a2 United States Patent

Woo

US007680788B2

US 7,680,788 B2
*Mar. 16, 2010

(10) Patent No.:
(45) Date of Patent:

(54)

(76)

")

@
(22)

(65)

(63)

(1)

(52)
(58)

(56)

MUSIC SEARCH ENGINE

Inventor: Mark Woo, 9701 Turtledove Ave.,
Fountain Valley, CA (US) 92708

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 952 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 10/637,377

Filed: Aug. 8, 2003

Prior Publication Data
US 2004/0030691 A1l Feb. 12, 2004

Continuation of application No. 09/478,696, filed on

Related U.S. Application Data

Jan. 6, 2000, now Pat. No. 6,678,680.

Int. Cl1.

GO6F 17/30 (2006.01)

G10H 7/00 (2006.01)

US.CL . 707/6; 707/3; 84/609

Field of Classification Search

707/6,

707/3; 84/602, 609, 618
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,146,833 A * 9/1992 LU .oovvviviiiiniiiiiin, 84/462
5,261,087 A 11/1993 Mukaino
5,455,379 A 10/1995 Kim et al.
5,616,876 A 4/1997 Cluts
5,736,666 A 4/1998 Goodman et al.
SEARCH SEARCH BY
BY SONG
PATTERNS ATTRIBUTES

KEYBOARD/
MOUSE INPU

SOUND TO

MIDI
CONVERSION

‘VOICE/SOLO
IINSTRUMENT|

STATUS
LINE
DISPLAY

2 I

KEYBGARD
MOUSE INFUT|

5,739,451 A 4/1998 Winksy et al.
5,756,915 A 5/1998 Matsuda
5,808,233 A 9/1998 Finkel et al.
5,864,078 A 1/1999 Koevering
5,864,868 A 1/1999 Contois
5,986,201 A 11/1999 Starr et al.
6,121,530 A 9/2000 Sonoda
6,183,010 Bl 2/2001 Iwamura
6,192,372 Bl 2/2001 Yamaura et al.
OTHER PUBLICATIONS

Ghias et al.; “Query By Humming—Musical Information Retrieval
in an Audio Database”; ACM 1995; pp. 1-9.

McNab et al.; “Towards the Digital Music Library: Tune Retrieval
from Acoustic Input”; ACM 1996; pp. 11-18.

* cited by examiner

Primary Examiner—Uyen T. Le

(74) Attorney, Agent, or Firm—Stetina Brunda Garred &
Brucker
(57) ABSTRACT

A music search method for finding a desired song in a song
database. The method comprises generating a difference
sequence for each song in the song database by determining
the relative difference between adjacent notes. Next, a note
sequence is chosen for the song to be found within the song
database. A difference argument is generated for the note
sequence by determining the relative difference between
adjacent notes. The difference argument for the note sequence
and the difference sequence for each song in the song data-
base is compared. The desired song is found if the difference
argument for the note sequence corresponds to a portion of
the difference sequence for the desired song, or if the net
difference at the closest match position is within a set differ-
ence threshold.

3 Claims, 20 Drawing Sheets

—r-

DISPLAY
MATCHING
HITS IN DB

REQUEST
SEARCH

26

SONG
DATABASE

PERFORM
EXACT
SEARCH

RESULTS
DISPLAY

PERFORM
NEAR
SEARCH

|

STOP

US 7,680,788 B2

Sheet 1 of 20

Mar. 16,2010

U.S. Patent

["9l4

91— =

0L} —

_;mo Em:omﬁll\\ ¢4

chl

90!

QQ\\

0c! 81!
N\ |
~ \ punoj ¢ |
/I
B (nuayy umopyng wosj £106310) 193}35) _ _ON_ _ 3)1j0Ig _ _:u‘_omm mcom_
3Q0V943| 424095 BjoN
¢ | ProvusaL 1no 1IDNO
wIN L, NEIaINO —~
— VI] —t————sa3imsgq-
111 synsey yawoag[]|] Swewned A& O JNILONIIAS NVHL d3ONNOA
| 0} saloN 9N] sdioyg json O OLY3IONOD MYSHYM
apnidwy £q O JYIHMAY3AI ANV JY3HL J¥3H
sajoN 3Alg aroway] 306 £
1062100 4q O ydosg jpq ||foid wopuoy| s238 1807 8J0)$53,
J]0§ 3JUOUD n . o
u210H A-9nS 7] L 4&q Q _
U2I10N 15203N [7] | BN AR dois _ s Kojig | 4O % 1 001} [sunsay Jo9))
—— SNOILJO HO¥V3S = —— 3dAL HOWV3IS- 5 T 5153 HOAV3S —
. 7 - N
804 . o051 824
PIWPLIOM M3N BlOUM V ¥VONS 40 ININOOCS v
plwsn 10) 3wty v NOA ¥O3 9NOS V
PIW'sd0]g JSWWNS y AGOTIN ¥ 3N SI Y19 ALY V
. piwiobng jo jnjuoods y NO WV3¥Q vV QNG OL SSIM V
plwnox Jo4 buos v Q09 YNO SI SSIHLYOS ALHOIW V
pwApolpy 0 A st L9 Apaud 09 THM IM ONIINNH V
PIW'UQ WD3JQ O pling 0} SSif v IHOIN S.AVA Q¥VH ¥
PIW'POY Jno $1 ssaupod Aubin v SINYA LUV3IH ¥NOA HSIM ¥ SI AV3ING V
prwybiN s, kog pioH v 7004 v 40 340 3HL NI AVQ Y
PIL'SIHOW 1ID3H JNOA ysSIM © SI WoasQ v 7134 WOSSO8 v
— pruduoydwis yis | | ANOHJWAS HIS
< pwainpang zigl | |z J4NINIA0 Z18L

- ¥3}
—— &G}

vol

| S£6] sdup buos [<T1or—ndw gev 190dwi dwos]

(oom ion — ¢°| uoisIap) adAioj04d ydJ0ag ION

v
c0l

A

VOICE/SOLO
INSTRUMENT

U.S. Patent Mar. 16,2010 Sheet 2 of 20 US 7,680,788 B2
FIG. 2A FIG. 2A
| START ?
FIG. 2B |
SEARCH SEARCH BY
BY SONG
PATTERNS ATTRIBUTES
SEARCH
BY MUSIC
o | |
INSTRUMENT »| ENTER NOTE M
] » SEQUENCE [«
KEYBOARD/
MOUSE INPUT
SEARC YES
REQUEST?
SOUND TO
MIDI
CONVERSION

U.S. Patent Mar. 16, 2010 Sheet 3 of 20 US 7,680,788 B2

g

S ——
STATUS DISPLAY
LINE MATCHING
DISPLAY HITS IN DB
B0S '
MIDI
INSTRUMENT | | »| REQUEST
LJ SEARCH

22
KEYBOARD/
MOUSE INPUT

> MINIMUM
NOTES
?

YES 26
PERFORM
EXACT SONG
SEARCH DATABASE
RESULTS | YES HITS
DISPLAY [~ ?
NO
PERFORM
! NEAR
SEARCH
(stop)

US 7,680,788 B2

Sheet 4 of 20

Mar. 16,2010

U.S. Patent

151
S1INS3Y
313130

ON

1sh
S1INS3Y

ALdA3
AV1dSId

s

S1TNS3y
313730

S3A

2
ALdWN3 3NN
HOJV3S

JLION 1SV1
3137130

[ININNYLSNI
010S/3210A

Y
m

310N

£9/4

1SVl 3137130

2
NOILONNA
VI03dS

Z—1VNJ0d
01 1¥3ANOD

NOISY3ANOD
- 1QIN

01 ONNOS

-

NN
HOYV3S NI
AV1dSIQ

3ON3N0D3S
310N
43IN3

1NdNI 3SNON
Qyvo8A3IN

— <2z

ININNYISNI
QN

— <0z

U.S. Patent

Mar. 16, 2010 Sheet 5 of 20 US 7,680,788 B2

F/G-4 CONVERT NOTES

TO FORMAT-—-22

SUBROUTINE
CONVERT TO iNITIALIZE
FORMAT—2 | | QUIPUT

STRING Y
GET NEXT

MORE

[

7 CHARACTER

OCTAVE

CHANGE
CHARACTER .
CHARﬁCTERS TYPE
’ ?
NOTE
RETURN FIND INDEX
OUTPUT POSITION
STRING
Y
GET
FORMAT~2
NOTE
CHARACTER
|
ADD TO
QUTPUT |}
STRING
SCALE 01102103[04|05|06|07 0809|101/ 11]12
FORMAT-1 | 1 1 1| 2l @| 3} 4)13%$!5 %61 ~|7
FORMAT-2| C | C#| D | D#| E | F | F#I G | G% A | A#| B

FIG. 5

U.S. Patent Mar. 16, 2010 Sheet 6 of 20 US 7,680,788 B2

PERFORM
EXACT

SEARCH FIG. 6

Y
EXACT SEARCH
CONVERT
N
NOTES TO SUBROUTINE

DIFFERENCE
ARGUMENT

Y

RESET
RESULTS LIST,
HITS COUNTER

GET NEXT
- - SONG
SONG DATA DATABASE
INCREMENT < SAVE SAVE IN
HITS > THRESHHOLD SUBSET
COUNTER ? CACHE
NO
\
ADD TO
2 RESULTS
LIST

DISPLAY
RESULTS LIST

'

STATUS
LINE

DISPLAY

U.S. Patent Mar. 16, 2010

DISPLAY
MATCHING
HITS IN DB

{
¥

CONVERT
NOTES TO
DIFFERENCE
ARGUMENT

t

RESET HITS
COUNTER

'

GET NEXT

Sheet 7 of 20

US 7,680,788 B2

FIG.7

DISPLAY MATCHING HITS
SUBROUTINE

26

SONG

SONG DATA [

T

YES

NO

NO

DATABASE

INCREMENT
HITS
COUNTER

YES

FORMAT HITS

STATUS

IN STATUS
LINE MESSAGE

LINE
DISPLAY

U.S. Patent

SUBTRACT 12
FROM
ADJUSTMENT

Mar. 16, 2010 Sheet 8 of 20 US 7,680,788 B2
CONVERT FIG.
NOTES TO CONVERT NOTES TO
DIFFERENCE DIFFERENCE ARGUMENT
ARGUMENT SUBROUTINE
I
CONVERT
NOTES TO
FORMAT-1
NO
GET FIRST
CHARACTER
(NOTE 1)
GET NEXT NOTE 1 = NOTE 2:<
»/ CHARACTER ADJUSTMENT = 0
/ (NOTE 2) [,
OCTAVE ADD 12 TO
CHANGE ADJUSTMENT

DIFFERENCE =
NOTE 2 - NOTE 1
+ ADJUSTMENT

FORMAT
DIFFERENCE
CHARACTER

\

CONCATENATE
TO OUTPUT
STRING

MORE
CHARACTERS
?

RETURN
OuTPUT
STRING

U.S. Patent Mar. 16, 2010 Sheet 9 of 20 US 7,680,788 B2

CONVERT NOTES

TO FORMAT—1

G g SUBROUTINE
INITIALIZE
e S
STRING y
GET NEXT
CHARACTER

OCTAVE
CHANGE

MORE
CHARACTERS
?

CHARACTER
TYPE
?

NOTE

RETURN FIND INDEX

OUTPUT POSITION
STRING ‘

GET
FORMAT -1
NOTE
CHARACTER

]

ADD TO
CUTPUT |e—-"v—-
STRING

U.S. Patent

Mar. 16,2010

Sheet 10 of 20

US

7,680,788 B2

FIG. /0

f:/(; /CZ/‘ FiG. 10A
NEAR SEARCH
SUBROUTINE
FIG. 10B
PERFORM
NEAR
SEARCH
]
RESET LOWEST FILTER ves | PERFORM
SCORE, OPTIONS FILTER
SUB~VARIANCE ? OPTIONS
COPY
SUBSET RESULTS | éggﬁﬁ%s
SEARCH CACHE AS || "oicie
? INPUT

GET NEXT
| SONG DATA

FILTER
OPTION
?

FILTER
SONG
DATA

A

RESULTS
CACHE

U.S. Patent Mar. 16, 2010 Sheet 11 of 20 US 7,680,788 B2

e
HITS QUANTITY)~ RESULTS
| COUNTER , CACHE
NO NO
CALCULATE Y
DIFFERENCE
ADD TO
SCORE RESULTS
LIST

DISPLAY
RESULTS [
LIST

RESULTS
DISPLAY

FIG. 10B

U.S. Patent Mar. 16, 2010 Sheet 12 of 20 US 7,680,788 B2

CALCULATE F/G' /1
DIFFERENCE
SCORE CALCULATE
DIFFERENCE SCORE
| SUBROUTINE
INITIALIZE
MIN SCORE,
SAVE HITS
GET SONG
DATA
CONVERT CONVERT SONG
SEARCH CHARE] _IDATA TO ASCII
TO ASCI NUM. ARRAY
NUM. ARRAY
CALCULATE
——»! ABs ARRAY | Ye MINS@é%RE
DIFFERENCES
NO

AT LAST
COMPARE

POSITION
?

RETURN
MIN SCORE

INCREMENT
SEARCH

POSITION

OTHER
FILTERS
?

NO

YES

OTHER
FILTERS

U.S. Patent Mar. 16, 2010 Sheet 13 of 20 US 7,680,788 B2
1.~ -
FiG.
PERFORM
FILTER OPTIONS
SUBROUTINE
PERFORM
FILTER
OPTIONS
REDUCE YES REDUCE SAVE FILTERED
MULTIPLE MULTIPLE NOTES | SEARCH
NOTES (SEARCH ARG.) ARGUMENT
2
' i

(18D)

%
RETURN

U.S. Patent Mar. 16, 2010 Sheet 14 of 20 US 7,680,788 B2

FIG. I3

REDUCE MULTIPLE NOTES
SUBROUTINE

REDUCE
MULTIPLE
NOTES

'

INITIALIZE
RESULT
STRING

GET NEXT
DIFFERENCE
CHARACTER

REPEAT
CHARACTER
?

NO CONCATENATE
CHARACTER TO
RESULT STRING

MORE
CHARACTER
?

YES

RETURN
RESULT
STRING

U.S. Patent Mar. 16, 2010 Sheet 15 of 20 US 7,680,788 B2
FILTER SONG DATA
SUBROUTINE
26
FILTER
DATA SONG
DATABASE
REDUCE YES REDUCE
MULTIPLE MULTIPLE NOQTES P—
NOTES (SONG DATA)
?
REMOVE] #
v
STYLE NOTES REN OV STYLE SAVE
? FILTERED
SONG DATA

OTHER

FILTERS
?

OTHER FILTERS
(18D)

NO

%
RETURN

U.S. Patent

—
SEARCH BY
PATTERN
OPTIONS | PATTERNS

Mar. 16, 2010 Sheet 16 of 20 US 7,680,788 B2

FIG. 15

=

PATTERN SEARCH
SUBROUTINE

START

ANALYZE
DATABASE FOR
PATTERNS

]

| CONFIGURE S
PATTERN
RULES

b 26

SONG
DATABASE

YES FORMAT RESULTS
RESULTS DISPLAY

NO

FORMAT NOT ‘
FOUND (::::i:::>
MESSAGE STOP

U.S. Patent Mar. 16, 2010 Sheet 17 of 20 US 7,680,788 B2

FIG. 16

ANALYZE DATABASE
SUBROUTINE

ANALYZE
DATABASE FOR
PATTERNS

|

DERIVE NOTE :
FREQUENCY |-
MATRIX

|

BUILD NOTE
CHAINS |

DERIVE

DIRECTION
PATTERNS

| ’

DERIVE
TOPOLOGICAL
PATTERNS

STOP

SONG
DATABASE

U.S. Patent Mar. 16, 2010 Sheet 18 of 20

PROCESS
I iNPUT | VOICE INPUT

RESULTS

US 7,680,788 B2

FIG. 17

KARAOKE
APPLICATION

NO MINIMUM

NOTES
?

—

DISPLAY [

ALBUM
LOADED
?

ALBUM
AVAILABLE
?

YES

LOAD
SONG coNG

ALBUM

¥
TRANSPOSE

TO SINGER'S
KEY

PAUSE
TRIGGER
?

YES

SEARCH BY
MELODY

A

26

SONG
DATABASE

U.S. Patent

Mar. 16,2010

PLAY AUTO-
TRANSPOSED
SONG CLIP

CONVERT
SONG DATA
TO FORMAT 2

|

FIND
TRANSPOSE
VALUE

|

FORMAT
PLAYBACK
PARMS

|

PLAY
TRANSPOSED
MUSIC CLIP

Sheet 19 of 20 US 7,680,788 B2

FIG. I8

TRANSPOSE SONG
CLIP SUBROUTINE

GET
START NOTE SONG DATA SONG
SONG DATA DATABASE

MUSIC CLIP

!
(RETURN)

U.S. Patent Mar. 16, 2010 Sheet 20 of 20 US 7,680,788 B2

[TN T
fuNu

TRANSPOSE FIG. /9

VALUE
FIND TRANSPOSE
i VALUE SUBROUTINE

SKiP SAVED
MATCH SONG
POSITION

Y

GET FIRST
NOTE AT
MATCH POSITION

Y

NOTES DIFF =
SONG CHAR KEYPOS = BASEPOS

SCALE |+ (12-NOTESDIFF)

POS—-ARG CHAR
SCALE POS

/

(BA’EEEYPP%SS - GET TARGET |
NOTES DIFF) KEY
MOD 12 i

RETURN
TARGET KEY/
ADJUSTMENT

RETURN

US 7,680,788 B2

1
MUSIC SEARCH ENGINE

RELATED APPLICATIONS

The present application is a continuation of U.S. applica-
tion Ser. No. 09/478,696 now U.S. Pat. No. 6,678,680 entitled
MUSIC SEARCH ENGINE filed Jan. 6, 2000.

CROSS-REFERENCE TO RELATED
APPLICATIONS

(Not Applicable)

STATEMENT RE: FEDERALLY SPONSORED
RESEARCH/DEVELOPMENT

(Not Applicable)

BACKGROUND OF THE INVENTION

The present invention generally relates to a method of
searching for a song and more particularly to a simplified
search method adapted for use on a computer.

Asiswell known, songs are composed of music and words.
The music comprises the ordering of tones and sounds (i.e.,
notes) in succession to form temporal relationships that pro-
duce a composition having unity and continuity. Often times,
a musician or music lover will know the tune (i.e., melody) of
a song, yet not know the title, words, or music associated
therewith. The musician or music lover would like to know
the name of the song in order to find the sheet music for it
and/or recordings of the desired song. In the prior art, if a
music lover and/or musician knows the tune of the song,
he/she has a difficult time in finding the title of the song.

In order to facilitate searching for songs, prior art computer
systems have been designed which search for matches
between notes entered by the searcher and the notes of the
song. Typically, in the prior art, a song database is created by
entering the notes comprising the music into a computer
memory. The song is stored electronically wherein each note
is exactly duplicated in the memory of the computer. In order
to perform a search with the prior art system, the searcher
enters a sequence of notes of the song into the computer, and
the system will attempt to find a match between the entered
notes and the notes in the database.

Prior art music search systems have been inadequate in that
the music is encoded into the database in a fixed key. The
database of the prior art music search engine comprises a note
listing for each song. The note listing will be generated in the
key of the song as written on the music or performed by the
encoder. The prior art music search system searches for music
corresponding identically to the notes entered by the user.
Therefore, in order to find a song, the user must enter notes in
the same key and the identical sequence as they were encoded
into the song database. The search system will find songs that
identically match the notes entered by the user. If the user
enters notes in a different key, or makes a mistake in the value
of'a note, the search system will not find a match for the song.
Inorderto find songs entered in a different key by the user, the
prior art search system must either include a database of' songs
transposed into different keys or transpose the notes entered
by the user into the key that the database songs are entered.
Neither method is ideal because of the inefficiency of the
music search. Specifically, if all songs are entered into the
database in all possible keys, the system must search through
many unnecessary song versions to find a match. Similarly, if
the system converts the entered notes into all possible keys,

w

20

25

30

35

40

45

50

55

60

65

2

the system must allocate resources to transpose the notes, and
then perform multiple searches (i.e., one for each different
key) In either case, the prior art search system will only
produce the desired result if the user correctly enters a
sequence of notes.

As described above, prior art music search systems require
a large amount of computational resources, and as such are
highly inefficient. They are also impractical due to the fact
that various interpretations of different stylistic impressions
of a song (during encoding) and imperfect recollection of a
song’s exact note sequences (during searching) are common
and inhibiting factors. The present invention addresses the
problems associated with the prior art music search systems
by providing a key-independent music search engine opera-
tive to determine a match between the notes entered and the
notes of a song using computational resources more effi-
ciently. Additionally, the present invention provides a music
search engine capable of finding the closest matches for
songs, even if the entered note sequence contains errors.
Furthermore, the present invention provides a music search
engine that facilitates the analysis and categorization of music
in a fast and efficient manner. The music search engine of the
present invention additionally provides a system whereby
songs found by the system may be transposed into a key
selected by the user.

BRIEF SUMMARY OF THE INVENTION

In accordance with a preferred embodiment of the present
invention, there is provided a music search method for finding
a desired song in a song database. The method comprises
generating a difference sequence for each song encoded in the
song database by determining the difference between adja-
cent notes (the term ‘difference’ as used herein means the
number of chromatic scale notes, each representing %12 ofan
octave). Next, a note sequence is entered for the song to be
found within the song database. A difference argument is
generated for the note sequence by determining the difference
between adjacent notes. The difference argument for the note
sequence and the difference sequence for each song in the
song database is compared. The desired song is found if the
difference argument for the note sequence corresponds to a
portion of the difference sequence for the desired song.

In the preferred embodiment, the difference between each
adjacent note of the note sequence and each adjacent note of
the songs in the song database are assigned a prescribed value.
Accordingly, the differences between the prescribed values
are compared in order to determine the closeness of the match
between the two.

Inthe preferred embodiment, if an exact match between the
note sequence and the songs in the song database does not
occur, it is possible to determine a near match. A near match
is determined when the difference argument varies from the
difference sequence within a prescribed variance decided by
the user. Additionally, the difference argument and the differ-
ence sequence may be filtered before comparison. In this
respect, the multiple and/or artistic notes (as may occur in a
‘jazzy’ rendition of a song) in songs may be removed prior to
comparison.

The note sequence to be searched may be entered into the
computer with an input device. In this respect, the input
device may be a keyboard and/or mouse of the computer.
Alternatively, the input device may be a voice or MIDI instru-
ment in electrical communication with the computer.

In accordance with the preferred embodiment there is addi-
tionally provided a method of encoding songs for searching.
The method comprises generating a database of songs and

US 7,680,788 B2

3

then determining a difference sequence for each song. The
difference sequences are stored such that they may be
searched at a later time. Typically, the database is generated
electronically, as well as the determining and storing of the
difference sequences.

The present invention is ideally suited for determining
structural attributes and patterns in music by first generating
a difference sequence for each song contained within a song
database. In the context of structural analysis of music, a
‘difference sequence’ may additionally be applied to relative
changes in note duration (rhythm) as well as frequency. Next,
the difference sequences may be analyzed to discover pat-
terns within the music. Typically, the patterns are derived by
comparing the differences between adjacent notes of the dif-
ference sequence. The identification of common structural
attributes and patterns for a given subset of songs may be very
useful in contributing to the understanding of why people like
certain songs.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING

These as well as other features of the present invention will
become more apparent upon reference to the drawings
wherein:

FIG. 1is arepresentation of a screen for an application that
demonstrates the present invention; and

FIGS. 2-19 are flowcharts depicting the operation of the
present invention.

DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawings wherein the showings are
for purposes of illustrating a preferred embodiment of the
present invention only, and not for purposes of limiting the
same, FIG. 1 is a screen-shot depicting a typical screen inter-
face 100 for a music search engine constructed in accordance
with the present invention. The music search engine is con-
figured to be programmable into a multi-purpose computer,
(i.e., Personal Computer) and is operative to find songs from
notes entered by the user. Accordingly, a user enters notes into
the computer, and the music search engine will determine
matches between the notes entered and songs in a song data-
base. As will be recognized to those of ordinary skill in the art,
FIG. 1 is representative of only one type of screen interface
for the music search engine of the present invention, and that
alternative screen presentations are possible.

Referring to FIG. 1, the screen interface 100 is typically
presented on a monitor of a computer in order for a user of the
music search engine to operate the system. The screen inter-
face 100 includes a MIDI selection box 102 for selecting the
MIDI driver to be used with the music search engine. A song
list 104 displays all of the encoded songs for the music search
engine that can be searched, as will be further explained
below. Adjacent to the song list 104 is a song clip list 106 that
lists all of the songs that can be played on the computer. As
will be recognized, the song clip list 106 contains only songs
that the system may play and therefore may be shorter than
the song list 104. Below the song clip list 106 is a search type
box 108 for determining the type of search that the music
search engine should perform. The search type box 108 con-
tains selections for searching the song list 104 by music,
amplitude, most sharps and patterns.

Disposed adjacent to the search type box 108 is a search
options box 110. If an exact match is not generated, the user
of'the music search engine has the option of specifying a near
search of the song list 104. As seen in FIG. 1, the user can

20

25

30

35

40

45

50

55

60

65

4

select different searching options from the near search box
110, as will be further explained below. If a song match
occurs, the results will be displayed in the search results box
112. The search results box 112 displays a list of all matching
songs from the song list 104 based on the notes entered by the
user.

The devices box 114 shows the status of the MIDI device
that is selected in the MIDI selection box 102. If the device is
active, a green light will be displayed next to the correspond-
ing device.

The music search engine is adapted to search the song list
104 using notes entered into the system, as will be further
explained below. In this respect, the screen interface 100
includes a search line 116 that displays the note sequence that
is used to search the song list 104. Underneath the search line
116 is the song search button 118 that initiates a search of the
song list 104. Additionally, a status line 120 displays the
number of matching songs from the song list 104.

The music search engine constructed in accordance with
the present invention further includes other functions such as
a clear results button 122 to clear all search results, a restore
last button 124 to restore the last search results, and a pattern
def. button 126 that takes the user to a pattern analysis screen.
As is evident by screen shot 100, multiple other functions are
available to the user such as creating a play list with play list
button 128 or stopping playback of music with stop button
130. As will be recognized to those of ordinary skill in the art,
the screen interface 100 is programmable to include a multi-
tude of functions for the user, some of which may not be
explained by the present application.

BRIEF OVERVIEW OF THE SYSTEM

Referring now to FIG. 2, an overview of the operation of
the music search engine is shown. The overview shown in
FIG. 2 is a flow chart depicting the series of events that the
music search engine performs. Certain operations and sub-
routines of the music search engine will be explained in
further detail below.

A search for a song with the music search engine begins by
the user first determining the type of search to be performed.
The user must determine whether to search for a song by
music (i.e., notes), song attributes or song patterns. In the
search by music, the user will enter a note sequence into the
music search engine. The note sequence may be entered
through a MIDI instrument 20, keyboard/mouse input 22 or
through a voice/solo instrument 24, all of which may be in
electrical communication with the computer that the music
search engine is operating from. As seen in FIG. 2, if the note
sequence is entered through a voice/solo instrument 24, then
the notes must undergo a sound to MIDI conversion.

Once the note sequence has been entered, the music search
engine will determine whether the user has requested a search
for the notes through the keyboard of the MIDI device. Spe-
cifically, the keyboard of the MIDI device may be used to
control the operation of the music search engine by having the
keys thereof mapped to specific operations of the music
search engine. For example, if the highest-note from the
MIDI keyboard is depressed, then a search has been requested
and the music search engine will drop down to the “> MINI-
MUM NOTES ?” test. If a search has not been requested
through the MIDI device, then the music search engine deter-
mines if the note sequence is greater than the required mini-
mum (e.g., 3) notes. I[f the sequence is not greater than 3 notes,
then the music search engine returns to the enter note
sequence operation until greater than three notes are entered.
If more than three notes are entered, then the music search

US 7,680,788 B2

5

engine will automatically determine the number of matching
songs (i.e. hits) found from a song database 26. The song
database 26 comprises songs encoded into a proper format as
will be further explained below. The matching songs will be
displayed on the status line 120 of the screen interface 100.
The next step of the music search engine is for the user to
initiate a search request by using either the MIDI instrument
20 or thekeyboard/mouse input 22. Ifthe notes are entered via
the voice/solo instrument 24, a pause of a default duration
(e.g., 2 seconds) will trigger the search. Once the search has
been requested by the user, the music search engine again
determines whether a minimum threshold number of notes
has been entered. If the minimum number of notes has been
entered, then the music search engine will perform an exact
search from the songs in the song database 26. The names of
any matching songs (i.e., hits) are displayed in the search
results box 112 for the user to view and the music search
engine is stopped. If there are no matching songs, the music
search engine will perform a near search whereby songs that
have a relative difference sequence similar enough to the
relative difference sequence derived from the note sequence
entered by the user (based on the match threshold specified in
near search box 110) are considered hits and then displayed.

Note Input Subroutine

As mentioned above, the user enters the sequence of notes
to be searched into the computer through either a keyboard/
mouse 22, MIDI instrument 20 or voice/solo instrument 24.
Inusing the keyboard/mouse 22, the user may point and click
on a graphical representation of a piano key with the key-
board/mouse 22 in order to choose the desired note. Alterna-
tively, the user may enter the note sequence by inputting the
notes directly into the system with the keyboard. The user
enters a note sequence with the voice/solo instrument 24 by
singing or humming notes, which are converted into a MIDI
format, as will be further explained below. Referring to FIG.
3, the note input subroutine begins by accepting an input
event from the MIDI instrument 20 or the keyboard/mouse
input 22. Alternatively, the voice/solo instrument 24 may
generate an input event that is converted to a MIDI format.
Typically, the input event is a single note of the note sequence
to be searched. The note input subroutine determines if the
input is a note or an operation to be performed by the music
search engine. For example, if the MIDI instrument is a
keyboard, the highest note may be programmed to initiate
searching operations. On the other hand, the lowest notes of
the MIDI keyboard may be programmed to delete the search
buffer or the last note entered into the string. It will be recog-
nized by those of ordinary skill in the art that the keyboard of
the MIDI instrument may control other functions of the music
search engine, as desired.

If the note input subroutine determines that the input is a
musical note, the note will be converted to Format-2, as will
be explained in further detail below. Once the notes are con-
verted to Format-2, the notes are displayed on a search line
116, as shown in FIG. 1. Accordingly, the note input subrou-
tine creates an input string of note differences that will be
compared to the songs in the song database 26, as will be
further explained below.

However, if the input is an operation of the music search
engine, the music search engine will determine the type of
operation that should be performed. For example, if the input
note subroutine determines that the input is a “delete last
note” input, then the last note entered into the computer will
be deleted. However, if the function is “delete”, then the
music search engine will determine whether the search line

20

25

30

35

40

45

50

55

60

65

6

116 of the music search engine is empty and if not then delete
the line. If a search results box 112 of'the music search engine
is not empty, then the music search engine will delete the
same also. Once the search line 116 and the search results box
112 are empty, the music search engine will accept other
notes by returning to point “B” in the input notes subroutine.

Convert Notes to Format-2 Subroutine

As previously mentioned above, after the notes are input-
ted, they are converted to Format-2 and displayed in the
search line 18. Format-2 represents each note in the input
sequence in a commonly recognizable note representation.
The music search engine creates an output string of musical
notes that can be displayed on the search line 116. Referring
to FIG. 4, the convert notes to format-2 subroutine (i.e.,
Format-2 subroutine) begins by initializing an output string.
Next, a character from the input device (i.e., keyboard/mouse
22, MIDI instrument 20, or voice/solo instrument 24) is
retrieved. The Format-2 subroutine determines whether the
character retrieved is a note or octave change for the note. In
some instances, the octave for a note inputted may be higher
or lower than the octave for the preceding note. As such, if the
octave has increased, the Format-2 subroutine will add a “>”
symbol preceding the note that is an octave higher into the
output string. Conversely, if the octave decreases, the music
search engine will insert a “<” symbol preceding the note that
is an octave lower. Once the Format-2 subroutine has deter-
mined if the note inputted is an octave higher or lower, the
Format-2 subroutine will find the index position of the note
and retrieve the Format-2 note character(s) from memory.

Specifically, as seen in FIG. 5, each musical note has a scale
value (corresponding to a Format-1 character) and a Format-2
character(s). The Format-1 character corresponds to the top
row of keys on a computer keyboard, such that entry of notes
may be easily accomplished with the keyboard and each note
is represented by a single character. A Format-2 note may be
represented by one or two characters. Sharps and flats are
represented as 2-character sharps. Accordingly, a note of “C”
will have Format-2 character of “C”, a SCALE value of 01,
and a Format-1 character of ““1”. On the other hand, a note of
“D#” (identical to “E-flat”) will have a Format-2 representa-
tion of “D#”, a SCALE value of 04, and a Format-1 character
of “@”. Once the Format-2 character(s) of each note is found,
the Format-2 subroutine repeats the process until a string of
Format-2 characters representative of the input string is cre-
ated. The output string of Format-2 characters is displayed at
the search line 116.

Display Matching Hits Subroutine

Referring to FIG. 7, the display matching hits subroutine
determines whether the input note sequence corresponds to
any notes of the songs in a song database 26. As previously
mentioned, the ‘display matching hits’ is performed after
more than the required minimum number of notes have been
entered. The first step in the display matching hits subroutine
is to convert the notes to a difference argument. The differ-
ence argument allows the music search engine to efficiently
search for songs independent of key, and will be explained in
further detail below. Once the input note sequence has been
converted to a difference argument, a hits counter is reset in
the display matching hits subroutine. The hits counter records
the number of matches found between the input note
sequence and the song database 26. The difference argument
of the input note sequence is next compared to the encoded
songs in the song database 26. Each song in the song database

US 7,680,788 B2

7

26 is encoded into a difference character string (i.e., differ-
ence sequence) in a manner explained below. The difference
argument is compared to the difference sequence of the songs
in the song database 26 for an exact match. Specifically, the
difference argument generated by the ‘convert notes to dif-
ference argument’ is compared to each difference sequence
for the songs in the song database 26. If the difference argu-
ment of the inputted note sequence exactly matches a portion
of a difference sequence for a song in the song database 26,
then the hits counter is incremented by one to signify the
match. After each of the difference sequences for each of the
songs in the song database 26 has been compared to the
difference argument generated by the convert notes to difter-
ence argument subroutine, the display matching hits subrou-
tine displays the number of matches in the hits list 120, as seen
in FIG. 1. The net result is that, for every note entered (after
the first two notes), a ‘running hits count’ is instantaneously
displayed in the status line 120 without a full search operation
(which would return the matching songs in the results list).

Convert Notes to Difference Argument Subroutine

Referring to FIG. 8, the convert notes to difference argu-
ment subroutine begins by determining the format of the
inputted notes. If the notes are in Format-2, the notes must be
converted to Format-1 first. Specifically, the convert notes to
Format-1 subroutine shown in FIG. 9 prepares a Format-1
output string by retrieving the next input note, finding its
index position, determining the Format-1 character for the
note, and adding the Format-1 character to an output string.
This iterates until all notes have been converted. As with the
Format-2 conversion, the Format-1 output string will signify
achange in octave with a “>" for an octave up and a “<” for an
octave down.

Once the input notes have been converted into a Format-1
string, the ‘convert notes to difference argument’ subroutine
retrieves the first note (i.e., note 1). The next note (i.e., note 2)
is then retrieved. As seen in FIG. 8, the convert notes to
difference argument subroutine determines whether note 2 is
a change octave character (i.e., “<” or “>”). If the second
character in the input string is not an octave change character,
the convert notes subroutine determines a difference value
between the first and second notes. Specifically, the differ-
ence is calculated by subtracting the index value of the first
note from the index value of the second note (i.e., note 2-note
1). An adjustment to compensate for an octave change (when
applicable) is added to the difference between note 2 and note
1, as will be further explained below.

In the preferred embodiment of the present invention, the
difference value will typically be the difference in the corre-
sponding SCALE value between adjacent notes in the input
sequence. For example, if note 1 is D and note 2 is F#, the
difference value between the notes D (SCALE=03) and F#
(SCALE=07) will be equal to 04 (i.e., note 2-note 1=07-
03=04). Once the difference value is calculated, the difter-
ence value is converted to a difference character. In the pre-
ferred embodiment of the present invention, the difference
character is determined by adding the difference value to
ASCII (127). For the example shown above, the difference
character for the notes F# and D will be ASCII (131) (i.e.,
127+4). Once the difference character between adjacent notes
is determined, the difference character is concatenated to the
difference argument, as seen in FIG. 8.

If there are additional notes in the Format-1 string, the
difference character must be determined between the current
note and the next note, and added to the difference argument.
Accordingly, the convert notes to difference argument sub-

20

25

30

35

40

45

50

55

60

65

8

routine will reset such that the second note previously
retrieved will become the first note and the next note retrieved
from the Format-1 string will become the second note. Addi-
tionally, any adjustment made for a change in octave will be
reset. The convert notes to difference argument subroutine
will then determine the difference value between those two
notes and concatenate the corresponding difference character
to the difference argument.

As is evident from the foregoing, the difference character is
not dependent upon the key of the music or the value of the
notes in the music, but between the value of the difference
between succeeding notes of music. As mentioned above, ifa
succeeding note is either an octave higher or lower than a
preceding note, it will be preceded by either “<” or “>". The
convert notes to difference argument subroutine determines
whether a character in the Format-1 output string is “<” or >
in order to determine whether an octave change between
notes has occurred. The convert notes to difference argument
subroutine includes an adjustment counter that indicates
whether the note is an octave higher or lower than the preced-
ing note. For example, if the character in the output string is
“<”, then a value of 12 is subtracted from the adjustment
counter thereby signifying that the note is an octave lower
than the preceding note. Similarly, if the character in the
output string is a “>”, then 12 is added to the adjustment
counter. Once the octave change character has been deter-
mined, and the adjustment counter incrementally changed
accordingly, the convert notes subroutine will retrieve the
note in the Format-1 input string that is referenced by the
octave change character. The value of the adjustment counter
is added to the difference value in order to calculate the
difference character. For example, if note 1 is D and note 2 is
F#, but preceded by the change octave character “<” (i.e., one
octave lower), then the adjustment for note 2 is —=12. Accord-
ingly, the difference value would be 07-03+(-12)=-8. The
difference character would be (127) +(-8)=(119). The con-
vert notes to difference argument subroutine therefore pro-
duces a difference argument corresponding to the relative
differences in values between the musical notes entered into
the music search engine. As will be evident, the difference
argument will contain one less character than the number of
notes entered into the music search engine.

It will be recognized that the songs in the song database 26
will be encoded into respective difference character strings
(i.e., difference sequences) by the above-described method.
Accordingly, both the inputted notes and the songs in the song
database 26 will be in the same format for comparison.

Exact Search Subroutine

As mentioned above, if the user requests a search and the
minimum number of notes requirement is met, then the song
search process will proceed to the exact search subroutine.
Referring to FIG. 6, the exact search subroutine begins by
converting the notes to a difference argument as described
above and shown in FIG. 8. Once the input notes are con-
verted to the difference argument string, a result list and the
hits counter are reset to zero such that information about new
matches can be recorded. Once the above-mentioned
counters have been reset, the input note sequence converted to
the difference argument is compared to the difference
sequence for the encoded songs stored in the song database
26, as discussed above. Specifically, the difference argument
of the input note sequence is compared to the difference
sequence for each of the songs stored in the song database 26.
If the input difference argument exactly matches a portion of
the difference sequence of a specific song in the song database

US 7,680,788 B2

9

26, then the exact search subroutine increments the hits
counter to indicate an exact match. Next, if the number of hits
is below a threshold level (optionally set by the user), the title
of the matching song is saved and added to the search results
box 112. The process continues until all difference sequences
for the songs in the song database 26 have been compared to
the difference argument of the input note sequence. If the
number of hits is greater than the maximum level set by the
user, the comparison process stops and the titles of the songs
(i.e., the results list) found up to this point are displayed in the
search results box 112.

Near Search Process

As previously mentioned, if there are no hits after the exact
search has been conducted, then the music search engine will
perform a near search. Referring to FIG. 10, the near search
subroutine allows a user to find songs that are similar to the
inputted note sequence. Specifically, the user can determine
what type of music will match the relative difference
sequence of the inputted notes based on how much variance
will be considered a matching song between the inputted
notes and the songs in the song database 26. Referring to FI1G.
10, the near search subroutine begins by resetting a lowest
score and a subvariance counter. After the counters are reset,
the near search subroutine determines whether the user wants
to sort the songs through some type of filtering option. The
filtering options allow the user to determine what types of
preprocessing will be applied before starting the search. If
one or more filtering options is selected by the user, the near
search subroutine will perform the filtering operations before
starting the search.

Next, the near search subroutine determines if the user
wants to perform a subset search of songs already found as
matches. In the preferred embodiment of the present inven-
tion, the user can specify if a list of songs from the results box
112 should be searched as a subset. If the user wishes to
search the subset, then any matching songs saved in a results
cache 30 will be used instead of the song database, as seen in
FIG. 10 at point “A”.

If a subset search is not to be performed, the near search
subroutine then retrieves the difference sequences from the
song database 26. If filtering operations were selected by the
user, each difference sequence from the song database 26 is
filtered. Next, the difference argument of the input note
sequence and the difference sequence from the song database
26 are compared for matches. If an exact match occurs, then
the hits counter is incremented and the results will be saved in
the results cache 30 if the number of hits saved is below a
prescribed maximum quantity.

If an exact match doesn’t occur, then the near search pro-
cess subroutine proceeds to calculate a difference score and
compare such to the threshold value. If the difference score is
less than or equal to the prescribed threshold (i.e., within the
allowable variance), then a near match has occurred. The
threshold value may be specified by the user or calculated by
the search engine (based on the number of notes entered) to
determine the allowable number of notes in variance to still be
considered a near match. If a near match is determined, then
the title is added to the results list, and the results saved in the
results cache 30. The near search subroutine continues pro-
cessing until all of the songs in the song database 26 or the
subset (if applicable) have been compared to the input note

20

25

30

35

40

45

50

55

60

65

10

sequence. Once the comparisons have been made, the results
are displayed in the search results box 112.

Calculate Difference Score Subroutine

As seen in FIG. 11, the calculate difference score subrou-
tine proceeds by initializing a MinScore and a SaveHits reg-
ister. Next the encoded song data from the song database 26 is
retrieved. At this point, the input note sequence and the
encoded song data (both in difference string format) are con-
verted to numeric integer arrays for faster computation.
Accordingly, the difference score subroutine calculates an
absolute difference between characters of the input notes and
the notes for the current song from the song database 26. [fthe
absolute difference between the input array and the difference
array of the database song at the current position is less than
the current MinScore, then the calculate difference score
subroutine will save the value as the MinScore and move to
the next compare position. After comparisons have been
made at all starting positions of the song array, the MinScore
for the current song is returned to the near search subroutine.

Perform Filter Options Subroutine

As mentioned above, the near search subroutine can per-
form filtering options on the input note sequence and the
songs from the song database 26. Such filtering includes
reducing identical adjacent characters of the input note
sequence and identical characters in the songs from the song
database 26 into a single character in order to improve search
results. Specifically, the option for reducing multiple notes
into a single note is shown in FIG. 12. The input difference
argument (i.e., string of difference characters for the input
notes) may be reduced by removing difference characters that
represent duplications of an adjacent note, as will be further
explained below. Once the input difference argument has
been reduced, it will be saved. At that time other filter options
may be applied to the difference input argument. All appli-
cable filtering options will be stored for subsequent use in the
filtering of song data.

Reduce Multiple Notes Subroutine

As seen in FIG. 13, the multiple notes are reduced by first
initializing a results string and then retrieving the next difter-
ence character of the difference argument string. The charac-
ter is compared with an adjacent character to determine if it is
a repeat character (ASCII value 127, representing no change
between adjacent notes). A non-repeat character is concat-
enated to the results string, while a repeat character is
dropped. The reduce multiple notes subroutine proceeds to
retrieve the next character in the string to perform the same
iterative processing until no more characters are left, at which
point the results string is returned.

Filter Song Data Subroutine

In order to determine whether the filtered input note
sequence matches any songs from the song database 26, the
songs from the song database 20 will need to be filtered in a
similar manner. As seen in FIG. 14, the song data is filtered in
a similar manner as the input notes are filtered. Specifically,
multiple notes of the song from the song database 26 are
reduced (i.e., difference repeat characters are removed) using
the reduce multiple notes subroutine previously described.
Next, stylistic notes in the songs of the song database 26 can
be removed and other filtering options can be performed as

US 7,680,788 B2

11

desired. Such artistic notes can be recognized as one or more
short notes (typically off-beat) before or after a baseline note
(typically longer and on-beat). Accordingly, such notes can
be recognized, filtered and removed with the addition of
quantized timing (rhythm) information described below.
Once the song from the song database 26 has been filtered, the
result will be returned to the near search subroutine for com-
parison to the filtered input note sequence.

Pattern Search Subroutine

The music search engine may also be used for music pat-
tern analysis. Specifically, by encoding the songs from the
song database 26 and the input note sequence into difference
character strings, patterns within music can be more easily
identified and analyzed. Referring to FI1G. 15, the first step in
the pattern search subroutine is to analyze the song database
26 for desired patterns. Once the song database 26 has been
analyzed, the pattern search subroutine will configure pattern
rules and store such patterns matching those rules within a
pattern database 28. The pattern search subroutine will next
search for patterns selected by the user in the song database
26. The pattern search subroutine will look for patterns and
determine whether they are present in the songs within the
song database 26. If the patterns are present, then the match-
ing song title(s) will be displayed in the search results box
116. If no matches are present, then the status line will display
a “Not Found” message. It will be recognized that multiple
patterns may be searched for in each song such that songs
with all of the desired patterns will be found. By converting
the notes of the songs in the song database 26 into the differ-
ence argument string, the songs can be analyzed according to
the differences between the notes and such patterns may
become recognizable.

Analyze Database Subroutine

As mentioned above, the song database 26 may be ana-
lyzed to derive commonly occurring patterns. Referring to
FIG. 16, the analyze database subroutine begins by deriving a
frequency matrix of the difference characters for the songs in
the song database 26. The frequency matrix is a listing of how
many times a specific difference character is found adjacent
to other difference characters in the songs contained within
the song database 26. From the frequency matrix, iteratively
longer difference character chains can be built. The chains are
built based on linking the most frequently occurring combi-
nation of difference characters with additional difference
characters. Next, direction patterns can be derived that indi-
cate how adjacent difference characters in a chain increase,
decrease, or remain the same. Finally, topological patterns
can be derived that graphically show the differences between
gross directional change trends in the songs contained within
the song database 26. Specifically, the demographics of the
music determined from the direction patterns, difference
character chains, and frequency matrix can be represented
into topological (i.e., graphical) patterns via simplification
and trending, similar to recognition of patterns and trends in
a graph by ‘zooming out’. The topological patterns are stored
in the song database 20 such that they may be compared
and/or searched.

Voice Input Application
As mentioned above, the music search engine is typically

used with a MIDI instrument 20 or a keyboard/mouse input
22 to enter notes that are to be searched. Alternatively, the

20

25

30

35

40

45

50

55

60

65

12

voice/solo instrument 24 may be used to enter notes if the user
is not familiar with keyboard instruments. Specifically, the
user will sing into a microphone or other similar device con-
nected to an electronic processor. The processor will contain
software that is able to recognize the user’s voice and convert
it into musical notes. The voice is converted into musical
notes in a MIDI format. Currently, software for personal
computers can convert the voice input of a singer or audio
input of a solo musical instrument into a string of musical
notes in MIDI format. Accordingly, a user can sing or hum the
melody of the song that he or she wishes to find, and it will be
converted into musical notes that can be searched by the
music search engine.

Karaoke Application Subroutine

In accordance with the preferred embodiment of the
present invention, the music search engine may be configured
to be used in karaoke applications. Referring to FIG. 17, the
karaoke application subroutine begins by processing the
voice input of the user. As previously explained, the user will
input his or her voice that will be processed and converted into
musical notes. The music entered by the user will not be
searched until a minimum number of notes have been input,
and a pause of a default duration has been encountered. Once
the notes have been entered into the system, the karaoke
application subroutine will search for a matching song by
melody. Specifically, the karaoke subroutine will begin the
song search process as previously described by finding the
difference argument string for the input note string and com-
pare the same to the song database 26. If a match is not found,
the karaoke subroutine will indicate such. In karaoke mode,
the search engine can optionally return the closest match,
regardless of the set threshold value. If a match is made
between the notes entered by the user and a song in the song
database 26, then the karaoke application determines if an
album with the song is loaded in the karaoke machine. If an
album is not loaded, then the karaoke application determines
if an album is available and loads such. If the album is not
available, then the karaoke application displays such results.
Once the album is loaded, the song that matched the input
note sequence is loaded from the album for playing and
singing by the user. If the song is not in the correct key, then
the karaoke application will transpose the song to the pre-
ferred key.

Automatic Transposition

The music search engine of the present invention is ideally
suited to transpose any song into the preferred key of the
singer. In this respect, the music search engine is capable of
transposing any karaoke song into the preferred key of the
singer. Referring to FIG. 18, a transpose song clip subroutine
will first retrieve the start note and song data of the matched
song from the song database 26. Next, the song data is con-
verted to Format-2, as previously described. Once the song
data is converted from a difference sequence back to Format-
2, a transpose value is determined for the selected song. The
transpose value determines the amount of offset that should
be applied to the song from song database 26 in order to place
the song in the correct key for the singer. Once the transpose
value is determined, the transpose song clip subroutine will
format the play back parameters for the song and then play the

US 7,680,788 B2

13

transposed music clip. The transposed music clip will be the
associated song from the song database 26, but will be in the
correct key for the singer.

Find Transpose Value Subroutine

Referring to FIG. 19, the transpose value for the transpose
song clip subroutine is determined by first finding the starting
match position within the matched song (returned by the
music search engine) that the user has sung. Next, the differ-
ence in note value (i.e., NotesDiff) between the first note of
the matched song and the inputted note sequence is deter-
mined. The difference in notes is used to determine the dif-
ference in keys between the inputted notes and the matched
song. Specifically, the key for the inputted note sequence is
determined by computing: Mod 12(BasePos (i.e. first note)+
NotesDift). If the key determination is less than 1, then the
key position is equal to BasePos+(12-NotesDiff). Once the
target key (i.e., the key for the new song) is determined, the
target key and the adjustment to compensate for such is
returned to the Transpose Song Clip subroutine shown in FI1G.
18. The adjustment is a numerical value added to all of the
notes of the matched song from the song database 26. Accord-
ingly, the adjustment is a playback parameter that is applied to
the matched song played by the karaoke machine. The song
from the song database 26 is transposed by shifting the first
note to the appropriate key. In this respect the adjustment
value is added to the first note to start the song in the appro-
priate key. Since, the remainder of the notes from in the
difference sequence rely on the first note, the remainder of the
song will be in the correct key. Accordingly, the music search
engine allows the song to be played in the key selected by the
user.

Other Applications

It will be recognized by those of ordinary skill in the art that
the music search engine has uses in many fields. By compar-

20

30

14

ing the differences in notes between the input note sequence
and the songs of the song database 26, tune search accuracy
and speed are optimized. Additionally, storage requirements
are reduced if song data that contains both shown below.
Furthermore, differences in artistic expression or interpreta-
tion can be minimized during comparison.

The present invention has been described as being encoded
with only information regarding the frequency (i.e. tone) of
the note. However, it will be recognized, that the duration
(i.e., timing) of the note may further be encoded. In such a
scheme, each note is encoded as an eight bit ASCII character.
The lower 5 bits will represent the change in twelfth-octave
intervals from the previous note (i.e., the difference argument
previously described). The upper 3 bits will represent the
relative duration change in powers of two from -X/8 to +8X.
The following table describes the timing relationships
between adjacent notes, wherein X is the previous note:

000 No Change 100 Unused
001 2X 101 X/2
010 4X 110 X/4
011 8X 111 X/8

Any duration of a note that is smaller than the lower bound or
higher than the upper bound will take the value of the lower/
upper bounds respectively. If the note duration is between two
values, then the duration will be rounded (i.e., quantized) to
the nearest discrete level. By way of example only and not
limitation, the tune “London Bridge is Falling Down” will be
shown encoded below.

Conventional Encoding (in Key of *‘C”):

G A G F E F G

D E F E F G

G A G F E F G

D G E C

Conventional Encoding (in Key of ‘G’):

C D C <) A A A# (>) C
<) G A A A A# (>) C

C D C <) A A A# (>) C
<) G *) C <) A F

Preferred Encoding Method Frequency Change in Binary:

00010
10101
00000
00010

10010 10010 10001 00001 00010
00010 00001 10001 00001 00010
00010 10010 10010 10001 00001
10101 00101 10011 10011

Preferred Encoding Method Timing Changes Only (X/8 to +8X)

in Binary

000
110
110
111

000 000 000 000 010
000 010 110 000 010
000 000 000 000 000
010 000 110 000

Preferred Encoding Method (Frequency Change and Duration)

in Binary

00000010
11010101
11000000
11100010

00010010
00000010
00000010
01010101

00010010
01000001
00010010
00000101

00010001
11010001
00010010
11010011

00000001
00000001
00010001
00010011

01000010
01000010
00000001

US 7,680,788 B2

15

As is evident from the above example, the first three bits from
the encoded song represent the duration (i.e., timing changes)
between adjacent notes and the last five bits represent the
frequency changes between adjacent notes.

Some of the applications envisioned for the present inven-
tion include web-based music searching. As such, the web
based music vendor can include the music search engine on
their web site to offer customers an additional search option.
Additionally, the music search engine will add marketing
sizzle to help bring in potential customers. Further, the
present invention may be used in the enforcement of copy-
rights on the web. Large music publishers and authorized
distributors (such as Capitol Records and ASCAP) employ
significant legal resources and research staff in monitoring
copyright infringement. Custom applications could be devel-
oped whereby music on the web is “scanned” and compared
to the publisher’s database to find copyright violations.

The song database 26 contains a library of encoded music.
The music may be encoded automatically by a computer, or
may be manually encoded. It will be recognized, that songs in
a digital format such as MIDI may be automatically encoded
and stored within the song database 26 by a computer. In this
regard, it would be an automatic process to encode a library of
music for searching with the music search engine of the
present invention.

The present invention has been described as being used for
the input of musical notes and/or timing beats. However, it
will be recognized that a search of words may be utilized to
provide a corroborative search capability. In this respect, the
music search engine may utilize voice recognition software to
capture and convert the words to Soundex. Accordingly, the
music search engine would utilize the sound captured by the
voice recognition software to supplement the notes that shall
be searched. This technique would be extremely useful as a
supplementary search method after notes have been entered.

Additional modifications and improvements of the present
invention may also be apparent to those of ordinary skill in the
art. Thus, the particular combination of parts described and

20

30

35

16

illustrated herein is intended to represent only a certain
embodiment of the present invention, and is not intended to
serve as limitations of alternative devices within the spirit and
scope of the invention.
The invention claimed is:
1. A method for encoding music for searching, the method
comprising the steps of:
generating a database of a plurality of songs;
assigning an index value for each note of at least a portion
of each of a plurality of songs in the song database;

generating a difference sequence by calculating a differ-
ence of the index values between successive notes of
each of the plurality of songs;

inputting a sequence of notes;

assigning an index value for each note of at least a portion

of the input sequence;

generating an input difference argument by calculating a

difference of the index values between every two suc-
cessive notes of at least a portion of the input sequence;
and
searching the database to find the song with the difference
sequence exactly matching the difference argument;

comparing hit number of exact matches between the dif-
ference argument and the difference sequences of the
songs in the database to a predetermined threshold num-
ber; and

performing a near search when the hit number is smaller

than the predetermined threshold number.

2. The method of claim 1, further comprising assigning a
fraction of an octave as the index value to each note of the
portion of each of the plurality of songs in the database and
assigning a fraction of an octave as the index value to each
note of the portion of the input sequence.

3. The method of claim 1, wherein the index value for each
note of the portion of the input sequence and each song in the
database includes a scale value and a duration.

