

United States Patent

[19]

Yamamura

[11] 3,779,140

[45] Dec. 18, 1973

[54] **METHOD AND APPARATUS FOR AUTOMATICALLY SETTING UP OF PAPER CASES WITH THE BENDABLE-HEADED INNER CASE**

[75] Inventor: **Yoshinobu Yamamura**, Kyoto, Japan

[73] Assignee: **Kinki Insatsu Kabushiki Kaisha**, Mitejima, Nishiyodogawa-ku, Osaka, Japan

[22] Filed: **Mar. 29, 1972**

[21] Appl. No.: **239,116**

[30] **Foreign Application Priority Data**

Oct. 19, 1971 Japan..... 46/83161

[52] **U.S. Cl.** **93/36.01, 93/39 R, 93/53 LF, 93/55, 93/36 DA**

[51] **Int. Cl.** **B31b 17/74**

[58] **Field of Search** **93/55, 36 R, 36 C, 93/36.01, 39 R, 40, 43, 53 LF, 54 R, 54.2, 36 DA; 53/169, 175**

[56] **References Cited**

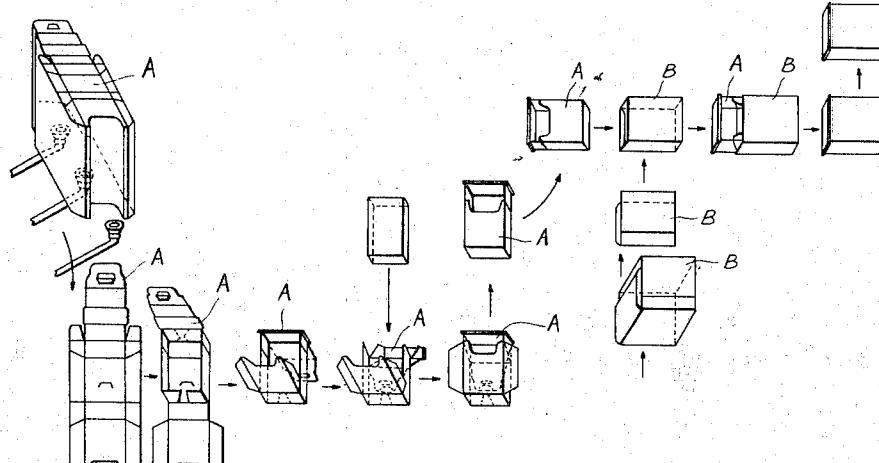
UNITED STATES PATENTS

2,082,565	6/1937	Benoit.....	93/55 X
2,645,984	7/1953	Linstedt.....	93/55 X
2,541,914	2/1951	Conser.....	93/55 X
2,342,158	2/1944	Moore.....	93/36 R X
1,830,342	11/1931	Stokes.....	93/43 X

3,425,324 2/1969 Becker et al..... 93/36.01

Primary Examiner—Andrew R. Juhasz

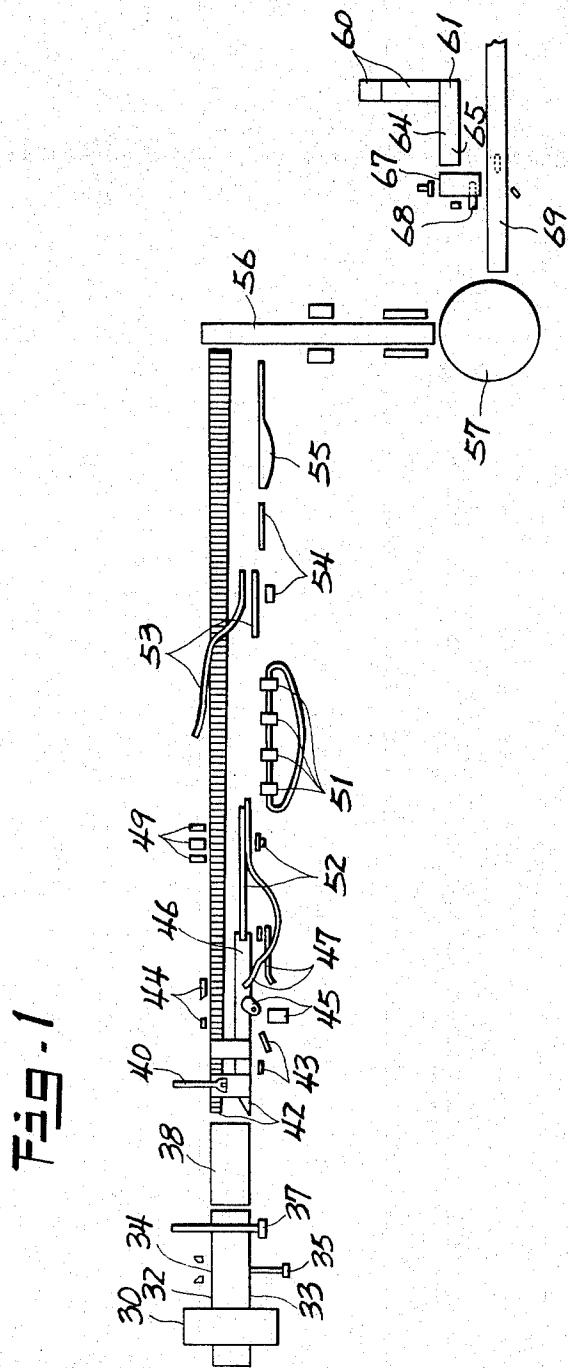
Assistant Examiner—James F. Coan


Attorney—Auslander & Thomas

[57]

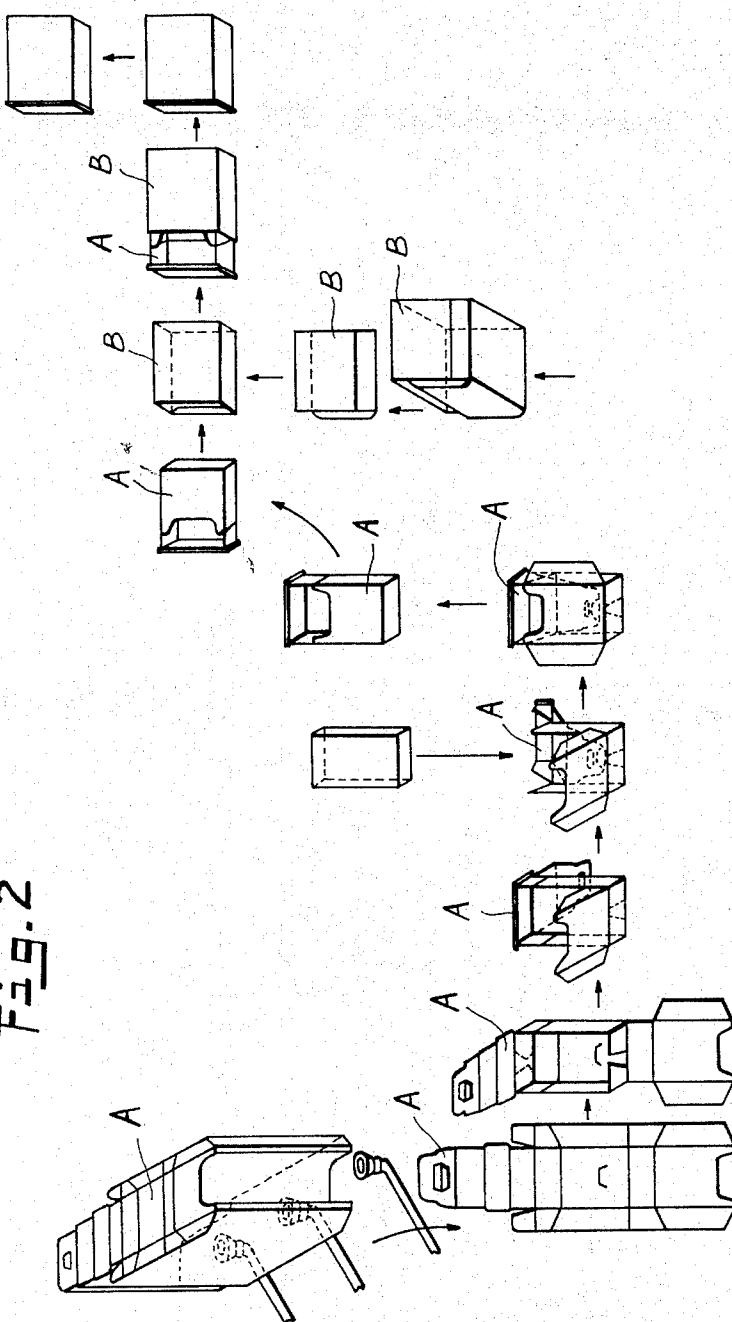
ABSTRACT

Apparatus for automatically setting up of a paper case including an inner case whose head or lid portion bends to one side when pushed at the bottom for opening and the method of making same comprising an inner case setting up process wherein inner case blanks cut in the desired shape and piled up, are transferred intermittently one by one, are folded up and down along creases automatically, during which a locking portion which prevents, at a certain point, folding over of the end portion of inner case, is led under a guide plate, a tapered end of the inner case is led from the lower side to the upper side of said guide plate and the end of the guide plate is inserted between the back part and said locking portion; an outer case setting up process wherein folded blanks for the outer case in piled conditions are transferred intermittently one by one onto a different line from that for setting up inner cases, after which the outer case is formed, straightened up and drawn out as it is seized at its interlocking flap, which is folded inwardly; and an insertion process wherein the set up inner case is inserted in the set up outer case.


3 Claims, 32 Drawing Figures

PATENTED DEC 18 1973

3,779,140


SHEET 01 OF 18

PATENTED DEC 18 1973

3,779,140

SHEET 02 OF 18

PATENTED DEC 18 1973

3,779,140

SHEET 03 OF 18

Fig. 3

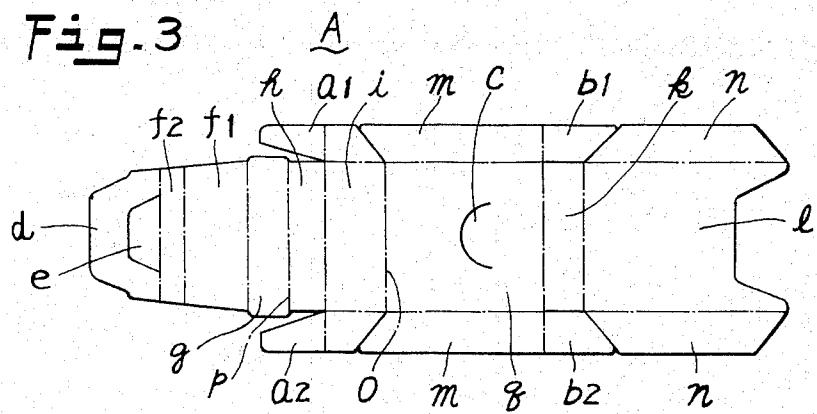
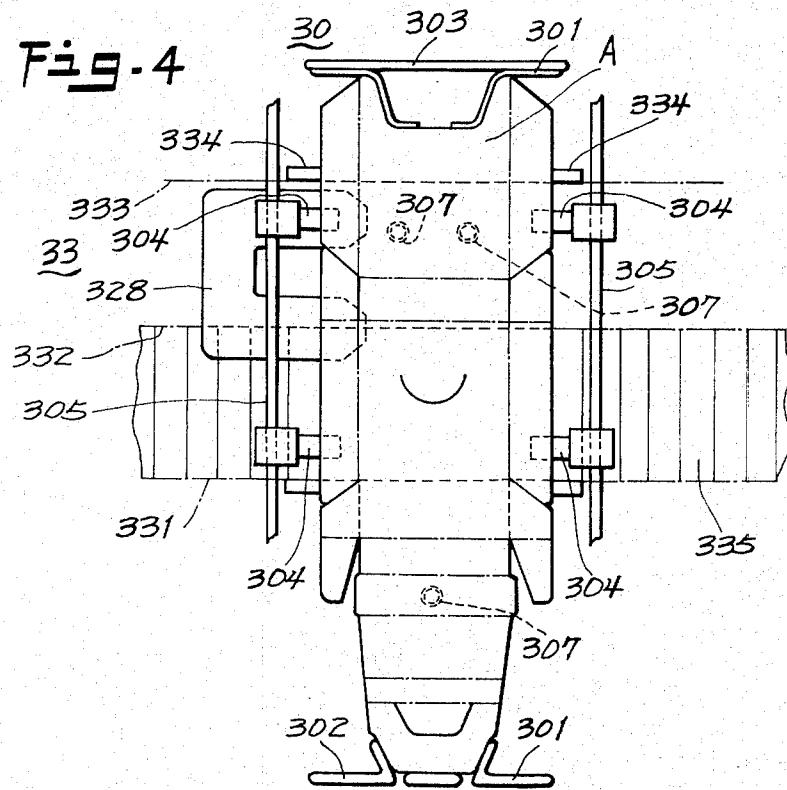



Fig. 4

PATENTED DEC 18 1973

3,779,140

SHEET 04 OF 18

Fig. 5

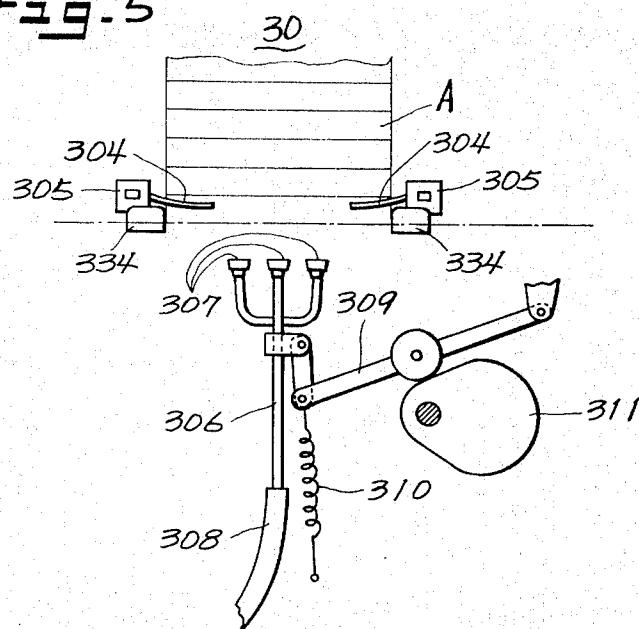
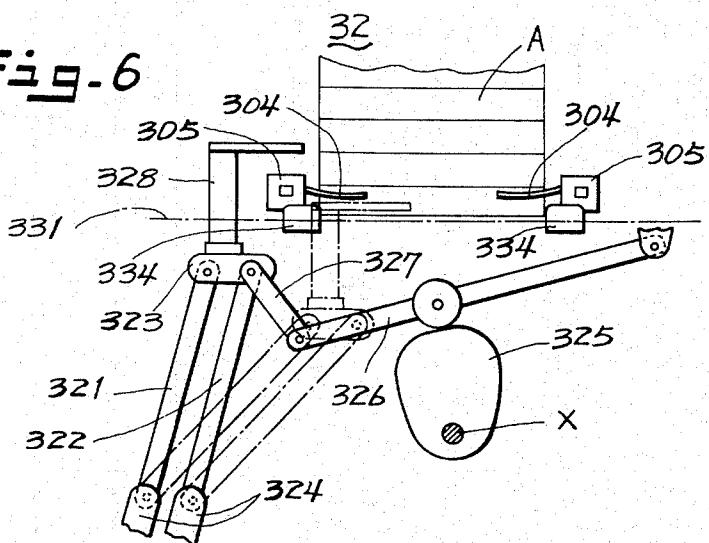



Fig. 6

PATENTED DEC 18 1973

3,779,140

SHEET 05 OF 18

Fig. 7

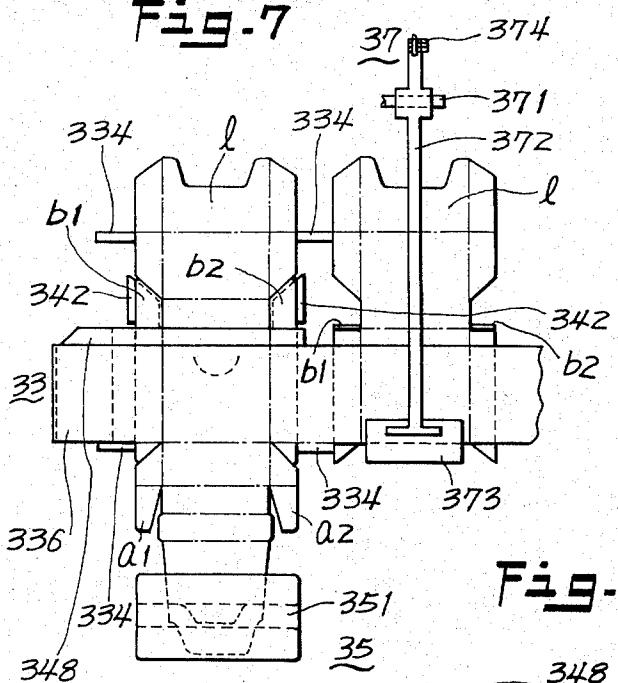
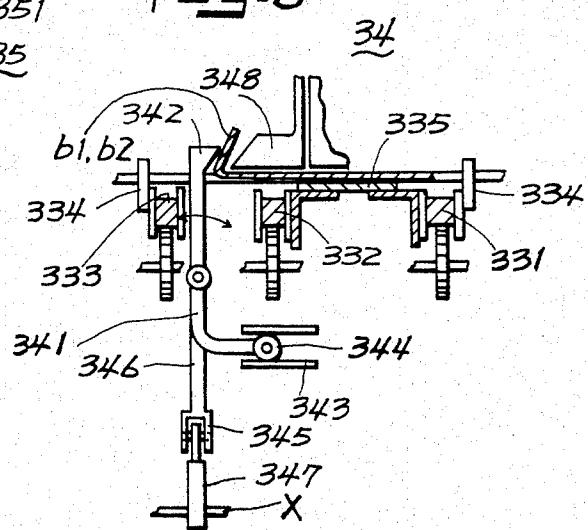



Fig. 8

PATENTED DEC 18 1973

3,779,140

SHEET 06 OF 18

Fig. 9

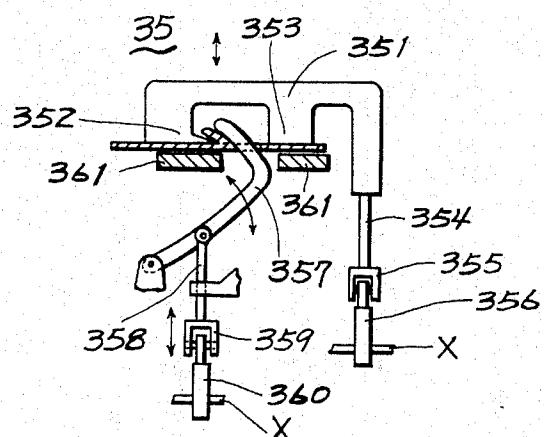
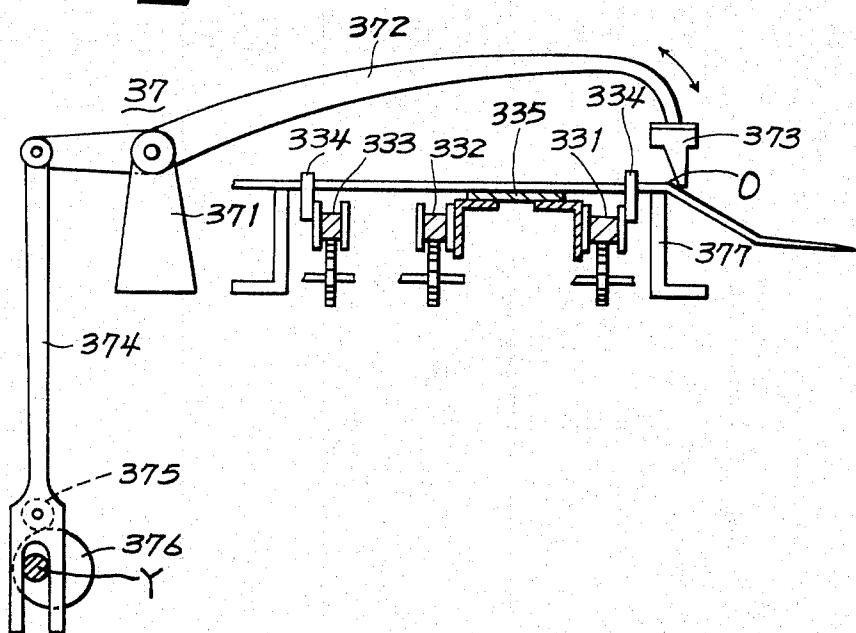



Fig. 10

PATENTED DEC 18 1973

3,779,140

SHEET 07 OF 18

Fig. 11

38

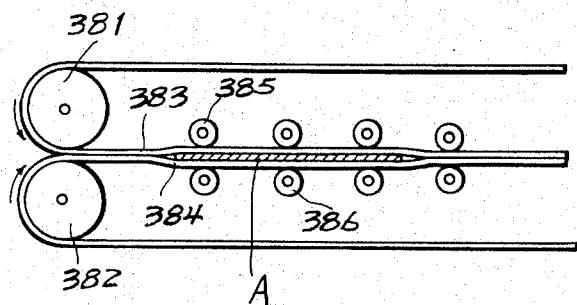
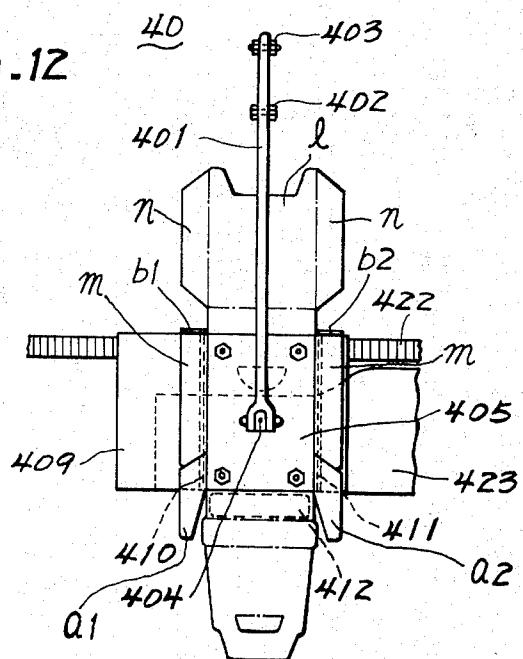



Fig. 12

40

PATENTED DEC 18 1973

3,779,140

SHEET 08 OF 18

Fig. 13

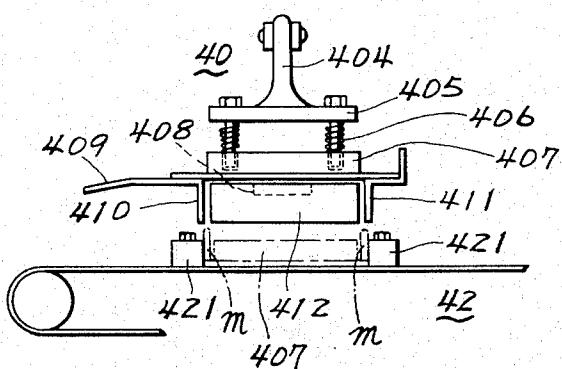
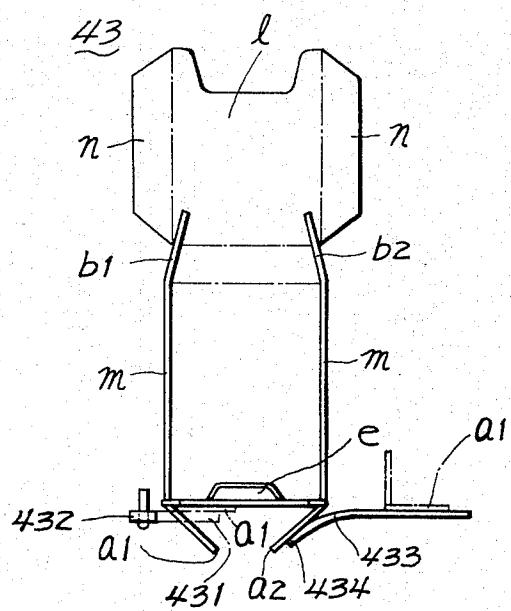



Fig. 14

PATENTED DEC 18 1973

3,779,140

SHEET 09 OF 18

Fig. 15

PATENTED DEC 18 1973

3,779,140

SHEET 10 OF 18

Fig. 16

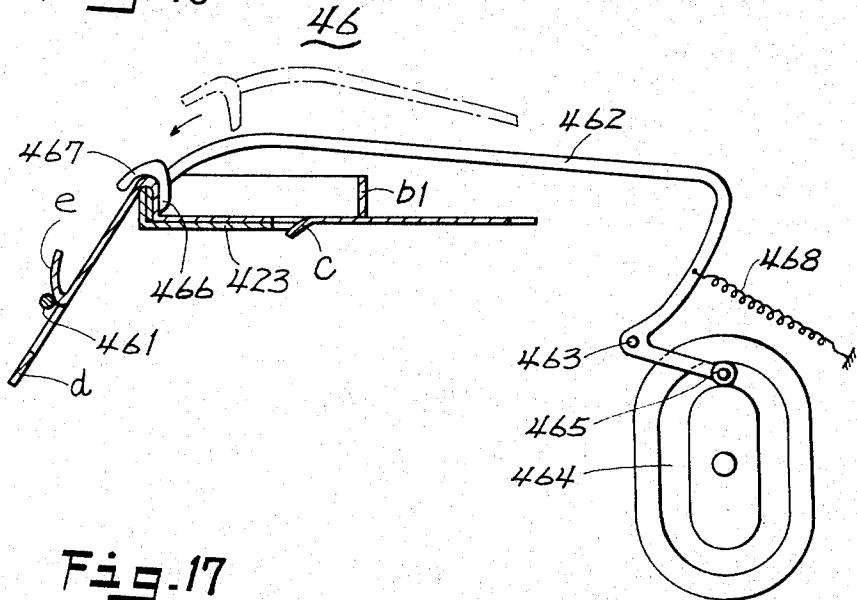
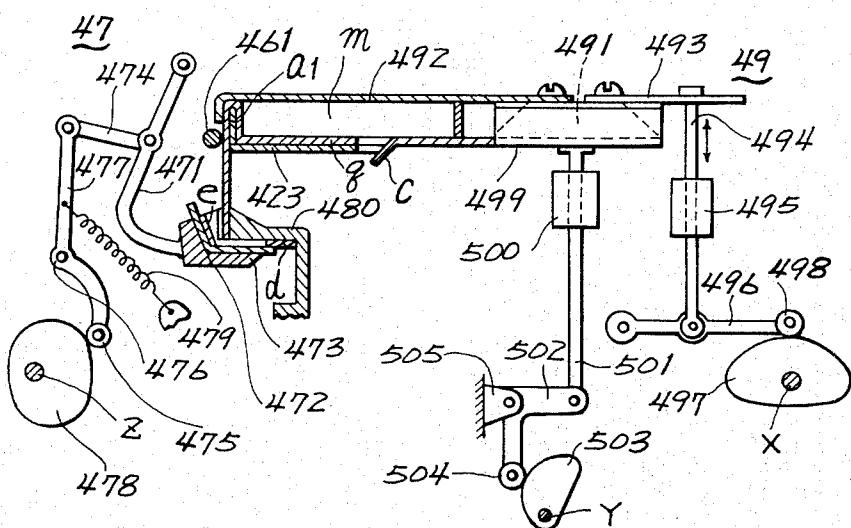



Fig. 17

PATENTED DEC 18 1973

3,779,140

SHEET 11 OF 18

FIG. 18

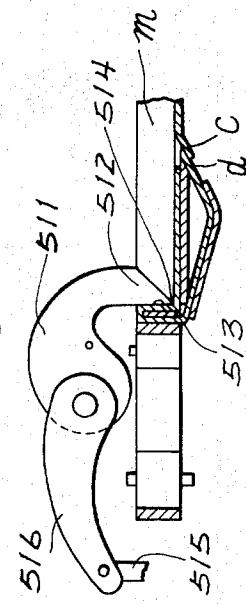
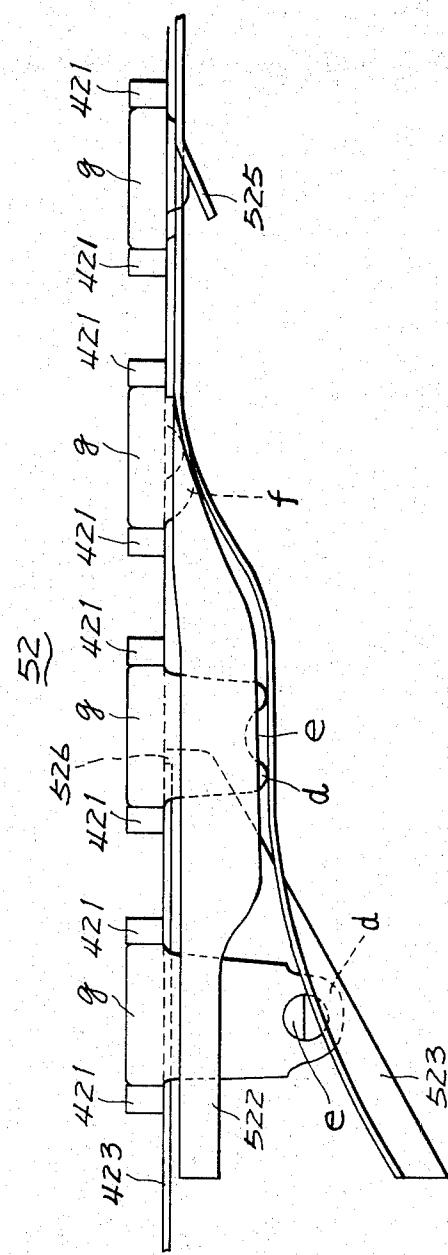



FIG. 19

PATENTED DEC 18 1973

3,779,140

SHEET 12 OF 18

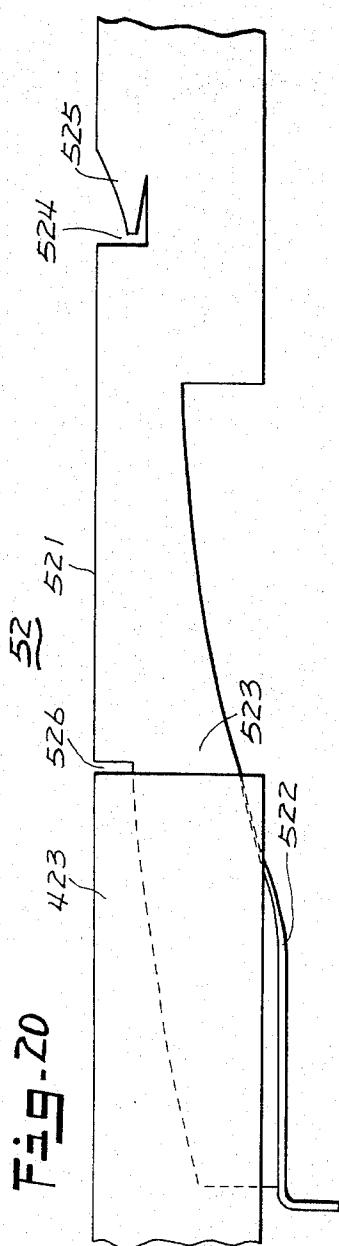


FIG. 20

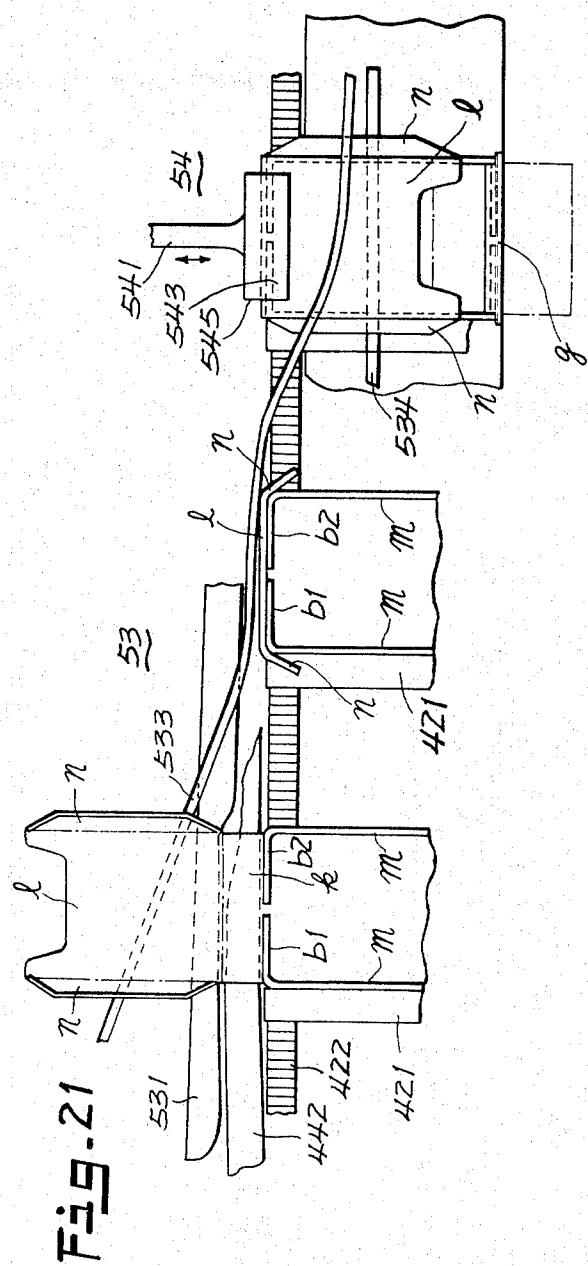


FIG. 21

PATENTED DEC 18 1973

3,779,140

SHEET 13 OF 18

Fig. 22

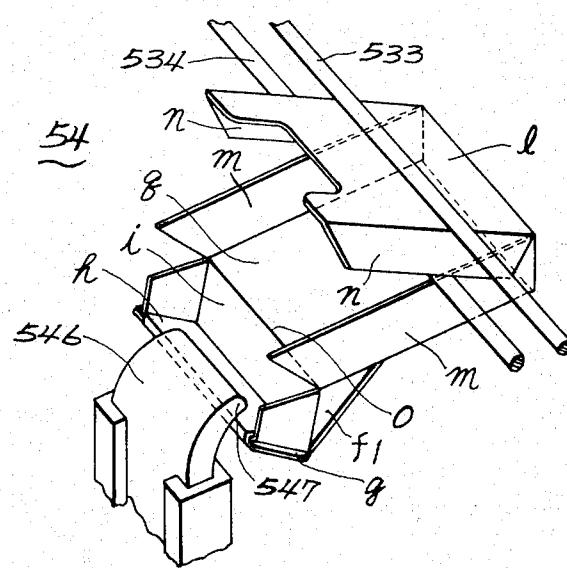
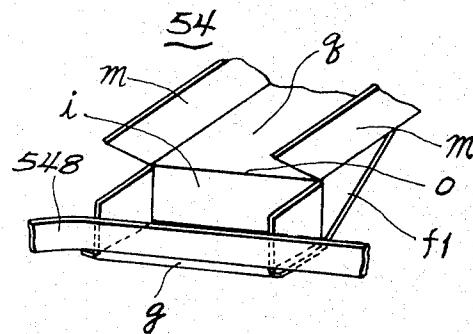



Fig. 23

PATENTED DEC 18 1973

3,779,140

SHEET 14 OF 18

Fig. 24

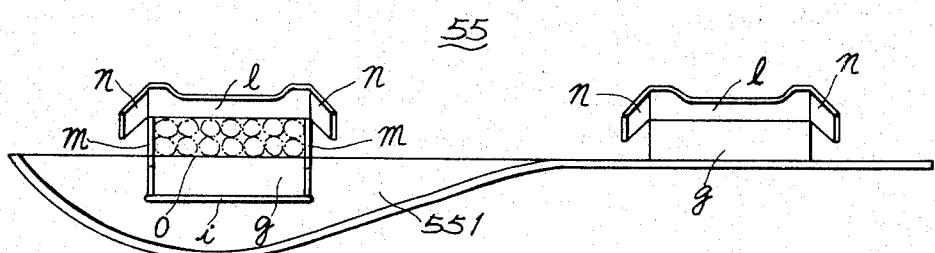
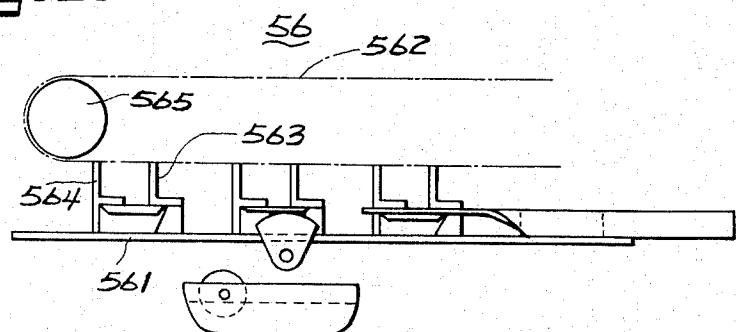



Fig. 25

PATENTED DEC 18 1973

3,779,140

SHEET 15 OF 18

Fig-26

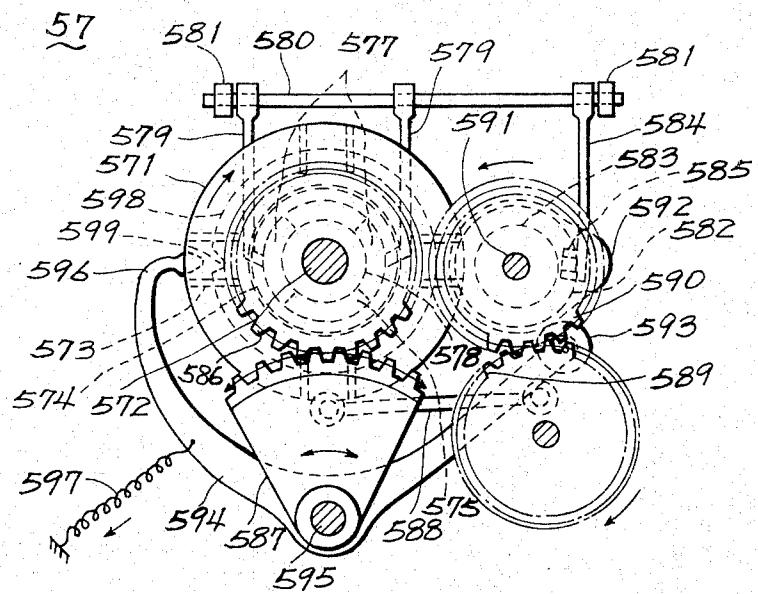
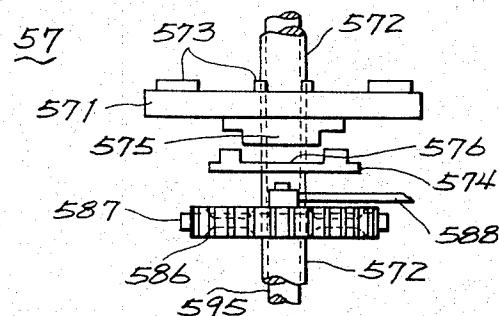



Fig.-27

PATENTED DEC 18 1973

3,779,140

SHEET 16 OF 18

Fig.-28

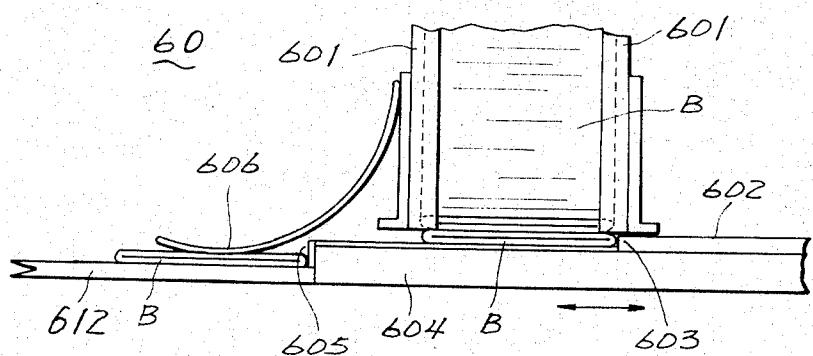
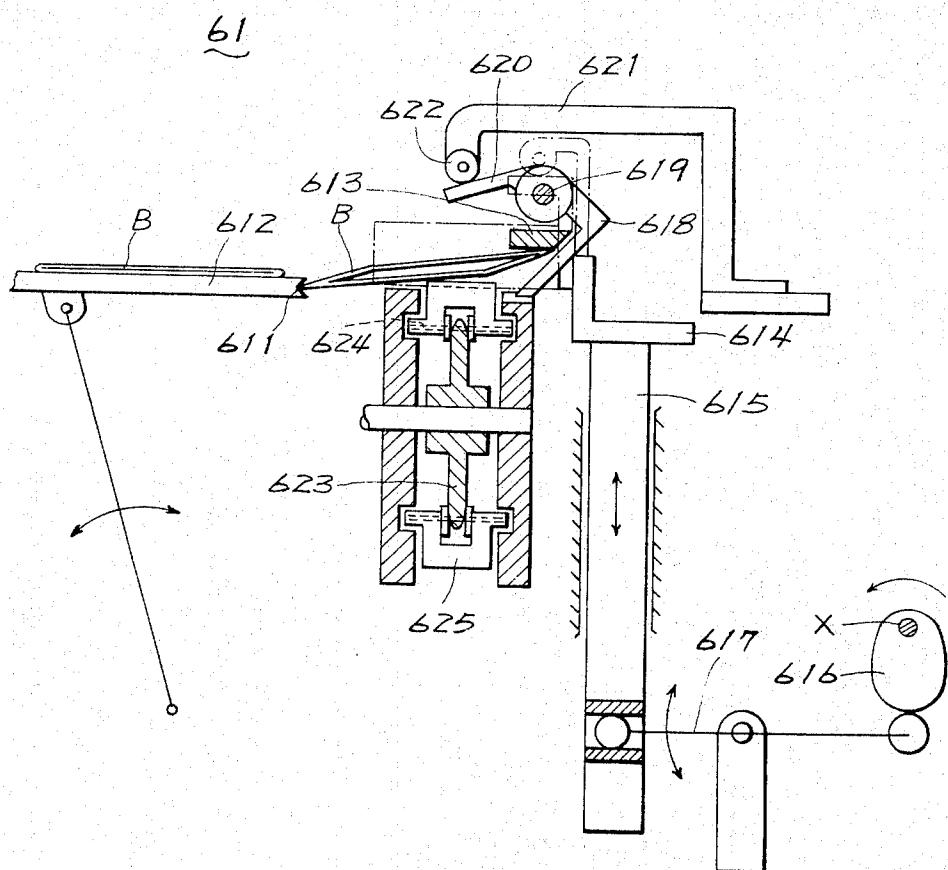



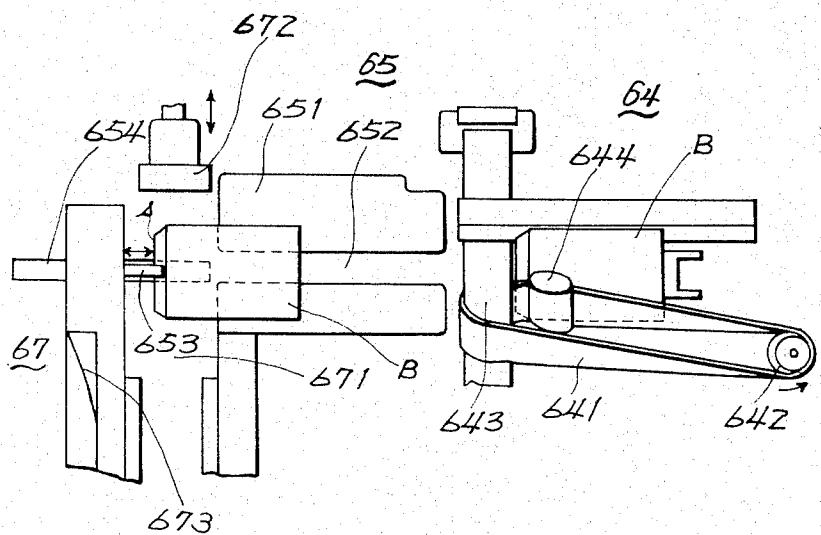
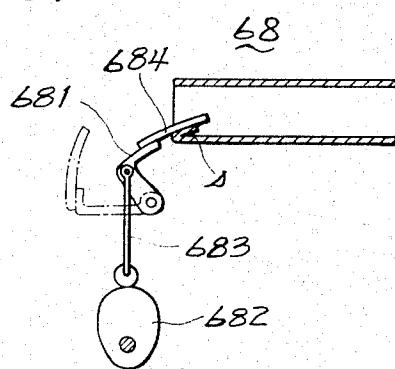
Fig. 29

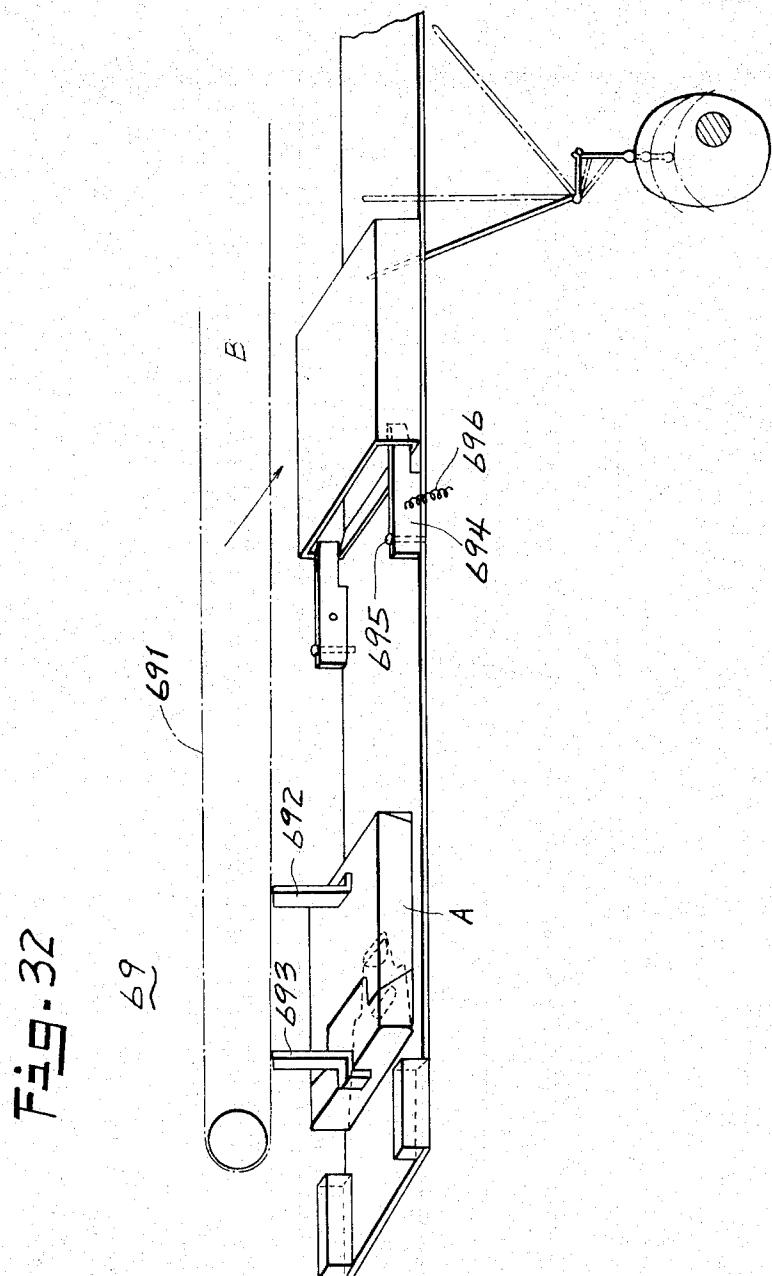
PATENTED DEC 1 1973

3,779,140

SHEET 17 OF 18

Fig. 30


Fig. 31

PATENTED DEC 18 1973

3,779,140

SHEET 18 OF 18

**METHOD AND APPARATUS FOR
AUTOMATICALLY SETTING UP OF PAPER CASES
WITH THE BENDABLE-HEADED INNER CASE**

This invention relates to a method and an apparatus for automatically setting up of paper cases, chiefly for cigarettes and chocolate, in which an inner case and an outer case are provided with an interlocking flap respectively, more specifically, relates to a method and an apparatus for automatically setting up of push-type paper cases wherein interlocking flaps of the inner case and the outer case engage with each other by pushing the bottom of the inner case and further pushing given to the bottom causes a bendable top portion or lid portion of the inner case to bend to one side to facilitate taking out of contents.

Conventional paper cases for cigarettes, chocolate and the like are so designed that the inner case is slipped in or out of the outer case by pushing its top or bottom part. Various methods and apparatuses for automatically setting up of such push-type cases have been available, but improvements on such conventional type cases have recently been made, whereby the top or lid portion of the inner case bends to one side as it is pushed at its bottom to make it easy to take out the contents. Such paper cases have already been used as containers for cigarettes, chocolate and the like. However, in setting up of such improved type paper cases, while it is required for the setting up of inner case to cut cardboard in the desired shape by punching, to give necessary cuts and ruled lines thereto, to turn down and up such an inner case blank, to make an interlocking flap at the turned-up part and to insert a top portion of the turned-up part into a locking portion cut in the back part, it is necessary for the outer case to have at one of its top edges an interlocking flap turned down inwards and finally the inner case must be inserted in the outer case with its interlocking flap turned down inwards. For setting up of the above-mentioned paper cases on the complete automation system, the conventional method and apparatus cannot be used and it has been earnestly desired to realize an apparatus whereby the above-mentioned paper cases are set up automatically.

The present invention has been made to meet the above requirements and provides a novel method and an apparatus for setting up, on complete automatic basis, of push-type paper cases in which the head portion of the inner case bends to one side as it is pushed at the bottom to facilitate taking out of the contents. More concretely, the present invention has for an object to provide a method and an apparatus for setting up of paper cases, wherein while inner case blanks which have been made by punching and cutting cardboard in the desired shape and piled up and transferred intermittently one by one and are bent along the ruled lines on automatic basis, a locking portion for preventing the inner case body from being pushed further than is necessary is put along the underside of a guide plate, an insert portion of the inner case is led from the underside of the guide plate to the upper side and is inserted between the back part and the locking portion (the inner case setting up process); outer case blanks which have been folded flat and piled up are transferred intermittently one by one on a line separate from the line for inner cases, are set up in the proper form and removed of strain, are pulled out as they are pinched at the interlocking flap and thereafter the interlocking flap is bent

inwards (the outer case setting up process) and finally the set up inner case is slipped in the set up outer cases.

The nature and advantages of the present invention will be understood more clearly from the following description made with reference to an embodiment and the accompanying drawings, in which

FIG. 1 is a diagram showing the arrangement of the apparatuses of the present invention.

FIG. 2 is a diagram explaining the setting up process of a paper case having an inner case whose head portion bends to one side on opening.

FIG. 3 shows an inner case as it is spread out.

FIG. 4 is a plan view of an inner case blank feeding device.

FIG. 5 is a side view of a suction device.

FIG. 6 is a side view of an inner case stabilizing apparatus.

FIG. 7 is a plan view of a bottom flaps inward bending device, an interlocking flap inward bending device and a bendable head portion creasing device.

FIG. 8 is a side view of the bottom flaps inward bending device.

FIG. 9 is a side view of the interlocking flap inward bending device.

FIG. 10 is a side view of the bendable head portion creasing device.

FIG. 11 is a side elevation of a device for nipping and transferring of blanks.

FIG. 12 and FIG. 13 are respectively a plan view and a front view of a device for bending inwards the three-sectioned sides of the back part.

FIG. 14 is a plan view of a device for bending the sides of the ceiling part.

FIG. 15 is a plan view of a device for bending of bottom flaps and a device for pasting of the outer side of the ceiling part.

FIG. 16 is a side elevation of a device for creasing the ceiling part.

FIG. 17 is a side elevation of a device for bending the ceiling part and a device for bending the sides of the front part.

FIG. 18 is a side elevation of a device for fixing the pasted part.

FIG. 19 is a front view of the main part of a device for bending and inserting the insert portion.

FIG. 20 is a plan view of the main part of the device shown in FIG. 19.

FIG. 21 is a plan view of a device for bending the front part and a device for bending the bendable head portion.

FIG. 22 is a perspective view of the main part of the device for bending the bendable head portion.

FIG. 23 is a perspective view of a levelling plate of the device shown in FIG. 22.

FIG. 24 is a front view of a lid closing device.

FIG. 25 is a front view of a transferring device at the latter stage.

FIG. 26 is a base view of a device for changing the course of the inner case.

FIG. 27 is a front view of the device shown in FIG. 26.

FIG. 28 is a side elevation of an outer case blanks feeding device.

FIG. 29 is a side elevation of a device for forming the rectangular tube.

FIG. 30 is a plan view of a shaping and finishing device, a pulling out device and a pushing out device.

FIG. 31 is a side view of a device for bending the interlocking flap of the outer case.

FIG. 32 is a perspective view of a device for inserting the inner case in the outer case.

The following description is made of the construction of the present invention, with reference to an embodiment and accompanying drawings.

FIG. 3 shows an inner case A, as it is spread out, having cut-ins (shown with solid lines in the drawing) and ruled lines (shown with chain lines in the drawing) and cut in the desired shape: (a₁) and (a₂) are flaps at the ceiling part, (b₁) and (b₂) are flaps at the bottom, (c) is a locking portion, (d) is an insert portion, (e) is an interlocking portion, (f₁) and (f₂) are folded down portions, (g) is an outer side of the ceiling, (h) is an inner side of the ceiling, (i) is a back of the bendable head, (k) is a bottom part, (l) is a front part, (m) is a side of the back part, (n) is a side of the front part, (q) is a back part, (o) is a crease line between the back part (q) and the back of the bendable head (i), and (p) is a crease line between the inner side of the ceiling (h) and the outer side of the ceiling (g).

The inner case blanks feeding device 30 (FIG.4) sucks inner case blanks and transfer them one by one onto the conveyor. A yoke body 301 which supports inner case blanks piled up thereon, is provided with a yoke 302 of L-shaped section and a yoke 303 of flat stand-like section at either side. It is further provided with support rods 305 which support elastic support pawls one-sidedly. Said support rods are located at such a distance that when an inner case blank curves slightly, it leaves said pawls. The suction pipe 306 is connected with a vacuum pump (not shown in the drawing), through the medium of a rubber pipe or the like 308 at its lower end, and a sucker 307 at its top end, and is fixed to the link 309. It is biased downward at all times by a spring 310. With the rotation of a cam 311 fixed to the main axis X, said sucker is actuated to do vertical motion and is so adjusted that at its highest position it reaches the under surface of the inner case blank. The main axis X is preferably supported by bearing or the like and is linked with a motor through the medium of a reduction gear and also connected with cams, links and the like which drive each device.

The inner case stabilizing apparatus 32 (FIG.6) is for stabilizing a sucked inner case blank A on the chain. It is so designed that two rods 321, 322 in parallel with each other, with a seat 323 at their upper ends and with their lower ends rotatably connected to fixing plates 324, repeat reciprocating motion in diagonal direction, keeping their parallelism, by a link 326 and a coupling rod 327 linked thereto with the rotation of a cam 325 fixed to the main axis X. At this time, a stabilizing press 328 secured to the main axis X. At this time, a stabilizing press 328 secured to the upper side of the seat 323 is pushed on the upper surface of a sucked inner case blank A, presses it lightly, does reciprocating motion in diagonal direction cooperatively with the descending of the suction pipe 306 and stabilizes the inner case blank A on the chain. For this purpose, the stabilizing press 328 is provided in parallel with the seat 323.

The transferring device at initial stage 33 stabilizes fed inner case blanks A so that they may not rise and transfer them intermittently. Provided in parallel at the underside of the inner case blank feeding device 30 are endless conveyor chains 331, 332, 333 in three rows, of which 331 and 333 (outer conveyor chains) are pro-

vided with pawls 334 extending over the whole circumference, two at regular intervals (an interval almost equal to the depth of an inner case blank). Provided between conveyor chains 331 and 332 is a caterpillar 335 which causes said conveyor chains to do intermittent motion. Inner case blanks are transferred as they are held between conveyor chains 331, 332, 333 and an endless belt 336 put on a driving pulley (not shown in the drawing) which is driven intermittently in synchronism with said conveyor chains.

The bottom flaps inward bending device 34 (FIG.8) pushes up flaps (b₁), (b₂) from below and then bends them inwardly. A L-shaped rod 341 has at its upper end a projection portion 342 and at its lower end a roller 343 which slides laterally in a horizontal guide channel 343. Pivotally secured to the central part of said L-shaped rod is a push-up rod 346 carrying at its lower end a roller 345. By the rotation of a cam 347 secured to the main axis X, said push-up rod is caused to do vertical motion, which causes the L-shaped rod 341 to do circular reciprocating motion, with the result that bottom flaps (b₁), (b₂) are pushed up and then bent inwardly. A stationary upper mould 348 which is fixed slightly above the inner case blank acts as both a preventor of the inner case blank from rising and a press plate against afore-mentioned projection 342.

Upon inward bending of bottom flaps (b₁), (b₂), inward bending of the interlocking flap (e) is effected by the interlocking flap inward bending device 35 (FIG.9), which pushes up the interlocking flap (e) from below and then bends it inwardly.

An E-shaped press yoke 351 has at its one end a press plate 352 having an acute-angled projection and at its central part another press plate 353. The other end of said press yoke 351 is connected to a roller 355 via a coupling rod 354. Under this arrangement, the press yoke 351 does vertical motion by the rotation of a cam 356 fixed to the main axis X. A L-shaped push-up rod 357 pushes up the interlocking flap (e) and then bends it inwardly. A coupling rod 358 is pivotally secured to the intermediate part of said L-shaped push-up rod. Under this arrangement, the coupling rod 358 is caused to do vertical motion by a roller 359 provided at one end of said coupling rod and a cam 360 fixed to the main axis X, which causes the L-shaped push-up rod 357 to do reciprocal motion in diagonal direction. Numeral 361 denotes a fixed yoke.

The bendable head portion creasing device 37 (FIG.10) bends the part (i)-(d) downwardly along the ruled line between the back part (q) and the back of bendable head (i) and creases it. To a top end of a lever 372 pivotally secured to a fulcrum 371 is fixed a press mould 373 and to the other end of the lever is pivotally secured a coupling rod 374 carrying at its lower end a yoke, at the base end of which is provided a roller 375. With the rotation of a cam 376 provided at the main axis Y, the coupling rod 374 is caused to do vertical motion, by which a press mould 373 provided at the tip of the lever 372 does circular motion. Numeral 377 denotes a fixed yoke. The main axis Y is provided separately from the main axis X which rotates continuously.

The nipping and transferring device 38 (FIG.11) transfers the inner case blanks, whose bottom flaps (b₁), (b₂) and interlocking flap (e) have been bent by the preceding processes, to the following process and also bends the interlocking flap (e) toward the ruled line (o). Endless belts 383, 384 which are driven by

driving pulleys 381, 382 and others, are arranged adjacent to each other and are supported properly by carrier rollers 385, 386 and other. The lower endless belt 384 is larger in width than the upper endless belt 383 and the interlocking flap (e) is loaded on that wider part, above which a guide plate 423 is provided. The starting end portion of said guide plate is arranged perpendicularly to the endless belt 384 or in such a manner that its underside is slightly slanted leftward so as to lift up the interlocking flap (e). Therefore, the guide plate presents such a curved surface state that it slants inwards by degrees as it advances and becomes parallel with the endless belt 384 at its terminal end portion.

The three-sectioned side bending device 40 (FIG.12) catches the inner case blank A sent from the aforementioned nipping and transferring device 38 at the prescribed position and by pushing it out from above by the press plate, bends sides (m), (m) of the back part and the part ranging from the inner side of the ceiling (h) to the insert portion (d) upwardly and perpendicularly to the back part (q). A rod 402 which does vertical motion by the cam device which gears with the main axis X is pivotally secured to the intermediate part of a lever 401. A fulcrum 403 and a rising & falling rod 404 are pivotally secured to the rear end and the top end respectively of said lever. Fixed to the lower end of said rising & falling rod is a support plate 405, below which is fitted through the medium of a spring 406 a press plate 407 having a width and a length corresponding to the width of the back part (q) and the total length of (q) and (i). At the under surface of the nearly central part of said press plate is provided a push-down projection 408 having almost the same section as that of the locking portion (c) in such a fashion that it protrudes from the under surface (FIG.13). A transferring plate 409 is positioned slightly below the under surface of the press plate 407 when the press plate is at the highest position and sends the inner case blank A which was fed by endless belts 383, 384 and others below the three-sectioned side bending device 40. A lower templet at the back 410 and a lower templet at the front 411 are arranged in such a manner that they are slightly wider than the depth of the press plate 407. Numeral 412 denotes a right-side lower mould, which bends the part ranging from the inner side of the ceiling (h) to the insert portion (d) along the ruled line between the back of bendable head (i) and the inner side of the ceiling (h) of the inner case blank A. Therefore, said right-side lower mould has a depth equal to that of the press plate 407.

The intermediate transferring device 42 (FIG.15) receives the inner case blank A pushed out by the three-sectioned side bending device 40 into the mould yoke 421 and transfers it intermittently. The mould yoke 421 which is fixed open-sidedly by an endless chain 422 at regular intervals and extending over the whole circumference, has the depth equal to that of the back part (q), the width equal to the total width of the back part (q) and the back of bendable head (i) and the depth equal to that of the side (m) of the back part (q) of the inner case blank A. Its right side and left side are open. A guide plate 423 transfers the locking portion (c) pushed down upon bending of the three-sectioned side, along its underside, and at the same time holds the afore-mentioned mould yoke 421 horizontally.

The ceiling flaps bending device 43 (FIG.14) bends the ceiling flaps (a₁), (a₂) toward and in tight contact

with the back of the inner side of the ceiling (h). A tucking-in plate 431 does circular motion with a pivot 432 as a fulcrum by a crank device connected to said pivot, whereby bending the ceiling flap (a₁). A doubling plate 433 is provided oppositely to the tucking-in plate 431. The starting end 434 of said doubling plate starts with the backward curving. In proportion to the advance of the mould yoke 421, it gradually approaches the back of the inner side of the ceiling (h) and becomes parallel with the direction of the advance of said mould yoke, while keeping a gap corresponding to the width of the ceiling flaps (a₁), (a₂) between the inner side of the ceiling (h) and itself, and is connected to the immediate front of the ceiling bending device 46.

15 The bottom flaps bending device 44 (FIG.15) is for bending still further the bottom flaps (b₁), (b₂) which have been bent and for resting them on the bottom part K accurately. A rod 441 gearing with the main axis X via the pulley and the bevel gear is provided above the 20 afore-mentioned mould yoke 421. To the extreme end of said rod is fixed a fan-shaped rotary plate 443, which does rotation. A doubling plate 442 is provided, ranging from the bottom flaps bending device 44 to the front part bending device 49, close to and in parallel 25 with the endless chain 422.

The ceiling outer side pasting device 45 (FIG.15) effects pasting on the under surface of the outer side of the ceiling (g). It is provided with a pasting roll 452 which is so designed as to be soaked in paste in the 30 paste container 451. A fan-shaped pasting plate 454 is fixed to the perpendicular axis 453 geared with said roll. Said fan-shaped pasting plate having the thickness almost equal to the width of the outer side of the ceiling (g), is so designed that it makes contact with the pasting roll 452 and also the under surface of the outer side of the ceiling (g) during rotation.

The ceiling creasing device 46 (FIG.16) creases the part ranging from the outer side of the ceiling (g) to the insert portion (d), along the ruled line between the 40 inner side of the ceiling (h) and the outer side of the ceiling (g). A guide & bending rod 461 starts with the position near the ceiling outer side pasting device 45 and is positioned a little higher than the distance to the inner side of the ceiling (h)-flap (f₁) bent at a right angle to the back part (q). It makes contact with the inside of the insert portion (d) in such a state that it is interposed between the pushed out interlocking flap (e) and the insert portion (d) and is curved downwardly and rightwardly by degrees in the direction of the advance of the mould yoke 421. Under this arrangement, it bends the outer side of the ceiling (g)-insert portion (d) in perpendicular state toward the right side. A creasing rod 462 is pivotally secured, at its one end, to a roller 465 connecting to a grooved cam 464. Provided at the other end of said creasing rod are a perpendicular part 466 which makes contact with the whole surface of the inner side of the ceiling (h) and a creasing mould 467 which bends and creases the part ranging from the outer side of the ceiling (g) to the insert portion (d) along the ruled line between the inner side of the ceiling (h) and the outer side of the ceiling (g). It is biased upwardly by means of a spring 468.

The ceiling bending device 47 (FIG.17) bends the insert portion (d) toward the left at a right angle to the flap (f₁) and bends the interlocking flap (e) in the direction opposite to the insert portion (d). A L-shaped rod 471 is pivoted rotatably at its upper end and is fit-

ted with a press mould 473 having an obtuse-angled cut-in 472 as a presser of the interlocking flap (e) at its lower end. It is pivotally secured, at its intermediate part, to a coupling rod 474, to which is connected a lever 477. One end of said lever is fixedly rotatably to a roller 475 and the other end does reciprocating motion with a fulcrum 476 as a center. A cam 478 is fixed to the main axis Z and is forced to make constant contact with the roller 475 by means of a spring 479. The main axis Z is provided separately from the main axis X. A fixing templet 480 makes a pair with the press mould 474 and does bending of the insert portion (d).

The device for bending sides of the front part 49 (FIG.17) bends the sides (n),(n) of the front part upwardly and perpendicularly to the front part (l) and at the same time ensures the crease at the ruled line (p) between the inner side of the ceiling (h) and the outer side of the ceiling (g). A cubic press mould 491 has the width and the depth corresponding to those of the front part (l). It is fitted with a L-shaped creasing plate 492 and a support plate 493 on either side. Said support plate 493 is fixed open-sidedly to a rising & falling rod 494, whose lower end is pivotally secured to a coupling rod 496 through the medium of a shock absorber 495. It is caused to do vertical motion by a cam 497 fixed to the main axis X and a roller 498 connecting to said cam. Accordingly, the afore-mentioned press mould 491 also does vertical motion. One end of the L-shaped creasing plate 492 is bent downward at right angles, whereby ensuring the creasing of the ruled line (p). A receiving mould 499 having a U-shaped section which fits the afore-mentioned press mould 491, is fixed to a rising & falling rod 501 through the medium of a shock absorber 500. The lower end of the rod 501 is pivotally secured to a link 502, which carries at one end a roller 504 connecting to a cam 503 fixed to the main axis Y and is rotated by the action of said roller and a fulcrum 505, causing the rising & falling rod 501 to do vertical motion. The press mould 491 and the receiving mould 499 are so adjusted as to engage with each other on the same plane as the back part (q).

The pasted part fixing device 51 (FIG.18) sticks the outer side of the ceiling (g), which has been pasted, to the inner side of the ceiling (h) with ceiling flaps (a₁), (a₂) therebetween and fixes them. A press rod 511 carries at one end a press mould 512 having a V-shaped section which comprises a plane part 513 to make face-contact with the inner side of the ceiling (h) when the press rod 511 reaches the lowest position by its circular motion and a point 514 which fits a bending line between the inner side of the ceiling (h) and the back of bendable head (i). The rising & falling rod 515 which gears with a conventional grooved cam is connected to the afore-mentioned press rod 511 through the medium of a coupling rod 516.

The insert portion bending and inserting device 52 bends further the folded down portions (f₁),(f₂) which have been bent gradually by the before-mentioned guide & bending plate 461 from the perpendicularly upward bend to the downward bend and further to the perpendicularly downward bend by the ceiling bending device 47. The guide & bending rod 461 which starts at the neighborhood of the ceiling outer side pasting device 45 extends to the front of the ceiling bending device 47. At the back of said ceiling bending device, a guide plate 521 is arranged under the locking portion guide plate 423. The starting end of said guide plate

5 branches to an insert portion guide plate 523 which slants with its right side upward together with a folded down portions guide plate 522. The starting end of said folded down portions guide plate is curved rightward and is so provided that folded down portions (f₁),(f₂) are inserted between said folded down portions guide plate and the locking portion guide plate 423. It is so designed that the insert portion guide plate 523 is made gentle in its inclination by degrees, is made horizontal and is again made to slant with its left side upward, whereupon its position relative to the locking portion guide plate 423 is reduced. Thus, the folded down portions guide plate 522 turns from its perpendicular state to the inclination with its right side upward and makes its angle of inclination gentle by degrees.

10 The left end of the insert portion guide plate 523 keeps the same level with the locking portion guide plate 423, with a small gap therebetween. The left end of the insert guide plate 523 and the right end of the folded down portion guide plate 522 are also kept on the same level and maintain horizontally the mould yokes 421 supported open-sidedly by the endless chain 422. The guide plate 521 has at its left end a notch 524, which allows a triangular projection 525 to project downward and effects lifting of the interlocking portion (c). Then, the guide plate 521 is maintained horizontally and extends to the front of the last stage transferring device.

15 The front part bending device 53 (FIG.21) bends perpendicularly the front part (l) sent in horizontal state and put it upon the sides (m),(m) of the back part (q). A front part guide plate 531 arranged in parallel with the doubling plate 442 about its terminal end is formed in V-shape at its right end so that it is made easy to lift and guide the front part (l) of the inner case blank or it spreads out like an unfolded fan in the direction of advance, on the other hand, the doubling plate 442 is tapered to cope with the spreading out (like an unfolded fan) of the front part guide plate 531, keeping a gap therebetween. A guide rod 533 is curved downward to the right side and an inner surface support rod 534 is provided horizontally below the right side of said guide rod.

20 The bendable head portion bending device 54 (FIG.22, FIG.23) effects pushing down of the bendable head portion in the case where it is necessary to put contents in the inner case and also effects levelling so as to make it easy to bend the bendable head portion 545 along the ruled line (o). An inner case push-out mould 541 (FIG.21) does lateral reciprocating motion by the cam device connected to the coupling rod and has a horizontal surface 543 and a perpendicular surface 545, the former presses the outside of the front part (l) from above and the latter makes contact with the outer surface of the bottom part (k). A bendable head push-down plate 546 (FIG.22) is geared with the cam device so that it does circular motion by being guided by the curved track, and with the advance of the inner case push-out mould 541, it rises gradually. At the top of the bendable head push-down plate 546 is provided a pawl 547 which engages with the edge portion of the inner side of the ceiling (h). A levelling plate 548 is arranged in front of the bendable head push-down plate 546 and keeps the bendable head in pushed down state. The end of said levelling plate is curved outwardly so that it gradually approaches the ceiling flaps (a₁),(a₂).

The bendable head closing device 55 (FIG.24) is to close the bendable head which has been opened to insert proper contents therein. A return guide plate 551 is mounted vertically to the machine direction with its one end fixed to the right end of the guide plate 521 and gradually curves upward at the right side, reducing its width, and comes on the same plane as the guide plate 423. As shown by FIG.25, the last stage transferring device 56 is to transfer the inner case set up through various preceding devices in the direction perpendicular to the preceding transferring direction so as to insert the set up inner case into the outer case. A guide bottom plate 561 which meets at right angles with the guide plate 521 is fixed in the same plane as said guide plate and an endless chain 562 is set in parallel with and above said guide bottom plate. Inner case support yokes 563 and front part pressing yokes 564 are provided at regular intervals, extending over the whole circumference of said endless chain which is driven by intermittent driving sprocket wheels. The inner case direction changing device 57 (FIG.26, FIG.27) is, after receiving the inner case fed from the last stage transferring device 56, to change the direction of the inner case by the angle of 90°. Numeral 571 denotes a turntable which is made rotatable with a shaft 572 as the center. Numeral 573 denotes four inner case support means provided protrudingly and radially on the surface of the turntable 571. Numeral 574 denotes a clutch which is put on the shaft 572 slidably in axial direction and carries an upward concave member 576 to fit with a downward convex member 575 under the surface of the turntable 571. Numeral 577 denotes a clutch holding means which lightly holds the clutch from both sides of a groove 578 which is made annularly at the side of the clutch. Numeral 579 denotes a crank, to one end of which fixes said clutch holding means 577 and the other end of which is fixed to a rod 580 which makes reciprocating motion. Numeral 581 denotes a bearing of the rod 580 and numeral 582 is a cam having on its periphery an uneven curved cam groove 583. Fitted rotatably in said cam groove 583 is a cam roll 585 which is secured on one end of an arm rod 584 whose end base end is fixed to the rod 580. Numeral 586 denotes a gear which is mounted fixedly below the clutch 574. Numeral 587 is a sector which is secured to a frame so that it may be engaged with the gear 586. Numeral 588 denotes a coupling rod with one end thereof secured to the upper surface of the sector 587 and the other end secured to the upper surface of a gear 589. Numeral 590 is a gear fixed around the same shaft as the cam 582 and makes meshing motion with the gear 589. The operation of the above means is described hereinafter. The rotation of the cam 582 which is geared with the main shaft X causes oscillatory motion of the cam roll 585 along the curved line of the cam groove 583, which causes the arm rod 584, the rod 580 and the crank 579 to make reciprocating motion, causing vertical movement of the clutch holding means 577 and thereby making the convex member 575 at the back of the turntable 571 engage with or disengage from the concave member 576 at the surface of the clutch 574, at a certain spaced period. On the other hand, the rotation of the gear 590 which rotates on the same shaft as the cam 582, causes rotation of the gear 589 engaged therewith and accordingly causes the reciprocating motion of the coupling rod 588, which induces the reciprocating motion of the sector 587 and

as a result which causes the accurate one fourth rotation of the turntable 571 at the desired intervals and speed in order to effect an engagement of the clutch 574 during each reciprocating motion of said sector. 5 Numeral 591 denotes a shaft of the cam 582, on which shaft an eccentric cam 592 is provided in addition. Numeral 593 is a cam roll which makes contact with said cam 592 and numeral 594 denotes a lever which carries at one end the cam roll 593 and a projected pawl 596 10 at the other end, with its center secured at a fulcrum 595. Numeral 597 is a spring which is so provided as to pull a free end of the lever 594 outwardly. Numeral 598 denotes a control disk below the turntable 571, which control disk has an engageable recess 599 on its periphery and is provided at such a position as to be controlled by the pawl 596. The pawl 596, at the end of the lever 594 of the roller 593 which makes contact with the eccentric cam 592, engages with the recess 599 when a longer diametric portion of the eccentric cam makes contact with the roller, whereby ensuring locking of the turntable 571 after its one-fourth revolution. 15 The outer case blanks feeding device 60 (FIG.28) feeds outer case blanks B piled up flat one by one and forms them into tubes, cooperatively with the rectangular tube forming device 61 shown by FIG.29. An outer case blank supporting yoke 601 is provided with four angle bars set upright, in which flat folded outer case blanks B are piled. Two push-out reciprocating rods 602 are so provided that they are in parallel with each 20 other and make contact with the lower face of the lowermost outer case blank B and make continuous reciprocating motion by a cam train. A stepped portion 603 faces the rear end of the piled outer case blanks B on retreating of the upper face of said rod 602 and the tip of the rod 602 is adapted to feed the outer case blank B to the next process upon its forward drive. Two guide rods 604 provided fixedly in parallel with each other and along the side of the rod 602, act as rails for the rod 602 and have a depressed portion 605 at a position 25 where the rear end of the outer case blank B in the intermediate drive comes. Thus, the blank B pushed out by the stepped portion 603 of the rod 602 falls onto the depressed portion 605 when it is driven forward to said depressed portion and rests there temporarily. At this time, the tip of the rod 602 lies at a far forward position and drives forward the preceding outer case blank B resting at the depressed portion 605 to feed it to the next process. 30 40 45 50 55 60 65 The condition of the utmost forward drive of the reciprocating rod 602 is as described before. After the utmost forward drive, the rod retreats by itself, leaving behind a blank B at the tip portion and another blank B at the intermediate portion. When the stepped portion 603 comes back to the rear end of the outer case blank B, the rod discontinues its retreat and resumes forward drive, whereupon the stepped portion 603 pushes, at the tip, the blank B and the rod 602 pushes the preceding blank B resting temporarily on the depressed portion 605 to the desired position. Every blank B stops and rests temporarily at said portion 605 and loses support by the rod 602 when the rod 602 retreats to the utmost. By repetition of the above process, outer case blanks B are fed to the desired portion one by one. Numeral 606 is a spring which supports the blank from above and lead it to the proper place. The rectangular tube forming device 61 (FIG.29) is to form the flat folded outer case blank B into a rectan-

gular tube and transfer said tube to a conveyer. A press bar 612 having at its tip a wedge-shaped notch 611 is provided in such a manner that it is enabled to make reciprocating motion by a link mechanism, whereby an outer case blank B is pushed forward as it is caught by the tip of the bar.

Provided ahead the bar 612 is a \rightarrow shape guide yoke 613 which is connected to a L-shaped push-up bar 614 for making vertical motion. Secured to said push-up bar is a vertically oscillating bar 615 which makes vertical motion by a link mechanism 617 gearing with a cam 616 fixed to the main axis X. The \rightarrow shape guide yoke 613 is provided with a longitudinal groove in which a L-shaped guide yoke 618 is fitted to make circular motion as it is crossing said guide yoke. The L-shaped guide yoke 618 is connected to a fulcrum 619, to which is connected a lever 620 which oscillates, supported by a roller 622 at the end of a fixed yoke 621 mounted above said lever. A conveyer chain 624 to be driven by a sprocket 623 is arranged in order to transport outer cases set up in rectangular form. Said conveyer is provided with a pawl 625 at a certain spaced relationship in order to transfer the outer cases intermittently.

The shaping device (FIG.30) is to shape an outer case by folding an outer case blank over so as to remove the dynamical stability of the case to return to its original flat shape. Numeral 641 is a shaping belt which is arranged at the left side of the machine direction of a conveyer chain 624 and is driven by belt pulleys 642 and 643, rotating axis of which are perpendicular to each other.

While the front belt pulley 642 has its rotating axis in the vertical direction, the rear belt pulley 643 has its rotating axis in the horizontal direction. Provided at the intermediate of the shaping belt 641 is a press roller 644. The outer case blank B which has been formed into a rectangular tube is gradually pressed by the shaping belt 641 while it is being transferred as it is caught by a pawl 625 of the conveyer chain 624. Thus, the rectangular tube is freed from strain. The drawing out device 65 (FIG.30) is to catch and draw forward the rectangular tube which has been fed by the conveyer chain. Conveyer chains 624 are arranged in several rows, starting from the rectangular tube shaping device 61 to the shaping device 64, and are provided with pawls 625 at regular intervals over the whole circumference. Numeral 651 is a support bottom plate and a guide groove 652 is provided at the center thereof, in the machine direction. Provided in said guide groove are a holding means 653 and a sleeper 654 which are adapted to slide up and down in a pair. The outer case B is drawn forward as it is held between said holding means and said sleeper.

The push-out device 67(FIG.30) is to push out the draw-out rectangular tube for outer case in a direction at a right angle to the drawing device, during which an interlocking flap of outer case (s) is folded toward the inside of the rectangular tube. A support bottom plate 671 is provided on the same plane as the aforementioned support bottom plate 651 at a right angle thereto. Slidably provided at said support plate 671 is a push-out bar 672 which moves back and forth by crank. Toward the forward right side of the push-out bar 672, is arranged an interlocking flap guide plate 673, which leads to the interlocking flap folding device 68. The pushout bar 672 feeds the outer case B, at one stroke, to the interlocking flap folding device 68. The

interlocking flap guide plate 673, which has a cut of curved surface gradually uprising in the machine direction, folds the outer case interlocking flap (s) vertically.

5 The interlocking flap folding device 68 (FIG.31) is to fold the interlocking flap which stands upright toward the inside of the outer case. A L-shaped push-up rod 681 is rotatably supported by a shaft with one end thereof as a fulcrum. Rotatably connected to the intermediate of the device 68 is a coupling rod 683 linked with a cam 682. A circular arc-shaped plate 684 is fixed to the top of said L-shaped push-up rod, which makes circular motion in accordance with vertical motion of the coupling rod 683.

15 The insert device 69 (FIG.32) is to insert a set up inner case into a set up outer case. An endless chain 691 is provided with an inner case support rod 693 and an inner case press rod 692 at a certain spaced relationship respectively, over the whole circumference.

20 For the outer case B, a guide pawl 694 is supported rotatably by a bolt 695 at the left end thereof and is pulled outward to a slight degree by means of a spring 696 and the other end of said pawl is curved inward to a slight degree.

25 As described hereinbefore, the present invention makes it possible to set up automatically a paper case, wherein the head portion or lid portion of the inner case bends outwardly on opening by pushing the bottom of the inner case and particularly makes it possible

30 to save much labor, compared with the known method, owing to the complete automation of processes, such as turning up and down of the part ranging from the outer side of the ceiling (g) to the insert portion (d) and inserting of said insert portion into a locking portion which have hitherto been done manually.

35 What I claim is:

1. A method of setting up the paper case with an inner case whose head or lid portion bends to one side on opening, comprising an inner case setting up process 40 wherein inner case blanks cut in the desired shape and having ruled lines and cut-ins for forming interlocking flaps and a locking portion (c) are transferred intermittently, during which folding up and down at ruled lines are effected, the locking portion is led under a guide plate and an insert portion (d) is led from the lower side to the upper side of said guide plate and is inserted between the back part (q) and the locking portion (c); an outer case setting up process wherein the outer case blank having an interlocking flap to engage with an interlocking flap of the inner case is formed into a rectangular tube, the interlocking flap of the outer case is folded inwardly and the rectangular tube is turned back into a form of lozenged section to remove the dynamical stability of the outer case blank for proper shaping of the outer case; and a final setting up process wherein the set up inner case is inserted into the outer case and the completed paper case is transferred to the desired position.

45 2. A method of setting up the paper case with an inner case whose head or lid portion bends to one side on opening as defined in claim 1, wherein the inner case setting up process includes the step of changing direction of the inner case by an angle of 90° to be joined to the afore-mentioned outer case.

50 3. Apparatus for manufacturing the paper case with an inner case whose head or lid portion bends to one side on opening, comprising the combination of an ap-

paratus for setting up the inner case including an endless conveyor to support inner case blanks thereon and feed them out one by one, an intermittent transferring device connected to said conveyer, an inner case blanks storage arranged above and in front of said conveyor to store therein inner case blanks in piled conditions, an inner case blanks feeding device to feed inner case blanks onto the conveyer one by one from said storage, a folding device arranged along the conveyor to fold each part of the inner case blank, a guide plate arranged along the conveyer to turn up and down the outer part of the ceiling (g) and adjacent fold-down portions (f_1) and (f_2), a guide plate for a locking portion (c), a doubling plate for the bottom part (k) and a guide rod for the front part (l); and apparatus for set-

5

10

15

20

25

30

35

40

45

50

55

60

65

ting up the outer case including an outer case blanks storage to store therein flat folded outer case blanks in piled conditions, an outer case blanks feeding device to push out outer case blanks from the underside of said outer case blanks storage, an outer case blanks guiding device, an outer case blank shaping device to open out the outer case blank into a rectangular tube, an outer case shape correcting device to turn back the rectangular tube into a form of lozenged section and an outer case interlocking flap folding device; and an apparatus for inserting the set up inner case into the set up outer case and transferring the completed paper case to the desired position.

* * * * *