

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
31 July 2003 (31.07.2003)

PCT

(10) International Publication Number
WO 03/061829 A1

(51) International Patent Classification⁷: B01J 37/02,
C01B 21/02, C01C 1/00

LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,
SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, ZM, ZW.

(21) International Application Number: PCT/GB02/05761

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK,
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

(22) International Filing Date:
18 December 2002 (18.12.2002)

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)
- of inventorship (Rule 4.17(iv)) for US only

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 03/061829 A1

(54) Title: PROCESS FOR THE PREPARATION OF A MICROSFEROIDAL CATALYST

(57) Abstract: A process for impregnating microspheroidal catalyst support particles with at least one compound of a catalytically active group VIII noble metal, which process comprises the steps of: (a') impregnating the microspheroidal support particles by the incipient wetness technique with an aqueous solution of the at least one catalytically active group VIII noble metal, whilst agitating the support particles; and (b') drying the impregnated support particles produced in step (a') whilst agitating the impregnated support particles. The microspheroidal support particles are preferably silica, alumina, zirconia or mixtures thereof. Where the catalytically active group VIII noble metal is palladium, the process may be used to prepare a catalyst active for the fluid bed acetoxylation of ethylene to produce vinyl acetate.

Process for the Preparation of a Microspheroidal Catalyst

The present invention relates to a process for preparing a catalyst active for the fluid bed acetoxylation of ethylene to produce vinyl acetate and to generally applicable aspects of such a process.

The process for preparing catalysts active for the acetoxylation of ethylene to produce vinyl acetate are known for example from European patent publication EP-A-0672453 which relates to a process for the preparation of a fluid bed catalyst comprising impregnating a support comprising a mixture of substantially inert microspheroidal particles with a solution comprising salts of palladium and a metal M selected from the group consisting of barium, gold, lanthanum, niobium, cerium, zirconium, lead, calcium, strontium, antimony and mixtures thereof. EP-A-0672453 describes preparation processes in which metal salt compounds are reduced using hydrazine.

Several processes are described for the treatment of hydrazine containing aqueous streams. These involve decomposition of hydrazine with an oxidising agent in the presence of a noble metal or base metal catalyst (e.g. JP 2000107774, JP 63205194, JP 63036894). This oxidative decomposition may also be performed in the presence of alkali (e.g. JP 63049295). In the absence of an oxidant hydrazine is readily decomposed either thermally or in the presence of a catalyst to nitrogen and/or ammonia.

Processes for the preparation of catalysts for the fixed bed production of vinyl acetate are well established and described in the patent and scientific literature. There remains a need for an improved process for the commercial scale preparation of a catalyst active for the fluid bed acetoxylation of ethylene to produce vinyl acetate. This invention provides an integrated process for the production of a fluid bed catalyst for

this process.

According to one aspect of the present invention there is provided a process for preparing a catalyst active for the fluid bed acetoxylation of ethylene to produce vinyl acetate, which process comprises the steps of :

- 5 (a) impregnating microspheroidal silica support particles by the incipient wetness technique with an aqueous solution of palladium and gold compounds, whilst agitating, preferably continuously agitating, the support particles;
- (b) drying the impregnated support particles produced in step (a) whilst agitating the impregnated support particles;
- 10 (c) reducing the palladium and gold compounds of the impregnated support particles produced in step (b) to respective metals by adding the dried, impregnated support particles to an aqueous solution of hydrazine, whilst stirring, to form a slurry;
- (d) filtration of the slurry produced in step (c) to remove the excess reduction solution;
- 15 (e) washing the filter cake/ slurry produced in step (d) with water and removing excess water to form a cake;
- (f) impregnating the cake produced in step (e) with one or more salts of Group I, Group II, lanthanide and transition metals by blending the cake produced in step
- 20 (e) with one or more solid salts of Group I, Group II, lanthanide and transition metals; and
- (g) drying the impregnated cake produced in step (f) whilst agitating the impregnated cake to form free-flowing catalyst particles.

The present invention provides a process which is integrated and has several advantages that are particularly suited to the production of a microspheroidal catalyst.

Thus, impregnation of the microspheroidal particles by the incipient wetness technique whilst agitating the support has been found to be an effective way of providing relatively uniform impregnation. By use of a vessel capable of being heated and agitated simultaneously, advantageously the subsequent drying stage can be performed using the same apparatus. This has advantages of reducing the handling of the material and controlling the location and distribution of the impregnated precursor metal salts.

Thus, according to a further embodiment of the present invention there is provided a process for impregnating microspheroidal catalyst support particles with at least one compound of a catalytically active metal, which process comprises the steps of :

- (a') impregnating the microspheroidal support particles by the incipient wetness technique with an aqueous solution of the at least one catalytically active metal, whilst agitating the support particles; and
- 5 (b') drying the impregnated support particles produced in step (a') whilst agitating the impregnated support particles.

In the processes of the present invention, the microspheroidal support particles 10 are suitably selected from the group consisting of inorganic oxides such as silica, alumina, zirconia and mixtures thereof, preferably silica. The microspheroidal support particles are preferably resistant to attrition during agitation in the processes of the present invention.

Suitable support particles have a distribution of larger to smaller particle sizes.

15 Typically, at least 80% and preferably at least 90% of the support particles have mean diameters of less than about 300 microns.

A typical catalyst useful in the present invention may have the following particle size distribution:-

20	0 to 20 microns	0-30 wt%
	20 to 44 microns	0-60 wt%
	44 to 88 microns	10-80 wt%
	88 to 106 microns	0-80 wt%
	>106 microns	0-40 wt%
	>300 microns	0-5 wt%

25 Persons skilled in the art will recognize that support particles sizes of 44, 88, and 300 microns are arbitrary measures in that they are based on standard sieve sizes.

Particle sizes and particle size distributions may be measured by an automated laser device such as a Microtrac X100.

Microspheroidal support particles useful in the present invention are sufficiently 30 porous to permit gaseous reactants to diffuse into the particle and contact catalytic sites incorporated within the particle. Thus, the pore volume should be high enough to permit gaseous diffusion. However, a support particle with an exceedingly high pore

volume typically will not have sufficient attrition resistance or will not have sufficient surface area for catalytic activity. A typically suitable microspheroidal support particle has a pore volume (measured by nitrogen sorption) between about 0.2 and 0.7 cc/g. A preferable support particle has a pore volume between about 0.3 and 0.65 cc/g and more 5 preferably between about 0.4 and 0.55 cc/g.

Surface areas (measured by nitrogen BET) for support particles with mean diameters and pore volumes useful in the present invention typically are above about 50 m²/g and may range up to about 200 m²/g. A typical measured surface area is about 60 to about 125 m²/g.

10 Typically useful support particles, especially silica support particles are described in U.S. Patent 5,591,688, incorporated by reference herein. In these supports microspheroidal particles are produced by spray drying a mixture of a silica sol with silica particles followed by drying and calcining. In the preparation, at least 10 wt.%, preferably at least 50 wt.%, of a silica sol is mixed with particulate silica. A useful 15 particulate silica is a fumed silica such as Aerosil® (Degussa Chemical Company). A typical silica particulate material has a high surface area (about 200 m²/g) with essentially no micropores, and, typically, are aggregates (with mean diameters of several hundred nm) of individual particles with average diameters of about 10 nm (above 7 nm). Preferably, the silica is sodium free. Sufficient particulate silica is added 20 to the mixture to obtain a desired pore volume in the resulting support particle. The amount of particulate silica may range up to 90 wt.% and typically ranges up to 10 to 50 wt.% of the silica in the mixture. Typically, the silica sol/particulate silica mixture is spray dried at an elevated temperature such as between 115° to 280°C, preferably 130° to 240°C, followed by calcining at temperature typically ranging from between 550° to 25 700° and, preferably 600° to 660°C.

30 An advantageous silica sol for preparing a catalyst support useful in the present invention contains silica particles in the sol typically more than 20 nanometres in mean diameter and may be up to about 100 nanometres or more. Preferable sols contain silica particles of about 40 to 80 nanometres. Nalco silica sol 1060 particularly is advantageous because of the relatively large mean silica particle sizes of 60 nm pack less efficiently than smaller sol particles such as Nalco 2327 at about 20 nm. The larger particle size sol yields a final support with higher mesopore volume and less micropore

volume.

In the processes of the present invention the particulate support particles are impregnated with at least one compound of a catalytically active metal. Preferably, the catalytically active metal comprises at least one Group VIII noble metal. The noble metals of Group VIII of the Periodic Table of the Elements (IUPAC) are palladium, platinum, rhodium, ruthenium, osmium and iridium. Typically, the noble metal used in a process according to the present invention for preparing a catalyst active for the acetoxylation of ethylene to produce vinyl acetate comprises palladium. Such a catalyst typically contains at least about 0.1%, preferably at least 0.2 wt% palladium to about 5 wt% and preferably up to 4 wt% palladium.

In the processes of the present invention the microspheroidal support particles are impregnated by the incipient wetness technique. In this technique the support is contacted with a solution of the compounds to be impregnated in an amount which is from 60 to 120 % of the pore volume of the support particles, preferably from 70 to 100 % of the pore volume. Suitable solvents may be water, carboxylic acids such as acetic acid, benzene, toluene, alcohols such as methanol or ethanol, nitriles such as acetonitrile or benzonitrile, tetrahydrofuran or chlorinated solvents such as dichloromethane. Preferably, the solvent is water and/or acetic acid. Suitably, and especially when the present invention is used for the preparation of a catalyst active for the acetoxylation of ethylene to produce vinyl acetate, the support particles are impregnated with palladium acetate, sulphate, nitrate, chloride or halogen-containing palladium compounds such as H_2PdCl_4 , which is sometimes also represented as $[PdCl_2]_2HCl$, and Group I or Group II salts thereof such as Na_2PdCl_4 and K_2PdCl_4 . A preferred water soluble compound is Na_2PdCl_4 . A preferred acetic acid-soluble palladium compound is palladium acetate. The palladium compounds may be prepared in situ from suitable reagents.

The catalyst active for the manufacture of vinyl acetate may also comprise, as promoters, other metals such as gold, copper, cerium and mixtures thereof, preferably gold. These promoters may be used in an amount of 0.1 to 10 % by weight of each promoter metal present in the finished catalyst composition. Typically, the weight percent of gold is at least about 0.1 wt%, preferably, at least 0.2 wt% gold to about 3 wt% and preferably up to 2 wt% gold. Typically, the weight percent of cerium is at least about 0.1 wt%, preferably at least 0.2 wt% to about 10 wt% or more, preferably up

to 5 wt% of cerium. Typically, the weight percent of copper is at least 0.1 to about 10 wt%, preferably up to 5 wt% copper.

Suitable gold compounds which may be used include gold chloride, dimethyl gold acetate, barium acetoaurate, gold acetate, tetrachloroauric acid (HAuCl₄, 5 sometimes represented as AuCl₃.HCl) and Group I and Group II salts of tetrachloroauric acid such as NaAuCl₄ and KAuCl₄. Preferably, the gold compound is HAuCl₄. The gold compounds may be prepared *in situ* from suitable reagents.

The agitation of the support particles during the incipient wetness impregnation step and during the subsequent drying step may be performed in an agitated blender 10 such as ribbon, ploughshare, V-type. This has an advantage that the same apparatus may be used for both steps.

Preferably, the drying of impregnated particles is performed by agitating the support particles whilst applying external heat at a temperature in the range up to 150 °C. This achieves rapid drying without redistribution of the metal complexes or 15 precursor salts which has an advantage of avoiding metal migration to give uniformly impregnated material.

Thus, according to a further aspect of the present invention, there is provided a process for drying impregnated microspheroidal catalyst support particles, which process comprises agitating the impregnated support particles whilst applying external 20 heat at a temperature in the range 50 to 200 °C, preferably 100 to 150 °C.

Dry gas such as air, nitrogen, at room temperature to 200 °C may be passed over and/or through the catalysts during drying. After drying, the support particles impregnated with at least one compound of a catalytically active metal may be contacted with a reducing agent to convert the compound to its respective metal.

25 Thus, according to yet a further aspect of the present invention there is provided a process for reducing at least one compound of a catalytically active metal impregnated within microspheroidal support particles, to its respective metal, which process comprises adding the impregnated microspheroidal support particles to a solution of a reducing agent active for reduction of the at least one metal compound to its respective 30 metal whilst stirring.

It has been found that addition of the impregnated particles to a solution of a reducing agent rather than addition of the solution of reducing agent to the impregnated

support particles has benefits, especially for preparing catalyst active for the acetoxylation of ethylene to produce vinyl acetate in a fluid bed process. In particular, this aspect of the present invention provides a process in which the reducing agent is at a high concentration and excess relative to the compound being reduced throughout the 5 reaction. This has been found to produce a layer structure, which is especially beneficial for preparing a catalyst active for the acetoxylation of vinyl acetate. In this layered structure the support particles have at least one catalytically active metal or precursor thereof distributed therein, in which the metal or precursor thereof is distributed in the support particle in a layer below the surface of said particle, said layer 10 being between an inner and an outer region of said support particle, and each of said inner and outer regions having a lower concentration of said metal or precursor thereof than said layer. This provides an advantage in that the outer layer of the catalyst acts as a protective layer and serves to reduce the loss of metals upon attrition of the particle whilst still maintaining the activity of the catalyst. The outer region of the catalyst 15 composition may also provide some resistance to poisoning of the catalytically active metal.

Preferably the reducing agent active for the reduction of at least one metal compound to its respective metal comprises hydrazine. Preferably the solution of said reducing agent is an aqueous solution of hydrazine, more preferably an aqueous solution 20 of hydrazine that has not been rendered alkaline by an alkali metal hydroxide. Most preferably the solution of said reducing agent consists of hydrazine in aqueous solution in the absence of any other added components. It has surprisingly been found that aqueous hydrazine is active for the reduction of at least one metal compound to its respective metal even when not been rendered alkaline by an alkali metal hydroxide 25

Suitably, at least one compound impregnated in the support comprises palladium and gold compounds and the reducing agent comprises hydrazine in aqueous solution.

Preferably, the concentration of hydrazine in the aqueous solution is 1 to 20 wt %, such as 3 to 20 wt%, for example 5 to 20 wt%.

When hydrazine is used as reducing agent, excess hydrazine may be washed 30 from the support material. During reduction with hydrazine it is beneficial to pass an inert gas such as nitrogen over or through the support particles to remove oxygen (air) from the vessel as well as gaseous products of the reduction, in particular hydrogen and

ammonia. Air is not a suitable purge gases as oxygen may result in decomposition of the hydrazine, which being an exothermic reaction can be potentially unsafe.

Unreacted hydrazine washed from the material after the reduction step may be disposed of according to known methods. It has been found that a particularly suitable 5 method of purifying this hydrazine containing aqueous waste stream is to catalytically decompose the hydrazine in the absence of an oxidant over a suitable catalyst to nitrogen and ammonia.

Thus, according to a further aspect of the present invention there is provided a process for the purification of a waste stream comprising dilute aqueous hydrazine, 10 which process comprises contacting the waste stream with a catalyst active for the decomposition of the hydrazine. Preferably, the catalyst active for the decomposition of hydrazine comprises ruthenium on a support. The amount of ruthenium on the support is preferably in the range from 1 to 10 % by weight. Preferably, the support is selected from the group consisting of inorganic oxides such as silica, alumina, zirconia and 15 mixtures thereof as well as activated carbon and graphite. Preferably the reaction is performed at temperatures in the range from 0 to 100 °C by circulating the solution through a fixed bed of catalyst. The residence time of the aqueous hydrazine solution within the catalyst bed should preferably be controlled such that the temperature of the solution does not exceed its boiling point, most preferably the solution temperature 20 should be maintained in the temperature range of 70 to 95 °C.

In catalyst compositions suitable for the production of vinyl acetate, in addition to Group VIII noble metals such as palladium and optional promoter selected from gold, copper and cerium the support particles may also be impregnated with one or more salts of Group I, Group II, lanthanide and transition metals promoters, preferably of 25 cadmium, barium, potassium, sodium, manganese, antimony, lanthanum or mixtures thereof, which are present in the finished catalyst composition as salts, typically acetates. Generally, potassium will be present. Suitable salts of these compounds are acetates but any soluble salt may be used. These promoters may be used in an amount of 0.1 to 15 %, preferably 3 to 9 %, by weight of each promoter salt present in the 30 finished catalyst composition. It has been found that these promoter salts may be impregnated by blending support particles with solid salts of the promoter metal in the presence of limited amount of solvent.

Thus, according to a further aspect of the present invention there is provided a process for impregnating porous microspheroidal particles with one or more salts of Group I, Group II, lanthanide and transition metals which process comprises blending the particles with one or more solid salts of Group I, Group II, lanthanide and transition metals in the presence of a solvent for the salt in which the solvent is contained within the pore volume of the catalyst support particle. Preferably the solvent is water.

It has been found that by using a solid salt and catalyst particles containing a limited amount of solvent within the pore volume, the salt is impregnated within the support with a uniform distribution and may be performed using the wet filtered material without the need of drying prior to impregnation with a solution of the salt. Additionally, impregnation of the salt may be performed by blending the wet support with the solid salt in a blender (e.g. ribbon, V-type, ploughshare) which has an advantage that the same apparatus may be used for the subsequent drying of the material.

Preferably, the support impregnated with one or more salts of Group I, Group II, lanthanide and transition metals is dried at a temperature in the range from 60 °C to 150 °C.

The invention will now be described by reference to the following Examples.

Example 1 – Preparation of WD-1.

Silica support (231.75kg) was impregnated with an aqueous solution of Na₂PdCl₄ (containing 4.10 kg palladium) and HAuCl₄ (containing 1.65 kg gold) by the incipient wetness technique. The metal salts were dissolved in demineralised water to give an impregnation solution of 124 litres (about 82 % of the pore volume of the support particles). The impregnation was performed in a ribbon blender manufactured from Hastalloy C276 alloy.

Thereafter, the material was dried in the ribbon blender by introducing steam into the steam jacket of the blender at a mean wall temperature of 145 °C. During the drying, a dry air purge was passed through the blender over the agitated material to remove the evolved moisture.

Thereafter the dried material was cooled to room temperature and the impregnated salts were reduced to metallic state by addition of the solid material to a stirred aqueous solution of hydrazine (946 litres, 5 % by weight hydrazine). The

resultant slurry was allowed to stand overnight with occasional stirring.

Thereafter, the material was decant washed 4 times with about 800 litres demineralised water in each wash and dewatered using a rotating bowl centrifuge.

5 The wet material (cake) was blended with solid anhydrous potassium acetate (10 kg) in a ribbon blender and thereafter dried under agitation by introducing steam into the steam jacket of the blender to give a mean wall temperature of 145 °C. The evolved moisture was removed with a dry air purge through the blender.

The resulting product was a free-flowing catalyst material suitable for fluid bed acetoxylation of ethylene to produce vinyl acetate.

10 Example 2 – Preparation of 1.3R410.

Silica support (1124kg) was impregnated with an aqueous solution of Na_2PdCl_4 (containing 11.40 kg palladium) and HAuCl_4 (containing 4.56 kg gold) by the incipient wetness technique. The metal salts were dissolved in demineralised water to give an impregnation solution of 600 litres. The impregnation was performed in a ribbon

15 blender manufactured from Hastalloy C276 alloy.

Thereafter, the material was dried in the ribbon blender by introducing steam into the steam jacket of the blender to give a mean wall temperature of 120 °C. During the drying, a dry air purge was passed through the blender over the agitated material to remove the evolved moisture.

20 The dried material was cooled to less than 35 °C, initially by natural cooling after isolation of the steam supply and thereafter by introducing cooling water into the steam jacket.

25 Then the impregnated salts were reduced to metallic state by addition of the solid material to a stirred aqueous solution of hydrazine (2200 litres, 5 % by weight hydrazine).

Thereafter, the material was then pumped to a Nutsche pressure filter and filtered under nitrogen. The filter cake was washed 3 times with about 1000 litres of demineralised water in each wash.

30 The wet material (filter cake) was blended with solid anhydrous potassium acetate (60 kg) in a ribbon blender and thereafter dried under agitation by introducing steam into the steam jacket of the blender to give a mean wall temperature of 120 °C. The evolved moisture was removed with a dry air purge through the blender. Drying

was stopped when the moisture content of the material was in the range 20 to 25 % by weight. The partially dried material was transferred to a fluid bed drier operated at an air inlet temperature of 150 °C to remove the remaining moisture.

The resulting product was a free-flowing catalyst material suitable for fluid bed

5 acetoxylation of ethylene to produce vinyl acetate.

Example 3 - Hydrazine removal by anaerobic decomposition over Ru/Silica

An aqueous hydrazine solution (2400 litres with $[N_2H_4] = 1.8\text{g/l}$) at a temperature of 66°C was recirculated through a fixed bed of 2.6% Ru/silica catalyst (Johnson Matthey Type 660) containing 20Kg catalyst. The flow rate through the catalyst bed was 2.2l/min. Decomposition of the hydrazine was accompanied by evolution of gaseous products (N₂, H₂ and NH₃) and an increase in the temperature of the solution to 70°C. The solution was recirculated through the catalyst bed for a period of 12 hours. Analysis of the final solution indicated that complete decomposition of the hydrazine had occurred ($[N_2H_4] = <0.1\text{g/l}$, $[NH_4OH] = 2.5\text{g/l}$).

15 Example 4 – Hydrazine Decomposition over a Range of Supported Ru Catalysts

An aqueous hydrazine solution (2.5 litres, $[N_2H_4] = 3.8\% \text{ w/v}$) was recirculated through a flooded bed of Ru catalyst (catalyst bed volume typically 500ml) at a flow rate through the catalyst bed of 130 ml/min. Samples of the solution (1 to 5 ml) were removed at regular time intervals and the concentration of hydrazine was determined.

20 The results are summarised below

Catalyst	Mass Times (min)	/g	Solution Temp/°C	% $[N_2H_4]$ after Recirculation				
				0	10	30	50	70
2.5%Ru/SiO ₂ -Al ₂ O ₃	230	50		3.80	2.03	0.55	0.15	0.00
25 2.5%Ru/SiO ₂	200	50		3.80	1.94	0.32	0.05	0.00
2.5%Ru/C		30		3.80	1.72	0.36	0.00	0.00

Claims:

1. A process for preparing a catalyst active for the fluid bed acetoxylation of ethylene to produce vinyl acetate, which process comprises the steps of :
 - (a) impregnating microspheroidal silica support particles by the incipient wetness technique with an aqueous solution of palladium and gold compounds, whilst agitating the support particles;
 - (b) drying the impregnated support particles produced in step (a) whilst agitating the impregnated support particles;
 - (c) reducing the palladium and gold compounds of the impregnated support particles produced in step (b) to respective metals by adding the dried, impregnated support particles to an aqueous solution of hydrazine, whilst stirring, to form a slurry;
 - (d) filtration of the slurry produced in step (c) to remove the excess reduction solution;
 - (e) washing the filter cake/ slurry produced in step (d) with water and removing excess water to form a cake;
 - (f) impregnating the cake produced in step (e) with one or more salts of Group I, Group II, lanthanide and transition metals by blending the cake produced in step (e) with one or more solid salts of Group I, Group II, lanthanide and transition metals; and
 - (g) drying the impregnated cake produced in step (f) whilst agitating the impregnated cake to form free-flowing catalyst particles.
2. A process according to claim 1, wherein in step (a) the microspheroidal silica

support particles are impregnated by the incipient wetness technique whilst continuously agitating the support particles.

3. A process according to claim 1 or claim 2 in which the palladium compound is selected from the group consisting of palladium acetate, sulphate, nitrate, chloride, 5 halogen-containing palladium compounds and Group I and II salts of halogen-containing palladium compounds.
4. A process according to any one of claims 1 to 3 wherein the gold compound is selected from the group consisting of gold chloride, dimethyl gold acetate, barium acetoaurate, gold acetate, tetrachloroauric acid and Group I and II salts of 10 tetrachloroauric acid.
5. A process according to any one of claims 1 to 4 in which step (b) comprises agitating the impregnated support particles whilst applying external heat at a temperature in the range 50 to 200°C.
6. A process according to any one of claims 1 to 5 wherein in step (g) the cake is 15 dried at a temperature in the range from 60 to 150°C.
7. A process according to any one of the preceding claim in which the microspheroidal support particles are selected from the group consisting of silica, alumina, zirconia and mixtures thereof.
8. A process as according to any one of the preceding claims in which step (a) and 20 step (b) are performed in the same apparatus, said apparatus comprising a vessel being capable of being heated and agitated simultaneously.
9. A process according to claim 8 wherein step (a) and step (b) are performed in an agitated blender.
10. A process according to any one of the preceding claims in which step (f) and 25 step (g) are performed in the same apparatus, said apparatus comprising a blender.
11. A process according to any one of the preceding claims wherein the concentration of hydrazine in the aqueous solution is 1 to 20 wt%.
12. A process according to claim 11 wherein the concentration of hydrazine is 3 to 20 wt%.
- 30 13. A process according to any one of the preceding claims wherein the aqueous solution of hydrazine has not been rendered alkaline by an alkali metal hydroxide.
14. A process according to any one of the preceding claims comprising preparing a

catalyst containing at least about 0.1wt% to about 5wt% palladium and about 0.1 to about 3wt% gold.

15. A process for impregnating microspheroidal catalyst support particles with at least one compound of a catalytically active group VIII noble metal, which process

5 comprises the steps of:

(a') impregnating the microspheroidal support particles by the incipient wetness technique with an aqueous solution of the at least one catalytically active group VIII noble metal, whilst agitating the support particles; and

(b') drying the impregnated support particles produced in step (a') whilst agitating the 10 impregnated support particles.

16. A process according to claim 15 in which step (b') comprises agitating the impregnated support particles whilst applying external heat at a temperature in the range 50 to 200°C.

17. A process according to claim 15 or claim 16 in which the microspheroidal

15 support particles are selected from the group consisting of silica, alumina, zirconia and mixtures thereof.

18. A process according to any one of claims 15 to 17 in which step (a') and step (b') are performed in the same apparatus, said apparatus comprising an agitated blender.

19. A process according to any one of claims 15 to 18 in which the at least one

20 catalytically active group VIII noble metal comprises palladium.

20. A process according to any one of claims 15 to 19, further comprising a step (c'), which comprises, contacting the impregnated support particles with a reducing agent to convert the at least one compound to its respective metal.

21. A process according to claim 20 wherein the impregnated support particles are

25 added to a solution of a reducing agent active for reduction of the at least one metal compound to its respective metal whilst stirring.

22. A process according to claim 20 or claim 21 wherein the reducing agent comprises an aqueous solution of hydrazine.

23. A process according to claim 22 wherein the concentration of hydrazine in the

30 aqueous solution is 1 to 20 wt%.

24. A process according to claim 23 wherein the concentration of hydrazine is 3 to 20 wt%.

25. A process according to any one of claims 22 to 24 in which the at least one compound of a catalytically active metal impregnated in the support comprises palladium and gold compounds.

26. A process according to any one of claims 1 to 14 and 12 to 25 in which 5 unreacted hydrazine washed from the material after the reduction step is decomposed in the absence of an oxidant over a supported ruthenium catalyst to nitrogen and ammonia.

27. A process according to any one of claims 20 to 26, further comprising a step (d') wherein the support particles are further impregnated with one or more salts of Group I, Group II, lanthanide and transition metals, by blending the particles with one or more 10 solid salts of Group I, Group II, lanthanide and transition metals in the presence of a solvent for the salt in which the solvent is contained within the pore volume of the catalyst support particle.

28. A process according to claim 27 wherein the solvent is water.

29. A process according to claim 27 or claim 28 which further comprises a step (e') 15 wherein the impregnated particles are dried at a temperature in the range from 60°C to 150°C.

30. A process for the purification of a waste stream comprising dilute aqueous hydrazine, which process comprises contacting the waste stream with a catalyst active for the decomposition of the hydrazine to nitrogen and ammonia, said catalyst comprising ruthenium on a support.

20 31. A process according to claim 30 in which the amount of ruthenium on the support is in the range from 1 to 10 % by weight.

32. A process according to claim 30 or claim 31, wherein the support is an inorganic oxide, activated carbon or graphite.

25 33. A process according to claim 32 wherein the inorganic oxide is selected from the group consisting of silica, alumina, zirconia and mixtures thereof.

34. A process for impregnating porous microspheroidal particles with one or more salts of Group I, Group II, lanthanide and transition metals which process comprises blending the particles with one or more solid salts of Group I, Group II, lanthanide and 30 transition metals in the presence of a solvent for the salt in which the solvent is contained within the pore volume of the support particle.

35. A process according to claim 34 wherein the solvent is water.

36. A process according to claim 34 or claim 35, which further comprises the step of drying the impregnated particles at a temperature in the range from 60°C to 150°C.
37. A process according to any one of claims 34 to 36 wherein the blending is performed in a blender.
- 5 38. A process according to any one of claims 34 to 37 in which the microspheroidal support particles are selected from the group consisting of silica, alumina, zirconia and mixtures thereof.

INTERNATIONAL SEARCH REPORT

PCT/GB 02/05761

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 B01J37/02 C01B21/02 C01C1/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 B01J C01B C01C C07C C06D C02F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category [°]	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	GB 1 314 225 A (KNAPSACK AG) 18 April 1973 (1973-04-18) page 1, line 12 - line 58 example 1 ---	1-29
Y	GB 1 266 623 A (KNAPSACK AG) 15 March 1972 (1972-03-15) example 2 ---	1-29
Y	GB 1 250 265 A (KNAPSACK AG) 20 October 1971 (1971-10-20) examples 1,5 ---	1-29
Y	EP 0 672 453 A (STANDARD OIL CO OHIO) 20 September 1995 (1995-09-20) cited in the application the whole document ---	1-29 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

15 May 2003

Date of mailing of the international search report

23.05.2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Zuurdeeg, B

INTERNATIONAL SEARCH REPORT

PCT/GB 02/05761

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DE 31 19 707 A (KRAFTWERK UNION AG) 2 December 1982 (1982-12-02) page 4, line 17 - line 24 page 5, line 8 - line 12 ---	30-33
X	US 4 801 573 A (RIIS TRYGVE ET AL) 31 January 1989 (1989-01-31) column 4, line 10 - line 44 column 4, line 50 - line 53 column 5, line 45 - line 54 -----	34-38

INTERNATIONAL SEARCH REPORT

PCT/GB 02/05/61

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International Application No. PCT/GB 02 05761

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-29

A process for impregnating microspheroidal catalyst support particle with at least one compound of a catalytically active group VIII noble metal and a process for preparing a catalyst active for the fluid bed acetoxylation of ethylene to produce vinyl acetate

2. Claims: 30-33

A process for the purification of a waste stream comprising dilute aqueous hydrazine

3. Claims: 34-38

A process for impregnating porous microspheroidal particles with one or more salts of group I, group II, lanthanide and transition metals

INTERNATIONAL SEARCH REPORT

PCT/GB 02/05761

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
GB 1314225	A	18-04-1973	DE BE ES FR NL	1945528 A1 755804 A1 383491 A1 2061127 A5 7013197 A	01-04-1971 08-03-1971 16-02-1973 18-06-1971 11-03-1971
GB 1266623	A	15-03-1972	DE AT BE BG CS ES FI FR NL RO SE SU YU ZA	1793474 A1 289050 B 739323 A 19128 A3 153531 B2 371464 A1 51340 B 2030041 A5 6914274 A 56842 A1 349018 B 383275 A3 237169 A ,B 6906300 A	27-01-1972 25-03-1971 24-03-1970 30-04-1975 25-02-1974 16-10-1971 31-08-1976 30-10-1970 26-03-1970 01-07-1974 18-09-1972 25-05-1973 31-12-1975 25-08-1971
GB 1250265	A	20-10-1971	DE AT BE BG CH CS ES FR HU JP LU NL NO RO SE	1808610 A1 289742 B 741636 A 24794 A3 517692 A 164835 B2 373419 A1 2024859 A5 171286 B 51020485 B 59802 A1 6916848 A 132864 B 59690 A1 371433 B	11-06-1970 10-05-1971 13-05-1970 12-05-1978 15-01-1972 28-11-1975 16-12-1971 04-09-1970 28-12-1977 25-06-1976 13-05-1970 15-05-1970 13-10-1975 15-06-1976 18-11-1974
EP 0672453	A	20-09-1995	US US BR CA CN EP EP FI JP NO NZ RU SG US US ZA	5466652 A 5591688 A 9500736 A 2143042 A1 1112460 A ,B 0672453 A2 0949000 A1 950819 A 8038900 A 950645 A 270546 A 2149055 C1 47363 A1 2001018401 A1 2002028966 A1 9501441 A	14-11-1995 07-01-1997 31-10-1995 23-08-1995 29-11-1995 20-09-1995 13-10-1999 23-08-1995 13-02-1996 23-08-1995 20-12-1996 20-05-2000 17-04-1998 30-08-2001 07-03-2002 21-08-1996
DE 3119707	A	02-12-1982	DE	3119707 A1	02-12-1982
US 4801573	A	31-01-1989	AT AU	92454 T 2544688 A	15-08-1993 23-05-1989

INTERNATIONAL SEARCH REPORT

PCT/GB 02/05761

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 4801573	A	AU 616700 B2	07-11-1991
		BR 8807760 A	07-08-1990
		CA 1329190 A1	03-05-1994
		CN 1033755 A ,B	12-07-1989
		CN 1058010 A ,B	22-01-1992
		DE 3882886 D1	09-09-1993
		DE 3882886 T2	24-03-1994
		DK 586488 A	24-04-1989
		EP 0313375 A2	26-04-1989
		FI 92911 B	14-10-1994
		JP 3502067 T	16-05-1991
		LT 1530 A ,B	25-09-1995
		LV 5588 A3	10-05-1994
		NO 884684 A ,B,	24-04-1989
		WO 8903725 A1	05-05-1989
		RU 2017517 C1	15-08-1994
		US 4857559 A	15-08-1989
		US 4880763 A	14-11-1989