（54）发明名称
预浸料坯、预成型体、成型品及预浸料坯的制造方法

（57）摘要
本发明涉及一种预浸料坯，所述预浸料坯在增强纤维基材中浸渍有热塑性树脂，其中含有0质量％以上50质量％以下的纤维长度超过10mm的增强纤维，50质量％以上100质量％以下的纤维长度2mm以上10mm以下的增强纤维，以及0质量％以上50质量％以下的纤维长度小于2mm的增强纤维。由增强纤维单丝（a）和与该增强纤维单丝（a）交叉的增强纤维单丝（b）形成的二维取向角的平均值为10度以上80度以下，23℃下的厚度0.03mm以上1.0mm以下，拉伸强度0为0.01MPa以上。根据本发明可以提供一种预浸料坯，该预浸料坯能够应用于过去被认为不适于层合成型品的薄型成型品，可以得到具有各向同性的优异力学特性，具有复杂形状的成型品。
1. 一种预浸料坯，是在增强纤维基材中含浸有热塑性树脂的预浸料坯。

所述增强纤维基材由 0 质量％以上 50 质量％以下的纤维长度超过 10mm 的增强纤维，
50 质量％以上 100 质量％以下的纤维长度 2mm 以上 10mm 以下的增强纤维及 0 质量％以上
50 质量％以下的纤维长度小于 2mm 的增强纤维构成。

所述预浸料坯中由增强纤维单丝 (a) 和与所述增强纤维单丝 (a) 交叉的增强纤维单丝
(b) 形成的二维取向角的平均值为 10 度以上 80 度以下，所述预浸料坯在 23℃下的厚度
h0 (mm) 为 0.03mm 以上 1mm 以下，所述预浸料坯的拉伸强度 σ 为 0.01MPa 以上。

2. 如权利要求 1 所述的预浸料坯，其中，所述增强纤维基材的纤维长度分布具有至少 2
个峰，至少 1 个峰在纤维长度 5mm 以上 10mm 以下的范围内，其他至少 1 个峰在纤维长度 2mm
以上 5mm 以下的范围内。

3. 如权利要求 1 所述的预浸料坯，其中，所述增强纤维基材的用基于 ASTM D737 的弗雷
泽型方法测定的空气量 (cm³/cm² • s) 为 50 以上 1000 以下。

4. 如权利要求 1 所述的预浸料坯，其中，所述预浸料坯在 (n×100)℃下的厚度 h0 (mm)
为 h0 ≤ hn ≤ h0×(2n+1)，n 为选自 1、2、3、4 中的至少一个自然数。

5. 如权利要求 1 所述的预浸料坯，其中，所述增强纤维基材相对于所述预浸料坯整体
的比例为 5 质量％以上 60 质量％以下。

6. 如权利要求 1 所述的预浸料坯，其中，所述热塑性树脂相对于所述预浸料坯整体的
含浸率为 50％以上 100％以下。

7. 如权利要求 1 所述的预浸料坯，其中，所述拉伸强度 σ 为 50MPa 以上 1000MPa 以下。

8. 一种预成型体，所述预成型体至少含有下述预浸料坯作为层合单元，所述预浸料坯
在增强纤维基材中含浸有热塑性树脂，所述预浸料坯中由增强纤维单丝 (a) 和与所述增强
纤维单丝 (a) 交叉的增强纤维单丝 (b) 形成的二维取向角的平均值为 10 度以上 80 度以下，
所述预浸料坯在 23℃下的厚度 h0 (mm) 为 0.03mm 以上 1mm 以下，所述预浸料坯的拉伸强度
σ 为 0.01MPa 以上。

9. 如权利要求 8 所述的预成型体，其中，所述预浸料坯构成多个层合单元，且作为构成
所述多个层合单元的预浸料坯，包含至少 2 种预浸料坯，所述至少 2 种预浸料坯在选自增强
纤维的比率、增强纤维的长度、增强纤维的拉伸弹性模量、预浸料坯的单位面积重量及 23℃
下的厚度 h0 (mm) 中的至少任一方面实质上不同。

10. 如权利要求 8 所述的预成型体，其中，所述拉伸强度 σ 为 50MPa 以上 1000MPa 以
下。

11. 如权利要求 8 所述的预成型体，其中，所述预浸料坯和与所述预浸料坯相邻的层合
单元的层间剪切强度为 0MPa 以上 50MPa 以下。

12. 如权利要求 8 所述的预成型体，其中，所述预成型体的 (n×100)℃下的厚度
h(n)(mm) 为 hp(n) ≤ h(n) ≤ hp(n)×(2n+1)，hp(n)(mm) 为 23℃下的所述预成型体厚度，n 为选自
1、2、3、4 中的至少一个自然数。

13. 一种成型品，所述成型品是将权利要求 1～7 中任一项所述的预浸料坯、或权利要
求 8～12 中任一项所述的预成型体成型得到的。

14. 如权利要求 13 所述的成型品，其中，以所述成型体的弯曲弹性模量为 Ec，以比重为
ρ 时，Ec(ρ) 为 1.5 以上 5 以下。
15. 如权利要求 14 所述的成型品，其中，所述弯曲弹性模量 Ec 的因测定方向引起的最大弯曲弹性模量 EcMax 与最小弯曲弹性模量 EcMin 的关系为 EcMax ≤ EcMin × 2。

16. 如权利要求 13 所述的成型品，其中，最大厚度为 2mm 以下。

17. 如权利要求 13 所述的成型品的制造方法，其中，对所述预浸料坯或所述预成型体进行加压成型。

18. 如权利要求 17 所述的成型品的制造方法，其中，所述加压成型中，使投料配比大于 100% 来进行加压成型，所述投料配比是所述预浸料坯或所述预成型体的面积相对于模的内腔总面积的比率。

19. 如权利要求 17 所述的成型品的制造方法，其中，所述加压成型是使用冷却用模进行冲压成型。

20. 一种预浸料坯的制造方法，包括下述工序：
 工序 (I)，包括增强纤维束分散得到增强纤维基材；
 工序 (II)，对所述工序 (I) 中得到的增强纤维基材赋予粘合剂；和
 工序 (III)，将由热塑性树脂形成的基质树脂与所述工序 (II) 中得到的赋予了粘合剂的增强纤维基材进行复合化。

 其中，所述工序 (I) ～ (II) 在线实施，所述增强纤维束相对于预浸料坯整体的含有率为 10 质量% 以上 80 质量% 以下，所述粘合剂的含有率为 0.1 质量% 以上 10 质量% 以下，所述基质树脂的含有率为 10 质量% 以上 80 质量% 以下。

21. 如权利要求 20 所述的预浸料坯的制造方法，其中，所述工序 (I) 中得到的增强纤维基材中的固态成分的质量中，增强纤维的比例为 80 质量% 以上 100 质量% 以下。

22. 如权利要求 1 所述的预浸料坯，其中，所述增强纤维基材是通过以下方法 a 得到的，方法 a 是至少包括下述工序的增强纤维基材的制造方法，
 工序 (i)，向分散介质中加入增强纤维束；
 工序 (ii)，配制所述分散介质中分散有构成所述增强纤维束的增强纤维的浆料；
 工序 (iii)，输送所述浆料；和
 工序 (iv)，从所述浆料中除去分散介质，得到含有增强纤维的抄纸基材；

 其中，将所述工序 (ii) 中配置的浆料中增强纤维的质量含有率设为 C1，将所述工序 (iv) 开始时浆料中增强纤维的质量含有率设为 C2，C1/C2 为 0.8 以上 1.2 以下。

23. 如权利要求 20 所述的预浸料坯，其中，所述增强纤维基材是通过以下方法 b 得到的，方法 b 是至少包括下述工序的增强纤维基材的制造方法，
 工序 (i)，向分散介质中加入增强纤维束；
 工序 (ii)，配制所述分散介质中分散有构成所述增强纤维束的增强纤维的浆料；
 工序 (iii)，输送所述浆料；和
 工序 (iv)，从所述浆料中除去分散介质，得到含有增强纤维的抄纸基材，

 其中，所述工序 (i) ～ (iv) 在线实施，所述工序 (ii) 中的浆料的液面高度 HI 位于比所述工序 (iv) 中的浆料的液面高度 H2 高的位置。

24. 如权利要求 1 所述的预浸料坯，其中，所述增强纤维基材是通过以下方法 c 得到的，方法 c 是至少包括下述工序的增强纤维基材的制造方法，
 工序 (i)，向分散介质中加入增强纤维束；
工序 (ii)，配制所述分散介质中分散有构成所述增强纤维束的增强纤维的浆料；
工序 (iii)，输送所述浆料；和
工序 (iv)，从所述浆料中除去分散介质，得到增强纤维基材，
其中，所述工序 (i) 及所述工序 (ii) 在分散槽中进行，所述工序 (iv) 在抄纸槽中进行，所
述工序 (iii) 在连接所述分散槽和所述抄纸槽的输送部进行，在所述输送部中所述浆料以
层流状态或从层流到紊流的过渡域的状态被输送。
25. 如权利要求 8 所述的预成型体，其中，所述增强纤维基材是通过以下方法 a 得到的，
方法 a 是至少包括下述工序的增强纤维基材的制造方法，
工序 (i)，向分散介质中加入增强纤维束；
工序 (ii)，配制所述分散介质中分散有构成所述增强纤维束的增强纤维的浆料；
工序 (iii)，输送所述浆料；和
工序 (iv)，从所述浆料中除去分散介质，得到含有增强纤维的抄纸基材，
其中，将所述工序 (ii) 中配制的浆料中增强纤维的质量含有率设为 C1，将所述工序
(iv) 开始时浆料中增强纤维的质量含有率设为 C2，C1/C2 为 0.8 以上 1.2 以下。
26. 如权利要求 8 所述的预成型体，其中，所述增强纤维基材是通过以下方法 b 得到的，
方法 b 是至少包括下述工序的增强纤维基材的制造方法，
工序 (i)，向分散介质中加入增强纤维束；
工序 (ii)，配制所述分散介质中分散有构成所述增强纤维束的增强纤维的浆料；
工序 (iii)，输送所述浆料；和
工序 (iv)，从所述浆料中除去分散介质，得到含有增强纤维的抄纸基材，
其中，所述工序 (i) ~ (iv) 在线实施，所述工序 (ii) 中的浆料的液面高度 H1 位于比
所述工序 (iv) 中的浆料的液面高度 H2 高的位置。
27. 如权利要求 8 所述的预成型体，其中，所述增强纤维基材是通过以下方法 c 得到的，
方法 c 是至少包括下述工序的增强纤维基材的制造方法，
工序 (i)，向分散介质中加入增强纤维束；
工序 (ii)，配制所述分散介质中分散有构成所述增强纤维束的增强纤维的浆料；
工序 (iii)，输送所述浆料；和
工序 (iv)，从所述浆料中除去分散介质，得到增强纤维基材，
其中，所述工序 (i) 及所述工序 (ii) 在分散槽中进行，所述工序 (iv) 在抄纸槽中进行，所
述工序 (iii) 在连接所述分散槽和所述抄纸槽的输送部进行，所述输送部中，所述浆料以
层流状态或从层流到紊流的过渡域的状态被输送。
28. 如权利要求 20 所述的预浸料坯的制造方法，其中，使增强纤维束分散得到增强纤
维基材的工序 (i) 为以下的 a，
a：至少包括下述工序，
工序 (i)，向分散介质中加入增强纤维束；
工序 (ii)，配制所述分散介质中分散有构成所述增强纤维束的增强纤维的浆料；
工序 (iii)，输送所述浆料；和
工序 (iv)，从所述浆料中除去分散介质，得到含有增强纤维的抄纸基材，
其中，将所述工序 (ii) 中配制的浆料中增强纤维的质量含有率设为 C1，将所述工序
(iv) 开始时浆料中增强纤维的质量含有率设为 C2, C1/C2 等于 0.8 以上 1.2 以下。

29. 如权利要求 20 所述的预浸料坯的制造方法, 其中, 使增强纤维束分散得到增强纤
维基材的工序 (i) 为以下的 b,

b: 至少包括下述工序,

工序 (i), 向分散介质中加入增强纤维束；
工序 (ii), 配制所述分散介质中分散有构成所述增强纤维束的增强纤维的浆料；
工序 (iii), 输送所述浆料；和

工序 (iv), 从所述浆料中除去分散介质, 得到含有增强纤维的抄纸基材, 其中, 所述工
序 (i) ～ (iv) 在线实施, 所述工序 (ii) 中的浆料的液面高度 H1 位于比所述工序 (iv) 中
的浆料的液面高度 H2 高的位置。

30. 如权利要求 20 所述的预浸料坯的制造方法, 其中, 使增强纤维束分散得到增强纤
维基材的工序 (i) 为以下的 c,

c: 至少包括下述工序,

工序 (i), 向分散介质中加入增强纤维束；
工序 (ii), 配制所述分散介质中分散有构成所述增强纤维束的增强纤维的浆料；
工序 (iii), 输送所述浆料；和

工序 (iv), 从所述浆料中除去分散介质, 得到增强纤维基材,

其中, 所述工序 (i) 及工序 (ii) 在分散槽中进行, 所述工序 (iv) 在抄纸槽中进行, 所
述工序 (iii) 在连接所述分散槽和所述抄纸槽的输送部进行, 所述输送部中, 所述浆料以
层流状态或从层流到紊流的过渡域的状态被输送。
说明书

预浸料坯、预成型体、成型品及预浸料坯的制造方法

[0001] 本申请是申请日为 2009 年 7 月 24 日，申请号为 200980121704.1（国际申请号为 PCT/JP2009/063240），发明名称为“预浸料坯、预成型体、成型品及预浸料坯的制造方法”的申请的分案申请。

技术领域
[0002] 本发明涉及在纤维增强基材中含浸有树脂的预浸料坯、及层合该预浸料坯得到的预成型体。更详细而言，本发明涉及增强纤维具有特定二维取向角、且具有特定厚度的预浸料坯、及层合该预浸料坯得到的预成型体。另外，本发明涉及预浸料坯的制造方法。

背景技术
[0003] 纤维增强塑料（FRP）是轻质的，且具有优异的力学特性，广泛应用于电气・电子仪器用途、土木・建筑用途、机械・装置部件用途、自动机械用途、双轮车・汽车用途、宇宙・航空用途等。用于上述 FRP 的增强纤维中，使用铝纤维和不锈钢纤维等金属纤维、芳族聚酰胺纤维和 PBO 纤维等有机纤维、及碳化硅纤维等无机纤维和碳纤维等。其中，从比强度、比刚度特别优异，可以得到出色的轻质性的观点考虑，优选使用碳纤维。

[0004] 此处，作为碳纤维增强塑料（CFRP）等 FRP 的代表方案，可以举出将层合预浸料坯得到的预成型体进行夹压成型（在加压下脱泡并赋型的成型方法）得到的成型品。该预浸料坯的通常的制造方法是在增强纤维基材中含浸树脂，所述增强纤维基材是使连续的增强纤维按单向排列，或进行织物加工得到的。

[0005] 使用上述预浸料坯的成型品可以获得优异的力学特性。另一方面，由于增强纤维以连续体的形式直接使用，所以不适于成型复杂形状的形状。另外，预浸料坯的层合角度对特性的影响大，因此，必须一边注意层合角度一边将预浸料坯层合。即，层合工序需要工夫和时间，部分成本变高（层合工序的经济负担变高），因此使用用途受到限制。

[0006] 专利文献 1 公开了一种预浸料坯，所述预浸料坯通过将增强纤维切断成特定长度，对复杂形状的成型有效。但是，由于需要与层合工序相同的工夫和时间，所以无法消除经济负担。

[0007] 另一方面，还公开了使用不连续增强纤维的 FRP。片状模塑料（Sheet Molding Compound (SMC)）和玻璃纤维板基材（GMT）是适合加压成型的材料。但是，比强度、比刚度等力学特性低，难以应用于预浸料坯之类薄壁的成型品，另外成型时有较大的树脂流动，因此无法获得各向同性的力学特性，并且特性的波动大等，因此使用用途受到限制。

[0008] 专利文献 2、3 公开了一种片材材料，所述片材材料通过使增强纤维以束状分散，可以获得各向同性更优异的特性。另外，专利文献 4 公开了一种通过使碳纤维均匀分散使力学特性优异的片材材料。但是，均无法如预浸料坯那样加工成薄壁，另外，成型时脂有较大流动，因此有时会破坏各向同性的特性，力学特性也降低。

[0009] 进而，专利文献 5 公开了一种使碳纤维随机分散成单丝状并固定得到的成型品。上述方法中，作为预浸料坯加工成薄壁时存在限制，预成型体层合的自由度受到限制。进
而，由于无法大量制造预成型体，所以无法解决经济负担。

【0010】专利文献1：日本特开2007-146151号公报
【0011】专利文献2：日本专利第2507556号公报
【0012】专利文献3：日本专利第1761874号公报
【0013】专利文献4：日本特开平6-99431号公报
【0014】专利文献5：国际公开第2007/97436号说明书

发明内容

【0015】鉴于现有技术背景，本发明的目的在于提供预浸料坏以及预成型体，所述预浸料坏可以应用于过去被认为不适于层合成型品的薄型成型品，能够得到具有各向同性的优异力学特性、具有复杂形状的成型品。

【0016】本发明的预浸料坏是在增强纤维基材中含浸有热塑性树脂的预浸料坏，

【0017】该增强纤维基材由0质量％以上50质量％以下的纤维长度超过10mm的增强纤维，50质量％以上100质量％以下的纤维长度2mm以上10mm以下的增强纤维及0质量％以上50质量％以下的纤维长度小于2mm的增强纤维构成。

【0018】该预浸料坏中由该预浸料坏中所含的增强纤维单丝(a)和与该增强纤维单丝(a)交叉的增强纤维单丝(b)形成的二维取向角的平均值为10度以上80度以下，23℃下的厚度h0(mm)为0.03mm以上1mm以下，拉伸强度σ为0.01MPa以上。

【0019】另外，本发明的预成型体至少含有下述预浸料坏作为层合单元，所述预成型体在增强纤维基材中含浸有热塑性树脂，

【0020】由增强纤维单丝(a)和与该增强纤维单丝(a)交叉的增强纤维单丝(b)形成的二维取向角的平均值为10度以上80度以下，23℃下的厚度h0(mm)为0.03mm以上1mm以下，

【0021】拉伸强度σ为0.01MPa以上。

【0022】由于本发明的预浸料坏的增强纤维具有特定的纤维长度和特定的纤维取向角，所以层合预浸料坏时在层合角度方面不会受到较大的制约，可以得到各向同性的力学特性优异的成型品。由于本发明的预浸料坏为特定的厚度，所以不仅可以应用于过去被认为不适于层合成型品的薄型成型品，还可以抑制层内厚度方向增强纤维的比，进一步提高面内的增强效果。进而，本发明的预浸料坏通过具有特定的拉伸强度，层合时的操作性优异，在用于广泛的用途方面是有效的。

【0023】另外，由于本发明的预成型体中预浸料坏所含的增强纤维具有特定的二维取向角，通过使预浸料坏为特定的厚度，可以抑制厚度方向增强纤维的比例，降低层间的干涉，提高加压成型中的赋型性。由此能够得到过去被认为不适于层合成型品的、能够满足复杂形状的成型性和力学特性的薄型成型品。

附图说明

【0024】图1为表示本发明的预浸料坏中的增强纤维分散状态一个例子的示意图。
【0025】图2为表示预浸料坏的二维取向角测定用灰化夹具一个例子的示意图。
【0026】图3为表示增强纤维基材（抄纸基材）的制造装置一个例子的示意图。
【0027】图4为表示使用本发明的预浸料坏，预成型体得到的箱型形状成型品一个例子的
示意图。
[0027] 图 5 为表示使用本发明的预浸料坯、预成型体得到的箱型形状成型品一个例子的示意图。
[0028] 图 6 为表示使用本发明的预浸料坯和 GMT 的层合的示意图。
[0029] 图 7 为带有切口的碳纤维预浸料坯的示意图。
[0030] 图 8 为汽车发动机罩成型品的示意图。
[0031] 图 9 为表示预浸料坯的制造装置一个例子的示意图。
[0032] 图 10 为表示预浸料坯的制造装置一个例子的示意图。
[0033] 图 11 为表示预浸料坯的制造装置一个例子的示意图。
[0034] 图 12 为表示预浸料坯的制造装置一个例子的示意图。
[0035] 图 13 为表示从水平方向观察分散槽、抄纸槽及输送部的位置关系一个例子的示意图。
[0036] 图 14 为表示从水平方向观察分散槽、抄纸槽及输送部的位置关系一个例子的示意图。
[0037] 图 15 为表示从水平方向观察分散槽、抄纸槽及输送部的位置关系一个例子的示意图。
[0038] 图 16 为表示从水平方向观察分散槽、抄纸槽及输送部的 位置关系一个例子的示意图。
[0039] 图 17 为表示从水平方向观察分散槽、抄纸槽及输送部的位置关系一个例子的示意图。
[0040] 图 18 为表示从水平方向观察分散槽、抄纸槽及输送部的位置关系一个例子的示意图。
[0041] 图 19 为表示从水平方向观察分散槽、抄纸槽及输送部的位置关系一个例子的示意图。
[0042] 图 20 为表示从水平方向观察分散槽、抄纸槽及输送部的位置关系一个例子的示意图。
[0043] 图 21 为表示输送部的截面形状一个例子的示意图。
[0044] 图 22 为表示增强纤维基材 (抄纸基材) 的制造装置一个例子的示意图。
[0045] 图 23 为表示增强纤维基材 (抄纸基材) 的制造装置一个例子的示意图。
[0046] 图 24 为表示增强纤维基材 (抄纸基材) 的制造装置一个例子的示意图。
[0047] 图 25 为表示增强纤维基材 (抄纸基材) 的制造装置一个例子的示意图。
[0048] 图 26 为表示增强纤维基材 (抄纸基材) 的制造装置一个例子的示意图。
[0049] 图 27 为表示增强纤维基材 (抄纸基材) 的制造装置一个例子的示意图。
[0050] 图 28 为表示增强纤维基材 (抄纸基材) 的制造装置一个例子的示意图。
[0051] 图 29 为表示增强纤维基材 (抄纸基材) 的制造装置一个例子的示意图。
[0052] 图 30 为表示含有增强纤维的浆料的示意图。

具体实施方式

本发明的预浸料坯是在增强纤维基材中含浸有热塑性树脂的预浸料坯，
该增强纤维基材由0质量%以上50质量%以下纤维长度超过10mm的增强纤维，50质量%以上100质量%以下纤维长度2mm以上10mm以下的增强纤维，及0质量%以上50质量%以下纤维长度小于2mm的增强纤维构成。

该预浸料坯为上述预浸料坯，即，由增强纤维单丝(a)和与该增强纤维单丝(a)交叉的增强纤维单丝(b)形成的二维取向角的平均值为10度以上80度以下，23℃下的厚度h0(mm)为0.03mm以上1mm以下，拉伸强度σ为0.01MPa以上。

首先，说明上述构成要素。

增加纤维基材

本发明中的增强纤维基材是指将增强纤维加工成片状、布帘状或网状等形态的前体。增强纤维基材只要在增强纤维之间具有含浸树脂的空隙即可，对其形态和形状没有特别限制。例如增强纤维可以与有机纤维、有机化合物或无机化合物混合，增强纤维之间也可以被其他成分填充，增强纤维还可以与树脂成分粘合。作为增强纤维基材的优选形态，从易于制造本发明中的增强纤维的二维取向的观点考虑，可以举出以干式法或湿式法中得到的无纺布形态将增强纤维充分地开纤，且增强纤维之间被有机化合物填充得到的基材。

另外，为了在本发明中使用的增强纤维基材中含浸形成基质的树脂成分，优选具有充分的空隙，因此，优选确保增强纤维基材的透气性。透气性例如可以利用基于JIS P8117的格列式织物透湿度试验机法、或基于ASTM D737的弗雷泽型(FRAZIER TYPE)方法测定。其中，为了评价透气性更优异的材料，优选将利用基于ASTM D737的弗雷泽型方法测定的空气量(cm³/cm²·s)作为标准。作为基于ASTM D737的弗雷泽型方法中的优选的空气量为50以上，较优选为70以上，特别优选为100以上。另外，对空气量的上限没有特别限制，通常可以提出1000以下。

增加纤维

作为本发明中的预浸料坯中使用的增强纤维，没有特别限制，例如可以使用碳纤维、玻璃纤维、芳族聚酰胺纤维、氧化铝纤维、碳化硅纤维、硼纤维、金属纤维、天然纤维、矿物纤维等，它们可以使用1种或也可以同时使用2种以上。其中，从比强度、比刚度高和轻质化效果的观点考虑，优选使用PAN类、沥青类、人造纤维类等碳纤维。另外，从提高所得成型品的经济性的观点考虑，可以优选使用玻璃纤维，特别是从力学特性与经济性的平衡方面考虑，优选同时使用碳纤维和玻璃纤维。进而，从提高所得成型品的冲击吸收性和脆性性的观点考虑，可以优选使用芳族聚酰胺纤维，从力学特性与冲击吸收性的平衡方面考虑，特别优选同时使用碳纤维和芳族聚酰胺纤维。另外，从提高所得成型品的导电性的观点考虑，还可以使用被覆有镍、铜或镀等金属的增强纤维。

碳纤维

碳纤维的利用X射线光电子分光法测定的表面氮浓度比O/C，优选为0.05以上0.5以下，较优选为0.06以上0.3以下，更优选为0.07以上0.2以下。通过使表面氧浓度比为0.05以上，确保碳纤维表面的极性官能团量，与热塑性树脂组合物的亲和性变高，因此可以获得更牢固的粘合。另外，通过使表面氧浓度比为0.5以下，可以减少表面氧化导致的碳纤维自身强度的降低。

表面氧浓度比，是指纤维表面的氧(O)的原子数与碳(C)的原子数之比。以下给出一个例子说明通过X射线光电子分光法求出表面氧浓度比时的步骤。首先，用溶剂除去附
着在碳纤维表面的上浆剂等。然后，将碳纤维切成20mm，并排放在制备的试样支撑台上。
接着，使用ArKα1.2作为X射线源，保持试样箱中为1×10⁻⁶Torr。作为测定时带电所伴随的峰的校正值将Cs的主峰的动能值（K.E.）加在1202eV上。以Cs峰面积为K.E.，在1191eV
以上1205eV以下的范围内，通过引出直线的基线求出Cs峰面积。以Os峰面积为K.E.，在
947～959eV的范围内通过引出直线的基线求出Os峰面积。

[0065] 表面氧浓度比是由上述Cs峰面积与Os峰面积之比使用装置固有的灵敏度校正值
以原子数率形式算出的。可以使用国际电气公司制模压ES-200作为X射线光电子分光
法装置，以灵敏度校正值为1.74进行计算。

[0066] 作为控制碳纤维的表面氧浓度O/C为0.05以上0.5以下的方法，没有特别限定，
可以举出电场氧化处理、药液氧化处理、气相氧化处理等方法。其中，电场氧化处理易于操
作，为优选。

[0067] 作为电场氧化处理中使用的电解液，优选使用以下列举的化合物的水溶液。为硫酸
、硝酸、盐酸等无机酸；氢氧化钠、氢氧化钾及氢氧化钡等无机氢氧化物；氨水、碳酸钠、
碳酸氢钠等无机金属盐类；乙酸钠、苯甲酸钠等有机盐类；进而，还可以代替上述羧盐而为
盐酸、硝酸、硫酸等无机酸和酸，除此之外，还可以为胺等有机化合物。其中，作为电解液，优选
使用无机酸，特别优选使用硫酸及硝酸。电场处理的程度，通过设定电场处理时流动的电
量，可以控制碳纤维表面的O/C。

[0068] [预浸料坯]

[0069] 本发明的预浸料坯，通过在上述增强纤维基材空隙中浸浸树脂，可以保持作为预
浸料坯的形状。可以在固定增强纤维的状态下稳定地将预浸料坯进行层合来制造预成型
体。即，可以减少层合工序中的工作和时间，减少经济负担。从层合预浸料坯时进一步提
高预浸料坯的操作性，且进一步增加层合的强度和黏合性，特别重要的是使增强纤维的
取向在特定范围内。由此，可以防止厚度方向的干扰，即使简单地层合预浸料坯也可以确
保成形品的各向同性。进而，通过使增强纤维的长度在特定范围内，不仅所得成形品的力学
特性优异，还可以抑制预浸料坯或将其层合得到的预成型体的厚度膨胀，可以不受尺寸和形
状限制地进行输送同时使用于成型工序。

[0070] 此处，本发明中的所谓“各向同性”，是指将预浸料坯或层合预浸料坯所得的预成
型体制成成形品时，不管测定成形品的面内方向如何，比强度、比刚度、线膨胀系数等各种
特性都显示出均匀的特 性。

[0071] 此处，重要的是本发明中的增强纤维基材由O质量％以上50质量％以下纤维长度
超过10mm的增强纤维，50质量％以上100质量％以下纤维长度为2mm以上10mm以下的增
强纤维，及0质量％以上50质量％以下纤维长度小于2mm的增强纤维构成。纤维长度比
10mm长的增强纤维超过50质量％时，有时层合工序至成型工序中的厚度膨胀变大，破坏操
作性。另外，纤维长度小于2mm的增强纤维超过50质量％时，不仅存在所得成形品的力学
特性降低的情况，还存在预浸料坯或将其层合得到的预成型体无法确保充分的强度，破坏
成形性的情况。从上述观点考虑，优选增强纤维基材由80质量％以上100质量％以下纤维
长度3mm以上8mm以下的增强纤维构成。进而，较优选增强纤维基材中纤维长度的分布至少
具有2个峰，至少1个峰在纤维长度5mm以上10mm以下的范围内，此外至少1个峰在纤维
长度2mm以上5mm以下的范围内。通过使纤维长度的分布在较优选的范围内，可以同时使
用于确保力学特性的增强纤维，和用于确保层合工序中成型工序中的预成型体的操作性的增强纤维，可以容易地同时实现两者的特性。需要说明的是，此处增强纤维的质量比例，表示以构成增强纤维基材的全部增强纤维为100质量%时数平均计的纤维长度的比例。

作为增强纤维的纤维长度的测定方法，例如包括下述方法：从增强纤维基材中直接取出增强纤维的方法；和使用仅溶解预浸料坯的树脂的溶剂使其溶解，过滤除去剩余的增强纤维，通过显微镜观察进行测定的方法（溶解法）。在没有溶解树脂的溶剂的情況下，存在下述方法：在增强纤维不发生氧化例的范围内将树脂灰化，分离增强纤维，通过显微镜观察进行测定（灰化法）。测定可以如下进行：任选出400根增强纤维，用光学显微镜测定其长度精确到μm单位，测定纤维长度和其比例。需要说明的是，将从增强纤维基材中直接取出增强纤维的方法，和用灰化法或溶解法从预浸料坯中取出增强纤维的方法进行比较时，通过适当选定条件，所得的结果不会产生特别的差异。

进而，作为本发明中的增强纤维的取向，可以通过三维取向角进行定义。通常，大多数情况下增强纤维基材是增强纤维形成束状而构成的，因此难以确保作为预浸料坯的各向同性。且树脂向东束内不充分，有时成为纤维强度降低的原因。即使增强纤维束分散成单丝，增强纤维的单丝之间也以平行的方式接触，导致同样的结果。进而，厚度方向上的纤维取向，是预浸料坯或将其层合得到的成型体的厚度膨胀的原因，有时明显破坏操作性和成型性。

此处，参见附图说明本发明中的增强纤维单丝（a）和与该增强纤维单丝（a）交叉的增强纤维单丝（b）所形成的角度。图1为表示从纤维向雷达上由本发明的预浸料坯一个例子的增强纤维尺的增强纤维方向的示意图。关注增强纤维单丝1时，增强纤维单丝1与增强纤维单丝2～7交叉。此处所谓交叉，是指在观察到的二维平面上关注的增强纤维单丝（a）被观察到与增强纤维单丝（b）的交叉的状态。此处，实际的预浸料坯中，增强纤维1与增强纤维2～7并不一定需要接触。三维取向角定义为在交叉的2根增强纤维单丝形成的2个角度中的0度以上90度以下的角度8。

具体而言，对由预浸料坯测定三维取向角的平均值的方法没有特别限制，例如可以举出从预浸料坯的表面观察三维取向角的方法。上述情况下，通过研磨预浸料坯表面使纤维露出，更易于观察增强纤维，故优选。另外，可以举出从预浸料坯中利用透射光观察增强纤维取向的方法。上述情况下，通过将预浸料坯切成薄片，可以更易于观察增强纤维，故优选。进而，还可以举出下述方法：对预浸料坯进行X射线CT透射观察拍摄增强纤维的取向图像。为X射线透射性高的增强纤维时，在增强纤维中混合示踪用纤维时，或者在增强纤维上涂布示踪用药物，更易于观察增强纤维，故优选。

另外，难以用上述方法测定的情况下，可以举出下述方法：在不破坏增强纤维的结构的情况下将树脂除去后，观察增强纤维的取向。例如图2(a)所示，将预浸料坯夹在2片不锈钢制网中，用螺钉等固定使预浸料坯不移动，然后将树脂成分灰化，用光学显微镜或电子显微镜观察所得增强纤维基材并进行测定（图2(b)）。

本发明中的三维取向角的平均值按照以下顺序1、11测定。

测定任意选择的增强纤维单丝（a）（图1中的增强纤维单丝1）和与该增强纤维单丝（a）交叉的全部增强纤维单丝（b）（图1中的增强纤维单丝2～7）形成的角度，求出平均值。与增强纤维单丝（a）交叉的增强纤维单丝（b）在大多数的情况下，也可以
任选20根交叉的增强纤维单丝（b）并测定，使用测定得到的平均值代替上述平均值。

[0079] I. 若着眼于其他增强纤维单丝（a）重复上述测定I共5次，算出其平均值作为二维取向角的平均值。

[0080] 本发明中的增强纤维的二维取向角的平均值为10度以上80度以下，优选为20度以上70度以下，较优选为30度以上60度以下，越接近作为理想的取向角的45度越优选。二维取向角的平均值小于10度或大于80度时，表明增强纤维大多数直接以束状存在，力学特性降低。进而，二向各向同性被破坏时，为了确保成型品特性的各向同性，必须将大多数预浸料坯层合，使得增强纤维的取向朝向各方向。另外，无法忽视厚度方向的增强纤维的情况下，由于预浸料坯变厚，所以存在难以进行层合时预浸料坯的配置、输送等操作、层合工序中的经济的负担变大的情况。

[0081] 为了使二维取向角接近理想的取向，制造增强纤维基材时通过使增强纤维分散、且按平面配置从而可以实现。为了提高增强纤维的分散，可以使用干式法或湿式法。干式法是在空气中进行增强纤维束的分散的方法。湿式法是在水中进行增强纤维束的分散的方法。干式法中可以举出下述方法：设置开纤线的方法；使开纤线振动的方法；使梳棉的孔变细的方法；和调节梳棉的旋转速度的方法等。湿式法中可以举出下述方法：将增强纤维分散时调节搅拌条件的方法；使浓度稀释的方法；调节溶液粘度的方法；输送分散液时抑制涡流的方法等。

[0082] 另外，为了按平面配置，干式法可以举出以下方法，即，在汇集增强纤维时利用静电的方法；使用经过整流化的空气的方法；调节输送带的牵拉速度的方法等。湿式法可以举出以下方法，即，防止用超声波等分散的增强纤维再次凝集的方法；调节过滤速度的方法；调节输送带的网眼孔径的方法；调节输送带的牵拉速度的方法等。上述方法没有特别限定，也可以一边确认增强纤维基材的状态，一边控制其他制造条件，从而实现上述方法。

[0083] 特别是用湿式法进行制造时，例如可以举出使用如图3所示的抄纸基材的制造装置的方法。通过增加加入纤维的浓度，可以增加所得增强纤维基材的单位面积重量。进而，通过调节分散液的流速（流量）和网状输送带的速度，也可以调节单位面积重量。例如通过使网状输送带的速度为恒定，增加分散液的流速，可以增加所得增强纤维基材的单位面积重量。相反地通过使网状输送带的速度为恒定，降低分散液的流速，也可以减少所得增强纤维基材的单位面积重量。进而，通过调节网状输送带相对于分散液的流速的速度，也可以控制纤维取向。例如通过提高网状输送带相对于分散液的速度的速度，使所得增强纤维基材中的纤维取向变得易于朝向网状输送带的牵引方向。如上所述，调节各种参数，可以制造增强纤维基材。

[0084] 从同时实现力学特性和成型性的观点考虑，相对于100质量％预浸料坯，本发明的预浸料坯中的增强纤维基材的质量比例优选为5质量％以上60质量％以下，较优选为10质量％以上60质量％以下，更优选为10质量％以上50质量％以下，特别优选为15质量％以上40质量％以下。本发明的预浸料坯中，需要使树脂含浸在增强纤维基材的空隙中，其含浸率优选为30％以上100％以下，较优选为40％以上100％以下，更优选为50％以上100％以下。如果含浸率在优选的范围内，则可以实现本发明的效果即不会破坏预浸料坯的操作性和成型性地进行使用。另外，从提高使用本发明的预浸料坯得到的成型品的轻质性的观点考虑，将树脂的含浸率换算为100％时，增强纤维的体积比例优选为50％以下，
较优选为40%以下，更优选为10%以上 30%以下。

【0085】作为含浸率的测定方法，没有特别限制，例如可以用以下所述的简便的方法测定。首先，观察预浸料坏的截面，由显微镜照相计算空隙的总面积，再除以增强纤维基材的面积的方法；由预浸料坏在23℃下的厚度h0 与将其加压成型后在23℃下的厚度hc0之比（hc0/h0）求出含浸率的方法；另外，由同各材料的使用比例求出的理论密度与预浸料坏的体积密度之比，求出的方法等。此外，具体说明下述方法；观察预浸料坏的厚度方向截面，测定截面中的空隙部分的面积和整个截面面积，算出含浸率的方法。即，将预浸料坏用环氧树脂等热固性树脂包埋，对与预浸料坏的截面端部接触的面进行研磨，用光学显微镜或电子显微镜观察宽500μm以上1000μm以下左右的范围，作为对照，求出含浸树脂的部位和没有含浸树脂的部位的面积，根据下式算出树脂含浸率的方法。

【0086】树脂含浸率（%）= 100×（含浸树脂的部位的总面积）/(预浸料坏的观察部位的截面积中除去增强纤维部分的总面积)。

【0087】另外，预浸料坏的体积密度可以由预浸料坏在23℃下的体积和质量求出。本发明的预浸料坏的优选的体积密度为0.8以上1.5以下，较优选为0.9以上1.4以下，更优选为1.0以上1.3以下。如果体积密度在优选的范围内，则使用本发明的预浸料坏得到的成型品可以确保充分的轻质性。基于相同的理由，作为预浸料坏的单位面积重量，优选为10g/m²以上500g/m²以下，较优选为30g/m²以上400g/m²以下，更优选为100g/m²以上300g/m²以下。

【0088】从进行层合、预成型体化的工序中的操作性的观点考虑，本发明的预浸料坏的厚度在23℃下的厚度h0为0.03mm以上1mm以下，优选为0.05mm以上0.8mm以下，较优选为0.1mm以上0.6mm以下。h0小于0.03mm时有时会破坏预浸料坏，超过1mm时有时会破坏赋型性。

【0089】本发明的预浸料坏，通过抑制形成为预成型体时成型时的厚度膨胀，可以稳定地向模内输送，为优选。从控制赋型性和粘合性的观点考虑，在预浸料坏的层合工序和预成型体的成型工序中有时进行预热。因此，预浸料坏在(n×100)℃下的厚度hn(mm)优选h0≤hn≤h0×(2n+1)(n为选自1, 2, 3, 4中的至少一个自然数)，较优选h0≤hn≤h0×2n，特别优选h0≤hn≤h0×2(n-1)。需要说明的是，(n×100)℃下的预浸料坏的厚度可以如下测定：在测定预浸料坏的温度气氛下放置10分钟后，采用游标尺、激光位移计和用相机拍摄厚度进行计量等公知的计量方法进行测定。

【0090】此处，n>1表示所用的气氛温度越高，预浸料坏显示出气氛温度越高厚度膨胀越大的倾向。这是由于除单纯体积膨胀之外，增强纤维彼此在厚度方向存在干涉，该现象随着树脂低粘度化而越发明。因此气体温度依赖性更高。进而，还可以指出由所用的树脂分解和发泡引起的厚度膨胀。因此，对于n，可以根据使用的材料选择合适的数字。

【0091】n=1(气氛温度100℃)，干燥条件及层合工序所使用的通常的温度。该温度下的厚度为h0的3倍以下时，可以认为预成型体的厚度稳定且较小，从降低层合工序的负荷的观点考虑，为优选。另外，n=2(气氛温度200℃)是通常的热固性树脂的固化温度和低粘点热塑性树脂的加工温度。该温度下的厚度为h0的5倍以下时，从确保成型工序中向模中输送等的操作性和稳定的赋型性观点考虑，为优选。进而，n=3(气氛温度300℃)相当于常用的工程塑料的加工温度的上限。该温度下的厚度为h0的7倍以下时，从树脂分解少，安全且稳定地对预浸料坏或预成型体进行操作的观点考虑，为优选。最后，n=4(气
分析温度400℃是通常的超微工程塑料的加工温度，除此之外的热塑性树脂和热固性树脂的分解被促进，增强纤维基材的厚度膨胀变得接近最大点。因此，该温度下金属的厚度为h的9倍以下时，从抑制增强纤维厚度方向的配置比例，预浸料坯的稳定性的操作性的观点考虑，为优选。

作为抑制增强纤维厚度方向的配置比例的方法，如上所述，在制造增强纤维基材时通过使增强纤维分散，且按平面配置可以实现。为了按平面进行配置，干式法可以举出下述方法，即，在汇集增强纤维利用静电的方法，使用经过整理化的空气的方法，调节输送带的牵引速度的方法等。湿式法可以举出以下方法，即，防止用超声波等分散的增强纤维再次凝聚的方法，调节过滤速度的方法，调节输送带的网眼孔径的方法，调节输送带的牵引速度的方法等。在维持良好的分散状态不变的状态下使用输送带一边抽吸增强纤维基材一边连续地牵引的方法，能够对应于输送带的移动即在与输送带平行的方向上在输送带面上强制性地倒放增强纤维来制作增强纤维基材，因此特别优选作为抑制增强纤维厚度方向的配置比例的方法。

测定的温度气氛为非常高的温度的情况下，难以直接测定时，可以对其进行处理使其厚度维持在稳定的状态下，然后调节至关能够测定的温度后进行测定。例如如果为热塑性树脂的预浸料坯，则在熔点或软化点以上的高温气氛下使树脂流动，冷却至室温，由此可以将预浸料坯的树脂固化，在固定了厚度的状态下进行测定。

对于厚度的测定部位，确定预浸料坯上的2点X、Y，使该预浸料坯的面内直线距离XY最长。接着，将该直线XY分为10等分以上，将此时的除两端XY之外的各分剖点作为厚度的测定点，将各测定点处的厚度的平均值作为预浸料坯的厚度。

作为预浸料坯中使用的树脂，只要为对增强纤维基材具有含浸性，可以实现用于确保层合工序中的操作性的拉伸强度的树脂即可，没有特别限制，可以使用以下所示的热塑性树脂、未固化状态下的热固性树脂。其中，本发明的预浸料坯使用热塑性树脂。

用于确保层合工序中的操作性的拉伸强度σ的数值越高，越可以用于高强且经济性优异的层合工序、成型工序。预浸料坯的拉伸强度σ必须至少为0.01MPa。小于0.01MPa时，在层合时或成型时的操作中有时会发生预浸料坯破坏等问题。另外，作为预浸料坯的各向同性的指标，由测定方向引起的最大拉伸强度σMax与最小拉伸强度σMin的关系中，拉伸强度σ优选σMax ≤ σMin × 2，更优选σMax ≤ σMin × 1.8，更优选σMax ≤ σMin × 1.5。从可以减少层合工序中的经济负担的观点考虑，σ的各向同性越高越优选。

预浸料坏的拉伸强度如下求出：从预浸料坯中切割试验片，按照ISO527-3法（1995）测定拉伸特性。以任意方向为0度方向，测定试验片的+45度，-45度，90度方向共4个方向。使各个方向的测定数为n=5以上，将全部测定结果的平均值作为拉伸强度。各测定方向上的拉伸强度中最大值为σMax，最小值为σMin。

作为本发明的预浸料坯中使用的热塑性树脂，例如可以举出“聚对苯二甲酸乙二醇酯（PET）、聚对苯二甲酸丁二醇酯（PBT）、聚对苯二甲酸丙二醇酯（PTT）、聚对苯二甲酸乙二醇酯（PET）、液晶聚酯等聚酯；聚乙烯（PE）聚丙烯（PP）、聚丁烯等聚烯烃，聚甲醛（POM）、聚酰胺（PA），聚苯硫醚（PPS）等聚芳硫醚，聚醚（PK）、聚酰胺（PEK），聚酰胺酮（PEEK），聚酰胺酮（PAK）等。
酮（PEKK）、聚醚脂（PEN）、聚四氟乙烯等氟树脂、液晶聚合物（LCP）”等结晶性树脂；“除苯乙烯类树脂之外的聚碳酸酯（PC）、聚甲基丙烯酸甲酯（PMMA）、聚氯乙烯（PVC）、聚苯醚（PPE）、聚酰胺（PA）、聚酰胺酰胺（PAI）、聚酰酰胺（PEI）、聚砜（PSU）、聚醚砜、聚芳酯（PAR）”等非晶性树脂；除此之外，还可以举出醚醛树脂、苯氧基树脂，进而还可以举出自下述热塑性弹性体及它们的共聚物及改性体等中的热塑性树脂，所述热塑性弹性体包括聚苯乙烯类、聚烯烃类、聚氨酯类、聚酯类、聚酰胺类、聚丙烯类、聚异戊二烯类、聚乙烯类、氯树脂及丙烯腈类等。其中，从所得成型品的轻质性的观点考虑，优选聚烯烃，从强度的观点考虑，优选聚酰胺，从表面观观的观点考虑，优选使用聚碳酸酯和苯乙烯类树脂之类非晶性树脂，从耐热性的观点考虑，优选使用聚芳醚酮，从连续使用温度的观点考虑，优选使用聚醚酮，进而从耐药品性的观点考虑，优选使用氯树脂。

【0100】本发明的预浸料坯中热塑性树脂时，由于可以获得高拉伸强度σ，所以有利于层合工序、成型工序的经济性。上述情况下，优选的σ为1MPa以上，优选为10MPa以上，更优选为50MPa以上。对σ的上限没有特别限制，但通常可以举出1000MPa以下。

【0101】作为本发明的预浸料坯中使用的热固性树脂，例如可以举出下述树脂：不饱和聚酯、乙烯基酯、环氧树脂、酚醛树脂（可熔酚醛树脂型）、尿素-三聚氰胺、聚酰亚胺、它们的共聚物、改性体、及将至少2种上述物质混合得到的树脂。其中，从所得成型品的力学特性的观点考虑，优选使用环氧树脂。另外，由于使用预浸料坯在成型工序固化，所以所用的热固性树脂的玻璃化温度优选为80℃以下，较优选为70℃以下，更优选为60℃以下。

【0102】需要说明的是，预浸料坯中使用的热固性树脂时，很难确保拉伸强度σ。上述情况下，优选的σ为0.05MPa以上，较优选为0.1MPa以上，更优选为1MPa以上。对σ的上限没有特别限制，但通常可以举出10MPa以上。作为确保拉伸强度σ的方法，没有特别限制，例如可以用下述方法实现：使用高粘度型的热固性树脂的方法；使用高粘度型的热固性树脂的方法；在纤维增强基材中预先使用有机化合物等填充的方法等。

【0103】本发明中使用的树脂成分也可以使用在上述热塑性树脂基质中混合了热固性树脂的混合物。进而，也可以根据其用途，在树脂成分中进一步添加填充材料、导电性赋予材料、阻燃剂、阻燃助剂、颜料、染料、润滑剂、脱模剂、颜料剂、分散剂、晶核剂、增塑剂、热稳定剂、抗氧化剂、防老剂、紫外线吸收剂、流动性改性剂、发泡剂、抗氧剂、阻燃剂、防老剂、流动性改性剂、及防静电剂等。用途为电子、电子机器、汽车、航空器等时有时要求阻燃性，特别优选添加磷酸酯阻燃剂、氯类阻燃剂、无机类阻燃剂。如上所述，树脂成分中含有除热塑性树脂之外的成分时，为了不破坏使用热塑性树脂的效果，使树脂成分中热塑性树脂的含量为60质量%以上。

【0104】从经济性的观点考虑，本发明的预浸料坯优选长尺寸，长尺寸方向的长度优选为500mm以上，较优选为800mm以上，更优选为1000mm以上。对长尺寸方向的长度的上限没有特别限制，但通常可以举出4000mm以上。

【0105】【预浸料坯的制造方法】

【0106】至今为止已经对制造如本发明的预浸料坯之类均匀地分散有增强纤维的预浸料坯的方法进行了各种研究。

【0107】例如，上述国际公开第2007/97436号说明书公开了作为纤维增强热塑性树脂成型体的增强纤维，使用单纤维状碳纤维，质量平均纤维长度为0.5mm以上10mm以下，且取
向参数为-0.25以上0.25以下的碳纤维时，可以得到力学特性优异，具有各向同性的力学特性的成型体。纤维增强热塑性树脂成型体按下列工序制造：（1）将成型材料中含有的热塑性树脂加热熔融的工序；（2）在模具内配置成型材料的工序；（3）用模对成型材料加压的工序；（4）在模具内将成型材料固化的工序；（5）开模，将纤维增强热塑性树脂成型体脱模的工序。

【0108】另外，日本特开平9-94826号公报公开了制造纤维增强树脂片材时，对含有不连续增强纤维和热塑性树脂的分散液进行抄纸时，通过控制分散液的流动方向，可以得到随机取向纤维增强树脂片材，所述随机取向纤维增强树脂片材使网中的纤维取向随机化，轻质且具有各方向上各向同性的高机械强度，且发挥薄壁大型产品的成型性优异的特性。

【0109】另外，日本特开2004-217879号公报公开了下述制法作为冲压成型片材（Stampable sheet）的制法，即，（1）通过湿式分散法将增强纤维和热塑性树脂抄浆成片状后，干燥，将在片料的各平面方向上排列的增强纤维用部分热塑性树脂粘合，制造基材结构的网，（2）将所得网进行针刺，使上述基材中的一部分增强纤维按厚度方向排列，形成针刺毡后，（3）在基质中热塑性树脂的熔点异常的温度下将针刺毡的一面加热•压缩。

【0110】上述专利文献的预浸料坯的制法中，均通过压入树脂对增强纤维进行抄纸，为了增加树脂种，需要清洗装置，增加装置台数等。另外，需要控制碳纤维的取向，因此，必须设定每个工序的详细的条件。因此，制造需要时间及工夫，在用于有效制造预浸料坯方面存在问题。

【0111】另外，日本特开平9-94826号公报，日本特开2004-217879号公报记载的预浸料坯的制造方法中，必须将增强纤维和热塑性树脂进行混抄，为了制作改变热塑性树脂的成型基材，需要改变树脂进行抄纸，因此清洗搅拌槽等抄纸槽或增设制造传送线等方面花费大量工夫，在用于有效制造方面存在问题。

【0112】因此，本发明中，优选通过以下方法制造预浸料坯。即，预浸料坯的制造方法如下所述，包括下述工序，工序（I），使增强纤维束分散得到增强纤维基材，工序（II），对上述工序（I）中得到的增强纤维基材赋予粘合剂；和工序（III），将基质树脂与上述工序（II）中得到的赋予了粘合剂的增强纤维基材进行复合化，上述工序（I）～（II）在线实施。上述增强纤维束相对于预浸料坯整体的含有率为10质量%以上80质量%以下，上述粘合剂的含有率为0.1质量%以上10质量%以下及上述基质树脂的含有率为10质量%以上80质量%以下。根据本发明的预浸料烘的制造方法，可以在短时间内得到增强纤维的分散状态优异、形成成型品时力学特性优异的预浸料坯。

【0113】工序（I）中，使增强纤维束分散而得到增强纤维基材。

【0114】增强纤维束是指由增强纤维构成的纤维束。增强纤维束由连续的增强纤维构成或者由不连续的增强纤维构成均可，但为了实现更良好的分散状态，优选不连续的增强纤维束。最优选将连续的增强纤维束切割后得到的短切纤维。

【0115】增强纤维束优选由碳纤维构成的纤维束（碳纤维束），优选短切碳纤维束。

【0116】另外，对构成增强纤维束的单纤维根数没有特别限制，但从生产率的观点考虑，优选24,000根以上，优选48,000根以上。对单纤维根数的上限，没有特别限制，但也考虑到分散性与操作性的平衡，如果为300,000根左右则可以保持生产率、分散性和操作性良好。
作为增强纤维基材原料的增强纤维束的长度，优选为1mm以上50mm以下，较优选为3mm以上30mm以下。增强纤维束的长度小于1mm时，可能难以有效地发挥由增强纤维产生的增强效果。增强纤维束的长度超过50mm时，可能难以确保分散良好。增强纤维束的长度是指构成增强纤维束的单纤维的长度，可以用游标尺测定增强纤维束的纤维轴方向的长度，或者可以增强纤维束中取出单纤维用显微镜观察并测定。另外，为了在增强纤维基材中测定增强纤维长度，可以如上所述地从预浸料坯中分离碳纤维来测定。切割一部分预浸料坯，利用溶解粘结的热塑性树脂的溶剂，使热塑性树脂充分溶解。之后，采用过滤等公知的操作，从热塑性树脂中分离碳纤维。或者，切割一部分预浸料坯，在500℃的温度下加热2小时，将热塑性树脂灰化，从热塑性树脂中分离碳纤维。任意抽出400根被分离的碳纤维，用光学显微镜或扫描电子显微镜测定其长度精确至10μm单位，将其平均值作为纤维长度。

工序（I）中，使增强纤维束分散得到增强纤维基材时，可以采用湿式法或干式法中的任一种。

利用湿式法进行工序（I）时，可以在水中进行增强纤维束的分散，将所得浆料搅拌，得到增强纤维基材。

使增强纤维束分散的水（分散液）除通常的自来水之外，还可以使用蒸馏水、精制水等水。可以根据需要，在水中混合表面活性剂。表面活性剂分类为下述各种，包括阳离子型、阴离子型、非离子型、两性，但其中，优选使用非离子型表面活性剂，其中，较优选使用聚氧乙烯十二烷基醚。表面活性剂与水混合的情况下，表面活性剂的浓度通常为0.0001质量%以上0.1质量%以下，优选为0.0005质量%以上0.05质量%以下。

增强纤维束相对于水（分散液）的添加量，相对于1L水（分散液）的量，通常可以在0.1g以上10g以下，优选在0.3g以上5g以下的范围内进行调节。通过使其为0.1g以上10g以下，可以有效地将增强纤维束分散在水（分散液）中，在短时间内获得均匀分散的浆料。使增强纤维束分散于水（分散液）中时，根据需要进行搅拌。

浆料是指分散有固体粒子的混悬液。浆料中的固态成分浓度（浆料中增强纤维的质量含量）优选为0.01质量%以上1质量%以下，较优选为0.03质量%以上0.5质量%以下。通过使其为0.01质量%以上1质量%以下，可以有效地进行抄浆。

浆料的抄浆可以从上述浆料中抽取水来进行。浆料的抄浆可以根据所谓抄纸法来进行。给出一个例子进行说明时，可以使浆料流入槽内抽取水来进行，所述槽在底部具有抄纸面且能够从底部抽取水。作为上述槽，可以举出熊谷理机工业株式会社制、No.2553-1（商品名）、底部具有宽200mm的抄纸面的、安装有网状输送带的槽。如上所述可以得到增强纤维基材。

在工序（II）的粘合剂赋予工序中赋予粘合剂之前，优选将分散后得到的增强纤维基材的含水率调节为10质量%以下，优选5质量%以下。由此，可以缩短工序（II）所需的时间，可以在短时间内得到预浸料坯。

利用干式法进行工序（I）时，可以使增强纤维束在气相中分散得到增强纤维基材。即，可以使增强纤维束在气相中分散，使分散后的增强纤维束堆积，得到增强纤维基材。

增强纤维束在气相中的分散包括以下3种方法：以非接触式将增强纤维束开纤，使经过开纤的增强纤维束堆积来进行分散的方法（非接触式法）；将空气流与增强纤维束
接触并开纤，使经过开纤的增强纤维束体积来进行分散的方法（使用空气流的方法）；以接触式将增强纤维束开纤，使经过开纤的增强纤维束体积来进行分散的方法（接触式法）。

【0127】非接触式法是使固体及开纤装置不与增强纤维束接触而使其开纤的方法。例如将空气或惰性气体等气体喷射到增强纤维束上的方法，其中，优选出在成本方面有利的对空气加压并进行喷射的方法。

【0128】利用空气流的方法中，空气流与增强纤维束接触的条件没有特别限定。给出一个例子时，与加压空气（通常压力为 0.1MPa 以上 10MPa 以下，优选 0.5MPa 以上 5MPa 以下的上述空气流）接触直至增强纤维束开纤。利用空气流的方法中，能够使用的装置没有特别限定，可以举出具有空气管，可以进行空气抽吸，能够收纳增强纤维束的容器。通过使用上述容器，可以在一个容器内进行增强纤维束的开纤和堆积。

【0129】接触式法是使增强纤维束与固体及开纤装置进行物理接触使其开纤的方法。作为接触式法，可以举出梳理（Carding）开纤、针刺开纤、辊开纤。其中，优选利用梳理、针刺进行的开纤，较优选利用梳理进行的开纤。接触式法的实施条件没有特别限定，可以适当确定增强纤维束开纤的条件。

【0130】增强纤维占增强纤维基材的比例优选为 80 质量%以上 100 质量%以下，较优选为 90 质量%以上 100 质量%以下。通过使其为 80 质量%以上 100 质量%以下，在使用增强纤维基材与基质树脂复合时，有效地体现出增强效果。

【0131】增强纤维基材的单位面积重量优选为 10g/m² 以上 500g/m² 以下，较优选为 50g/m² 以上 300g/m² 以下。小于 10g/m² 时可能在基材破坏等操作性方面出现不良情况，超过 500g/m² 时，湿式法中基材干燥时有时需要花费较长时间且干式法中有时会变厚，之后的操作中操作性可能变难。

【0132】工序（II）中，赋予在工序（I）中得到的增强纤维基材粘合剂。

【0133】粘合剂是指介于增强纤维基材和基质树脂之间的粘结二者的粘合剂。粘合剂通常为热塑性树脂。作为热塑性树脂，可以举出丙烯酸类聚合物、乙烯基聚合物、丙烯酸类聚合物及聚酯。本发明中，优选使用选自上述例子中的 1 种或 2 种以上。另外，热塑性树脂优选具有选自氨基、环氧基、羧基、噁唑啉基、羧酸盐基及酸酐基中的至少 1 种官能团，也可以具有 2 种以上官能团。其中，较优选具 有氨基的热塑性树脂。

【0134】赋予增强纤维基材粘合剂优选以粘合剂（例如上述热塑性树脂）的水溶液、乳液或悬浮液的形态进行。水溶液是指基本完全溶解于水的状态的溶液，乳液是指不完全溶解的 2 种液体在溶液中形成微粒的状态的溶液（乳浊液），悬浮液是指悬浮于水的状态的溶液（混悬液）。溶液中的成分粒径的大小顺序为水溶液＜乳液＜悬浮液。赋予方式没有特别限定，例如可以通过将碳纤维基材浸渍于热塑性树脂的水溶液、乳液或悬浮液中等方式，喷淋式等来进行。接触后优选在干燥工序之前，通过例如抽吸或将其吸收到吸收纸等吸收材料等中除去剩余部分的粘合剂。

【0135】上述工序（II）中，增强纤维基材优选在赋予粘合剂后被加热。由此，可以缩短工序（III）所需的时间，在短时间内得到预浸料坯。可以适当设定赋予粘合剂后的增强纤维基材干燥的温度，加热温度优选为 100°C 以上 300°C 以下，较优选为 120°C 以上 250°C 以下。

【0136】工序（III）中，使基质树脂含浸于工序（II）中得到的赋予了粘合剂的增强纤维基材中，将增强纤维基材与基质树脂进行复合化。
赋予了粘合剂的增强纤维基材与基质树脂的复合化可以通过使基质树脂与增强纤维基材接触来进行。上述情况下，基质树脂的形态没有特别限定，例如基质树脂为热塑性树脂时，优选为单体液、无纺布及膜中的至少一种的形态，优选为无纺布。接触的方式没有特别限定，可以举出下述方式：准备2片基质树脂的布或无纺布或膜，将其配置在被赋予了粘合剂的增强纤维基材的上下两面。

复合化优选利用加力及/或加热来进行，优选同时进行加力和加热两者。加力条件优选为0.01MPa以上10MPa以下，较优选为0.05MPa以上5MPa以下。加热的条件优选为所用的基质树脂能够熔融或流动的温度，温度范围优选为50℃以上400℃以下，较优选为80℃以上350℃以下。加力及/或加热可以在使基质树脂与被赋予了粘合剂的增强纤维基材接触的状态下进行。例如可以举出下述方法：即，准备2片基质树脂的布或无纺布或膜，将其配置在被赋予了粘合剂的增强纤维基材的上下两面，从两面进行加热及/或加力（用双层带加压(double belt press)装置进行夹持的方法等）。

通过工序(III)，可以得到预浸料坯。

本发明中，除上述工序(I)～(III)之外，还可以包括工序(IV)。工序(IV)是将上述工序(III)中得到的预浸料坯进行拉伸的工序。预浸料坯的拉伸可以通过用轴卷取来进行。拉伸速度优选为10m/分钟以上。拉伸速度的上限通常为100m/分钟以下。

上述工序(I)～工序(III)及根据需要进行的工序(IV)中，工序(I)～(III)优选在线实施。进而，工序(I)～工序(III)及根据需要进行的工序(IV)均较优选在线实施。在线(online)是指各工序之间连续地实施的方式，是离线(offline)的反义词。也就是说，在线是指各工序以连续流程的方式进行的操作，不同于分别独立的状态的操作。通过在线实施工序(I)～(II)，可以在短时间内得到预浸料坯。

增强纤维束、粘合剂及基质树脂相对于预浸料坯整体的配合量，优选增强纤维束为50质量%以上80质量%以下，粘合剂为0.1质量%以上10质量%以下，基质树脂为10质量%以上80质量%以下。通过使其在上述范围内，易于得到能够有效地发挥增强纤维的增强的成型基材。

通过使增强纤维束分散得到增强纤维基材的工序(I)中，优选利用湿式法得到增强纤维基材。特别优选利用以下工序(i)～(iv)得到增强纤维基材。即，所述增强纤维基材的制造方法包括下述工序：工序(i)，向分散介质中加入增强纤维束；工序(ii)，配制上述分散介质中分散有构成上述增强纤维束的增强纤维的浆料；工序(iii)，输送上述浆料；和工序(iv)，从上述浆料中除去分散介质，得到含有增强纤维的抄纸基材。

工序(i)中，向分散介质中加入增强纤维束。

分散介质(分散液)是指能够使增强纤维束分散的介质。作为分散介质的例子，可以举出水、醇等所谓溶剂，但优选水。作为水，除通常的自来水之外，还可以使用蒸馏水、精制水等水。根据需要，可以在水中混合表面活性剂。表面活性剂分为下述各种，包括阳离子型、阴离子型、非离子型、两性，其中，优选使用非离子型表面活性剂，其中，较优选使用
聚氧乙烯十二烷基醚。在水中混合表面活性剂时，表面活性剂的浓度通常为 0.0001质量%以上 0.1质量%以下，优选为 0.0005质量%以上 0.05质量%以下。另外，根据需要可以使高分子化合物溶解于分散介质，调节分散介质的粘度。根据溶剂的种类，高分子化合物可以优选使用水溶性高分子、有机溶剂性高分子。分散介质为水时，较优选使用淀粉、聚乙烯醇、聚环氧乙烷。高分子化合物溶解于分散介质时的高分子化合物的浓度优选为 0.01质量%以上 5质量%以下，较优选为 0.05质量%以上 1质量%以下。

【0147】 构成分散介质的溶剂、表面活性剂及高分子化合物可以为 1种，也可以为 2种以上。

【0148】 分散介质利用 B型粘度计测定的粘度优选为 2mPa·s 以上 100mPa·s 以下，较优选为 2mPa·s 以上 80mPa·s 以下，更优选为 3mPa·s 以上 50mPa·s 以下。通过使粘度为 1mPa·s 以上，可以抑制摩擦力及分散介质的粘度，可以得到分散性优异的纤维增强基材。另外，通过使表面张力为 100mPa·s 以下，分散介质中含有的表面活性剂及高分子化合物对增强纤维的附着力变少，可以获得与热塑性树脂组合物的牢固的粘合。

【0149】 工序 (ii) 中，配制分散介质中分散有构成增强纤维束的增强纤维的浆料。本发明中，优选水类浆料。

【0150】 工序 (ii) 在通常的分散槽中实施。分散槽是能够收纳浆料的槽 (容器)。使用分散槽时，优选将工序 (i) 中的分散介质和增强纤维束直接加入分散槽内。当然也可以首先将分散介质和增强纤维束加入除分散槽之外的槽内，然后将上述槽的物料转移到分散槽进行工序 (ii)。使增强纤维束分散于分散介质 (分散液) 时，也可以根据需要进行搅拌。即，分散槽可以根据需要设置搅拌装置。

【0151】 工序 (iii) 中，输送工序 (ii) 中得到的浆料。

【0152】 工序 (iii) 通常在输送部中进行，所述输送部连接进行工序 (ii) 的分散槽与进行工序 (iv) 的抄纸槽。

【0153】 输送部的长度没有特别规定，输送部的宽 W1 与增强纤维基材的宽 W2 的比 W1/W2 优选为 0.5 以上 1.0 以下，较优选为 0.7 以上 1.0 以下。W1/W2 小于 0.5 时，工序 (iii) 中的输送可能需要较长时间，及输送部中使用浆的情况下，浆料从输送部流到工序 (iv) 时，浆料流动部的宽度变大，因此增加对浆料的负荷，分散状态可能不充分。W1/W2 超过 1.0 时，工序 (iv) 中的浆料的分散状态可能会不充分。此处，所谓“输送部的宽度”是指输送部截面的宽度，例如输送部的截面为长方形时，指较长的径。“增强纤维基材的宽度”是指工序 (iv) 中得到的增强纤维基材的长、宽及厚中的宽度 (长度较短的一方)。另外，各宽度根据部位而不同，表示其平均值。

【0154】 输送部的宽度通常在 0.1m 以上 2m 以下的范围内。增强纤维基材的宽度通常为 0.2m 以上 2m 以下。

【0155】 输送部的形状只要为能够输送浆料的形状即可，没有特别限定，通常为管状。可以根据需要，在输送部的中途设置送液泵。送液泵优选例如隔膜泵、蛇形泵 (Snake pump) 等低剪切泵。

【0156】 工序 (iii) 可以以溢流 (Overflow) 方式进行。由此，对被输送的浆料中的增强纤维施加剪切力，可以防止沉淀、凝集，保持浆料中的分散性。另外，可以不使用泵等动力，经济地进行输送。
溢流方式是指利用重力从容器（槽）溢出的液体输送到下一个容器（槽）的方式。即，实质上不使用装液泵等动力进行输送液体的方式。

采用溢流方式时，优选输送部倾斜。即，从水平方向观察输送部时，优选分散槽与输送部的连接点位于比抄纸槽与输送部的连接点高的位置。该倾斜角优选为 30° 以上 60° 以下，较优选为 40° 以上 55° 以下。倾斜角小于 30° 时，工序 (iii) 中的输送可能需要较长时间。倾斜角超过 60° 时，采用溢流方式的情况下，浆料输送时的流速变大，因此到达工序 (iv) 时对浆料施加过剩的剪切，工序 (iv) 中的浆料的分散状态可能会不充分。

此处，所谓倾斜角是指输送部的管的中心线和与重力方向平行的线交叉的部分在垂直下方侧的角度。

另外，按溢流方式进行工序 (iii) 时，优选输送部与分散槽的连接部位于分散槽壁面，特别是上方的位置。

采用溢流方式时，输送部优选直线状，即，在中途不具有弯曲部、曲折部等方向变换点的形状。

采用溢流方式时，输送部的高度为 60mm 以上，优选为 100mm 以上。通过使其为 60mm 以上，可以根据输送的浆料量相对地减小输送部壁面与浆料的接触面积，可以减少由壁面接触时对浆料产生的剪切力导致的分散纤维的再次凝集。此处，输送部的高度是指从水平方向观察输送部时，输送部直径的大小。输送部为长方形（长边为基材宽度方向、短边为基材厚度方向）的情况下，短边的长度相当于“输送部的高度”。输送部的高度的上限没有特别限定，通常为 500mm 以下。需要说明的是，输送部的高度因部位而存在差异时，表示其平均值。

以图 13～图 20 为例子对输送部的形状进行说明。图 13～图 20 为模式化地表示工序 (i) 及工序 (ii) 在分散槽中进行，上述工序 (iv) 在抄纸槽中进行，上述工序 (iii) 在上述连接分散槽与抄纸槽的输送部中进行时，从水平方向观察到的分散槽、抄纸槽及输送部的带有位置的图。图 13～图 18 及图 20 中的输送部 213 呈现直线状。

输送部的倾斜角是指各图中输送部 213 的中心线 q 与按重力方向拉伸的线 p 在垂直下方侧所形成的角度 r。图 13、图 17 及图 18 中的输送部 213 从分散槽 211 向抄纸槽 212 倾斜，倾斜角为 30° 以上 60° 以下。图 14 中的输送部 213 以水平连接分散槽 211 与抄纸槽 212，倾斜角约为 90°。图 15 中的输送部 213 从分散槽 211 向抄纸槽 212 倾斜，倾斜角为 30° 以上 60° 以下。图 16 中的输送部 213 按重力方向连接分散槽 211 与抄纸槽 212，倾斜角约为 0°。图 20 中的输送部 213 与图 16 相同，倾斜角约为 0°，输送部 213 的中途设置有泵 225。

图 13、图 17 及图 18 中，输送部 213 与分散槽 211 的连接部 214 位于分散槽 211 壁面的上方。因此，如果为如图 13 所示的分散槽、抄纸槽及输送部的位置关系，则可以采用溢流方式进行工序 (iii)。

工序 (iv) 中，从浆料中除去分散介质得到含有增强纤维的抄纸基材，即增强纤维基材。

工序 (iv) 通常在抄纸槽中实施。抄纸槽为能够收纳浆料、具有能够抽吸水分的抄纸面的槽（容器）。通常抄纸面设置于底面附近，作为其材料，可以举出网片（Mesh sheet）等。
本发明中，可以将工序 (iv) 中得到的增强纤维材料进行牵拉。增强纤维材料的牵拉可以卷取在轴上来进行。牵拉速度优选为 10m/分钟以上。牵拉速度的上限通常为 100m/分钟以下。

工序 (i)～工序 (iv) 优先在线实施。

工序 (ii) 中的浆料的液面高度 H1 优选位于比工序 (iv) 中的浆料的液面高度 H2 高的位置。“浆料的液面高度”，是指从水平方向观察浆料时的液面位置。“位于高的位置”，是指 2 个液面高度以下述测定值表示时，一方的高度位于比另一方高的位置，即，2 个液面的高度中一方位于另一方的垂直下方的位置，所述测定值是以位于比该高度更靠近垂直下方的位置为基准，从该位置开始的垂直距离。

其中，上述工序 (ii) 中的浆料的液面高度 H1 与上述工序 (iv) 中的浆料的液面高度 H2 的差 H1-H2，优选为 0.1m 以上 5m 以下，较优选为 0.5m 以上 2m 以下。小于 0.1m 时，工序 (iii) 中的输送可能需要较长时间。另一方面，超过 5m 时，工序 (iv) 中的浆料的分散状态可能会不充分。

基于图 13～图 20 说明工序 (ii) 中的浆料的液面高度 H1 和工序 (iv) 中的浆料的液面高度 H2。分散槽 211 的浆料（斜线部分）的液面高度 H1 表示从液面的位置 B 到基准 A 的距离 H1，所述基准 A 位于比 H1 及 H2 更靠近垂直下方的位置。抄纸槽 212 的浆料（斜线部分）的液面高度 H2 表示从液面的位置 C 到液面基准 A 的距离 H2。为了维持浆料的液面高度 H1 及 H2 的差，如图 13、图 15、图 16 及图 19 所示，以重力方向为基准，优选分散槽 211 和抄纸槽 212 位于错开的位置，如图 14、图 17 及图 18 所示，如果根据浆料的量及槽的大小等调节各槽内浆料的液面高度，则分散槽 211 和抄纸槽 212 在重力方向上的位置也可以水平。

为了保持工序 (ii) 中的浆料的液面高度 H1 位于比工序 (iv) 中的浆料的液面高度 H2 高的位置，例如在分散槽中进行工序 (ii)、在抄纸槽中进行工序 (iv) 时，优选如下设置所述 2 个槽，即，分散槽底面的位置位于比抄纸槽上面的位置更靠近垂直上方的位置。

从工序 (i) 到工序 (iv) 开始为止所需的时间优选在 10 分钟以内。超过 10 分钟时，因增强纤维的种类的不同，分散在浆料中的增强纤维可能会再次凝集。从工序 (i) 到工序 (iv) 开始为止所需的时间的下限没有特别限定，通常为 1 分钟。

工序 (i) 中，优选连续地加入分散介质和增强纤维束，连续地实施上述工序 (i) 至工序 (iv)。由此，可以在更短时间内获得增强纤维材料。另外，一次加入大量的浆料时，一部分浆料到抄纸为止需要较长时间，分散状态可能变差，通过进行连续地加入、实施，可以在保持分散状态的同时，有效地对浆料以每次少量地进行抄纸。“连续地加入”、“连续地实施”是指连续地加入和对工序 (i) 中给予的原料依次或连续地实施工序 (ii)～(iv)。换言之，是指在一系列的工序中，连续实施分散浆料的原料供给及浆料供给的状态，是指相对于最初制作一定数量浆料的操作而进行的考虑到大量生产的操作。作为进行连续地加入、实施的方法，可以举出除分批式以外的方法，以一定速度加入的方法、以规定的间隔加入大致一定量的方法。作为以一定速度进行加入的条件，可以举出下述条件：以≤1×10^5g/分钟以上 1×10^6g/分钟以下加入分散介质，以 0.1g/分钟以上 1×10^5g/分钟以下加入增强纤维束。作为以规定的间隔加入大致一定量的条件，可以举出下述条件：每隔 1～5 分钟加入 1×10^5g 以上 1×10^7g 以下加入分散介质，以每 0.1g 以上 1×10^5g 以下加入增强纤维束。
工序 (ii) 中的浆料的液面高度 H1 优选经过工序 (ii) 实质保持相同的高度。连续地实施工序 (i) 至工序 (iv) 时，工序 (ii) 中的浆料的液面高度 H1 特别优选经过工序 (ii) 实质保持相同的高度。

“经过工序 (ii) 实质保持相同的高度”，是指实施工序 (ii) 的过程中，高度的变化在 100mm 以内，优选在 50mm 以内，较优选没有变化 (0mm)。为了使工序 (ii) 中的浆料的液面高度 H1 经过工序 (ii) 实质保持相同的高度，优选连续进行工序 (i)。例如在分散槽中进行工序 (ii) 时，优选连续地向分散槽中供给分散介质和增强纤维，同时连续地实施工序 (i) 至工序 (iv)。

进而，本发明中的利用湿式法的增强纤维基材的制造方法中，优选以下制造方法 a、b、c 中的任一种或者将它们组合。

利用湿式法的增强纤维基材的制造方法 a]
均匀地配合有固态成分的抄浆物料的制法中，公开了将原料浆料供给到抄浆工序前将浆料浓度稀释（日本特开 2006-104608 号公报）。具体而言，公开了为了保持浆料中的增强纤维的分散性，制作高质量纤维浆料的浆料，将其稀释，形成低增强纤维浓度的浆料。但是，存在上述问题，由于需要两步操作繁琐，同时为与浆料的分散介质的亲和性低的增强纤维时，制作高增强纤维浓度的浆料非常困难。

因此，本发明中的利用湿式法的增强纤维基材的制造方法中，更优选利用以下方法制造。即，所述增强纤维基材的制造方法至少包括下述工序：工序 (i-a)，向分散介质中加入增强纤维束；工序 (ii-a)，配制上述分散介质中分散有构成上述增强纤维束的增强纤维的浆料；工序 (iii-a)，输送上述浆料；工序 (iv-a)，从上述浆料中除去分散介质，得到含有增强纤维的抄纸基材，将上述工序 (i-a) 中配制的浆料中增强纤维的质量含有率设为 C1，将上述工序 (iv-a) 开始时浆料中增强纤维的质量含有率设为 C2，C1/C2 在 0.8 以上 1.2 以下的范围内。根据上述增强纤维基材的制造方法，可以在短时间内得到上述增强纤维基材，所述增强纤维基材可以适用于配制浆料时对分散介质的亲和性低的增强纤维，保持抄浆时增强纤维的纤维分散性，配合树脂等形成成型品时成型品的力学特性优异。以下，将上述增强纤维基材的制造方法作为制造方法 a。

制造方法 a 中，将工序 (ii-a) 中配制的浆料中增强纤维的质量含有率设为 C1。将工序 (iv-a) 开始时浆料中增强纤维的质量含有率设为 C2，C1/C2 在 0.8 以上 1.2 以下的范围内。C1/C2 优选在 0.9 以上 1.1 以下的范围内。C1/C2 小于 0.8 时，为了增加 C2，需要仅除去分散介质或仅加入增强纤维，工序变得繁琐，并且浆料的分散状态可能会不充分。C1/C2 超过 1.2 时，工序 (iv-a) 中的浆料的分散状态可能会不充分。

工序 (ii-a) 所需要的时间优选在 10 分钟以内，较优选在 5 分钟以内，更优选在 3 分钟以内。超过 10 分钟时，因增强纤维的种类的不同，分散在浆料中的增强纤维可能会再次凝集。工序 (ii-a) 所需要的时间的下限没有特别限定，通常在 1 分钟以上。

工序 (iii-a) 中的浆料的供给速度，即浆料向工序 (iv-a) 的流量，优选为 0.001m³/秒以上 0.1m³/秒以下，较优选为 0.005m³/秒以上 0.05m³/秒以下。小于 0.001m³/秒时，供给量少，操作花费时间，所以生产率可能变差；超过 0.1m³/秒时，浆料的流速快，所以易于对浆料施加剪切，分散状态可能会不充分。

工序 (ii-a)～(iv-a) 中，优选使纤维浓度参数 nL³ 在 (0 <) nL³ < L/D 的范围内
进行抄浆。此处，各参数如下所示。

\[n \]: 每单位体积浆料中所含的增强纤维的根数

\[L \]: 增强纤维的长度

\[D \]: 增强纤维的直径。

含有增强纤维的浆料的示意图如图 30 所示。Doi, M. and Edwards, S. F., The Theory of Polymer Dynamics 324 (1986) 中公开了纤维浓度参数 \(nL^3 \) 在 \(nL^3 < 1 \) 的情况下为稀释状态，在 \(1 < nL^3 < L/D \) 的情况下为准稀释状态。纤维浓度参数 \(nL^3 \) 小于 \(L/D \) 时，分散在浆料中的各增强纤维之间不易发生力学干涉，所以抑制增强纤维的再次凝集，提高浆料中的增强纤维的分散性，故为优选。增加纤维的浓度越低越高可以提高增强纤维的分散性，为优选，但是要确保所得增强纤维基材的单位面积重量及厚度和提高增强纤维基材的生产率的情况下，最好提高增强纤维的浓度，优选在准稀释状态即 \(1 < nL^3 < L/D \) 的增强纤维浓度下进行抄浆。

（1）利用湿式法的增强纤维基材的制造方法 b)

纤维增强热塑性树脂片材的湿式制造方法中，记载了控制分散液所通过的流程箱 (Head box) 内的结构，及将分散液从流程箱供给到网带上时的条件（日本特开平 8-232187 号公报及日本特开平 9-136969 号公报）。记载了由此可以得到没有局部单位面积重量不均匀及增强纤维的异常取向的纤维增强热塑性树脂片材，以及可以得到没有宽度方向单位面积重量分布不匀的纤维增强热塑性树脂片材。

但是，日本特开平 8-232187 号公报及日本特开平 9-136969 号公报的方法必需利用送浆泵作为用于输送浆料的动力，因此，易于引起剪切，难以长时间保持分散状态。

因此，本发明中的利用湿式法的增强纤维基材的制造方法中，更优选按以下方法制造。即，所述增强纤维基材的制造方法至少包括下述工序：工序 (i-b)，向分散介质中加入增强纤维束；工序 (ii-b)，配制上述分散介质中分散有构成上述增强纤维束的增强纤维的浆料；工序 (iii-b)，输送上述浆料；工序 (iv-b)，从上述浆料中除去分散介质，得到含有增强纤维的抄纸基材，上述工序 (i-b) ~ (iv-b) 在线实施，上述工序 (i-b) 中的浆料的液面高度 \(H1 \) 位于比上述工序 (iv-b) 中的浆料的液面高度 \(H2 \) 高的位置。根据上述增强纤维基材的制造方法，工序 (iii-b) 中，无需利用送浆泵作为用于输送浆料的动力。因此，不易引起浆料的剪切，可以长时间保持分散状态。另外，可以在短时间内得到增强纤维基材，所述增强纤维基材抑制纤维凝集，配合热塑性树脂形成成型品时成型品的力学特性优异。以下将上述增强纤维基材的制造方法作为制造方法 b)。

制造方法 b 中，使工序 (ii-b) 中的浆料的液面高度 \(H1 \) 位于比工序 (iv-b) 中的浆料的液面高度 \(H2 \) 高的位置。通过使 \(H1 \) 位于比 \(H2 \) 高的位置，所以为了在工序 (iii-b) 中输送浆料无需利用送浆泵。即，如图 20 所示，无需在输送部设置送浆泵。

（2）利用湿式法的增强纤维基材的制造方法 c)

另外，上述日本特开平 8-232187 号公报及日本特开平 9-136969 号公报的方法中，将含有增强纤维和热塑性树脂的浆料输送到抄纸槽时，需要利用送浆泵作为用于输送浆料的动力，因送浆泵中产生生流，导致存在分散液内一度分散的增强纤维再次凝集、抄纸基材中的增强纤维的分散状态恶化的问题。

进而，日本特开平 8-232187 号公报及日本特开平 9-136969 号公报的方法中，将含
有增强纤维和热塑性树脂的浆料输送到抄纸槽时，由于以多支管结构的输送部位通路来
输送浆料，多支管结构的分歧点处发生紊流，存在分散液内一度分散的增强纤维再次凝集，
抄纸基材中的增强纤维的分散状态恶化的问题。

制造方法 c 在工序 (iii-c) 中的输送部，浆料以层流状态或从层流到紊流的过渡
域的状态被输送。所谓层流，是指流过输送部的浆料与输送部通路的管道平行地流动的
状态。所谓紊流，是指流过输送部的浆料在输送部处可以不规则地形成小而各异的涡流的
状态。另外，所谓从层流到紊流的过渡，是指流过输送部的浆料在输送部处于层流状态和
紊流状态混合的状态。在输送部，以层流状态或从层流到紊流的过渡域的状态输送浆料时，
可以在维持增强纤维的分散状态的情况下，将分散有在分散槽中得到的增强纤维的浆料输
送到抄纸槽，可以得到增强纤维的再次凝集被抑制、分散状异同的纤维增强基材。从抑制增
强纤维的再次凝集的观点考虑，优选在输送部浆料以层流状态被输送。

输送部中的浆料的流速可以为 0.01m/s 以上 10m/s 以下。浆料的流速在上述范围内
时输送部通路内的流速分布小，在维持增强纤维的分散状态的情况下，可以将分散有在
分散槽中得到的增强纤维的浆料输送到抄纸槽，为优选。可以使用输送 0.01m³ 的浆料所需
的时间 T（秒）、浆料的输送量（0.01m³）、输送部的截面积 S(m²)，根据下式求出输送部的浆
料流速。

\[
V = \frac{N}{S \times T}
\]

输送部的截面形状没有特别限定，但从防止将浆料输送到工序 (iv-c) 的工序
(iii-c) 中增强纤维再次凝集的观点考虑，可以为圆形或多边形（3 ~ 10 边形），例如有图
21(a)、图 21(b) 所示的截面形状。另外，输送部的截面形状也可以为图 21(c)、图 21(d)
所示的开放体系的通路。此处，图 21(a) ~ 图 21(d) 为 模式化地表示输送部截面形状的图。
从防止输送部中混入异物的观点考虑，输送部的截面形状更优选为圆形或多边形。

从防止增强纤维再次凝集的观点考虑，输送部的截面形状可以为输送部通路中不
形成涡流的、恒定的截面。另外，从防止增强纤维再次凝集的观点考虑，也可以为中途不具
有输送管管内易于形成涡流的弯曲部、屈曲部等方向改变点的输送部。

输送部中的输送部的截面形状为图 21(a)、图 21(b) 所示的圆形或多边形的情况下，
从防止增强纤维再次凝集的观点考虑，表示浆料的流动状态的雷诺数优选为 4000 以
下，较优选为 3000 以下，更优选为 2000 以下。输送部中的输送部的截面形状为图 21(c)、图
21(d) 所示的开放体系的通路的情况下，从防止增强纤维再次凝集的观点考虑，表示浆料的

25
流动状态的雷拢数优选为 500000 以下，较优选为 300000 以下，更优选为 100000 以下。此外，所谓输送管段的雷拢数 Re 是使用分散液比重 ρ (kg/m³) 、输送管截面的最大长度 L (m) 、输送管中的浆流速 v (m/s) 、分散介质的粘度 η (Pa·s) 根据下式求出的。

\[
Re = \frac{\rho v L}{\eta}
\]

（式）

输送管段，以层流状态或从层流到紊流的过渡段的状态输送浆料的方法，没有特别限定，例如可以举出下述方法：通过将分散槽配置在比抄纸槽高的位置，利用势能将浆料从分散槽经由输送管送到抄纸槽的方法；及向装有浆料的分散槽内注入气体，提高分散槽内的内压，由此将浆料从分散槽经由输送管送到抄纸槽的方法等。上述不使用送液泵的输送方法，可以减少输送管段的紊流形成，可以防止增强纤维的再次凝集，保持浆料中的分散性，为优选。

通过配置多个输送管段，需要使用浆料以层流状态或从层流到紊流的过渡段的状态，将大量浆料从分散槽送到抄纸槽时，也可以配置多个输送管段，增加从分散槽送到抄纸槽的浆料输送量。

预成型体

本发明的预成型体是至少含有预浸料坯作为层合单元的预成型体，所述预浸料坯在增强纤维基材中浸渍有热塑性树脂，

预浸料坯的二维取向角的平均值为 10 度以上 80 度以下，23℃下的厚度 h0 (mm) 为 0.03mm 以上 1mm 以下，拉伸强度 σ 为 0.01MPa 以上，所述二维取向角是由预浸料坯中所含的增强纤维单丝 (a) 和与该增强纤维单丝 (a) 交叉的增强纤维单丝 (b) 形成的。

对上述构成要素进行说明。

本发明的预成型体是指至少包含 2 种以上成型材料而得到的，直接或经过二次加工工序用于成型工序，表示加工为成型品之前的状态。需要说明的是，对二次加工工序没有特别限制，可以举出上述工序：将预成型体切割成规定尺寸及形状的切削工序；将预浸料坯互相粘合，提高预成型体的超塑性粘合工序；从预成型体中排出气体的脱泡工序；通过等离子体处理等使预成型体活化的表面处理工序等。

从所得成型品的轻质性和力学特性的观点考虑，重要的是在本发明的预成型体中至少使用在增强纤维基材中浸渍有树脂的预浸料坯。另外，从预成型体超塑性的观点考虑，重要的是二维取向角的平均值为 10 度以上 80 度以下，所述二维取向角是由预浸料坯中所含的增强纤维单丝 (a) 和与该增强纤维单丝 (a) 超塑性粘合的增强纤维单丝 (b) 形成的。此处，针对二维取向角，可以采用上述预浸料坯的说明书中使用的定义。二维取向角的平均值小于 10 度时，单向增强纤维等对与纤维长度方向垂直方向的应力没有阻力，存在以高速输送预成型体或者在进行成型的过程中预成型体被破坏的情况。二维取向角的平均值超过 80 度时，双向增强纤维织物等双向拉紧增强纤维，因此在成型工序中无法获得充分的伸缩性，存在成型不良的情况和破坏成型品品质的情况。另外，存在上述单向增强纤维及双向增强纤维织物在增强纤维之间的间隙窄、成型工序中树脂的浸渍变得不充分、力学特性降低的情况。进而，预浸料坯越接近各向同性，可以减少层合工序中的劳动以高速进行预成型体化，材料损耗也小，因此可以减轻经济负担，故而优选。本发明中使用的预浸料坯增强纤维的二维取向角优选为 20 度以上 70 度以下，较优选为 30 度以上 60 度以下，越接近作为理想的维度的 45 度越优选。
[0214] 另外，从本发明的预成型体的操作性的观点考虑，重要的是预浸料坯在 23°C 下的厚度 h0 (mm) 为 0.03mm 以上 1mm 以下。h0 小于 0.03mm 时，有时会高速输送预成型体，或者在进行成型的过程中预成型体被破坏。h0 超过 1mm 时，厚度方向上的纤维取向变大，在进行成型的工序中引起预成型体厚度膨胀，存在因模断裂而破坏成型品的品质的情况及阻碍向模中输送的情况。本发明中使用的预浸料坯在 23°C 下的厚度 h0 优选为 0.05mm 以上 0.8mm 以下，较优选为 0.1mm 以上 0.6mm 以下。

[0215] 进而，从本发明的预成型体的操作性的观点考虑，预浸料坯的拉伸强度 α 为 0.01MPa 以上，优选为 0.1MPa 以上，较优选为 1MPa 以上。对 α 的上限没有特别限制，通常可以举出 1000MPa 以下。拉伸强度 α 小于 0.01MPa 时，有时在成型时的操作中产生预浸料坯破坏等问题。

[0216] 对构成本发明的预成型体中使用的预浸料坯的增强纤维及树脂，没有特别限制，从获得满足形状的成型性和力学特性的成型品的观点考虑，优选使用上述预浸料坯（以下称作预浸料坯(A)）。

[0217] 另外，本发明的预成型体中，为了满足所得成型品的规格，优选将至少 2 种下述预浸料坯 (A) 用于预成型体，所述预浸料坯 (A) 构成多个层合单元，且所述至少 2 种预浸料坯在各要素中的至少 1 个要素方面实质不同。此处，对上述预浸料坯的各要素进行说明。

[0218] 首先，说明增强纤维的体积比例。增强纤维的体积比例越增加，所得成型品的弹性模量、强度、尺寸稳定性越提高。另一方面，存在增强纤维的体积比例越增加，成型品的外观品质越降低的倾向。因此，从同时实现成型品的轻质性及外观品质的考虑，优选将增强纤维的比例高的预浸料坯和增强纤维的比例低的预浸料坯组合层合。例如可以举出下述方法；为了提高成型品的刚度，在更靠近近外侧处层合增强纤维的比例高的预浸料坯，在内侧层合增强纤维的比例低的预浸料坯的方法；及为了提高成型品的外观品质，在更靠近近外侧处层合增强纤维的比例低的预浸料坯的方法等。此处，增强纤维的体积比例实质不同是指增强纤维的体积比例高的预浸料坯和增强纤维的体积比例低的预浸料坯的增强纤维的体积比例之差为 5 体积% 以上。

[0219] 接着，说明增强纤维的长度。增强纤维越长所得成型品的弹性模量、强度、尺寸稳定性越提高。另一方面，增强纤维越长，存在预成型体的操作性及成型品的外观品质越降低的倾向。因此，从同时实现预成型体的操作性和成型品的力学特性及外观品质的考虑，优选将增强纤维的纤维长度长的预浸料坯和纤维长度短的预浸料坯组合层合。例如可以举出下述方法；为了提高成型品的刚度，在更靠近近外侧处层合增强纤维的纤维长度长的预浸料坯，在内侧层合纤维长度短的预浸料坯的方法；及为了提高成型品的外观品质，在更靠近近外侧处层合纤维长度短的预浸料坯的方法等。此处，增强纤维的长度实质不同，是指纤维长度长的增强纤维和纤维长度短的增强纤维的纤维长度的比（长的增强纤维的长度 / 短的增强纤维的长度）为 1.5 以上。

[0220] 接着，说明增强纤维的拉伸弹性模量。拉伸弹性模量越高，所得成型品的弹性模量越提高。另一方面，拉伸弹性模量越高，纤维的加工性越恶化，有时预成型体的操作性降低，或者不利于经济性。因此，从同时实现预成型体的操作性和成型品的刚度的观点考虑，优选将增强纤维的拉伸弹性模量高的预浸料坯和拉伸弹性模量低的预浸料坯组合层合。例如可以举出下述方法；为了同时实现成型品的刚度和经济性，在更靠近近外侧处层合碳纤维等
拉伸弹性模量高的预浸料层，在内侧层合玻璃纤维等拉伸弹性模量低的预浸料层的方法；及在更靠近外侧处层合使用了拉伸弹性模量高的碳纤维的预浸料层，在内侧层合使用了拉伸弹性模量较低的碳纤维的预浸料层的方法等。此处，增强纤维的拉伸弹性模量实质不同，是指拉伸弹性模量高的增强纤维和拉伸弹性模量低的增强纤维的拉伸弹性模量的比（高的增强纤维的拉伸弹性模量 / 低的增强纤维的拉伸弹性模量）为 1.2 以上。

接着，说明预浸料层的单位面积重量。存在单位面积重量越大预浸料层的厚度越厚的倾向，因此可以实现降低层合的数量及层合的节约。另一方面，单位面积重量越大，成型品的厚度及对形状的追随性降低。因此，从同时实现预成型体的操作性、形状追随性及经济性的观点考虑，优选将单位面积重量大的预浸料层和单位面积重量小的预浸料层组合并层合。基于相同的理由，对预浸料层的厚度，优选将 23°C下的厚度 h0 大的预浸料层和 h0 小的预浸料层组合并层合。此处，单位面积重量实质不同，是指单位面积重量大的预浸料层和单位面积重量小的预浸料层的单位面积重量的比（单位面积重量大的预浸料层的单位面积重量 / 单位面积重量小的预浸料层的单位面积重量）为 1.2 以上。另外，23°C下的厚度 h0 实质不同，是指 h0 大的预浸料层和 h0 小的预浸料层的 h0 的比（h0 大的预浸料层的 h0h0 的预浸料层的 h0）为 1.2 以上。

从成型性的观点考虑，本发明的预成型体中预浸料层和与该预浸料层相邻的层合单元的层间剪切强度优选为 0MPa 以上 50MPa 以下，较优选为 0MPa 以上 40MPa 以下。层间剪切强度在优选的范围内时，成型工序中预成型体在伴随层间错位的同时进行伸缩，可以进一步提高赋型成凹凸形状。预成型体的层间剪切强度可以如下测定，即，从预成型体中切割试验片，基于 ASTM-D-2344，进行 3点弯曲试验。预成型体被部分粘合的情况下被填充的情况下，可以制备包括该粘合部分、填充部分的试验片来测定。

进而，为了满足所得成型品的规格，本发明的预成型体优选层合预浸料层 (A) 和其他层合单元 (B)。此处，说明其他层合单元 (B) 的优选方案。

首先，上述层合单元 (B) 为含有增强纤维的基材时，从进一步提高所得成型品的增强效果的观点考虑为优选。其中，从提高成型品的冲击强度的观点考虑，优选连续的增强纤维。例如可以举出单向基材、织物基材、毡基材等形态。另外，从提高成型品的形状追随性的观点考虑，优选不连续状增强纤维。例如可以举出单向基材即被切割的增强纤维按单向排列的基材、毡基材、片状模塑料 (Sheet Molding Compound (SMC)) 基材，及挤出片状基材等形态。

对构成上述层合单元 (B) 的增强纤维没有特别限制，可以与构成上述预浸料层的增强纤维同样地进行选择。从比强度、比刚度高、且轻量化效果的观点考虑，特别优选使用 PAN 类、沥青类、人造纤维类等碳纤维。从提高预成型体的操作性的观点考虑，为了维持增强纤维的形态，优选进一步在该层合单元 (B) 中含浸热塑性树脂或热固性树脂。此处，作为使用的热塑性树脂及热固性树脂，没有特别限制，与构成上述预浸料层的热塑性树脂及热固性树脂同样地进行选择。另外，对于树脂的含浸率也没有特别限制，为了维持增强纤维的形态，与上述预浸料层同样地优选 30%以上 100%以下。

接着，从确保成型品的厚度的观点考虑，另外，从保持成型品厚度为均匀的观点考虑，优选使用片状基材作为上述层合单元 (B)，另外，从提高预成型体的伸缩性、提高对凹凸形状的追随性的观点考虑，优选使用无纺布状基材。进而，从提高所得成型品的轻质化的观
点考虑，优选使用多孔基材。作为构成上述基材的材料，没有特别限制，但从对基材的加工性
性的观点考虑，较优选使用构成上述预浸料坯的热塑性树脂。另外，可以根据需要与构成上
述预浸料坯的热塑性树脂同样地在上述热塑性树脂中含有合金成分、掺合物、添加剂等。进
而，从进一步提高所得成品种的轻质性的观点考虑，上述片状基材、无纺布状基材、多孔基
材的体积密度优选为 0.01 以上 1.0 以下，较优选为 0.05 以上 0.9 以下，特别优选为 0.1 以
上 0.8 以下。[0227]

进而，从易于进行所得成品种表面的改性及功能赋予的观点考虑，作为上述层合单元 (B)，
优选将由树脂形成的膜配置在该预成型体的最外层。作为树脂，使用热塑性树脂时对膜的加工
性及与预成型体的粘合性简便，为优选。使用热固性树脂时可以改善底漆、涂料及凝胶涂料等
模的表面平滑性，故优选。将所得成品种用于电子机器等时，模的阻燃性优选为 UL-94 规格的
V0 类 1 以上，较优选为 V0-0 以上。对确保膜的阻燃性的方法，没有特别限制，可以举出下述方
法，将 PPS、PEI、PEEK、酚醛树脂等阻燃性优异的树脂成膜的方法；将对热塑性树脂的阻燃性优异的
树脂混合成膜的方法；在热塑性树脂中混合阻燃剂并进行成膜的方法等。

[0228] 另外，从改善所得成品种的设计性的观点考虑，作为上述层合单元 (B)，优选使用
选自装饰膜、透明膜、色调膜中的至少一种。此处，作为装饰膜，优选在该膜表面具有设计及
或几何学花纹的膜。作为透明膜，优选该膜的透光率的透射率为 80%以上 100%以下的
膜。作为色调膜，优选含有有机类及或无机类颜料或着色剂的膜。除此之外，还可以按照需
要，使用光泽膜、印刷膜、防静电膜、遮光膜、耐热膜等作为层合单元 (B)。

[0229] 除上述列举的层合单元之外，作为其他层合单元 (B)，还可以使用金属板、金属箔、
金属箔、石墨片材、放热片材、蜂窝材料、耐化学药品性膜、气体阻隔膜、耐寒膜、抗菌片材或
膜、发泡片材、橡胶片材等。对于以上其他层合单元 (B)，也可以根据需要使用一种或合并使
用两种以上。

[0230] 另外，作为由上述预浸料坯 (A) 和其他层合单元 (B) 形成的预成型体的优选方案，
可以举出由表皮层和芯层形成的夹心结构体。

[0231] 上述夹心结构体中，表皮层由上述预浸料坯 (A) 构成时，所得成品种表现出各向
同性的特性，且也可以确保对复杂形状的追随性，故优选。上述情况下，从进一步提高上述
效果的观点考虑，作为芯层，较优选使用比预浸料坯 (A) 的体积密度低的片状基材、多孔基
材、含有蜂窝材料、增强纤维的基材等。

[0232] 另外，上述夹心结构体中，芯层由上述预浸料坯 (A) 构成时，从可以进一步将所得
成品种的厚度均质化、且可以容易地确保赋予功能性，故优选。上述情况下，从提高刚度效
果的观点考虑，作为芯层，较优选使用含有连续的增强纤维的单向基材、织物基材等。另
外，从对成品种表面赋予功能的观点考虑，较优选使用具有阻燃性的膜、装饰膜等。

[0233] 此外，通过下述方法，可以得到力学特性优异、追随复杂形状的成型品，可以期待
与本发明同样的效果，所述方法包括通过将本发明的预浸料坯中使用的增强纤维基材层
合，将所得预成型体配置于模内，使其含浸热固性树脂，进行 RTM（树脂传递成型技术（Resin
Transfer Molding））成型的方法；及将本发明的预浸料坯中使用的增强纤维基材和单向基	
材、织物基材、毡基材层合，将所得预成型体设置于模内，使其含浸热固性树脂，进行 RTM 成	
型的方法。
与上述预浸料坯的操作性的说明同样，从确保层合工序中的稳定的作业性、稳定地向模中输送等成型工序中的预成型体的作业性的观点考虑，优选抑制本发明的预成型体的厚度膨胀，$n\times(100)$℃下的厚度$h_p(n)\text{mm}$优选为$h_{p0} \leq h_p \leq h_{p0}\times(2n\pm1)$
($h_{p0}(\text{mm})$为23℃下的该预成型体厚度，n为选自1、2、3、4中的至少一个自然数)，较优选为$h_{p0} \leq h_p \leq h_{p0}\times2n$，特别优选为$h_{p0} \leq h_p \leq h_{p0}\times(2n-1)$。此处，$n$的选择基准与上述预浸料坯相同，可以基于使用的材料选择合适的自然数。

对本发明的预成型体的厚度$h_{p0}(\text{mm})$没有特别限制，但从成型时操作性的观点考虑，优选为0.8mm以上100mm以下，较优选为1.2mm以上10mm以下，特别优选为1.5mm以上5mm以下。另外，对本发明的预成型体中使用的预浸料坯及其他层合单元的层合数也没有特别限制，但从层合工序中的生产率及经济性的观点考虑，优选为2层以上100层以下，较优选为4层以上50层以下，特别优选为8层以上30层以下。增加层合数时，虽然层合工序中的负荷变大，但是如果在优选的范围内，则可以进一步提高本发明的成型体的设计自由度。

将本发明的预浸料坯或预成型体成型得到的成型体可以用于各种部件、构件，为了扩展其使用用途，优选上述成型体轻质、且刚度、强度优异。进而，优选作为尺寸稳定性的指标的线膨胀系数也优异。

作为具体实施例，使上述成型体的弯曲弹性模量为E_c为E_c/ρ时，$E_c^{1/3}\cdot\rho^{-1}$所示的，表示轻质化的一个参数如比刚度优选为1.5以上5以下。通常钢及铝的比刚度为1.5以下，为了获得比上述金属材料优异的比刚度的范围，优选为1.5以上。另外，较优选超过作为镁的通常比刚度2.0，为2.0以上5以下，更优选为2.5以上5以下。另外，为了易于设计成型体，优选比刚度具有各向同性，作为上述比刚度的各向同性的指标，测定方向引于的最大弯曲弹性模量$E_{c\text{Max}}$与最小弯曲弹性模量$E_{c\text{Min}}$的关系中，上述弯曲弹性模量E_c为$E_{c\text{Max}} \leq E_{c\text{Min}}/2$。较优选为$E_{c\text{Max}} \leq E_{c\text{Min}}/1.8$，更优选为$E_{c\text{Max}} \leq E_{c\text{Min}}/1.5$。

作为一个指标，使上述成型体的拉伸强度为σ_c，以比度为ρ时，σ_c/ρ优选为100以上500以下。更优选为200以上500以下，更优选为300以上500以下。另外，基于与上述比刚度的记载相同的理由，作为上述拉伸强度的各向同性的指标，测定方向引于的最大拉伸强度$\sigma_{c\text{Max}}$与最小拉伸强度$\sigma_{c\text{Min}}$的关系中，上述拉伸强度σ_c为$\sigma_{c\text{Max}} \leq \sigma_{c\text{Min}}/2$。较优选为$\sigma_{c\text{Max}} \leq \sigma_{c\text{Min}}/1.8$，更优选为$\sigma_{c\text{Max}} \leq \sigma_{c\text{Min}}/1.5$。

作为表示成型体的尺寸稳定性的一个参数即线膨胀系数的具体指标，上述成型体的线膨胀系数C_c优选为$1\times10^{-6}/K$以上20$\times10^{-6}/K$以下。更优选为$1\times10^{-6}/K$以上15$\times10^{-6}/K$以下，更优选为$1\times10^{-6}/K$以上10$\times10^{-6}/K$以下。另外，基于与上述线膨胀系数的各向同性的理由，作为上述线膨胀系数的各向同性的指标，测定方向引于的最大线膨胀系数$C_{c\text{Max}}$与最小线膨胀系数$C_{c\text{Min}}$的关系中，上述线膨胀系数C_c为$C_{c\text{Max}} \leq C_{c\text{Min}}/2$。较优选为$C_{c\text{Max}} \leq C_{c\text{Min}}/1.8$，更优选为$C_{c\text{Max}} \leq C_{c\text{Min}}/1.5$。

另外，考虑薄壁性、轻质性时，将本发明的预浸料坯或预成型体成型体成型得到的成型体的最大厚度优选为2mm以下。较优选为1.5mm以下，更优选为1.2mm以下。需要说明的是，此处说明的最大厚度，是指构成成型体的各平面厚度中最大的厚度。通过测定构成成型体的平面厚度中最大部分来确定最大厚度。
[0242] 另外，从形状设计自由度考虑，成型品的厚度也可以有变化。该厚度变化较优选连续地变化。需要说明的是，此处所谓“连续地”，是指厚度以锥形状变化。

[0243] 进而，为了提高形状引起的刚度提高效果，或者保持形状引起的刚度效果，优选成型品具有凹凸形状。具体而言，基于成型品的基准面，与形成凹凸形状的凹凸面的高度差优选为 3mm 以上。基准面，是指形成成型品的平面部中面积最大的平面部。基准面和形成凹凸形状的凹凸面，是指实质上与基准面平行、且基于基准面间隔1个以上平面部形成的平面部。此处，实质上平行，是指基准面与对象平面部形成的角度为 20° 以下。基准面与凹凸面平行时，可以确定基准面与凹凸面的高度差，基准面与凹凸面形成一定角度时，将基准面与凹凸面上的点 P 的高度差中最大的高度差作为基准面与凹凸面的高度差。基于基准面，与凹凸面的高度差较优选为 5mm 以上。

[0244] 另外，除上述之外还设想各种使用，优选成型品中形成复杂的形状。例如形成由多数平面部构成的箱型形状时，在屈曲部形成连接平面部之间的形状，优选用于表示其屈曲程度的、屈曲部中的 R 部的曲率半径小。从形成更复杂的形状的观点考虑，该 R 部的曲率半径优选为 5mm 以下。

[0245] 进而，从成型品中形成复杂的形状的观点考虑，上述屈曲部的内个数优选为 3 个以上。单纯的成型品的弯折形状中存在 1 个屈曲部，左边开口口的形状、单纯的 S 字形状中形成 2 个屈曲部。通常，大多数情况下构件等复杂形状成型品中形成的屈曲部的内个数进一步增多，作为屈曲部的个数，优选的标准是 3 个以上。对于单纯的弯折形状的箱型成型品而言，屈曲部为 8 个。

[0246] 另外，从扩展成型品的作为形状的各种组合、箱体及构件的适用范围的观点考虑，优选成型品具有顶点，所述顶点由被屈曲部分割的 3 面平面部构成。此处，由被屈曲部分割的 3 面平面部构成的顶点，是被 3 面平面部构成的转角部。

[0247] 进而，从提高刚度的观点考虑，也可以在成型品中形成凸缘。凸缘的形状没有特别限定，可以选择等长形状凸缘、T 字凸缘、十字凸缘等。凸缘的高度根据成型品而设定，但从成型品的厚度的考虑，优选为 10mm 以下。较优选为 5mm 以下。

[0248] 从确保轻质性的观点考虑，成型品也可以为中空体。上述情况下，也可以按照成型品的形状将几个成型品接合，形成中空成型体。

[0249] 另外，为了赋予成型品更高的力学特性，也可以使其与其他成型体一体化。作为其他成型品，为了提高力学特性，优选将具有连续的增强纤维和树脂的纤维增强复合材料接合。例如将连续的增强纤维与环氧树脂等热固性树脂或聚丙烯及聚酰胺等热塑性树脂复合，将所得纤维增强复合材料与成型品的表面接合，由此可以赋予非常优异的力学特性及刚度。

[0250] 也可以将成型本发明的预浸料坏或预成型体得到的成型品互相接合一体化。根据目的不同，可以将由提高另一方纤维质量含有率、以高强度进行一体化等。

[0251] 从扩展成型品的使用用途的观点考虑，优选将复杂形状的成型体接合。此处所述复杂形状的成型体，例如可以是边缘、框架、凸台、凸缘、铰链折叶、支架等复杂形状的注射成型体。可以扩展能够有效运用成型品优异的力学特性的用途。

[0252] 作为用于一体化的方法，没有特别限定，可以举出粘合法或热熔敷、振动熔敷、超声波熔敷、激光熔敷等方法。其中，从操作的容易性及成型周期短的观点考虑，优选热熔敷、
振动熔敷、超声波熔敷、激光熔敷。

[0253] 此处，加压成型的种类可以根据所得成型品选择。此处，加压成型，是指除加工机械、模及工具之外，使用其他成型用夹具及辅助材料等，对上述层合预成型体进行弯曲、剪切、压缩等变形得到成型体的方法，作为其成型方式，可以举出拉深、深拉深、卷缘、成波纹状、卷边（edge curling）、模锻等。另外，作为加压成型的方法，各种存在的加压成型的方法中，可以优选出制作大型航空器等成型品构件时经常使用的热压罐法，及工序比较简便的模压法。但从设备及成型工序中的能量使用量、使用的成型用夹具及辅助材料等的简便化、成型压力、温度自由度的观点考虑，优选使用金属制模进行成型的模压法。

[0254] 模压法可以采用下述方法；热压法，所述热压法是将上述预浸料坯或预成型体预先配置于模内，合模同时进行加压、加热，然后直接进行合模，通过模的冷却来进行该预浸料坯或预成型体的冷却，得到成型品；及冲压成型，所述冲压成型是在预浸料坯或预成型体的树脂为热塑性树脂的情况下，预先将该预浸料坯或预成型体用下述列举的加热装置进行加热至热塑性树脂的熔融温度以上，所述加热装置为红外线加热器、加热板、高温炉、介质加热等，使热塑性树脂胶合、软化，上述状态下，将其配置于上述成形模的下面的模上，然后进行开模、合模，之后进行加压冷却的方法。对加压成型方法没有特别限制，但从加快成型周期、提高生产率的观点考虑，优选冲压成型。

[0255] 进而，为了通过上述预热将预浸料坯或预成型体形成能够赋型的状态，优选树脂为热塑性树脂。预热的温度优选为上述热塑性树脂的熔点或软化点以上。

[0256] 在将经预热的预浸料坯或预成型体输送到加压成型中使用的模时，为了充分地保持预热状态不变地进行加压成型，优选尽快输送。具体而言，将预浸料坯或预成型体预热后，至输送到模并通过加压成型开始加压为止所需的时间优选为 1 分钟以内，较优选为30秒以内，更优选为15秒以内。

[0257] 对加压模内的加压没有特别限制，但从将预浸料坯或预成型体良好地赋型的观点考虑，加压力优选为 0.1MPa 以上，较优选为 1MPa 以上，更优选为 10MPa 以上。对加压力的上限没有特别限制，但从抑制成型时的增强纤维折断的观点考虑，为 100MPa 以下为优选的范围。

[0258] 对加压模内的冷却没有特别限制，使用热塑性树脂作为构成预浸料坯或预成型体的树脂的情况下，使经预热的预成型体充分地冷却的观点考虑，优选使模的表面温度在热塑性树脂的熔点或软化点以下。另外，从加快脱模、缩短成型周期的观点考虑，优选使模温度比热塑性树脂的熔点或软化点低 30℃以上。较优选低 50℃以上。

[0259] 接着，说明将本发明的预浸料坯或预成型体配置于模上进行加压成型的工序。优选使下式所示的投料配比（charge ratio）大于100%将本发明的预浸料坯或预成型体配置于模内。

\[\text{投料配比} (\%) = 100 \times \left(\frac{\text{预浸料坯或预成型体的面积}}{\text{模内腔总面积}} \right) \]

[0260] 投料配比大于100%，即本发明的预浸料坯或预成型体配置于模内，由此成型时不会引起预浸料坯或预成型体过度的流动。可以保持纤维取向不变地进行成型。因此，可以尽可能地抑制成型时纤维取向紊乱，或者成型时的流动导致纤维取向发生各向异性，可以得到利用预浸料坯或预成型体的纤维取向的成型品。优选投料配比为 105%以上，更优选为 110%以上。对投料配比的上限没有特别限制，但从有效使
用材料、减少浪费的观点考虑，优选为 150％以下。

接着，对成型用的模进行说明。模大致分为 2 种，一种为铸造及注射成型等中使用的闭式模，另一种为加压成型及锻造等中使用的开式模。闭式模作为主要将材料注入到内部进行成型的模，开式模为主要不使材料流动而使其变形并成型的模。为了成型时不引起基材的过度流动，尽可能地抑制成型时预浸料及或预成型体的纤维取向紊乱，或者因成型时的流动导致纤维取向产生各向异性，可以得到利用了预浸料或预成型体的纤维取向的成型品，优选使用开式模。另外，从将成型时的分解气体及混入空气排出到模具外的观点考虑，也优选开式模。

进而，优选模中具有选自冲裁装置、冲孔装置、撞击装置中的至少一种的模。加压成型中得到的成型品还存有在使预浸料或预成型体的投料配比相对于模的内腔总面积大于 100％而进行加压成型的情况，有时具有作为成型品所需的全部和非必需的部分（端部）。因此，为了整理成型后成型品的形状，有时需要除去模端部的工序。另外，设想将成型品根据其使用目的等加工成具有以下述方式进行利用的孔部的成型品，所述方式包括：用于产生气体及热交换的透气口及排气口、成型品的夹紧部分、加工用螺钉孔及螺栓接合用孔、以赋予设计性为目的的孔及冲裁方式等。通过使其具有选自上述 3 种装置中的至少一种，可以与加压成型同时实施加压成型后除去端部的工序及形成所需的孔部的工序，可以实现工序的简化，故优选。

作为使用本发明的预浸料坯或预成型体得到的成型品的用途，例如可以取出电气机械部件、电子机械部件、土木用部件、建材用部件、汽车用结构部件、双轮车用结构部件、汽车用部件、双轮车用部件、航空器用部件。从力学性能的观点考虑，优选用于电气、电子机械用箱体、土木、建材用板材、汽车用结构部件、航空器用部件。从力学性能及各向同性的观点出发，特别优选用于汽车、双轮车用结构部件。

实施例

预浸料坯、预成型体及成型品的评价

预浸料坯中所含的增强纤维长度的评价

于 500℃，将预浸料坯在空气中加热 1 小时，将树脂成分灰化。随机选出 400 根残留的增强纤维，用光学显微镜测定其长度精确到 1μm 单位，测定纤维长度和其比例。

进而，按照小于 0.25mm、0.25mm 以上小于 0.5mm、0.5mm 以上小于 0.75mm 的方式，以 0.25mm 的间隔对增强纤维的度数进行计数，评价纤维长度分布。

预浸料坯中增强纤维的二维取向角的测定

如图 2 所示，用 2 片不锈钢制筛网（每 2.5cm 具有 50 个筛孔的平纹形状）夹持预浸料坯，调节并固定螺钉使预浸料坯不移动。于 500℃，将其置于空气中加热 1 小时，将树脂成分灰化。取下不锈钢制筛网，用显微镜观察所得增强纤维基材，随机选定 1 根增强纤维单丝（a），通过图像观察测定和与该增强纤维单丝交叉的其他增强纤维单丝形成的二维取向角。在与交叉的 2 根增强纤维单丝所形成的 2 个角度中，取向角采用 0°以上 90°以下的角度（锐角侧）。每 1 根被选定的增强纤维单丝（a）的二维取向角的测定数为 n = 20。选定共计 5 根增强纤维单丝进行同样的测定，取其平均值作为二维取向角。

增强纤维基材的空气量（弗雷泽法）
使用与上述 (2) 的灰化同样地得到的增强纤维基材，对采用基于 ASTM D737（2008年版）的弗雷泽型方法测定的空气量进行测定。

（4）预浸料坯中增强纤维的纤维质量含有量 \(Wf(\%) \)

（5）预浸料坯的厚度 \(h_n \)、及预成型体的厚度 \(h_{pn} (h_n, h_{pn} (n=0,1,2,3,4)) \)

在空气中，在测定的温度下将预浸料坯或预成型体放置 10 分钟后，冷却至室温。该预浸料坯或预成型体中，确定 2 点 X, Y 使直径距离 \(XY \) 为最长，将该直径 \(XY \) 进行 10 等分时在不包括两端 XY 的各分割点处测定厚度，取其平均值作为预浸料坯或预成型体的厚度 \(h_n, h_{pn} \)。

（6）预浸料坯的体积密度

切割 100mm 见方的预浸料坯，测定质量 \(W \)，根据下式算出体积密度。

（7）预浸料坯的树脂含浸率 %

如下所述观察并测定预浸料坯的厚度方向截面。将预浸料坯用环氧树脂包埋，研磨位于预浸料坯的截面端部的面。使用超深度彩色 3D 形状测定显微镜 VK-9500（对照部）/VK-9510（测定部）（株 KEYENCE 制）以放大倍率 400 倍拍摄该研磨面的预浸料坯的厚 x 宽 500 \(\mu m \) 的范围。拍摄图像中，求出含浸有树脂的部位和未含浸树脂的部位的面积，根据下式算出树脂含浸率。

（8）预浸料坯的拉伸强度 \(\sigma \)

从预浸料坯中切割试验片，按照 ISO527-3 法（1995）测定拉伸特性。以试验片的任意方向为 0° 方向时，制作按照 +45°, -45°, 90° 方向 4 个方向切割的试验片，各个方向的测定数为 \(n = 5 \)，将总测定值 \((n = 20) \) 的平均值作为拉伸强度 \(\sigma \)。使用“Instron（注册商标）”5565 型万能材料试验机（Instron Japan（株）制）作为测定装置。

（9）拉伸强度 \(\sigma_{Max}, \sigma_{Min} \)

将上述（8）中测定的 20 个拉伸强度 \(\sigma \) 中最大值作为 \(\sigma_{Max} \)，最小值作为 \(\sigma_{Min} \)。

（10）成型品的比强度

从成型品中切割试验片，基于 ISO1183（1987）测定成型品的比重 \(\rho \)。然后，从成型品中切割试验片，按照 ISO527-3 法（1995）测定拉伸强度。以试验片的任意方向为 0° 方向时，制作按照 0°, +45°, -45°, 90° 方向 4 个方向切割的试验片。各个方向的测定数为 \(n = 5 \)，将总测定值 \((n = 20) \) 的平均值作为拉伸强度 \(\sigma \)。使用“Instron（注册商标）”5565 型万能材料试验机（Instron Japan（株）制）作为测定装置。根据所得结果基于下式算出成型品的比强度。

\[\text{成型品的比强度} = \frac{\sigma}{\rho} \]
(11) 型芯产品的拉伸强度 $\sigma_{\text{cMax}}, \sigma_{\text{cMin}}$

(12) 型芯产品的比刚度

(13) 型芯产品的弯曲弹性模量 $E_{\text{cMax}}, E_{\text{cMin}}$

(14) 层合预成型体的层间剪切强度

(15) 型芯产品的线膨胀系数

(16) 型芯产品的线膨胀系数 $C_{\text{cMax}}, C_{\text{cMin}}$

(17) 剪切强度

(18) 基于型芯产品的比刚度值进行判定。

(19) 型芯产品的线膨胀系数判定
基于成型品的线膨胀系数按照以下基准进行判定。
A : 线膨胀系数为 $7 \times 10^{-6}/K$ 以下
B : 线膨胀系数大于 $7 \times 10^{-6}/K$ 、$10 \times 10^{-6}/K$ 以下
C : 线膨胀系数大于 $10 \times 10^{-6}/K$ 、$20 \times 10^{-6}/K$ 以下
D : 线膨胀系数大于 $20 \times 10^{-6}/K$。

(20) 成型品的各向同性判定
基于成型品的拉伸强度、弯曲弹性模量、线膨胀系数的各特性的面内偏差按照以下基准进行判定。

AA : 最大值为最小值的 1.0 倍以上 1.1 倍以下
A : 最大值为最小值的 1.1 倍、为 1.3 倍以下
B : 最大值为最小值的 1.3 倍、为 2 倍以下
C : 最大值为最小值的 2 倍。

(材料 1) 碳纤维 1
对以聚丙烯腊为主要成分的共聚物进行纺丝、烧成处理、表面氧化处理，得到总单丝数为 12,000 根的连续碳纤维。该连续碳纤维的特性如下所述。

- 单纤维直径 : 7 μm
- 每单位长度的质量 : 1.6g/m
- 比重 : 1.8
- 拉伸强度 : 4600MPa
- 拉伸弹性模量 : 220GPa。

(材料 2) 碳纤维 2
对以聚丙烯腊为主要成分的共聚物进行纺丝、烧成处理、表面氧化处理，得到总单丝数为 12,000 根的连续碳纤维。该连续碳纤维的特性如下所述。

- 单纤维直径 : 7 μm
- 每单位长度的质量 : 1.6g/m
- 比重 : 1.8
- 拉伸强度 : 4100MPa
- 拉伸弹性模量 : 420GPa。

(材料 3) 碳纤维 3

(材料 4) 玻璃纤维

(材料 5) 玻璃纤维增强热塑性树脂 (GMT)

(材料 6) PP 树脂片材

制作由 50 质量% 未改性聚丙烯树脂 (Primepolymer(株) 制“Primepolypro”J105G) 和 50 质量% 酸改性聚丙烯树脂 (三井化学(株) 制“Admor”Q8510) 形成的厚 1mm 的树脂片材。

(材料 7) 发泡 PP 树脂片材
[0357] 古川电工制、商品名 Ef sel（2 倍发泡、厚 1mm）。
[0358] （材料 8）透明性尼龙树脂膜
[0359] 制作由东京材料（株）制、Cristamid MS1100 形成的透明性尼龙树脂膜（透明 Ny、厚 50 μm）。
[0360] （材料 9）尼龙树脂阻燃性膜
[0361] 相对于东丽（株）制、CM1007（尼龙 6 树脂）100 质量份，配合磷化学工业制、Novared120（平均粒径 25 μm，磷含有率 85%）10 质量份，混炼。得到尼龙 6 树脂阻燃性膜（阻燃 Ny、厚 50 μm）。该膜的阻燃性为 UL94、VTM-0。
[0362] （材料 10）连续碳纤维预浸料坯
[0363] 东丽（株）制，Torayca 预浸料坯 P3052S-12。
[0364] （材料 11）碳纤维片状模塑料（SMC）
[0365] 将材料 3 即 Torayca T700S-12K-50C 切割成 25mm 长，将该切割碳纤维束沿着随机方向分散，使碳纤维束分布，制作碳纤维束随机取向基材。使 40 质量份以下的碳纤维片状模塑料用乙烯基酯树脂含浸于 60 质量份该碳纤维束随机取向基材中，制作碳纤维片状模塑料基材（SMC）。厚度为 2mm。
[0366] 乙烯基酯树脂，是将昭和高分子公司制 Ripoxy H600 作为基质树脂，相对于该乙烯基酯树脂 100 质量份，配合 1.0 质量份有机过氧化物固化剂（日本油脂公司制 Perbutyl Z）、0.6 质量份阻聚剂（精工化学公司制 TBI）、13.0 质量份增粘剂（Dow Chemical 公司制 I・143L）及 5.0 质量份内部脱模剂（Adeka Fine 公司制 ZNS・P）得到的树脂。
[0367] （材料 12）带有切口的碳纤维预浸料坯
[0368] 使用自动裁切机，将图 7 所示的切口连续地插入东丽（株）制、Torayca 预浸料坯 P3052S-17 中，由此得到以等间隔具有规则的切口的带有切口的碳纤维预浸料坯。切口的方向为纤维垂直方向 13，切口的长度 17 为 5.1mm，间隔 18（纤维长度度）为 30mm。相邻列的切口彼此切开的 19 为 0.1mm。
[0369] （材料 13）环氧树脂 1
[0370] 作为环氧树脂，配合 40 质量份 Epototo YD128（东都化成（株）制）、20 质量份 Epototo YD128G（东都化成（株）制）、20 质量份 Epicoat1001（日本环氧树脂（株）制）、20 质量份 Epicoat1009（日本环氧树脂（株）制）；作为固化剂，配合 4 质量份 DICY7（日本环氧树脂（株）制、双氰胺）、3 质量份 DCM999（保土谷化学（株）制、3-(3,4-二氯苯基)-1,1-二甲基脲）；作为其他添加剂，配合 5 质量份 Vinylec K（智索（株）制、聚乙烯醇缩甲醛）。未固化树脂的玻璃化温度为 3℃。60℃下的粘度为 200Pa·s。
[0371] （材料 14）环氧树脂 2
[0372] 作为环氧树脂，配合 70 质量份 Epototo YD128G（东都化成（株）制）、30 质量份 Epicoat1009（日本环氧树脂（株）制）；作为固化剂，配合 4 质量份 DICY7（日本环氧树脂（株）制、双氰胺）、3 质量份 DCM999（保土谷化学（株）制、3-(3,4-二氯苯基)-1,1-二甲基脲）；作为其他添加剂，配合 5 质量份 Vinylec K（智索（株）制、聚乙烯醇缩甲醛）。未固化树脂的玻璃化温度为 60℃下的粘度为 600Pa·s。
[0373] （材料 15）尼龙 6 树脂短切纤维
[0374] 将东丽（株）制、CM1007（尼龙 6 树脂）纺丝，将得到的尼龙 6 树脂的纤维（单纤
维纤度 3dtex) 用筒形切割机 (Cartridge cutter) 切割成 5.0mm, 得到尼龙 6 树脂短切纤维。

[0375] （实施例 1）
[0376] 将材料 I 中得到的碳纤维 1 用筒形切割机切割成 6mm, 得到短切碳纤维。配制由水和表面活性剂 (Nacalai Tesque(株) 制, 丙烯乙烯十二烷基醚 (商品名)) 形成的浓度为 0.1% 的分散液。使用上述分散液和上述短切碳纤维，利用图 3 的增强纤维基材 (抄纸基材) 制造装置, 制作碳纤维基材。制造装置由分散槽 21、抄纸槽 22 及输送带 32 构成。分散槽 21 为直径 1000mm 的圆筒形状容器, 容器下部设置带有开口的直线状输送带 (倾角 30°)。输送部连接分散槽和抄纸槽。分散槽上面的开口部安装有搅拌机，能从开口部加入短切碳纤维及分散液 (分散介质)。抄纸槽配置有在底部具有宽 500mm 的抄纸面的网状输送带。输送带 32 与网状输送带 31 连接而配置, 输送碳纤维基材 30。进行抄纸, 使分散液中的碳纤维浓度为 0.05%。将经过抄纸的碳纤维基材在 200℃的干燥炉中干燥 30 分钟。所得碳纤维基材的宽度为 500mm, 长度为 500mm, 单位面积重量为 50g/m²。增强纤维基材的特性示于表 1。

[0377] 将材料 I 中得到的碳纤维与 2 片东丽 (株) 制 CM1007（尼龙 6 树脂）同一厚度的膜以膜/碳纤维基材/膜的方式进行层合。在 250℃的温度下，经 2 分钟对上述层合体施加 5MPa 的压力, 制作在碳纤维基材中浸渍有尼龙 6 树脂的宽度为 500mm, 长度为 500mm 的预浸料坯 (1)。预浸料坯的特性示于表 2。

[0378] 制作层合有 8 片预浸料坯 (1) 的预成型体 (A), 在远红外线加热炉中, 于氮气气氛下,预热至 280℃。将预成型体 (A) 配置在冲压成型模中 (投料配比 110%)，合模，在成型压力 30MPa 下加压，保持 2 分钟，所述冲压成型模具有内腔表面温度为 120℃、厚度为 1.1mm 的图 4 所示的 B5 尺寸的 L 字形箱型形状内腔。之后, 开模, 脱模, 得到 L 字形箱型形状的成型品。预成型体 (A) 按照模的形状良好地被赋型, 得到形状品质良好的成型品。成型品的特性示于表 3, 表 10。

[0379] （实施例 2）
[0380] 除调节浸渍于碳纤维基材的尼龙 6 树脂膜, 使纤维重量含有率为 52% 之外, 与实施例 1 同样地制作预浸料坯 (2)。预浸料坯的特性示于表 2。

[0381] 除制作层合有 17 片预浸料坯 (2) 的预成型体之外, 与实施例 1 同样地制作 L 字形箱型形状的成型品。预成型体按照模的形状良好地被赋型, 得到形状品质良好的成型品。成型品的特性示于表 3。

[0382] （实施例 3）
[0383] 除调节抄纸时分散液的流速和网状输送带的速度, 使碳纤维基材的单位面积重量为 70g/m² 之外, 与实施例 1 同样地制作碳纤维基材。增强纤维基材的特性示于表 1。调节浸渍于上述碳纤维基材的尼龙 6 树脂膜, 使纤维重量含有率为 65%, 在 270℃的温度下, 经 3 分钟施加 5MPa 的压力, 制作在碳纤维基材中浸渍有尼龙 6 树脂的预浸料坯 (3)。由于纤维重量含有率高, 所以较难进行树脂的浸渍。预浸料坯的特性示于表 2。

[0384] 除制作层合有 17 片预浸料坯 (3) 的预成型体之外, 与实施例 1 同样地制作 L 字形箱型形状的成型品。预成型体按照模的形状良好地被赋型, 得到形状品质良好的成型品。成型品的特性示于表 3。
[0385] (实施例 4)
[0386] 向调节含浸于碳纤维基材的尼龙6树脂膜，使纤维质量含有率为15%之外，与实施例1同样地制作预浸料坯(4)。预浸料坯的特性示于表2。
[0387] 向制作层合有4片预浸料坯(4)的预成型体之外，与实施例1同样地制作L字形箱型形状的成型品。预成型体按模的形状良好地被赋型，得到形状品质良好的成型品。成型品的特性示于表3。
[0388] (实施例 5)
[0389] 向调节含浸于碳纤维基材的尼龙6树脂膜，使纤维质量含有率为8%之外，与实施例1同样地制作预浸料坯(5)。预浸料坯的特性示于表2。
[0390] 向制作层合有2片预浸料坯(5)的预成型体之外，与实施例1同样地制作L字形箱型形状的成型品。预成型体按模的形状良好地被赋型，得到形状品质良好的成型品。成型品的特性示于表3。
[0391] (实施例 6)
[0392] 向调节抄纸时网状输送带的速度为分散液流速的4倍速度之外，与实施例1同样地制作碳纤维基材。增强纤维基材的特性示于表1。使用所得碳纤维基材，与实施例1同样地制作含浸有尼龙6树脂的预浸料坯(6)。预浸料坯的特性示于表2。
[0393] 向使用预浸料坯(6)之外，与实施例1同样地制作L字形箱型形状的成型品。预成型体按模的形状良好地被赋型，得到形状品质良好的成型品。成型品的特性示于表3。
[0394] (实施例 7)
[0395] 向调节抄纸时分散液的流速和网状输送带的速度，使碳纤维基材的单位面积重量为20g/m²之外，与实施例1同样地制作碳纤维基材。增强纤维基材的特性示于表1。调节含浸于上述碳纤维基材的尼龙6树脂膜，使纤维质量含有率为20%，在250℃的温度下经2分钟施加5MPa的压力，制作在碳纤维基材中含浸有尼龙6树脂的预浸料坯(7)。预浸料坯的特性示于表2。
[0396] 向制作层合有8片预浸料坯(7)的预成型体，使用具有与图4所示的形状相同(B5尺寸的L字形箱型形状)、且厚度为0.4mm的内腔的冲压成型模之外，与实施例1同样地制作L字形箱型形状的成型品。预成型体按模的形状良好地被赋型，得到形状品质良好的成型品。成型品的特性示于表3。
[0397] (实施例 8)
[0398] 向调节抄纸时分散液的流速和网状输送带的速度，使碳纤维基材的单位面积重量为10g/m²之外，与实施例1同样地制作碳纤维基材。增强纤维基材的特性示于表4。调节含浸于上述碳纤维基材的尼龙6树脂膜，使纤维质量含有率为20%，在250℃的温度下经2分钟施加5MPa的压力，制作在碳纤维基材中含浸有尼龙6树脂的预浸料坯(8)。预浸料坯的特性示于表5。
[0399] 向制作层合有16片预浸料坯(8)的预成型体之外，与实施例7同样地制作L字形箱型形状的成型品。由于预浸料坯(8)极其薄，所以层合层数变多，层合需要花费时间，但预成型体按模的形状良好地被赋型，得到形状品质良好的成型品。成型品的特性示于表6。
[0400] (实施例 9)
[0401] 除调节抄纸时分散液的流速和网状输送带的速度，使碳纤维基材的单位面积重量为200g/m²之外，与实施例1同样地制作碳纤维基材。增强纤维基材的特性示于表4，调节含浸于上述碳纤维基材的尼龙6树脂膜，使纤维重量含有率为20%，在250℃的温度下经2分钟施加5MPa的压力，制作在碳纤维基材中含浸有尼龙6树脂的预浸料坯(9)。预浸料坯的特性示于表5。

[0402] 除制作层合有2片预浸料坯(9)的预成型体之外，与实施例1同样地制作L字形箱型形状的成型品。预成型体按照模的形状良好地被赋型，得到形状品质良好的成型品。成型品的特性示于表6。

[0403] (实施例10)

[0404] 除在抄纸时使用以质量比计按1：1混合了6mm长的短切碳纤维和3mm长的短切碳纤维的短切碳纤维之外，与实施例1同样地制作碳纤维基材。增强纤维基材的特性示于表4。使用所得碳纤维基材，与实施例1同样地制作含浸有尼龙6树脂的预浸料坯(10)。预浸料坯的特性示于表5。

[0405] 除使用预浸料坯(10)之外，与实施例1同样地制作L字形箱型形状的成型品。预成形体按照模的形状良好地被赋型，得到形状品质良好的成型品。成型品的特性示于表6。

[0406] (实施例11)

[0407] 除在抄纸时使用以质量比计按3：1混合了6mm长的短切碳纤维和3mm长的短切碳纤维的短切碳纤维之外，与实施例1同样地制作碳纤维基材。增强纤维基材的特性示于表4。使用所得碳纤维基材，与实施例1同样地制作含浸有尼龙6树脂的预浸料坯(11)。预浸料坯的特性示于表5。

[0408] 除使用预浸料坯(11)之外，与实施例1同样地制作L字形箱型形状的成型品。预成形体按照模的形状良好地被赋型，得到形状品质良好的成型品。成型品的特性示于表6。

[0409] (实施例12)

[0410] 除在碳纤维基材中含浸尼龙6树脂膜时，调节压力和时间使树脂含浸率20%之外，与实施例1同样地制作预浸料坯(12)。预浸料坯的特性示于表5。

[0411] 除使用预浸料坯(12)，使模的内腔表面温度为270℃，在35MPa下加压保持成型压力10分钟之外，与实施例1同样地制作L字形箱型形状的成型品。由于预成形体的树脂含浸率低，所以需要升高成型温度、提高压力、延长时间，但成型品按照模的形状良好地被赋型，得到形状品质良好的成型品。成型品的特性示于表6。

[0412] (实施例13)

[0413] 将实施例1的碳纤维基材和膜以膜/碳纤维基材/膜的方式进行层合，所述膜使用2片东丽(株)制A900(PPS树脂)同厚度的膜，在300℃的温度下经2分钟施加5MPa的压力，制作在碳纤维基材中含浸有PPS树脂的预浸料坯(13)。预浸料坯的特性示于表5。

[0414] 除使用预浸料坯(13)，使模的内腔表面温度为300℃之外，与实施例1同样地制作L字形箱型形状的成型品。成型品按照模的形状良好地被赋型，得到形状品质良好的成型品。成型品的特性示于表6。

[0415] (实施例14)

[0416] 将实施例1的碳纤维基材和膜以膜/碳纤维基材/膜的方式进行层合，所述膜使用2片由混炼了50质量%未改性聚丙烯树脂(Primepolymer(株)制"Primepolypro"J105G)
和 50 质量％酸改性聚丙烯树脂（三井化学（株）制“Admor”QB510）的树脂制作的相同厚度
的膜，在 230℃的温度下经 2 分钟施加 5MPa 的压力，制作在碳纤维基材中含浸有 PP 树脂
的预浸料坯（14）。预浸料坯的特性示于表 5。

【0417】除使用预浸料坯（14），使膜的内腔表面温度为 230℃之外，将实施例 1 同样地制作
L 字形箱型形状的成型品。成型品按照模的形状良好地被赋型，得到形状品质良好的成型
品。成型品的特性示于表 6。

【0418】（参考例 1）

【0419】将实施例 1 的碳纤维基材和 2 片膜以膜/碳纤维基材/膜的方式进行层合，所述
膜使用由材料 13 的环氧树脂制作的相同厚度的膜，在 60℃的温度下施加 5MPa 的压力 2 分
钟，制作在碳纤维基材中含浸有环氧树脂 1 的预浸料坯（15）。与使用热塑性树脂的情况相
比，预浸料坯的拉伸强度小，层合工序中的预浸料坯的操作变得困难。预浸料坯的特性示于
表 8。

【0420】使用预浸料坯（15），使膜的内腔表面温度为 150℃，成型压力为 10MPa，成型时间
为 30 分钟，进行成型，脱模，制作 L 字形箱型形状的成型品。成型品按照模的形状良好地被
赋型，得到形状品质良好的成型品。成型品的特性示于表 9。

【0421】（参考例 2）

【0422】使用实施例 1 的碳纤维基材和 2 片膜以膜/碳纤维基材/膜的方式进行层合，所
述膜是由材料 14 的环氧树脂制作的相同厚度的膜，在 60℃的温度下经 2 分钟施加 5MPa 的
压力，制作在碳纤维基材中含浸有环氧树脂 1 的预浸料坯（16）。与使用热塑性树脂的情况相
比，预浸料坯的拉伸强度小，层合工序中的预浸料坯的操作变得困难。预浸料坯的特性示于
表 8。

【0423】除使用预浸料坯（16），之外，与实施例 14 同样地制作 L 字形箱型形状的成型品。成
型品按照模的形状良好地被赋型，得到形状品质良好的成型品。成型品的特性示于表 9。

【0424】（实施例 15）

【0425】准备使用了尼龙 6 树脂的膜，所述膜是相对于 100 质量份东丽（株）制 CM1007（尼
龙 6 树脂），配合 10 质量份磷化工业制 Novared 120（平均粒径 25 μm，磷含有率 85%）
进行混炼而得到的。除使用实施例 1 的碳纤维基材和相同厚度的 2 片该膜、以膜/碳纤
维基材/膜的方式进行层合之外，与实施例 1 同样地制作预浸料坯（17）。预浸料坯的特性示于
表 8。

【0426】除使用预浸料坯（17），之外，与实施例 1 同样地制作 L 字形箱型形状的成型品。预
成型体按照模的形状良好地被赋型，得到形状品质良好的成型品，配合红磷，形成赋予了阻
燃性的成型品。阻燃性为 UL94V-0。成型品的特性示于表 9。

【0427】（实施例 16）

【0428】除使预浸料坯的大小为 1000mm × 500mm 之外，与实施例 1 同样地制作预浸料坯
（18）。预浸料坯的特性示于表 8。

【0429】除制作层含有 24 片预浸料坯（18）的预成型体，使用图 8 所示的汽车发动机罩成
型品用模之外，与实施例 1 同样地制作汽车用发动机罩的成型品。虽然为尺寸较大的预成
型体，但是可以层合、输送等问题，按照模的形状良好地被赋型，可以得到形状品质良
好的成型品。成型品的特性示于表 9。
[0430] (实施例 17)
[0431] 除使用将材料 4 中得到的玻璃纤维用筒形切割机切割成 6mm 的短切玻璃纤维代替短切碳纤维之外，与实施例 1 同样地得到玻璃纤维基材。玻璃纤维基材的单位面积重量为 100g/m²。玻璃纤维基材的特性示于表 7。
[0432] 除使用上述玻璃纤维基材之外，与实施例 1 同样地制作在玻璃纤维基材中含浸有尼龙 6 树脂的预浸料坯 (19)。预浸料坯的特性示于表 8。
[0433] 除制作层合有 6 片预浸料坯 (19) 的预成型体之外，与实施例 1 同样地制作 L 字形箱型形状的成型品。预成型体按照模的形状良好地被赋形，得到形状品质良好的成型品。成型品的特性示于表 9。
[0434] (实施例 18)
[0435] 除短切碳纤维使用将材料 2 中得到的碳纤维 2 用筒形切割机切割成 6mm 的短切碳纤维之外，与实施例 2 同样地制作预浸料坯 (20)。预浸料坯的特性示于表 8。
[0436] 除制作层合有 17 片预浸料坯 (20) 的预成型体之外，与实施例 1 同样地制作 L 字形箱型形状的成型品。预成型体按照模的形状良好地被赋形，得到形状品质良好的成型品。成型品的特性示于表 9。
[0437] (实施例 19)
[0438] 除调节含浸于碳纤维基材的 PP 树脂膜，使纤维含量含有率为 40% 之外，与实施例 14 同样地制作预浸料坯 (21)。预浸料坯的特性示于表 8。
[0439] 除制作层合有 17 片预浸料坯 (21) 的预成型体之外，与实施例 14 同样地制作 L 字形箱型形状的成型品。预成型体按照模的形状良好地被赋形，得到形状品质良好的成型品。成型品的特性示于表 9。
[0440] (实施例 20)
[0441] 层合 8 片预浸料坯 (1) 制作层合预成型体 (A) 后，将该预成型体 (A) 在 250°C 的温度下、于 5MPa 的压力下加压 1 分钟，制作预浸料坯 (1) 互相粘合的预成型体 (B)。预成型体的特性示于表 10。
[0442] 使用上述预成型体 (B)，与实施例 1 的成型同样地制作 B5 尺寸的 L 字形箱型形状的成型品。由于预浸料坯 (1) 被互相粘合，所以 L 字形箱型形状的成型品的壁部部分的厚度稍薄，表面会稍许错位等，形状赋型性稍困难，但成型品可以使用。成型品的特性示于表 10。
[0443] (实施例 21)
[0444] 将预浸料坯 (1) 与预浸料 (2) 共计 8 片层合，使其为 [(2) / (1) × 6 片 / (2)]，制作层合预成型体 (C)。预成型体的特性示于表 10。
[0445] 除使用上述预成型体之外，与实施例 1 同样地制作 L 字形箱型形状的成型品。成型品按照模的形状良好地被赋形，得到形状品质良好的成型品。成型品的特性示于表 10。
[0446] (实施例 22)
[0447] 将预浸料坯 (1) 与预浸料 (2) 共计 8 片层合，使其为 [(2) / (1) × 6 片 / (2)]，制作层合预成型体 (D)。预成型体的特性示于表 10。
[0448] 除使用上述预成型体之外，与实施例 1 同样地制作 L 字形箱型形状的成型品。成型品按照模的形状良好地被赋形，得到形状品质良好的成型品。成型品的特性示于表 10。
（实施例 23）
[0449] 将预浸料坯 (1) 与预浸料坯 (19) 共计 6 片层合，使其为 [(1)/(19)×4 片/(1)]，制作层合预成型体 (E)。预成型体的特性示于表 10。
[0450] 除使用上述预成型体之外，与实施例 1 同样地制作 L 字形箱型形状的成型品。成型品按照模的形状良好地被赋型，得到形状品质良好的成型品。成型品的特性示于表 10。
[0451] （实施例 24）
[0452] 将预浸料坯 (1) 与材料 10 的 Torayca 预浸料坯共计 8 片层合，使其为 [Torayca 预浸料坯/(1)×7 片]，制作层合预成型体 (F)。预成型体的特性示于表 10。此处，配置 Torayca 预浸料坯，使其加强图 5 的成型品的顶面部分。
[0453] 除使用上述预成型体之外，与实施例 1 同样地制作 L 字形箱型形状的成型品。成型品按照模的形状良好地被赋型，得到形状品质良好的成型品。成型品的特性示于表 10。
[0454] （实施例 25）
[0455] 将预浸料坯 (1) 与材料 5 的 GMT 共计 3 片层合，使其为 [(1)/GMT/(1)]，制作层合预成型体 (G)。预成型体的特性示于表 11。此处，如图 6 所示地进行配置，在基材的投料配比方面，使预浸料坯 (1) 的投料配比为 110%，使 GMT 的投料配比为 50%。
[0456] 除使用上述预成型体之外，与实施例 1 同样地制作 L 字形箱型形状的成型品。成型品按照模的形状良好地被赋型，得到形状品质良好的成型品。成型品的特性示于表 11。
[0457] （实施例 26）
[0458] 将预浸料坯 (21) 与材料 6 的 PP 树脂片材共计 3 片层合，使其为 [(21)/PP 树脂片材/(21)]，制作层合预成型体 (H)。预成型体的特性示于表 11。
[0459] 除使用上述预成型体之外，与实施例 1 同样地制作 L 字形箱型形状的成型品。成型品按照模的形状良好地被赋型，得到形状品质良好的成型品。成型品的特性示于表 11。
[0460] （实施例 27）
[0461] 将预浸料坯 (21) 与材料 7 的发泡 PP 树脂片材共计 3 片层合，使其为 [(21)/发泡 PP 树脂片材/(21)]，制作层合预成型体 (I)。预成型体的特性示于表 11。
[0462] 除使用上述预成型体之外，与实施例 1 同样地制作 L 字形箱型形状的成型品。成型品按照模的形状良好地被赋型，得到形状品质良好的成型品。成型品的特性示于表 11。
[0463] （实施例 28）
[0464] 将预浸料坯 (21) 与材料 8 的透明尼龙树脂膜共计 9 片层合，使其为 [透明尼龙树脂膜/(1)×8]，制作层合预成型体 (J)。预成型体的特性示于表 11。
[0465] 除使用上述预成型体之外，与实施例 1 同样地制作 L 字形箱型形状的成型品。成型品按照模的形状良好地被赋型，得到形状品质良好的成型品。另外，由于表面为透明尼龙树脂片材，所以具有光泽，产生高级感。成型品的特性示于表 11。
[0466] （实施例 29）
[0467] 将预浸料坯 (1) 与材料 9 的尼龙树脂阻燃性膜共计 9 片层合，使其为 [尼龙树脂阻燃性膜片/(1)×8]，制作层合预成型体 (K)。预成型体的特性示于表 11。
[0468] 除使用上述预成型体之外，与实施例 1 同样地制作 L 字形箱型形状的成型品。成型品按照模的形状良好地被赋型，得到形状品质良好的成型品。成型品的特性示于表 11。另外，调节燃烧火焰的高度为 19mm，将配置有成型品的尼龙树脂阻燃性片材的表面暴露在
火焰中，测定5秒后离开火焰的阻燃性，结果离开火焰后，消焰。

[0470]（实施例30）
[0471]除具有B5尺寸的L字形箱型形状的内腔的冲压成型模为具有用于冲裁成型品端部剩余部分的冲裁装置的模之外，与实施例1同样地制作L字形箱型形状的成型品。由于同时进行成型与冲裁，所以可以缩短工序。

[0472]（比较例1）
[0473]除调节抄纸时分散液的流速和网状输送带的速度，使碳纤维基材的单位面积重量为410g/m²之外，与实施例1同样地制作碳纤维基材。碳纤维基材的特性示于表12。调节含浸于上述碳纤维基材的尼龙6树脂率，使纤维质量含有率为20%，在250°C的温度下经2分钟施加5MPa的压力，制作在碳纤维基材中含浸有尼龙6树脂的预浸料坯（22）。预浸料坯的特性示于表13。

[0474]除使用1片预浸料坯（22）作为预成型体之外，与实施例1同样地制作L字形箱型形状的成型品。预成型体难以按照模的形状进行赋型，立壁部分没有形成均匀的壁厚，一部分断裂。成型品的特性示于表15。

[0475]（比较例2）
[0476]除在抄纸时按纤维质量含有率为20%的配合于分散液中加入实施例1中使用的短切碳纤维和材料15的尼龙6树脂短切纤维之外，与实施例1同样地进行抄纸，得到碳纤维和尼龙6纤维被湿抄的预浸料坯（23）。预浸料坯的特性示于表13。碳纤维单独的单位面积重量为50g/m²。

[0477]除使用预浸料坯（23）之外，欲与实施例16同样地进行汽车用发动机罩的成型，由于预浸料坯（23）的拉伸强度低，所以制作层合有24片预浸料坯（23）的预成型体时，经过输送、层合、移动，预浸料坯（23）破损，无法成型。

[0478]（比较例3）
[0479]除使用1片材料5的GMT（预浸料坯（24）），以投料配比为50%进行配置之外，与实施例1同样地制作L字形箱型形状的成型品。由于GMT的厚度大，所以无法成型为厚度为1.1mm的成型品，无法得到目标厚度良好的成型品。成型品的特性示于表14。

[0480]（比较例4）
[0481]除使用1片材料11的CF-SMC（预浸料坯（25）），以投料配比为50%进行配置之外，与实施例13同样地制作L字形箱型形状的成型品。成型品按照模的形状良好地被赋型，得到形状质量良好的成型品，但碳纤维以束状被分散，从而导致比强度低、各向同性也差。成型品的特性示于表14。

[0482]（比较例5）
[0483]使用8片材料12的带有切口的碳纤维预浸料坯（预浸料坯（26）），制作以[0/45/90/-45]s的方式按各向同性层合的预成型体，与实施例13同样地制作L字形箱型形状的成型品。成型品按照模的形状良好地被赋型，得到形状质量良好的成型品，但碳纤维以束状被分散，从而导致各向同性差。成型品的特性示于表14。

[0484]（比较例6）
[0485]使用8片材料10的Torayca预浸料坯（预浸料坯（27）），制作以[0/45/90/-45]s的方式按各向同性层合的预成型体，与实施例13同样地制作L字形箱型形状的成型品，但
由于碳纤维连续，因此难以进行形状的赋型，无法成型为立壁、角部分等形状。

[0486]

<table>
<thead>
<tr>
<th>实施例</th>
<th>实施例</th>
<th>碳纤维</th>
<th>实施例</th>
<th>碳纤维</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>纤维种类</td>
<td>碳纤维</td>
<td>碳纤维</td>
<td>碳纤维</td>
<td>碳纤维</td>
</tr>
<tr>
<td>纤维重量含量</td>
<td>[质量%]</td>
<td>28</td>
<td>52</td>
<td>65</td>
</tr>
<tr>
<td>2 - 10mm纤维长度比例</td>
<td>[质量%]</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>小于2mm纤维长度比例</td>
<td>[质量%]</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>三组取向角</td>
<td>40</td>
<td>42</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>42</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>空气层（微波透性）</td>
<td>[cm²/cm³/s]</td>
<td>160</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

表1
<table>
<thead>
<tr>
<th>特征</th>
<th>实施例 1</th>
<th>实施例 2</th>
<th>实施例 3</th>
<th>实施例 4</th>
<th>实施例 5</th>
<th>实施例 6</th>
<th>实施例 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>23°C下的厚度 h0</td>
<td>[mm]</td>
<td>0.15</td>
<td>0.07</td>
<td>0.07</td>
<td>0.28</td>
<td>0.56</td>
<td>0.15</td>
</tr>
<tr>
<td>100°C下的厚度 h1</td>
<td>[mm]</td>
<td>0.15</td>
<td>0.07</td>
<td>0.07</td>
<td>0.28</td>
<td>0.56</td>
<td>0.15</td>
</tr>
<tr>
<td>200°C下的厚度 h2</td>
<td>[mm]</td>
<td>0.18</td>
<td>0.10</td>
<td>0.11</td>
<td>0.30</td>
<td>0.58</td>
<td>0.18</td>
</tr>
<tr>
<td>300°C下的厚度 h3</td>
<td>[mm]</td>
<td>0.92</td>
<td>0.45</td>
<td>0.49</td>
<td>0.85</td>
<td>0.73</td>
<td>0.92</td>
</tr>
<tr>
<td>400°C下的厚度 h4</td>
<td>[mm]</td>
<td>(* 1)</td>
</tr>
<tr>
<td>拉伸强度 σ</td>
<td>[MPa]</td>
<td>150</td>
<td>200</td>
<td>210</td>
<td>120</td>
<td>90</td>
<td>150</td>
</tr>
<tr>
<td>σMax</td>
<td>[MPa]</td>
<td>170</td>
<td>220</td>
<td>220</td>
<td>135</td>
<td>95</td>
<td>200</td>
</tr>
<tr>
<td>σMin</td>
<td>[MPa]</td>
<td>140</td>
<td>185</td>
<td>190</td>
<td>110</td>
<td>85</td>
<td>120</td>
</tr>
</tbody>
</table>

*1: 树脂分解 *2: 树脂分解气体
<table>
<thead>
<tr>
<th>成型品</th>
<th>成型法</th>
<th>实施例 1</th>
<th>实施例 2</th>
<th>实施例 3</th>
<th>实施例 4</th>
<th>实施例 5</th>
<th>实施例 6</th>
<th>实施例 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>特性</td>
<td>比强度</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>各向同性</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>比刚度</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>各向同性</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>线膨胀系数</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>各向同性</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>增强纤维基材</td>
<td>纤维种类</td>
<td>实施例 8</td>
<td>实施例 9</td>
<td>实施例 10</td>
<td>实施例 11</td>
<td>实施例 12</td>
<td>实施例 13</td>
<td>实施例 14</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>增强纤维</td>
<td>碳纤维 1</td>
</tr>
<tr>
<td>纤维质量含量</td>
<td>[质量%]</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>52</td>
<td>28</td>
<td>25</td>
<td>33</td>
</tr>
<tr>
<td>纤维长度比例</td>
<td>超过 10mm</td>
<td>[质量%]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2~10mm</td>
<td>[质量%]</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>小于 2mm</td>
<td>[质量%]</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>二维取向角</td>
<td>[°]</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>空气流量（弗雷泽法）</td>
<td>[cm³/cm²·s]</td>
<td>1100</td>
<td>80</td>
<td>200</td>
<td>180</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>预浸料编号</td>
<td>预浸料编号</td>
<td>实施例 8</td>
<td>实施例 9</td>
<td>实施例 10</td>
<td>实施例 11</td>
<td>实施例 12</td>
<td>实施例 13</td>
<td>实施例 14</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8)</td>
<td>(9)</td>
<td>(10)</td>
<td>(11)</td>
<td>(12)</td>
<td>(13)</td>
<td>(14)</td>
</tr>
<tr>
<td>树脂</td>
<td>树脂种类</td>
<td>尼龙 6</td>
<td>尼龙 6</td>
<td>尼龙 6</td>
<td>尼龙 6</td>
<td>尼龙 6</td>
<td>PPS</td>
<td>PP</td>
</tr>
<tr>
<td></td>
<td>树脂质量含量</td>
<td>[质量%]</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>48</td>
<td>72</td>
<td>75</td>
</tr>
<tr>
<td>特征</td>
<td>23℃下的厚度 h0</td>
<td>[mm]</td>
<td>0.03</td>
<td>0.58</td>
<td>0.15</td>
<td>0.07</td>
<td>0.69</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>100℃下的厚度 h1</td>
<td>[mm]</td>
<td>0.03</td>
<td>0.58</td>
<td>0.15</td>
<td>0.07</td>
<td>0.69</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>200℃下的厚度 h2</td>
<td>[mm]</td>
<td>0.04</td>
<td>0.62</td>
<td>0.16</td>
<td>0.08</td>
<td>0.73</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>300℃下的厚度 h3</td>
<td>[mm]</td>
<td>0.18</td>
<td>(× 2)</td>
<td>3.45</td>
<td>(× 2)</td>
<td>0.73</td>
<td>(× 2)</td>
</tr>
<tr>
<td></td>
<td>400℃下的厚度 h4</td>
<td>[mm]</td>
<td>(× 1)</td>
<td>(× 1)</td>
<td>(× 1)</td>
<td>(× 1)</td>
<td>(× 1)</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>树脂含浸率</td>
<td>[%]</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>20</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>体积密度</td>
<td>[g/cm³]</td>
<td>1.20</td>
<td>1.25</td>
<td>1.20</td>
<td>1.33</td>
<td>0.25</td>
<td>1.37</td>
</tr>
<tr>
<td></td>
<td>单位面积重量</td>
<td>[g/m²]</td>
<td>35</td>
<td>620</td>
<td>180</td>
<td>100</td>
<td>180</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>拉伸强度 σ</td>
<td>[MPa]</td>
<td>120</td>
<td>160</td>
<td>140</td>
<td>180</td>
<td>60</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>σMax</td>
<td>[MPa]</td>
<td>130</td>
<td>175</td>
<td>155</td>
<td>200</td>
<td>70</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>σMin</td>
<td>[MPa]</td>
<td>105</td>
<td>150</td>
<td>130</td>
<td>165</td>
<td>65</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>长尺寸方向的长度</td>
<td>[mm]</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

*1: 树脂分解 *2: 树脂分解气味
<table>
<thead>
<tr>
<th>成型法</th>
<th>冲压</th>
<th>冲压</th>
<th>冲压</th>
<th>冲压</th>
<th>冲压</th>
<th>冲压</th>
</tr>
</thead>
<tbody>
<tr>
<td>特性</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>比重</td>
<td>B</td>
<td>A</td>
<td>AA</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>各向同性</td>
<td>A</td>
<td>AA</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>比例</td>
<td>B</td>
<td>A</td>
<td>AA</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>各向同性</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>弹性模数</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>各向同性</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>实施例</td>
<td>参考例</td>
<td>碳纤维</td>
<td>玻纤纤维1</td>
<td>玻纤纤维2</td>
<td>玻纤纤维1</td>
<td>玻纤纤维1</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>28</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>52</td>
<td>57</td>
</tr>
<tr>
<td>6</td>
<td>19</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[质量%]</th>
<th>[质量%]</th>
<th>[质量%]</th>
<th>[质量%]</th>
<th>[质量%]</th>
<th>[质量%]</th>
<th>[质量%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>超过10mm</td>
<td>超过10mm</td>
<td>超过10mm</td>
<td>超过10mm</td>
<td>超过10mm</td>
<td>超过10mm</td>
<td>超过10mm</td>
</tr>
<tr>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
</tbody>
</table>

表7

[0493]
<table>
<thead>
<tr>
<th>段落</th>
<th>参考例 1</th>
<th>参考例 2</th>
<th>实施例 15</th>
<th>实施例 16</th>
<th>实施例 17</th>
<th>实施例 18</th>
<th>实施例 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>预浸料
预浸料编号</td>
<td>[]</td>
<td>(15)</td>
<td>(16)</td>
<td>(17)</td>
<td>(18)</td>
<td>(19)</td>
<td>(20)</td>
</tr>
<tr>
<td>树脂
树脂种类</td>
<td>[-]</td>
<td>环氧树脂未固化Tg粘度低<wbr/>环氧树脂未固化Tg粘度高</td>
<td>尼龙 6配合10wt%红磷酸</td>
<td>尼龙 6</td>
<td>尼龙 6</td>
<td>尼龙 6</td>
<td>PP</td>
</tr>
<tr>
<td>树脂质量含量
[质量%]</td>
<td>73</td>
<td>73</td>
<td>72</td>
<td>72</td>
<td>64</td>
<td>48</td>
<td>43</td>
</tr>
<tr>
<td>特征
23℃下的厚度 h0
[mm]</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.21</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>100℃下的厚度 h1
[mm]</td>
<td>0.75</td>
<td>0.35</td>
<td>0.15</td>
<td>0.15</td>
<td>0.21</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>200℃下的厚度 h2
[mm]</td>
<td>0.82</td>
<td>0.55</td>
<td>0.17</td>
<td>0.18</td>
<td>0.22</td>
<td>0.09</td>
<td>0.35</td>
</tr>
<tr>
<td>300℃下的厚度 h3
[mm]</td>
<td>(* 1)</td>
<td>(* 1)</td>
<td>(* 2)</td>
<td>0.88</td>
<td>0.92</td>
<td>(* 2)</td>
<td>0.58</td>
</tr>
<tr>
<td>400℃下的厚度 h4
[mm]</td>
<td>(* 1)</td>
</tr>
<tr>
<td>树脂含浸率
[%]</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>体积密度
[g/cm³]</td>
<td>1.25</td>
<td>1.25</td>
<td>1.22</td>
<td>1.20</td>
<td>1.33</td>
<td>1.33</td>
<td>1.20</td>
</tr>
<tr>
<td>单位面积重量
[g/m²]</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>280</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>拉伸强度σ
[MPa]</td>
<td>0.05</td>
<td>0.1</td>
<td>160</td>
<td>150</td>
<td>110</td>
<td>140</td>
<td>135</td>
</tr>
<tr>
<td>σMax
[MPa]</td>
<td>0.06</td>
<td>0.11</td>
<td>175</td>
<td>170</td>
<td>120</td>
<td>150</td>
<td>145</td>
</tr>
<tr>
<td>σMin
[MPa]</td>
<td>0.04</td>
<td>0.09</td>
<td>150</td>
<td>140</td>
<td>105</td>
<td>130</td>
<td>125</td>
</tr>
<tr>
<td>长尺寸方向的长度
[mm]</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>1500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

* 1: 树脂分解
* 2: 树脂分解气味
<table>
<thead>
<tr>
<th>示例条目 1</th>
<th>示例条目 2</th>
<th>示例条目 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>热压</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>比强度</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>各向同性</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>各向同性</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>热压</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>比强度</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>各向同性</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>各向同性</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>热压</td>
<td>D</td>
<td>A</td>
</tr>
<tr>
<td>比强度</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>各向同性</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>各向同性</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

表 9
表10

<table>
<thead>
<tr>
<th>预成型体编号</th>
<th>实施例 1</th>
<th>实施例 20</th>
<th>实施例 21</th>
<th>实施例 22</th>
<th>实施例 23</th>
<th>实施例 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>使用预浸料编号</td>
<td>[]</td>
<td>(A)</td>
<td>(B)</td>
<td>(C)</td>
<td>(D)</td>
<td>(E)</td>
</tr>
<tr>
<td>预浸料编号</td>
<td>[]</td>
<td>(1)</td>
<td>(1)</td>
<td>(1) (2)</td>
<td>(1) (20)</td>
<td>(1) (19)</td>
</tr>
<tr>
<td>层合构成</td>
<td>[]</td>
<td>8片层合</td>
<td>8片层合</td>
<td>(2)/(1)×6/(2)</td>
<td>(20)/(1)×6/(20)</td>
<td>(1)/(19)×4/(1)</td>
</tr>
<tr>
<td>特征</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23℃下的厚度</td>
<td>[mm]</td>
<td>1.2</td>
<td>1.2</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>100℃下的厚度</td>
<td>[mm]</td>
<td>1.3</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>200℃下的厚度</td>
<td>[mm]</td>
<td>1.5</td>
<td>1.4</td>
<td>1.5</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>300℃下的厚度</td>
<td>[mm]</td>
<td>7.9 (×2)</td>
<td>7.9 (×2)</td>
<td>8.2 (×2)</td>
<td>8.1 (×2)</td>
<td>6.3 (×2)</td>
</tr>
<tr>
<td>400℃下的厚度</td>
<td>[mm]</td>
<td>(×1)</td>
<td>(×1)</td>
<td>(×1)</td>
<td>(×1)</td>
<td>(×1)</td>
</tr>
<tr>
<td>层间剪切强度</td>
<td>[MPa]</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

成型法

<table>
<thead>
<tr>
<th>特性</th>
<th>冲压</th>
<th>冲压</th>
<th>冲压</th>
<th>冲压</th>
<th>冲压</th>
<th>冲压</th>
</tr>
</thead>
<tbody>
<tr>
<td>比强度</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>失水性</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>抗剪性</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>失水性</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>抗拉强度</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>失水性</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

*1: 树脂分解

*2: 树脂分解气味
表11

<table>
<thead>
<tr>
<th>题标</th>
<th>成型收缩率</th>
<th>成型条件</th>
<th>特性</th>
<th>比强度</th>
<th>例向同性</th>
<th>例向同性</th>
<th>例向同性</th>
<th>例向同性</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1：射击条件
*2：射脂条件

[0497]

55
<table>
<thead>
<tr>
<th>增强纤维</th>
<th>纤维种类</th>
<th>比较例 1</th>
<th>比较例 2</th>
<th>比较例 3</th>
<th>比较例 4</th>
<th>比较例 5</th>
<th>比较例 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>基材</td>
<td>[-</td>
<td>碳纤维</td>
<td>碳纤维</td>
<td>玻璃纤维</td>
<td>碳纤维</td>
<td>碳纤维</td>
<td>碳纤维</td>
</tr>
<tr>
<td>纤维质量含量</td>
<td>[质量%]</td>
<td>28</td>
<td>28</td>
<td>40</td>
<td>60</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>纤维长度比例</td>
<td>超过 10mm</td>
<td>[质量%]</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2~10mm</td>
<td>[质量%]</td>
<td>95</td>
<td>95</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>小于 2mm</td>
<td>[质量%]</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>二维取向角</td>
<td>[°]</td>
<td>40</td>
<td>40</td>
<td>30</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>空气量（弗雷泽法）</td>
<td>[cm³/cm²·s]</td>
<td>40</td>
<td>160</td>
<td>60</td>
<td>40</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>表13</td>
<td></td>
<td></td>
<td>比较例1</td>
<td>比较例2</td>
<td>比较例3</td>
<td>比较例4</td>
<td>比较例5</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>预浸料坯</td>
<td>预浸料坯编号</td>
<td>[-]</td>
<td>(22)</td>
<td>(23)</td>
<td>(24)</td>
<td>(25)</td>
<td>(26)</td>
</tr>
<tr>
<td>树脂</td>
<td>树脂种类</td>
<td>[-]</td>
<td>尼龙6</td>
<td>环氧树脂</td>
<td>PP</td>
<td>乙烯基酯</td>
<td>环氧树脂</td>
</tr>
<tr>
<td></td>
<td>树脂质量含量</td>
<td>[%]</td>
<td>72</td>
<td>72</td>
<td>60</td>
<td>40</td>
<td>33</td>
</tr>
<tr>
<td>特征</td>
<td>23℃下的厚度 h0</td>
<td>[mm]</td>
<td>1.2</td>
<td>0.95</td>
<td>3.8</td>
<td>2.0</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>100℃下的厚度 h1</td>
<td>[mm]</td>
<td>1.2</td>
<td>0.95</td>
<td>3.8</td>
<td>2.0</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>200℃下的厚度 h2</td>
<td>[mm]</td>
<td>1.3</td>
<td>0.96</td>
<td>14.1</td>
<td>2.1</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>300℃下的厚度 h3</td>
<td>[mm]</td>
<td>0.84 (※2)</td>
<td>0.98 (※2)</td>
<td>(※1)</td>
<td>(※1)</td>
<td>(※1)</td>
</tr>
<tr>
<td></td>
<td>400℃下的厚度 h4</td>
<td>[mm]</td>
<td>(※1)</td>
<td>(※1)</td>
<td>(※1)</td>
<td>(※1)</td>
<td>(※1)</td>
</tr>
<tr>
<td></td>
<td>树脂合浸率</td>
<td>[%]</td>
<td>95</td>
<td>0 (树脂纤维混合)</td>
<td>70</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>体积密度</td>
<td></td>
<td>[g/cm³]</td>
<td>1.20</td>
<td>1.90</td>
<td>1.24</td>
<td>1.20</td>
<td>1.47</td>
</tr>
<tr>
<td>单位面积重量</td>
<td></td>
<td>[g/m²]</td>
<td>1440</td>
<td>180</td>
<td>3900</td>
<td>3900</td>
<td>220</td>
</tr>
<tr>
<td>拉伸强度 σ</td>
<td></td>
<td>[MPa]</td>
<td>250</td>
<td>0.005</td>
<td>30</td>
<td>0.3</td>
<td>0.01</td>
</tr>
<tr>
<td>σMax</td>
<td></td>
<td>[MPa]</td>
<td>255</td>
<td>0.006</td>
<td>35</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>σMin</td>
<td></td>
<td>[MPa]</td>
<td>235</td>
<td>0.004</td>
<td>20</td>
<td>0.25</td>
<td>0.005</td>
</tr>
<tr>
<td>长尺寸方向的长度</td>
<td></td>
<td>[mm]</td>
<td>500</td>
<td>1500</td>
<td>500</td>
<td>500</td>
<td>1000</td>
</tr>
</tbody>
</table>

* 1: 树脂分解 2: 树脂分解气泡
<table>
<thead>
<tr>
<th>成型品</th>
<th>像素</th>
<th>比例</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>各向同性</th>
<th>性能</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>表 14</td>
<td></td>
</tr>
</tbody>
</table>

[0500] 如实施例 1 ～ 19 所述，预浸料坯的增强纤维的纤维长度分布、厚度、拉伸强度良好，且纤维的二维取向角为 10° 以上 80° 的各向同性的预浸料坯在制作成型品时显示出
良好的特性。另外，使用上述预浸料坯制作得到的实施例 1、以及实施例 20 ～ 30 的层合预
成型体也显示出良好的特性。
[0501] 一方面，厚度大的预浸料坯即比较例 1 中，形状赋型困难，一部分成型品中产生
不良情况。进而，使用了拉伸强度低的预浸料坯的比较例 2 中，在制作预成型体时发生破
损。另外，使用了 GMT 的比较例 3 中，厚度大、薄壁成型非常困难。另外，因流动
力学特性的各向同性方面差。使用了 CF-SMC 的比较例 4 中，纤维的二维取向角小，导致力学特性
及其各向同性差。使用了带有切口的碳纤维预浸料坯的比较例 5 中，力学特性被改善，但因
纤维成束状仍然导致各向同性差的结果。使用了连续纤维预浸料坯的比较例 6，难以形成形
状。
[0502] [预浸料坯的制造方法评价]
[0503] 实施例中使用的原料
[0504] (碳纤维 A1) PAN 类碳纤维
[0505] 如下所述地制造碳纤维 A1。
[0506] 使用由 99.4 摩尔％丙烯酸 (AN) 和 0.6 摩尔％甲基丙烯酸构成的共聚物，通过干
湿式纺丝方法得到单纤维旦尼尔 1d、单纤维数 12,000 的丙烯酸类纤维束。在温度为 240 ～
280℃的空气中，以拉伸 1.05 对所得丙烯酸类纤维束加热，转化为耐燃化纤维。然后，在
氮气气氛中，在 300 ～ 900℃的温度范围以内升温速度为 200℃/分钟，进行 10％的拉伸率，升
温至 1,300℃的温度进行烧成。用以硫酸为电解质的水溶液，对上述碳纤维束进行每 1g 碳
纤维 3 库仑的电解表面处理，进而，通过浸渍法赋予上浆剂，在温度为 120℃的加热空气中
干燥，得到 PAN 类碳纤维。
[0507]
总单纤维数	24,000 根
单纤维直径	7μm
每单位长度的质量	0.8g / m
比重	1.8g / cm³
拉伸强度 (注 1)	4.2GPa
拉伸弹性模量 (注 2)	230GPa
O / C (注 3)	0.10
上浆种类	聚氧乙烯油基醚
上浆附着量 (注 4)	1.5 质量％

[0508]
[0509] (碳纤维 A2) PAN 类碳纤维
[0510] 如下所述地制造碳纤维 A2。
[0511] 使用由 99.4 摩尔％丙烯酸 (AN) 和 0.6 摩尔％甲基丙烯酸构成的共聚物，通过干
湿式纺丝方法得到单纤维旦尼尔 1d、单纤维数 12,000 的丙烯酸类纤维束。在温度为 240 ～
280℃的空气中，以拉伸 1.05 对所得丙烯酸类纤维束加热，转化为耐燃化纤维，然后，在
氯气气氛中，在300～900℃的温度范围内，以升温速度为200℃/分钟，进行10%的拉伸后，升温至1,300℃的温度进行烧成。进而，通过浸渍法赋予上浆剂，在温度为120℃的加热空气中干燥，得到PAN系碳纤维。

<table>
<thead>
<tr>
<th>性质</th>
<th>数值</th>
</tr>
</thead>
<tbody>
<tr>
<td>总单纤维数</td>
<td>12,000根</td>
</tr>
<tr>
<td>单纤维直径</td>
<td>7μm</td>
</tr>
<tr>
<td>每单位长度的质量</td>
<td>0.8g/m</td>
</tr>
<tr>
<td>比重</td>
<td>1.8g/cm³</td>
</tr>
<tr>
<td>拉伸强度（注1）</td>
<td>4.2GPa</td>
</tr>
<tr>
<td>拉伸弹性模量（注2）</td>
<td>230GPa</td>
</tr>
<tr>
<td>O/C（注3）</td>
<td>0.05</td>
</tr>
<tr>
<td>上浆种类</td>
<td>聚丙烯烯基醚</td>
</tr>
<tr>
<td>上浆附着量（注4）</td>
<td>0.6质量%</td>
</tr>
</tbody>
</table>

使用由99.4摩尔%丙烯腈（AN）和0.6摩尔%甲基丙烯酸构成的共聚物，通过干燥式纺丝方法得到单纤维旦尼尔1d、单纤维数12,000的丙烯酸类纤维束。在温度为240～280℃的空气中，以拉伸比1.05对所得丙烯酸类纤维束加热，转化为耐燃化纤维，然后，在氯气气氛中，在300～900℃的温度范围内，以升温速度为200℃/分钟，进行10%的拉伸后，升温至1,300℃的温度进行烧成。进而，通过浸渍法赋予上浆剂，在温度为120℃的加热空气中干燥，得到PAN系碳纤维。

<table>
<thead>
<tr>
<th>性质</th>
<th>数值</th>
</tr>
</thead>
<tbody>
<tr>
<td>总单纤维数</td>
<td>48,000根</td>
</tr>
<tr>
<td>单纤维直径</td>
<td>7μm</td>
</tr>
<tr>
<td>每单位长度的质量</td>
<td>0.8g/m</td>
</tr>
<tr>
<td>比重</td>
<td>1.8g/cm³</td>
</tr>
<tr>
<td>拉伸强度（注1）</td>
<td>4.2GPa</td>
</tr>
<tr>
<td>拉伸弹性模量（注2）</td>
<td>230GPa</td>
</tr>
<tr>
<td>O/C（注3）</td>
<td>0.05</td>
</tr>
<tr>
<td>上浆种类</td>
<td>聚丙烯烯基醚</td>
</tr>
<tr>
<td>上浆附着量（注4）</td>
<td>1.5质量%</td>
</tr>
</tbody>
</table>

基质树脂B1酸改性聚丙烯树脂

基质树脂B1使用三井化学（株）制、“Admor”（注册商标）QE510。其物性如下所示。
[0519] • 比重 0.91
[0520] • 熔点 160℃。
[0521] （基质树脂 B2）尼龙 6 树脂
[0522] 基质树脂 B2 使用东丽（株）制、“Amilan”（注册商标）CM1001。其物性如下所示。
[0523] • 比重 1.13
[0524] • 熔点 225℃。
[0525] （基质树脂 B3）PPS 树脂
[0526] 基质树脂 B3 使用东丽（株）制、“Torelina”（注册商标）A900。其物性如下所示。
[0527] • 比重 1.34
[0528] • 熔点 278℃。
[0529] （基质树脂 B4）环氧树脂
[0530] 按照以下所示的顺序，在捏合机中混合 30 质量份“Epicoat”（注册商标）828（双酚 A 型环氧树脂）日本环氧树脂（株）制）、30 质量份“Epicoat”（注册商标）1002（双酚 A 型环氧树脂）日本环氧树脂（株）制）、40 质量份“Epicoat”（注册商标）154（线型酚醛型环氧树脂）日本环氧树脂（株）制）、5 质量份“Vinylec”K（注册商标）（聚乙烯醇缩甲醛）智索（株）制）、4 质量份 DICY7（双氰胺）日本环氧树脂（株）制）、及 5 质量份 DCMU-99（3,4-二氯苯基-1,1-二甲基脲、保土谷化学工业（株）制），得到均匀溶解有聚乙烯醇缩甲醛的环氧树脂组合物。
[0531] （a）将各环氧树脂原料和聚乙烯醇缩甲醛一边加热至 150 ~ 190℃一边搅拌 1 ~ 3 小时，均匀地溶解聚乙烯醇缩甲醛。
[0532] （b）将树脂温度降低至 55 ~ 65℃，加入双氰胺及 3-(3,4-二氯苯基)-1,1-二甲基脲，在该温度下混炼 30 ~ 40 分钟后，从捏合机中取出，得到树脂组合物。
[0533] （粘合剂成分 C1）
[0534] 构成粘合剂的粘合剂成分使用日本触媒（株）制“Porimment”（注册商标）SK-1000。其构成成分分为在侧链具有氨基亚烷基的丙烯酸类聚合物。
[0535] （粘合剂成分 C2）
[0536] 构成粘合剂的粘合剂成分使用日本触媒（株）制“Epocros”（注册商标）WS-700。其构成成分分为在侧链具有噁唑啉基的丙烯酸类聚合物。
[0537] （注 1） 拉伸强度，（注 2）拉伸弹性模量的测定条件
[0538] 根据日本工业规格 (JIS) -R-7601 “树脂含浸丝束试验法”所述的方法求出。其中，测得的碳纤维的树脂含浸丝束如下形成：使“BAKELITE”（注册商标）ERL4221（100 质量份）/ 三氟化硼单乙胺（3 重量份）/ 丙酮（4 重量份）含浸于碳纤维，在 130℃下固化 30 分钟。另外，丝束的测定根数为 6 根，将各测定结果的平均值作为该碳纤维的拉伸强度、拉伸弹性模量。
[0539] （注 3） 0/℃ 测定的测定条件
[0540] 利用 X 射线光电子分光法按照以下顺序求出。首先，用溶剂除去附着于碳纤维表面的附着物等，将所得碳纤维切割成 20mm，并排放置于铜制试样支撑台。使用 AlKα 1.2 作
为X射线源，保持试样腔中为1×10⁻⁹Torr。作为测定时带电所伴随的峰的校正值将C₈主
峰的动能值（K.E.）加在1202eV上。通过在1191～1205eV的范围内引出直线的基线求出
C₈峰面积作为K.E.。通过在947～959eV的范围内引出直线的基线求出O₁₈峰面积作为
K.E.

[0541] 由上述O₁₈峰面积与C₈峰面积之比使用装置所固有的灵敏度校正值以原子数比的方式算出表面氧浓度。使用国际电气公司制ES-200型作为X射线光电子分光法装置，灵敏度
校正值为1.74。

[0542] （注4）上浆剂附着量的测定条件

[0543] 收集约5g附着有上浆剂的碳纤维作为试样，将其加入耐热性容器中。接着，将该
容器在120°C下干燥3小时。在干燥器中一边注意不发生吸湿一边冷却至室温后，将经称量
的质量作为W₁(g)。接着，连容器一起在氢气气流中，于450°C加热15分钟后，同样地在干燥
器中一边注意不发生吸湿一边冷却至室温后，将经称量的质量作为W₂(g)。经过以上处理，
根据下式求出附着于碳纤维的上浆剂的附着量。

[0544] （式）附着量（质量％） = 100 × \((W₁-W₂)/W₁\)

[0545] 需要说明的是，进行3次测定，取其平均值作为附着量。

[0546] 各实施例中得到的碳纤维基材的评价基准如下所述。

[0547] （21）总工序时间

[0548] 测定从工序（I）到工序（III）、从工序（I）到工序（IV）所需的时间。

[0549] （22）增强纤维分散状态的评价

[0550] 从工序（I）中得到的增强纤维基材的任意部位处切割50mm×50mm的正方形形状的
片，用显微镜观察。测定10根以上碳纤维的单纤维形成束状的状态，即分散不充分的碳纤
维束的根数。按照该顺序进行20次测定，求出平均值，按以下基准进行评价。

[0551] AA：分散不充分的碳纤维束小于1个

[0552] A：分散不充分的碳纤维束为1个以上，小于5个

[0553] B：分散不充分的碳纤维束为5个以上，小于10个

[0554] C：分散不充分的碳纤维束为10个以上。

[0555] （23）浸流料剂的操作性

[0556] 按以下基准评价所得浸流料剂的操作性。

[0557] A：碳纤维基材和基质树脂一体化，操作性优异

[0558] B：碳纤维基材和基质树脂分离，必须小心操作。

[0559] （24）成型力学特性的评价

[0560] 将所得浸流料剂切成200mm×200mm，在120°C下干燥1小时。层合8片干燥后的
浸流剂，在湿度200°C、压力30MPa下加压成型5分钟，保持压力不变冷却至50°C，得到厚
1.0mm的成型品。使用所得成型品，基于ISO1788法（1993），按n = 10评价弯曲强度。需要
说明的是，弯曲强度的评价结果以将实施例1作为100的相对值表示。另外，评价结果的偏
差用变异系数（CV值）表示。

[0561] （实施例101）利用湿式工艺的预浸料剂P1的制造

[0562] 利用图9的装置101制造预浸料剂P1。装置101由分散槽111、抄纸槽112及粘
合剂槽126构成。分散槽111为直径300mm的圆筒形状容器，容器下部设置有带有开口阀
115 时浆料输送部 113。使用大型四方型手抄纸机（SQUARE TYPE SHEET MACHINE）（熊谷理
机株式会社制, No. 2563-1（商品名））作为抄纸槽 112。粘合剂槽 126 在容器下部设置
有带有开口阀 128 的粘合剂输送部 127。粘合剂输送部 127 的开口位于抄纸槽 112 上方
的位置。粘合剂输送部 127 能够移动，可以在增强纤维基材 120 上均匀地散布粘合剂。分散
槽 111 上面的开口部安装有搅拌机 116，能从开口部加入碳纤维束 117 及分散介质 118。抄
纸槽 12 的底部具有长 400mm×宽 400mm 的抄纸面（网片制）119，在抄纸面 119 上得到增强
纤维基材 120。

[0563] 将碳纤维 A1 用筒形切割机切割成 6.4mm，得到短切碳纤维 (A1~I)。
[0564] 配制 C1 的 1 质量%的水分散液（乳液）作为粘合剂溶液，将其加入粘合剂槽 126
中。配制由水和表面活性剂（Nacalai Tesque（株）制，聚氧乙烯十二烷基醚（商品名））形
成的 20 升浓度 0.1 质量%的分散液，转移至分散槽 111。向该分散液中加入 9.6g A1-1（短
切碳纤维），搅拌 10 分钟，配制浆料。打开分散槽容器下部的开口阀 115，将该浆料注入抄
纸槽 112，抽吸水，得到长 400mm、宽 400mm 的碳纤维基材（工序（I））。接着，打开粘合剂槽
126 的开口阀 128，自该碳纤维基材的上面部散布 200g 粘合剂溶液。抽吸剩余部分粘合剂
溶液，得到赋予了粘合剂成分的碳纤维基材 120。将该碳纤维基材 120 从制造装置 101 中取
出，于 150℃干燥 20 分钟，得到碳纤维基材 W1（工序（II））。碳纤维基材 W1 的单位面积重
量为 60g/m²。
[0565] 将 B1 的无纺布（树脂单位面积重量 30g/m²）作为基质树脂配置于碳纤维基材 W1
的上下两面，于 220℃施加 10MPa 的压力，得到在碳纤维基材中含浸有基质树脂的预浸料
坯 P1（工序（III））。各工序中的实施条件及所得预浸料坯的评价结果示于表 15。
[0566] （实施例 102）利用湿式工艺的预浸料坯 P2 的制造
[0567] 利用图 10 的装置 102 制造预浸料坯。装置 102 由分散层 111、抄纸槽 112、粘合剂
槽 126、输送带 122、干燥机 138、双层带加压 131 及卷取装置 133 构成。分散槽 111 为直径
300mm 的圆筒形状容器，容器下部设置有带有开口阀 115 的浆料输送部 113，和用于将经加
压的空气送入槽内的加压空气管 129。粘合剂槽 126 具备有在容器下部带有开口阀 128 的粘
合剂输送部 127，和用于将经加压的空气送入槽内的加压空气管 130。抄纸槽 112 配置有在
底部具有宽 200mm 的抄纸面 119 的网状输送带 121。输送带 122 与网状输送带 121 直接连
接配置，输送加强纤维基材。粘合剂输送部 127 的开口与输送带 122 上的位置。干燥机 138
对输送带 122 上的加强纤维基材 120 进行干燥。双层带加压 131，在水平方向上导入由输送
带 122 送入的加强纤维基材 120。基质树脂 135 与加强纤维基材 120 同由带 136、137 朝
向增强纤维基材 120 的两侧面被供给到该双层带加压 131。卷取装置 133 将所得预浸料坯
132 卷取。
[0568] 将碳纤维 A1 用筒形切割机切割成 6.4mm，得到短切碳纤维 (A1~I)。
[0569] 配制 C1 的 1 质量%的水分散液（乳液）作为粘合剂溶液，将其加入到粘合剂槽 126
中。配制由水和表面活性剂（Nacalai Tesque（株）制，聚氧乙烯十二烷基醚（商品名））形
成的 40 升浓度 0.1 质量%的分散液，转移至分散槽 111。向该分散液中加入 20g A1-1（短
切碳纤维），搅拌 10 分钟，配制浆料。打开分散槽容器下部的开口阀 115，向浆料的容器中
导入加压空气，一边保持浆料流量恒定，一边将该浆料注入具有宽 200mm 的抄纸面的网状
输送带 121。一边用网状输送带 121 抽吸水，一边以 1m/分钟的速度牵引浆料，得到长 5m、
63
宽 200mm 的碳纤维基材 120 (工序 (I))。接着, 打开粘合剂槽 126 的开口阀 128, 将 200g 粘合剂溶液分散在该碳纤维基材 120 的上面部分。吸收到部分的粘合剂溶液后, 经 3 分钟通过 200℃的干燥机 138 中, 得到碳纤维基材 W2 (工序 (II))。碳纤维基材 W2 的单位面质量为 20g/m²。将该碳纤维基材 W2 直接在线用输送带 122 输送到双层带加压 131。

[0570] 将 B1 的无纺布 (树脂单位面积质量 15g/m²) 作为基质树脂配置于碳纤维基材的上下面, 使用双层带加压装置 131, 于 220℃, 实施 5MPa 的加压, 制作在碳纤维基材中含浸有基质树脂的预浸料坯 P2 (工序 (III))。在取出装置 133 中, 直接以卷取速度 1m/ 分钟卷取成捆形状 (工序 (IV))。各工序中的实施条件及所得预浸料坯 P2 的评价结果示于表 15。

[0571] (实施例 103) 利用湿式工艺的预浸料坯 P3 的制造

[0572] 除实施 (I) 的增强纤维基材的含水率为 20 质量%之外, 与实施例 101 同样地进行处理, 得到预浸料坯 P3。各工序中的实施条件及所得预浸料坯 P3 的评价结果示于表 15。

[0573] (实施例 104) 利用湿式工艺的预浸料坯 P4 的制造

[0574] 除不进行工序 (III) 中的加压及加热之外, 与实施例 102 同样地进行处理, 得到预浸料坯 P4。各工序中的实施条件及所得预浸料坯 P4 的评价结果示于表 15。

[0575] (实施例 105) 利用湿式工艺的预浸料坯 P5 的制造

[0576] 除使用 B2 的无纺布 (30g/m²) 作为工序 (II) 的基质树脂, 于 250℃进行双层带加压之外, 与实施例 101 同样地进行处理, 得到预浸料坯 P5。各工序中的实施条件及所得预浸料坯 P5 的评价结果示于表 15。

[0577] (实施例 106) 利用湿式工艺的预浸料坯 P6 的制造

[0578] 除使用 B3 的无纺布 (30g/m²) 作为工序 (II) 的基质树脂, 于 300℃进行双层带加压之外, 与实施例 101 同样地进行处理, 得到预浸料坯 P6。各工序中的实施条件及所得预浸料坯 P6 的评价结果示于表 16。

[0579] (实施例 107) 利用湿式工艺的预浸料坯 P7 的制造

[0580] 除使用 B4 的膜 (30g/m²) 作为工序 (II) 的基质树脂, 于 80℃进行双层带加压之外, 与实施例 101 同样地进行处理, 得到预浸料坯 P7。各工序中的实施条件及所得预浸料坯 P7 的评价结果示于表 16。

[0581] (实施例 108) 利用湿式工艺的预浸料坯 P8 的制造

[0582] 将碳纤维 A3 用筒形切割机切割成 6.4mm, 得到短切碳纤维 (A3-1)。除使用 A3-1 作为工序 (I) 的短切碳纤维之外, 与实施例 101 同样地进行处理, 得到预浸料坯 P8。各工序中的实施条件及所得预浸料坯 P8 的评价结果示于表 16。

[0583] (实施例 109) 利用湿式工艺的预浸料坯 P9 的制造

[0584] 除使用 C2 作为工序 (II) 的粘合剂之外, 与实施例 101 同样地进行处理, 得到预浸料坯 P9。各工序中的实施条件及所得预浸料坯 P9 的评价结果示于表 16。

[0585] (比较例 101) 利用湿式工艺的预浸料坯 P10 的制造

[0586] 除离线进行工序 (I)、工序 (II) 及工序 (III) 的处理之外, 与实施例 101 同样地进行处理, 得到预浸料坯 P10。各工序中的实施条件及所得预浸料坯 P10 的评价结果示于表 16。

[0587]
<table>
<thead>
<tr>
<th>原料</th>
<th>增强纤维</th>
<th>种类</th>
<th>A1</th>
<th>A1</th>
<th>A1</th>
<th>A1</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>切割长[mm]</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>配合量[质量%]</td>
<td>49.5</td>
<td>49.5</td>
<td>49.5</td>
<td>49.5</td>
<td>49.5</td>
<td>49.5</td>
</tr>
<tr>
<td>粘合剂</td>
<td>种类</td>
<td>C1</td>
<td>C1</td>
<td>C1</td>
<td>C1</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>配合量[质量%]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>基质树脂</td>
<td>种类</td>
<td>B1</td>
<td>B1</td>
<td>B1</td>
<td>B1</td>
<td>B2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>形态</td>
<td>无纺布</td>
<td>无纺布</td>
<td>无纺布</td>
<td>无纺布</td>
<td>无纺布</td>
<td></td>
</tr>
<tr>
<td></td>
<td>配合量[质量%]</td>
<td>49.5</td>
<td>49.5</td>
<td>49.5</td>
<td>49.5</td>
<td>49.5</td>
<td>49.5</td>
</tr>
<tr>
<td>工序条件</td>
<td>工序（Ⅰ）</td>
<td>浆料的固态成分浓度[质量%]</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>增强纤维基材的单位面积重量[g/m²]</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>增强纤维基材的含水率[质量%]</td>
<td>8</td>
<td>8</td>
<td>20</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>增强纤维/固态成分[质量%]</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>工序（Ⅱ）</td>
<td>转换粘合剂后的加压工序</td>
<td>有</td>
<td>有</td>
<td>有（时间2倍）</td>
<td>有</td>
<td>有</td>
</tr>
<tr>
<td></td>
<td>工序（Ⅲ）</td>
<td>加压工序</td>
<td>有</td>
<td>有</td>
<td>有</td>
<td>无</td>
<td>有</td>
</tr>
<tr>
<td></td>
<td></td>
<td>加热工序</td>
<td>有</td>
<td>有</td>
<td>有</td>
<td>无</td>
<td>有</td>
</tr>
<tr>
<td></td>
<td>增强纤维长度[mm]</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6.4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>工序（Ⅳ）</td>
<td>封闭工序</td>
<td>-</td>
<td>有</td>
<td>-</td>
<td>有</td>
<td>-</td>
</tr>
<tr>
<td>在线工序</td>
<td>(Ⅰ) - (Ⅱ) - (Ⅲ) - (Ⅳ)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>离线工序</td>
<td>(Ⅲ)</td>
<td>-</td>
<td>(Ⅲ)</td>
<td>-</td>
<td>(Ⅲ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>评价</td>
<td>总工序时间 [分钟]</td>
<td>40</td>
<td>30</td>
<td>50</td>
<td>30</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>增强纤维分数状态</td>
<td>AA、A、B、C</td>
<td>AA</td>
<td>AA</td>
<td>AA</td>
<td>AA</td>
<td>AA</td>
</tr>
<tr>
<td></td>
<td>成型基材的操作性</td>
<td>A、B</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>弯曲强度</td>
<td>相对值</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>变异系数</td>
<td>%</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
表 16

<table>
<thead>
<tr>
<th>原料</th>
<th>增强纤维种类</th>
<th>材料 A1</th>
<th>材料 A1</th>
<th>材料 A3</th>
<th>材料 A1</th>
<th>材料 A1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>切割长[mm]</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>配合量[质量%]</td>
<td>49.5</td>
<td>49.5</td>
<td>49.5</td>
<td>49.5</td>
<td>49.5</td>
</tr>
<tr>
<td>粘合剂</td>
<td>种类</td>
<td>C1</td>
<td>C1</td>
<td>C1</td>
<td>C2</td>
<td>C1</td>
</tr>
<tr>
<td></td>
<td>配合量[质量%]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>基质树脂</td>
<td>种类</td>
<td>B3</td>
<td>B4</td>
<td>B1</td>
<td>B1</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td>形态</td>
<td>无纺布膜</td>
<td>无纺布膜</td>
<td>无纺布膜</td>
<td>无纺布膜</td>
<td>无纺布膜</td>
</tr>
<tr>
<td></td>
<td>配合量[质量%]</td>
<td>49.5</td>
<td>49.5</td>
<td>49.5</td>
<td>49.5</td>
<td>49.5</td>
</tr>
</tbody>
</table>

工序条件	工序 (Ⅰ)	前固态成分浓度[质量%]	0.05	0.05	0.05	0.05	0.05
	增强纤维基材的单位面积重量[g/m²]	60	60	60	60	60	
	增强纤维基材的含水率[质量%]	8	8	8	8	8	
	增强纤维/前固态成分[质量%]	100	100	100	100	100	
工序 (Ⅰ)	赋予粘合剂的加热工序	有	有	有	有	有	
工序 (Ⅲ)	加压工序	有	有	有	有	有	
工序 (Ⅳ)	加热工序	有	有	有	有	有	
工序 (Ⅴ)	增强纤维长度[mm]	5	5	5	5	5	
工序 (Ⅵ)	卷取工序	-	-	-	-	-	
在线工序	(Ⅰ) - (Ⅱ)	(Ⅰ) - (Ⅱ)	(Ⅰ) - (Ⅱ)	(Ⅰ) - (Ⅱ)	(Ⅰ) - (Ⅱ)		
离线工序	(Ⅲ)	(Ⅲ)	(Ⅲ)	(Ⅲ)	(Ⅲ)		
评价	总工序时间 [分钟]	40	40	40	40	70	
	增强纤维分段状态	AA、A、B、C	AA	AA	AA	AA	
	成型基材的操作性	A、B	A	A	A	A	
	弯曲强度	相对值	140	130	90	100	90
	变异系数	%	3	3	3	3	10
以防止输送时增强纤维的沉淀、凝集（参见实施例 101 ～ 109 及比较例 101）。

【0590】 进而，通过全部在线进行工序 (1) ～ (III) 直至以及可以根据需要设置的工序 (IV)，可以在更短时间内得到预浸料坯（参见实施例 101, 102 及 104）。

【0591】 表明通过调节工序 (II) 中的碳纤维基材的含水率为 10 质量%以下，可以在短时间内完成粘合剂赋予后的加热工序（参见实施例 101, 103）。

【0592】 表明通过进行工序 (III) 中的加压、加热，基质树脂有效地含浸于增强纤维基材，可以保持所得预浸料坯的成型品的力学特性较高（参见实施例 102, 103）。

【0593】 如果不进行工序 (III) 中的加压、加热，则基质树脂不会含浸于增强纤维基材，因此预浸料坯的操作性稍变差，但可以大幅度地缩短工序时间。（实施例 104）

【0594】 可知增强增强纤维、基质树脂、粘合剂的种类均可以得到同样的上述效果（参见实施例 101, 105 ～ 109）。

【0595】（实施例 110）利用干式工艺的预浸料坯 P11 的制造

【0596】 利用图 11 的制造装置 103 制造预浸料坯 P5。制造装置 103 由粘合剂槽 126 和分散抄纸槽 134 构成。分散抄纸槽 134 为长 400mm×宽 400mm×高 400mm 的容器，具有能够抽出空气的加压空气管 129 和顶部的抄纸面 119。抄纸面 119 为大小为长 400mm×宽 400mm 的网片，在该抄纸面 119 上得到碳纤维基材 120。粘合剂槽 126 具有带有开口阀 128 的粘合剂输送部 127。粘合剂输送部 127 的开口位于分散抄纸槽 112 上面的位置。另外，粘合剂输送部 127 可以移动，可以将粘合剂均匀地散布在分散抄纸槽 134 内的碳纤维基材 120 上。

【0597】 将碳纤维 A2 用筒形切割机切割成 6.4mm，得到短切碳纤维（A2-1）。

【0598】 配制 C1 的 1 质量%的水分散液作为粘合剂溶液，将其加入到粘合剂槽 126 中。向分散抄纸槽 134 中加入 9.6g 短切碳纤维（A2-1），喷射加压空气使短切碳纤维开纤，之后从底面吸抽空气，使开纤后的碳纤维堆积在底面，得到长 400mm、宽 400mm 的碳纤维基材（工序 (I)）。接着，打开粘合剂槽 126 的开口阀 128，自该碳纤维基材的上面散布 200g 粘合剂。抽吸剩余部分的粘合剂溶液，得到赋予了粘合剂成分的碳纤维基材。取出该碳纤维基材，于 150℃干燥 20 分钟，得到碳纤维基材 W11（工序 (II)）。碳纤维基材 W11 的单位面积重量为 60g/m²。

【0599】 在该碳纤维基材上，将 B-1 的无纺布（树脂单位面积重量 30g/m²）作为基质树脂配置于碳纤维基材的上下两面，于 220℃实施 10MPa 的加压，得到在碳纤维基材中含浸有基质树脂的预浸料坯 P5（工序 (III)）。各工序中的实施条件及所得预浸料坯 P11 的评价结果示于表 17。

【0600】（实施例 111）利用干式工艺的预浸料坯 P12 的制造

【0601】 利用图 12 的装置 104 制造预浸料坯 P6。制造装置 104 包括 : 进行增强纤维束分散的梳理装置 139, 底部具有宽 200mm 的抄纸面 119 的网状输送带 121、容器下部的开口阀 128, 具有在网状输送带 121 上面开口的粘合剂输送部 127 的粘合剂槽 126。能够在水平方向上导入由输送带 122 输送的碳纤维基材 120 的双层带加压 131, 用于干燥输送带 122 上的碳纤维基材 120 的干燥机 138, 及能够卷取所得预浸料坯 132 的卷取锟 133。

【0602】 将碳纤维 A2 用筒形切割机切割成 6.4mm，得到短切碳纤维（A2-1）。

【0603】 配制 C1 的 1 质量%的水分散液作为粘合剂溶液，将其加入到粘合剂槽 126 中。向梳理装置 139 中经 30 秒均等地加入 6gA2-1（短切碳纤维），一边保持梳理速度为 1m/ 分钟，
一边牵引宽 200mm 的碳纤维基材。接着，打开粘合剂槽 126 的开口阀 128，将 200g 粘合剂经 30 秒均匀地散布到流过输送带上的碳纤维基材的上面部。在线吸除剩余部分的粘合剂溶液液后，经 3 分钟通过 200℃的干燥炉，得到碳纤维基材 W12。碳纤维基材 W12 的单位面积重量为 60g/m²。将 B-1 的无纺布（树脂单位面积重量 15g/m²）作为基质树脂配置于碳纤维基材的上下两面，利用双层带加压，于 220℃对该碳纤维基材直接在线进行 5MPa 的加压，制作在碳纤维基材中含浸有基质树脂的预浸料坯 P6。直接以卷取速度 1m/ 分钟用卷取装置 133 卷取成管形状。各工序中的实施条件及所得预浸料坯 P12 的评价结果示于表 17。

【0604】（实施例 112）利用干式工艺的预浸料坯 P13 的制造

【0605】除不进行工序 (III) 中的加压及加热之外，与实施例 106 同样地进行处理，得到预浸料坯 P13。各工序中的实施条件及所得预浸料坯 P13 的评价结果示于表 17。

【0606】（比较例 102）利用湿式工艺的预浸料坯 P8 的制造

【0607】除离线进行工序 (I)、工序 (II) 及工序 (III) 的处理之外，与实施例 1 同样地进行处理，得到预浸料坯 P14。各工序中的实施条件及所得预浸料坯 P14 的评价结果示于表 17。
<table>
<thead>
<tr>
<th>部件</th>
<th>原料</th>
<th>种类</th>
<th>实施例 110</th>
<th>实施例 111</th>
<th>实施例 112</th>
<th>比较例 102</th>
</tr>
</thead>
<tbody>
<tr>
<td>增强纤维</td>
<td>种类</td>
<td>A2</td>
<td>A2</td>
<td>A1</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>切割长 [mm]</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>配合量 [质量 %]</td>
<td>49.5</td>
<td>49.5</td>
<td>49.5</td>
<td>49.5</td>
<td></td>
</tr>
<tr>
<td>粘合剂</td>
<td>种类</td>
<td>C1</td>
<td>C1</td>
<td>C1</td>
<td>C1</td>
<td>C1</td>
</tr>
<tr>
<td></td>
<td>配合量 [质量 %]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>基质树脂</td>
<td>种类</td>
<td>B1</td>
<td>B1</td>
<td>B1</td>
<td>B1</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td>形态</td>
<td>无纺布</td>
<td>无纺布</td>
<td>无纺布</td>
<td>无纺布</td>
<td></td>
</tr>
<tr>
<td></td>
<td>配合量 [质量 %]</td>
<td>49.5</td>
<td>49.5</td>
<td>49.5</td>
<td>49.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>工序条件</th>
<th>工序 (I)</th>
<th>开纤方式</th>
<th>空气开纤</th>
<th>机理</th>
<th>空气开纤</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>增强纤维基材的单位面积重量 [g/m²]</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>增强纤维/粘合剂 [质量 %]</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>工序 (II)</td>
<td>转化粘合剂的加热工序</td>
<td>有</td>
<td>有</td>
<td>有</td>
<td>有</td>
</tr>
<tr>
<td>工序 (III)</td>
<td>加压工序</td>
<td>有</td>
<td>有</td>
<td>有</td>
<td>有</td>
</tr>
<tr>
<td></td>
<td>加热工序</td>
<td>有</td>
<td>有</td>
<td>有</td>
<td>有</td>
</tr>
<tr>
<td></td>
<td>增长纤维长度 [mm]</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>工序 (IV)</td>
<td>退火工序</td>
<td>-</td>
<td>有</td>
<td>无</td>
<td>-</td>
</tr>
<tr>
<td>在线工序</td>
<td>(I) - (II) - (III) - (IV)</td>
<td></td>
</tr>
<tr>
<td>离线工序</td>
<td>(III)</td>
<td>-</td>
<td>-</td>
<td>(I) - (II) - (III)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>评价</th>
<th>总工序时间 [分钟]</th>
<th>20</th>
<th>15</th>
<th>13</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>增强纤维分散状态</td>
<td>AA、A、B、C</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>成型基材的操作性</td>
<td>A、B</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>弯曲强度</td>
<td>相对值</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>变异系数</td>
<td>%</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
以防止输送时增强纤维的沉淀、凝集（参见实施例 110 ～ 112 及比较例 2）。

[0610] 进而，通过全部在线进行工序（I）～（III）直至以及可以根据需要设置的工序
（IV），可以在短时间内得到预浸料坯（参见实施例 110 ～ 112）。

[0611] 表明通过进行工序 (III) 中的加压、加热，可以有效地在纤维增强基材含浸基质
树脂，可以保持所得预浸料坯成型品的力学特性较高（实施例 111 及 112 参照）。

[0612] [利用湿式法的增强纤维基材制造方法的评价]

[0613] （实施例中使用的原料）

[0614] （碳纤维 A4）PAN 类碳纤维

[0615] 使用由 99.4 摩尔％丙烯腈 (AN) 和 0.6 摩尔％甲基丙烯酸构成的共聚物，通过干
湿式纺丝方法得到单纤维旦尼尔 1d、单纤维数 12,000 的丙烯酸类纤维束。在温度为 240 ～
280℃的空气中，以拉伸比 1.05 对所得丙烯酸类纤维束加热，转化为耐燃化纤维，然后，在
氨气气氛中、于 300 ～ 900℃的温度范围内，以升温速度为 200℃ / 分钟，进行 10% 的拉伸后，
升温至 1,300℃的温度进行烧成。使用将硫酸作为电解质的水溶液，对该碳纤维束进行每
1g 碳纤维 3 库仑的电解表面处理。进而，通过浸渍法赋予上浆剂，在温度为 120℃的加热空
气中干燥，得到 PAN 类碳纤维 A4。

[0616]

- 总单纤维数
 - 12,000 根
- 单纤维直径
 - 7μm
- 每单位长度的质量
 - 0.8 g / m
- 比重
 - 1.8 g / cm³
- 拉伸强度（注 5）
 - 4.2 GPa
- 拉伸弹性模量（注 6）
 - 230 GPa
- O / C（注 7）
 - 0.10
- 上浆种类
 - 聚氯乙烯油基醚
- 上浆附着量（注 8）
 - 1.5 质量％。

[0617]

[0618] （碳纤维 A5）PAN 类碳纤维

[0619] 使用由 99.4 摩尔％丙烯腈 (AN) 和 0.6 摩尔％甲基丙烯酸构成的共聚物，通过干
湿式纺丝方法得到单纤维旦尼尔 1d、单纤维数 12,000 的丙烯酸类纤维束。在温度为 240 ～
280℃的空气中，以拉伸比 1.05 对所得丙烯酸类纤维束加热，转化为耐燃化纤维，然后，在
氨气气氛中、于 300 ～ 900℃的温度范围内，以升温速度为 200℃ / 分钟，进行 10% 的拉伸后，
升温至 1,300℃的温度进行烧成。进而，通过浸渍法赋予上浆剂，在温度为 120℃的加热空
气中干燥，得到 PAN 类碳纤维 A5。

[0620]
· 总单纤维数 12,000 根
· 单纤维直径 7μm
· 每单位长度的质量 0.8g / m
· 比重 1.8g / cm³
· 拉伸强度（注 5） 4.2GPa
· 拉伸弹性模量（注 6） 230GPa
· O / C（注 7） 0.05
· 上浆种类 聚氯乙烯油基醚
· 上浆附着量（注 8） 1.5 质量%。

[0621] (膜 F) 酸改性聚丙烯树脂膜
[0622] 在温度 200°c、压力 20Mpa 下, 将三井化学（株）制酸改性聚丙烯树脂 “Admor”（注册商标）QE510（比重 0.91、熔点 160°c）加压成型 1 分钟, 制作厚 50μm 的酸改性聚丙烯树脂膜 F。

[0623] （注 5）拉伸强度、（注 6）拉伸弹性模量的测定条件
[0624] 与上述（注 1）及（注 2）相同
[0625] （注 7）O/C 的测定
[0626] 与上述（注 3）相同
[0627] （注 8）上浆剂附着量的测定条件
[0628] 与上述（注 4）相同。
[0629] （25）(i) ~ (iv) 工序时间
[0630] 测定从工序 (i) 到工序 (iv) 所需的时间。
[0631] （26）增强纤维分散状态的评价
[0632] 从通过抄纸得到的碳纤维基材任意部位处切割 50mm × 50mm 的正方形的片, 用显微镜观察。测定 10 根以上碳纤维的单纤维形成束状的状态, 即分散不充分的碳纤维束的根数。按照该顺序进行 20 次测定, 求出平均值, 按以下基准进行评价。
[0633] AA：分散不充分的碳纤维束小于 1 个
[0634] A：分散不充分的碳纤维束为 1 个以上、小于 5 个
[0635] B：分散不充分的碳纤维束为 5 个以上、小于 10 个
[0636] C：分散不充分的碳纤维束为 10 个以上。
[0637] （27）成型品力学特性的评价
[0638] 将通过抄纸得到的碳纤维基材切成 200mm × 200mm, 于 120°C 干燥 1 小时。将干燥后的碳纤维基材与酸改性聚丙烯树脂膜 F 以树脂膜 F / 碳纤维基材 / 树脂膜 F 的方式进行 3 层层合。在温度 200°C、压力 30MPa 下, 将上述层合物加压成型 5 分钟, 保持压力不变, 冷却至 50°C, 制作厚 0.12mm 的碳纤维增强树脂片材。将 8 片上述树脂片材层合, 在温度 200°C、压力 30MPa 下加压成型 5 分钟, 保持压力不变, 冷却至 50°C, 得到厚 1.0mm 的碳纤维增强树脂成型品。使用所得成型品, 基于 ISO178 法 (1993), 按 n = 10 评价弯曲强度。需要说明的
是，弯曲强度的评价结果以将实施例 1 作为 100 的相对值表示。另外，评价结果的偏差用变异系数（CV 值）表示。

【0639】（28）分散介质的粘度评价
【0640】烧杯充满分散介质，封闭，在恒温槽内调节至 25℃。在恒温槽内预先将 NO.1 转子一一同调节至 25℃。接着，使用 B 型粘度计（型号：B8L，东京计器制），按照 JIS K7117-1（1999）附带说明 1 所述的方法，以转子旋转数 60rpm，测定分散介质的粘度。
【0641】需要说明的是，进行 5 次测定，使用其平均值作为粘度。
【0642】（29）输送部的浆料流速评价
【0643】从分散槽经由输送部输送浆料到抄纸槽时，测定输送 0.01m³ 的浆料所需的时间 T（秒）。使用浆料的输送量（0.01m³）和输送所需的时间 T 及输送部内径的截面积 S（m²），由下式求出输送部的浆料流速。
【0644】（m/s）浆料流速 = 0.01/（S×T）
【0645】需要说明的是，进行 5 次测定，使用其平均值作为浆料流速。
【0646】【利用湿式法的增强纤维骨架制造方法 a 的评价】
【0647】【制造例 201】
【0648】利用图 22 的增强纤维骨架（抄纸基材）的制造装置 201 制造增强纤维骨架。制造装置 201 由分散槽 211、抄纸槽 212 及输送部 213 构成。分散槽 211 为直径 300mm 的圆筒形容器，上面的开口部设置有搅拌机 216，可以向开口部加入碳纤维束 217 及分散液（分散介质）218。使用大型四方型手抄纸机（熊谷理成工业株式会社制、No. 2553-1（商品名））作为抄纸槽 212。抄纸槽 212 的底部安装有长 400mm×宽 400mm 的抄纸面（网片制）219。在该抄纸面 219 上得到碳纤维基材 220。输送部 213 为连接分散槽 211 与抄纸槽 212 的水平、且直线状的流路，流路中途具有送液泵（隔膜泵）225。
【0649】将碳纤维 A4 用筒形切割机切割成 6.4mm，得到短切碳纤维 A4-1。
【0650】配制由水和表面活性剂（Nacalai Tesque（株）制、聚氧乙烯十二烷基醚（商品名））形成的 20 升浓度 0.1 质量％的分散液，转移至分散槽 211。向该分散液中加入 9.6g 短切碳纤维 A4-1（工序（ii））。搅拌 10 分钟，配制浆料（工序（iii））。之后，使用隔膜泵 225，通过输送部 213，开始将该浆料注入抄纸槽 212（浆料供给速度：0.001m³/秒）（工序（iv））。然后，抽吸水，得到长 400mm、宽 400mm 的碳纤维基材 220（工序（iv））。碳纤维基材的单位面积重量为 60g/m²。各工序中的实施条件及所得碳纤维基材的评价结果示于表 18。
【0651】（制造例 202）
【0652】除将工序（ii）中配制的浆料中的短切碳纤维 A1-1 的质量含量 Cl 增加到 1.5 质量％之外，与制造例 201 同样地进行处理，得到碳纤维基材。碳纤维基材的单位面积重量为 60g/m²。各工序中的实施条件及所得碳纤维基材的评价结果示于表 18。
【0653】（制造例 203）
【0654】利用图 23 的增强纤维骨架（抄纸基材）的制造装置 202 制造增强纤维骨架。制造装置 202 由分散槽 211、抄纸槽 212、输送部 213 及输送带 222 构成。分散槽 211 和输送部 213 与制造装置 201 相同。抄纸槽 212 在底部安装有具有宽 200mm 的抄纸面 219 的网状输送带 221。将上述抄纸面 219 上得到碳纤维基材 220。输送带 222 连接在网状输送带 221 上进行配置，输送增强纤维骨架 220。
说明

将碳纤维A4用冲压切割机电切割成6.4mm，得到短切碳纤维A4-1。

配制由水和表面活性剂（Nacalai Tesque（株）制，聚氧乙烯十二烷基醚（商品名））形成的浓度0.1质量%的分散液。向分散槽211内开始加入上述分散液和短切碳纤维A4-1。制造过程中，一边调节加入量使分散槽中浆料中的碳纤维浓度为恒定浓度，且分散槽内浆料的液面高度恒定，一边连续地加入上述分散液和短切碳纤维（工序（i））。开始向容器内加入原料，同时开始搅拌，配制浆料（工序（ii））。之后，使用隔膜泵225通过输送带213，将该浆料注入抄纸槽212（浆料供给速度：0.0014m/s）（工序（iii））。该浆料中抽吸水，以10m/min的速度牵引，连续地得到宽200mm的碳纤维基材220（工序iv）。碳纤维基材的单位面积重量为20g/m²。各工序中的实施条件及所得碳纤维基材的评价结果示于表18。

（制造例204）

利用图24的增强纤维基材（抄纸基材）的制造装置203制造增强纤维基材。制造装置203由分散槽211，抄纸槽212，输送带213及输送带222构成。抄纸槽212和输送带222与制造装置202相同。分散槽211在上面具有2个开口部（广口开口部223，窄口开口部224）的凹型形状，在广口开口部223侧安装有搅拌机216。输送带213从分散槽211朝向抄纸槽212向下倾斜（倾斜角45°），中途没有安装送液泵225。分散槽211和输送带213的连接部214位于分散槽211上部（开口部付近）的位置，通过溢流方式进行从分散槽211到抄纸槽212的送液。

利用上述制造装置203，从窄口开口部加入短切碳纤维A4-1，和由水和表面活性剂（Nacalai Tesque（株）制，聚氧乙烯十二烷基醚（商品名））形成的浓度0.1质量%的分散液。之后，与实施例203同样地进行处理，得到碳纤维基材。所得碳纤维基材的单位面积重量为20g/m²。各工序中的实施条件及所得碳纤维基材的评价结果示于表18。

（制造例205）

除将输送带的宽W1与碳纤维基材的宽W2之比W1/W2从0.6改为0.2之外，与制造例204同样地进行处理，得到碳纤维基材。所得碳纤维基材的单位面积重量为20g/m²。各工序中的实施条件及所得碳纤维基材的评价结果示于表19。

（制造例206）

除将碳纤维的种类从A4改为A5之外，与制造例201同样地进行处理，得到碳纤维基材。所得碳纤维基材的单位面积重量为60g/m²。各工序中的实施条件及所得碳纤维基材的评价结果示于表19。

（制造例207）

除使工序（ii）所需要的时间为5分钟（用于配制浆料的搅拌时间为5分钟）之外，与制造例201同样地进行处理，得到碳纤维基材。碳纤维基材的单位面积重量为60g/m²。各工序中的实施条件及所得碳纤维基材的评价结果示于表19。

（比较制造例201）

除提高工序（ii）中配制的浆料中的短切碳纤维A4-1的质量含量C1和工序（iv）开始时浆料中的短切碳纤维A4-1的质量含量C2之比C1/C2至1.8之外，与制造例202同样地进行处理，得到碳纤维基材。各工序中的实施条件及所得碳纤维基材的评价结果示于表19。
<table>
<thead>
<tr>
<th>原料</th>
<th>增强纤维</th>
<th>种类</th>
<th>制造例 201</th>
<th>制造例 202</th>
<th>制造例 203</th>
<th>制造例 204</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>切割长 [mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>工序条件</td>
<td>工序 (i)</td>
<td>原料补充</td>
<td>无</td>
<td>无</td>
<td>有</td>
<td>有</td>
</tr>
<tr>
<td>工序 (ii)</td>
<td>增强纤维基材的单位面积重量 [g/m²]</td>
<td>60</td>
<td>60</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>增强纤维含量 C1[质量%]</td>
<td>0.05</td>
<td>1.5</td>
<td>0.05</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>混合液面高度 H1 的位置</td>
<td>变化</td>
<td>变化</td>
<td>恒定</td>
<td>恒定</td>
<td></td>
</tr>
<tr>
<td>工序 (iii)</td>
<td>混合液面高度 H1 - H2[m]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>使用送液泵</td>
<td>有</td>
<td>有</td>
<td>有</td>
<td>无</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W1/W2 比</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C1/C2 比</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>在线工序</td>
<td>(i) - (ii) - (ii) - (iii) - (iv)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>离线工序</td>
<td>(iii) - (iv) - (iii) - (iv)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>拉伸速度</td>
<td>[m/分钟]</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>(I) ~ (IV)工序时间</td>
<td>[分钟]</td>
<td>20</td>
<td>30</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>评价</td>
<td>增强纤维分散状态</td>
<td>AA、A、B、C</td>
<td>A - AA</td>
<td>A</td>
<td>AA</td>
<td>AA</td>
</tr>
<tr>
<td></td>
<td>弯曲强度</td>
<td>相对值</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>变异系数</td>
<td>%</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
表19

<table>
<thead>
<tr>
<th>原料</th>
<th>增强纤维</th>
<th>种类</th>
<th>制造例 205</th>
<th>制造例 206</th>
<th>制造例 207</th>
<th>制造例 201</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A4（O/C = 0.10）</td>
<td>A5（O/C = 0.05）</td>
<td>A4（O/C = 0.10）</td>
<td>A4（O/C = 0.10）</td>
<td></td>
</tr>
<tr>
<td>切割长[mm]</td>
<td></td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>工序条件</th>
<th>工序（i）</th>
<th>原料补充</th>
<th>有</th>
<th>无</th>
<th>无</th>
<th>无</th>
</tr>
</thead>
<tbody>
<tr>
<td>工序（ii）</td>
<td>增强纤维基材的单位面积重量 [g/m²]</td>
<td>20</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>增强纤维含量 Cl[质量%]</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>装料液面高度 H1 的位置</td>
<td>恒定</td>
<td>变化</td>
<td>变化</td>
<td>变化</td>
<td></td>
</tr>
<tr>
<td>工序（iii）</td>
<td>装料液面高度 H1-2[m]</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>使用送液泵</td>
<td>有</td>
<td>有</td>
<td>有</td>
<td>有</td>
<td></td>
</tr>
<tr>
<td>W1 / W2 比</td>
<td>0.2</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1 / C2 比</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>在线工序</th>
<th>(i) - (ii) - (iii) - (iv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>离线工序</td>
<td>(i) - (ii) - (iii) - (iv)</td>
</tr>
<tr>
<td>牵拉速度 [m/分钟]</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(i) - (iv)工序时间 [分钟]</td>
<td>5</td>
<td>20</td>
<td>15</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>评价</th>
<th>增强纤维分散状态</th>
<th>AA, A, B, C</th>
<th>A~AA</th>
<th>A~AA</th>
<th>A~AA</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>弯曲强度</td>
<td>相对值</td>
<td>100</td>
<td>90</td>
<td>100</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>变异系数</td>
<td>%</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
多余的工序，可以得到分散状态优异的碳纤维基材（参见制造例 201～制造例 207 及比较制造例 201）。进而，还可知制造例 201～制造例 207 中得到的碳纤维基材在形成成型品时成型品的力学特性优异。

通过使 C1 的浓度为较低浓度，可以在短时间内进行处理（参见制造例 201 及制造例 202）。进而，通过在进行工序 (i)～工序 (iv)，或进一步在输送带不使用微电机采用溢流方法，可以在更短时间内进行处理（参见制造例 201、制造例 203～制造例 205）。通过使 W1/W2 比为 0.5 以上 1.0 以下，可以进一步提高碳纤维基材的分散状态（参照制造例 204 及制造例 205）。

[0673] 可知通过使用 O/C 高的纤维，可以进一步提高碳纤维基材的成型品的力学特性（参照制造例 201 及制造例 206）。

[0674] [利用湿式法制备增强纤维基材制造方法 b 的评价]

[0675] 利用图 25 的增强纤维基材（抄纸基材）的制造装置 301 制造增强纤维基材。制造装置 301 由分散槽 311、抄纸槽 312 及输送带 313 构成。分散槽 311 为直径 300mm 的圆筒形状容器，在容器下部具有开口部 315 且在上部开口部具有搅拌机 316。可以从该开口部加入碳纤维束 317 及分散液（分散介质）318。使用大型四角型手抄纸机（熊谷理机工业株式会社制、No.2553-S（商品名））作为抄纸槽 312，具有长 400mm×宽 400mm 的抄纸面（网片）319。在该抄纸面 319 上得到碳纤维基材 320。输送带 313 为连接分散槽 311 和抄纸槽 312 的直线状输流，从分散槽 311 朝向抄纸槽 312 向下倾斜（倾斜角 45°）。分散槽 311 和输送带 313 通过开口部 315 连接。

[0677] 将碳纤维 A4 用筒形切割机切割成 6.4mm，得到短切碳纤维 A4-1。

[0678] 配制由水和表面活性剂（Nacalai Tesque株制、聚氧乙稀十二烷基醚（商品名））形成的 20％浓度 0.1 质量％的分散液，转移至分散槽 311。向该分散液中加入 9.6g 短切碳纤维 A4-1（工序 (i)）。搅拌 10 分钟，配制浆料（工序 (ii)）。照射，打开容器下部的开口部 315，通过输送带 313 注入抄纸槽 312（工序 (iii)）。此时，分散槽内浆液面的高度 H1，位于比抄纸槽内的浆液面 H2 之高 50cm 的位置。接着，从抄纸槽的抄纸面 319 抽吸水，得到长 400mm、宽 400mm 的碳纤维基材 320（工序 (iv)）。碳纤维基材的单位面积重量为 60g/m²。各工序中的实施条件及所得碳纤维基材的评价结果显示于表 20。

[0679] 利用图 26 的增强纤维基材（抄纸基材）的制造装置 302 制造增强纤维基材。制造装置 302 由分散槽 311、抄纸槽 312、输送带 313 及输送带 322 构成。分散槽 311 和输送带 313 与制造装置 301 相同。抄纸槽 312 在底部安装有具有宽 200mm 的抄纸面 319 的网状输送带 321。在该抄纸面 319 上得到碳纤维基材 320。输送带 322 与网状输送带 321 连接进行配置，输送增强纤维基材 320。

[0681] 将碳纤维 A4 用筒形切割机切割成 6.4mm，得到短切碳纤维 A4-1。

[0682] 配制由水和表面活性剂（Nacalai Tesque株制、聚氧乙稀十二烷基醚（商品名））形成的浓度 0.1 质量％的分散液。开始向分散槽 311 内加入上述分散液和短切碳纤维 A4-1。制造过程中，一边调节加入量使分散槽中的浆料中的碳纤维浓度恒定，且分散槽内浆料的液面高度 H1 为恒定，一边继续连续地加入上述分散液和短切碳纤维（工序
(i)。开始向容器中加入原料，同时开始搅拌，配制浆料（工序 (ii)）。在浆料积存了 40 升的时刻调节打开容器下部的开口阀 315，通过输送部 313 注入抄纸槽 312（工序 (iii)）。此时，分散槽内的浆液液体高度 H1 位于比抄纸槽内浆液液体 H2 只高 50cm 的位置。从该浆料抽出水，以 10m/分钟的速度牵引，连续地得到宽 200mm 的碳纤维基材 320（工序 iv）。碳纤维基材的单位面积重量为 20g/m²。各工序中的实施条件及所得碳纤维基材的评价结果示于表 20。

[0683] （制造例 303）

[0684] 利用图 27 的增强纤维基材（抄纸基材）的制造装置 303 制造增强纤维基材。制造装置 303 由分散槽 311，抄纸槽 312，输送部 313 及输送带 322 构成。抄纸槽 312，输送部 313 及输送带 322 与制造装置 302 相同。分散槽 311 为在上面具有 2 个开口部（广口开口部 323，窄开口部 324）的凹型形状，在广口开口部 323 侧安装有搅拌机 316。分散槽 311 和输送部 313 的连接部 314 位于分散槽 311 上部（开口部付近）的位置，通过溢流方式进行从分散槽 311 向抄纸槽 312 的送液。在连接部 314 没有设置开口阀。

[0685] 使用上述制造装置 303，从窄口开口部 324 加入短切碳纤维 A1-1，和由水和表面活性剂（Nacalai Tesque（株）制，聚氧乙烯十二烷基醚（商品名））形成的浓度 0.1 质量％的分散液。之后，与制造例 302 同样地进行处理，得到碳纤维基材。所得碳纤维基材的单位面积重量为 20g/m²。各工序中的实施条件及所得碳纤维基材的评价结果示于表 20。

[0686] （制造例 304）

[0687] 利用图 27 的增强纤维基材（抄纸基材）的制造装置 304 制造增强纤维基材。制造装置 304 由分散槽 311，抄纸槽 312，输送部 313 及输送带 322 构成。分散槽 311，抄纸槽 312 及输送带 322 与制造装置 303 相同。输送部 313 为 4 个直角弯折的结构，整体具有 45° 的角度。所得碳纤维基材的单位面积重量为 20g/m²。各工序中的实施条件及所得碳纤维基材的评价结果示于表 20。

[0688] 利用上述制造装置 304，与制造例 303 同样地得到碳纤维基材。所得碳纤维基材的单位面积重量为 20g/m²。各工序中的实施条件及所得碳纤维基材的评价结果示于表 20。

[0689] （制造例 305）

[0690] 除输送部的角度为 90°（垂直向下）的结构之外，使用与制造装置 303 相同的制造装置（未作图示）。与制造例 303 同样地进行处理，得到碳纤维基材。所得碳纤维基材的单位面积重量为 20g/m²。各工序中的实施条件及所得碳纤维基材的评价结果示于表 20。

[0691] （制造例 306）

[0692] 使用制造装置 303。除将输送部的宽 W1 与碳纤维基材 W2 之比 W1/W2 从 0.6 改变为 0.2 之外，与制造例 305 同样地进行处理，得到碳纤维基材。所得碳纤维基材的单位面积重量为 20g/m²。各工序中的实施条件及所得碳纤维基材的评价结果示于表 21。

[0693] （制造例 307）

[0694] 除将碳纤维的种类从 A4 改变为 A5 之外，与制造例 301 同样地进行处理，得到碳纤维基材。所得碳纤维基材的单位面积重量为 60g/m²。各工序中得到实施条件及所得碳纤维基材的评价结果示于表 21。

[0695] （比较制造例 301）

[0696] 使用制造装置 301。仅在线进行工序 (i)〜工序 (ii)。离线进行工序 (iii)〜工序 (iv) 之外，与制造例 301 同样地进行处理，得到碳纤维基材。所得碳纤维基材的单位
面积重量为 60g/m²。各工序中的实施条件及所得碳纤维基材的评价结果示于表 21。

【0697】（比较制造例 302）
【0698】使用输送部为水平直线状（角度 0°）、具有送液泵之外与制造装置 301 相同的制造装置（未作图示）。与制造例 301 同样地进行处理，得到碳纤维基材。所得碳纤维基材的单位面积重量为 60g/m²。各工序中的实施条件及所得的碳纤维基材的评价结果示于表 21。

【0699】
<table>
<thead>
<tr>
<th>表20</th>
<th></th>
<th>制造例301</th>
<th>制造例302</th>
<th>制造例303</th>
<th>制造例304</th>
<th>制造例305</th>
</tr>
</thead>
<tbody>
<tr>
<td>原料</td>
<td>增强纤维</td>
<td>种类</td>
<td>A4 (O/C = 0.10)</td>
<td>A4 (O/C = 0.10)</td>
<td>A4 (O/C = 0.10)</td>
<td>A4 (O/C = 0.10)</td>
</tr>
<tr>
<td></td>
<td>切割长 [mm]</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
</tr>
<tr>
<td>工序条件</td>
<td>工序 (i)</td>
<td>浆料的固态成分浓度 [质量%]</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>原料补充</td>
<td>无</td>
<td>有</td>
<td>有</td>
<td>有</td>
</tr>
<tr>
<td></td>
<td>工序 (ii)</td>
<td>增强纤维基材的单位面积重量 [g/m²]</td>
<td>60</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>浆料的液面高度 H1 的位置</td>
<td>变化</td>
<td>恒定</td>
<td>恒定</td>
<td>恒定</td>
</tr>
<tr>
<td></td>
<td>工序 (iii)</td>
<td>浆料的液面高度 H1 - H2 [m]</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>使用液体泵</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
</tr>
<tr>
<td></td>
<td></td>
<td>输送带形状</td>
<td>直线</td>
<td>直线</td>
<td>直线</td>
<td>垂直型</td>
</tr>
<tr>
<td></td>
<td></td>
<td>输送带倾斜角度 [°]</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>W1 / W2 比</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>在线工序</td>
<td>(i) - (ii) - (iii) - (iv)</td>
<td></td>
</tr>
<tr>
<td>离线工序</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>牵拉速度</td>
<td>[m/分钟]</td>
<td>-</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>评价</td>
<td>(I) - (IV) 工序时间</td>
<td>[分钟]</td>
<td>15</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>增强纤维分散状态</td>
<td>AA, A, B, C</td>
<td>AA</td>
<td>AA</td>
<td>AA</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>弯曲强度</td>
<td>相对值</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>变异系数</td>
<td>%</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>表21</td>
<td></td>
<td>制造例306</td>
<td>制造例307</td>
<td>比较制造例301</td>
<td>比较制造例302</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>原料</td>
<td>增强纤维</td>
<td>种类</td>
<td>A4 (O/C = 0.10)</td>
<td>A5 (O/C = 0.05)</td>
<td>A4 (O/C = 0.10)</td>
<td>A4 (O/C = 0.10)</td>
</tr>
<tr>
<td>工序条件</td>
<td></td>
<td>切割程度 [mm]</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
</tr>
<tr>
<td>工序 (i)</td>
<td></td>
<td>减料的固态成分浓度 [质量%]</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>原料补充</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
</tr>
<tr>
<td>工序 (ii)</td>
<td></td>
<td>增强纤维基材的单位面积重量 [g/m²]</td>
<td>20</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>减料的液态高度 H1 的位置</td>
<td>恒定</td>
<td>变化</td>
<td>变化</td>
<td>变化</td>
</tr>
<tr>
<td>工序 (iii)</td>
<td></td>
<td>减料的液态高度 H1 - H2 [m]</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>使用胶带</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>有</td>
</tr>
<tr>
<td></td>
<td></td>
<td>输送带形状</td>
<td>直线</td>
<td>直线</td>
<td>直线</td>
<td>直线</td>
</tr>
<tr>
<td></td>
<td></td>
<td>输送带倾斜角度 [°]</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W1/W2 比</td>
<td>0.2</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>在线工序</td>
<td></td>
<td>(i) - (ii) - (iii) - (iv)</td>
<td></td>
</tr>
<tr>
<td>离线工序</td>
<td></td>
<td>-</td>
<td>-</td>
<td>(iii) - (iv)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>抽拉速度</td>
<td>[m/分钟]</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>(Ⅰ) - (Ⅳ)工序时间</td>
<td>[分钟]</td>
<td>5</td>
<td>15</td>
<td>25</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>增强纤维分散状态</td>
<td>AA、A、B、C</td>
<td>A</td>
<td>AA</td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>弯曲强度</td>
<td>相对值</td>
<td>100</td>
<td>90</td>
<td>90</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>变异程度</td>
<td>%</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
来进行洗液，可以防止输送时增强纤维的沉淀、凝集（参见制造例 1～制造例 7 及比较制造例 1～比较制造例 2）。进而，还表明制造例 301～制造例 307 中得到的碳纤维基材在形成成型品时成型品的力学特性优异。

【0702】将分散液和短切碳纤维连续地供给到分散槽，同时调节浆料的液面高度 H1 为恒定，或进一步使用输送泵采用溢流方式，由此可以在更短的时间内进行处理（参见制造例 302～制造例 306）。

【0703】使输送部为直线状，进而使倾斜角为 30°以上 60°以下，或使 W1/W2 比为 0.5 以上 1.0 以下，由此可以进一步提高碳纤维基材的分散状态（参见制造例 301～制造例 304 及制造例 307）。

【0704】可知通过使用 0/C 高的纤维，可以进一步提高碳纤维基材成型品的力学特性（参见制造例 301 及制造例 307）。

【0705】[利用湿式法的增强纤维基材制造方法 c 的评价]

【0706】（制造例 401）

【0707】利用图 29 的增强纤维基材（抄纸基材）的制造装置 401 制造增强纤维基材。制造装置 401 由分散槽 411、抄纸槽 412 及输送部 413 构成。分散槽 411 为直径 300mm 的圆筒形容器。容器下部具有开口 415，上面的开口部具有搅拌机 416。可以从该开口部加入碳纤维束 417 及分散液（分散介质）418。使用大型四方型手抄纸机（熊谷理机工业株式会社制、No. 2553-1（商品名））作为抄纸槽 412，具有长 400mm×宽 400mm 的抄纸面（网片制）419。在该抄纸面 419 上得到碳纤维基材 420。输送部 413 为连接分散槽 411 和抄纸槽 412 的直线状流程，从分散槽 411 朝向抄纸槽 412 向下倾斜（倾斜角 r: 88°），输送部 413 的截面形状为直径 0.01m 的圆环。

【0708】将碳纤维 A1 用筒形切割机切割成 6.4mm，得到短切碳纤维 A4-1。

【0709】配制由水和水溶性高分子（住友化成（株）制、PEO-8Z（商品名））形成的 20 升浓度 0.25 质量%的分散液，转移至分散槽 411。分散液的粘度为 10mPa • s。向该分散液中加入 9.6g 短切碳纤维 A4-1（工序 i）。搅拌 10 分钟，配制浆料（工序 ii）。之后，打开容器下部的开口 415，通过输送部 413 注入抄纸槽 412（工序 iii）。接着，从抄纸槽的抄纸面 419 抽吸水，得到长 400mm、宽 400mm 的碳纤维基材 420（工序 iv）。碳纤维基材的单位面积重量为 60g/m²。各工序中的实施条件及所得碳纤维基材的评价结果示于表 22。

【0710】（制造例 402）

【0711】使用除倾斜角 r 为 65°以外与制造装置 401 相同的制造装置（未作示图）。与制造例 401 同样地进行处理，得到碳纤维基材。所得碳纤维基材的单位面积重量为 60g/m²。各工序中的实施条件及所得碳纤维基材的评价结果示于表 22。

【0712】（制造例 403）

【0713】除配制由水和水溶性高分子（住友化成（株）制、PEO-8Z（商品名））形成的 20 升浓度 0.1 质量%的分散液，转移至分散槽之外，与制造例 401 同样地进行处理，得到碳纤维基材。所得碳纤维基材的单位面积重量为 60g/m²。各工序中的实施条件及所得碳纤维基材的评价结果示于表 22。

【0714】（制造例 404）

【0715】除配制由水和水溶性高分子（住友化成（株）制、PEO-8Z（商品名））形成的 20 升
浓度 1 质量%的分散液,转移至分散槽之外，与制造例 401 同样地进行处理，得到碳纤维基材。所得碳纤维基材的单位面积重量为 60g/m²。各工序中的实施条件及所得碳纤维基材的评价结果示于表 22。

【0716】（制造例 405）

【0717】使用除使输送部 13 的截面形状的一边为 0.01m 的正方形之外与制造装置 401 相同的制造装置（未作图示）。与制造例 401 同样地进行处理，得到碳纤维基材。所得碳纤维基材的单位面积重量为 60g/m²。各工序中的实施条件及所得碳纤维基材的评价结果示于表 23。

【0718】（制造例 406）

【0719】将碳纤维 A5 用筒形切割机切割成 6.4mm, 得到短切碳纤维 A5-1, 在工序 (i) 中向分散液中加入 9.6g 短切碳纤维 A5-1, 除此之外，与制造例 401 同样地进行处理，得到碳纤维基材。所得碳纤维基材的单位面积重量为 60g/m²。各工序中的实施条件及所得碳纤维基材的评价结果示于表 23。

【0720】（比较制造例 401）

【0721】使用除倾斜角 r 为 0°之外与制造装置 401 相同的制造装置（未作图示）。与制造例 401 同样地进行处理，得到碳纤维基材。所得碳纤维基材的单位面积重量为 60g/m²。各工序中的实施条件及所得碳纤维基材的评价结果示于表 23。

【0722】（比较制造例 402）

【0723】使用除在输送部安装送液泵之外与制造装置 401 相同的制造装置（未作图示）。与制造例 401 同样地进行处理，得到碳纤维基材。所得碳纤维基材的单位面积重量为 60g/m²。各工序中的实施条件及所得碳纤维基材的评价结果示于表 23。
<table>
<thead>
<tr>
<th>原料</th>
<th>增强纤维种类</th>
<th>制造例 401</th>
<th>制造例 402</th>
<th>制造例 403</th>
<th>制造例 404</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A4（O/C = 0.10）</td>
<td>A4（O/C = 0.10）</td>
<td>A4（O/C = 0.10）</td>
<td>A4（O/C = 0.10）</td>
</tr>
<tr>
<td></td>
<td>切削程度 [mm]</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
</tr>
<tr>
<td>工序条件</td>
<td>工序（i）</td>
<td>胶料的固态成分浓度[质量%]</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>工序（ii）</td>
<td>增强纤维基材的单位面积重量[g/m²]</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>工序（iii）</td>
<td>分散介质的粘度[mPa·s]</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>使用送液泵</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td></td>
</tr>
<tr>
<td>输送部的形状</td>
<td>圆形</td>
<td>圆形</td>
<td>圆形</td>
<td>圆形</td>
<td></td>
</tr>
<tr>
<td>输送部的代表长度[m]</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>流动状态</td>
<td>层流</td>
<td>从层流到紊流的过渡域</td>
<td>从层流到紊流的过渡域</td>
<td>层流</td>
<td></td>
</tr>
<tr>
<td>流速[m/s]</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>雷诺数</td>
<td>1000</td>
<td>4000</td>
<td>4000</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>评价</td>
<td>增强纤维分散状态</td>
<td>AA、A、B、C</td>
<td>AA</td>
<td>A</td>
<td>AA</td>
</tr>
<tr>
<td>弯曲强度</td>
<td>相对值</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>85</td>
</tr>
<tr>
<td>变异系数</td>
<td>%</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>原料</td>
<td>增强纤维</td>
<td>种类</td>
<td>制造例 405 (O/C = 0.10)</td>
<td>制造例 406 (O/C = 0.05)</td>
<td>比较制造例 401 (O/C = 0.10)</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td>切割长[mm]</td>
<td>A4</td>
<td>A5</td>
<td>A4</td>
<td>A4</td>
</tr>
<tr>
<td>工序条件</td>
<td>工序 (i)</td>
<td>浆料的固含量成浓度[质量%]</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>工序 (ii)</td>
<td>增强纤维基材的单位面积重量[g/m²]</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>分散介质的粘度[mPa·s]</td>
<td></td>
<td>60</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>工序 (iii)</td>
<td>使用泵泉</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>输送部的形状</td>
<td>四边形</td>
<td>圆形</td>
<td>圆形</td>
<td></td>
</tr>
<tr>
<td></td>
<td>输送部的代表长度[m]</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>流动状态</td>
<td>层流</td>
<td>层流</td>
<td>奇流</td>
<td>奇流</td>
</tr>
<tr>
<td></td>
<td>流速[m/s]</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>雷诺数</td>
<td>2000</td>
<td>1000</td>
<td>12000</td>
<td>200000</td>
</tr>
<tr>
<td>评价</td>
<td>增强纤维分散状态</td>
<td>AA、A、B、C</td>
<td>AA</td>
<td>AA</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>弯曲强度</td>
<td>相对值</td>
<td>100</td>
<td>80</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>变异系数</td>
<td>%</td>
<td>3</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>
的状态输送浆料，可以防止输送时增强纤维的再次凝集（参见制造例 401 ～制造例 406 及比较制造例 401 ～比较制造例 402）。

【0727】通过在输送部以层流状态或从层流到紊流的过渡域的状输送浆料，即使输送部的截面形状为圆形、四边形（多边形）中的任一种，也可以防止输送时增强纤维的再次凝集（参见制造例 401 ～制造例 405）。

【0728】通过使分散介质的粘度为 1mPa·s 以上 100mPa·s 以下，期待可以进一步提高碳纤维基材及成型品的力学特性。（参见制造例 402、制造例 403、制造例 404）。

【0729】通过使用 0/C 高的纤维，可以期待进一步提高碳纤维基材及其成型品的力学特性。

【0730】【预浸料坯、预成型体及成型品的评价（2）】

【0731】与“预浸料坯、预成型体及成型品的评价（1）”所述的方法同样地进行各种特性的测定及评价。

【0732】（实施例 501）

【0733】利用图 10 的装置 102 制造预浸料坯。

【0734】将碳纤维 A1 用筒形切削机切割成 6.4mm，得到短切碳纤维。

【0735】配制 C1 的 1 质量%的水分散液（乳液）作为粘合剂溶液，将其加入到粘合剂槽 126 中。配制由水和表面活性剂（Nacalai Tesque（株）制、聚氯乙烯十二烷基醚（商品名））形成的 40 升浓度 0.1 质量%的分散液，转移至分散槽 111。向该分散液中加入 50g 短切碳纤维，搅拌 10 分钟，配制浆液。打开分散层容器下部的开口阀 115，将加压空气导入浆液的容器中，一边保持浆液流量恒定，一边将该浆液注入具有宽 200mm 的抄纸面的网状输送带。一边用网状输送带抽吸水，一边以 1m/分钟的速度拉取浆液，得到长 5m、宽 200mm 的碳纤维基材 120（工序（I））。接着，打开粘合剂槽 126 的开口阀 128，在该碳纤维基材 120 的上部散布 200g 粘合剂溶液。抽吸剩余部分的粘合剂溶液后，经 3 分钟通过 200℃的干燥机 138 中，得到碳纤维基材 W2（工序（II））。碳纤维基材 W2 的单位面积重量为 50g/m²。直接在线用输送带将该碳纤维基材 W2 输送到双层带加压装置 131。将 2 片东洋（株）制、CM1007（尼龙 6 树脂）同一厚度的膜作为基质树脂以膜/碳纤维基材/膜的方式进行层合，利用双层带加压装置 131，在 250℃的温度下、在 5Mpa 的压力下进行加压 2 分钟，制作在碳纤维基材中含浸有基质树脂的预浸料坯（28）（工序（III））。直接在卷取装置 133 中以卷取速度 1m/分钟卷取成带状形状（工序（IV））。预浸料坯的特性示于表 25。

【0736】除制作层合片 8 片预浸料坯（28）的预成型合以外，与实施例 1 同样地制作 L 字形箱型形状的成型品。预成型体按照叠的形状良好地被赋型，得到形状品质良好的成型品。成型品的特性示于表 26。

【0737】（实施例 502）

【0738】在图 10 的装置 102 中，在干燥机 138 前的抄纸装置中使用图 23 的装置 202，制造预浸料坯。

【0739】使用上述制造装置，从窄口开口部加入由水和表面活性剂（Nacalai Tesque（株）制、聚氯乙烯十二烷基醚（商品名））形成的浓度 0.1 质量%的分散液，使用碳纤维 A1 的短切碳纤维。之后，与实施例 501 同样地进行处理，得到预浸料坯（29）。浆料中的碳纤维含量为 0.05 质量%，浆料的碳纤维浓度差 C1/C2 为 1.0。所得预浸料坯的特性示于表 25。
【0740】除制作层合有8片预浸料坯（29）的预成型体之外，与实施例1同样地制作L字形箱型形状的成型品。预成型体按照模的形状良好地被赋型，得到形状品质良好的成型品。成型品的特性示于表26。

【0741】（实施例503）

【0742】在图10的装置102中，在干燥机138前的抄纸装置中使用图27的装置303，制造预浸料坯。

【0743】利用上述制造装置，从窄口开口部加入由水和表面活性剂（Nacalai Tesque株）制、聚氧乙烯二十二烷基醚（商品名））形成的浓度0.1质量％的分散液，和使用碳纤维A1的短切碳纤维。之后，与实施例501同样地进行处理，得到预浸料坯（30）。浆料的液面高度H1-H2为0.5m，输送部形状为直线，输送部倾斜角度为45°。所得预浸料坯的特性示于表25。

【0744】除制作层合有8片预浸料坯（30）的预成型体之外，与实施例1同样地制作L字形箱型形状的成型品。预成型体按照模的形状良好地被赋型，得到形状品质良好的成型品。成型品的特性示于表26。

【0745】（实施例504）

【0746】在图10的装置102中，在干燥机138前的抄纸装置中使用图27的装置303，制造预浸料坯。其中，装置303的输送部313（倾斜角r:88°）的截面形状为直径0.01m的圆形。

【0747】利用上述制造装置，从窄口开口部加入由水和水溶性高分子（住友精化株）制、PEO-8Z（商品名））形成的浓度0.25质量％的分散液，和使用碳纤维A1的短切碳纤维。之后，与实施例501同样地进行处理，得到预浸料坯（31）。分散介质的粘度为10mPa・s，输送部的流动状态为层流，流速为1m/s，雷诺数为1000。所得预浸料坯的特性示于表25。

【0748】除制作层合有8片预浸料坯（31）的预成型体之外，与实施例1同样地制作L字形箱型形状的成型品。预成型体按照模的形状良好地被赋型，得到形状品质良好的成型品。成型品的特性示于表26。

【0749】
<table>
<thead>
<tr>
<th>增强纤维基材</th>
<th>增强纤维</th>
<th>纤维种类</th>
<th>实施例 501</th>
<th>实施例 502</th>
<th>实施例 503</th>
<th>实施例 504</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>碳纤维</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>纤维长度比例</td>
<td></td>
<td>[质量%]</td>
<td>28</td>
<td>27</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>超过 10mm</td>
<td></td>
<td>[质量%]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 ~ 10mm</td>
<td></td>
<td>[质量%]</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>小于 2mm</td>
<td></td>
<td>[质量%]</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>二维取向角</td>
<td>[°]</td>
<td></td>
<td>40</td>
<td>41</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>空气量（弗雷泽法）</td>
<td>[cm³/cm²·s]</td>
<td></td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>表25</td>
<td></td>
<td>实施例501</td>
<td>实施例502</td>
<td>实施例503</td>
<td>实施例504</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>预浸料坯</td>
<td>预浸料坯编号</td>
<td>[]</td>
<td>(28)</td>
<td>(29)</td>
<td>(30)</td>
<td>(31)</td>
</tr>
<tr>
<td>树脂</td>
<td>树脂种类</td>
<td>[]</td>
<td>尼龙6</td>
<td>尼龙6</td>
<td>尼龙6</td>
<td>尼龙6</td>
</tr>
<tr>
<td></td>
<td>树脂质量含量</td>
<td>[质量%]</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>特征</td>
<td>23℃下的厚度 h0</td>
<td>[mm]</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>100℃下的厚度 h1</td>
<td>[mm]</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>200℃下的厚度 h2</td>
<td>[mm]</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>300℃下的厚度 h3</td>
<td>[mm]</td>
<td>0.92（×2）</td>
<td>0.92（×2）</td>
<td>0.92（×2）</td>
<td>0.92（×2）</td>
</tr>
<tr>
<td></td>
<td>400℃下的厚度 h4</td>
<td>[mm]</td>
<td>（×1）</td>
<td>（×1）</td>
<td>（×1）</td>
<td>（×1）</td>
</tr>
<tr>
<td></td>
<td>树脂含浸率</td>
<td>[%]</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>体积密度</td>
<td>[g/cm³]</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>单位面积重量</td>
<td>[g/m²]</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>拉伸强度 σ</td>
<td>[MPa]</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>σMax</td>
<td>[MPa]</td>
<td>170</td>
<td>170</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>σMin</td>
<td>[MPa]</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>长尺寸方向的长度</td>
<td>[mm]</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
</tbody>
</table>

* 1: 树脂分解
* 2: 树脂分解气味
<table>
<thead>
<tr>
<th>实施例</th>
<th>冲压</th>
<th>比强度</th>
<th>比刚度</th>
<th>线膨胀系数</th>
<th>各向同性</th>
</tr>
</thead>
<tbody>
<tr>
<td>501</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>502</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>503</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>504</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

表26

【0752】实施例501～504中制造的预浸料坯的增强纤维的纤维长度分布、厚度、拉伸强度良好，且纤维的二维取向角在10°以上80°以下的范围内，具有各向同性，制作成型品时显示出良好的特性。另外，使用上述预浸料坯制作的层合预成型体也显示出良好的特性。进而，可以以辊状得到连续的预浸料坯，在工业上实施时为优选。

【0753】产业上的可利用性

【0754】本发明的预浸料坯及其层合体优选用作能够同时实现力学特性和成型性的纤维增强预成型体，特别是由于构成薄壁的预浸料坯的增强纤维以二维各向同性的方式排列，所以面方向的增强效果优异，抑制层内厚度方向增强纤维的干涉，且层间相互作用也小，从
而成型时的形状赋型优异。它们可以适用于电气、电子机械、遥控机械、双轮车、汽车、航空器构件、部件及箱体等广泛的产业领域。

[0755] 符号说明

[0756] 1 增强纤维单丝 (a)

[0757] 2 ~ 7 增强纤维单丝 (b)

[0758] 8 二维取向角

[0759] 9 不锈钢编织网

[0760] 10 预浸料坯

[0761] 11 增强纤维基材

[0762] 12 纤维方向

[0763] 13 纤维垂直方向

[0764] 14 带有切口的碳纤维预浸料坯

[0765] 15 碳纤维

[0766] 16 切口

[0767] 17 切口长度

[0768] 18 纤维长度

[0769] 19 相邻列的切口彼此插入的长度

[0770] 21 分散槽

[0771] 22 抄纸槽

[0772] 25 开口阀

[0773] 26 搅拌机

[0774] 27 短切增强纤维

[0775] 28 分散液（分散介质）

[0776] 30 增强纤维基材（抄纸基材）

[0777] 31 网状输送带

[0778] 32 输送带

[0779] 41 连续 CFRP

[0780] 42 预浸料坯

[0781] 43 GMT

[0782] t 预浸料坯厚度方向

[0783] R 曲率半径

[0784] 101, 102, 103, 104 装置

[0785] 111 分散槽

[0786] 112 抄纸槽

[0787] 113 输送部

[0788] 115, 128 开口阀

[0789] 116 搅拌机

[0790] 117 短切碳纤维（碳纤维束）

[0791] 118 分散液（分散介质）
[0792] 119 抄纸面
[0793] 120 增强纤维基材（抄纸基材）
[0794] 121 网状输送带
[0795] 122 输送带
[0796] 126 粘合剂槽
[0797] 127 粘合剂输送部
[0798] 129, 130 加压空气管
[0799] 131 双层带加压
[0800] 132 预浸料坯 133 卷取装置
[0801] 134 分散 - 抄纸槽
[0802] 135 基质树脂
[0803] 136, 137 镀
[0804] 138 干燥机
[0805] 139 梳理装置
[0806] PA 加压空气
[0807] 201 ~ 203, 301 ~ 304, 401 增强纤维基材（抄纸基材）的制造装置
[0808] 211, 311, 411 分散槽
[0809] 212, 312, 412 抄纸槽
[0810] 213, 313, 413 输送部
[0811] 214, 314, 414 输送部和分散槽的连接部
[0812] 315, 415 开口阀
[0813] 216, 316, 416 搅拌机
[0814] 217, 317, 417 短切碳纤维（碳纤维束）
[0815] 218, 318, 418 分散液（分散介质）
[0816] 219, 319, 419 抄纸面（网片）
[0817] 220, 320, 420 增强纤维基材（抄纸基材）
[0818] 221, 321 网状输送带
[0819] 222, 322 输送带
[0820] 223, 323 广口开口部
[0821] 224, 324 窄口开口部
[0822] 225 送液泵（低剪切泵、隔膜泵）
[0823] H1 工序 (ii) 中的浆料的液面高度
[0824] H2 工序 (iv) 中的浆料的液面高度
[0825] A 基准
[0826] B 工序 (ii) 中的浆料液面
[0827] C 工序 (iv) 中的浆料液面
[0828] p 与重力方向平行的线
[0829] q 输送部的中心线
[0830] r p 与 q 在垂直下方侧形成的角度
C1、C2 增强纤维在浆料中的质量含有率
D 纤维直径
L 纤维长度
n 每单位体积的纤维数
*1 树脂的灰化
*2 抽吸
*3 前端运转使其可以均匀地散布
*4 加热・加压・冷却
*5 卷取
*6 溢流
图 1
图2
图 22

图 23
图 24
图25
图30