
(12) United States Patent
Dawson-Granados et al.

USOO7421657B1

(10) Patent No.: US 7.421,657 B1
(45) Date of Patent: Sep. 2, 2008

(54) HANDLING OPEN BROWSER REQUESTS IN
A SINGLE WINDOW ENVIRONMENT

(75) Inventors: David Dawson-Granados, Seattle, WA
(US); Benjamin R. Peart, Redmond,
WA (US)

(73) Assignee: Microsoft Corporation, Redmond, WA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 142 days.

(21) Appl. No.: 09/712,064

(22) Filed: Nov. 14, 2000

(51) Int. Cl.
G06F 3/048 (2006.01)
GO6F 17/30 (2006.01)
GO6F 17/50 (2006.01)

(52) U.S. Cl. 715/739; 715/238; 715/788:
715/804; 715/808

(58) Field of Classification Search 345/808,
345/864, 738,781, 730, 760,962, 705, 764,

345/733, 740, 735; 705/14; 709/203; 715/238,
715/739, 788, 804, 808

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

2002/0052925 A1 5/2002 Kim et al. 709/217

OTHER PUBLICATIONS

“How-To Beat the ADS on FWP (Free Webpage Providers)?” SmoG
Alert Dec. 22, 1999: p. 1. Online Available http://packetstorm.
trustica.cz/javascript/adkill-howto.hm Aug. 19, 2003.*

receiversusstto
open newbrowser

instance

ustritiated du
unloading of page

22

aper new browser
instance

"Pop-ups', Siemens AG p. 1. Online Available http://www.
siemens.com Aug. 18, 2003.*
Falkenburg, Steven. “WebFree” 1996-1997. Online Available
http://www.falken.net/webfree guide/guide.html.*
Lowery. Joe. Sams Teach Yourself Internet Explorer 4.0, 1998, Sams
Publishing, pp. 20-22.*

* cited by examiner

Primary Examiner Tadesse Hailu
Assistant Examiner Namitha Pillai
(74) Attorney, Agent, or Firm Lee & Hayes, PLLC

(57) ABSTRACT

In a single window browser environment, a request to open a
new browser window is either allowed or ignored, depending
on whether the request was generated in response to user
input. The request is ignored if it was not generated in
response to user input. If, on the other hand, the request was
generated in response to user input, it is allowed. In Such
cases, in order to preserve the single window interface, the
new browser window is opened as a full screen window that
overlays the existing browser window. In certain implemen
tations, the determination of whether or not a request was
generated in response to user input is simplified by assuming
that all requests that are generated during the loading or
unloading of a page are not in response to user input and ought
to be ignored. By contrast, window open requests that are
generated at other times are assumed to be user-initiated and
are allowed.

16 Claims, 3 Drawing Sheets

--
268

2

28

U.S. Patent Sep. 2, 2008 Sheet 2 of 3 US 7.421,657 B1

200

receive request to
open new browser

instance 2O6

204

request
initiated during,

navigate
Yes ignore request stop

No
210

208

equest initiated durin t unloading of page ignore reques

No

212

open new browser
instance

FIG. 2

US 7.421,657 B1

A LdWE

Å LdWB

Sep. 2, 2008 Sheet 3 of 3

s

U.S. Patent

AldWE

A LdWE A LdWE

US 7,421,657 B1
1.

HANDLING OPEN BROWSER REQUESTS IN
A SINGLE WINDOW ENVIRONMENT

COPYRIGHT NOTICE AND PERMISSION

A portion of the disclosure of this patent document may
contain material that is Subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc
tion by anyone of the patent document or the patent disclo
sure, as it appears in the Patent and Trademark Office patent
files or records, but otherwise reserves all copyright rights
whatsoever. The following notice shall apply to this docu
ment: Copyright (C) 2000, Microsoft Corp.

FIELD OF THE INVENTION

The invention relates generally to Internet browsers. More
particularly, the invention relates to Internet appliances using
a single window environment.

BACKGROUND

Internet appliances have become an increasingly popular
tool for accessing the Internet. For some consumers who are
only interested in browsing the Internet and communicating
electronic mail (e-mail), Internet appliances offer a low-cost
alternative to relatively expensive personal computers. This
option also appeals to users who already own a personal
computer and want a secondary device for Internet access, for
example, from a different location in the home. For many
users for whom personal computers can be intimidating,
Internet appliances offera relatively simple to use alternative.
One feature of Internet appliances that enhances ease of use

is a single window environment. In such an environment, the
user is presented with a single full screen browser window, as
contrasted with the multiple window environment presented
by other conventional Internet browsers. The single, full
screenwindow environmentallows the user to begin using the
system quickly without first having to learn about window
manipulation, e.g., positioning and sizing of windows.

While a single window environment simplifies use, it also
presents limitations that impair usability in certain circum
stances. For example, standard HTML allows a web devel
oper to cause new browser windows to pop up, breaking this
simplified user model. This feature can be used to open new
browser windows either in response to some action on the part
of the user, or without such user action. For example, a web
developer can cause a pop-up advertisement to appear upon
loading (entering) or unloading (exiting) a web page. On the
other hand, certain applications, such as web-based e-mail,
open new browser windows in response to user input, e.g.,
clicking on an “address book' link.
Many conventional Internet appliances that use a single

window environment simply ignore all requests to open new
browser windows in order to preserve the single window
interface. This approach, however, leaves the user with a
degraded experience of the web in which many pages that are
critical to performing useful tasks do not appear. Accordingly,
a need continues to exist for causing Such pages to appear,
while maintaining the simplicity of a single window environ
ment.

SUMMARY OF THE INVENTION

According to various implementations of the present
invention, a request to open a new browser window is either
allowed or ignored, depending on whether the request was

10

15

25

30

35

40

45

50

55

60

65

2
generated in response to user input. If the request was not
generated in response to user input, as is the case with pop-up
advertisements, the request is ignored. If on the other hand,
the request was generated in response to user input, it is more
likely to be important for performing some useful task, and is
allowed. In such cases, in order to preserve the single window
interface, the new browser window is opened as a full screen
window that overlays the existing browser window. In certain
implementations, the determination of whether or not a
request was generated in response to user input is simplified
by assuming that all requests that are generated during the
loading or unloading of a page are not in response to user
input and ought to be ignored. By contrast, window open
requests that are generated at other times are assumed to be
user-initiated and are allowed.

In one embodiment, a request to open a second browser
window is received while a first browser window is displayed.
The request is ignored if it was not initiated in response to a
user action. The second browser window is opened if the
request was initiated in response to a user action.

In an alternative embodiment, the request is ignored if it
was initiated during either loading or unloading of a page in
the first browser window, and the second browser window is
opened if the request was initiated after loading and before
unloading of a page in the first browser window.

Still other implementations include computer-readable
media and apparatuses for performing the above-described
methods. The above summary of the present invention is not
intended to describe every implementation of the present
invention. The figures and the detailed description that follow
more particularly exemplify these implementations.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a simplified overview of an example
embodiment of a computing environment for the present
invention.

FIG. 2 is a flowchart depicting an example method for
processing a request to open a new browser instance, accord
ing to a particular embodiment of the present invention

FIG. 3 conceptually depicts an example series of naviga
tion operations and the manner in which they are handled
according to an operational example of the present invention.

DETAILED DESCRIPTION

In the following detailed description of various embodi
ments, reference is made to the accompanying drawings that
form a part hereof, and in which are shown by way of illus
tration specific embodiments in which the invention may be
practiced. It is understood that other embodiments may be
utilized and structural changes may be made without depart
ing from the scope of the present invention.

Hardware and Operating Environment

FIG. 1 illustrates a hardware and operating environment in
conjunction with which embodiments of the invention may be
practiced. The description of FIG. 1 is intended to provide a
brief, general description of Suitable computer hardware and
a suitable computing environment with which the invention
may be implemented. Although not required, the invention is
described in the general context of computer-executable
instructions, such as program modules, being executed by a
computer, Such as a personal computer (PC). This is one
embodiment of many different computer configurations,
Some including specialized hardware circuits to analyze per

US 7,421,657 B1
3

formance, that may be used to implement the present inven
tion. Generally, program modules include routines, pro
grams, objects, components, data structures, etc. that perform
particular tasks or implement particular abstract data types.

Moreover, those skilled in the art will appreciate that the
invention may be practiced with other computer system con
figurations, including hand-held devices, multiprocessor sys
tems, microprocessor-based or programmable consumer
electronics, network personal computers (PCs), minicomput
ers, mainframe computers, and the like. The invention may
also be practiced in distributed computing environments
where tasks are performed by remote processing devices
linked through a communications network. In a distributed
computing environment, program modules may be located in
both local and remote memory storage devices.

FIG. 1 shows a computer arrangement implemented as a
general purpose computing or information handling system
80. This embodiment includes a general purpose computing
device, such as a personal computer (PC) 120, that includes a
processing unit 121, a system memory 122, and a system bus
123 that operatively couples the system memory 122 and
other system components to the processing unit 121. There
may be only one or there may be more than one processing
unit 121, such that the personal computer 120 comprises a
single central processing unit (CPU), or a plurality of pro
cessing units, commonly referred to as a parallel processing
environment. The computer 120 may be a conventional com
puter, a distributed computer, or any other type of computer;
the invention is not so limited.

In other embodiments, other configurations are used in the
personal computer 120. The system bus 123 may be any of
several types, including a memory bus or memory controller,
a peripheral bus, and a local bus, and may use any of a variety
of bus architectures. The system memory 122 may also be
referred to simply as the memory, and it includes a read only
memory (ROM) 124 and a random access memory (RAM)
125. A basic input/output system (BIOS) 126 stored in the
ROM 124, contains the basic routines that transfer informa
tion between components of the personal computer 120. The
BIOS 126 also contains start-up routines for the system.
The personal computer 120 typically includes at least some

form of computer-readable media. Computer-readable media
can be any available media that can be accessed by the per
Sonal computer 120. By way of example, and not limitation,
computer-readable media may comprise computer storage
media and communication media. Computer storage media
includes Volatile and nonvolatile, removable and non-remov
able media implemented in any method or technology for
storage of information Such as computer readable instruc
tions, data structures, program modules, or other data. Com
puter storage media includes, but is not limited to, RAM,
ROM, EEPROM, flash memory or other memory technology,
CD-ROM, digital versatile discs (DVD) or other optical stor
age, magnetic cassettes, magnetic tape, magnetic disk storage
or other magnetic storage devices, or any other medium that
can be used to store the desired information and that can be
accessed by the personal computer 120. Communication
media typically embodies computer readable instructions,
data structures, program modules, or other data in a modu
lated data signal Such as a carrier wave or other transport
mechanism and includes any information delivery media. The
term "modulated data signal” means a signal that has one or
more of its characteristics set or changed in Such a manner as
to encode information in the signal. By way of example, and
not limitation, communication media includes wired media
Such as a wired network or direct-wired connection, and
wireless media Such as acoustic, RF, infrared, and other wire

10

15

25

30

35

40

45

50

55

60

65

4
less media. Combinations of any of the above are also
included in the scope of computer readable media.
By way of example, the particular system depicted in FIG.

1 further includes a hard disk drive 127 having one or more
magnetic hard disks (not shown) onto which data is stored and
retrieved for reading from and writing to a hard disk interface
132, a magnetic disk drive 128 for reading from and writing to
a removable magnetic disk 129, and an optical disk drive 130
for reading from and/or writing to a removable optical disk
131, such as a CD-ROM, DVD, or other optical medium. The
hard disk drive 127, magnetic disk drive 128, and optical disk
drive 130 are connected to the system bus 123 by a hard disk
drive interface 132, a magnetic disk drive interface 133, and
an optical drive interface 134, respectively. The drives 127,
128, and 130 and their associated computer readable media
129, 131 provide nonvolatile storage of computer-readable
instructions, data structures, program modules, and other data
for the personal computer 120.

In various embodiments, program modules are stored on
the hard disk drive 127, the magnetic disk 129, the optical disk
131, ROM 124, and/or RAM 125 and may be moved among
these devices, e.g., from the hard disk drive 127 to RAM 125.
Program modules include an operating system 135, one or
more application programs 136, other program modules 137.
and/or program data 138. A user may enter commands and
information into the personal computer 120 through input
devices such as a keyboard 140 and a pointing device 42.
Other input devices (not shown) for various embodiments
include one or more devices selected from a microphone,
joystick, game pad, satellite dish, Scanner, or the like. These
and other input devices are often connected to the processing
unit 121 through a serial port interface 146 coupled to the
system bus 123, but in other embodiments they are connected
through other interfaces not shown in FIG. 1. Such as a par
allel port, a game port, or a universal serial bus (USB) inter
face. A monitor 147 or other display device also connects to
the system bus 123 via an interface such as a video adapter
148. In some embodiments, one or more speakers 157 or other
audio input transducers are driven by a sound adapter 156
connected to the system bus 123. In some embodiments, in
addition to the monitor 147, the system 80 includes other
peripheral output devices (not shown). Such as a printer or the
like.

In some embodiments, the personal computer 120 operates
in a networked environment using logical connections to one
or more remote computers such as a remote computer 149.
The remote computer 149 may be another personal computer,
a server, a router, a network PC, a peer device, or other
common network node. The remote computer 149 typically
includes many or all of the components described above in
connection with the personal computer 120; however, only a
storage device 150 is illustrated in FIG. 1. The logical con
nections depicted in FIG. 1 include a local area network
(LAN) 151 and a wide area network (WAN) 152, both of
which are shown connecting the personal computer 120 to the
remote computer 149. Typical embodiments would only
include one or the other. Such networking environments are
commonplace in offices, enterprise-wide computer networks,
intranets, and the Internet.
When placed in a LAN networking environment, the per

sonal computer 120 connects to the local network 151
through a network interface or adapter 133. When used in a
WAN networking environment, such as the Internet, the per
sonal computer 120 typically includes a modem 154 or other
means for establishing communications over the network
152. The modem 154 may be internal or external to the
personal computer 120 and connects to the system bus 123 via

US 7,421,657 B1
5

the serial port interface 146 in the embodiment shown. In a
networked environment, program modules depicted as resid
ing within the personal computer 120 orportions thereof may
be stored in the remote storage device 150. Of course, the
network connections shown are illustrative, and other means
establishing a communications link between the computers
may be substituted.

Software may be designed using many different methods,
including object-oriented programming methods. C++ and
Java are two examples of common object-oriented computer
programming languages that provide functionality associated
with object-oriented programming. Object-oriented pro
gramming methods provide a means to encapsulate data
members (variables) and member functions (methods) that
operate on that data into a single entity called a class. Object
oriented programming methods also provide means to create
new classes based on existing classes.
An object is an instance of a class. The data members of an

object are attributes that are stored inside the computer
memory, and the methods are executable computer code that
act upon this data, along with potentially providing other
services. The notion of an object is exploited in the present
invention in that certain aspects of invention are implemented
as objects in some embodiments.
An interface is a group of related functions that are orga

nized into a named unit. Some identifier may uniquely iden
tify each interface. Interfaces have no instantiation; that is, an
interface is a definition only without the executable code
needed to implement the methods that are specified by the
interface. An object may support an interface by providing
executable code for the methods specified by the interface.
The executable code supplied by the object must comply with
the definitions specified by the interface. The object may also
provide additional methods. Those skilled in the art will rec
ognize that interfaces are not limited to use in or by an object
oriented programming environment.

EXAMPLE EMBODIMENTS

According to an embodiment of the present invention, an
Internet appliance uses a single-window interface to interact
with the user. Rather than simply ignoring all requests to open
new browser windows, the Internet appliance selectively
responds to some Such requests by opening new browser
windows, while ignoring other requests. The decision of
whether to process or ignore a request for a new browser
window is informed by whether the request was initiated by
the user or not. In a particular embodiment, this determination
is approximated by an assumption that a request occurring
during the loading or unloading of a page was not user
initiated, and ought to be ignored. By contrast, requests
occurring at other times are assumed to be user-initiated, and
are processed. In another embodiment, instead of relying on
these assumptions, the Internet appliance is configured to
determine whether a request to open a new browser window
was user-initiated. The Internet appliance opens new browser
windows as full-screen windows in order to preserve the
appearance of a single window interface.
A request to open a new browser window can occur in

response to a variety of events. For example, there may be
Script on a page that calls a window.open() function, which
normally causes a new browser window to be opened.
Browser open requests can also occur, for example, in
response to anchors in a page that have a TARGET=''x''
attribute, where x defines a frame that is not yet defined.
When either of these mechanisms is used to create a new

browser window, the system honors the request by creating a

10

15

25

30

35

40

45

50

55

60

65

6
new browser instance that navigates to the new page. The new
browser instance appears directly above the existing browser
window and has the same dimensions as the existing browser
window. That is, all window sizing commands are ignored
when opening the new browser instance—the new browser
instance is always opened as a full-screen window. With the
new browser instance having the same dimensions as the
existing browser window, the appearance that a normal navi
gate has occurred is maintained. The user is not aware of the
creation of a new browser instance. In addition, because the
new browser instance is created over the existing instance, the
new browser instance can communicate via the HTML Docu
ment Object Model (DOM) with the existing browser
instance, as required by most common applications that use
browser open requests to open additional browser instances.
Without this capability, a page would appear to function
properly, but would not accomplish the task of communicat
ing actions back to the page that opened it.

FIG. 2 is a flowchart depicting an example method 200 for
processing a request to open a new browser instance, accord
ing to a particular embodiment of the present invention. First,
as depicted at a block 202, the system receives a request to
open a new browser instance. At a decision block 204, the
system determines whether the request occurred during a
navigate. If so, the request is assumed to have occurred auto
matically, without prior user input. Accordingly, the request is
ignored at a block 206.

If the request did not occur during a navigate, the system
determines whether it occurred during the unloading of a
page at a decision block 208. When a page begins a naviga
tion, the first thing that occurs is the unloading of the current
page. During this event, all browser open requests are ignored
at a block 210.

If the request occurred neither during a navigate nor during
the unloading of a current page, it most likely occurred after
the user clicked or pressed a key or keys on an element that
can cause a navigation. After this point, all browser open
requests are considered user initiated and are honored, as
depicted at a block 212.

Browser open requests are handled in this way in order to
make them appear as full screen navigates. Handling browser
open requests that occur before a userspecifically clicks on an
element to open a new page or that occur during a page’s
unload sequence would cause Some pages to not be accessible
to the user. For example, if a request to open a new browser
instance occurring during the loading of a page were handled
in-place, the user would not be able to interact with the page
that generated the request because the act of loading that page
would cause the new browser instance to be loaded in its
place. If the request occurs during the unloading of a page, the
user would go to the page requested on unload, but would
never get to the page that was targeted when the unload event
initiated. Because these cases almost always occur in the
context of advertisements, they are generally not critical to
the users web experience. To handle these requests properly,
unload and load events are handled so that any browser open
request that should be honored is honored only after the page
has completed loading, but before new navigation has begun.
That is, any new browser windows are opened only after all
expected load requests are received, but before any unload
events for the current page are received.

In order to maintain the single-window interface, any
browser open requests that are honored at block 212 are
handled by opening a new, full-screen, instance of the
browser directly over the existing instance, creating the
appearance that a normal page navigate occurred. Further,
any requests to open dialog boxes by browser instances that

US 7,421,657 B1
7

are not in the foreground are hidden until the applicable
browser instance is in the foreground. Similarly, any sounds
that would otherwise be emitted by browser instances in the
background are not played. As a result, "bleed-through' of
dialog boxes and Sounds is avoided.

In a particular embodiment, when a browser open request
is honored, an additional instance of the browser is created,
rather than handling the browser open request as a standard
navigate request within the existing browser instance. On a
desktop browser, a browser open request causes a second
instance of the browser to be created in a separate thread. With
the two browser instances running on separate threads, any
JScript or VBScript calls from the first instance to the second
instance are marshaled by COM. Some pages make use of
inter-browser Scripting to have events occurring in the first
browser instance affect the content of the second browser
instance. It should be noted that the WINDOWS CE(R) oper
ating system does not support COM marshalling. Accord
ingly, in such an Internet appliance using the WINDOWS
CER) operating system, both browser instances are run off a
single thread, an approach that does not require COM mar
shalling, at the cost of a negligible performance tradeoff. In
the Internet appliance environment, creating an additional
browser instance allows the system to maintain separate
threads, e.g., for passing JScript calls from one browser
instance to another, so that events occurring in one browser
instance can affect the content of another browser instance. In
environments with relatively limited memory resources, less
recently opened browser instances are closed as necessary to
free memory, keeping at least two browser instances open
simultaneously so as to allow the proper functioning of the
most common Internet pages making use of inter-browser
communication between two pages.

In the case of a page with multiple frames, a browser open
request is only handled when either all the frames have fin
ished loading, or after the frame from which the browser open
request originated has finished loading. Accordingly, in a
particular embodiment, the system is aware of which frame
initiated a browser open request, as well as whether that frame
has finished loading. In some cases, interface pointers that are
passed when a browser open request is issued can be used to
determine whether the frame from which the request issued is
in the fully loaded state or not.

Browser navigation is also handled in Such a way as to
preserve the appearance of a single-window interface. For
example, a request from a browser instance to close itself,
typically via a window.close() call, is handled by closing the
browser instance and returning to the previous browser
instance, unless no Such previous browser instance exists. In
this case, the request is ignored, as it would result in no
browser instance being displayed. Likewise, any dialog boxes
that give the user the option to close the browser are disabled.
Even though Such dialog boxes are still displayed, any
requests to close the browser that issue from them are ignored.

In addition, the browser history, i.e., the list that instructs
the browser which page to go to when the back and forward
browser buttons are pressed, keeps track of where browser
transitions occur. This history list can be built from the current
browser instance or from all browser instances. In the latter
case, for example, if the back button is pressed on the first
page of the current browser instance and a previous browser
instance exists, the system hides the current browser instance
and displays the previous instance. The user then sees the
window transition from the first page of the current instance
to the last page of the immediately preceding instance.

FIG. 3 conceptually depicts an example series of naviga
tion operations and the manner in which they are handled

5

10

15

25

30

35

40

45

50

55

60

65

8
according to an operational example of the present invention.
As illustrated in FIG.3, when building the browser history list
across multiple instances, the current page on each browser
instance is used as a reference point. In this operational
example, the user first navigates to msnbc.com at a block 302.
As denoted below block 302, the back history and forward
history are both empty at this point.

Next, at a block 304, the user navigates to microsoft.com,
and the back history contains the entry msnbc.com. The for
ward history is still empty. At a block 306, the user uses the
back button on the browser to navigate back to msnbc.com;
the back history thus becomes empty again. The forward
history contains the entry microsoft.com.
At a block 308, the user clicks on a hyperlink that causes a

browser open request to be issued for navigating to expedia
.com. Although the page opens in a new window, the back
history contains the entry msnbc.com, which was the page
most recently visited, albeit from a different browser
instance. The forward history associated with the new
browser instance is empty.

Finally, at a block 310, the user uses the backbutton on the
browser to navigate back to msnbc.com. The back history
thus becomes empty, since msnbc.com was the first page
visited in this operational example. The forward history asso
ciated with this browser instance contains the entry expedia
.com, the page visited immediately after (at block 308) the
user visited msnbc.com at block 306.

There are situations on the World WideWeb that can result
in a user being “stuck on unable to navigate out of a set
of Web pages. For instance, a page may contain a navigate call
that occurs while it is loading in order to redirect navigation to
a more appropriate page. While this feature is useful in the
case of for example, outdated links, it also prevents the
browser from navigating backwards past the page containing
the navigate call. To address this issue, the navigate call is
converted to a window.location.replace() call. As a result,
navigation is still redirected to the more appropriate page, but
the page that originated the navigate call is removed from the
history list. Thus, the browser is able to navigate backwards
past that page.

In one implementation, the system is embodied in an Inter
net appliance that has limited memory. As this memory fills
up, the oldest browser instances in the history stream are
removed down to the minimum limit. Once a browser open
request has occurred, this minimum limit is two so that typical
communication between browsers can occur. Typical com
munication involves one browser instance opening up another
instance to perform some action and return the results of that
action back to the parent browser instance. In a particular
embodiment, a low-memory management scheme is used to
pre-allocate a small block of memory for emergency pur
poses, such as deleting browser instances in the event of low
memory.

While the embodiments of the invention have been
described with specific focus on their embodiment in a soft
ware implementation, the invention as described above is not
limited to software embodiments. For example, the invention
may be implemented in whole or in part in hardware, firm
ware, software, or any combination thereof. The software of
the invention may be embodied in various forms, such as a
computer program encoded in a machine-readable storage
medium, such as a CD-ROM, magnetic medium, ROM or
RAM, or in a transmission medium such as an electronic
signal. Further, as used in the claims herein, the term 'mod
ule' shall mean any hardware or software component, or any
combination thereof.

US 7,421,657 B1
9

What is claimed is:
1. One or more computer-readable storage media compris

ing computer-executable instructions for implementing an
Internet browser, the computer-executable instructions com
prising instructions for:

receiving a request to open a second browser while a first
browser is displayed;

opening the second browser if the request was initiated
after receiving a load finished event for the first browser
and before receiving an unload event for the first
browser, wherein the second browser comprises a
browser history comprising websites visited by the first
browser and navigates from both the first and second
browsers add to the browser history; and

ignoring the request if the request was received after
receiving the unload event for the first browser and
before receiving the load finished event for the first
browser;

wherein the browser history additionally tracks where
browser transitions occur between the first and second
browsers, and comprises instructions for:
detecting, in the browser history, a transition between

the first and second browsers in response to a forward
or backbutton; and

hiding, in response to the detected transition, one of the
first and second browsers and displaying the other.

2. The one or more computer-readable media of claim 1,
wherein opening the second browser comprises instructions
for:

Verifying that interface pointers, configured for passage
when a browser open request is issued, have been
passed.

3. The one or more computer-readable media of claim 1,
wherein opening the second browser comprises instructions
for:

ignoring all window sizing commands and Superimposing
the second browser on top of the first browser.

4. The one or more computer-readable media of claim 1,
additionally comprising instructions for:

after opening the second browser and before a navigate,
receiving notice of the back button being pressed; and

hiding, in response to the back button, the second browser
and revealing, consistent with the browser history, the
first browser.

5. A method, at least partially implemented by a computer
for operating an Internet browser, comprising:

receiving a request to open a second browser while a first
browser is displayed;

opening the second browser only in response to a user
request, wherein the presence of a user request is con
firmed in part by receipt of the request after a load
finished event from the first browser and before an
unload event from the first browser is received, wherein
the second browser comprises a browser history com
prising websites visited by the first browser and naviga
tion of both the first and second browsers add to the
browser history; and

not opening the second browser if the request was received
after the unload event from the first browser was
received and before the load finished event from the first
browser was received,

wherein the browser history additionally tracks where
browser transitions occur between the first and second
browsers, and comprises instructions for:
detecting, in the browser history, a transition between

the first and second browsers in response to a forward
or backbutton; and

hiding, in response to the detected transition, one of the
first and second browsers and displaying the other.

10

15

25

30

35

40

45

50

55

60

65

10
6. The method of claim 5, wherein configuring the second

browser comprises:
including a current page of the first browser in the back

history of the second browser.
7. The method of claim 5, additionally comprising:
transitioning from the second browser to the first browser

upon receiving notice of the back button.
8. The method of claim 7, wherein transitioning from the

second browser to the first browser comprises:
receiving notice of the back button being pressed; and
hiding, in response to the notice, the second browser to

reveal the first browser.
9. The method of claim 5, additionally comprising:
maintaining a browser history, including back history and

forward history, reflecting operation of multiple brows
CS.

10. The method of claim 5, additionally comprising:
maintaining separate threads for separate browsers; and
passing calls from one browser to another browser using

the separate threads, wherein events occurring in one
browser can affect content of another browser.

11. A method, at least partially implemented by a com
puter, comprising:

opening a second browser in response to a request received
by a first browser, if the request was not received during
a navigate and was not received during an unloading of
a page.

not opening the second browser if the request was received
after an unload event from the first browser and before a
load finished event from the first browser is received;
and

if the second browser was opened, configuring the first and
second browsers with forward and back browser histo
ries, wherein the forward and back browser histories are
related Such that a current page in one of the browsers is
in the forward history or the back history of another of
the browsers;

wherein the browser history additionally tracks where
browser transitions occur between the first and second
browsers, and comprises instructions for:
detecting, in the browser history, a transition between

the first and second browsers in response to a forward
or backbutton; and

hiding, in response to the detected transition, one of the
first and second browsers and displaying the other.

12. The method of claim 11, additionally comprising:
tracking browser transitions such that, at a transition, user

Selection of a forward or back button, as appropriate,
results in hiding of one browser and displaying of
another browser.

13. The method of claim 12, wherein the tracked browser
transitions indicate, in the browser history, transitions
between pages Visited by the first browser and pages visited
by the second browser.

14. The method of claim 11, wherein configuring the sec
ond browser comprises:

including a current page of the first browser in the back
history of the second browser.

15. The method of claim 11, additionally comprising:
transitioning from the second browser to the first browser

upon use of the back button.
16. The method of claim 11, additionally comprising:
maintaining a browser history, including back history and

forward history, wherein the browser history comprises
information obtained from operation of multiple brows
CS.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7421,657 B1 Page 1 of 1
APPLICATIONNO. : 09/712064
DATED : September 2, 2008
INVENTOR(S) : David Dawson-Granados et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In column 10, line 52, in Claim 13, delete “Visited and insert -- visited --, therefor.

Signed and Sealed this
Twenty-sixth Day of April, 2011

David J. Kappos
Director of the United States Patent and Trademark Office

