O 0 0 0 D 0

0 01/20453 Al

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

22 March 2001 (22.03.2001) PCT

0 O L 0

(10) International Publication Number

WO 01/20453 Al

(51) International Patent Classification’: GOG6F 11/00
(21) International Application Number: PCT/US00/25474

(22) International Filing Date:
14 September 2000 (14.09.2000)

(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
09/398,912 14 September 1999 (14.09.1999) US

(71) Applicant: QUALCOMM INCORPORATED [US/US};
5775 Morehouse Drive, San Diego, CA 92121-1714 (US).

(72) Inventors: LEE, Way-Shing; 8555 Foucaud Way, San
Diego, CA 92129 (US). FOERSTER, Gregory, B.; 10149
Tilton Street, San Diego, CA 92126 (US). ZHANG, Li;
17116 Patina Street, San Diego, CA 92127 (US). ZOU, Qi-
uzhen; 5791 Rutgets Road, La Jolla, CA 92037 (US).

(74) Agents: WADSWORTH, Philip, R. et al.; Qualcomm In-

corporated, 5775 Morehouse Drive, San Diego, CA 92121-
1714 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,

AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU,ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO,NZ,PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TI, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CL, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments.

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR MODIFYING MICROINSTRUCTIONS IN A STATIC MEMORY DEVICE

301
300 310 320
JUMP POINT JUMP POINT JUMP POINT
REGISTER I REGISTER 2 REGISTER 3
304 303 313 323
305
308 4 38 | 28 |
[COMPARATOR | [COMPARATOR | [COMPARATOR
306
317
320
307 327
PROCESSOR
330
INTERRUPT
¥ CONTROLLER

(57) Abstract: Method and apparatus for modifying the program flow of microinstructions residing in a static memory device. When
microinstructions from the static memory device need to be modified, a jump point register is used to hold a jump point address that
triggers an interrupt event. When the current program counter contains an address equal to the jump point address and the jump
point register is enabled, an interrupt event is generated that redirects the program flow away from the static memory device to a
programmable memory device. Rather than using the interrupt to indicate the occurrence of an external event, the interrupt is used
to bypass portions of the microinstructions residing in the static memory device.

woO 01720453 A1 IO ERNO 0 R A

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 01/20453 PCT/US00/25474

10

15

20

25

30

1

METHOD AND APPARATUS FOR MODIFYING
MICROINSTRUCTIONS IN A STATIC MEMORY DEVICE

BACKGROUND

I. Field of the Invention

The present invention relates to the field of control stores for
microprocessors. More particularly, the invention relates to the modification of
a control store apparatus that utilizes both a Read-Only Memory (ROM) and a
Random Access Memory (RAM).

II. Background

Control stores contain executable microinstructions that control the data
path of a microprocessor. On some machines, the control store consists of
RAM, in others, the control store is ROM. The contents of a RAM can easily be
rewritten with new information. However, RAM is volatile, i.e., the contents of
RAM are retained only during the time period when power is supplied to the
circuit. In contrast, the contents of a ROM are inserted at the time of the ROM’s

manufacture and cannot be changed or erased, even when powered off.

ROM is much cheaper than RAM when produced in large volumes. Due
to cost considerations of RAM and ROM, microcode programmers generally
design new circuitry with RAM so that programming mistakes can be easily
corrected, but substitute RAM with ROM in the final design stage to minimize
production costs. However, even the most rigorous design review can miss
programming errors that will then be permanently embedded in the static

ROM.

When programming mistakes are discovered in the microinstruction set
stored in ROM, programmers create patches to correct the mistakes. “Patch” is
a term of art that refers to new code introduced to fix prior code or to add
functionality. Microinstructions as a whole are referred to as “code” and
designed in a modular manner, wherein the entire code consists of separate

subroutines. Hence, an error in one portion of the code can be isolated and

10

15

20

25

30

WO 01/20453 PCT/US00/25474

2

corrected without having to rewrite the entire code. When a faulty subroutine
is discovered, a programmer will create a duplicate subroutine, without the
errors, which is called by the program flow instead of the faulty subroutine.
This technique is possible by utilizing system RAM and ROM together for
storing the microinstruction set. Subroutines are generally stored in ROM,
whereas the main program code that calls the subroutines is generally stored in
RAM. As the program flow proceeds down the microinstruction set in RAM,
exit points from the main code allow the program flow to execute the
microinstructions of the subroutines in ROM. When a subroutine has been
executed, the program flow exits the subroutine and reenters the main code in
RAM. However, when an error in a subroutine is discovered, the exit point
corresponding to the faulty subroutine is disabled and the programmer must
patch the mistake with a new subroutine. Since ROM is static, this new

subroutine must be stored in RAM.

This method is inflexible due to the inability to enter and exit faulty
subroutines except at predefined points in the main code. In addition, this
method wastes space in RAM since an entire subroutine must be duplicated in
RAM in order to fix a programming error within the subroutine, no matter how
minor the error. There is a present need in the art to have more flexible exit and
entry points in the program flow between ROM and RAM. In addition, there is
a present need to minimize the size of RAM required to fix programming errors

in ROM.

SUMMARY OF THE INVENTION

The present invention is directed to a method and apparatus for
modifying the program flow of microinstructions residing in a ROM in order
for programmers to have more direct access and control over the ROM
microinstructions. Since the microinstructions in ROM cannot be altered, any
changes to the microinstruction set must necessarily be made in RAM. The
present invention allows a programmer to directly access a programming error

within ROM without having to duplicate the entire subroutine in RAM. The

10

15

20

25

30

WO 01/20453 PCT/US00/25474

3

present invention can also allow a programmer to add functionality to outdated

ROM rather than replacing the outdated ROM with a newly designed ROM.

The exemplary embodiment of the present invention is a method for
modifying the program flow in a static memory device, the method comprising
the step of generating an interrupt that triggers a jump from the static memory

device to a programmable memory device.

In one embodiment of the invention, a jump point register is used to hold
a jump point address. This jump point address can trigger an interrupt event in
the program flow. A program counter contains the address of the current
microinstruction in the program flow. If the program counter holds an address
that equals the jump point address in the jump point register, the interrupt
event is generated. This interrupt event initiates an alteration in the program

flow from a static memory device to a programmable memory device.

In one embodiment of the invention, the interrupt event can be used to
repair programming errors in the static memory device. A programmer can
create a patch for a defective portion of code residing in the static memory
device. The programmer can then store an exit address in a register or other
storage device wherein the exit address corresponds to an address of a
predetermined microinstruction within the defective code portion. The exit
address is compared to all the microinstructions being executed in the program
flow. The microinstructions in the patch are executed when the predetermined

microinstruction occurs in the program flow.

In another embodiment of the invention, the interrupt event can produce
an alteration in the program flow that adds functionality to the static memory
device. The alteration can be in the form of additional code stored in a
programmable memory device, which can be executed in the midst of the

execution of microcode from the static memory device.

In another embodiment of the invention, multiple jump point registers
can be coupled to an interrupt port along with corresponding comparators,

which can enable or disable each individual jump point register. Each

10

15

20

25

WO 01/20453 PCT/US00/25474

4

individual jump point register can be associated with separate interrupt events.
Hence, using multiple jump point registers gives flexibility to a programmer
and allows her to advantageously allocate jump points according to future

need.

This modification reduces the requirement of RAM size for fixing

firmware mistakes in ROM and improves the functionality of ROM.

Still other objects and advantages of the present invention will become
readily apparent to those skilled in the art from the following detailed

description.
BRIEF DESCRIPTIONS OF THE DRAWINGS

FIG. 1 is a diagram showing a conventional program flow between RAM

and ROM.

FIG. 2 is a diagram showing the program flow between RAM and ROM

in an embodiment of the present invention.

FIG. 3 is a block diagram of a circuit for implementing program flow

between RAM and ROM.

FIG. 4 is a block diagram of a data processing system.
DETAILED DESCRIPTION

FIG. 1 is a block diagram showing a prior art implementation of an error
correcting method, i.e., a “debugging” method, for microinstructions in a data
processing system such as a computer system or a general purpose
microcomputer. For illustrative purposes, the preferred embodiments of the
invention are described using ROM and RAM. However, it will be readily
apparent in the detailed description below that the methods described are
applicable for use with any static storage device and volatile storage device. In
FIG. 1, a RAM 100 has been programmed with code that calls subroutines in a
ROM 110. A program counter (not shown) containing the address of the

microinstruction next to be executed proceeds down the RAM stack until the

10

15

20

25

30

WO 01/20453 PCT/US00/25474

5

program counter encounters the address of a microinstruction in the ROM
stack. At point 101, the program flow exits the microinstruction set in RAM 100
and enters the microinstruction set in ROM 110. The program counter proceeds
down the ROM 110 until it encounters the address of a microinstruction in
RAM 100. The program flow exits the microinstruction set in ROM 110 and
reenters the microinstruction set in RAM 100 at point 102. This process repeats
itself for the wvarious subroutines stored in ROM 110. However, if a
programming error needs be corrected in ROM 110, or a different functionality
needs to be added, a programmer could reprogram the RAM 100 so that the
subroutine stored in ROM 110 can be bypassed. The present practice among
those skilled in the art is to debug faulty subroutines by duplicating the entire
subroutine in RAM 100, absent programming errors, and reprogramming the
RAM 100 to carry the program flow to the duplicated subroutine in RAM 100,
rather than to the faulty subroutine stored in ROM 110.

As illustrated in FIG. 1, if a programming error 106 is discovered in
subroutine 105, then the programmer would have to disable the data path 103
from RAM 100 to ROM 110 and create a new data path 104 to a replacement
subroutine 107 residing in RAM 100. When subroutine 107 is complete, the
data path 108 flows back to any designated microinstruction located in RAM
100 after the disabled data path 103.

This can be a large waste of RAM resources when the size of the
programming error is minimal. Because ROM is static, a programmer cannot
change the microinstructions in ROM to redirect the program flow to RAM
from a different point in ROM, even if only a small portion of the subroutine

need be rewritten.

FIG. 2 is a block diagram showing the program flow between RAM 200
and ROM 210 in an embodiment of the present invention that allows a
programmer to debug a faulty subroutine stored in ROM 210 without having to
replicate the entire subroutine in RAM 200. In addition, a programmer may

include additional features and functions within the subroutines stored in ROM

10

15

20

25

30

WO 01/20453 PCT/US00/25474

6

210. The program flow exits RAM 200 and enters ROM 210 as in FIG. 1 during
an error-free portion of the microcode. However, when a bug is discovered in
the ROM 210, the program flow of FIG. 2 allows the programmer to create a
patch for the bug without sacrificing a large portion of the RAM 200 in order to

correct the bug.

A program counter (not shown) proceeds down the RAM stack until the
program counter encounters the address of a microinstruction in the ROM
stack. At point 201, the program flow exits the microinstruction set in RAM 200
and enters the microinstruction set in ROM 210. The program counter proceeds
down the ROM 210 until it encounters the address of a microinstruction in
RAM 200. The program flow exits the microinstruction set in ROM 210 and
reenters the microinstruction set in RAM 200 at point 202. This process repeats

itself for the various subroutines stored in ROM.

Program flow 203 continues to the subroutine 208 containing the
programming error 205. Error-free instructions in the subroutine are executed
until point 204, at which point the program flow returns to RAM 200 for a
patch. At point 206, the patch has been completed and the program flow
returns to ROM 210. When the subroutine is complete, the data path 207
returns to RAM 200.

In an exemplary embodiment of the present invention, an interrupt
circuit is introduced to a prior art data processing system. FIG. 3 is a block
diagram of an interrupt circuit that will allow a programmer to create a

program flow as shown in FIG. 2.

The interrupt circuit of FIG. 3 consists of a plurality of registers, or any
other storage device capable of storing a microinstruction address, and are
referred to generically as jump point registers. A jump point register holds a
jump point address that triggers an interrupt event. As is well known in the art,
an interrupt causes the temporary suspension of a process when an external
event occurs outside of that process. An interrupt signal indicates the

occurrence of an interrupt event so that the processor suspends the current

10

15

20

25

30

WO 01/20453 PCT/US00/25474

7

process and performs the task requested by the interrupt signal. However, in
this embodiment of the invention, interrupt signals are used in a very different
way. Rather than using the interrupt to indicate the occurrence of an external
event, the interrupt circuit of FIG. 3 uses an interrupt to bypass portions of the

microcode residing in ROM.

The interrupt circuit embodied in FIG. 3 includes three (3) jump point
registers 300, 310, 320. However, it should be apparent to one skilled in the art
that the number of jump point registers can vary according to a circuit
designer’s preference without affecting the scope of the present invention. Each
of the three (3) jump point registers is individually coupled to one of three
comparators 308, 318, 328, respectively, through lines 303, 313, 323. A
comparator is a device that compares two input words and is generally
composed of EXCLUSIVE-OR gates, but for this or any other embodiment of
the invention, any device that can accomplish a comparison function can be
used. However, for illustrative purposes, the term “comparator” will be used.
Each comparator 308, 318, 328, is coupled to the processor 320 through control
lines 304, 305.

Each jump point register 300, 310, 320, is set with an address
corresponding to an interrupt event. Line 301 loads the addresses into each

jump point register from the processor 320.

Control line 304 carries the contents of the program counter to the
comparators 308, 318, 328. The program counter is a register that contains the
address of the microinstruction to be executed next. In some data processing
systems, the program counter is designed to contain the current
microinstruction being executed. It would be apparent to one skilled in the art
that the contents of the program counter need not be limited to a predictive

state or a current state in order to implement any embodiment of the invention.

Control line 305 carries a control signal from the processor 320 that
enables or disables each comparator 308, 318, 328, in order to achieve the

desired functionality associated with each jump point register.

10

15

20

25

30

WO 01/20453 PCT/US00/25474

8

Control line 306 carries a status signal from comparators 308, 318, 328 to
status registers (not shown) in the processor 320, indicating which jump point
register contained the same address as the program counter. Placement of the
status registers in the processor 320 is merely a matter of design choice and does
not effect the scope of the invention. It should be noted that in an alternative
embodiment of the invention, the program counter could be used to identify
which jump point register has the same address as the program counter. If a
program counter is used, then all the bits in an address must be checked to
identify the jump point register in question. If a status register is used, then
only one bit need be checked. The choice of using the program counter or the
status registers for the purpose of identifying which jump point register
contains the jump point address associated with the current interrupt is merely

a matter of design choice.

If the address in the program counter is equal to one of the addresses
located in jump point registers 300, 310, 320 and a control signal is sent that
enables the comparator corresponding to the aforementioned jump point
register, then a status signal is sent to the processor 320 and a signal is sent to an

interrupt controller (not shown) so that an interrupt occurs.

In this instance, the interrupt event is not an external event which calls
for an suspension of the program flow, rather, the interrupt event redirects the
program counter to a microinstruction stored in RAM. The program flow
continues in RAM until redirected back to the ROM. Since RAM is dynamic,
the RAM can redirect the program counter, hence, the program flow, to any

microinstruction stored in ROM.

For the purposes of debugging the program code, a programmer can
identify a bug in a portion of the microinstruction subroutine in ROM and store
the address of the bug in a jump point register. If the bug is a minor error that
can be fixed with just a few lines of code, a patch for the bug can easily be
stored in RAM. When the program counter encounters the address of the bug,

which has been stored in the jump point register, the comparator allows a signal

10

15

20

25

30

WO 01/20453 PCT/US00/25474

9

to be sent to the interrupt controller, whereby an interrupt is generated which
redirects the program flow to the patch stored in RAM. When the
microinstructions contained in the patch have finished executing, the RAM
microinstruction immediately following the patch can redirect the program
flow to the ROM microinstruction following the erroneous section of the
subroutine. In this manner, a subroutine containing a small programming error

can be corrected without having to duplicate the entire subroutine in RAM.

For the purpose of adding functionality to the program code stored in
ROM, a programmer can advantageously utilize the jump point registers to add
further subroutines within the structure of already existing ROM subroutines.
In one embodiment of the invention, a programmer can insert a
microinstruction address into a jump point register wherein the
microinstruction is part of a program subroutine residing in ROM. When the
program counter contains the address of this microinstruction, the program
flow will jump to a corresponding set of microinstructions stored in RAM. The
last instruction of the corresponding set of microinstructions will redirect the
program flow back to the subroutine at whichever point the programmer
desires. In this manner, a programmer can add a new function to the ROM
subroutine without replacing the old, programmed ROM. Hence, a ROM can
be updated without having to be replaced by a reprogrammed ROM.

The interrupt circuit of Fig. 3 is one embodiment of the invention where
three (3) jump points and corresponding comparators are connected through a
OR gate 330 to an interrupt request (IRQ) pin in a processor, i.e., the interrupt
controller. In yet another embodiment of the invention, multiple interrupt
circuits can be used in a data processing system in order to minimize the
amount of checking for new code that will occur whenever an interrupt is
triggered. When there is a large number of jump point registers within a single
interrupt circuit, a large amount of MIPS is consumed to determine which new
code corresponds to the interrupt that was just triggered. However, when there
are numerous interrupt circuits, each with only three or fewer jump point

registers, and each connected to an individual IRQ pin, less MIPS are consumed

10

15

20

25

30

WO 01/20453 PCT/US00/25474

10

in implementing the code corresponding to the triggered interrupt event. The
use of multiple interrupt circuits or a single interrupt circuit is a matter of
design choice according to the needs of the circuit board designer. However,
any variation of the interrupt circuit as described herein falls within the scope

of this invention.

FIG. 4 is a block diagram showing a data processing system. It will be
apparent to one skilled in the art that the present invention may be practiced
without specific details as to well-known circuits and control logic. In order to
avoid obscuring the description, such specific details have been omitted from
FIG. 4. The block diagram of FIG. 4 is representative of a system wherein the
control logic is segregated from the operation core. The system may be a digital
signal processor or an application specific integrated circuit. However, it
should be noted that the present invention can be used in data processing
systems with other architectural forms, e.g., where the control logic is combined

with the operation core.

A program flow control device 400 is coupled to the control store RAM
430, the control store ROM 440, an interrupt circuit 450, and an instruction-
decoding device 410. The interrupt circuit 450 may be the interrupt circuit of
FIG. 3. The program flow control device 400 generates the contents of the
program counter, generates the flags which show whether the current
instruction has been executed or canceled, and handles all external events such
as direct memory access (DMA) and interrupts. The instruction-decoding
device 410 may or may not be integrated within the operation core 420 and is
connected to the program flow control device 400 through line 405. The
instruction-decoding device 410 is also connected to the control store RAM 430
and control store ROM 440 through line 404. The interrupt circuit 450 is coupled
to the program flow control device 400, control store RAM 430, control store
ROM 440, and the operation core 420. The program flow control device 400
generates the program counter based upon input from control store RAM 430,

control store ROM 440 or the interrupt circuit 450. Lines RAM_CS 401,

10

15

20

25

WO 01/20453 PCT/US00/25474

11

ROM_CS 403, and EXEC 412 are used by the program flow control device 400 to
enable input from the control store RAM 430, control store ROM 440, or the
interrupt circuit 450. Line 422 loads jump point addresses into the jump point
registers (not shown) in the interrupt circuit 450. Line 402 carries the contents
of the program counter to the control store RAM 430, control store ROM 440
and the interrupt circuit 450. When interrupt circuit 450 indicates that the
current program counter contains an address equal to a jump point address
contained in a jump point register (not shown), an interrupt is generated by an
interrupt controller (not shown), which may or may not be integrated into the
program flow control device 400. When the interrupt circuit 450 generates an
interrupt, the program flow control device 400 resets the program counter to

hold the address of the next microinstruction specified by the interrupt event.

The data processing system of FIG. 4 is just one illustrative example of
how an embodiment of the present invention may be used. It should be noted
that the present invention may be realized using a variety of computer
programming languages and hardware, and is not limited to any particular
hardware and software configuration. For example, the functions of program
flow control device 400, the instruction decoder 410, and the operation core 420
can be achieved through the use of a general-purpose processor, as illustrated
in block 490. The present invention may be utilized in any embodiment which
has code stored in a static storage device such as a ROM, a magnetic tape

storage unit, a compact disk or a floppy disk.

As will be realized, the invention is capable of other and different
embodiments and its several details are capable of modifications in various
respects, all without departing from the invention. Accordingly, the drawings
and description are to be regarded as illustrative in nature, and not as

restrictive.

WE CLAIM:

10

12

14

WO 01/20453 PCT/US00/25474

12

CLAIMS

1. A method for modifying the program flow in a static memory device, the
method comprising the step of generating an interrupt that triggers a jump

from the static memory device to a programmable memory device.

2. The method of Claim 1, wherein the step of generating the interrupt

comprises the steps of:

storing a copy of an address of a first microinstruction, wherein the first
microinstruction is a portion of a first set of microinstructions, and the first set
of microinstructions is a subset of a subroutine residing in the static memory

device;

storing a replacement set of microinstructions in the programmable

memory device;

comparing the address of each microinstruction in the subroutine with

the stored copy during the program flow; and

substituting the first set of microinstructions with the replacement set of
microinstructions when the comparing step results in a match, wherein the
substituting step produces a jump in the program flow from the static memory

device to the programmable memory device.

3. The method of Claim 2, wherein the static memory device comprises a
Read-Only Memory (ROM) device and the programmable memory device

comprises a Random Access Memory (RAM) device.

4. The method of Claim 3, wherein the replacement set of microinstructions

comprises a patch for a programming error present in the subroutine.

10

12

10

12

WO 01/20453 PCT/US00/25474

13

5. The method of Claim 1, wherein the step of generating an interrupt

comprises the steps of:

storing a copy of an address of a first microinstruction, wherein the first
microinstruction is a portion of a first set of microinstructions embedded in a

first subroutine, the first subroutine residing in the static memory device;

storing an additional set of microinstructions in a programmable

memory device;

comparing the address of each microinstruction in the subroutine with

the stored copy during the program flow; and

adding the additional set of microinstructions when the comparing step
results in a match, wherein the adding step produces a jump in the program

flow from the static memory device to the programmable memory device.

6. The method of Claim 5, wherein the additional set of microinstructions is

a second subroutine with an additional functionality.

7. The method of Claim 1, wherein the step of generating an interrupt

comprises the steps of:

using a jump point register to hold a jump point address, the jump point

address triggering an interrupt event;

executing a first set of microinstructions in a sequential order, wherein
the first set of microinstructions resides in the static memory device, wherein
each sequentially executed microinstruction in the first set of microinstructions
has a corresponding address that is individually stored in a program counter

during the sequential order of execution; and

interrupting the program flow with the interrupt event if the program
counter holds an address that equals the jump point address in the jump point

register.

(3o}

10

12

14

WO 01/20453 PCT/US00/25474

14

8. The method of Claim 7 wherein the step of interrupting the program

flow comprises the steps of:

setting a control signal to conditionally enable a comparator, wherein the
comparator compares the address in the program counter with the address

contained in the jump point register; and

executing a second set of microinstructions corresponding to the jump
point address if the comparator receives an enable control signal, wherein the

second set of microinstructions reside in a programmable memory device.

9. The method of Claim 8 wherein the programmable memory device is a

Random Access Memory (RAM) device.

10. The method of Claim 1 wherein the step of generating an interrupt

further comprises the steps of:

storing a plurality of jump point addresses, each jump point address
stored in a corresponding jump point register, each jump point address

triggering a corresponding interrupt event;

predetermining which jump point address of the plurality of jump point

addresses is to be enabled;

executing a first set of microinstructions in a sequential order, said first
set of microinstructions reside in the static memory device, wherein a program
counter sequentially holds an address for each microinstruction being executed;

and

implementing the corresponding interrupt event if the program counter
holds an address that equals one of the plurality of jump point addresses and if

the jump point address is enabled.

[3]

10

12

10

WO 01/20453 PCT/US00/25474

15

11. The method of Claim 10 wherein the step of implementing the interrupt

event comprises the steps of:

predetermining a plurality of microinstruction sets corresponding to

each of the plurality of jump point addresses;

setting a control signal to conditionally enable each member of a
plurality of comparators, wherein each comparator is coupled to a

corresponding jump point register and the program counter; and

executing a corresponding set of microinstructions associated with the
jump point address if one of the plurality of comparators receives an enable
control signal, wherein the jump point address is equal to the address in the
program counter, wherein the corresponding set of microinstructions reside in

a programmable memory device.

12. The method of Claim 11 wherein the step of executing the corresponding
set of microinstructions is followed by the step of executing a subsequent

microinstruction from the first set of microinstructions.

13. Apparatus for processing programmable machine instruction signals,

comprising;:
a jump point register containing at least one predetermined jump point;

a static memory device containing a first microinstruction set, the static

memory device coupled to the jump point register;

a random access memory device containing a second microinstruction
set, the random access memory device coupled to said jump point register and

static memory device;

a program control unit coupled to the jump point register, the static

memory device and the random access memory device, wherein the program

WO 01/20453 PCT/US00/25474

16

control unit sends a plurality of control signals to the jump point register, the

12 static memory device and the random access memory device; and

a comparator coupled to the jump point register and the program control
14 unit, wherein the comparator makes a comparison between the predetermined
jump point with at least one of the plurality of control signals and generates an

16 interrupt signal according to the comparison.

14. The apparatus of Claim 13, further comprising:

2 a plurality of jump point registers, each of said plurality of jump point
registers storing at least one predetermined jump point; wherein the program
4 control unit sends a plurality of control signals to each of the plurality of jump
point registers, the static memory device and the random access memory

6 device; and

a plurality of comparators, each comparator coupled to one of the

8 plurality of jump point registers and the program control unit, wherein each
comparator makes a comparison between the corresponding jump point

10 address and at least one of the plurality of control signals, and generates an

interrupt signal according to the comparison.

15. Apparatus for modifying the program flow of microinstructions residing

2 ina static memory device, comprising;:

means for storing a predetermined microinstruction address apart from

4 the static memory device;

means for storing a first set of microinstruction addresses, wherein said

6 storage means is volatile;

means for comparing the predetermined microinstruction address with

8 each address of the first set of microinstruction addresses; and

WO 01/20453 PCT/US00/25474

17

means for generating a plurality of control signals, the means coupled to

10 the predetermined microinstruction address storage means, the volatile storage
means, and the comparison means, wherein the control signal means enable a

12 modification of the program flow from the static memory device to the volatile

storage means.

WO 01/20453 PCT/US00/25474

1/4

~100 ~110

RAM ROM

101

106 >105

107

108

FIG. 1
(PRIOR ART)

WO 01/20453 PCT/US00/25474

2/4
200 210
RAM ROM
201
202
/—P
203 \
208
. 204 505
206 g
J
207

FIG. 2

PCT/US00/25474

WO 01/20453

3/4

¢ DI

AATIOUINOD 4
LdMIALINI
A
0€€
Y0SSAD0Ud
%43 L0¢
X 143
L€
90¢€
YOLVIVIANOD | do1vavdnoD | | MOLVIVINOD
Y A A Q7€ A A A 31¢ A A A 30¢€
S0¢
cze 30 €0€ ro
€ JALSIOM ¢ 9AISIOM [YALSIOTA
INIOd dINNS INIOd JANT INIOd JNNS
, 0ce § 0l¢ ¥ 00€

10¢

PCT/US00/25474

WO 01/20453

4/4

v DI

~Sov

LINDYID
LdNIALNI
d 4 A A
05¥ ™ot 487 Ny
TI0D
“ NOILLVYAdO
| 0Th”
NOY a “
! 44dooda
0ve” “ NOILDMILSNI
" 01y~
vov” !
cov” "
Nvd)) TOINOD
0cy” t o | MO X
) 00V~ A A
“ LAY INI VINA

INTERNATIONAL SEARCH REPORT

Int~ ational Application No

PC1/US 00/25474

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 GO6F11/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 GO6F

Minimum documentation searched (clasgification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are inciuded in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

4 May 1999 (1999-05-04)
abstract

X US 5 901 225 A (IRETON MARK A ET AL)

1-15

coiumn 2, line 54 —column 3, line 17

column 3, line 43 -column 3, line 64
column 4, 1ine 38 —column 5, Tine 10
column 2, line 13 - line 27
column 7, line 39 —column 8, line 45
column 9, line 40 - Tine 54

column 10, 1ine 3 - Tine 18

figures 1,2,6

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

*A' document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

L document which may throw doubts on priofity ciaim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O"* document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the internationat filing date but
later than the priority date claimed

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the arl.

& document member of the same patent family

Date of the actual compietion of the international search

8 February 2001

Date of mailing of the international search report

15/02/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswiik

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Leuridan, K

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Int- “tional Application No

PCT/US 00/25474

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication where appropriate, of the relevant passages Relevant to claim No.
X US 5 592 613 A (MIYAZAWA ET AL) 1-15

7 Jdanuary 1997 (1997-01-07)

abstract

column 1, line 48 -column 2, line 22

column 3, line 26 - line 67

column 4, line 37 - 1ine 60

column 6, line 9 —-column 8, line 5
column 9, T1ine 7 - Tine 65

column 11, line 46 -column 12, line 5
figures 6,12,15

X US 5 784 537 A (SUZUKI ET AL) 1-4,

21 July 1998 (1998-07-21) 7-10,13,
15
abstract
column 1, 1ine 45 —-column 2, line 56
column 3, tine 59 -column 4, line 26
cotumn 4, Tine 40 - 1ine 49
column 5, line 41 - line 61
column 6, line 50 - 1ine 64
figures 1,2
X US 5 051 897 A (HAYASHI KAZUO ET AL) 1,2,7,8

24 September 1991 (1991-09-24)
the whole document

Fom PCT/ISA/210 {continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Intormation on patent family members

Int

1tional Application No

PCT/US 00/25474

Patent document
cited in search report

Publication
date

Patent family
member(s)

Publication
date

US 5901225 A 04-05-1999 WO 9825205 A 11-06-1998
US 5592613 A 07-01-1997 JP 3186927 A 14-08-1991
us 5357627 A 18-10-1994
JP 3033926 A 14-02-1991
US 5784537 A 21-07-1998 JP 8166877 A 25-06-1996
US 5051897 A 24-09-1991 JP 1232447 A 18-09-1989
DE 3900187 A 28-09-1989
KR 9300096 B 08-01-1993

Formm PCT/1SA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

