Title: LIPOSOME PREPARATIONS OF INDOLOCARBAZOLE DERIVATIVES

Abstract
Liposome preparations prepared by making indolocarbazole derivatives of general formula (I) enclosed in liposomes made of lipid wherein R is hydrogen or lower alkyl.

\[
\text{(I)}
\]
（５７）要約

本発明は、式（I）

![化学式]

（式中、Rは水素または低級アルキルを表す）で表されるインドロカルバゾール誘導体を脂質成分より構成されるリポソームに包含させることを特徴とするリポソーム製剤を提供する。

参考情報

PCTに基づいて公開される国際出願のパンフレット第１頁に記載されたPCT加盟国を同定するために使用されるコード

AL アルバニア
AM アルメニア
AT アオストリア
AU オーストラリア
AZ アゼルバイジャン
BA バルガス
BB ベルギー
BE ベルギー
BG ベルガリア
BJ ブラジル
BR ブラジル
CA カナダ
CF セントラルアフリカ共和国
CG セイロン
CH スイス
CI コートジボワール
CM カメルーン
CN 中国
CZ チェコスロバキア
DE ドイツ
DK デンマーク
EE リトアニア
ES スペイン
FI フィンランド
FR フランス
GA ガボン
GB 英国
GE グerman
GH ガーナ
GI ギニア
GM ギニア
GR ギリシャ
HN ハンガリー
ID インドネシア
IE アイルランド
IL イスラエル
IT イタリア
JP 日本
KE ケニア
KG キルギス
KH カンボジア
KJ ケニア
KR 韓国
KW キューバ
KY キリバス
LA ラオス
LB レバノン
LC サンタルシャ
LI リヒテンシュタイン
LK シリラヤ
LR リベリア
LS レチ
LT リトアニア
LU ルクセンブルク
LV ラトビア
MW マラウィ
MX メキシコ
NL オランダ
NO ノルウェー
NZ ニュージーランド
PL ポーランド
PT ポルトガル
RO ローマニア
RU ロシア連邦
SD サウジアラビア
SE スウェーデン
SG シンガポール
SI スロベニア
SK スロヴァキア共和国
SL シンガポール
SN サン Marino
SO スウェーデン
SR スロベニア共和国
TT タンザニア
TW トーキョー
TD タンザニア
TF ティニハート・トパゴ
TH タイ
TR トルコ
TS タンザニア
TV ティニハート・トパゴ
UG ウガンダ
US アメリカ
UK ウクライナ
US アメリカ
UG ウガンダ
UY ユーラシア
UK ウクライナ
ZA ジンバブエ
明細書

インドロカルバソール誘導体のリポソーム製剤

技術分野

本発明は医療上有用なインドロカルバソール誘導体を含有するリポソーム製剤に関する。

背景技術

UCN-01またはその誘導体を体内、特に血管内に投与した場合、UCN-01またはその誘導体が血管細胞や種々の正常細胞にも接触することは回避できない。UCN-01誘導体が細胞生育阻害活性を有していることから、UCN-01またはその誘導体の正常細胞への接触は、正常細胞に悪影響を起こす可能性がある。

また、UCN-01またはその誘導体をそのまま血管内に投与した場合、血中
で分解を受けたり、標的以外の他の臓器に集積することがあり、必ずしも効果的に腫瘍に集積するとは限らない。正常細胞への影響がなく、血中での安定化および腫瘍への集積性の増大がなされるUCN-01またはその誘導体を含有する製剤が望まれている。

発明の開示

本発明は、式（I）

（式中、Rは水素または低級アルキルを表す）で表されるインドロカルバゾール誘導体を脂質成分より構成されるリポソームに包含させることを特徴とするリポソーム製剤に関する。

以下、式（I）で表される化合物を化合物（I）と称す。

化合物（I）の式中の定義において、低級アルキルは、直鎖もしくは分枝状の炭素数1〜6のアルキル、例えば、メチル、エチル、プロピル、イソプロピル、sec-ブチル、tert-ブチル、ベンチル、ヘキシル等を意味する。

式（I）で表されるインドロカルバゾール誘導体は、特開昭62-220196号公報あるいはWO89/07105号公報記載の方法により製造することができる。それらの化合物の具体例を表-1に示す。
表-1：式（I）で表わされる化合物の具体例

<table>
<thead>
<tr>
<th>R</th>
<th>分子量：MS (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>483(M+1)*</td>
</tr>
<tr>
<td>CH₃</td>
<td>497(M+1)*</td>
</tr>
<tr>
<td>C₅H₅</td>
<td>510(M)*</td>
</tr>
<tr>
<td>i-C₃H₇</td>
<td>524(M)*</td>
</tr>
<tr>
<td>n-C₄H₉</td>
<td>538(M)*</td>
</tr>
</tbody>
</table>

リポソーム調製用の脂質としては、リン脂質、グリセロ糖脂質、スフィンコ糖脂質が用いられ、特にリン脂質が好ましく用いられる。例えば、リン脂質としては、ホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジン酸、ホスファチジルグリセロール、ホスファチジルイノシトール、リゾホスファチジルコリン、スフィンゴミエリン、卵黄レシチン、大豆レシチン等の天然または合成のリン脂質、水素添加リン脂質等があげられる。

また、グリセロ糖脂質等としては、スルホキシリポシルジグリセリド、ジグルコシルジグリセリド、ジガラクトシルジグリセリド、ガラクトシルジグリセリド、
グリコシルジグリセリド等があげられる。
また、スフィンゴ糖脂質としては、ガラクトシルセレプロシド、ラクトシルセレプロシド、ガングリオシド等があげられる。これらは、单独あるいは組み合わせて用いられる。また、必要に応じて、脂質成分と共に、膜安定化剤としてコレステロール等のステロール類、抗酸化剤としてトコフェロール等、荷電物質としてステアリルアミン、ジセチルホスフェート、ガングリオシド等を用いてもよい。
また、非イオン性界面活性剤、カチオン性界面活性剤、アニオン界面活性剤、多糖類およびその誘導体、ポリオキシエチレン誘導体等によるリポソーム表面改質も任意に行える。さらに、抗体、蛋白、ペプチド、脂肪酸類等によるリポソーム表面修飾によりターゲッティングに応用することもできる。リポソームを懸濁させる溶液には水以外に酸、アルカリ、種々の緩衝液、生理的食塩液、アミノ酸溶液等を用いてもよい。また、クエン酸、アスコルビン酸、システイン、エチレンジアミン四酢酸（EDTA）等の抗酸化剤を添加してもよい。さらに、パラベン類、クロルブタノール、ベンジルアルコール、プロピレングリコール等の防腐剤を加えてもよい。また、等張化剤として、例えば、グリセリン、ブドウ糖、塩化ナトリウム等の添加も可能である。

これらの中で、pH勾配法は、該リポソーム製剤への化合物（I）の包含率が高いこと、リポソームの大きさを揃えられること、リポソーム懸濁液中の残留有機溶媒が少ないこと等の利点が多い。pH勾配法による本発明のリポソーム製剤の調製法としては、例えば、脂質成分をエタール、エタノール等の溶媒に溶解後、なす型フラスコに入れ減圧下、溶媒留去し脂質薄膜を形成する。次いで、酸性緩衝液を薄膜に加え、振とう摺拌し大きな多重層リポソームを形成する。さらに、リポソーム粒子径をエクストルージョン法等により、例えば、平均粒子径約100nmとなるように調製する。このリポソーム懸濁液に化合物（I）の弱酸性液を添加後、適当な緩衝液を加え、リポソーム懸濁液のpHを中性付近まで上昇（リポソーム懸濁液のpH上昇前とpH上昇後のpHの差は3以上が望ましい）させる。以上の操作により、リポソームの内部に化合物（I）を定量的に包含させることができる。

また、化合物（I）と脂質成分をエタノール等の有機溶媒に溶解し、溶媒留去した後、生理食塩水などを添加、振とう摺拌しリポソームを形成させることもできる。

上記の方法等により得られる本発明のリポソーム製剤はそのままでも使用できるが、使用目的、保存条件等によりマンニトール、ラクトース、グリシン等の賦形剤を加え凍結乾燥することもできる。また、グリセリン等の凍結保護剤を加え、凍結保存してもよい。

本発明のリポソーム製剤は、注射剤として用いるのが一般的であるが、経口剤、点鼻剤、点眼剤、経皮剤、坐剤、吸入剤等として加工して使用することもできる。以下に本発明の実施例および試験例を示す。
本発明のリポソーム製剤は、化合物（1）の血中での安定化および腫瘍への集積性の増大を目的としている。

発明を実施するための最良の形態

実施例1

0.7 gのホスファチジルコリンを5 mlのエーテルに溶解し、減圧下、溶媒を留去し脂質薄膜を形成した。これに、10 mlの20 mMクエン酸緩衝液（pH 2.5）を加え、ポルテックスミキサーで振とう攪拌した。さらに、この懸濁液を0.4 µmのポリカーポネートメンブランフィルターを5回通過させた。さらに、0.1 µmのポリカーポネートメンブランフィルターを10回通過させた。これに20 mMクエン酸緩衝液（pH 2.5）を加え、ホスファチジルコリンの濃度が50 mg/mlのリポソーム懸濁液を調製した。一方、10 mgのUCN-01に乳糖200 mg、リン酸水素ナトリウム（十二水塩）56 mg、クエン酸水和物12 mgを添加し、これを蒸留水で溶解し、10 mlしたものを作りガラスバイアルに入れ、凍結乾燥を行った。凍結乾燥終了後、窒素気流下、常圧に戻し、容器を密封しUCN-01の凍結乾燥品を得た。この凍結乾燥品に先に調製したリポソーム懸濁液2 mlを添加した。さらに、8 mlの200 mMリン酸二ナトリウム水溶液を添加しpH 7.4とし、UCN-01をリポソーム内に包含させた。

実施例2

20 mMクエン酸緩衝液（pH 2.5）の添加量を変えホスファチジルコリンの濃度が40 mg/mlとする以外は、実施例1と同様の方法でリポソーム懸濁液を調製した。一方、10 mgのUCN-01に乳糖200 mg、リン酸水素ナトリウム（十二水塩）56 mg、クエン酸水和物12 mgを添加し、実施例1と同様の方法で凍結乾燥品を作製した。この凍結乾燥品に先に調製したリポソーム懸濁液2 mlを添加した。さらに、8 mlの200 mMリン酸二ナトリウム水溶液を添加しpH 7.4とし、UCN-01をリポソーム内に包含させた。
実施例3

20 mMクエン酸緩衝液（pH 2.5）の添加量を変えホスファチジルコリンの濃度が30 mg/mlとする以外は、実施例1と同様の方法でリポソーム懸濁液を調製した。一方、10 mgのUCN-01に乳糖200 mg、リン酸水素ナトリウム（十二水塩）56 mg、クエン酸水和物12 mgを添加し、実施例1と同様の方法で凍結乾燥品を作製した。この凍結乾燥品に先に調製したリポソーム懸濁液2 mlを添加した。さらに、8 mlの200 mMリン酸ニトリウム水溶液を添加しpH 7.4とし、UCN-01をリポソーム内に包含させた。

実施例4

20 mMクエン酸緩衝液（pH 2.5）の添加量を変えホスファチジルコリンの濃度が25 mg/mlとする以外は、実施例1と同様の方法でリポソーム懸濁液を調製した。一方、10 mgのUCN-01に乳糖200 mg、リン酸水素ナトリウム（十二水塩）56 mg、クエン酸水和物12 mgを添加し、実施例1と同様の方法を行い、凍結乾燥品を作製した。この凍結乾燥品に先に調製したリポソーム懸濁液2 mlを添加した。さらに、8 mlの200 mMリン酸ニトリウム水溶液を添加しpH 7.4とし、UCN-01をリポソーム内に包含させた。

実施例5

20 mMクエン酸緩衝液（pH 2.5）の添加量を変えホスファチジルコリンの濃度が25 mg/mlとする以外は、実施例1と同様の方法でリポソーム懸濁液を調製した。5 mgのUCN-01に調製したリポソーム懸濁液2 ml添加しUCN-01を溶解した。さらに、3 mlの200 mMリン酸ニトリウム水溶液を添加し、pH 7.4とし、UCN-01をリポソーム内に包含させた。

実施例6

20 mMクエン酸緩衝液（pH 2.5）の添加量を変えホスファチジルコリンの濃度が20 mg/mlとする以外は、実施例1と同様の方法でリポソーム懸濁液を調製した。5 mgのUCN-01に調製したリポソーム懸濁液2 ml添加し
UCN-01を溶解した。さらに、3mlの200mMリン酸二ナトリウム水溶液を添加しpH7.4としUCN-01をリポソーム内に包含させた。

実施例7
20mMクエン酸緩衝液（pH2.5）の添加量を変えてホスファチジルコリンの濃度が15mg/mlとする以外は、実施例1と同様の方法でリポソーム懸濁液を調製した。5mgのUCN-01に調製したリポソーム懸濁液2ml添加しUCN-01を溶解した。さらに、3mlの200mMリン酸二ナトリウム水溶液を添加しpH7.4としUCN-01をリポソーム内に包含させた。

実施例8
20mMクエン酸緩衝液（pH2.5）の添加量を変えてホスファチジルコリンの濃度が12.5mg/mlとする以外は、実施例1と同様の方法でリポソーム懸濁液を調製した。5mgのUCN-01に調製したリポソーム懸濁液2ml添加しUCN-01を溶解した。さらに、3mlの200mMリン酸二ナトリウム水溶液を添加しpH7.4としUCN-01をリポソーム内に包含させた。

実施例9
15mlのエタノールに5mgのUCN-01と100mgのホスファチジルコリンを溶解した。減圧下、溶媒を留去し脂質薄膜を形成した。これに、1mlの5重量%プドウ糖液を添加し、ポルテックスミキサーで振とう攪拌した。さらに、このリポソーム懸濁液を0.4μmのポリカーポネートメンブランフィルターを4回通過させた。さらに、0.1μmのポリカーポネートメンブランフィルターを10回通過させ、UCN-01をリポソーム内に包含させた。

試験例1
実施例1〜8で作製したUCN-01包含リポソームを0.45μmのメンブランフィルターでろ過し不溶性異物等の除去を行った。実施例1〜4のリポソームの場合のみ、1mlのリポソーム懸濁液に1mlのpH7.4の200mMリン酸2ナトリウム-20mMクエン酸緩衝液を加え混合した。これらのリポソー
ムを10℃で超遠心分離（110, 000×g、1時間）を行った。フィルターろ過前のリン脳および超遠心分離後の上清中のリン脳はデュミナーPL（協和メドックス社）による酵素法［実践臨床化学（増補版）、580（1982）］により定量した。また、フィルターろ過後のUCN-01、および超遠心分離後の上清中のUCN-01は高速液体クロマトグラフィーにより定量した。包含率は次式で算出した。

\[
\text{包含率（％)} = \frac{(A-B)/(C-D)}{E/F} \times 100
\]

A：フィルターろ過後のろ液中UCN-01濃度（mg/ml）
B：超遠心分離上清中のUCN-01濃度（mg/ml）
C：フィルターろ過後のろ液中リン脳濃度（mg/ml）
D：超遠心分離上清中のリン脳濃度（mg/ml）
E：フィルターろ過前の懸濁液中UCN-01濃度（mg/ml）
F：フィルターろ過前の懸濁液中リン脳濃度（mg/ml）

高速液体クロマトグラフィー分析条件
カラム：カプセルバック PAK C18 UG120（資生堂社製）S-5 4.6×250mm
移動相：20 mMトリス-塩酸緩衝液（pH9.0）：アセトニトリル：トトラヒドロフラン＝60:22:18（容量部）
流速：0.8 ml/分
カラム保持温度：25℃
検出波長：285 nm
結果を表2に示す。
表2：UCN-01の包含率

<table>
<thead>
<tr>
<th>試料</th>
<th>UCN-01の包含率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>実施例1</td>
<td>108.3</td>
</tr>
<tr>
<td>実施例2</td>
<td>98.1</td>
</tr>
<tr>
<td>実施例3</td>
<td>81.8</td>
</tr>
<tr>
<td>実施例4</td>
<td>68.4</td>
</tr>
<tr>
<td>実施例5</td>
<td>101.6</td>
</tr>
<tr>
<td>実施例6</td>
<td>91.8</td>
</tr>
<tr>
<td>実施例7</td>
<td>78.7</td>
</tr>
<tr>
<td>実施例8</td>
<td>56.8</td>
</tr>
</tbody>
</table>

試験例2

リポソーム内に包含させたUCN-01の経時的な漏出を調べるため、実施例1と同様に調製したUCN-01包含リポソーム懸濁液をバイアルに入れ、ゴム栓で密封した。これを5℃、25℃、37℃の温度条件下で保存し、経時的な包含率変化を求めた。包含率の求め方は試験例1と同様に行った。

結果を表3に示す。

表3：UCN-01の包含率変化

<table>
<thead>
<tr>
<th>時間</th>
<th>包含率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5℃</td>
</tr>
<tr>
<td>0</td>
<td>108.2</td>
</tr>
<tr>
<td>1</td>
<td>93.0</td>
</tr>
<tr>
<td>3</td>
<td>114.9</td>
</tr>
<tr>
<td>6</td>
<td>99.2</td>
</tr>
<tr>
<td>24</td>
<td>93.2</td>
</tr>
</tbody>
</table>

表2より、本発明のリポソーム製剤が、良好なUCN-01の包含率を示すこ
とがわかる。また、表3は、本発明のリポソーム製剤がリポソームからのUCN-01の漏出の少ない安定なリポソーム製剤であることを示している。

実施例10

1gのホスファチジルコリンを5mlのエーテルに溶解し、減圧下、溶媒を留去し脂質薄膜を形成した。これに、10mlの20mMクエン酸緩衝液（pH 4.0）を加え、ポルテックスミキサーで振とう攪拌した。さらに、この懸濁液を0.4μmのポリカーポネートメンブランフィルターを5回通過させた。さらに、0.1μmのポリカーポネートメンブランフィルターを10回通過させた。これに20mMクエン酸緩衝液（pH 4.0）を加え、ホスファチジルコリンの濃度が50mg/mlのリポソーム懸濁液を調製した。一方、10mgのUCN-01に乳糖2000mg、リン酸水素ナトリウム（十二水塩）56mg、クエン酸水和物12mgを添加し、実施例1と同様の方法で凍結乾燥品を作製した。この凍結乾燥品に先に調製したリポソーム懸濁液2mlを添加した。さらに、8mlの28.2mM水酸化ナトリウム水溶液を添加しpH 8.0とし、UCN-01をリポソーム内に包含させた。

実施例11

脂質薄膜の原料として、1.2gのホスファチジルコリンと0.3gのコレステロールを使用する以外は、実施例10の方法と同様にして、UCN-01をリポソーム内に包含させた。

実施例12

脂質薄膜の原料として、1.2gのホスファチジルコリン、0.4gのコレステロールと0.4gのPEG-DSPE（1,2-ジェステアロイル-スチ-グリセロ-3-ホスファエタノールアミン-N-[ポリ（エチレングリコール）2000]；AVANTI POLAR LIPIDS INCORPORATION社製）を使用する以外は、実施例10の方法と同様にして、UCN-01をリポソーム内に包含させ
た。
実施例13

20 mMクエン酸緩衝液（pH 4.0）の添加量を変え、リポソーム懸濁液のホスファチジルコリンの濃度を35 mg/mlとする以外は、実施例10の方法と同様にして、リポソーム懸濁液を調製した。一方、実施例10と同様の方法でUCN-01の凍結乾燥品を作製した。この凍結乾燥品にUCN-01が0.5 mg/mlとなるように先に調製したリポソーム懸濁液を添加した。この液2mlに8mlの10.4 mM水酸化ナトリウム水溶液を添加しpH 8.0とし、UCN-01をリポソーム内に包含させた。
実施例14

実施例13と同様の方法でリポソーム懸濁液及びUCN-01の凍結乾燥品を調製した。この凍結乾燥品にUCN-01が0.05 mg/mlになるようにリポソーム懸濁液を添加した。この液2mlに8mlの9.0 mM水酸化ナトリウム水溶液を添加しpH 8.0とし、UCN-01をリポソーム内に包含させた。
実施例15

実施例13と同様の方法でリポソーム懸濁液及びUCN-01の凍結乾燥品を調製した。この凍結乾燥品にUCN-01が0.005 mg/mlになるようにリポソーム懸濁液を添加した。この液2mlに8mlの9.0 mM水酸化ナトリウム水溶液を添加しpH 8.0とし、UCN-01をリポソーム内に包含させた。
実施例16

リポソーム懸濁液の調製において、0.1 μmのポリカーポネートメンブランフィルターの代わりに、0.2 μmのポリカーポネートメンブランフィルターを使用する以外は、実施例13と同様の方法で、UCN-01をリポソーム内に包含させた。
実施例17

実施例16と同様の方法でリポソーム懸濁液及びUCN-01の凍結乾燥品を
調製した。この凍結乾燥品にUCN-01が0.05 mg/mlになるようにリポソーム懸濁液を添加した。この液2mlに8mlの9.0 mM水酸化ナトリウム水溶液を添加しpH8.0とし、UCN-01をリポソーム内に包含させた。実施例18

実施例16と同様の方法でリポソーム懸濁液及びUCN-01の凍結乾燥品を調製した。この凍結乾燥品にUCN-01が0.005 mg/mlになるようにリポソーム懸濁液を添加した。この液2 mlに8 mlの9.0 mM水酸化ナトリウム水溶液を添加しpH8.0とし、UCN-01をリポソーム内に包含させた。実施例19

0.9 gのホスファチジルコリンと0.1 gのホスファチジルエタノールアミンを5mlのクロロハロムに溶解し、減圧下、溶媒を留去し脳質薄膜を形成した。これに、10 mlの20 mMクエン酸緩衝液（pH4.0）を加え、ポルテックスミキサーで振とう攪拌した。さらに、この懸濁液を0.4 μmのポリカーポネートメンプランフィルターを5回通過させた。さらに、0.1 μmのポリカーポネートメンプランフィルターを10回通過させた。これに20 mMクエン酸緩衝液（pH4.0）を加え、ホスファチジルコリンの濃度が45 mg/mlのリポソーム懸濁液を調製した。一方、実施例10と同様にして、UCN-01の凍結乾燥品を作製した。この凍結乾燥品にUCN-01が0.5 mg/mlになるように先に調製したリポソーム懸濁液を添加した。この液2 mlに8 mlの10.4 mM水酸化ナトリウム水溶液を添加しpH8.0とし、UCN-01をリポソーム内に包含させた。

実施例20

実施例19と同様の方法でリポソーム懸濁液及びUCN-01の凍結乾燥品を調製した。この凍結乾燥品にUCN-01が0.05 mg/mlになるように先に調製したリポソーム懸濁液を添加した。この液2 mlに8 mlの9.0 mM水酸化ナトリウム水溶液を添加しpH8.0とし、UCN-01をリポソーム内に
包含させた。

実施例21

実施例19と同様の方法でリポソーム懸濁液及びUCN－01の凍結乾燥品を調製した。この凍結乾燥品にUCN－01が0.005mg/mLになるように先に調製したリポソーム懸濁液を添加した。この液2mLに8mLの9.0mM水酸化ナトリウム水溶液を添加しpH8.0とし、UCN－01をリポソーム内に包含させた。

実施例22

0.7gのホスファチジルコレインと0.3gのホスファチジルグリセロールを5mLのクロロホルムに溶解し、減圧下、溶媒を留去し脂質薄膜を形成した。これに、10mLの20mMクエン酸緩衝液（pH4.0）を加え、ポルテックスミキサーで振とう攪拌した。さらに、この懸濁液を0.4μmのポリカーポネートメンプランフィルターを5回通過させた。さらに、0.1μmのポリカーポネートメンプランフィルターを10回通過させた。これに20mMクエン酸緩衝液（pH4.0）を加え、ホスファチジルコレインの濃度が35mg/mLのリポソーム懸濁液を調製した。一方、実施例10と同様にして、UCN－01の凍結乾燥品を作製した。この凍結乾燥品にUCN－01が0.5mg/mLになるように先に調製したリポソーム懸濁液を添加した。この液2mLに8mLの10.4mM水酸化ナトリウム水溶液を添加しpH8.0とし、UCN－01をリポソーム内に包含させた。

実施例23

実施例22と同様の方法でリポソーム懸濁液及びUCN－01の凍結乾燥品を調製した。この凍結乾燥品にUCN－01が0.05mg/mLになるように先に調製したリポソーム懸濁液を添加した。この液2mLに8mLの9.0mM水酸化ナトリウム水溶液を添加しpH8.0とし、UCN－01をリポソーム内に包含させた。
実施例2-4
実施例2-2と同様の方法でリポソーム懸濁液及びUCN-01の凍結乾燥品を調製した。この凍結乾燥品にUCN-01が0.005mg/mlになるように先に調製したリポソーム懸濁液を添加した。この液2mlに8mlの9.0mM水酸化ナトリウム水溶液を添加しpH8.0とし、UCN-01をリポソーム内に包含させた。

実施例2-5
脂質薄膜の原料として、0.7gのホスファチジルコリン、0.3gのコレステロールを使用する以外は、実施例2-2と同様の方法でUCN-01をリポソーム内に包含させた。

実施例2-6
実施例2-5と同様の方法でリポソーム懸濁液及びUCN-01の凍結乾燥品を調製した。この凍結乾燥品にUCN-01が0.05mg/mlになるように先に調製したリポソーム懸濁液を添加した。この液2mlに8mlの9.0mM水酸化ナトリウム水溶液を添加しpH8.0とし、UCN-01をリポソーム内に包含させた。

実施例2-7
実施例2-5と同様の方法でリポソーム懸濁液及びUCN-01の凍結乾燥品を調製した。この凍結乾燥品にUCN-01が0.005mg/mlになるように先に調製したリポソーム懸濁液を添加した。この液2mlに8mlの9.0mM水酸化ナトリウム水溶液を添加しpH8.0とし、UCN-01をリポソーム内に包含させた。

試験例3
実施例10～12で作製したUCN-01包含リポソームを試験例1と同様の方法で処理し、各リポソームのUCN-01の包含率を調べた。その結果を表4に示す。
表4: UCN-01の包含率

<table>
<thead>
<tr>
<th>試料</th>
<th>UCN-01 の包含率 (％)</th>
</tr>
</thead>
<tbody>
<tr>
<td>実施例10</td>
<td>100.0</td>
</tr>
<tr>
<td>実施例11</td>
<td>85.7</td>
</tr>
<tr>
<td>実施例12</td>
<td>82.9</td>
</tr>
</tbody>
</table>

試験例4

実施例13～27で作製したUCN-01包含リポソームを10℃で超遠心分離（110,000×g、2時間）を行った。超遠心分離前のUCN-01、および超遠心分離後の上清中のUCN-01は高速液体クロマトグラフィーにより定量した。包含率は次式で算出した。

\[\text{UCN-01の包含率 (％) } = \left(B - A \right) \times 100 / B \]

A: 超遠心分離上清中のUCN-01濃度 (mg/mL)
B: 超遠心分離前の懸濁液中UCN-01濃度 (mg/mL)

高速液体クロマトグラフィー分析条件

カラム：YMC AM-312 径6.0mm×長さ150mm（YMC社製）
移動相：0.05Mリン酸緩衝液（0.1％になるようにトリエチルアミンを添加）（pH 7.3）：アセトニトリル=1:1（容量部）
流速：1.0ml/min
カラム保持温度：25℃
検出：励起波長310nm、蛍光波長410nm
結果を表5に示す。

<table>
<thead>
<tr>
<th>試料</th>
<th>UCN-01の包含率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>実施例13</td>
<td>98.7</td>
</tr>
<tr>
<td>実施例14</td>
<td>99.0</td>
</tr>
<tr>
<td>実施例15</td>
<td>96.8</td>
</tr>
<tr>
<td>実施例16</td>
<td>99.2</td>
</tr>
<tr>
<td>実施例17</td>
<td>99.2</td>
</tr>
<tr>
<td>実施例18</td>
<td>94.0</td>
</tr>
<tr>
<td>実施例19</td>
<td>99.9</td>
</tr>
<tr>
<td>実施例20</td>
<td>99.7</td>
</tr>
<tr>
<td>実施例21</td>
<td>88.5</td>
</tr>
<tr>
<td>実施例22</td>
<td>98.9</td>
</tr>
<tr>
<td>実施例23</td>
<td>99.4</td>
</tr>
<tr>
<td>実施例24</td>
<td>100.0</td>
</tr>
<tr>
<td>実施例25</td>
<td>99.6</td>
</tr>
<tr>
<td>実施例26</td>
<td>99.4</td>
</tr>
<tr>
<td>実施例27</td>
<td>92.0</td>
</tr>
</tbody>
</table>

産業上の利用可能性

本発明により、医療上有用なインドロカルバゾール誘導体を包含させるリポソーム製剤が提供される。
請求の範囲

1. 式（I）

（式中、Rは水素または低級アルキルを表す）で表されるインドロカルバゾール誘導体を脂質成分より構成されるリポソームに包含させることを特徴とするリポソーム製剤。

2. 脂質がリン脂質である請求項1記載のリポソーム製剤。
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

Int. C16 A61K31/55, C07D491/22, A61K9/127

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int. C16 A61K31/55, C07D491/22, A61K9/127

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CAS ONLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO, 89/07105, A (Kyowa Hakko Kogyo Co., Ltd.), August 10, 1989 (10. 08. 89) & EP, 383919, A</td>
<td>1, 2</td>
</tr>
<tr>
<td>Y</td>
<td>JP, 7-278016, A (Pola Chemical Industries Inc.), October 24, 1995 (24. 10. 95)(Family: none)</td>
<td>1, 2</td>
</tr>
<tr>
<td>Y</td>
<td>JP, 3-163031, A (NOF Corp.), July 15, 1991 (15. 07. 91)(Family: none)</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C.
☐ See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "&" document member of the same patent family

Date of the actual completion of the international search
August 28, 1997 (28. 08. 97)

Date of mailing of the international search report
September 9, 1997 (09. 09. 97)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.
Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
国際調査報告

国際調査報告の発送日: 09.09.97

A. 発明の属する分野の分類（国際特許分類（IPC））

Int.Cl. A 61 K 31/55, C 07 D 491/22, A 61 K 9/127

B. 調査を行った分野

調査を行った国際特許分類（IPC）

Int.Cl. A 61 K 31/55, C 07 D 491/22, A 61 K 9/127

C. 関連すると認められる文献

引用文献の	引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示	関連する請求の範囲の番号
カテゴリー		
Y	WO, 89/07105, A（協和薬品工業株式会社）	1, 2
Y	JP, 7-278016, A（ボラ化成工業株式会社）	1, 2
Y	JP, 3-163031, A（日本油脂株式会社）	1, 2

C欄の続きにも文献が列挙されている。

パラレルファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」先行文献であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由に付す）

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前に、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パラレルファミリー文献

関連する請求の範囲の番号

国際調査を完了した日: 28.08.97

国際調査報告の発送日: 09.09.97

日本国特許庁（又は代表先）

郵便番号 110

東京都千代田区役所関東本部4番3号

特許庁審査官（権限のある職員）

〒 100

電話番号 03-3581-1101

内線 6853

式PCT/ISA/210（第2ページ）（1992年7月）