks or implement particu
lar abstract data types. Typically, the functionality of the
program modules may be combined or distributed as desired
in various embodiments.
0.192 An implementation of these modules and tech
niques may be stored on or transmitted across some form of
computer readable media. Computer readable media can be
any available media that can be accessed by a computer. By
way of example, and not limitation, computer readable media
may comprise “computer storage media' and “communica
tions media.”
0193 “Computer storage media' includes volatile and
non-volatile, removable and non-removable media imple
mented in any method or technology for storage of informa
tion Such as computer readable instructions, data structures,
program modules, or other data. Computer storage media
includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital ver
satile disks (DVD) or other optical storage, magnetic cas
settes, magnetic tape, magnetic disk storage or other mag
netic storage devices, or any other medium which can be used
to store the desired information and which can be accessed by
a computer.
0194 “Communication media typically embodies com
puter readable instructions, data structures, program mod
ules, or other data in a modulated data signal, such as carrier
wave or other transport mechanism. Communication media
also includes any information delivery media. The term
"modulated data signal” means a signal that has one or more
of its characteristics set or changed in Such a manner as to
encode information in the signal. By way of example, and not
limitation, communication media includes wired media Such
as a wired network or direct-wired connection, and wireless
media Such as acoustic, RF, infrared, and other wireless
media. Combinations of any of the above are also included
within the scope of computer readable media.
0.195 FIG. 15 shows functional components of a game
console 600 in more detail. Game console 600 can be used,
for example, as a computing device 102 of FIG. 1. Game

US 2010/0317430 A1

console 600 has a central processing unit (CPU) 601 and a
memory controller 602 that facilitates processor access to
various types of memory, including a flash ROM (Read Only
Memory) 604, a RAM (Random Access Memory) 606, a hard
disk drive 608, and a portable media drive 609. CPU 601 is
equipped with a level 1 cache 610 and a level 2 cache 612 to
temporarily store data and hence reduce the number of
memory access cycles, thereby improving processing speed
and throughput.
(0196) CPU 601, memory controller 602, and various
memory devices are interconnected via one or more buses,
including serial and parallel buses, a memory bus, a periph
eral bus, and a processor or local bus using any of a variety of
bus architectures. By way of example, such architectures can
include an Industry Standard Architecture (ISA) bus, a Micro
Channel Architecture (MCA) bus, an Enhanced ISA (EISA)
bus, a Video Electronics Standards Association (VESA) local
bus, and a Peripheral Component Interconnects (PCI) bus
also known as a Mezzanine bus.
0.197 As one suitable implementation, CPU 601, memory
controller 602, ROM 604, and RAM 606 are integrated onto
a common module 614. In this implementation, ROM 604 is
configured as a flash ROM that is connected to the memory
controller 602 via a PCI (Peripheral Component Intercon
nect) bus and a ROM bus (neither of which are shown). RAM
606 is configured as multiple DDR SDRAM (Double Data
Rate Synchronous Dynamic RAM) that are independently
controlled by the memory controller 602 via separate buses
(not shown). The hard disk drive 608 and portable media drive
609 are connected to the memory controller via the PCI bus
and an ATA (ATAttachment) bus 616.
0198 A 3D graphics processing unit 620 and a video
encoder 622 form a video processing pipeline for high speed
and high resolution graphics processing. Data is carried from
the graphics processing unit 620 to the video encoder 622 via
a digital video bus (not shown). An audio processing unit 224
and an audio codec (coder/decoder) 626 form a correspond
ing audio processing pipeline with high fidelity and stereo
processing. Audio data is carried between the audio process
ing unit 624 and the audio codec 626 via a communication
link (not shown). The video and audio processing pipelines
output data to an A/V (audio/video) port 628 for transmission
to the television or other display. In the illustrated implemen
tation, the video and audio processing components 620-628
are mounted on the module 614.

(0199 Also implemented on the module 614 are a USB
host controller 630 and a network interface 632. The USB
host controller 630 is coupled to the CPU 601 and the memory
controller 602 via a bus (e.g., PCI bus) and serves as host for
the peripheral controllers 636(1)-636(4). The network inter
face 232 provides access to a network (e.g., Internet, home
network, etc.) and may be any of a wide variety of various
wire or wireless interface components including an Ethernet
card, a modem, a Bluetooth module, a cable modem, and the
like.

0200. The game console 600 has two dual controller Sup
port subassemblies 640(1) and 640(2), with each subassem
bly supporting two game controllers 636(1)-636(4). A front
panel I/O subassembly 642 supports the functionality of a
power button 631 and a media drive eject button 633, as well
as any LEDs (light emitting diodes) or other indicators
exposed on the outer Surface of the game console. The Sub
assemblies 640(1), 640(2), and 642 are coupled to the module
614 via one or more cable assemblies 644.

Dec. 16, 2010

0201 Eight memory units 634(1)-634(8) are illustrated as
being connectable to the four controllers 636(1)-636(4), i.e.,
two memory units for each controller. Each memory unit 634
offers additional storage on which games, game parameters,
and other data may be stored. When inserted into a controller,
the memory unit 634 can be accessed by the memory control
ler 602.
0202) A system power supply module 650 provides power
to the components of the game console 600. A fan 652 cools
the circuitry within the game console 600.
0203. A console user interface (UI) application 660 is
stored on the hard disk drive 608. When the game console is
powered on, various portions of the console application 660
are loaded into RAM 606 and/or caches 610, 612 and
executed on the CPU 601. Console application 660 presents a
graphical user interface that provides a consistent user expe
rience when navigating to different media types available on
the game console.
0204 Game console 600 implements a cryptography
engine to perform common cryptographic functions, such as
encryption, decryption, authentication, digital signing, hash
ing, and the like. The cryptography engine may be imple
mented as part of the CPU 601, or in software stored on the
hard disk drive 608 that executes on the CPU, so that the CPU
is configured to perform the cryptographic functions. Alter
natively, a cryptographic processor or co-processor designed
to perform the cryptographic functions may be included in
game console 600.
0205 Game console 600 may be operated as a standalone
system by simply connecting the system to a television or
other display. In this standalone mode, game console 600
allows one or more players to play games, watch movies, or
listen to music. However, with the integration of broadband
connectivity made available through the network interface
632, game console 600 may further be operated as a partici
pant in online gaming, as discussed above.
0206 Various processes are illustrated by way of flow
charts herein. It should be noted that the acts involved in these
processes can be performed in the order shown in the flow
charts, or alternatively in different orders. For example, in
FIG. 3, the acts may be performed in the order shown, or
alternatively in different orders (e.g., 168 may be performed
prior to or concurrent with act 166). By way of another
example, in FIG. 4, the acts may be performed in the order
shown, or alternatively in different orders (e.g., act 206 may
be performed prior to or concurrent with act 204).
0207 Although the description above uses language that

is specific to structural features and/or methodological acts, it
is to be understood that the invention defined in the appended
claims is not limited to the specific features or acts described.
Rather, the specific features and acts are disclosed as exem
plary forms of implementing the invention.
We claim:
1. A method comprising:
receiving, from a computing device, a request for informa

tion including a parameter describing a game session
including a skill level of the game session, the game
session being hosted by one or more other computing
devices and the game session being currently available
for play; and

responding to the request with the information including a
parameter describing the game session including the
skill level of the game session and a game session key
enabling secure communication for the computing

US 2010/0317430 A1

device with at least one of the one or more other com
puting devices that are part of the game session.

2. A method as recited in claim 1, wherein the computing
device comprises a game console.

3. A method as recited in claim 1, wherein the computing
device and the at least one of the one or more other computing
devices comprise different types of computing devices.

4. A method as recited in claim 1, the parameter describing
the game session including a game session ID.

5. A method as recited in claim 1, wherein responding to
the request comprises returning to the computing device
information allowing the computing device to join the game
session hosted by the one or more other hosting computing
devices.

6. A method as recited in claim 1, wherein the computing
device and the one or more other hosting computing device
are situated behind different network address translation
(NAT) devices.

7. A computer-readable media having computer instruc
tions encoded thereon, the computer readable instructions,
upon execution by a processor, configuring the processor to
perform the method of claim 1.

8. A method comprising:
requesting information describing one or more of a plural

ity of game sessions;
receiving the information describing the one or more of the

plurality of game sessions, the information including:
an identifier of a game being hosted at a computing

device;
a fully qualified address of the computing device hosting

the game;
one or more game session keys associated respectively

with the one or more of the plurality of game sessions,
wherein:
the one or more game session keys is for secure com

munication with the computing device hosting the
game; and

the one or more game session keys facilitate another
computing device playing the game hosted at the
computing device without communication from
the another computing device associated with the
game being routed through a server device.

9. A method as recited in claim 8, wherein the computing
device comprises a game console.

10. A method as recited in claim 8, wherein the another
computing device comprises a game console.

Dec. 16, 2010

11. A method as recited in claim8, wherein the one or more
game session keys is created at the computing device.

12. A method as recited in claim 8, the information further
including a skill level of the game being hosted at the com
puting device.

13. A computer-readable media having computer instruc
tions encoded thereon, the computer readable instructions,
upon execution by a processor, configuring the processor to
perform the method of claim 8.

14. A computing device configured to perform the method
of claim 8.

15. A method comprising:
sending information describing a game session, the infor

mation comprising:
an identifier of a game being hosted at a computing

device;
a fully qualified address of the computing device hosting

the game;
a number of slots configured to be filled by other com

puting devices to join the game during the game ses
sion;

receiving a request from another computing device to join
the game; and

utilizing a session key associated with the game session for
game play, wherein the session key is for secure com
munication between the computing device hosting the
game and the another computing device without the
communication from the another computing device
associated with the game being routed through a server
device.

16. A method as recited in claim 15, wherein the computing
device hosting the game comprises a game console.

17. A method as recited in claim 8, wherein the another
computing device comprises a game console.

18. A method as recited in claim8, wherein the one or more
game session keys is created at the computing device hosting
the game.

19. A method as recited in claim 15, the information further
comprising a skill level of the game session.

20. A computer-readable media having computer instruc
tions encoded thereon, the computer readable instructions,
upon execution by a processor, configuring the processor to
perform the method of claim 15.

c c c c c

