A method of processing semiconductor films and layers, especially Group III Nitride films, has been achieved, using laser-enhanced, room-temperature wet etching with dilute etchants. Etch rates of a few hundred A/min up to a few thousand A/min have been achieved for unintentionally doped n-type Group III Nitride films (14) grown by MOCVD on a sapphire substrate (10). The etching is thought to take place photoelectrochemically with holes and electrons generated by incident illumination from 4.5 mW of HeCd laser power enhancing the oxidation and reduction reactions in an electrochemical cell (44).
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
<td>ES</td>
<td>Spain</td>
<td>LS</td>
<td>Lesotho</td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>The former Yugoslav</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SK</td>
<td>Sweden</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
<td>SK</td>
<td>Slovakia</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SZ</td>
<td>Swaziland</td>
<td>TG</td>
<td>Togo</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
<td>TR</td>
<td>Turkey</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
<td>UG</td>
<td>Uganda</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
<td>UZ</td>
<td>Uzbekistan</td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>YU</td>
<td>Yugoslavia</td>
<td>ZW</td>
<td>Zimbabwe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PHOTOELECTROCHEMICAL WET ETCHING
OF GROUP III NITRIDES

STATEMENT AS TO RIGHTS TO INVENTIONS MADE
UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT

This invention was made with Government support under Grant No.
DMR-9120007, awarded by the National Science Foundation. The
Government has certain rights in this invention.

BACKGROUND OF THE INVENTION

1. Field of the Invention.

This invention relates in general to a method of processing a
semiconductor wafer, and, more particularly, to a photoelectrochemical
etching process to etch Group III Nitrides.

2. Description of Related Art.

The use of various semiconductor materials has necessitated the
use of different fabrication processes to achieve proper growth of
material, adequate conductive regions within the materials, and precise
etching to produce working devices. As new material layers are grown
to higher and higher qualities, new processes to configure the layers to
working devices are required.

In semiconductor processing, it is often necessary to form deeply
etched holes or wells either individually or in large arrays. The
requirements for these geometries include deep profiles with precisely controlled sidewalls and features, such as etch "mesas" and "troughs" ranging in size from a few tens of microns to a few hundreds of microns. One technique to perform these types of etches is photoelectrochemical (PEC) etching, where a laser is used to enhance normal wet chemical etching.

For materials that are found to be chemically inert, such as the Group III Nitrides (Gallium Nitride (GaN), etc.), prior art wet etch techniques, including PEC, have been ineffective. The etch rates have been too slow for efficient processing. Further, the wet etch techniques have generally not been directional enough to produce sidewalls that mirror the masking material.

Recently, there has been impressive progress in the growth of high quality of GaN epitaxial layers and in their utilization for high performance optical devices. The Group III Nitrides clearly hold great promise as the basis for a variety of high performance optoelectronic and electronic devices. A viable device technology will require the availability of effective processes for etching the component materials.

The Group III Nitrides are distinguished by their unusual chemical stability, making it difficult to identify reliable and controllable wet etchants. To date, room-temperature wet etching of the Group III Nitride films has produced slow etch rates, of the order of tens and hundreds of angstroms per minute. Elevating the temperature of the etchant can increase the etch rates to \approx 500 \AA/min etch rates of AlN in H_3PO_4 heated
to 65-85° C, and InN films may be etched in aqueous KOH and NaOH solutions at 60° C to produce etch rates of ≈ 300-600 Å/min. The use of elevated temperatures is generally less desirable, because the elevated temperature of the etchant has adverse effects on photoresist and other masking materials. Further, the elevated temperature of the etchant creates safety hazards for personnel that are processing the devices.

Reactive ion etching has proven to be effective for GaN, achieving etch rates of 200-3000 Å/min in a number of different gas chemistries. Reactive ion etching is quite expensive, thus increasing the costs of the finished devices. The ion bombardment inherent in reactive ion etching also provides greater possibility of damage to the device than wet chemical etching.

It can be seen then that there is a need for a method of wet etching Group III Nitride films that is faster than those currently available. It can also be seen that there is a need for a method of wet etching Group III Nitride films that presents fewer hazardous conditions to personnel. It can also be seen that there is a need for a method of processing Group III Nitride films that is repeatable and predictable. It can also be seen that there is a need for a method that reduces the cost of the finished device that contains a Group III Nitride film. It can also be seen that there is a need to provide a low-damage method of processing Group III Nitride films.
SUMMARY OF THE INVENTION

To overcome the limitations in the prior art described above, and to overcome other limitations that will become apparent upon reading and understanding the present specification, the present invention discloses a powerful and highly productive method for etching Group III Nitrides. The present invention is comprehensive and can be fully integrated with present fabrication methods.

The present invention solves the above-described problems by providing a method for etching Group III Nitrides that operates at room temperature and is relatively inexpensive. Further, the method provides etch well sidewalls that mirror the mask geometries, avoiding undercutting and etch well sidewall deformities.

One object of the present invention is to provide a precise method for etching Group III Nitrides. Another object of the present invention is to provide a method for etching Group III Nitrides at room temperature.

These and various other advantages and features of novelty which characterize the invention are pointed out with particularity in the claims annexed hereto and form a part hereof. However, for a better understanding of the invention, its advantages, and the objects obtained by its use, reference should be made to the drawings which form a further part hereof, and to accompanying descriptive matter, in which there is illustrated and described specific examples of an apparatus in accordance with the invention.
BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference numbers represent corresponding parts throughout:

FIGS. 1A-1E are cross-sectional views of the preparation methods used for the etching method of the invention;

FIG. 2 is a cross-sectional view of the etching method of the invention; and

FIG. 3 is a flowchart describing the steps performed in the etching method of the invention.
DETAILED DESCRIPTION OF THE INVENTION

In the following description of the preferred embodiment, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration the specific embodiment in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural and functional changes may be made without departing from the scope of the present invention.

The present invention provides a method for wet chemical etching of Group III Nitrides. This method can be utilized for other materials that have similar properties as Group III Nitrides, such as semi-insulating (SI) Gallium Arsenide (GaAs) and Indium Phosphide (InP). For photoelectrochemical etching methods, the property of undoped GaAs and undoped InP that is most difficult to overcome is the relative lack of reactivity of these materials.

The use of photoelectrochemical (PEC) etching is evident in the prior art. The PEC process was thought to be ineffective on p-type and semi-insulating materials because in those materials, there are not enough holes at the surface to allow the wet chemistry to progress and etch the material. This process was explained by "band-bending," referring to the Fermi levels or "bands" which would describe the material properties.

The present invention shows that band-bending alone does not determine the rate of PEC etching. The present invention shows that the inefficient extraction of electrons can impede etching when electrons
recombine with the photogenerated holes faster than the wet chemistry could remove the material.

FIGS. 1A-1E are cross-sectional views of the preparation steps used for the etching method of the invention. Figure 1A shows a substrate 10. The substrate 10 can be of any material, but is preferably sapphire. On top surface 12 of substrate 10, a Group III Nitride layer 14 is grown. The Group III Nitride layer 14 can be a single layer of material, such as a Group III Nitride, but can also be a heterostructure, which has multiple layers of materials of similar or different compositions. The Group III Nitride layer 14 can be of various thicknesses, but is typically several thousand angstroms thick. The Group III Nitride layer 14 is grown using metal organic chemical vapor deposition (MOCVD), but other methods of growing the Group III Nitride layer 14 may also be used. A masking layer 16 is then formed on top of the etch surface 18 of the Group III Nitride layer 14 to overlay the Group III Nitride layer 14. The masking layer 16 forms a pattern which, after etching, will transfer to the Group III Nitride layer 14. The masking layer 16 also serves as an electrical contact to the Group III Nitride layer 14 to allow electrons to flow from the Group III Nitride layer 14 to the masking layer 16. The masking layer 16 can be of any material that will make an ohmic contact with the Group III Nitride layer 14, but is preferably titanium, gold, or silver. The masking layer 16 is preferably formed using an electron beam evaporation, but may also be formed using other methods. To ensure a good ohmic contact between the masking layer 16 and the Group III
Nitride layer 14, the masking layer 16 can be annealed or exposed to other processes.

Figure 1B shows the structure of Figure 1A with a photoresist layer 20 deposited on the top mask surface 22. The photoresist layer 20 is typically deposited by spinning, but can be deposited by other methods as well.

Figure 1C shows the structure of Figure 1B after the photoresist layer 20 has been covered with a pattern mask and then exposed to ultraviolet light. The exposed areas of the photoresist layer 20 will alternatively either be hardened or removed from the top mask surface 22. The openings 24 selectively expose the top mask surface 22 for wet chemical or reactive ion etching processes.

Figure 1D shows the structure of Figure 1C after a wet chemical or reactive ion etch has taken place. The openings 24 allow the wet chemical etch or reactive ion etch to selectively etch through the masking layer 16 to the Group III Nitride layer 14.

Figure 1E shows the photoresist layer 20 removed from the structure of Figure 1D. The openings 24 remain, selectively exposing the etch surface 18 of the Group III Nitride layer 14.

FIG. 2 shows a cross-sectional view of the etching method of the invention. The structure of Figure 1E is immersed in an etchant solution 26. The etchant solution 26 can be any etchant, but is preferably a 1:10 HCl:H₂O solution for etch rates in the hundreds of angstroms per minute,
or a 1:3 KOH:H₂O solution for etch rates in the thousands of angstroms per minute.

A plate 28 is coupled to the top mask surface 22. The plate 28 is electrically conductive, and is typically a glass plate that has been coated with a conductive coating, but can be a metal plate or other composition plate. The conductive coating is typically chromium or gold, but can be any other conductive coating.

The plate 28 is connected by a wire 30 to the positive plate 32 of a battery 34. The negative plate 36 of the battery 34 is connected to an electrode 38. The electrode 38 is typically a platinum wire, but can be any other conductive material. The electrode 38 is immersed in the etchant solution 26.

The positive plate 32 of the battery 34 is also connected to a second electrode 40. The connections between the plate 28, electrode 38 and second electrode 40 allow a bias to be applied to the masking layer 16, the amount of the bias being the voltage produced by the battery 34.

Laser energy 42 is then shined through the container 44 onto the top mask surface 22 of the substrate 10. The laser energy 42 must be above the bandgap energy of the Group III nitride layer 14, or the Group III nitride layer will not be etched. The laser energy 42 assists the etchant solution 26 in etching a well 46 in the Group III Nitride layer 14 exposed to the openings 24 by providing energy to the openings 24 illuminated by the laser energy 42. Examples of etching rates achieved using the
method of the invention are described below. For comparison, etching rates achieved using other techniques are also described.

1. **Etching rates using: Masking layer 16, no laser energy 42, and etchant solution 26 of 1:10 HCl:H₂O.**

Without using the laser energy 42, a substrate 10 with a Group III Nitride layer 14 and a masking layer 16 was immersed in a 1:10 HCl:H₂O etchant solution 26. After 37.5 hours, no significant etching was observed in the Group III Nitride layer 14.

2. **Etching rates using: laser energy 42, etchant solution 26 of 1:10 HCl:H₂O, but no masking layer 16.**

Without a masking layer 16, and again using a 1:10 HCl:H₂O etchant solution 26, adding laser energy 42 with an energy output of 4.5 milliwatts, which delivers a power density of 0.57 Watts/cm² and 1 millimeter diameter produced a well 46 about 900 angstroms deep in the Group III Nitride layer 14. This corresponds to an etch rate of 15 angstroms per minute.

3. **Etching rates using: masking layer 16, laser energy 42, and etchant solution 26 of 1:10 HCl:H₂O.**

When the masking layer 16 is added to the etch surface 18, and again using a 1:10 HCl:H₂O etchant solution 26, laser energy 42 with an energy density of 0.57 Watts/cm² and 1mm diameter produced a well 46 about 8000 angstroms deep in the Group III Nitride layer 14 in approximately 20 minutes. This corresponds to an etch rate of 400 angstroms per minute.
4. Etching rates using: masking layer 16, no laser energy 42, and etchant solution 26 of 1:3 KOH:H₂O.

Without using the laser energy 42, a substrate 10 with a Group III Nitride layer 14 and a masking layer 16 was immersed in a 1:3 KOH:H₂O etchant solution 26. After 45 minutes, no significant etching was observed in the Group III Nitride layer 14.

With a masking layer 16, and again using a 1:3 KOH:H₂O etchant solution 26, adding laser energy 42 for 15 minutes with an energy level below the bandgap energy of the Group III Nitride layer 14 produced no significant etching of the Group III Nitride layer 14.

When the laser energy 42 is above the bandgap energy of the Group III Nitride layer 14, and the masking layer 16 is deposited on the etch surface 18, and again using a 1:10 HCl:H₂O etchant solution 26, laser energy 42 with an energy density of 0.57 Watts/cm² and 1mm diameter produced a well 46 about 20,000 angstroms deep in the Group III Nitride layer 14 in a five minute period. This corresponds to an etch rate of 4,000 angstroms per minute.
FIG. 3 is a flowchart describing the steps performed in the etching method of the invention. Step 48 overlays the Group III Nitride layer with a mask. Step 50 defines a pattern in the mask, alternatively exposing and covering the Group III Nitride layer with the mask. Step 52 immerses the selectively exposed Group III Nitride in an etchant solution. Step 54 couples an electron sink to the mask. Step 56 illuminates the selectively exposed Group III Nitride with an optical source, etching the selectively exposed Group III Nitride layer.

The foregoing description of the preferred embodiment of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be limited not with this detailed description, but rather by the claims appended hereto.
WHAT IS CLAIMED IS:

1. A method of wet etching a semiconductor layer, comprising the steps of:

 overlaying the semiconductor layer with a mask, wherein the mask defines a pattern to be transferred to the semiconductor layer and facilitates a flow of photogenerated carriers from an area of the semiconductor layer to be etched;

 immersing the semiconductor layer in an etchant solution; and

 illuminating the immersed semiconductor layer using an optical source containing frequencies above the bandgap of the semiconductor layer.

2. The method of claim 1, wherein the semiconductor layer is a Group III Nitride layer.

3. The method of claim 1, wherein the method further comprises the step of coupling the mask to a conductive path which draws electrons from the mask to a higher electrical potential.

4. The method of claim 1, wherein a sidewall of the area to be etched substantially mirrors the geometry of the mask.

5. The method of claim 1, wherein an etch rate exceeds 100 angstroms per minute.
6. The method of claim 1, wherein the temperature of the etchant solution is less than 40 degrees centigrade.

7. The method of claim 1, wherein the mask comprises at least one of the group comprising:
 - gold;
 - silver;
 - titanium; or
 - composite metals.

8. The method of claim 1, wherein the power of the optical source is 4.5 mW.

9. The method of claim 1, wherein a concentration of the etchant solution is less than the concentration required to etch the semiconductor layer without the optical source.

10. The method of claim 1, wherein the type of etchant solution is selected from the group comprising:
 - Potassium Hydroxide; and
 - Hydrochloric Acid.
11. The method of claim 1, wherein the semiconductor layer comprises a heterostructure.

12. A semiconductor device, fabricated using the steps of:
 overlaying a semiconductor layer with a mask, wherein the mask defines a pattern to be transferred to the semiconductor layer and facilitates a flow of photogenerated carriers from an area to be etched, immersing the semiconductor layer in an etchant solution; illuminating the immersed semiconductor layer using an optical source containing frequencies above the bandgap of the semiconductor layer.

13. The device of claim 12, wherein the semiconductor layer is a Group III Nitride layer.

14. The device of claim 12, wherein the fabrication steps further comprise the step of coupling the mask to a conductive path which draws electrons from the mask to a higher electrical potential.

15. The device of claim 12, wherein a sidewall of the area to be etched substantially mirrors the geometry of the mask.
16. The device of claim 12, wherein an etch rate exceeds 100 angstroms per minute.

17. The device of claim 12, wherein the temperature of the etchant solution is less than 40 degrees centigrade.

18. The device of claim 12, wherein the mask comprises at least one of the group comprising:

 gold;

 silver;

 titanium; or

 composite metals.

19. The device of claim 12, wherein the power of the optical source is 4.5 mW.

20. The device of claim 12, wherein a concentration of the etchant solution is less than the concentration required to etch the semiconductor layer without the optical source.
21. The device of claim 12, wherein the type of etchant solution is selected from the group comprising:

Potassium Hydroxide; and

Hydrochloric Acid.

22. A method of etching a Group III Nitride layer, comprising the steps of:

overlaying the Group III Nitride layer with a mask, wherein the mask ensures an unimpeded flow of photogenerated carriers from an area of the layer to be etched;

immersing the Group III Nitride layer in an etchant solution;

coupling the mask to a conductive path which draws electrons from the mask to a higher electrical potential; and

illuminating the immersed Group III Nitride layer using an optical source containing frequencies above the bandgap of the Group III Nitride layer.
FIG. 3
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 IPC(6) :H01L 21/306
 US CL :156/643.1, 644.1, 656.1; 216/94; 205/655, 656, 666, 667, 674
 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
 Minimum documentation searched (classification system followed by classification symbols)
 U.S. : 156/643.1, 644.1, 656.1; 216/94; 205/655, 656, 666, 667, 674
 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
 none
 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
 APS, STN (files CAPLUS, INSPEC, COMPENDEX, WPIDS, EUROPATFULL, JICST-EPLUS)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 4,576,691 A (KOHL et al) 18 March 1986, column 3,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>line 59, column 4, lines 36 and 56-59, column 5, lines 1-15</td>
<td>1, 3-5, 7, 9-12,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14-16, 18, 91, 21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2, 6, 8, 13, 17, 19, 22</td>
</tr>
<tr>
<td>Y</td>
<td>US 4, 559, 115 A (INOUE) 17 December 1985, column 1,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lines 6-10, column 3, line 51</td>
<td>2, 13, 22</td>
</tr>
<tr>
<td>A</td>
<td>US 4,613,417 A (LASKOWSKI et al) 23 September 1986</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 4,874,484 A (FOELL et al) 17 October 1989</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>DE 4,126,916 A1 (SIEMENS) 18 February 1993</td>
<td></td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document published on or after the international filing date
 "L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"Z" document member of the same patent family

Date of the actual completion of the international search
26 JUNE 1997

Date of mailing of the international search report
04 AUG 1997

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

ANITA ALANKO

Telephone No. (703) 308-0661

Form PCT/ISA/210 (second sheet)(July 1992)*