0O 03/065310 A1l

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

7 August 2003 (07.08.2003) PCT WO 03/065310 Al
(51) International Patent Classification”: GO06T 11/40 BRADLEY, Scott [GB/AU]; 208/1 Sergeants Lane, St
Leonards, New South Wales 2065 (AU).
(21) International Application Number: PCT/JP03/00994
(74) Agent: OHTSUKA, Yasunori; 7th FL.., SHUWA KIOI-

(22) International Filing Date: 31 January 2003 (31.01.2003)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
PS 0287 1 February 2002 (01.02.2002) AU
(71) Applicant (for all designated States except US): CANON
KABUSHIKI KAISHA [JP/JP]; 3-30-2, Shimomaruko,

Ohta-ku, Tokyo 146-8501 (JP).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LONG, Timothy,
Merrick [AU/AU]; 47 Ivey Street, Lindfield, New South
Wales 2070 (AU). ECOB, Stephen, Edward [AU/AUJ;
118 Harrow Road, Bexley, New South Wales 2207 (AU).

CHO PARK BLDG., 3-6, KIOICHO, CHIYODA-KU,

Tokyo 102-0094 (JP).
(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR,BY,BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,
SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, ZM, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FIL, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI,
SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: EFFICIENT DISPLAY UPDATE FROM CHANGING OBJECT GRAPHICS

1000

1006 1022

1024

(57) Abstract: Method, apparatus and program are disclosed for rendering a series of raster image frames from object graphic
elements (1000, 1020). At least one old fill run (A1, A2, A3, A4) is retained during the rendering of a first frame (A). The retained
fill run is compared with at least one new fill run (B1, B2, B3, B4) required for a subsequent frame (B). For at least one of the new
fill runs(B1, B4), the generation of pixel data for at least part of the new fill run is suppressed and pixels retained from the first frame

are used instead.

w0 03/065310 A1 NI 000 00 00O

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— with international search report ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 03/065310 PCT/JP03/00994

10

15

20

25

DESCRIPTION

EFFICIENT DISPLAY UPDATE FROM CHANGING OBJECT GRAPHICS

COPYRIGHT NOTICE
This patent specification contains material that
is subject to copyright protection. The copyright
owner has no objection to the reproduction of this
patent specification or related materials from
associated patent office files for the purposes of

review, but otherwise reserves all copyright whatsoever.

TECHNICAL FIELD
The present invention relates to the rendering of
object graphic elements into raster pixel images and,
in particular, to efficient frame-store updates in the

presence of changes to the object graphic elements.

BACKGROUND ART

Most object-based graphics systems utilise a
frame store or page buffer to hold a pixel-based image
of the page or screen. The outlines of the objects are
calculated, filled and written into the frame store.
For two-dimensional graphics, objects appear at a
particular z-level in the image. Those objects that
appear in front of other objects are simply written
into the frame store after the background objects,

thereby replacing the background objects on a pixel-by-

WO 03/065310 PCT/JP03/00994

10

15

20

25

pixel basis. This is commonly known in the art as the
“Painter’s Algorithm”. Such objects are considered in
priority order, from the rearmost object to the
foremost object. Typically, each object is rasterized
in scan line order and pixels are written to the frame
store in sequential runs along each scan line.

A problem with this technique is that many of the
pixels that are painted (ie. rendered), are also over-
painted by later objects. The painting of the pixels
with the earlier objects therefore transpires to be a
waste of time and computing resources.

There are techniques that overcome the over-
painting problem. 1In one technique, pixels are
produced in raster order on a whole image basis rather
on a per-object basis. On each scan line, the edges of
all objects that intersect that scan line are held in
order of increasing coordinate of intersection within
the scan line. These points of intersection, or edge
crossings, are considered in turn and used to toggle an
array of active flags. There is one active flag for
each object priority that is of interest on the scan
line. Between each pair of edges considered, which
thereby define a span of pixels therebetween, the color
data for each pixel that lies between the edges is
generated using a priority encoder (or equivalent
software routines in software implementations). The

priority encoder operates on the active flags to

WO 03/065310 PCT/JP03/00994

10

15

20

25

determine which priority is topmost, and using the
paint associated with that priority for the pixels of
the span between the two edges. 1In preparation for the
next scan line, the coordinate of intersection of each
edge is updated in accordance with the nature of each
edge. For example, for simple straight-line vectors, a
delta-x value is added to the current coordinate of
intersection to get the coordinate of intersection on
the next scan line. Adjacent edges that become mis-
sorted as a result of this update are swapped. New
edges for objects that start on the new scan line are
also merged into the list of edges. This technique has
been referred to, by its developers, as the "Quixel
Algorithm".

The Quixel Algorithm has the significant
advantage that there is no over-painting. Further, in
hardware implementations, the object priorities can be
dealt with in constant order time (typically one clock
cycle), rather than order N time (where N is the number
of priorities). Even in software implementations, the
priorities can typically be dealt with in constant time,
with occasional data-dependent exceptions, or log N
time. These properties give the Quixel Algorithm a
significant speed advantage over the well-known
Painter's Algorithm for converting a set of graphic
objects into a raster image, especially when there are

overlapping objects.

WO 03/065310 PCT/JP03/00994

10

15

20

25

It is common in interactive graphic systems to
maintain a frame-store that is refreshed to a display,
such as a CRT or LCD screen. In such systems, the
image represented on the display typically has high
frame coherence. That is, one frame is very much like
the next. Typically only a sub-set of the object
graphic elements that contribute to the image on the
display are changed between successive frames. A
number of techniques have been developed to take
advantage of this high inter-frame coherence to
minimise the amount of computationally intensive pixel
rendering work that needs to be performed.

When using the Painter's Algorithm to refresh a
display from a set of object graphics, these techniques
typically involve observation of the difference that
has occurred in the object graphics that contribute to
the display. A bounding box or more complex region
description may be generated by a comparison with the
difference to thereby partition the display area into
areas that will remain unchanged by the change to the
graphic objects, and regions that will change and thus
require refreshing. The object graphic elements are
then rendered. Typically however, objects that lie
entirely outside the refresh region are excluded and
pixel generation only occurs within the refresh region.

This technique can significantly reduce display

refresh time, but still suffers from a number of

WO 03/065310 PCT/JP03/00994

10

15

20

25

disadvantages. For example, it is common for a small
part of a large object to change. It is often
computationally prohibitive to perform interior
analysis of objects to determine the actual region of
change, so an excessively large refresh region is
estimated instead. Further, changes are often made to
object graphic elements that, for the majority of
pixels they generate, there is no change in the final
image. For example, when moving a large red rectangle
by a few pixels, most of the pixels remain red. Again,
interior analysis of every object to detect such cases
is often computationally prohibitive, and so, again,
excessively large refresh regions are used. Similarly
problematic situations are common. These techniques
still suffer from the over-painting inefficiency that
is inherent in the Painter's Algorithm.

Although not described, such techniques may be
applied to the Quixel Algorithm to alleviate the over-
painting inefficiency, but they would still suffer from
the other problems.

It is the object of the present invention to
substantially overcome, or at least ameliorate, one or

more deficiencies of known arrangements.

DISCLOSURE OF INVENTION
According to a first aspect of the invention,

there is provided a method of rendering a series of

WO 03/065310 PCT/JP03/00994

10

15

20

25

raster image frames from object graphic elements
wherein at least one old fill run is retained during
the rendering of a first frame and the retained fill
run is compared with at least one new fill run required
for a subsequent frame and for at least one new fill
run suppressing the generation of pixel data for at
least part of the new fill run and instead using éixels
retained from the first frame.

Preferably, the descriptiéns of the retained fill
runs are stored in an ordered list. Further,
advantageously, a number of retained fill run
descriptions is limited‘to less than a number required
for a complete reproduction of the first frame.

According to a second aspect of the invention,
there is provided a method of rendering a plurality of
raster image frames, the method comprising the steps
of:

(a) rendering a first frame and retaining first
data describing fill runs of pixels of the first frame;
and

(b) rendering a second frame to update the
pixels of the first frame, the rendering comprising the
sub-steps of:

(ba) determining second data describing
fill runs of pixels of the second frame;

(bb) comparing the second data with the

first data; and

WO 03/065310 PCT/JP03/00994

10

15

20

25

(bc) generating new pixels using the
second data, and over-writing pixels in the first
frame, when the comparison indicates a different
pixel value may result.

According to another aspect of the invention,
there is provided an apparatus for implementing any one
of the aforementioned methods.

According to another aspect of the invention
there is provided a computer program product including
a computer readable medium having recorded thereon a
computer program for implementing any one of the
methods described above.

Other aspects of the invention are also disclosed.
These include a server arrangement configured to
generate data for optimised rendering using runs of
pixels and a remote device configured to receive the
optimised data from the server to aid speedy rendering.

The above-noted object is preferably achieved by
modifying the Quixel Algorithm, such that during the
rendering of a first frame, certain runs of pixel fill
information are retained. Then, during a subsequent
frame render, these runs are compared with the new runs
of pixel fill information that would be used to
generate the new frame. Where the comparison indicates
that spans of pixels present in the already-rendered
frame already have the desired values, the filling of

these spans of pixels is avoided. Also, a new list of

WO 03/065310 PCT/JP03/00994

10

15

20

25

pixel fill run information is retained so that the

process may be repeated for subsequent frames.

BRIEF DESCRIPTION OF DRAWINGS

At least one embodiment of the present invention
will now be described with reference to the drawings,
in which:

Fig. 1 is a schematic block diagram
representation of a data flow for the prior art Quixel
Algorithm;

Fig. 2 is a representation similar to Fig. 1 but
showing a modification according to a present
disclosure;

Fig. 3 is a schematic block diagram
representation of a computer system in which the
arrangements described herein may be implemented;

Fig. 4 illustrates data flow of a preferred
implementation of the arrangement of Fig. 2;

Figs. 5A to 5C shows examples of objects, steps,
edges and fills;

Figs. 6A and 6B are detailed representations of
the arrangement of Fig. 4;

Figs. 7A and 7B are flowcharts depicting
operation of the edge processing module;

Fig. 8 illustrates the situation of edge overlap;

Figs. 9A and 9B are flowcharts depicting

operation of the z-level activation module;

WO 03/065310 PCT/JP03/00994

10

15

20

25

Fig. 10 illustrates the fundamental operation of
the run-culling module;

Fig. 11 is a flowchart depicting operation of the
run-culling module; and

Fig. 12 depicts operation of the fill generation

module.

BEST MODE OF CARRYING OUT THE INVENTION

Where reference is made in any one or more of the
accompanying drawings to steps and/or features, which
have the same reference numerals, those steps and/or
features have for the purposes of this description the
same function(s) or operation(s), unless the contrary
intention appears.

Fig. 1 shows a prior art renderer 100 based on
the aforementioned Quixel Algorithm. In Fig. 1,
graphic object descriptions 102 are input to a display
list compiler module 110 which interprets the
individual graphic objects to compile and store one or
more display lists 112 of individual images desired to
be rendered. Typically the images form a displayable
sequence thereby depicting animation of a graphic
object scene. Once formed, each display list 122 may
be rendered to provide a single frame of the sequence.
For rendering, an edge tracking module 120 initially
examines the objects in a display list 112 to determine

a list of active edges 122 that form the image being

WO 03/065310 PCT/JP03/00994

10

15

20

25

10

rendered. The activity of edges is typically
determined in raster-scan order and is provided to a z-
level activation module 130. The z-level activation
module 130 determines, for each edge crossing on each
scan line, those objects that are active in the
rendered image on the particular scan line in a span
between an adjacent pair of edges. This is typically
determined with the aid of a table 132. For those
entries in the table 132 for a span, the objects are
ranked in their priority or z-order. The top-most
opaque object in the table 132 acts to exclude all
objects beneath in the z-order, and that object,
together with any higher-ordered transparent objects,
are output for the span to a fill generation module 140.
The module 140 examines a table 142 to find the fill
color for each object output from the module 130. A
compositing module 150 then operates to composite
actual pixel values from the fill values for the
various objects across the span. The pixel values for
the span are output to a frame store 160. Rendering
proceeds for each span on the scan line, before moving
to the next scan line, until the frame store is filled
with a frame of pixel data that may be output to a
display.

Fig. 2 shows a renderer 200 illustrating the
change to the arrangement of Fig. 1 to include a

process 210 according to the present disclosure, the

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 11 -

preferred embodiment of which has been referred to
herein as a "thin client imaging engine", or "TCIE".

In Fig. 2, a run culling module 210 and associated
retained run list 220 are inserted into the rendering
process between the z-level activation module 130 and
the fill generation module 140. Qualitatively, the run
culling module 210 operates in the fashion depicted in
Fig. 10, which will now be described.

Fig. 10 shows an image formed by a triangle 1000
partially overlying and obscuring a triangle 1020. The
triangle 1000 is formed by edges 1002, 1004 and 1006,
whereas the triangle 1020 is formed by edges 1022, 1024
and 1026. Shown is a scan line, termed A in a first
frame. The scan line has a span Al between the left
periphery of the image and the edge 1002, a span A2
between the edges 1002 and 1006, a span A3 between
edges 1006 and 1026, and a span A4 between the edge
1226 and the right periphery of the image. The run
length of each of the spans Al - A4 may be determined
arithmetically from the x-crossing of the respective
edge with the scan line in question.

In a second, subsequent frame, the triangle 1000
changes shape, as depicted in Fig. 10 by a new edge
1010 replacing the edge 1006. An extension 1008 of the
edge 1004 becomes visible as a consequence. The same
scan line in the second frame, can be termed B. The

scan line has a span Bl between the left periphery and

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 12 -

edge 1002, span B2 between edges 1002 and 1010, span B3
between edges 1010 and 1026 and span B4 between edge
1026 and the right periphery. The run length of each
of the spans Bl to B4 may also be determined as before.

The run culling module 210 operates, for the
first frame, to retain in the list 220, various details
of the spans Al, A2, A3 and A4. When processing the
same scan line on the next frame, the run culling
module 210 is used to determine those pixel values in
the frame store 160 for that scan line that are
required to be altered by virtue of any changes in the
spans. This is done through a comparison of the spans
Bl, B2, B3 and B4 with those stored in the run list 220.
The spans are preferably processed in raster order, as
such is the manner in which they are generated. 1In
this example, span Bl is compared with Al. Since these
are identical, the span Bl contributes no change to the
image and may be discarded from the present rendering,
whilst the span Al remains displayed by virtue of being
stored in the frame store 160 and retained in the run
list 220, for processing with the next frame. In this
description, the discarding of a span is termed
“culling” and the retention of a span is termed
“consuming”.

Span B2 is then compared with A2. These have the
same start location, whilst B2 is longer. Therefore A2

is consumed and that part of B2 that corresponds to A2

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 13 -

is culled, creating a new span B2' representing that
span between edges 1006 and 1010. B2! is then compared
with A3 and are found to be different. Therefore, B2!
is passed to the fill generation module 140 for
rendering and stored in the run list 220. Since A3 is
longer than B2!, the representation of A3 in the list
220 is shortened to A3', being that span between edges
1010 and 1026.

Span B3 is then compared with span A3!. As these
have the same end point, B3 is culled and A3l is
consumed. Span B4 is then compared with A4. Since
these are identical, B4 is culled and A4 is consumed.

The example of Fig. 10 shows that although the
object forming part of the image has changed, that
change can be interpreted by the run culling module 210
to necessitate actual rendering of only part of the
scan line in question. 1In the present case, the part
is the span between edges 1006 and 1010. Thus, for
many pixels on the scan line,bfill generation and
compositing are avoided thereby facilitating
improvements in rendering speed.

The arrangements of Figs. 1 and 2 may each be
practiced using a general-purpose computer system 300,
such as that shown in Fig. 3 wherein the processes of
Figs. 1 or 2, may be implemented as software, such as
an application program executing within the computer

system 300. 1In particular, the processing steps of Fig.

WO 03/065310 PCT/JP03/00994

10

15

20

25

14

1 or 2 are effected by instructions in the software
that are carried out by the computer. The software may
be divided into two separate parts; one part for
carrying out the rendering methods; and another part to
manage the user interface between the latter and the
user. These parts may be further divided into modules
of software code which implement the processes and
methods noted above and to be described. The software
may be stored in a computer readable medium,. including
the storage devices described below, for example. The
software is loaded into the computer from the computer
readable medium, and then executed by the computer. A
computer readable medium having such software or
computer program recorded on it is a computer program
product. The use of the computer program product in
the computer preferably effects an advantageous
apparatus for animated rendering of graphic objects.
The computer system 300 comprises a computer
module 301, input devices such as a keyboard 302 and
mouse 303, output devices including a printer 315 and a
display device 314. A Modulator-Demodulator (Modem)
transceiver device 316 is used by the computer
module 301 for communicating to and from a
communications network 320. The modem 316 may be, for
example, connectable via a telephone line 321 or other
functional medium. The modem 316 can be used to obtain

access to the Internet, and other network systems, such

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 15 -

as a Local Area Network (LAN) or a Wide Area Network
(WAN). In this example, the network 320 couples to a
cellular mobile telephone handset 350 having a pixel-
based, relatively large, display screen 352. The
computer module 301 may, in some implementations,
represent a server computer operable across the
network 320.

The computer module 301 typically includes at
least one processor unit 305, a memory unit 306, for
example formed from semiconductor random access memory
(RAM) and read only memory (ROM), input/output (I/0)
interfaces including a video interface 307, and an I/O
interface 313 for the keyboard 302 and mouse 303 and
optionally a joystick (not illustrated), and an
interface 308 for the modem 316. A storage device 309
is provided and typically includes a hard disk
drive 310 and a floppy disk drive 311. A magnetic tape
drive (not illustrated) may also be used. A CD-ROM
drive 312 is typically provided as a non-volatile
source of data. The components 305 to 313 of the
computer module 301, typically communicate via an
interconnected bus 304 and in a manner that results in
a conventional mode of operation of the computer
system 300 known to those in the relevant art.
Examples of computers on which the described

arrangements can be practised include IBM-PC’s and

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 16 -

compatibles, Sun Sparcstations or alike computer
systems evolved therefrom.

Typically, the application program is resident on
the hard disk drive 310 and read and controlled in its
execution by the processor 305. Intermediate storage
of the program and any data fetched from the
network 320 may be accomplished using the semiconductor
memory 306, possibly in concert with the hard disk
drive 310. In some instances, the application program
may be supplied to the user encoded on a CD-ROM or
floppy disk and read via the corresponding drive 312
or 311, or alternatively may be read by the user from
the network 320 via the modem device 316. The software
can also be loaded into the computer system 300 from
other computer readable media, examples of which can
include magnetic tape, a ROM or integrated circuit, a
magneto-optical disk, a radio or optical/infra-red
transmission channel between the computer module 301
and another device, a computer readable card such as a
PCMCIA card, and networks such as the Internet and
Intranets, thereby including e-mail transmissions and
information recorded on websites and the like. The
foregoing is merely exemplary of relevant computer
readable media. Other computer readable media may
alternately be used.

The arrangements of Figs. 1 and 2 may

alternatively be implemented in dedicated hardware such

WO 03/065310 PCT/JP03/00994

10

15

20

25

17

as one or more integrated circuits performing the
functions or sub-functions of object-based rendering.
Such dedicated hardware may include graphic processors,
or one or more microprocessors and associated memories.

Fig. 4 illustrates the data-flow of a rendering
system 400 including a thin client imaging engine
(TCIE) 410. The TCIE 410 has two main functional units,
a first functional unit being a display list compiler
420 and a second functional unit being a rendering
engine 430. The display list compiler 420 operates to
fetch and parse display object data stored in a memory
454 containing a plurality of instructions, a memory
456 containing a plurality of objects, and a memory 458
containing a plurality of fills. The memories 454, 456
and 458 may be implemented in the RAM 306 and the
contents thereof generated by a host processor 450
which may also provide/receive control and status
data 452 to/from the TCIE 410.

Figs. 5A to 5C shows an example of a displayed
object in Fig. 5C, and its component edges in Fig. 5A
and fill styles in Fig. 5B. Objects are two-
dimensional display primitives that are described in
memory by a plurality of edge-lists, each edge-list
being described by a plurality of coordinates. The
coordinates describe new drawing positions, and
straight lines. New drawing positions are described by

a single coordinate, and straight lines are described

WO 03/065310 PCT/JP03/00994

10

15

20

25

by a pair of coordinates. Straight lines use the two
coordinates to define start and end points of the line.
Curves are typically implemented as quadratic Bezier
curves, wherein a first coordinate defines the start of
the Bezier curve, a second coordinate defines the
control point, and a third coordinate defines the end
point of the Bezier curve. The coordinates of an edge-
list are stored as a sequence of relative steps, which
reduces memory storage requirements and also determines
the direction of edges. Edge-lists collectively
describe the outline of a shape. Objects have their
own coordinate space, and therefore have their own
origin to which edges are relatively drawn. In Fig. 5A,
point 502 represents the origin of the “house” object.
An object always contains two additional, specially
marked bounding coordinates, that unlike the other
coordinates, do not describe how part of the object is
displayed. Rather, the two bounding coordinates
indicate a bounding box within which all drawing edges
are contained. The first bounding coordinate specifies
the top left corner of the bounding box, and the second
bounding coordinate defines the bottom righf corner of
the bounding box.

A fill is a display primitive used to describe
how part of the display enclosed by a subset of an
object’s edge~-list should be colored. For example, a

basic fill describes a solid color such as red. Two

WO 03/065310 PCT/JP03/00994

10

15

20

25

19.

fills are associated with each edge-list - a first fill
to be rendered to the left of the drawing direction of
that edge-list, and a second fill to be rendered to the
right of the drawing direction of that edge-list. The
main styles of fill are a simple color, a linear blend
described by a plurality of colors, a radial blend
described by a plurality of colors, or a bitmap image.
All of these fill styles support a transparency channel.
It is noted that when an eége does not reference a fill
on either its left of right side, a value, fill = 0, 1is
used.

In Figs. 5A-5C, edge 504 is a straight edge

vector with left fill = 2 and right fill

0. Edge 506

is a straight edge vector with left fill 3 and right

fill

2. Edge 508 is a straight edge vector with left

fill

2 and right fill = 1, and edge 510 is a straight
edge vector with left fill = 0 and right fill = 1.
Returning to Fig. 4, instructions, stored in the
memory 454, describe how and when objects 462, stored
in the memory 456, are to be rendered on an output
display device 470. The display list compiler 420
processes data of objects as instructed by instructions,
and places the result of this processing, being display
list data 422, into a memory means 440 for use by a
rendering engine 430. The rendering engine 430
converts display list data 422 into pixels that are

passed to a frame store (eg. 160). The frame store 160

WO 03/065310

10

15

20

25

PCT/JP03/00994
- 20 -

is continuously refreshed onto a physical display 470

such as a CRT or LCD.

Figs.
illustration
representing

compiler 420

on the right.

memory means.

6A and 6B provide a more detailed

of the system 400, with rectangular boxes
functional modules of the display list
on the left, and the rendering engine 430
Rounded boxes are used to represent

On the left of Fig. 6A, the memory means

454, 456 and 458 for containing the plurality of
instructions 460, objects 462, and fills 464
respectively are repeated from Fig. 4.

In one embodiment, the functional modules are
implemented as pipelined hardware processes, and each
module may implement a first-in-first-out (FIFO) buffer
for receiving messages from the previous module. Those

experienced

appreciate that by pipelining hardware processes,

throughput o
processes is
the TCIE 410
general-purp
Fig. 3. In
implemented
one or more

synchronous

thread signa

in the art of hardware development will
the
f data passing serially through such
maximized. In the preferred embodiment,
is implemented as software running on a
ose processor, such as the processor 305 of
this embodiment, the functional modules are
as program functions that are executed by
threads, and messages are implemented as
function calls or as asynchronous inter-

ls with associated shared memory. The

WO 03/065310 PCT/JP03/00994

10

15

20

25

21

functional modules are now described in the order of
which display data passes through.

In Figs. 6A and 6B, an instruction execution
module 500 is responsible for fetching and parsing the
display object data. The module 500 may receive
instructions directly from the host processor 450, or
may be commanded by the host processor 450 to fetch
instructions from the memory 454. Some examples of
instructions that may be executed in a specific
embodiment of the TCIE 410 can now be described.

INST PLACE OBJECT is an instruction that commands
the TCIE 410 to render an object on an output display
device 470. The parameters of INST PLACE OBJECT
include a reference to an object to be rendered, and a
transformation matrix that specifies a desired position,
scale and orientation of that object on the display.
When the instruction execution module 500 executes an
INST PLACE OBJECT command, it sequentially reads edges
of the referenced object from the memory 456, and
passes edge data, along with references to their
associated left and right fill data, to a transform
module 502. The instruction execution module 500 also
passes a transformation matrix parameter (of the
INST_PLACE OBJECT instruction) with the object edges to
the transform module 502.

INST WRITE FILL is an instruction that commands

the instruction execution module 500 to write the fill

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 22 -

daté 464 to a given location within a memory 514
containing fill data for graphical objects. The
rendering engine 430 uses the fill data 532 when the
engine 430 generates the stream of pixels to the frame
store 160. When an INST PLACE OBJECT is executed for
placing an object on the output display device 470, any
fill data referenced by the edges of that object should
previously have been written to the memory 514 by means
of prior calls to INST WRITE FILL.

Sometimes INST PLACE OBJECT instructions may
position objects on the output display device 470 such
that they overlap. Specifically, this represents a
situation in which a subset of pixels of the output
display device 470 have an output color that is
determined by a plurality of fill data 532 in the
memory 514 containing fill data for graphical objects.
When this happens, some objects will have been expected
to appear to be in front of or behind other objects
when viewed on the output display device 470. The TCIE
410 implements a z -level table 516, 518 to facilitate
this, in which each fill datum 508 is associated with a
z-level 510 inlthe z-level table 516, 518. Each z-
level 510 is provided with a fixed and unique priority,
and the z-level table is -ordered from lowest priority
to highest. Each z-level 510 also references a fill
datum that defines the color of that z-level 510. Thus

a fill datum 508 referenced by z-levels with lower

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 23 -

positions in the table 516, 518 are to be rendered such
that they appear to be behind or underneath fill datum
508 referenced by z-levels 510 with higher positions.
The INST WRITE FILL instruction causes the instruction
execution module to associate a fill datum 508 with a
z-level 510.

INST SHOW FRAME is an instruction used to stop
the instruction execution module 500 from fetching
and/or processing further instructions until the output
display device 470 is expecting display data for a new
frame.

In the following descriptions of the TCIE
functional modules, coordinates which step from pixel-
to-pixel along a scan line of the display will be
referred to as X- coordinates, and coordinates which
step from scan line to scan line will be referred to as
Y-coordinates.

The next functional module through which data
passes is the transform module 502. The transform
module 502 applies a transformation matrix received
from the instruction execution module 500 to the
coordinates of edges also received from the instruction
execution module 500. After being processed by the
transform module 502 , the edges are described by a
start X,Y coordinate and an end X,Y coordinate in

display space, and are passed along with references to

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 24 -

their associated left and right fill datum to a filter
module 504.

The filter module 504 discards all edges passed
to it by the transform module 502 that would not affect
the display at all, either because the edges are
horizontal, or the edges have coordinates that all lie
outside the bounds of the display. Some edges may only
partially affect the display. Edges having a start
coordinate outside the bounds of the display, and an
end coordinate within the bounds of the display, will
appear to enter the display at some intermediate
coordinate (ie. where that edge intersects the bounds
of the screen). For such edges, the filter module 504
calculates a new start coordinate for the edge, equal
to the intermediate coordinate where the edge enters
the screen. The filter module 504 also appends a
vertical direction flag to the edge, and if necessary,
swaps the start and end coordinates of edges to ensure
the start coordinate of the edge has a lower Y
coordinate than the end coordinate of the edge. For
example, an edge entering the filter module with a
start coordinate of (5, 22) and an end coordinate of (8,
4) would have the start and end coordinates swapped by
the filter module, since 4 is less than 22. A vertical
direction flag is set for edges that have their
coordinates swapped, to indicate that those edges are

upwards-going edges. This step is necessary as the

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 25 -

rendering engine 430 relies on edges being presented in
this manner. The vertical direction flag is also
important so that fill data referenced by the edge
remains associated with the correct (left and right)
side of that edge.

The next module of the display list compiler 420
is a sort module 506, which receives edges from the
filter module 504. The received edges are to be sorted
first by their start Y display position, and then by
their start X display position. The sorted edges 512
are placed in the internal memory means 440 from where
they can be read and processed by the rendering engine
430. Edges are written to a part of the internal
memory means 440, labelled the frame edge buffer 524,
526. All edges that are used to describe the current
frame of output data must be present in the frame edge
buffer 524, 526 before the rendering engine 430 needs
them. The frame edge buffer 524, 526 is preferably
implemented as a double buffer. While the display list
compiler 402 processes and sorts edges into a first
frame edge buffer 524, the rendering engine 430 may
thus generate display output from a second frame edge
buffer 526 that was prepared by the display list
compiler 420 previously. The frame edge buffers 524,
526 are then swapped once the rendering engine 430 has
finished outputting display data for the current frame,

so that the rendering engine 430 can begin to process

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 26 -

the edges provided by the display list compiler 420 for
the next frame.

The rendering engine 430 requires that edges for
a frame to have been written to the frame edge buffer
524, 526 in “scan order”. “Scan order” is the order in
which the display device receives and refreshes its
display data. For the purpose of this description,
scan order is assumed to begin with the top-left-most
position, or pixel, of the display. Scan order then
follows the top-most row of pixels of the display,
increasing from left to right, until the top-right-most
pixel of the display is reached. Scan order then
continues from the left-most pixel of the next top-most
row, again increasing from left to right. Scan order
then continues in this manner until the last display
pixel is reached, the last pixel being that of the
bottom-right-most position of the display. This scan
order is often termed “raster scan order”.

The sort module 506 preferably uses a bucket
radix-sorting algorithm to sort all edges for a frame
into the internal memory means 440 such that their
start coordinates are in scan order. Those experienced
in the art of software or hardware development will be
aware that the radix-sorting algorithm can sort
elements in order N time (where N is the number of
elements to be sorted). The radix-sorting algorithm

requires one or more iterations through all the

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 27 -

elements, depending on the available memory means. The
first iteration of the sort can be performed while the
sort module is still receiving the edges for a frame.
In one embodiment, the edges are sorted into an
internal memory means 440 that is implemented using
DRAM.

The flow of display data through the rendering
engine 430 begins with an edge-processing module 548.
The primary sources of edges 540 that collectively
describe the required display output for a particular
frame is a list of sorted edges prepared in the frame
edge buffer memory 524, 526 by the display list
compiler 420.

Each edge 540 in these lists contain the

following fields of data:

. a start X coordinate;

. a start Y coordinate;

L an end Y coordinate;

. one or more parameters used to determine a new X

coordinate of an edge corresponding to a new Y
coordinate (or scan line), from a previous X and Y
coordinate (or scan line). For example, this could be
a delta-X value that, when added to the X coordinate of
a straight edge intersecting one scan line, produces
the X coordinate of that edge for the following scan
line (below). Curved edges use a plurality of such

parameters;

WO 03/065310 PCT/JP03/00994

10

15

20

25

28
] a vertical direction flag, as prepared by the
filter module 504;
U an address of the next edge in the list;
o a reference to a left and right fill z-level.

The edge-processing module 548 has two sources of
edges, the first being the memory 524, 526, as
described above. The second source of edges is a
memory 522, 523 containing active edge buffer (1 of 2),
maintained by the edge-processing module 548. The use
of this and the overall operation of the edge
processing module 548 will now be described with the
aid of the flowcharts of Figs. 7A and 7B which depicts
method steps that may be performed by a software
implementation of the edge processing module 548.

For each frame to be rendered, the edge
processing module 548 operates by iterating from scan
line to scan line (row to row) down the display 470.
The module 548 calculates the position at which any
edge in the frame edge buffer 524, 526 or a static edge
buffer 528, 530 intersects the current scan line. The
X position of each intersection, along with the left
and right fill references of the intersecting edge, is
passed to the z-level activation module 550.

Figs. 7A and 7B show the operation of the edge
processing module 548 for a single scan line. The
method starts at an entry point 700. Step 702 tests if

the static edge buffer 528, 530 is empty. If so, step

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 29 -

704 tests if the frame edge buffer 524, 526 is empty.
If so, step 716 tests if the active edge buffer 522,
523 is empty. If there are no edges in any of those
sources, then clearly there can be no edge
intersections with the current scan line and therefore
the edge processing for that scan line is complete and
the method finishes at step 724. Because the frame
edge buffer 524, 526 contains edges such that they are
listed in scan order, then if any edges therein
intersect the current scan line, they will be the next
available edges of these lists. If there are edges in
the static buffer 528, 530, step 706 tests the frame
edge buffer 524, 526 for the presence of edges. If
none, step 712 sets the next edge to be the next edge
in the static edge buffer 528, 530. If edges exist in
the frame edge buffer 524, 526, step 708 compares the
start coordinate of next edge in the frame edge buffer
524, 526 with the next edge in the static edge buffer
528, 530. 1If the coordinate is greater, step 708 is
followed by step 712 described above, otherwise the
next edge is set instep 710 to be that from the frame
edge buffer 524, 526. Step 714 follows each of steps
710 and 712 and determines if the START Y coordinate is
greater than the Y coordinate corresponding to the
current scan line. If so, then that edge does not
intersect the current scan line and is left in the

buffer for processing on a later (or lower) scan line,

WO 03/065310 PCT/JP03/00994

10

15

20

25

30

and control passes to step 716. Otherwise, the edge
does intersect the current scan line and control passes
to step 718. Unless the edge is nearly horizontal, the
edge will also intersect subsequent (lower) scan lines,
up to that first scan line corresponding to a Y
coordinate greater than the END Y coordinate of the
edge. To facilitate the process of determining
intersections of that edge with the subsequent scan
lines, the edge-processing module 548 converts the
format of the edge such that the edge becomes what is
hereafter described as an “active” edge. Rather than
having data representing a START X, Y coordinate and an
END Y coordinate, active edges have data representing,
at least, a CURRENT X coordinate and an END Y
coordinate. The current Y coordinate of the active
edge is implicitly the Y coordinate of the current scan
line. Active edges may also contain data (for example,
a DELTA X) which enable the edge processing module 548
to calculate the X coordinate of that edge for the next
scan line from the CURRENT X coordinate on the current
scan line.

When the edge-processing module 548 generates an
active edge from an edge that continues downwards to
subsequent scan lines, this active edge will be added
to é list of active edges where it will be available
for processing on the next scan line. The active edge

buffer 522, 523 is used to store this list. The active

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 31 -

edge buffer is a double buffer, comprising a first
buffer 522 containing the list of active edges
generated for the following scan line, and a second
buffer 523 containing the list of active edges already
generated for the current scan line during processing
of the previous scan line. Like the edges in the frame
edge buffer 524, 526, the lists of active edges are in
scan-order.

It is important that the edge processing module
548 process intersections in scan order, regardless of
the source of the edge. For this reason, an edge from
the frame edge buffer 524, 526 which intersects the
current scan line, will not be processed until there
are no active edges in the active edge buffer 522, 523
that intersect at a lower X coordinate. Steps 718 and
720 perform this test. Only then will the edge from
the frame edge buffer 524, 526 be converted into a new
active edge in step 728. The next active edge may also
be derived directly from the buffer 522, 523 as
determined from steps 716 and 722 in the event that the
static edge buffer 528, 530 and the frame edge buffer
524, 526 are each empty.

For most scan lines, the only edges to intersect
that scan line will be edges that have continued down
the screen from previous scan lines. 1In this sense,
all intersecting edges will originate in the active

edge buffer 522, 523 generated by the previous scan

WO 03/065310 PCT/JP03/00994

10

15

20

25

.32

line. In this situation, either the result of step 714
is no, or the results of 702 and 704 are both yes.

Once the source of the next intersection has been
determined from step 722 or 728, a subset of data from
the corresponding active edge is passed to the next
module of the rendering engine 430 in step 730. That
active edge is then tested to see if it continues onto
a following scan line, by checking the END Y coordinate
in step 732. If the active edge does continue, the
CURRENT X coordinate of the active edge is recalculated
for the following scan line in step 734, and the active
edge is placed in the active edge buffer for the next
scan line. The edge processing method returns from
each of steps 732 and 734 to the start at step 700 for
the next scan line.

This process of tracking the X-coordinate of an
edge from scan line to scan line is often referred to
as “edge tracking”. In the preferred implementation,
edges are described as straight lines. For tracking
edges that are straight lines, a simple per-edge delta-
x adjustment is applied on each scan line.

Although active edges are processed in scan-order,
the result of calculating the new CURRENT X during step
734 may cause this active edge to have a lower scan
position than an active edge already processed on this
scan line. An example of this situation is given in

Fig. 8. As seen in Fig. 8, two dashed horizontal lines

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 33 -

represent scan lines of the output display, and the
upper dashed line represents the scan line currently
being processed by the edge processing module 548, and
the lower dashed line represents the next scan line to
be processed. The diagram shows three active edges
namely, Active Edge A, Active Edge B and Active Edge C
that intersect the current scan line at Intersect A,
Intersect B and Intersect C, respectively. The CURRENT
X field of the active edges indicate the position of
the intersection. Because all the sources of edges are
in scan-order, the edge-processing module will also
generate output to the z-level activation module 550 in
scan-order, which is what is desired. However, when
the edge processing module 548 calculates new CURRENT X
values for the active edges, corresponding to the
intersections on the next scan line (Intersect A’,
Intersect B’, Intersect C’), the scan-order of these
edges is lost because Active Edge C has crossed Active
Edge A and Active Edge B. The modified active edges
therefore require resorting before they are placed in
the active edge buffer for the next scan line. In the
example of Fig. 8, the desired order of active edges in
the active edge buffer 522, 523 for the next scan line
is first Active Edge C, then Active Edge A, then
finally Active Edge B. To overcome this, the edge
processing module 548 inserts modified active edges

into a sort buffer (not illustrated, but implemented in

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 34 -

a manner corresponding to the buffers 522 -530) such
that they are in scan-order. The list of active edges
in the sort buffer is then transferred to the active
edge buffer 522, 523 for the next scan line. The
subset of active edge data forming a message that is
passed onto the z-level activation module 550 by the
edge-processing module 548 in step 730 includes:

. the X coordinate of the active edge (where it
crosses the current scan line);

° the reference to the fill z-levels that are
associated with the active edge; and

. the vertical direction indicator of the active
edge.

The z-level activation module 550 uses the edge
intersection data passed to it from the edge processing
module 548 to maintain a z-level activation table 560
that determines what fill data 532 in the fill buffer
514 contributes to the color of output display pixels.
A stream of output display pixels is to be generated by
the rendering engine 430 in scan order. Each
intersection of an edge with a scan line represents a
display coordinate for which the required output color
may change when produced in scan-order. In the
following descriptions, a “region” corresponds to a
span of coordinates of a scan line between one
intersection and a successive intersection. The pixel

data of any region is determined by one or more fill

WO 03/065310 PCT/JP03/00994

10

15

20

25

35

data (fill styles) 532 that are referenced by z-levels
in the z-level activation table 560. The data of each
z-level in the z-level activation table 560 contain a
count field, and a reference to the corresponding fill
data 532. The count field is signed. The use of the
count field is now described with reference to Figs. 9A
and 9B.

Whenever the z-level activation module 550
receives a message at step 900 from the edge-processing
module 548, the count field of the z-level referenced
by the message is incremented or decremented, depending
on the verticél direction indicator of the message as
seen in step 902. The TCIE 410 uses the “(non-zero)
winding counting fill rule” to determine which z-levels
of fill data contribute to output pixels. Other fill
rules such as "odd/even" or "negative" may
alternatively be used. A z-level is described herein
as being “active” when the fill data of that z-level is
required to contribute to the output pixels currently
being generated by the rendering engine 430. At the
beginning of processing for each scan line, the count
field for all z-levels is set to 0. A z-level becomes
active when the corresponding count in the z-level
activation table 560 is incremented or decremented to a
positive or negative value, and remains active until it
returns to zero. Only those display coordinates for

which z-levels become active/inactive that are critical

WO 03/065310 PCT/JP03/00994

10

15

20

25

36

to determining which fill z-levels contribute to a
region of subsequent pixels. As such, it is only when
the count field of a z-level changes zero and non-zero
that a message need be passed to the following module
(ie. the run culling module 552) of the rendering
engine 530.

If the vertical direction indicator of a received
message i1s “downwards” as determined at step 902, then
the count field of the z-level referenced by the datum
of the message is incremented in.step 904. TIf the
message is determined to be ‘upwards’ at step 902, the
z-level referenced by the datum of the message is
decremented in step 906. As seen from Figs. 9A and 9B,
the flowchart thereafter divides into two essentially
mirror-image paths that merge at step 928.

Specifically, step 904 is followed by step 908
that tests a left z-level change from 0 to 1. If so,
step 910 adds an ON message for that z-level as part of
the message to the output. If not, and after step 910,
step 916 decrements the COUNT field in the table for
the right z-level message. Step 920 then tests the
right z-level for a change from 1 to 0. If true, step
924 adds an OFF message for that z-level to the output.
If not, and after step 924, step 928 outputs z-level
ON/OFF messages, along with the display coordinates of
the input message, to the run culling module 552. This

data described the pixels runs intended for display.

WO 03/065310 PCT/JP03/00994

10

15

20

25

37

In a complementary manner, step 906 1s followed
by step 912 that tests a left z-level change from non-
zero (eg. 1) to zero. If so, step 914 adds an OFF
message for that z-level as part of the message to the
output. If not, and after step 914, step 918
increments the COUNT field in the table for the right
z-level message. Step 922 then tests the right z-level
for a change from 0 to 1. If true, step 926 adds an ON
message for that z-level to the output. If not, and
after step 926, step 928 outputs z-level ON/OFF
messages along with the display coordinates of the
input message.

The z-level activation concludes at step 930.

Steps 910 and 914 produce part of a message to
the run culling module 552 indicating when a fill z-
level has been turned on (activated) or off
(deactivated) .

Entries with a lower index in the z-level
activation table 560 reference fill data that are to
appear to be rendered ‘below’ entries with a higher
index. For example, if a z-level with an index 1 (z-
level 1) references a ‘solid red’ color, and a z-level
with an index 2 (z-level 2) references a ‘solid green’
color, and these are the only two active z-levels for a
region of pixels, then z-level 1 is completely obscured
by z-level 2 and so that region will be rendered ‘solid

green’. If, in this example, z-level 2 referenced a

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 38 -

fill with a partially transparent color, then the
region would be rendered such that the ‘solid red’ of
z-level 1 would appear to partially show through the
fill of z-level 2. The z-level activation table 560
may contain an additional field per entry indicating
whether or not the corresponding z-level completely
obscures those z-levels with lower index (ie. the
corresponding z-level has a completely opaque style of
fill).

In one implementation, the z-level activation
module 550 performs additional functionality to reduce
the time required to generate output data. Instead of
outputting messages that may be used by the fill
generation module 554 that indicate when any z-level
has become active/inactive, the z-level activation
module 550 outputs messages so that the fill generation
module 554 is only informed when a subset of z-levels
become active/inactive. This subset corresponds to
those z-levels currently active with the highest (top-
most) index. 1In a specific implementation, the
rendering engine 430 may be configured to only allow a
maximum of, say, four z-levels to contribute to the
color of a region of pixels at any time. Although this
compromise can introduce errors to the output, all
(four) top-most active z-levels that are used to
generate the fill color have to have significant

transparency before this error occurs or is visible.

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 39 -

The benefit of this restriction is that generation of
fill color is guaranteed to require a maximum
composition of four z-levels of fill data, rather than
the composition of fill data from potentially all z-
levels in the z-level activation table 560, the latter
involving significantly more processing. Although this
description relates to an implementation where the
maximum number of z-levels for composition of the
output color is four, it should be noted that such may
be implemented for an arbitrary number of maximum z-
levels.

The operation of the run-culling module 552 can
now be described with reference to the flowchart of Fig.
11 which is representative of a software implementation
thereof. 1In this description a "run" refers a span of
coordinates of a scan line that have a similar fill. A
"fill" may be defined as a solid color such as '"green",
a more complex color function such as a color ramp or
radial blend, a bitmap (possibly re-sampled), or any
like set of data that determines the color of each
pixel in the span. The run-culling module 552 retains
from the previously rendered frame a linked list of a
sub-set of those runs that were used to generate that
frame. For the purpose of this description, it is
convenient to consider a case where that list is non-
empty, where some entries have been generated from a

previous frame. In the process of describing this, it

WO 03/065310 PCT/JP03/00994

10

15

20

25

40

will be possible to also see how runs for the current
frame are retained for use in the subsequent frame.

The run culling module 552 uses a pool of run
records 520 retained within the internal memory means
440 of Fig. 6B. This pool 520 is typically a fixed
size chosen such that the total memory size is a
fraction of the total memory size of the frame-store.
For example, one quarter or one eighth of the frame-
store size may be conveniently used. The run culling
module 552 is deliberately throttled to record an
amount that will fit in this pool 520 on the basis that
storing amounts of data comparable with the size of the
frame-store would take amounts of computation
comparable to the direct generation of the pixels. As
the whole aim of the run culling module 552 is to save
time by avoiding work, any attempt to use a larger
amount of memory would indicate that for the particular
data concerned, the technique was not proving effective

and should be avoided. Each run record in the pool 520

retains:

o a link to a next run record,
. a start y coordinate,

° a start x coordinate,

. a length, and

° a fill-table index.

Run records that are not part of the current

retained state are linked onto a free-list. As a frame

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 41 -

is being rendered, run records that record the state of
the frame being generated are stored on a “new retained
run list”. This list becomes the “old retained run
list” upon progression to the rendering of the next
frame. Each list is recorded with a single list head
pointer. This is established within an initialisation
step 1100 as seen in Fig. 11.

When a run is received from the z-level
activation module 550 in step 1102, a decision is made
as to whether to record this run in the retained run
pool 520. This initially involves step 1104
determining if there are any further runs. If none,
step 1128 dumps the old list to a free list and step
1130 assigns the old list to be a new list. Step 1132
then awaits commencement of a new frame whereupon
control returns to step 1102.

Where runs exist, step 1106 then decides whether
to retain the run. This decision is based upon memory
cépacity as follows. The number of free run records
divided by the number of remaining scan lines to be
rendered is determined. This is the average number of
run records (determined as a feature of design) that is
desired to be handled for each remaining scan line.
This is compared to the number of runs that have been
recorded so far for the current scan line. If the
limit has not yet been reached, a free run record from

the free-list can be obtained, corresbonding run

WO 03/065310 PCT/JP03/00994

10

15

20

25

42

details set, and the record may then be pushed onto the
front of the new retained run list. This corresponds
to step 1108. By this process, runs are records that
contribute to the current frame for use during the
generation of the next frame.

In any event (whether the present run was
recorded or not) the received run is compared to the
run at the head of the old retained run list in step
1110. Any leading part (or all) of this run that
occurs before the start of the old retained run is
forwarded to the fill generation module 554 in step
1112. Any remaining part is compared to any leading
overlap between the remainder, and old retained run in
step 1114. If the fill index is different, the leading
part of the remainder is forwarded to the fill
generation module 554 in step 1116. 1In any event, the
old retained run is shortened at step 1118 by the
leading overlap, and if that reduces its length to zero,
as tested in step 1120, the whole record is transferred
to the free list at step 1122. The remainder is also
shortened in the same manner in step 1124. If there is
still any remainder, control returns to step 1110 with
the remaining part treated as if it were a received run.
If not, control returns to step 1102 to handle the next
received run.

Note that for portions of received runs for which

~a retained record was available, and the fill index is

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 43 -

the same as it was last frame, no fill request is
forwarded to the fill generation module 554, thus
avoiding the considerable work associated with pixel
generation. Also note that because this stage of the
processing pipeline is referring to fill indices,
rather than particular colors, this approach avoids
passing on fill requests for all types of fills,
including not just solid colors, but also color ramps
and bitmaps.

When multiple overlayed transparent (or otherwise
combined) objects are supported, the fill index in the
above description is replace by a short array of fill
indexes, up to the maximum number of simultaneous
overlays supported, 4 in the described embodiment.

The operation of the fill generation module 554
of the TCIE 410 may now be described with reference to
Fig. 12. The description that follows is for an
implementation that limits the number of z-levels used
to contribute to the color of a region of pixels at any
time to a maximum of four. In such an implementation,
the fill generation module 554 of the TCIE 410 has four
means 1210 (1210A - 1210D) of fill generation that can
generate data. These fill genefation means 1210 are
controlled by messages from the run-culling module 552
described above. The output of a fill generation means
1210 is a datum describing the pixel color required for

the associated z-level for the current display

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 44 -

coordinate being rendered. The pixel color data of
each fill generation means 1210 are passed to the
region compositing module 556, which blends the colors
generated for each active z-level to produce the
required output pixel data for display.

The messages from the run-culling module 552
include the following data:

. an X display coordinate; and
U] the indices of the z-levels that become active at
that coordinate.

As seen in Fig. 12, the fill generation module
554 includes a fill lookup and control module 1204 that
couples to the fill data table 514 and the z-level
table 516, 518. The module 554 receives the above
noted messages at an input 1202 from the run culling
module 552, the values for which are retained in the
module 1204.

The fill generation module 554 ﬁaintains a memory
means 1208, such as a hardware register or software
variable, that indexes each of the four fill generation
means 1210 to a z-level in the z-level activation tablé
560. When a message is received that deactivates a z-
level, then the fill generation means 1210 associated
with that z-level, by means of the corresponding index
is disassociated with that z-level. A fill generation
means 1210 not associafed with a z-level does not

produce pixel data. When a message is received

WO 03/065310 PCT/JP03/00994

10

15

20

25

45

indicating a z-level has become active, then one of the
fill generation means 1210 that is not already
associated with a z-level becomes associated with that
z-level that has become active.

There are two sources of fill data used by each
fill generation means 1210, a first source being the z-
level table 516, 518, and a second source being the
fill data memory 514. The z-level table 516, 518 is
double buffered, and the buffers 516, 518 are swapped
when the rendering engine has finished rendering a
frame. While a first buffer 516 containing a first
fill table is being prepared by the display list
compiler, a second buffer 518 that was prepared by the
display list compiler during rendering of the previous
frame is read from by each fill generation means 1210.
The z-level table 516, 518 provides indirection between
an index to a z-level and the corresponding data
(stored in the fill table) that is required to produce
pixel data for that z-level. The z-level table
contains one entry per z-level, and an entry in the z-
level table has a corresponding entry in the z-level
activation table 560 with the same index. Each z-level
table entry includes a reference to fill data 532 in
the fill data memory 514. Each z-level table entry may
additionally contain:
] A flag (NEED BELOW) indicating whether or not the

fill data for that z-level is opaque; and

WO 03/065310 PCT/JP03/00994

10

15

20

25

46

. A flag (X _INDEPENDENT) indicating whether the
fill data is dependent upon variation in the X position
(eg. a bitmap or a blend), or the fill data remains
constant (eg. a single-color fill).

The above additional flags enable the fill
generation module 554 to minimize the requifed
processing of fill data.

For a z-level that references a simple single-
color fill, the fill data 532 in the fill table 514
will simply be a color description, for example,
comprising a red, a green, a blue and an alpha
(transparency) component. Fill data for a gradient
fill may be implemented as a table of colors, and
additional parameters that are used to produce an index
into this table from the current output display
coordinate.

The data stored for a gradient fill in the TCIE
410, and how a fill generation means 1210 of the fill
generation module 554 operates to produce output data,
can now be described. The fill data for a gradient is
implemented as a table of 17 colors. A value between 0
and 255 is used to index this table of 17 colors, such
that each successive color entry in the table is
associated with an index value 16 greater than the
previous. As such, the first entry has an index of 0,
the second entry has an index of 16, etc., up to the

last entry having an index of 256. A color

WO 03/065310 PCT/JP03/00994

10

15

20

25

47

corresponding to an index that is not a multiple of
sixteen can be linearly interpolated from two adjacent
colors in the table with indices closest to that
required. Fill data for a gradient also requires
parameters that indicate how an index to the color
table can be obtained for a particular display
coordinate.

When an object is placed on the target display
470 by the TCIE 410, the object edge data will be
transformed such that the edges correspond to display
coordinates. It is therefore necessary that any
gradient fill contained by edges of the object be also
transformed, so that the appearance of the gradient (eq.
position and orientation) is consistent relative to the
object.

To minimize the required calculations for
determining a color table index for each display
coordinate, the TCIE 410 implements the concept of a
bounding box, in display coordinates, for fill data 532.
The bounding box describes a rectangular region of the
display, with two edges parallel to the display
coordinate X-axis, and two edges parallel to the
display coordinate Y—-axis. In one implementation of
the TCIE 410, a bounding box forms part of the fill
data 532 in the fill table 514 for a gradient fill.

For a linear gradient fill, a data in the fill

table 514 additionally contains a start index into a

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 48 -

color table. The start index represents the output
color of a fill for the display pixel nearest the top-
left hand corner of the bounding box. The fill data
532 also contains a delta-X value and a delta-Y value.
The delta-X value is used to increment the start index
to obtain a new index into the color table for the next
pixel (or X-coordinate of iteration) to the right.

This forward-incrementing of the index continues as
display pixel datum are generated from left to right
along a scan line, thus producing a linear gradient of
fill color from the fill table up to the right-hand
side of the bounding box. The delta-Y value is used to
increment the start index into the color table to
obtain a start index for the left-hand side of the
bounding box on the following scan line. Together, the
start index, delta-X, delta-Y and the bounding box
provide the means for producing a variety of linear
gradient fills from a color table. The values start
index, delta-X and delta-Y will normally be implemented
as an integer and fractional parts (eg. fixed-point
values). Fill data 532 in the fill table 514 can be
modified by an instruction (eg. INST WRITE FILL
described above). This enables the parameters of a
gradient fill to be modified whenever necessary such
that the orientation, position and scale of the
gradient fill remains consistent with the orientation,

position and scale of a containing object.

WO 03/065310 PCT/JP03/00994

10

15

20

25

-~ 49 -

In one implementation, data for a gradient fill
does not include a bounding box. Instead, the bounding
box of an object containing that gradient fill is
calculated dynamically by recording the minimum and
maximum values of X and Y for each edge as it is placed.
The start index, delta-X and delta-Y values are
provided with respect to this bounding box. These
maximum / minimum recordings ensure that the TCIE 410
can maintain a bounding box describing a rectangular
region of the display with two edges parallel to the X-
axis of display coordinates, and two edges parallel to
the Y-axis of display coordinates, collectively
containing all edges of an object. An advantage of
this implementation is that bounding box data does not
consume the fill data table 514, and the bounding box
is recalculated by the TCIE 410 with little additional
processing, rather than requiring instructions (also
consuming memory means or host processor effort) to
update the bounding box in the fill table 514.

The fill generation module 554 may also implement
a fill based on a bitmap image. A similar technique to
that described for gradient fills is used. Again, the
bitmap fill relies on a bounding box being defined,
either as part of the object containing the fill, or as
part of the data describing the fill in the fill table.
Values for pixels within the bounding box are

determined from values for pixels defined in a bitmap

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 50 -

image. This bitmap image is referenced by the fill
data 532 for the bitmap fill. As for gradient fills,
the bitmap £ill must be drawn with an orientation,
position and scaling that is consistent with the
orientation, position and scaling of a containing
object. To permit this, bitmap fill data in the fill
table may be overwritten (via instructions fetched from
a memory means 306, 309 or the host processor 450) to
control how display data is retrieved from the source
bitmap of the bitmap fill. The operation of a fill
generation means 1210 for generating a bitmap fill is
similar to the operation for generating a gradient fill
in that data is calculated incrementally for pixels
within a bounding box. Whereas gradient fills
incrementally calculate a color table index, the bitmap
fill incrementally calculates the memory address of a
pixel in a source bitﬁap. The parameters for a bitmap

fill in the fill table 514 include:

U bitmap Start X and Bitmap Start Y coordinates;
. Delta X and Delta Y;

. Delta Scan Line X and Delta Scan Line Y; and
] Max X and Max Y.

The parameters may also include:
. Bitmap Base Address; and
* an indication of number of bytes per pixel used

in the source bitmap.

WO 03/065310 PCT/JP03/00994

10

15

20

25

The Bitmap Start X and Y coordinates correspond
to a position within the source bitmap. The
coordinates have sub-pixel accuracy, that is to say
they have an integer part that references a pixel
within the source bitmap, and a fractional part that
relates to a position within that pixel. The fill
generation means 1210 producing a bitmap fill stores
Start X and Start Y into a local memory means before
the rendering engine 430 has to produce data for the
pixel closest to the top-left of the bounding box.
Start X is stored in two local memory means (eg.
registers), referred to hereafter as Current X and Line
Start X. Start Y is stored in two local memory means
refefred to hereafter as Current Y and Line Start Y.
Current X and Current Y are signed and have an integer
and a fractional part. Current X and Current Y
reference a current position within the source bitmap,
and therefore a corresponding pixel color. A fill
generation means 1210 generating a bitmap fill will use
this pixel color as the current display output color.
As the rendering engine 430 iterates to the next pixel
to the right along a scan line, the fill generation
means 1210 increments Current X by the value Delta X of
the bitmap fill data, and increments Current Y by the
value Delta Y of the bitmap fill data. By this means,

the coordinates of pixels in the source bitmap can be

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 52 -

traced at the required rate and in the required order
for rendering the output..

After the rendering engine finishes outputting
data for a scan line, new values of Line Start X and
Line Start Y are calculated, so that they represent a
position in the source bitmap corresponding to where
the left-hand side of the bounding box meets the next
scan line on the output display. The fill generation

means 1210 does this by incrementing Line Start X by

- Delta Line Start X, and incrementing Line Start Y by

Delta Line Start Y. These new values for Line Start X
and Line Start Y are also loaded into Current X and
Current Y, which again track positions in the bitmap
for the new scan line.

The parameters of the bitmap fill data, Max X and
Max Y, are integer values indicating the dimensions of
the source bitmap. When the fill generation means 1210
detects that the locally stored Current X and Current Y
values exceed Max X and Max Y, then a new Current X and
Current Y is calculated by subtracting Max X and Max Y
from them respectively. Similarly, if Current X and
Current Y become less than zero, a new Current X and
Current Y is calculated by adding Max X and Max Y to
them respectively.

The address of a source pixel can be determined

from Current X and Current Y using the Bitmap Base

WO 03/065310

10

15

20

25

PCT/JP03/00994

Address and number of bytes per pixel from the bitmap

fill data using the formula:

Pixel address = Bitmap Base Address + (floor (Current
Y) X Max X + floor(Current X)) X num. Bytes per

pixel;

where floor (Current X) and floor(Current Y) are the
integer parts of Current X and Current Y respectively.

This calculation involves the undesirable
requirement of performing two multiplications per
output pixel of fill data. This is overcome in the
preferred implementation as follows.

The fill generation means 1210 stores a ‘Current
Address’ value in a local memory means, corresponding
to the address of a pixel in the source bitmap that is
referenced by the coordinates maintained in Current X
and Current Y. This is initially loaded with a ‘Start
Read Address’ value, provided as an additional
parameter of the bitmap fill data in the fill table.
Each time Current X and Current Y are incremented as
the rendering engine iterates along a scan line,
Current Address can also by incremented to determine
the address of the next required pixel in the source
bitmap. The amount by which Current Address needs to
be incremented, however, depends on whether or not the

fractional parts of Current X and Current Y produced a

WO 03/065310 PCT/JP03/00994

10

15

20

25

‘carry’ into their respective integer parts when they
were incremented. The required increment of Current
Address will be one of the following four values shown
below:

. If fractional Current X did not carry and
fractional Current Y did not carry, increment = bytes
per pixel in bitmap X (integer part of Delta X +
(integer part of Delta Y X Max X));

. If fractional Current X did carry and fractional
Current Y did not carry, increment = bytes per pixel in
bitmap X (integer part of Delta X + 1 + (integer part
of Delta Y X Max X))

. If fractional Current X did not carry and
fractional Current Y did carry, increment = bytesnper
pixel in bitmap X (integer part of Delta X + ((integer
part of Delta Y + 1) X Max X)); or

. If fractional Current X did carry and fractional
Current Y did carry, increment = bytes per pixel in
bitmap X (integer part of Delta X + 1 + (integer part
of Delta Y + 1 X Max X)).

The fill generation module 554 may require these
four possible increment values to be provided as pre-
calculated data in the bitmap fill data. The fill
generation means 1210 determines which increment to use
depending on the result of incrementing Current X and

Current Y.

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 55 -

The same technique described above is used when
tracking the Current Address between the end of one
display scan line and the next. When the fill
generation means 1210 initially stores the ‘Start Read
Address’ value into the Current Address memory means,
it also stores ‘Start Read Address’ into a further
memory means hereafter referred to as ‘Line Start
Address’. This address is the address of a pixel in
the source bitmap referenced by Line Start X and Line
Start Y. As Line Start X and Line Start Y are
incremented when the rendering engine iterates to a new
scan line, so also Line Start Address is incremented,
and the resulting value written to Current Address.
Again, the required increment will be one of four
values depending on whether or not a ‘carry’ occurs
during the incrementing of either of Line Start X and
Line Start Y. The TCIE 410 may require these four
possible increment values to be provided as pre-
calculated data in the bitmap fill data.

The TCIE 410 allows source bitmaps to be provided
in memory as either a single bitmap or as a plurality
of smaller “tile” bitmaps that are referenced by a list
or array. In the latter representation, the “tile”
bitmaps occupy arbitrary locations in memory, and a
list or array is used to reference these in scan order,
so that a tile corresponding to the top-left of the

whole bitmap image is referenced first. 1In one

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 56 -

embodiment the tile dimensions can either be 16 pixels
by 16 pixels or 32 pixels by 32 pixels. The advantage
gained by storage tiling becomes evident when the TCIE
410 requires a limited region of a large source bitmap
when rendering. Only the tiles required for that
region need to be available in local memory.
Furthermore, since tiles represent localised regions of
the image, and since tiling ensures the data for these
regions are stored in adjacent memory, iterative pixel
operations such as rotation can be performed without
frequent random-sized jumps in memory. This is
particularly desirable if the memory means for a bitmap
is DRAM, in which memory-page changes incur significant
latency. The use of tiles for representing a bitmap is
particularly useful if it cannot be guaranteed that all
tiles for an image are available when required, since
the array or list of references to the tiles can
indicate absence, and action can be taken to minimize
this contingency.

Each fill generation means 1210 of the fill
generation module 554 produces output pixel data
corresponding to a z-level (of the z-level table) that
was determined to be active by the z-level activation
module (possibly filtered by the run-culling module).

A plurality of output pixel data is passed to the
region compositing module 556 by means of a message.

The fill generation module 554 will produce a message

WO 03/065310 PCT/JP03/00994

10

15

20

25

57

when the output data of any of the fill generation
means 1210 changes. For example, if the z-level
activation module 550 passes a message to the fill
generation module 554 indicating a z-level has been
deactivated, the fill generation moduie 554 responds by
deactivating the fill generation means 1210 associated
with that z-level, and passing a message to the region
compositing module indicating this has occurred.

Messages passed to the region compositing module
556 include an X display coordinate and a plurality of
pixel data corresponding to the current topmost active
z—-levels being rendered. It has already been noted
that the fill table 514 may contain a flag ‘NEED BELOW’,
indicating whether or not the fill data 532 of the
associated z-level has at least some transparency. If
one of the fill generation means 1210 produces data for
a z-level in the table with a NEED BELOW flag set to
false (ie. cleared), then the fill generation module
554 need not pass pixel data to the region compositing
module 556 fdr any z-levels with a lower index.

The purpose of the region compositing module 556
is to combine the pixel data of received messages into
a single color value that will be passed to the frame
store 160 or display 470. The region compositing
module 556 reads the pixel data such that the pixel
datum associated with the lowest z-level is read first.

The next highest z-level is then read, and the

WO 03/065310 PCT/JP03/00994

10

15

20

25

58

transparency component of this is used as a weighting
factor to blend this higher z-level color with the
previously read lower z-level color. For example, if
the pixel datum for z-levels comprise of three (red,
green and blue) color components and a fourth
transparency component with a value in the range 0 to
255, then each color component from the two z-levels is

blended using the formula:

C = ((Chigner X @) + (Ciower X (255 - a))) / 255
where a is the transparency component, and where a =
255 describes completely opaque pixel data, a = 0
describes completely transparent pixel data.

The new pixel data obtained by the result of this
blend is then combined with the data of the next
highest z-level of the message using the same means.
This continues until all z-levels of the message have
been combined.

The results of these operations collectively
describe the display update for a frame as a series of
runs, where each run is specified by a START X, Y
coordinate, a length, and pixel color values. Where
the run-culling module 210, 552 is omitted, runs that
cover every pixel of the frame-buffer will be produced.
However, with the inclusion of the run-culling module

210, 552, far fewer such runs are produced, thus saving

WO 03/065310 PCT/JP03/00994

10

15

20

25

59

considerable computation time both in terms of run
generation and the painting of runs into the frame-
buffer 160 or display 470.

As indicated above, operation of the run-culling
module 552 is optimised based upon the storage
requirements of the retained run list 220 (or pool 520).
In practical implementations, operating criteria are
preferably established so that performance is not
deteriorated below the worst case - this being
equivalent to omission of the run culling operations.
This is certainly the case where memory availability
expires according to the above-mentioned formulation.
An example of this can be understood by returning to
Fig. 10 and assuming that memory requirements were
exceeded and resulted in the over-writing of the record
relating to span A3. 1If such occurred, the span B3
would need to be rendered in its entirety. However, a
saving would nevertheless have been obtained through
the retention of Al and A4, which are both replicated
in frame B, and in part for span A2, much of which is
replicated by span B2.

The present inventors have also determined that,
due to processing overhead, that the run culling
operations described herein offer no appreciable saving
for very small runs of, say less than 32 - 64 pixels.

However, for simple “cartoon” style animation with

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 60 -

opaque objects, experiments have indicated rendering
processing‘time saving of up to 80%.

Further, whilst the example of Fig. 10 relates to
opaque objects, the principles disclosed herein are
equally applicable to objects having transparency
components. In such instances the only difference in
rendering is the number of active objects passed to the
£fill generation module 554 (limited to 4 in the
described implementation) and the additional processing
required to be performed by the region compositing

module 556 to account for object transparency.

INDUSTRIAL APPLICABILITY

The arrangements described are applicable to the
computer and data processing industries where rendering
of animated images is required. An example of this
lies in portable game devices and particularly those
where gaming is performed over a communications network,
such as shown in Fig. 3 with respect to a game played
upon the telephone handset 350. 1In such instances,
much of the processing depicted in Figs. 6A and 6B may
be performed by a server computer within the
network 320, and with the handset 350 being used to
input user commands to the server. The server may then
interpret those commands to form the instructions 460,
objects 462 and fills 464, pass the fill data 532 and

z-level data 534 to the handset 350, and perform

WO 03/065310 PCT/JP03/00994

10

15

20

25

rendering operations up to and including run culling
552. The server may then output the run whereupon the
handset 350 performs fill generation and compositing to
the display 352. Such minimises the computational
overhead of the handset 350, thereby reducing capital
cost and extending battery lifetime, whilst optimising
processing speed and interactivity within the server.
This is particularly important when playing games
between handset users. An alternative mode of
operation is to transfer graphic objects, or updates to
graphic objects, from the network 320 to the telephone
handset 350 and to implement the entirety of the render
pipeline within the handset 350.

Whilst in Fig. 3, the remote device is a portable
telephone handset 350, other devices, which need not be
portable may be used. Examples include those where a
display is fixed for a specific purpose, such as a
computer driven advertising display, or a display
forming part of the operational control of a device,
such as a copying machine.

The foregoing describes only some embodiments of
the present invention, and modifications and/or changes
can be made thereto without departing from the scope
and spirit of the invention, the embodiment(s) being

illustrative and not restrictive.

WO 03/065310 PCT/JP03/00994

10

15

20

25

- 62 -

CLAIMS

1. A method of rendering a series of raster image
frames from object graphic elements characterised in
that at least one old fill run is retained during the
rendering of a first frame and said retained fill run
is compared with at least one new fill run required for
a subsequent frame and for at least one said new fill
run suppressing the generation of pixel data for at
least part of said new fill run and instead using

pixels retained from said first frame.

2. A method according to claim 1, wherein
descriptions of said retained fill runs are stored in

an ordered list.

3. A method according to claim 2, wherein a number
of retained fill run descriptions is limited to less
than a number required for a complete reproduction of

said first frame.

4. A method of rendering a plurality of raster image
frames each having a plurality of pixels, said method
comprising the steps of:

(a) rendering a first frame and retaining first
data describing fill runs of pixels of said first

frame; and

WO 03/065310 PCT/JP03/00994

(b) rendering a second frame to update the
pixels of said first frame, said rendering of said
second frame comprising the sub-steps of:

(ba) determining second data describing
5 fill runs of pixels of said second frame;
(bb) comparing said second data with said
first data; and
(bc) generating new pixels using said
second data, and over-writing pixels in said

10 first frame, when said comparison indicates a

different pixel value would result.

5. A method according to claim 4, wherein said first

data is retained in an ordered list.

15
6. A method according to claim 5, wherein the amount
of said first data retained in said list is limited to
less than a number required for a complete reproduction
of said first frame.

20
7. A method according to claim 4, wherein step (b)
comprises the further sub-steps of:

(bd) updating said first data with said second

data corresponding to said new pixels;

25 (be) 1if the comparison of step (bb) indicates

the same pixel value will result, reproducing the

WO 03/065310 PCT/JP03/00994

10

15

20

25

64

corresponding pixels of the first frame in the second
frame; and
said method comprises the further step of:

(c) repeating step (b) for a subsequent frame.

8. A method according to claim 7 wherein said data
describing each said fill run comprises at least a list
of graphic object priorities that contribute to pixels

in said run, and a length of said run.

9. A method according to claim 8 wherein said list
is limited to a predetermined number of highest

priority objects.

10. A method according to claim 8 or 9 where step
(bb) comprises comparing data for said fill runs in

order along a scan line of said frame.

11. A method according to claim 10, wherein said
comparing compriseé:

(bba) comparing those contributing object
priorities of said second data with those of said first
data:

and if the same: (bbaa) comparing the

length of the corresponding runs, and
if the same, step (be) comprises

(bea) reproducing the pixels of the

WO 03/065310 PCT/JP03/00994

10

15

20

25

65

first frame for said run and
discarding said second data; and if
not the same, step (be) comprises
(beb) reproducing the pixels of the
first frame for a span corresponding
to the smaller of the two lengths,
updating the length of said run in
the first data by said smaller length,
and forming a new run from said
second data corresponding to the
contributing priorities of said
second data and the remaining length
being the difference between said two
lengths; and

and if not the same: (bbab) determining pixel

values from said second data for said second frame.

12. A method according to any one of the preceding
claims wherein said rendering is performed on a scan

line-by-scan line basis.

13. Apparatus for rendering a sequence of image
frames, said apparatus being configured to perform the

method of any one of claims 1 to 12.

14. A computer readable medium have a computer

program recorded thereon for rendering a sequence of

WO 03/065310 PCT/JP03/00994

10

15

20

25

image frames according to the method of any one of

claims 1 to 12.

15. A sequence of image frames formed using the

invention of any one of the preceding claims.

le. Apparatus for rendering a sequence of raster
image frames each having a plurality of pixels, said
apparatus comprising:

a renderer configured for rendering an image
frame of said sequence and retaining data describing
fill runs of pixels of said frame; and

means for determining further data describing
fill runs of pixels of a next image frame in said
sequence;

means for comparing said further data with said
retained data; and

means for rendering new pixels using said further
data, and over-writing pixels in said image frame to
form said next image frame, when said comparison

indicates a different pixel value would result.

17. Apparatus according to claim 16 wherein said
retained data and said further data each comprise data
corresponding to each said run of pixels in the

corresponding image frame.

WO 03/065310 PCT/JP03/00994

10

15

20

25

18. Apparatus according to claim 17 wherein said
means for comparing compares data for a like run of

pixels between said image and further frames.

19. Apparatus according to claim 16, further
comprising means for retaining said retained data as an

ordered list.

20. Apparatus according to claim 19, wherein the
amount of said data retained in said list is limited to
less than a number required for a complete reproduction

of said first frame.

21. Apparatus according to claim 18, further
comprising:

means for updating said retained data with said
further data corresponding to said new pixels;

means for reproducing the corresponding pixels of
the image frame in the further frame if said means for
comparing indicates the same pixel value will result;
and

means for repeating operation of said apparatus

for subsequent frames of said sequence.

22. Apparatus according to claim 21 wherein said data

describing each said fill run comprises a list of

WO 03/065310 PCT/JP03/00994
- 68 -

graphic object priorities that contribute to pixels in

said run, and a length of said run.

23. Apparatus according to claim 22 wherein said list
5 is limited to a predetermined number of highest

priority objects.

24. Bpparatus according to claim 23 further
comprising means for further comparing data for said

10 fill runs in order along a scan line of said frame.

25. Apparatus according to claim 24, wherein said
means for further comparing comprises:
first means for comparing those contributing

15 object priorities of said further data with those of

said image data;

second means, operative when said first means
determines said priorities to be the same, for
comparing the length of the corresponding runs;

20 third means, operative if said second means
determines said lengths to be the same, for reproducing
the pixels of the image frame for said run in said
further frame and for discarding said further data;

fourth means, operative if said second means

25 determines said lengths to be different, for
reproducing the pixels of the image frame for a span of

pixels corresponding to the smaller of the two lengths,

WO 03/065310 PCT/JP03/00994

10

15

20

25

for updating the length of said run in the image data
by said smaller length, and for forming a new run of
pixels from said further data, said new run
corresponding to the contributing priorities of said
further data a remaining length being the difference
between said two lengths; and

fifth means, operative when said first means
determines said priorities to be different, for
determining pixel values from said further data for

said next image frame.

26. Apparatus according to any one of claims 16 to 25
wherein said rendering is performed on a scan line-by-

scan line basis.

27. A computer readable medium, having a program
recorded thereon, where the program is configured to
make a computer execute a procedure to render a
plurality of raster image frames each having a
plurality of pixels, said program comprising:

code means for rendering a first frame and
retaining first data describing fill runs of pixels of
said first frame; and

code means for rendering a second frame to update
the pixels of said first frame, said code means for

rendering of said second frame comprising:

WO 03/065310 PCT/JP03/00994

10

15

20

25

70

code means for determining second data
describing fill runs of pixels of said second
frame;

code means for comparing said second data
with said first data; and

code means for generating new pixels using
said second data, and over-writing pixels in said
first frame, when said comparison indicates a

different pixel value would result.

28. Apparatus for rendering a sequence of image
frames each formed of a plurality of pixels, said
apparatus comprising:

means for receiving from a host, fill and
priority data related to graphic objects available for
rendering by said apparatus;

a display device upon which said sequence of
image frames is to be reproduced;

means for receiving, from said host, limited data
describing runs of pixels in each said image frame,
said limited data including those said objects that
contribute to pixel values within the corresponding
said run; and

means for rendering, for each said run, the
corresponding said objects using said limited data and

said fill and priority data, to provide pixel values

WO 03/065310 PCT/JP03/00994

10

15

20

25

71

for said corresponding frame for display on said

display device.

29. Apparatus according to claim 28 further
comprising:

means for retaining said limited data for a
current one of said frames, said rendering being
performed for a frame from said retained limited data;

means for updating said retained limited data for
at least one run of pixels for a following said frame
where said updated retained limited data relates to
those runs of pixels that change compared to the
preceding frame; wherein

said means for rendering is operative for said

following frames upon the updates of said limited data.

30. Apparatus according to claim 29 further
comprising:
a user interface for receiving user commands; and
means for communicating said user commands to

said host to influence generation of said limited data.

31. Apparatus for processing image data defining a
sequence of displayable image frames each formed of a
plurality of pixels, said apparatus comprising:

means for transmitting to a remote device, fill

and priority data related to graphic objects forming

WO 03/065310

10

15

20

25

72

part of said image data and available for rendering by
said remote device;

means for determining from said image data,
limited data describing runs of pixels in each said
image frame, said limited data including those said
graphic objects that contribute to pixel values within
the corresponding said run of pixels;

means for comparing said limited data for a
current said frame with said limited data for an
immediately preceding frame to identify that said
limited data for said current said frame that has
changed; and

means for transmitting said changed limited data

to said remote device for rendering said current frame.

32. Apparatus according to claim 31 further
comprising:

means for receiving commands from said remote
device; and

means for processing said commands to alter said

image data.

33. A method of rendering a series of raster image
frames substantially as described herein with
reference to any one of the embodiments as that
embodiment is illustrated in Figs. 2 to 12 of the

drawings.

PCT/JP03/00994

PCT/JP03/00994

WO 03/065310

1115

v Joud) | Bi4

al01g
awei

091l

0

—

eyl

S|NPON
Buyisodwon

-
/
Gt

ovli

\/\\

00t

— 2el - écl

, a|qel sisi

mMM__m_._r_ g UOBAOY abp3 >M_~M_m4_n_
. [oA8]-Z SAIRY ' d
a|npon
aINPON a|Npon 8|NPO sopdwo)
uonelauax) |¢— uoiieAoy [¢— Guoes) [€¢— s
4 [eA9I-Z 9bp3 eidsig
: om—” ozl Okt
solydeln 109[q0
T
r40] !

L

PCT/JP03/00994

WO 03/065310

2115

21018
swe.i

09t

8|NpoN
Bumsodwon

\.

/

oSt

00¢

Nv_../ \\ONN \:Nm_, WNN_. \'N:
o|qeL sisi
e MUY | [uogeaow obp3 Pt
ed 4 paureley [oAS}-7 aAIOY [asig
I It It It
 uonelsusy) (g—{ Bulind |¢—] uoneanow |¢—| Bupoel| je— 'S
I i 1912 ebp3 Aedsiq
ﬁu J ” / \)
4 012 oel ozt Okt
soyde.s 19[q0
c0l

L

WO 03/065310

Computer /

3/15

PCT/JP03/00994

Communications
- Network 320
[\)300
Modem
301
30}8 /-310 (-311[
Y [/ | 309
Video /o HDD | FDD |}~
Interface Interface Storage Device
R T A T 2
I/0
Processor
Interface Memory CD-ROM
w0 _/ <313 \ 305 312
Keyboard
i a
ksoz N— 303 Fig. 3

PCT/JP03/00994

WO 03/065310

4/15

ovy Siid 3101
F e - — - U.. _———— jo Ayjeanid e
74 .m_u_ i _ Buiureluoo Aowsiy
I sues\ Auowa [eulsiu] I F
; : 85
444 |I_/ - A _ 4 3101
1 !
! elep ™ elep ! _
[1| rerd poags | S199lq0 3101
oLb i Is|| | Aejasip ISl |Aelasip | jo Ayeunid e
I I Buiureyuoo Aowaiy
/ ceY i \ oEh ocr | F
I | sjoalqo
. Sioxd / ! ¥ Z 3101 o5
Mo_m,oo 10 weass | 5 ;
e|asig suibu3 d8ljawon suononAasu| 3101
— .
Indino sieubis || Buuepusy 1si7 Aeidsiq [« “ SO ﬁ jo Ayeind e
uonesIuoIyduAs \ I I mnhww Buiureyuoo Alowa |y
I auibug buibew) usin uiyy .
2/ il Sl e i vav
2S5y Elep sniels
pue |0JJu0D
Oy
00V — | osseooid isoH
oSt

. = Fill Style1
R = Finstyle2
= Fill Style3

I

\
N

l D/’s"s Fig. 5A
Y ‘ .,

} Fig. 5B

Fig. 5C

WO 03/065310 PCT/JP03/00994

6/15 .
454 L ___ . :
D | DisplayList 1 508
f) | . .
Memory 460 , Complier :
e o TCIE ! v ORI
plurality of | . ; '
TCIE Instructions i Instruction : Datum :
Instructions Executor :
) ’ I '
456 TCIE : / :] b
\ object | 500 , E
(Memory) : : E
c?malitl;:ngf I | Transform | | '
plurality o : ! :
TCIE : Module : :
Objects) S ! E
' 1 "
i 502 :
458 j TCIE/ Fills : : :
(" - N | | :
Mooy Ll Fiter | ! ;
containing | Module : :
plurality : ! :
TCIE fills : ! :
used by e ! :
above TCIE 1 504 I :
objects : : :
\ y | i :
| Sort | Edges
I Module t —p C
! | / :
| I .
410 L 7/ _____ s 512
506 / E
Fig. | Fig. e
6A : 6B]
: Fig. 6A

WO 03/065310

memory containing fill
data for graphical objects

ps

” Memory containingév:/
-Level Table (1 of 2
eve e(1of2) 1518
|

Memory containing a
Z-Level Table (2 of 2) |

-

x

D)

r

I
60 (Poo of Run Records

Z-level Activation
<_ Table

——————————— -

|
Memory containing Active | | ;
Edge Buffer (1 of 2) Iy
(Memory containing Active : : Active

Edge Buffer (2 of 2)

5

e e e e oy

Memory containing Frame\ ! |
Edge Buffer (10f2) /'t 53g

N
N

-

:

r
|

I 7 Memory containing Static

! Edge Buffer (1 of 2) !
! Memory containing Static |
: I Edge Buffer (2 of 2) !

PCT/JP03/00994

Rendering
Engine

Region
Compositing
Module

31
556

Fill
Generation
Module

I

554

Run Culling
Module

-1
552

Z-Level
Activation
Module

/1 548
c

550

Edge
Processing
Module

6B

WO 03/065310

704

A 724
\— (thi

static edge buffer

FINISH
s scan-line)

START~
700

PCT/JP03/00994

8/15
548

708

Is START
COORDINATE of
next edge in frame edge buffer <
START COORDINATE of ne
edge in static edge
buffer?

No

712

'

NEXT EDGE =
next edge in
static edge buffer

710 Yes

N

NEXT EDGE = next edge
in frame edge buffer

Is 714

START Y.
COORDINATE of NEXT
EDGE <= Y COORDINATE
of current scan-line

?
Fig.
7TA
Fig.
B

WO 03/065310

PCT/JP03/00994

720

START X 718

No COORDINATE of
722 NEXT EDGE <= CURRENT X
\ COORDINATE of NEXT
Y ACTIVE EDGE
CURRENT ? 728
ACTIVE EDGE

= next active v /
edge in active Remove NEXT EDGE from list it
F?:g]i\t/):?;; originally came from. Convert NEXT

from buffer EDGE into an active edge. CURRENT

ACTIVE EDGE = converted NEXT EDGE

v

v

Pass CURRENT X COORDINATE, LEFT FILL
REFERENCE, RIGHT FILL REFERENCE
and UP fields of CURRENT ACTIVE EDGE

to the Z-Level Activation Module 500

750 =/

732

Y COORDINATE of
CURRENT SCANLINE > END
Y COORDINATE of CURRENT

ACTIVE EDGE
?

No

734
\

Calculate new CURRENT X COORDINATE of
CURRENT ACTIVE EDGE for next scan-line.
Insert modified CURRENT ACTIVE EDGE into
active edge buffer for next scan-line via sort buffer

~ ie. OUTPUT
(to next module)

PCT/JP03/00994

WO 03/065310

10/15

8
108819

aul uess \ ||||||||

XON \\-nn.uu.\

duI ueos
ualn) uommhmyc_

O 9bp3 aAioy

A4
109s19)U]

g aommhmuc_

™

9
ILEIS R

v 108slaju|

N

g9ebp3 MY v ebp3 ennoy

WO 03/065310 PCT/JP03/00994
11/15
Fig. 9A Fig.
9A
Foreach pee----
message received 550 ia.
[~ START S'g
900 '/
902
vertical direction indicator upward
of message upward or
downward?
% 906
downward / 4 /
Increment COUNT field of Decrement COUNT field of

z-level in table referenced
by left z-level of message

z-level in table referenced
by left z-level of message

908

Has the left
z-level count changed
fromO0to 1?

Yes Yes

912

Has the left
z-level count changed
from 1 to 0?

Z-level in table referenced
by right z-level of message

No No
Add an ON Add an OFF
message for 910 message for 914
that z-level / that z-level /
to the output 916 | to the output 918
v/ v [/
Decrement COUNT field of Increment COUNT field of

z-level in table referenced
by right z-level of message

WO 03/065310 PCT/JP03/00994

12/15

920 922

Has the right
z-level count changed
from 1 to 0?

Has the right
z-level count changed
fromOto 1?

Yes Yes

No 926 No
Add an OFF - \ Add an ON
message for message for
that z-level that z-level
to the output to the output
' 928 '

- VS I

924
Output z-level ON/OFF messages along with
display coordinate of the input message

I

930
L FINISH

Fig. 9B 9B

WO 03/065310 PCT/JP03/00994

13/15

1000 1006 1022

1024

Fig. 10

WO 03/065310

14/15
1100

PCT/JP03/00994

Initialise

1102 —— Receive
next run
1128 \ 1104
Dump Olq list Yes None left?
to free list
1108
v 1130 N\
Old list = / Store in new
New list
Wait for new Forward .
frame leading part Leading part
to FGM is new?
R 1132
Forward
1116 ——1 overlap to
FGM
|
1118 —~{ Shorten old run
/' 1122 ~
Transfer Old .
552 run to free list Old rgg Siz¢
No
1124 —— Shorten remainder of run
. 1126
Fig. 11

1110

1114

1120

Remainder
Size 0?
Yes

No

WO 03/065310 PCT/JP03/00994

15/15

1204
\ Fill Generation Module _
1202 Fill Data
\ Fill Lookup and Control Table
1 Current X
-—
534 z-indicies Memory
\ s I AlBICID
-
1210A\
12108 -¢4— Fill Generation Means |«=—¢
1210C @] Fill Generation Means |«a—¢
1210D | [« Fill Generation Means |«a—¢
<« Fill Generation Means |-t

|
A
To 556

Fig. 12

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/00994

A
Int.CI’

CLASSIFICATION OF SUBJECT MATTER
G06T11/40

According to International Patent Classification (IPC) or to both national classification and IPC

B.

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.CI”

G06T11/40

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Japanese Utility Model Gazette 1926-1996,
Applications 1971-2001,

Containing the Utility Model 1996-2001

Japanese Publication of Unexamined Utility Model
Japanese Registered Utility Model Gazette 1994-2001,

Japanese Gazette

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 5706415 A (Apple Computer, Inc.) 1-8,10-14,
1998.01.06,1line 25 columnl5 to line 8, 16-22,26-33
columnlé, page 29, Fig 8b & JP 6-236445 A

X JP 62-100878 A(Matsushita Electric 1-8,10-14,
Industrial Co.,Ltd) 1987.05.11, page 1-5, 16-22,26-33
Fig 1-7 (Family:none)

X JP 7-105404 A(Ricoh Co.,Ltd.) 1995.04.21, 1-8,10-14,
line 32 column 16 page 9 to line 35 column 16-22,26-33
18 page 10, Fig 13-14 (Family:none)

X JP 9-16806 A(Ricoh Co.,Ltd.) 1997.01.17, 1-8,10-14,
line 33-39 column 19 page 11, lines 32-39, 16-22,26-33
column 22 page 12, Fig 17 (Family:none)

B Further documents are listed in the continuation of Box C.

D See patent family annex.

*

“AY

“E»

D

“0O”

wp»

Special categories of cited documents:

document defining the general state of the art which is not considered
to be of particular relevance

earlier application or patent but published on or after the international
filing date

document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral dlsclosure, use, exhibition or other
means

document published prior to the international filing date but later than
the priority date claimed

“™

D'¢d

wyn

&

later document published after the international filing date or priority
date and not in conflict with the a;:Ehcanon but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

Date of the actual completion of the international search

06.05.03

Date of mailing of the international search report

20.05.03

Name and mailing address of the ISA/JP

Japan Patent Office

3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan

Authorized officer

SHUNSUKE MATSUO

~,|5H| 9749

Telephone No. +81-3-3581-1101 E;Etr‘:é 531

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

lcatxonqNo

pCT/Jpoé/00994

C (Continuation). = DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages

-Relevant to claim No.

A US 5377313 A(International Business
Machines Corporation) 1994.12.27,Lines

- 41-65, column 12, page 16 Fig 4C2 & EP
0553973 A2 & CA 2087501 Al & KR 9703325 B &
JP 6-83979 A

1-14,16-33

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT International application No.
PCT/JP03/00994

Box I

Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

1.@

an

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

Claims Nos.: 15

because they relate to subject matter not required to be searched by this Authority, namely:
The subject matter of claim 15 appears to be a mere presentation of
information, which does not require an intentional preliminary
examination.

Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:

Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box 11

Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

4.[]

This International Searching Authority found multiple inventions in this international application, as follows:

As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of
any additional fee.

As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

No required additiona! search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.: . '

Remark on Protest D The additional search fees were accompanied by the applicant’s protest.

D No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

