

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2017/0159035 A1 Yang et al.

Jun. 8, 2017 (43) Pub. Date:

(54) GH61 GLYCOSIDE HYDROLASE PROTEIN VARIANTS AND COFACTORS THAT **ENHANCE GH61 ACTIVITY**

(71) Applicant: Codexis, Inc., Redwood City, CA (US)

(72) Inventors: Jie Yang, Foster City, CA (US); Xiyun Zhang, Fremont, CA (US); Jungjoo Yoon, Foster City, CA (US); Kripa K. Rao, Union City, CA (US); John H. Grate, Los Altos, CA (US); David M. Elgart, San Mateo, CA (US); Dipnath Baidyaroy, Fremont, CA (US)

(21) Appl. No.: 15/434,879

(22) Filed: Feb. 16, 2017

Related U.S. Application Data

(60) Continuation of application No. 14/496,979, filed on Sep. 25, 2014, which is a division of application No. 13/592,024, filed on Aug. 22, 2012, now Pat. No. 8,877,474, which is a continuation-in-part of application No. 13/215,193, filed on Aug. 22, 2011, now Pat. No. 8,298,795.

Provisional application No. 61/526,224, filed on Aug. 22, 2011, provisional application No. 61/601,997, filed on Feb. 22, 2012.

Publication Classification

(51) Int. Cl. C12N 9/42 (2006.01)

U.S. Cl. (52)

CPC C12N 9/2434 (2013.01)

ABSTRACT (57)

The present invention provides various GH61 protein variants comprising various amino acid substitutions. The GH61 protein variants have an improved ability to synergize with cellulase enzymes, thereby increasing the yield of fermentable sugars obtained by saccharification of biomass. In some embodiments, sugars obtained from saccharification are fermented to produce numerous end-products, including but not limited to alcohol.

Figure 1.

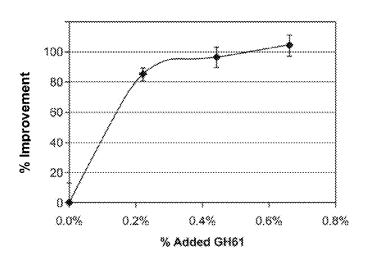


Figure 2.

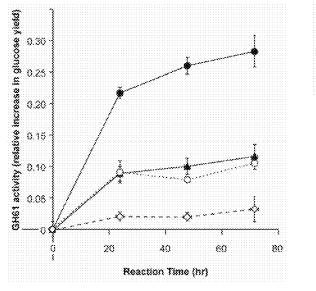
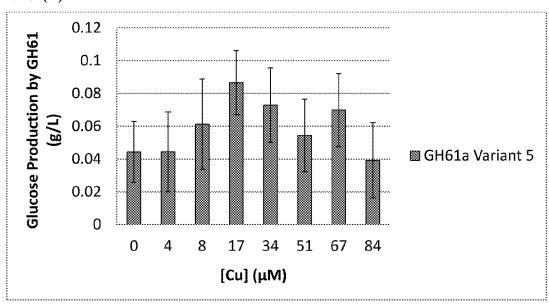



Figure 3.

Panel (A)

Panel B

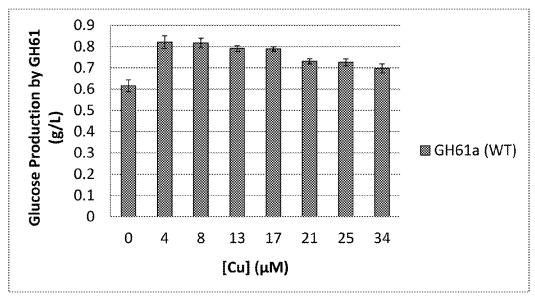
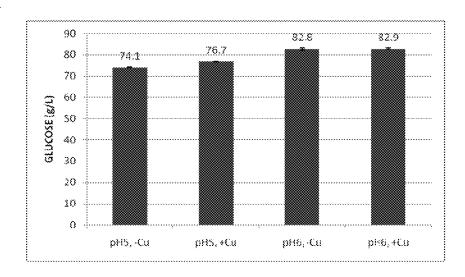



Figure 4.

Panel A

Panel B

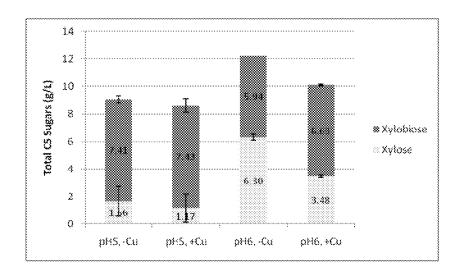
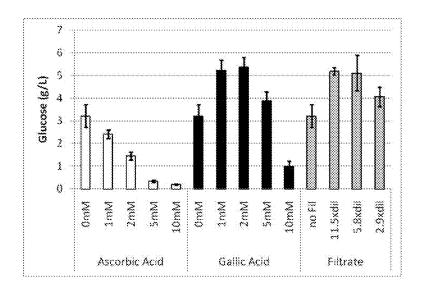
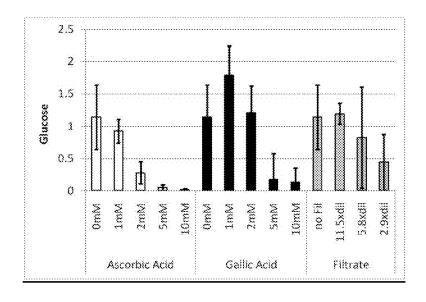
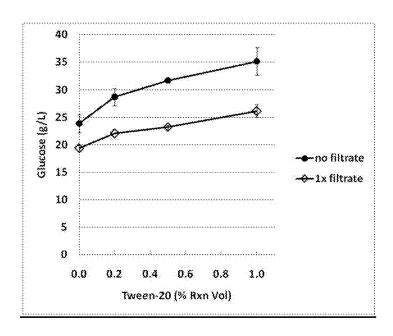




Figure 5.

Panel A



Panel B

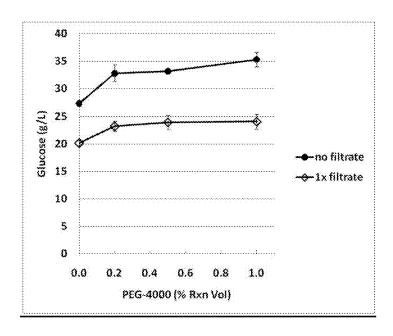


Figure 6.

Panel A

Panel B

GH61 GLYCOSIDE HYDROLASE PROTEIN VARIANTS AND COFACTORS THAT ENHANCE GH61 ACTIVITY

[0001] The present application is a Continuation of copending U.S. patent application Ser. No. 14/496,979, filed Sep. 25, 2014, which is a Divisional of U.S. patent application Ser. No. 13/592,024, filed Aug. 22, 2012, now U.S. Pat. No. 8,951,758, which claims priority to previously filed U.S. patent application Ser. No. 13/215,193, filed Aug. 22, 2011, now U.S. Pat. No. 8,298,795, which claims priority to U.S. Prov. Appln. Ser. No. 61/526,224, filed Aug. 22, 2011, and U.S. Prov. Appln. Ser. No. 61/601,997, filed Feb. 22, 2012, all of which are hereby incorporated in their entireties for all purposes.

REFERENCE TO A "SEQUENCE LISTING," A TABLE, OR A COMPUTER PROGRAM LISTING APPENDIX SUBMITTED AS AN ASCII TEXT FILE

[0002] The Sequence Listing written in file CX35-101US2A_ST25.TXT, created on Aug. 20, 2012, 416,766 bytes, machine format IBM-PC, MS-Windows operating system, is hereby incorporated by reference.

FIELD OF THE INVENTION

[0003] The invention relates generally to the field of glycolytic enzymes and their use, and to the field of directed enzyme evolution or modification. More specifically, the present invention provides GH61 protein variants, and methods for the use of such protein variants in production of fermentable sugars and ethanol from cellulosic biomass.

BACKGROUND

[0004] Cellulosic biomass is a significant renewable resource for the generation of fermentable sugars. These sugars can be used as substrates for fermentation and other metabolic processes to produce biofuels, chemical compounds and other commercially valuable end-products.

[0005] The conversion of cellulosic biomass to fermentable sugars may begin with chemical, mechanical, enzymatic or other pretreatments to increase the susceptibility of cellulose to hydrolysis. Such pretreatment may be followed by the enzymatic conversion of cellulose to cellobiose, cello-oligosaccharides, glucose, and other sugars and sugar polymers, using enzymes that break down cellulose. These enzymes are collectively referred to as "cellulases" and include endoglucanases, beta-glucosidases and cellobiohydrolases.

SUMMARY OF THE INVENTION

[0006] The invention provides numerous variants of GH61 proteins. In some embodiments, these variants comprise amino acid substitutions as set forth herein. In some embodiments, these variants exhibit an improved ability to synergize with cellulase enzymes, thereby increasing the yield of fermentable sugars obtained by saccharification of cellulose-containing biomass. Sugars obtained from saccharification can be fermented to produce alcohol and other end-products. Thus, the GH61 variant proteins of this invention have important commercial applicability in the production of biofuels and other end-products. In some embodiments, the present invention provides GH61 variant proteins

comprising an amino acid sequence that is substantially identical (for example, at least about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or about 100% identical) to SEQ ID NO:2 or a fragment of SEQ ID NO:2 having GH61 activity as defined below. In some embodiments, the variant protein has one or more amino acid substitutions with respect to SEQ ID NO:2 or a fragment of SEQ ID NO:2. In some embodiments, the GH61 is at least 95% identical to SEQ ID NO:2 or a fragment of SEQ ID NO:2 having GH61 activity. In some embodiments, the GH61 variant proteins have increased thermoactivity compared with the GH61 wild-type protein of SEQ ID NO:2. In some further embodiments, the GH61 variant proteins have increased thermostability compared with the GH61 wild-type protein of SEQ ID NO:2.

[0007] In some embodiments, the present invention provides GH61 variants comprising substitution(s) in at least one of the positions as indicated herein. In some embodiments, the substitution(s) provide GH61 variants that have increased activity as compared to wild-type GH61. In some embodiments, the GH61 variants comprise at least one substitution selected from those listed in Table 1 and/or Table 2 in any combination, wherein the positions are numbered with reference to SEQ ID NO:2.

[0008] In some further embodiments, the GH61 variants provided herein comprise the any one or more of the mutations listed in Table 1 and/or Table 2 in any combination. It is not intended that the present invention be limited to the specific substitutions. Any two, three, four, or more than four substitutions find use in any combination that improves GH61 activity. Non-limiting illustrations of effective combinations are provided herein.

[0009] In some embodiments, a substitution or combination of substitutions in the amino acid sequence as provided herein results in the variant protein having increased GH61 activity in a saccharification reaction. In some embodiments, crystalline cellulose undergoes saccharification by cellulase enzymes that are contained in culture broth from M. thermophila cells. When measured in this manner, a GH61 variant protein of this invention causes increase in yield of fermentable sugars (e.g., glucose) to a degree that is about 1.5-fold, about 2-fold, about 3-fold, about 5-fold, about 8-fold, about 10-fold or more compared with the parental GH61 sequence (SEQ ID NO:2) or biologically active fragment, compared with a reference protein comprising SEQ ID NO:2 or the fragment, without any substitutions. It is not intended that the present invention be limited to the production of any particular fermentable sugar(s). It is also not intended that the present invention be limited to any specific level of improvement in the yield of fermentable sugar using at least one of the variants provided herein.

[0010] This invention also provides GH61 protein variants that are more resistant to the presence of enzyme inhibitors that may be present in commercial sources of biomass, or be generated as a result of pretreatment of the biomass substrate.

[0011] In some embodiments, the present invention provides GH61 variant proteins comprising amino acid sequences that are at least about at least about 60%, at least about 65%, at least about 70%, 75%, at least 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least

about 98%, at least about 99%, or at least about 100% identical to SEQ ID NO:2 or a fragment of SEQ ID NO:2 having GH61 activity, wherein the amino acid sequence of the variant protein has one or more amino acid substitutions with respect to SEQ ID NO:2 or the fragment.

[0012] In some embodiments, the present invention provides GH61 variant proteins comprising amino acid sequences that are at least about at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:2 or a fragment of SEQ ID NO:2 having GH61 activity, wherein the amino acid sequence of the variant protein has one or more amino acid substitutions with respect to SEQ ID NO:2 or the fragment, and wherein the substitution(s) in the amino acid sequence result in the variant protein having increased GH61 activity in a reaction where crystalline cellulose undergoes saccharification by cellulase enzymes that are contained in culture broth from M. thermophila cells, compared with a reference protein comprising SEQ ID NO:2 or the fragment, without any substitutions.

[0013] In some embodiments, the present invention provides GH61 variant proteins comprising amino acid sequences that are at least about 60%, at least about 65%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or at least about 100% identical to SEQ ID NO:2 or a fragment of SEQ ID NO:2 having GH61 activity, wherein the amino acid sequence of the variant protein has one or more amino acid substitutions with respect to SEQ ID NO:2 or the fragment, and wherein the polynucleotide encoding the GH61 variant protein comprises at least one mutation and/or mutation set selected from those listed in Table 1 and/or Table 2 in any combination, wherein the nucleotide positions of the substitutions are determined by alignment with SEQ ID NO:1.

[0014] In some embodiments, the present invention provides enzyme compositions comprising at least one GH61 variant of the present invention and/or at least one wild-type GH61 protein. In some embodiments, the present invention provides enzyme compositions comprising at least one GH61 variant protein of this invention is combined with one or more cellulase enzyme(s), including but not limited to endoglucanases (EG), beta-glucosidases (BGL), cellobiohydrolases (e.g., CBH1 and/or CBH2), and/or at least one wild-type GH61 protein. In some embodiments, the enzyme compositions further comprise one or more enzymes selected from cellulases, hemicellulases, xylanases, amylases, glucoamylases, proteases, esterases xylosidases, and lipases.

[0015] The invention also includes polynucleotides encoding GH61 variant proteins, recombinant cells expressing such polynucleotides and optionally one or more cellulase enzymes, and methods for increasing yield of fermentable sugars in a saccharification reaction by conducting the reaction in the presence of at least one GH61 protein of this invention.

[0016] In some embodiments, the present invention provides at least one polynucleotide comprising at least one

nucleic acid sequence encoding at least one GH61 variant protein; at least one polynucleotide that hybridizes under stringent hybridization conditions to at least one polynucleotide encoding at least one GH61 variant protein; and/or at least one polynucleotide that hybridizes under stringent hybridization conditions to the complement of at least one polynucleotide encoding at least one polypeptide comprising at least one GH61 variant protein.

[0017] The present invention also provides recombinant nucleic acid constructs comprising at least one polynucleotide sequence encoding at least one GH61 protein, wherein the polynucleotide is selected from: (a) a polynucleotide that encodes a polypeptide comprising an amino acid sequence having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 100% identity to SEQ ID NO:2, wherein the amino acid sequence comprises at least one substitution and/or substitution set provided herein; (b) a polynucleotide that hybridizes under stringent hybridization conditions to at least a fragment of a polynucleotide that encodes a polypeptide having the amino acid sequence of SEQ ID NO:2, and wherein the amino acid sequence comprises at least one substitution and/or at least one substitution set provided herein; and/or (c) a polynucleotide that hybridizes under stringent hybridization conditions to the complement of at least a fragment of a polynucleotide that encodes a polypeptide having the amino acid sequence of SEQ ID NO:2, and wherein the amino acid sequence comprises at least one substitution and/or at least one substitution set provided herein.

[0018] The present invention further provides recombinant nucleic acid constructs comprising at least one polynucleotide sequence encoding at least one GH61 protein, wherein the polynucleotide is selected from: (a) a polynucleotide that encodes a polypeptide comprising an amino acid sequence having at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or at least about 100% identity to SEQ ID NO:2, wherein the amino acid sequence comprises at least one substitution and/or substitution set provided herein; (b) a polynucleotide that hybridizes under stringent hybridization conditions to a polynucleotide that encodes a polypeptide having the amino acid sequence of SEQ ID NO:2, and wherein the amino acid sequence comprises at least one substitution and/or at least one substitution set provided herein; and/or (c) a polynucleotide that hybridizes under stringent hybridization conditions to the complement of a polynucleotide that encodes a polypeptide having the amino acid sequence of SEQ ID NO:2, and wherein the amino acid sequence comprises at least one substitution and/or at least one substitution set provided herein. In some embodiments of the nucleic acid constructs, the polynucleotide sequence is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEO ID NO:1, and wherein the polynucleotide sequence comprises at least one mutation and/or at least one mutation set provided herein. Exemplary

are those shown in Table 1 and Table 2, which may be incorporated into the polynucleotide in any combination.

[0019] In some embodiments, the present invention provides polynucleotides and nucleic acid constructs comprising polynucleotides encoding at least one GH61 variant and/or wild-type protein (e.g., any of SEQ ID NOS:2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 86, 88, 89, 91, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108), operably linked to promoters. In some embodiments, the promoters are heterologous promoters. In some embodiments, the present invention provides expression constructs comprising polynucleotides and/or nucleic acid constructs that comprise polynucleotides encoding at least one GH61 variant and/or wild-type protein. In some embodiments, the expression constructs comprise at least one nucleic acid sequence operably linked to at least one additional regulatory sequence.

[0020] The present invention also provides recombinant host cells that express at least one polynucleotide sequence encoding at least one GH61 variant protein. In some embodiments, the host cell also expresses at least one polynucleotide sequence encoding at least one GH61 wildtype protein. In some embodiments, the expressed GH61 variant and/or wild-type protein is secreted from the host cell. In some embodiments, the host cell also produces at least one cellulase enzyme selected from endoglucanases (EG), beta-glucosidases (BGL), cellobiohydrolases (e.g., CBH1 and/or CBH2), xylanases, xylosidases, etc. In some embodiments, the host cell is a yeast, while in some other embodiments, the host cell is a filamentous fungal cell. In some further embodiments, the filamentous fungal cell is a Myceliophthora, a Thielavia, a Trichoderma, or an Aspergillus cell. In some embodiments, the filamentous fungal cell is Myceliophthora thermophila. In some additional embodiments, the host cell also produces at least one additional enzyme (e.g., esterase, protease, amylase, laccase, etc.).

[0021] In some additional embodiments, the present invention provides methods for producing at least one end-product from at least one cellulosic substrate. The substrate is contacted with at least one GH61 variant protein of the invention, and one or more cellulase enzymes. The fermentable sugars that are produced as a result are contacted with a microorganism in a fermentation to produce an end-product (e.g., an alcohol such as ethanol). The fermentation may be simultaneous with the saccharification, or may occur subsequently. It is not intended that the fermentation end-product be limited to any specific composition, as various end-products may be obtained from the fermentation reaction, including but not limited to alcohols.

[0022] The present invention also provides methods for producing fermentable sugars from cellulosic substrates, comprising contacting at the cellulosic substrate with at least one enzyme composition provided herein, under culture conditions whereby fermentable sugars are produced. In some embodiments the enzyme composition comprises a plurality of enzymes selected from at least one GH61 variant, at least one wild-type GH61, at least one endoglucanase (EG), at least one beta-glucosidase (BGL), at least one cellobiohydrolase (e.g., CBH1 and/or CBH2), at least one xylanase, at least one xylosidase, and/or at least one esterase. In some embodiments, the CBH1 is CBH1a. In further embodiments, the CBH2 is CHB2b. In some embodi-

ments, the methods further comprise the step of pretreating the cellulosic substrate prior to the contacting step. In some embodiments, the enzyme composition is added concurrently with the pretreating step.

[0023] In some embodiments, the cellulosic substrate comprises wheat grass, wheat straw, barley straw, sorghum, rice grass, sugarcane, sugarcane straw, bagasse, switchgrass, corn stover, corn fiber, grains, or a combination thereof. In further embodiments, the fermentable sugars comprise glucose and/or xylose. In some embodiments, the methods further comprise the step of recovering the fermentable sugars. In some embodiments, the methods further comprise the step of contacting the fermentable sugars with a microorganism under conditions such that the microorganism produces at least one fermentation end product. In further embodiments, the fermentation end product is selected from alcohols, fatty alcohols, fatty acids, lactic acid, acetic acid, 3-hydroxypropionic acid, acrylic acid, succinic acid, citric acid, malic acid, fumaric acid, amino acids, 1,3-propanediol, ethylene, glycerol, butadiene, and/or beta-lactams. In some still further embodiments, the fermentation end product is an alcohol selected from ethanol and butanol. In some embodiments, the alcohol is ethanol. It is not intended that the fermentation end-product be limited to any specific composition(s), as various end-products can be produced using the present invention.

[0024] The present invention also provides methods for producing an end product from a cellulosic substrate, comprising: contacting the cellulosic substrate with at any enzyme composition provided herein, under conditions whereby fermentable sugars are produced from the substrate; and contacting the fermentable sugars with a microorganism in a fermentation to produce an end-product. In some embodiments, the methods comprise simultaneous saccharification and fermentation reactions (SSF). In some alternative embodiments, the methods comprise saccharification of the cellulosic substrate and fermentation in separate reactions (SHF). In some additional embodiments, the methods comprise production of at least one enzyme simultaneously with hydrolysis and/or fermentation (e.g., "consolidated bioprocessing").

[0025] The present invention also provides methods for producing a fermentation end product from a cellulosic substrate, comprising obtaining fermentable sugars produced according to any method provided herein, and contacting the fermentable sugars with a microorganism in a fermentation to produce a fermentation end product. In some embodiments, the fermentation end product is selected from alcohols, fatty alcohols, fatty acids, lactic acid, acetic acid, 3-hydroxypropionic acid, acrylic acid, citric acid, malic acid, fumaric acid, succinic acid, amino acids, 1,3-propanediol, ethylene, glycerol, butadiene, and/or beta-lactams. In some embodiments, the fermentation end product is at least one alcohol selected from ethanol and butanol. In further embodiments, the alcohol is ethanol. In some still further embodiments, the microorganism is a yeast. In some embodiments, the methods further comprise the step of recovering the fermentation end product. It is not intended that the fermentation end-product be limited to any specific composition(s), as various end-products can be produced using the present invention. It is also not intended that the present invention be limited to any particular microorganism. It is further not intended that the present invention be limited to any particular yeast, as any suitable yeast finds use in the present invention.

[0026] The present invention also provides for use of at least one GH61 variant protein as provided herein to produce at least one fermentation end product. The present invention also provides for use of at least one GH61 variant protein provided herein to produce at least one fermentation end product selected from alcohols, fatty alcohols, fatty acids, lactic acid, acetic acid, 3-hydroxypropionic acid, acrylic acid, citric acid, malic acid, fumaric acid, succinic acid, amino acids, 1,3-propanediol, ethylene, glycerol, butadiene, and/or beta-lactams. In some embodiments, the fermentation end product is an alcohol selected from ethanol and butanol. In some embodiments, the alcohol is ethanol. It is not intended that the fermentation end-product be limited to any specific composition(s), as various end-products can be produced using the present invention.

[0027] A further embodiment of the invention is a composition comprising a GH61 protein, one or more cellulase enzymes, a cellulosic substrate, and an effective concentration of Cu++ and/or gallic acid, as further described and illustrated below. The GH61 protein may be any GH61 protein disclosed herein, such as a protein comprising an amino acid sequence at least about 60%, at least about 65%. at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to SEQ ID NO:2, or a fragment thereof with GH61 activity. In some embodiments, the GH61 protein is a variant protein comprising all or part of SEQ ID NO:2 having GH61 activity, wherein the variant comprises one or more of the amino acid substitutions provided herein. In some embodiments, the cellulase enzyme(s) are selected from endoglucanases (EG), beta-glucosidases (BGL), cellobiohydrolases (e.g., CBH1 and/or CBH2), xylanases, xylosidases, etc. In some embodiments, the presence of Cu++, gallic acid, or both enhances activity of the GH61 protein, thereby increasing the rate of glucose production or reducing the amount of GH61 protein needed to supply GH61 activity in a saccharification reaction.

[0028] In another embodiment, the present invention provides methods for producing fermentable sugars from cellulosic substrate(s), in which a composition comprising at least one GH61, at least one cofactor, at least one additional cellulase enzyme, and at least one cellulosic substrate is cultured or maintained under conditions whereby fermentable sugars are produced from the substrate(s). The fermentable sugars can then be contacted with a microorganism under conditions such that the microorganism produces at least one fermentation end product, such as ethanol. A further embodiment of the invention is use of Cu++ to increase production of fermentable sugars from a saccharification reaction where cellulase activity is enhanced in the presence of a protein or protein variant with GH61 activity. [0029] The present invention provides GH61 variant proteins comprising amino acid sequences that are at least about 75%, at least about 80%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:2 or a fragment of SEQ ID NO:2 having GH61 activity, wherein the amino acid sequence of the variant protein has one or more amino acid substitutions with respect to SEQ ID NO:2 or the fragment. In some embodiments, the GH61 variant proteins comprise an amino acid sequence that is at least 75%, at least 80%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO:2 or a fragment of SEQ ID NO:2 having GH61 activity, wherein the amino acid sequence of the variant protein has one or more amino acid substitutions with respect to SEQ ID NO:2 or the fragment. In some embodiments, the GH61 variant proteins are at least 95% identical to SEQ ID NO:2 or a fragment of SEQ ID NO:2 having GH61 activity. In some embodiments, the GH61 variant proteins have increased thermoactivity, thermostability, and/ or activity, as compared to the GH61 wild-type protein of SEQ ID NO:2. In some further embodiments, the GH61 variant proteins comprise at least one substitution(s) at one or more of the following amino acid positions: 20, 35, 42, 44, 45, 68, 87, 97, 103, 104, 127, 131, 132, 133, 134, 137, 139, 142, 143, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 190, 191, 192, 192, 205, 212, 215, 218, 232, 236, 239, 244, 246, 258, 270, 273, 317, 322, 323, 328, 330, and/or 341, wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some embodiments, the GH61 variant proteins comprise at least one substitution(s) at one or more of the following amino acid positions: H20, N35, W42, Q44, P45, F68, T87, V97, P103, E104, S127, W131, F132, K133, I134. A137, Y139, A142, A143, I162, P163, S164, D165, L166, K167, A168, G169, N170, Y171, V172, L173, R174, H175, E176, I177, 1178, A179, L180, H181, Q190, A191, Y192, Y192, S205, A212, S215, K218, S232, T236, G239, A244, A246, T258, G270, P273, N317, P322, T323, G328, S330, and/or C341, wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some further embodiments, the GH61 variant proteins comprise at least one substitution(s) at one or more of the following amino acid positions: H20, N35, W42, E104, I134, S164, K167, A168, V172, I177, A179, and/or A191, wherein the amino acid positions are numbered with reference to SEO ID NO:2. In some additional embodiments, the GH61 variant proteins comprise at least two amino acid substitutions. In still some further embodiments, the GH61 variant proteins comprise at least one substitution set selected from: N35/E104/A168; W42/E104/K167; N35/W42/V97/A191; W42/E104; E104/ K167; W42/A191; N35/W42/A191; V97/A191; and N35/ E104/A191, wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some embodiments, the GH61 variant proteins comprise at least one amino acid substitution comprising one or more of the following substitutions numbered with reference to SEQ ID NO:2: H20C/ D, N35G, W42P, Q44V, P45T, F68Y, T87P, V97Q, P103E/ H, E104C/D/H/Q, S127T, W131X, F132X, K133X, 134X, A137P, Y139L, A142W, A143P, I162X, P163X, S164X, D165X, L166X, K167A/X, A168P/X, G169X, N170X, Y171A/R, V172X, L173X, R174X, H175X, E176X, I177X, I178X, A179X, L180M/W, H181X, Q190E/H, A191N/T, Y192H, Y192Q, S205N, A212P, S215W, K218T, S232A, T236P, G239D, A244D, A246T, T258I, G270S, P273S, N317K, P322L, T323P, G328A, 5330R, and/or C341R,

wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some additional embodiments, the GH61 variant proteins comprise one or more of the following substitutions: N35G, W42P, V97Q, E104H, K167A, A168P, and/or A191N, wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some embodiments, the GH61 variant proteins comprise one or more of the following substitution sets: N35G/E104H/A168P; W42P/E104H/K167A; N35G/W42P/V97O/A191N; W42P/ E104H; E104H/K167A; W42P/A191N; N35G/W42P/ A191N; V97Q/A191N; and/or N35G/E104H/A191N, wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some additional embodiments, the GH61 variant proteins comprise the substitutions N35G/ E104H/A168P, wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some further embodiments, the GH61 variant proteins comprise the sequence set forth in any of SEQ ID NOS:4, 6, and/or 8. In some additional further embodiments, the GH61 variant proteins are encoded by at least one polynucleotide sequence set forth in SEQ ID NOS:3, 5, and/or 7. In some embodiments, the GH61 variant proteins comprise at least one substitution(s) at one or more of the following amino acid positions: 24, 28, 32, 34, 35, 40, 44, 45, 46, 49, 51, 54, 55, 56, 58, 64, 66, 67, 69, 70, 71, 78, 80, 82, 83, 88, 93, 95, 101, 104, 116, 118, 128, 130, 136, 137, 141, 142, 144, 145, 150, 155, 161, 164, 168, 184, 187, 199, 203, 205, 212, 218, 219, 230, 231, 232, 233, 234, 236, 237, 245, 253, 263, 266, 267, 268, 269, 270, 271, 280, 281, 282, 290, 295, 297, 303, 305, 310, 317, 320, 324, 326, 327, 329, 330, 332, 333, 336, 337, and/or 339, wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some further embodiments, the GH61 variant proteins, comprise at least one substitution(s) at one or more of the following amino acid positions: S24, V28, Y32, R34, N35, T40, Q44, P45, N46, T49, 151, T54, A55, A56, Q58, E64, N66, S67, G69, T70, P71, S78, T80, G82, G83, V88, K93, N95, E101, E104, A116, N118, S128, R130, G136, A137, K141, A142, G144, R145, A150, G155, Q161, S164, A168, Q184, N187, R199, G203, S205, A212, K218, A219, V230, S231, S232, P233, D234, T236, V237, G245, S253, A263, P266, G267, G268, G269, G270, A271, A280, T281, S282, R290, S295, A297, P303, G305, K310, N317, T320, V324, A326, P327, S329, S330, S332, V333, E336, W337, and/or 5339, wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some further embodiments, the GH61 variant proteins comprise a plurality of amino acid substitutions as set forth herein. In some embodiments, the GH61 variant proteins comprise at least one substitution set selected from: N35/T40/E104/A168/P327; N35/P45/E104/A168/N317; N35/E104/A168/N317; N35/E104/A168/N317/S329; N35/ E104/A137/A168/S232; N35/E104/A168/N317/T320; N35/ E104/A168/D234; N35/T40/E104/A142/A168; N35/E104/ R145/A168; N35/T40/S78N88/E104/S128K/A168/D234; N35/E104/A168/S330; N35/E104/A168/G203/P266; N35/ E104/A168/D234; N35/E104/A168/S330; N35/E104/A168/ W337; R34/N35/E104/R145/A168; Y32/N35/E64/E104/ A168; V28/N35/P45/E104/A168; N35/E104/G144/A168/ V333; N35/N66/E104/A168; N35/E104/A168/P327; N35/ E104/A168/G203; N35/E104/A168/S339; N35/P45/N46/ E104/A150/A168; N35/E104/A168/S231; N35/T40/E104/ A168/D234/P327; N35/E104/A168/S231; N35/E104/A168/ N317; N35/E104/A168/S330; N35/E104/A168/S329; N35/ E104/A168/P327; N35/P45/E104/A168; N35/E104/A116/

A168; N35/T40/E104/A168N230/P327; N35/E104/A168/ S332; N35/E104/A168/G203; N35/E104/R145/A168/S329; N35/T40/T49/E104/A168/D234; /P327; N35/A56/E104/ A168; N35/E104/Q161/A168; N35/E104/A168/S332; N35/ P45/T49/E104/A168/N317/T320; N35/E104/A168/V237; N35/E104/A168/E336; N35/E104/A168/P233; N35/E104/ R130/A168; N35/E104/A168/P327; N35/E104/A168/N317; N35/Q44/E104/A168; N35/E104/A168/A326; N35/E104/ A168/N317; N35/T40/E104/S128/A168; N35/T80/E104/ A168/P303; N35/E104/A116/A168; N35/E104/A168/S231/ S295; N35/T40/E101/E104/A168/P327; N35/P45/E104/ A168/A219/S232; N35/N46/E104/A168; N35/E104/A168/ A326; N35/E104/A168/G203/T281; N35/E104/A168/E336; N35/T40/E104/S128/A142/A168; N35/E104/N118/A168; N35/E104/G155/A168; S24/N35/E104/A168/V237/P303; N35/E104/Q161/A168; N35/Q44/S67/E104/A168; V28/ N35/E104/A168; N35/E104/A168/O184; N35/T54/E104/ A168; N35/N66/E104/A168; N35/E64/E104/A168; N35/ E104/S164/A168/A271; N35/N66/E104/A168; N35/G83/ E104/A168; N35/E104/K141/A168; N35/E104/A168/ N317/T320; N35/E104/R130/A168; N35/E104/R145/A168; N35/T70/E104/A168; N35/E104/R130/A168; N35/E104/ A168/Q184; N35/E104/A168/S329; N35/T49/E104/A168; Y32/N35/E104/A168; N35/E104/A168/S330; N35/Q58/ E104/A168; Y32/N35/P71/E104/A168; N35/E104/A168/ S330; N35/T80/E104/A168; N35/G82/E104/A168; N35/ E104/A168/S295; N35/N66/E104/A168; N35/T54/E104/ A168; N35/P45/E104/A168; N35/E104/S128/A168; N35/ N66/N95/E104/S164/A168; /G267; N35/T54/E104/A168; N35/P45/E104/K141/A168; N35/E104/A168/S332; N35/ E104/A168/A297; N35/E104/K141/R145/A168; N35/Q44/ E104/A168/S231; N35/T40/T49/S78/E104/A142; /A168; N35/E104/S164/A168/S295; N35/E104/A168/N317; N35/ P45/E104/A168; N35/G82/E104/A168; N35/N46/E104/ A168/G203/A263; N35/Q58/E104/A168; N35/G69/E104/ A168; N35/S67/E104/A168; N35/E104/A168/R199; N35/ E104/A168/G203/G268/G269/G270; N35/E104/A168/ V324; N35/E104/A168/P266; N35/E104/A168/G245; N35/ N66/E104/A168; S24/N35/Q44/T80/E104/A168; N35/ E104/A168/T236; N35/E104/A168/K310; N35/E104/R130/ A168; N35/N66/S78/E104/A168/S253; N35/N66/E104/ S164/A168/S282; N35/E104/A142/A168; N35/E104/R145/ A168; N35/E104/A168/S231; N35/E104/A168/Q184; N35/ E104/A168/K218; N35/E104/A168/P233; N35/T49/E104/ A168/Q184; N35/T40/E104/A168/P327; N35/T54/E104/ A168; N35/N66/E104/S164/A168/S231/S253; N35/E104/ A168/G203; N35/T49/E104/A168; N35/E104/A168/P266/ G267; N35/Q44/N66/E104/A168; N35/S67/E104/A168; N35/E104/A137/A168; N35/T49/E104/S128/A168; N35/ T49/E104/A168/K218/N317; N35/I51/E104/A168; N35/ E104/A168/A326; N35/P45/E104/A168/T320; N35/N66/ E104/A168; N35/E104/A168N237/P303; N35/P45/E104/ A168/K218/N317; N35/T80/E104/A168; N35/A55/E104/ A168; N35/E104/K141/A168/P266; N35/E104/A168/S330; N35/N66/E104/A168/R290; N35/E104/N118/A168; N35/ E104/A168/A212; N35/K93/E104/R130/A168; N35/E104/ A168/G267; N35/P45/T49/E104/A168/N317; N35/E104/ A168/V230; N35/E104/A168/S329; N35/P45/E104/A168/ A219; N35/S78/E104/S164/A168; N35/E104/A168/S205; V28/N35/N46/Q58/E104/A168; N35/E104/A168/Q184; N35/E104/A142/A168; N35/E104/A168/E336; N35/E104/ A168/A280; N35/E104/A168/A219; N35/E104/A168/ P303/G305; R34/N35/E104/A168/A280; N35/E104/A168/ N187; N35/E104/G136/A168; N35/E104/A168/Q184; N35/

T49/E104/A168/N317: N35/T40/T49/S78/E104/A168: R34/N35/K93/E104/R130/R145/A168/R199/K218/A280; N35/T40/E104/A142/A168; and N35/N66/E104/A168, wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some further embodiments, the GH61 variant proteins comprise at least one amino acid substitution comprising one or more of the following substitutions numbered with reference to SEO ID NO:2: S24O; V28H; Y32S; R34E; N35G; T40A/G/L/S; O44K; P45D/E/ K/R/S; N46E/R; T49A/Q/R/Y; I51A; T54G/M/S/W; A55G; A56S; Q58H/P; E64L/S; N66A/D/G/L/M/Q/RN; S67G/H/ T; G69T; T70A; P71A; S78C/D; T80H/L/V; G82A/S; G83R; V88I; K93N/T; N95E; E101T; E104H; A116Q/S; N118E/S; S128K/L/N; R130E/G/H/K/Y; G136H; A137M/ S; K141A/N/P/R; A142D/G/L; G144S; R145H/L/N/Q/T; A150Y; G155N; Q161E/R; S164E; A168P; Q184E/H/L/N/ R; N187D; R199E; G203E/V/Y; S205T; A212M; K218L/T; A219R/T; V230I/Q; S231A/H/K/I; S232E; P233F/T; D234E/M/N; T236E; V237I; G245A; S253D/T; A263V; P266S; G267D/V; G268A; G269A; G270A; A271T; A280D/T; T281A; S282D; R290K; S295D/L/T; A297T; P303T; G305D; K310I; N317D/H/I/M/Q/R; T320A; V324M; A326C/Q/V; P327F/K/L/M; S329H/I/Q/T/Y; S330A/H/I/TN; S332C/F/R; V333Q; E336L/R/S; W337R; and/or S339W, wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some embodiments, the GH61 variant proteins comprise a plurality of substitutions and/or substitution sets as provided therein. In some additional embodiments, the GH61 variant proteins comprise one or more of the following substitution sets: N35G/T40A/E104H/A168P/P327M; N35G/P45D/E104H/ A168P/N317R; N35G/E104H/A168P/N317R; E104H/A168P/N317D/S329Y; N35G/E104H/A137S/ N35G/E104H/A168P/N317R/T320A; A168P/S232E; N35G/E104H/A168P/D234E; N35G/T40S/E104H/A142G/ A168P; N35G/E104H/R145L/A168P; N35G/T40S/S78C/ V88I/E104H/S128K/A168P/D234M; N35G/E104H/ A168P/S330V: N35G/E104H/A168P/G203E/P266S: N35G/E104H/A168P/D234N; N35G/E104H/A168P/ N35G/E104H/A168P/W337R; R34E/N35G/ E104H/R145T/A168P; Y32S/N35G/E64S/E104H/A168P; V28H/N35G/P45K/E104H/A168P; N35G/E104H/G144S/ A168P/V333O: N35G/N66O/E104H/A168P; E104H/A168P/P327K; N35G/E104H/A168P/G203E: N35G/E104H/A168P/S339W; N35G/P45K/N46E/E104H/ A150Y/A168P; N35G/E104H/A168P/S231K; N35G/T40A/ N35G/E104H/A168P/ E104H/A168P/D234E/P327M; N35G/E104H/A168P/N317M: N35G/E104H/ A168P/S330Y; N35G/E104H/A168P/S329I; N35G/E104H/ A168P/P327F; N35G/P45D/E104H/A168P; N35G/E104H/ A116S/A168P; N35G/T40A/E104H/A168P/V230I/P327M; N35G/E104H/A168P/S332R; N35G/E104H/A168P/ G203V; N35G/E104H/R145N/A168P/S329H; N35G/T40S/ T49R/E104H/A168P/D234E; /P327M; N35G/A56S/ N35G/E104H/Q161R/A168P; E104H/A168P; N35G/ E104H/A168P/S332F; N35G/P45R/T49A/E104H/A168P/ N35G/E104H/A168P/V237I; N317R/T320A: N35G/ E104H/A168P/E336S; N35G/E104H/A168P/P233T; N35G/E104H/R130H/A168P; N35G/E104H/A168P/ P327L; N35G/E104H/A168P/N317I; N35G/Q44K/E104H/ A168P; N35G/E104H/A168P/A326V; N35G/E104H/ A168P/N317H; N35G/T40L/E104H/S128K/A168P; N35G/ T80V/E104H/A168P/P303T; N35G/E104H/A116Q/A168P; N35G/E104H/A168P/S231A/S295L; N35G/T40S/E101T/ E104H/A168P/P327M: N35G/P45K/E104H/A168P/ A219R/S232E; N35G/N46R/E104H/A168P; N35G/E104H/ A168P/A326Q; N35G/E104H/A168P/G203E/T281A; N35G/E104H/A168P/E336R; N35G/T40S/E104H/S128K/ A142G/A168P; N35G/E104H/N118S/A168P; E104H/G155N/A168P; S24Q/N35G/E104H/A168P/V237I/ P303T; N35G/E104H/O161E/A168P; N35G/O44K/S67T/ E104H/A168P; V28H/N35G/E104H/A168P; N35G/E104H/ A168P/Q184L; N35G/T54G/E104H/A168P; N35G/N66M/ E104H/A168P; N35G/E64L/E104H/A168P; N35G/E104H/ S164E/A168P/A271T; N35G/N66A/E104H/A168P; N35G/ G83R/E104H/A168P; N35G/E104H/K141A/A168P; N35G/E104H/A168P/N317Q/T320A; N35G/E104H/ N35G/E104H/R145Q/A168P; R130G/A168P; T70A/E104H/A168P; N35G/E104H/R130K/A168P; N35G/ E104H/A168P/Q184E; N35G/E104H/A168P/S329T; N35G/T49A/E104H/A168P; Y32S/N35G/E104H/A168P; N35G/E104H/A168P/S330I; N35G/Q58H/E104H/A168P; Y32S/N35G/P71A/E104H/A168P; N35G/E104H/A168P/ S330T; N35G/T80V/E104H/A168P; N35G/G82A/E104H/ A168P; N35G/E104H/A168P/S295T; N35G/N66G/E104H/ A168P; N35G/T54S/E104H/A168P; N35G/P45S/E104H/ A168P; N35G/E104H/S128L/A168P; N35G/N66D/N95E/ E104H/S164E/A168P; /G267D; N35G/T54W/E104H/ A168P; N35G/P45E/E104H/K141R/A168P; N35G/E104H/ A168P/S332C; N35G/E104H/A168P/A297T; E104H/K141P/R145Q/A168P; N35G/Q44K/E104H/ A168P/S231T; N35G/T40G/T49R/S78C/E104H/A142G; N35G/E104H/S164E/A168P/S295D; E104H/A168P/N317Q; N35G/P45R/E104H/A168P; N35G/ G82S/E104H/A168P; N35G/N46R/E104H/A168P/G203E/ A263V; N35G/Q58P/E104H/A168P; N35G/G69T/E104H/ A168P; N35G/S67G/E104H/A168P; N35G/E104H/A168P/ R199E: N35G/E104H/A168P/G203E/G268A/G269A/ G270A; N35G/E104H/A168P/V324M; N35G/E104H/ A168P/P266S; N35G/E104H/A168P/G245A; N35G/N66R/ E104H/A168P; S24Q/N35G/Q44K/T80H/E104H/A168P; N35G/E104H/A168P/T236E; N35G/E104H/A168P/K310I; N35G/E104H/R130Y/A168P; N35G/N66D/S78D/E104H/ A168P/S253D; N35G/N66D/E104H/S164E/A168P/S282D; N35G/E104H/A142L/A168P; N35G/E104H/R145H/ N35G/E104H/A168P/S231T; N35G/E104H/ A168P; A168P/O184R: N35G/E104H/A168P/K218L; N35G/ E104H/A168P/P233F; N35G/T49A/E104H/A168P/O184H; N35G/T40S/E104H/A168P/P327M; N35G/T54M/E104H/ A168P; N35G/N66D/E104H/S164E/A168P/S231T/S253T; N35G/E104H/A168P/G203Y; N35G/T49Q/E104H/A168P; N35G/E104H/A168P/P266S/G267V; N35G/Q44K/N66V/ E104H/A168P; N35G/S67H/E104H/A168P; N35G/E104H/ A137M/A168P; N35G/T49A/E104H/S128N/A168P; N35G/T49R/E104H/A168P/K218L/N317Q; N35G/I51A/ E104H/A168P; N35G/E104H/A168P/A326C; N35G/P45R/ E104H/A168P/T320A; N35G/N66L/E104H/A168P; N35G/ E104H/A168P/V237I/P303T; N35G/P45R/E104H/A168P/ K218L/N317Q; N35G/T80L/E104H/A168P; N35G/A55G/ N35G/E104H/K141N/A168P/P266S; E104H/A168P; N35G/E104H/A168P/S330A; N35G/N66D/E104H/A168P/ R290K: N35G/E104H/N118E/A168P; N35G/E104H/ N35G/K93N/E104H/R130Y/A168P; A168P/A212M; N35G/E104H/A168P/G267D; N35G/P45R/T49Y/E104H/ A168P/N317D; N35G/E104H/A168P/V230Q; N35G/ E104H/A168P/S329Q; N35G/P45K/E104H/A168P/ A219R; N35G/S78D/E104H/S164E/A168P; N35G/E104H/ A168P/S205T; N35G/E104H/A168P/Q184H; V28H/N35G/

N46E/Q58H/E104H/A168P; N35G/E104H/A142D/A168P; N35G/E104H/A168P/E336L; N35G/E104H/A168P/ A280T: N35G/E104H/A168P/A219T; N35G/E104H/ A168P/P303T/G305D; R34E/N35G/E104H/A168P/A280T; N35G/E104H/A168P/N187D; N35G/E104H/G136H/ N35G/E104H/A168P/Q184N; N35G/T49Y/ E104H/A168P/N317R; N35G/T40A/T49Q/S78C/E104H/ A168P; R34E/N35G/K93T/E104H/R130E/R145T/A168P/ R199E/K218T/A280D; N35G/T40L/E104H/A142G/ A168P; and/or N35G/N66G/E104H/A168P, wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some further embodiments, the GH61 variant proteins comprise a plurality of substitutions as provided herein. In some additional embodiments, the GH61 variant proteins comprise polypeptide sequences that are at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to any of SEQ ID NOS:2, 3, 5, 6, 8, and/or 9, and/or a biologically active fragment of any of SEQ ID NOS: 2, 3, 5, 6, 8, and/or 9, wherein the fragment has GH61 activity. In still some additional embodiments, the GH61 variant proteins comprise polypeptide sequences that are at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to any of SEQ ID NOS:2, 3, 5, 6, 8, and/or 9, and/or a biologically active fragment of any of SEQ ID NOS: 2, 3, 5, 6, 8, and/or 9, wherein the fragment has GH61 activity.

[0030] The present invention also provides GH61 variant proteins comprising amino acid sequences that are at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to any of SEQ ID NOS:2, 3, 5, 6, 8, and/or 9, or a fragment of SEQ ID NOS:2, 3, 5, 6, 8, and/or 9 having GH61 activity, wherein the amino acid sequence of the variant protein has one or more amino acid substitutions with respect to SEQ ID NOS:2, 3, 5, 6, 8, and/or 9 or the fragment, and wherein the substitution(s) in the amino acid sequences result in the variant proteins having increased GH61 activity in a reaction where crystalline cellulose undergoes saccharification by cellulase enzymes that are contained in culture broth from M. thermophila cells, compared with a reference protein comprising SEQ ID NO:2, 3, 5, 6, 8, and/or 9 or the fragment, without any substitutions. In some embodiments, the GH61 variant proteins comprise amino acid sequences that are at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to any of SEQ ID NOS:2, 3, 5, 6, 8, and/or 9, or a fragment of SEQ ID NOS:2, 3, 5, 6, 8, and/or 9 having GH61 activity, wherein the amino acid sequence of the variant protein has one or more amino acid substitutions with respect to SEQ ID NOS:2, 3, 5, 6, 8, and/or 9 or the fragment, and wherein the substitution(s) in the amino acid sequences result in the variant proteins having increased GH61 activity in a reaction where crystalline cellulose undergoes saccharification by cellulase enzymes that are contained in culture broth from M. thermophila cells, compared with a reference protein comprising SEQ ID NO:2, 3, 5, 6, 8, and/or 9 or the fragment, without any substitutions. In some further embodiments, the present invention provides GH61 variant proteins encoded by polynucleotides, wherein the proteins comprise amino acid sequences that are at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to any of SEQ ID NOS:2, 3, 5, 6, 8, and/or 9 or a fragment of SEQ ID NO:2, 3, 5, 6, 8, and/or 9 having GH61 activity, wherein the amino acid sequence of the variant protein has one or more amino acid substitutions with respect to SEQ ID NO:2, 3, 5, 6, 8, and/or 9 or the fragment, and wherein the polynucleotide encoding the GH61 variant protein comprises at least one mutation and/or mutation set selected from t60c/c573g, t60c/c573g/g1026a, c573g, t60c/c291a/c573g, t60c/c291a, t60c/c876t, a312g, t60c, t379a/c380g/g381c, c300t, t204c/ t379a/c380g/g381c/c385t, g1026a, c246t, c597g, c72t, c732g/c843t/c882t, c909t, c912g, g921a, c792t, g972t, g921a, t379a/c380g/g381c/c454a/c456a/c732t/c843t/c849t, c520a/c522g, t60c/c573g; t60c/c288t/c573g; t60c/c198t/ c573g; and/or t60c/g399a/c573g; wherein the nucleotide positions are numbered with reference to SEO ID NO:1. In still some further embodiments, the present invention provides GH61 variant proteins encoded by polynucleotides, wherein the proteins comprise amino acid sequences that are at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to any of SEQ ID NOS:2, 3, 5, 6, 8, and/or 9 or a fragment of SEQ ID NO:2, 3, 5, 6, 8, and/or 9 having GH61 activity, wherein the amino acid sequence of the variant protein has one or more amino acid substitutions with respect to SEQ ID NO:2, 3, 5, 6, 8, and/or 9 or the fragment, and wherein the polynucleotide encoding the GH61 variant protein comprises at least one mutation and/or mutation set selected from t60c/c573g, t60c/c573g/g1026a, c573g, t60c/ c291a/c573g, t60c/c291a, t60c/c876t, a312g, t60c, t379a/ c380g/g381c, c300t, t204c/t379a/c380g/g381c/c385t, g1026a, c246t, c597g, c72t, c732g/c843t/c882t, c909t, c912g, g921a, c792t, g972t, g921a, t379a/c380g/g381c/ c454a/c456a/c732t/c843t/c849t, c520a/c522g, t60c/c573g; t60c/c288t/c573g; t60c/c198t/c573g; and/or t60c/g399a/ c573g; wherein the nucleotide positions are numbered with reference to SEQ ID NO:1.

[0031] The present invention also provides polynucleotides comprising a nucleic acid sequences encoding the GH61 variant proteins provided herein, as well as polynucleotides that hybridize under stringent hybridization conditions to at least one polynucleotide and/or a complement of at least one polynucleotide encoding GH61 variant proteins provided herein. In some embodiments, the present invention provides polynucleotide sequences encoding GH61 variant proteins, wherein the polynucleotide sequences are at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to any of SEQ ID NOS:1, 4, 7, and/or 10, or at least one polynucleotide that hybridizes under stringent hybridization conditions to at least one polynucleotide and/or complement of any of SEQ ID NOS:1, 4, 7, and/or 10. In some additional embodiments, the present invention provides polynucleotide sequences encoding GH61 variant proteins, wherein the polynucleotide sequences are at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to any of SEQ ID NOS:1, 4, 7, and/or 10, or at least one polynucleotides that hybridizes under stringent hybridization conditions to at least one polynucleotide and/or complement of any of SEQ ID NOS: 1, 4, 7, and/or 10.

[0032] The present invention also provides recombinant nucleic acid constructs comprising at least one polynucleotide sequence encoding at least one GH61 protein, wherein the polynucleotide is selected from: (a) a polynucleotide that encodes a polypeptide comprising an amino acid sequence having at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity to SEQ ID NO:2, 3, 5, 6, 8, and/or 9, wherein the amino acid sequence comprises at least one substitution and/or substitution set provided herein; (b) a polynucleotide that hybridizes under stringent hybridization conditions to at least a fragment of a polynucleotide that encodes a polypeptide having the amino acid sequence of SEQ ID NO:2, 3, 5, 6, 8, and/or 9, and wherein the amino acid sequence comprises at least one substitution and/or at least one substitution set provided herein; and/or (c) a polynucleotide that hybridizes under stringent hybridization conditions to the complement of at least a fragment of a polynucleotide that encodes a polypeptide having the amino acid sequence of SEQ ID NO:2, 3, 5, 6, 8, and/or 9, and wherein the amino acid sequence comprises at least one substitution and/or at least one substitution set provided herein. In some embodiments, the recombinant nucleic acid constructs comprise at least one polynucleotide sequence encoding at least one GH61 protein, wherein the polynucleotide is selected from: (a) a polynucleotide that encodes a polypeptide comprising an amino acid sequence having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity to SEQ ID NO:2, wherein the amino acid sequence comprises at least one substitution and/or substitution set provided herein; (b) a polynucleotide that hybridizes under stringent hybridization conditions to a polynucleotide that encodes a polypeptide having the amino acid sequence of SEQ ID NO:2, and wherein the amino acid sequence comprises at least one substitution and/or at least one substitution set provided herein; and/or (c) a polynucleotide that hybridizes under stringent hybridization conditions to the complement of a polynucleotide that encodes a polypeptide having the amino acid sequence of SEQ ID NO:2, and wherein the amino acid sequence comprises at least one substitution and/or at least one substitution set provided herein. In some additional embodiments, the recombinant nucleic acid constructs comprise at least one polynucleotide sequence at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to any of SEQ ID NOS:1, 4, 7, and/or 10, and wherein the polynucleotide sequence comprises at least one mutation and/or at least one mutation set provided herein. In some further additional embodiments, the recombinant nucleic acid constructs comprise polynucleotide sequences that are at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to any of SEQ ID NOS:1, 4, 7, and/or 10, and wherein the polynucleotide sequence comprises at least one mutation and/or at least one mutation set provided herein. In some embodiments, the polynucleotides and/or nucleic acid constructs provided herein comprise at least one polynucleotide sequence comprising at least one mutation or mutation set selected from t60c/c573g, t60c/c573g/g1026a, c573g, t60c/c291a/c573g, t60c/c291a, t60c/c876t, a312g, t60c, t379a/c380g/g381c, c300t, t204c/t379a/c380g/g381c/ c385t, g1026a, c246t, c597g, c72t, c732g/c843t/c882t, c909t, c912g, g921a, c792t, g972t, g921a, t379a/c380g/ g381c/c454a/c456a/c732t/c843t/c849t, c520a/c522g; t60c/ c573g; t60c/c288t/c573g; t60c/c198t/c573g; and/or t60c/ g399a/c573g. In some additional embodiments, the polynucleotide and/or nucleic acid construct comprise at least one nucleic acid sequence operably linked to a promoter. In some additional embodiments, the promoter is a heterologous promoter. In some further embodiments, the nucleic acid constructs further encode at least one enzyme in addition to the GH61 variant protein. In some embodiments, the nucleic acid constructs comprise at least one additional enzyme is selected from wild-type GH61 enzymes, endoglucanases (EG), beta-glucosidases (BGL), Type 1 cellobiohydrolases (CBH1), Type 2 cellobiohydrolases (CBH2), cellulases, hemicellulases, xylanases, xylosidases, amylases, glucoamylases, proteases, esterases, and lipases. In some further embodiments, at least one additional enzyme is selected from wild-type GH61 enzymes, endoglucanases (EG), beta-glucosidases (BGL), Type 1 cellobiohydrolases (CBH1), Type 2 cellobiohydrolases (CBH2), xylanases, and xylosidases.

[0033] The present invention also provides expression constructs comprising at least one polynucleotide or nucleic acid construct as provided herein. In some expression construct embodiments, the nucleic acid construct and/or the polynucleotide is operably linked to a promoter. In some embodiments, the promoter is heterologous. In some further embodiments of the expression constructs provided herein, the nucleic acid sequence is operably linked to at least one additional regulatory sequence.

[0034] The present invention also provides host cells that express at least one polynucleotide sequence encoding at least one GH61 variant protein provided herein. In some embodiments, the host cells produce at least one GH61 variant protein provided herein. In some additional embodiments, at least one GH61 variant protein is secreted from the host cells. In some further embodiments, the host cells further produce at least one enzyme selected from wild-type GH61 enzymes, endoglucanases (EG), beta-glucosidases (BGL), Type 1 cellobiohydrolases (CBH1), Type 2 cellobiohydrolases (CBH2), cellulases, hemicellulases, xylanases, xylosidases, amylases, glucoamylases, proteases, esterases, and lipases. In some additional embodiments, the host cell further produces at least one enzyme selected from wild-type GH61 enzymes, endoglucanases (EG), beta-glucosidases (BGL), Type 1 cellobiohydrolases (CBH1), and Type 2 cellobiohydrolases (CBH2). In some embodiments, the host cell is a yeast or filamentous fungal cell. In some embodiments, the filamentous fungal cell is a Myceliophthora, a Chrysosporium a Thielavia, a Trichoderma, or an Aspergillus cell. In some further embodiments, the filamentous fungal cell is Myceliophthora thermophila. In some additional embodiments, the host cell is a yeast cell. In some further additional embodiments, the host cell is Saccharomyces. In some further embodiments, the host cells further comprise at least one polynucleotide, polynucleotide construct, and/or expression construct as provided herein.

[0035] The present invention also provides methods of producing at least one GH61 variant protein comprising culturing the host cell set forth herein under conditions such that the host cell produces at least one GH61 variant proteins as provided herein. In some embodiments of the methods, the host cell further produces at least one additional enzyme selected from wild-type GH61 enzymes, endoglucanases (EG), beta-glucosidases (BGL), Type 1 cellobiohydrolases (CBH1), Type 2 cellobiohydrolases (CBH2), cellulases, hemicellulases, xylanases, xylosidases, amylases, glucoamylases, proteases, esterases, and lipases. In some embodiments of the methods, the host cell further produces at least one EG, at least one BGL, at least one CBH1, at least one CBH2, and/or at least one wild-type GH61 enzyme. In some further embodiments of the methods, the conditions comprise culturing at about pH 5, while in some alternative embodiments of the methods, the conditions comprise culturing at about pH 6.7. In some embodiments of the methods, the filamentous fungal cell is a Myceliophthora, a Chrysosporium, a Thielavia, a Trichoderma, or an Aspergillus cell. In some further embodiments of the methods, the filamentous fungal cell is a Myceliophthora thermophila. In some additional embodiments of the methods, the host cell is a yeast cell. In some further additional embodiments of the methods, the host cell is Saccharomyces.

[0036] The present invention also provides enzyme compositions comprising at least one GH61 variant protein as provided herein. In some embodiments, the enzyme compositions further comprise one or more enzymes selected from wild-type GH61 enzymes, endoglucanases (EG), betaglucosidases (BGL), Type 1 cellobiohydrolases (CBH1), and/or Type 2 cellobiohydrolases (CBH2), cellulases, hemicellulases, xylanases, xylosidases, amylases, glucoamylases, proteases, esterases, and lipases. In some additional embodiments, the enzyme compositions further comprise at least two additional enzymes selected from wild-type GH61 enzymes, endoglucanases (EG), beta-glucosidases (BGL), Type 1 cellobiohydrolases (CBH1), and/or Type 2 cellobiohydrolases (CBH2), cellulases, hemicellulases, xylanases, xylosidases, amylases, glucoamylases, proteases, esterases, and lipases. In some embodiments, the enzyme compositions are produced by the host cells provided herein. In some additional embodiments, the enzyme compositions further comprise a microorganism. In some further embodiments, the microorganism comprises M. thermophila. In some embodiments, the enzyme compositions further comprise at least one adjunct composition. In some additional embodiments, the enzyme compositions comprise at least one adjunct composition selected from divalent metal cations, reductants, surfactants, buffers, culture media, and enzyme stabilizing systems. In some further embodiments, the enzyme compositions comprise adjunct composition comprising copper and/or gallic acid. In some additional embodiments, the enzyme compositions find use in saccharification reactions.

[0037] The present invention also provides compositions comprising at least one GH61 protein, one or more cellulase enzymes, a cellulosic substrate, and Cu++, wherein the GH61 protein is at least about 70%, about 75%, about 80%, about 85%, about 86%, about 87%, about 88%, about 89%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or about 100% identical to any of SEO ID NOS:2, 5, 6, 8, 9, 11, and/or 12, and/or a biologically fragment thereof with GH61 activity. In some embodiments, the present invention provides compositions comprising at least one GH61 protein, one or more cellulase enzymes, a cellulosic substrate, and Cu⁺⁺, wherein the GH61 protein is at least 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:2, 5, 6, 8, 9, 11, and/or 12, and/or a biologically fragment thereof with GH61 activity. In some embodiments, the concentration of Cu++ is at least about 4 µM. In some embodiments, the concentration of Cu⁺⁺ is between about 1 μ M and about 100 μ M, between about 4 μ M and about 100 μM, or between about 5 μM and about 100 μM.

[0038] The present invention also provides compositions comprising at least one GH61 protein, one or more cellulase enzymes, a cellulosic substrate, and gallic acid, wherein the GH61 protein is at least about 70%, about 80%, about 85%, about 86%, about 87%, about 88%, about 89%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or about 100% identical to any of SEQ ID NO:2, 5, 6, 8, 9, 11, and/or 12, and/or a biologically fragment thereof with GH61 activity. The present invention also provides compositions comprising at least one GH61 protein, one or more cellulase enzymes, a cellulosic substrate, and gallic acid, wherein the GH61 protein is at least 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any of SEQ ID NO:2, 5, 6, 8, 9, 11, and/or 12, and/or a biologically fragment thereof with GH61 activity. In some embodiments, the concentration of gallic acid in the compositions is at least about 0.1 mM. In some embodiments, the compositions comprise gallic acid at a concentration between about 1 mM and about 5 mM. In some embodiments, the concentration of gallic acid in the composition is at least 0.1 mM. In some embodiments, the compositions comprise gallic acid at a concentration between 1 mM and 5 mM. In some embodiments, the compositions comprise at least one GH61 protein comprising SEQ ID NO:2, 5, 6, 8, 9, 11, and/or 12, and/or a biologically active fragment thereof with GH61 activity. In some embodiments, the compositions comprise at least one GH61 variant protein as provided herein. In some embodiments, the compositions comprise at least one cellulase enzyme selected from endoglucanases (EG), beta-glucosidases (BGL), Type 1 cellobiohydrolases (CBH1), and/or Type 2 cellobiohydrolases (CBH2). In some embodiments, the compositions comprise at least one BGL, CBH1, and CBH2. In some additional embodiments, the compositions further comprise at least one additional enzyme. In some further embodiments, at least one additional enzyme is selected from hemicellulases, xylanases, xylosidases, amylases, glucoamylases, proteases, esterases, and lipases. In still some further embodiments of the compositions, the cellulosic substrate is selected from wheat grass, wheat

straw, barley straw, sorghum, rice grass, sugarcane straw, bagasse, switchgrass, corn stover, corn fiber, grains, or any combination thereof.

[0039] The present invention also provides methods for producing fermentable sugars from a cellulosic substrate, comprising contacting the cellulosic substrate with at least one enzyme composition as provided herein under conditions whereby fermentable sugars are produced. In some embodiments, the methods further comprise pretreating the cellulosic substrate prior to the contacting. In some additional embodiments of the methods, the enzyme composition is added concurrently with pretreating. In some further embodiments of the methods, the cellulosic substrate comprises wheat grass, wheat straw, barley straw, sorghum, rice grass, sugarcane, sugarcane straw, bagasse, switchgrass, corn stover, corn fiber, grains, or any combination thereof. In some additional embodiments of the methods, the fermentable sugars comprise glucose and/or xylose. In some embodiments, the methods further comprise recovering the fermentable sugars. In some embodiments of the methods, the conditions comprise using continuous, batch, and/or fed-batch culturing conditions. In some further embodiments, the method is a batch process, while in some alternative embodiments, the method is a continuous process, and in some still further embodiments, the method is a fed-batch process. In some embodiments, the methods comprise any combination of batch, continuous, and/or fed-batch processes conducted in any order. In still some further embodiments, the methods are conducted in a reaction volume of at least 10,000 liters, while in some other embodiments, the methods are conducted in a reaction volume of at least 100,000 liters. In some embodiments, the methods further comprise use of at least one adjunct composition. In some embodiments, the adjunct composition is selected from at least one divalent metal cation, gallic acid, and/or at least one surfactant. In some embodiments, the divalent metal cation comprises copper and/or gallic acid. In some additional embodiments, the surfactant is selected from TWEEN®-20 non-ionic detergent and polyethylene glycol. In some further embodiments, the methods are conducted at about pH 5.0, while in some alternative embodiments, the methods are conducted at about pH 6.0. In some additional embodiments, the pH is in the range of about 4.5 to about 7. In some embodiments, the methods further comprise contacting the fermentable sugars with a microorganism under conditions such that the microorganism produces at least one fermentation end product. In some embodiments, the fermentation end product is selected from alcohols, fatty acids, lactic acid, acetic acid, 3-hydroxypropionic acid, acrylic acid, succinic acid, citric acid, malic acid, fumaric acid, amino acids, 1,3-propanediol, ethylene, glycerol, fatty alcohols, butadiene, and beta-lactams. In some further embodiments, the fermentation product is an alcohol selected from ethanol and butanol. In some still further embodiments, the alcohol is ethanol.

[0040] The present invention also provides methods for increasing production of fermentable sugars from a saccharification reaction comprising combining at least one cellulase substrate, one or more cellulase enzymes, and at least one GH61 protein wherein the protein is at least about 70%, about 75%, about 80%, about 85%, about 86%, about 87%, about 88%, about 89%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or about 100% identical to SEQ ID

NO:2, and an adjunct composition in a saccharification reaction, wherein the adjunct composition comprises Cu⁺⁺ at a concentration of at least about 4 µM and/or gallic acid at a concentration of at least about 0.5 mM. The present invention also provides methods for increasing production of fermentable sugars from a saccharification reaction comprising combining at least one cellulase substrate, one or more cellulase enzymes, and at least one GH61 protein wherein the protein is at least 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:2, and an adjunct composition in a saccharification reaction, wherein the adjunct composition comprises Cu⁺⁺ at a concentration of at least about 4 µM and/or gallic acid at a concentration of at least about 0.5 mM. In some embodiments, at least one GH61 protein comprises SEQ ID NO:2, 5, 6, 8, 9, 11, and/or a biologically active fragment thereof. In some embodiments of the methods, the GH61 protein is at least one GH61 protein variant as provided herein. In some embodiments, the methods further comprise use of at least one surfactant selected from TWEEN®-20 non-ionic detergent and polyethylene glycol. In some additional embodiments, the methods are conducted at about pH 5.0, while in some other embodiments, the methods are conducted at about pH 6.0.

[0041] The present invention also provides methods of producing at least one end product from at least one cellulosic substrate, comprising: a) providing at least one cellulosic substrate and at least one enzyme composition as provided herein; b) contacting the cellulosic substrate with the enzyme composition under conditions whereby fermentable sugars are produced from the cellulosic substrate in a saccharification reaction; and c) contacting the fermentable sugars with a microorganism under fermentation conditions such that at least one end product is produced. In some embodiments, the method comprises simultaneous saccharification and fermentation reactions (SSF), while in some alternative embodiments of the methods, saccharification of the cellulosic substrate and fermentation are conducted in separate reactions (SHF). In some additional embodiments, the methods comprise production of at least one enzyme simultaneously with hydrolysis and/or fermentation (e.g., "consolidated bioprocessing"; CBP). In some embodiments, the enzyme composition is produced simultaneously with the saccharification and fermentation reactions. In some additional embodiments at least one enzyme of said composition is produced simultaneously with the saccharification and fermentation reactions. In some embodiments, in which at least one enzyme and/or the enzyme composition is produced simultaneously with the saccharification and fermentation reactions, the methods are conducted in a single reaction vessel. In some embodiments, the methods further comprise use of at least one adjunct composition in the saccharification reaction. In some embodiments of the methods, at least one adjunct composition is selected from at least one divalent metal cation, gallic acid, and/or at least one surfactant. In some further embodiments of the methods, the divalent metal cation comprises copper. In some further embodiments of the methods, the adjunct composition comprises gallic acid. In some additional embodiments of the methods, the surfactant is selected from TWEEN®-20 nonionic detergent and polyethylene glycol. In some embodiments, the method is conducted at about pH 5.0. In some embodiments, the method is conducted at about pH 6.0. In some further embodiments, the method is conducted at a pH

in the range of about 4.5 to about 7.0. In some embodiments, the methods further comprise recovering at least one end product. In some embodiments of the methods the end product comprises at least one fermentation end product. In some further embodiments of the methods, the fermentation end product is selected from alcohols, fatty acids, lactic acid, acetic acid, 3-hydroxypropionic acid, acrylic acid, succinic acid, citric acid, malic acid, fumaric acid, an amino acid, 1,3-propanediol, ethylene, glycerol, fatty alcohols, butadiene, and beta-lactams. In some embodiments of the methods, the fermentation end product is at least one alcohol selected from ethanol and butanol. In some embodiments of the methods, the alcohol is ethanol. In some additional embodiments of the methods, the microorganism is a yeast. In some further embodiments, the yeast is Saccharomyces. In some further additional embodiments, the methods further comprise recovering at least one fermentation end product.

[0042] The present invention also provides for use of at least one GH61 variant protein provided herein to produce at least one fermentation end product. In some embodiments, at least one GH61 variant protein provided herein is used to produce at least one fermentation end product selected from alcohols, fatty acids, lactic acid, acetic acid, 3-hydroxypropionic acid, acrylic acid, citric acid, malic acid, fumaric acid, succinic acid, amino acids, 1,3-propanediol, ethylene, glycerol, butadiene, fatty alcohols, and beta-lactams. In some embodiments, the fermentation end product is at least one alcohol selected from ethanol and butanol. In some further embodiments, the alcohol is ethanol.

[0043] Additional embodiments of the invention are apparent from the present description.

DESCRIPTION OF THE DRAWINGS

[0044] FIG. 1 provides results of an experiment using recombinantly produced GH61a protein having the sequence shown in SEQ ID NO:2. The protein was tested for its ability to promote the activity of cellulases present in culture broth of *M. thermophila*. The graph shows the improvement in the yield of the fermentable sugar glucose that is attained by adding GH61 to the reaction.

[0045] FIG. 2 shows specific GH61 activity observed in a reaction where a wheat straw substrate was hydrolyzed by cellulase enzymes CBH1, CBH2, and beta-glucosidase. The results show that GH61a Variants 5 and 9 have a 2.0 to 2.9 fold improvement over the parental GH61 sequence (SEQ ID NO:2); and Variant 1 has a 3.0 to 3.9 fold improvement.

[0046] FIG. 3 shows the increase in glucose production in the presence of GH61 protein when Cu⁺⁺ is included the reaction. In this Figure, n=4; and mean±SD. Panel A shows the increase with a GH61 variant protein "Variant 5," while Panel B shows the increase with the wild-type GH61a protein (SEQ ID NO:2).

[0047] FIG. 4 shows activity of GH61a pre-incubated with 0 or 50 μ M CuSO₄, copper(II) ion at either saccharification pH 5.0 or pH 6.0. Panel A shows glucose production, while Panel B shows the total production of C5 sugars.

[0048] FIG. 5 shows activity of *M. thermophila*-produced GH61a Variant 1 on cellulosic substrates. Panel A shows the results on AVICEL® PH microcrystalline cellulose, and Panel B shows the results on phosphoric acid swollen cellulose (PASC), in the presence of ascorbic acid, gallic acid and pretreatment filtrate.

[0049] FIG. 6 provides results showing the effects of surfactants on saccharification. Panel A shows enzymatic hydrolysis activity of a cellulase mixture in the presence of TWEEN®-20, while Panel B shows the enzymatic hydrolysis activity of a cellulase mixture in the presence of PEG-4000.

DETAILED DESCRIPTION OF THE INVENTION

[0050] As described herein, the present invention provides GH61 proteins of the filamentous fungus *Myceliophthora thermophila* that have been genetically modified. These GH61 protein variants exhibit improved activity and other benefits, as compared to wild-type GH61 proteins.

[0051] Before modification, the GH61 protein having the sequence shown in SEQ ID NO:2 improves the yield of fermentable sugars produced from a cellulosic substrate through the activity of cellulase enzymes (e.g., endoglucanase, beta-glucosidase (BGL), cellobiohydrolase, and combinations of such enzymes; See, FIG. 1). The GH61 variant proteins of this invention have certain amino acid substitutions in relation to SEQ ID NO:2, either alone or in various combinations. GH61 variant proteins that have gone through one round of optimization, when included in a saccharification assay, improve the yield of fermentable sugars in such reactions by at least about 2-fold, about 3-fold, or more, in relation to the improvement in yield when wild-type GH61a (SEQ ID NO:2) is used instead. (See, FIG. 2). After multiple rounds of optimization, the GH61 activity can be improved by a further 1.5-fold, 2-fold, 3-fold or more.

[0052] The GH61 variant proteins of the present invention have important industrial applicability in the processing of cellulosic biomass to produce fermentable sugars, which in turn can be fermented or processed to produce commercially important fermentation products (e.g., "fermentation endproducts" or "end-products"), including but not limited to, at least one alcohol, fatty acid, lactic acid, acetic acid, 3-hydroxypropionic acid, acrylic acid, succinic acid, citric acid, malic acid, fumaric acid, amino acid, 1,3-propanediol, ethylene, glycerol, fatty alcohol, butadiene, and/or beta-lactam. In further embodiments, the alcohol is ethanol, butanol, and/or a fatty alcohol. In some embodiments, the fermentation product is ethanol. In some still further embodiments, the fermentation product is a fatty alcohol that is a C8-C20 fatty alcohol. In some embodiments, the fermentation medium comprises at least one product from a saccharification process.

[0053] GH61 proteins, their production and use are generally described in PCT/US11/488700. This application claims priority to U.S. Ser. No. 61/375,788, both of which are incorporated herein by reference in their entirety. Proteins, procedures, and uses described in these applications find use with the GH61 variant proteins of the present invention.

DEFINITIONS

[0054] All patents and publications, including all sequences disclosed within such patents and publications, referred to herein are expressly incorporated by reference. Unless otherwise indicated, the practice of the present invention involves conventional techniques commonly used in molecular biology, fermentation, microbiology, and related fields, which are known to those of skill in the art.

Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are described. Indeed, it is intended that the present invention not be limited to the particular methodology, protocols, and reagents described herein, as these may vary, depending upon the context in which they are used. The headings provided herein are not limitations of the various aspects or embodiments of the present invention.

[0055] Nonetheless, in order to facilitate understanding of the present invention, a number of terms are defined below. Numeric ranges are inclusive of the numbers defining the range. Thus, every numerical range disclosed herein is intended to encompass every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein. It is also intended that every maximum (or minimum) numerical limitation disclosed herein includes every lower (or higher) numerical limitations were expressly written herein.

[0056] As used herein, the term "comprising" and its cognates are used in their inclusive sense (i.e., equivalent to the term "including" and its corresponding cognates).

[0057] As used herein and in the appended claims, the singular "a", "an" and "the" include the plural reference unless the context clearly dictates otherwise. Thus, for example, reference to a "host cell" includes a plurality of such host cells.

[0058] Unless otherwise indicated, nucleic acids are written left to right in 5' to 3' orientation; amino acid sequences are written left to right in amino to carboxy orientation, respectively. The headings provided herein are not limitations of the various aspects or embodiments of the invention that can be had by reference to the specification as a whole. Accordingly, the terms defined below are more fully defined by reference to the specification as a whole.

[0059] As used herein, the term "produces" refers to the production of proteins (polypeptides) and/or other compounds by cells. It is intended that the term encompass any step involved in the production of polypeptides including, but not limited to, transcription, post-transcriptional modification, translation, and post-translational modification. In some embodiments, the term also encompasses secretion of the polypeptide from a cell.

[0060] As used in this disclosure, the term "GH61 protein" means a protein that has GH61 activity, including GH61 variants and wild-type GH61 enzymes. In some embodiments, the GH61 proteins have been purified from *M. thermophila* cells, while in other embodiments, they are structurally related to the amino acid sequences shown in Tables 1 and 2. The terms also encompasses species and strain homologs and orthologs comprising protein sequences listed in Tables 1 and 2, as well as variants, and fragments of such sequences (produced using any suitable means known in the art), having GH61 activity.

[0061] As used herein, the terms "variant," "GH61 variant," refer to a GH61 polypeptide or polynucleotide encoding a GH61 polypeptide comprising one or more modifications relative to wild-type GH61 or the wild-type polynucleotide encoding GH61 (such as substitutions, inser-

tions, deletions, and/or truncations of one or more amino acid residues or of one or more specific nucleotides or codons in the polypeptide or polynucleotide, respectively), and biologically active fragments thereof. In some embodiments, the variant is derived from a M. thermophila polypeptide and comprises one or more modifications relative to wild-type M. thermophila GH61 or the wild-type polynucleotide encoding wild-type M. thermophila GH61, or a biologically active fragment thereof. In some embodiments, a "GH61 variant protein" ("GH61 variant polypeptide") of the present invention is a protein that is structurally related to a reference protein comprising SEQ ID NO:2 or a fragment of SEQ ID NO:2 that has GH61 activity, but has one or more amino acid substitutions in relation to the reference protein. In some embodiments, the GH61 variant is a GH61a variant (i.e., a variant of GH61a enzyme). In some embodiments, the GH61 variant polypeptide is a "polypeptide of interest." In some additional embodiments, the GH61 variant polypeptide is encoded by a "polynucleotide of interest."

[0062] The terms "improved" or "improved properties," as used in the context of describing the properties of a GH61 variant, refers to a GH61 variant polypeptide that exhibits an improvement in a property or properties as compared to the wild-type GH61 (e.g., SEQ ID NO:2) or a specified reference polypeptide. Improved properties may include, but are not limited to increased protein expression, increased thermoactivity, increased thermostability, increased pH activity, increased stability (e.g., increased pH stability or pH tolerance at various pH levels), increased product specificity, increased specific activity, increased substrate specificity, increased resistance to substrate or end-product inhibition, increased chemical stability, reduced inhibition by glucose, increased resistance to inhibitors (e.g., acetic acid, lectins, tannic acids, and phenolic compounds), and altered pH/temperature profile.

[0063] The term "biologically active fragment," as used herein, refers to a polypeptide that has an amino-terminal and/or carboxy-terminal deletion and/or internal deletion, but where the remaining amino acid sequence is identical to the corresponding positions in the sequence to which it is being compared (e.g., a full-length GH61 variant of the invention) and that retains substantially all of the activity of the full-length polypeptide. A biologically active fragment can comprise about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, at about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, or about 99% of a full-length GH61 polypeptide.

[0064] A GH61 variant protein of this invention having "increased GH61 activity" has more GH61 activity when that protein is present in a saccharification reaction with a specified substrate and specified cellulase enzyme(s), compared with a saccharification reaction conducted with the same substrate and enzyme(s) under the same conditions in the presence of a reference protein (e.g., including but not limited to wild-type GH61). The increase is determined by measuring the amount of fermentable sugar produced in the reaction in the presence of the GH61 variant protein, in the presence of the reference protein (Positive Control), and in the absence of either protein (Negative Control). The Improvement Over Positive Control (FIOPC) is calculated as ([Glucose production of the GH61 Variant Protein]—

[Glucose production of the Negative Control]]/([Glucose production of the Positive Control]–[Glucose production of the Negative Control]).

[0065] As used herein, "GH61 activity" is the functional activity of a GH61 protein that results in production of more fermentable sugar from a polysaccharide substrate when the GH61 protein is present in a saccharification reaction, compared with a saccharification reaction conducted under the same conditions in the absence of the GH61 protein.

[0066] A GH61 variant protein of this invention having "increased GH61 thermoactivity" has more GH61 activity in a saccharification reaction conducted at an elevated temperature (about 50° C., about 55° C., about 60° C., or higher) with a specified substrate and specified cellulase enzyme(s), compared with a saccharification reaction conducted under the same conditions in the presence of the reference protein (e.g., including but not limited to wild-type GH61).

[0067] GH61 proteins of this invention may be said to "enhance", "promote", or "facilitate" activity of one or more cellulase enzymes during hydrolysis of sugar polymers (e.g., cellulosic and/or lignocellulosic biomass) such that the enzyme(s) produce(s) more product over a particular time period, hydrolysis proceeds more rapidly, or goes further to completion when the GH61 protein is present, compared with a similar reaction mixture in which the GH61 protein is absent. This invention may be practiced by following GH61 activity in an empirical fashion using assay methods provided in this disclosure, without knowing the mechanism of operation of the GH61 variant protein being used. However, it is not intended that the present invention be limited to any particular assay system and/or method, as any suitable method known in the art finds use.

[0068] The terms "transform" or "transformation," as used in reference to a cell, mean a cell has a non-native nucleic acid sequence integrated into its genome and/or as an episome (e.g., plasmid) that is maintained through multiple generations.

[0069] The term "introduced," as used in the context of inserting a nucleic acid sequence into a cell, means that the nucleic acid has been conjugated, transfected, transduced or transformed (collectively "transformed") or otherwise incorporated into the genome of and/or maintained as an episome in the cell. Thus, the term encompasses transformation, transduction, conjugation, transfection, and/or any other suitable method(s) known in the art for inserting nucleic acid sequences into host cells. Any suitable means for the introduction of nucleic acid into host cells find use in the present invention.

[0070] The terms "percent identity," "% identity", "percent identical", and "% identical" are used interchangeably to refer to a comparison of two optimally aligned sequences over a comparison window. The comparison window may include additions or deletions in either sequence to optimize alignment. The percentage of identity is the number of positions that are identical between the sequences, divided by the total number of positions in the comparison window (including positions where one of the sequences has a gap). For example, a protein with an amino acid sequence that matches at 310 positions a sequence of GH61a (which has 323 amino acids in the secreted form), would have 310/323=95.9% identity to the reference. Similarly, a protein variant that has 300 residues (i.e., less than full-length) and matches the reference sequence at 280 positions would have 280/300=93.3% identity. Computer-implemented alignment

algorithms useful in determining the degree of identity are known in the art, including the BLAST and BLAST 2.0 algorithms (See e.g., Altschul et al., J. Mol. Biol., 215: 403-410 [1990]; and Altschul et al., Nucl. Acids Res., 3389-3402 [1977]).

[0071] As used herein, "polynucleotide" refers to a polymer of deoxyribonucleotides or ribonucleotides in either single- or double-stranded form, and complements thereof.

[0072] As used herein, the term "allelic variant" refers to any of two or more (e.g., several) alternative forms of a gene occupying the same chromosomal locus. In some embodiments, allelic variation arises naturally through mutation and results in genetic polymorphism within populations. In some embodiments, gene mutations are silent (i.e., there is no change in the encoded polypeptide), while in some other embodiments the genes encode polypeptides that have altered amino acid sequences. An "allelic variant of a polypeptide" is a polypeptide encoded by an allelic variant of a gene.

[0073] As used herein, "cDNA" refers to a DNA molecule that can be prepared by reverse transcription from a mature, spliced, mRNA molecule obtained from a eukaryotic or prokaryotic cell. cDNA sequences lack intron sequences that may be present in the corresponding genomic DNA. The initial, primary RNA transcript is a precursor to mRNA that is processed through a series of steps, including splicing, before appearing as mature spliced mRNA.

[0074] As used herein, the term "coding sequence" refers to a polynucleotide that directly specifies the amino acid sequence of a polypeptide. The boundaries of the coding sequence are generally determined by an open reading frame, which begins with a start codon (e.g., ATG, GTG, or TTG) and ends with a stop codon (e.g., TAA, TAG, or TGA). In some embodiments, a coding sequence comprises genomic DNA, while in some alternative embodiments, the coding sequence comprises cDNA, synthetic DNA, and/or a combination thereof.

[0075] As used herein, the terms "control sequences" and "regulatory sequences" refer to nucleic acid sequences necessary and/or useful for expression of a polynucleotide encoding a polypeptide. In some embodiments, control sequences are native (i.e., from the same gene) or foreign (i.e., from a different gene) to the polynucleotide encoding the polypeptide. Control sequences include, but are not limited to leaders, polyadenylation sequences, propeptide sequences, promoters, signal peptide sequences, and transcription terminators. In some embodiments, at a minimum, control sequences include a promoter, and transcriptional and translational stop signals. In some embodiments, control sequences are provided with linkers for the purpose of introducing specific restriction sites facilitating ligation of the control sequences with the coding region of the polynucleotide encoding the polypeptide.

[0076] A nucleic acid construct, nucleic acid (e.g., a polynucleotide), polypeptide, or host cell is referred to herein as "recombinant" when it is non-naturally occurring, artificial or engineered. The present invention also provides recombinant nucleic acid constructs comprising at least one GH61 variant polynucleotide sequence that hybridizes under stringent hybridization conditions to the complement of a polynucleotide which encodes a polypeptide comprising the amino acid sequence of any of SEQ ID NOS:2, 3, 5, 6, 8, 9, 11, and/or 12.

[0077] The term "recombinant nucleic acid" has its conventional meaning. A recombinant nucleic acid, or equivalently, "polynucleotide," is one that is inserted into a heterologous location such that it is not associated with nucleotide sequences that normally flank the nucleic acid as it is found in nature (for example, a nucleic acid inserted into a vector or a genome of a heterologous organism). Likewise, a nucleic acid sequence that does not appear in nature, for example a variant of a naturally occurring gene, is recombinant. A cell containing a recombinant nucleic acid, or protein expressed in vitro or in vivo from a recombinant nucleic acid are also "recombinant." Examples of recombinant nucleic acids include a protein-encoding DNA sequence that is (i) operably linked to a heterologous promoter and/or (ii) encodes a fusion polypeptide with a protein sequence and a heterologous signal peptide sequence.

[0078] For purposes of this disclosure, a promoter is "heterologous" to a gene sequence if the promoter is not associated in nature with the gene. A signal peptide is "heterologous" to a protein sequence when the signal peptide sequence is not associated with the protein in nature. In some embodiments, "hybrid promoters" find use. Hybrid promoters are promoters comprising portions of two or more (e.g., several) promoters that are linked together to generate a sequence that is a fusion of the portions of the two or more promoters, which when operably linked to a coding sequence, mediates the transcription of the coding sequence into mRNA.

[0079] In relation to regulatory sequences (e.g., promoters), the term "operably linked" refers to a configuration in which a regulatory sequence is located at a position relative to a polypeptide encoding sequence such that the regulatory sequence influences the expression of the polypeptide. In relation to a signal sequence, the term "operably linked" refers to a configuration in which the signal sequence encodes an amino-terminal signal peptide fused to the polypeptide, such that expression of the gene produces a pre-protein.

[0080] Nucleic acids "hybridize" when they associate, typically in solution. Nucleic acids hybridize due to a variety of well-characterized physico-chemical forces, such as hydrogen bonding, solvent exclusion, base stacking and the like. As used herein, the term "stringent hybridization wash conditions" in the context of nucleic acid hybridization experiments, such as Southern and Northern hybridizations, are sequence dependent, and are different under different environmental parameters. An extensive guide to the hybridization of nucleic acids is found in Tijssen, 1993, "Laboratory Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic Acid Probes," Part I, Chapter 2 (Elsevier, New York), which is incorporated herein by reference. For polynucleotides of at least 100 nucleotides in length, low to very high stringency conditions are defined as follows: prehybridization and hybridization at 42° C. in 5×SSPE, 0.3% SDS, 200 μg/ml sheared and denatured salmon sperm DNA, and either 25% formamide for low stringencies, 35% formamide for medium and medium-high stringencies, or 50% formamide for high and very high stringencies, following standard Southern blotting procedures. For polynucleotides of at least 100 nucleotides in length, the carrier material is finally washed three times each for 15 minutes using 2×SSC, 0.2% SDS 50° C. (low

stringency), at 55° C. (medium stringency), at 60° C. (medium-high stringency), at 65° C. (high stringency), or at 70° C. (very high stringency).

[0081] As used herein, a "vector" and "nucleic acid construct" comprise nucleic acid (e.g., DNA) constructs for introducing a DNA sequence into a cell. In some embodiments, the vector is an expression vector that is operably linked to a suitable control sequence capable of effecting the expression in a suitable host of the polypeptide encoded in the DNA sequence. The term "expression vector" refers to a DNA molecule, linear or circular, that comprises a segment encoding a polypeptide of the invention, and which is operably linked to additional segments that provide for its transcription (e.g., a promoter, a transcription terminator sequence, enhancers, etc.) and optionally a selectable marker.

[0082] As used herein, the term "isolated" refers to a nucleic acid, polypeptide, or other component that is partially or completely separated from components with which it is normally associated in nature. Thus, the term encompasses a substance in a form or environment that does not occur in nature. Non-limiting examples of isolated substances include, but are not limited to: any non-naturally occurring substance; any substance including, but not limited to, any enzyme, variant, polynucleotide, protein, peptide or cofactor, that is at least partially removed from one or more or all of the naturally occurring constituents with which it is associated in nature; any substance modified by the hand of man relative to that substance found in nature; and/or any substance modified by increasing the amount of the substance relative to other components with which it is naturally associated (e.g., multiple copies of a gene encoding the substance; and/or use of a stronger promoter than the promoter naturally associated with the gene encoding the substance). In some embodiments, a polypeptide of interest is used in industrial applications in the form of a fermentation broth product (i.e., the polypeptide is a component of a fermentation broth) used as a product in industrial applications such as ethanol production. In some embodiments, in addition to the polypeptide of interest (e.g., a GH61 variant polypeptide), the fermentation broth product further comprises ingredients used in the fermentation process (e.g., cells, including the host cells containing the gene encoding the polypeptide of interest and/or the polypeptide of interest), cell debris, biomass, fermentation media, and/or fermentation products. In some embodiments, the fermentation broth is optionally subjected to one or more purification steps (e.g., filtration) to remove or reduce at least one components of a fermentation process. Accordingly, in some embodiments, an isolated substance is present in such a fermentation broth product.

[0083] As used herein, the terms "peptide," "polypeptide," and "protein" are used interchangeably herein to refer to a polymer of amino acid residues.

[0084] As used herein, the term "amino acid" refers to naturally occurring and synthetic amino acids, as well as amino acid analogs. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified (e.g., hydroxyproline, γ -carboxyglutamate, and O-phosphoserine) Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, (i.e., an α -carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, such as homoserine, norleu-

cine, methionine sulfoxide, and methionine methyl sulfonium). Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid.

[0085] An "amino acid substitution" in a protein sequence is replacement of a single amino acid within that sequence with another amino acid. Unless indicated otherwise, variant GH61 proteins of this invention have substitutions as specifically indicated. In some embodiments, the variant GH61 proteins of the present invention also have other substitutions and/or alterations at any position in any combination with the substitutions specifically indicated.

100861 Amino acids are referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes. [0087] An amino acid or nucleotide base "position" is denoted by a number that sequentially identifies each amino acid (or nucleotide base) in the reference sequence based on its position relative to the N-terminus (or 5'-end). Due to deletions, insertions, truncations, fusions, and the like that must be taken into account when determining an optimal alignment, the amino acid residue number in a test sequence determined by simply counting from the N-terminus will not necessarily be the same as the number of its corresponding position in the reference sequence. For example, in a case where a test sequence has a deletion relative to an aligned reference sequence, there will be no amino acid in the variant that corresponds to a position in the reference sequence at the site of deletion. Where there is an insertion in an aligned reference sequence, that insertion will not correspond to a numbered amino acid position in the reference sequence. In the case of truncations or fusions there can be stretches of amino acids in either the reference or aligned sequence that do not correspond to any amino acid in the corresponding sequence.

[0088] As used herein, the terms "numbered with reference to" or "corresponding to," when used in the context of the numbering of a given amino acid or polynucleotide sequence, refers to the numbering of the residues of a specified reference sequence when the given amino acid or polynucleotide sequence is compared to the reference sequence.

[0089] As used herein, the term "reference enzyme" refers to an enzyme to which another enzyme of the present invention (e.g., a "test" enzyme) is compared in order to determine the presence of an improved property in the other enzyme being evaluated. In some embodiments, a reference enzyme is a wild-type enzyme (e.g., wild-type GH61). In some embodiments, the reference enzyme is an enzyme with which a test enzyme of the present invention is compared in order to determine the presence of an improved property in the test enzyme being evaluated, including but not limited to improved thermoactivity, improved thermostability, improved activity, and/or improved stability. In some embodiments, a reference enzyme is a wild-type enzyme (e.g., wild-type GH61).

[0090] Amino acid substitutions in a GH61 protein are referred to in this disclosure using the following notation: The single-letter abbreviation for the amino acid being substituted; its position in the reference sequence (e.g., the wild-type "parental sequence" set forth in SEQ ID NO:2); and the single-letter abbreviation for the amino acid that

replaces it. Thus, the following nomenclature is used herein to describe substitutions in a reference sequence relative to a reference sequence or a variant polypeptide or nucleic acid sequence: "R-#-V," where # refers to the position in the reference sequence, R refers to the amino acid (or base) at that position in the reference sequence, and V refers to the amino acid (or base) at that position in the variant sequence. In some embodiments, an amino acid (or base) may be called "X," by which is meant any amino acid (or base). As a non-limiting example, for a variant polypeptide described with reference to a wild-type GH61 polypeptide (e.g., SEQ ID NO:2), "N35G" indicates that in the variant polypeptide, the asparagine at position 35 of the reference sequence is replaced by glycine, with amino acid position being determined by optimal alignment of the variant sequence with SEQ ID NO:2. Similarly, "H20C/D" describes two variants: a variant in which the histidine at position 20 of the reference sequence is replaced by cysteine and a variant in which the serine at position 20 of the reference sequence is replaced by aspartic acid. In the example "W141X" indicates that the tryptophan at position 131 has been replaced with any amino acid.

[0091] As used herein in reference to nucleotide and amino acid sequences, the term "mutation" refers to any change in the sequence, as compared to a reference nucleotide or amino acid sequence, including but not limited to substitutions, deletions, additions, truncations, modifications, etc. Indeed, it is intended that any change in a reference (or "parent" or "starting") nucleotide or amino acid sequence comprises a mutation in the sequence.

[0092] As used herein, the terms "amino acid mutation set", "mutation set" when used in the context of amino acid sequences (e.g., polypeptides) refer to a group of amino acid substitutions, insertions, deletions and/or other modifications to the sequence. In some embodiments, "mutation set" refers to the nucleic acid mutation sets present in some of the GH61 variants provided in Table 1 and Table 2.

[0093] The term "amino acid substitution set," "substitution set," and "combination of amino acid substitutions" refer to a group (i.e., set of combinations) of amino acid substitutions. A substitution set can have about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or more amino acid substitutions. In some embodiments, a substitution set refers to the set of amino acid substitutions that is present in any of the variant GH61 enzymes provided herein.

[0094] As used herein, the terms "nucleic acid substitution set" and "substitution set" when used in the context of nucleotide sequences (e.g., polynucleotides) refer to a group of nucleic acid substitutions. In some embodiments, mutation set refers to the nucleic acid substitution sets present in some of the variant GH61 proteins provided in Table 1 and Table 2.

[0095] As used herein, the terms "nucleic acid mutation set" and "mutation set" when used in the context of nucleotide sequences (e.g., polynucleotides) refer to a group of nucleic acid substitutions, insertions, deletions, and/or other modifications to the sequence. In some embodiments, "mutation set" refers to the amino acid mutation sets present in some of the GH61 variants provided in Table 1 and Table 2

[0096] A "cellulase-engineered" cell is a cell comprising at least one, at least two, at least three, or at least four recombinant sequences encoding a cellulase or cellulase variant, and in which expression of the cellulase(s) or

cellulase variant(s) has been modified relative to the wild-type form. Expression of a cellulase is "modified" when a non-naturally occurring cellulase variant is expressed or when a naturally occurring cellulase is over-expressed. One exemplary means to over-express a cellulase is to operably link a strong (optionally constitutive) promoter to the cellulase encoding sequence. Another exemplary way to over-express a cellulase is to increase the copy number of a heterologous, variant, or endogenous cellulase gene. The cellulase-engineered cell may be any suitable fungal cell, including, but not limited to *Myceliophthora*, *Trichoderma*, *Aspergillus*, cells, etc.

[0097] As used herein, the terms "host cell" and "host strain" refer to suitable hosts for expression vectors comprising DNA provided herein. In some embodiments, the host cells are prokaryotic or eukaryotic cells that have been transformed or transfected with vectors constructed using recombinant DNA techniques as known in the art. Transformed hosts are capable of either replicating vectors encoding at least one protein of interest and/or expressing the desired protein of interest. In addition, reference to a cell of a particular strain refers to a parental cell of the strain as well as progeny and genetically modified derivatives. Genetically modified derivatives of a parental cell include progeny cells that contain a modified genome or episomal plasmids that confer for example, antibiotic resistance, improved fermentation, etc. In some embodiments, host cells are genetically modified to have characteristics that improve protein secretion, protein stability or other properties desirable for expression and/or secretion of a protein. For example, knockout of Alp1 function results in a cell that is protease deficient. Knockout of pyr5 function results in a cell with a pyrimidine deficient phenotype. In some embodiments, host cells are modified to delete endogenous cellulase proteinencoding sequences or otherwise eliminate expression of one or more endogenous cellulases. In some embodiments, expression of one or more endogenous cellulases is inhibited to increase production of cellulases of interest. Genetic modification can be achieved by any suitable genetic engineering techniques and/or classical microbiological techniques (e.g., chemical or UV mutagenesis and subsequent selection). Using recombinant technology, nucleic acid molecules can be introduced, deleted, inhibited or modified, in a manner that results in increased yields of GH61 variant(s) within the organism or in the culture. For example, knockout of Alp1 function results in a cell that is protease deficient. Knockout of pyr5 function results in a cell with a pyrimidine deficient phenotype. In some genetic engineering approaches, homologous recombination is used to induce targeted gene modifications by specifically targeting a gene in vivo to suppress expression of the encoded protein. In an alternative approach, siRNA, antisense, and/or ribozyme technology finds use in inhibiting gene expression.

[0098] As used herein, the term "C1" refers to strains of *Myceliophthora thermophila*, including the fungal strain described by Garg (See, Garg, Mycopathol., 30: 3-4 [1966]). As used herein, "*Chrysosporium lucknowense*" includes the strains described in U.S. Pat. Nos. 6,015,707, 5,811,381 and 6,573,086; US Pat. Pub. Nos. 2007/0238155, US 2008/0194005, US 2009/0099079; International Pat. Pub. Nos., WO 2008/073914 and WO 98/15633, all of which are incorporated herein by reference, and include, without limitation, *Chrysosporium lucknowense* Garg 27K, VKM-F 3500 D (Accession No. VKM F-3500-D), C1 strain UV13-6

(Accession No. VKM F-3632 D), C1 strain NG7C-19 (Accession No. VKM F-3633 D), and C1 strain UV18-25 (VKM F-3631 D), all of which have been deposited at the All-Russian Collection of Microorganisms of Russian Academy of Sciences (VKM), Bakhurhina St. 8, Moscow, Russia, 113184, and any derivatives thereof. Although initially described as Chrysosporium lucknowense, C1 may currently be considered a strain of Myceliophthora thermophila. Other C1 strains include cells deposited under accession numbers ATCC 44006, CBS (Centraalbureau voor Schimmelcultures) 122188, CBS 251.72, CBS 143.77, CBS 272.77, CBS122190, CBS122189, and VKM F-3500D. Exemplary C1 derivatives include but are not limited to modified organisms in which one or more endogenous genes or sequences have been deleted or modified and/or one or more heterologous genes or sequences have been introduced. Derivatives include, but are not limited to UV18#100f Δalp1, UV18#100f Δpyr5 Δalp1, UV18#100.f Δalp1 Δpep4 Δalp2, UV18#1001 Δpyr5 Δalp1 Δpep4 Δalp2 and UV18#100.f Δpyr4 Δpyr5 Δalp1 Δpep4 Δalp2, as described in WO2008073914 and WO2010107303, each of which is incorporated herein by reference.

[0099] As used herein, the term "culturing" refers to growing a population of microbial cells under suitable conditions in a liquid, semi-solid, or solid medium.

[0100] In general, "saccharification" refers to the process in which substrates (e.g., cellulosic biomass and/or lignocellulosic biomass) are broken down via the action of cellulases to produce fermentable sugars (e.g. monosaccharides, including but not limited to glucose and/or xylose). In particular, "saccharification" is an enzyme-catalyzed reaction that results in hydrolysis of a complex carbohydrate to produce shorter-chain carbohydrate polymers and/or fermentable sugar(s) that are more suitable for fermentation or further hydrolysis. In some embodiments, the enzymes comprise cellulase enzyme(s) such as endoglucanases, betaglucosidases, cellobiohydrolases (e.g., CBH1 and/or CBH1), a synthetic mixture of any of such enzymes, and/or cellulase enzymes contained in culture broth from an organism that produces cellulase enzymes, such as M. thermophila or recombinant yeast cells. Products of saccharification may include disaccharides, and/or monosaccharides such as glucose or xylose.

[0101] In some embodiments, the fermentable sugars produced by the methods of the present invention are used to produce an alcohol (e.g., including but not limited to ethanol, butanol, etc.). The variant GH61 proteins of the present invention find use in any suitable method to generate alcohols and/or other biofuels from cellulose and/or lignocellulose, and are not limited necessarily to those described herein. Two methods commonly employed are the separate saccharification and fermentation (SHF) method (See, Wilke et al., Biotechnol. Bioengin. 6:155-75 [1976]) or the simultaneous saccharification and fermentation (SSF) method (See e.g., U.S. Pat. Nos. 3,990,944 and 3,990,945). An additional method that finds use with the present invention is consolidated bioprocessing (CBP), which encompasses the combination of the biological steps used in the conversion of lignocellulosic biomass to bioethanol (e.g., production of cellulase(s), hydrolysis of the polysaccharides in the biomass, and fermentation of hexose and pentose sugars) in one reactor (See e.g., Vertes et al., Biomass to Biofuels: Strategies for Global Industries, John Wiley & Sons, Ltd., [2010], Hoboken, N.J., pp. 324-325).

[0102] The SHF method of saccharification comprises the steps of contacting cellulase with a cellulose-containing substrate to enzymatically break down cellulose into fermentable sugars (e.g., monosaccharides such as glucose), contacting the fermentable sugars with an alcohol-producing microorganism to produce alcohol (e.g., ethanol or butanol) and recovering the alcohol. In some embodiments, the method of consolidated bioprocessing (CBP) can be used, in which the cellulase production from the host is simultaneous with saccharification and fermentation either from one host or from a mixed cultivation.

[0103] In addition to SHF methods, a SSF method may be used. In some cases, SSF methods result in a higher efficiency of alcohol production than is afforded by the SHF method (See e.g., Drissen et al., Biocat. Biotransform., 27:27-35 [2009]). One disadvantage of SSF over SHF is that higher temperatures are required for SSF than for SHF. In some embodiments, the present invention provides GH61 polypeptides that have higher thermostability than a wild-type GH61s. Thus, it is contemplated that the present invention will find use in increasing ethanol production in SSF, as well as SHF methods.

[0104] As used herein "fermentable sugars" refers to fermentable sugars (e.g., monosaccharides, disaccharides and short oligosaccharides), including but not limited to glucose, xylose, galactose, arabinose, mannose and sucrose. In general, the term "fermentable sugar" refers to any sugar that a microorganism can utilize or ferment.

[0105] As used herein, the terms "adjunct material," "adjunct composition," and "adjunct compound" refer to any composition suitable for use in the compositions and/or saccharification reactions provided herein, including but not limited to cofactors, surfactants, builders, buffers, enzyme stabilizing systems, chelants, dispersants, colorants, preservatives, antioxidants, solublizing agents, carriers, processing aids, pH control agents, etc. In some embodiments, divalent metal cations are used to supplement saccharification reactions and/or the growth of host cells producing GH61 variant proteins. Any suitable divalent metal cation finds use in the present invention, including but not limited to Cu⁺⁺, Mn⁺⁺, Co⁺⁺, Mg⁺⁺, Ni⁺⁺, Zn⁺⁺, and Ca⁺⁺. In addition, any suitable combination of divalent metal cations finds use in the present invention. Furthermore, divalent metal cations find use from any suitable source.

[0106] In some embodiments, the host cells producing GH61 variant proteins of the present invention are grown under culture conditions comprising about pH 5, while in some other embodiments, the host cells are grown at about pH 6.7. In some embodiments, the host cells cultured at pH 5 provide improved saccharification in the presence of supplemented copper, when saccharification is conducted at about pH 5 or about pH 6.7. In some alternative embodiments, the host cells cultured at about pH 6.7 provide improved saccharification in the absence of supplemented copper when saccharification is conducted at about pH 5 or about pH 6.

[0107] As used herein, the terms "biomass," "biomass substrate," "cellulosic biomass," "cellulosic feedstock," and "cellulosic substrate" refer to any materials that contain cellulose. Biomass can be derived from plants, animals, or microorganisms, and may include, but is not limited to agricultural, industrial, and forestry residues, industrial and municipal wastes, and terrestrial and aquatic crops grown for energy purposes. Examples of cellulosic substrates include,

but are not limited to, wood, wood pulp, paper pulp, corn fiber, corn grain, corn cobs, crop residues such as corn husks, corn stover, grasses, wheat, wheat straw, barley, barley straw, hay, rice, rice straw, switchgrass, waste paper, paper and pulp processing waste, woody or herbaceous plants, fruit or vegetable pulp, corn cobs, distillers grain, grasses, rice hulls, cotton, hemp, flax, sisal, sugar cane bagasse, sorghum, soy, switchgrass, components obtained from milling of grains, trees, branches, roots, leaves, wood chips, sawdust, shrubs and bushes, vegetables, fruits, and flowers and any suitable mixtures thereof. In some embodiments, the cellulosic biomass comprises, but is not limited to cultivated crops (e.g., grasses, including C4 grasses, such as switch grass, cord grass, rye grass, miscanthus, reed canary grass, or any combination thereof), sugar processing residues, for example, but not limited to, bagasse (e.g., sugar cane bagasse, beet pulp [e.g., sugar beet], or a combination thereof), agricultural residues (e.g. soybean stover, corn stover, corn fiber, rice straw, sugar cane straw, rice, rice hulls, barley straw, corn cobs, wheat straw, canola straw, oat straw, oat hulls, corn fiber, hemp, flax, sisal, cotton, or any combination thereof), fruit pulp, vegetable pulp, distillers' grains, forestry biomass (e.g., wood, wood pulp, paper pulp, recycled wood pulp fiber, sawdust, hardwood, such as aspen wood, softwood, or a combination thereof). Furthermore, in some embodiments, the cellulosic biomass comprises cellulosic waste material and/or forestry waste materials, including but not limited to, paper and pulp processing waste, newsprint, cardboard and the like. In some embodiments, the cellulosic biomass comprises one species of fiber, while in some alternative embodiments, the cellulosic biomass comprises a mixture of fibers that originate from different cellulosic biomasses. In some embodiments, the biomass may also comprise transgenic plants that express ligninase and/or cellulase enzymes (US 2008/0104724 A1).

[0108] The terms "lignocellulosic biomass" and "lignocellulosic feedstock" refer to plant biomass that is composed of cellulose and hemicellulose, bound to lignin. The biomass may optionally be pretreated to increase the susceptibility of cellulose to hydrolysis by chemical, physical and biological pretreatments (such as steam explosion, pulping, grinding, acid hydrolysis, solvent exposure, and the like, as well as combinations thereof). Various lignocellulosic feedstocks find use, including those that comprise fresh lignocellulosic feedstock, partially dried lignocellulosic feedstock, fully dried lignocellulosic feedstock, and/or any combination thereof. In some embodiments, lignocellulosic feedstocks comprise cellulose in an amount greater than about 20%, more preferably greater than about 30%, more preferably greater than about 40% (w/w). For example, in some embodiments, the lignocellulosic material comprises from about 20% to about 90% (w/w) cellulose, or any amount therebetween, although in some embodiments, the lignocellulosic material comprises less than about 19%, less than about 18%, less than about 17%, less than about 16%, less than about 15%, less than about 14%, less than about 13%, less than about 12%, less than about 11%, less than about 10%, less than about 9%, less than about 8%, less than about 7%, less than about 6%, or less than about 5% cellulose (w/w).

[0109] Furthermore, in some embodiments, the lignocellulosic feedstock comprises lignin in an amount greater than about 10%, more typically in an amount greater than about 15% (w/w). In some embodiments, the lignocellulosic feed-

stock comprises small amounts of sucrose, fructose and/or starch. The lignocellulosic feedstock is generally first subjected to size reduction by methods including, but not limited to, milling, grinding, agitation, shredding, compression/expansion, or other types of mechanical action. Size reduction by mechanical action can be performed by any type of equipment adapted for the purpose, for example, but not limited to, hammer mills, tub-grinders, roll presses, refiners and hydrapulpers. In some embodiments, at least 90% by weight of the particles produced from the size reduction have lengths less than between about 1/16 and about 4 in (the measurement may be a volume or a weight average length). In some embodiments, the equipment used to reduce the particle size reduction is a hammer mill or shredder. Subsequent to size reduction, the feedstock is typically slurried in water, as this facilitates pumping of the feedstock. In some embodiments, lignocellulosic feedstocks of particle size less than about 6 inches do not require size reduction.

[0110] As used herein, the term "pretreated lignocellulosic feedstock," refers to lignocellulosic feedstocks that have been subjected to physical and/or chemical processes to make the fiber more accessible and/or receptive to the actions of cellulolytic enzymes, as described above.

[0111] A cellulosic substrate or lignocellulosic substrate is said to be "pretreated" when it has been processed by some physical and/or chemical means to facilitate saccharification. As described further herein, in some embodiments, the biomass substrate is "pretreated," or treated using methods known in the art, such as chemical pretreatment (e.g., ammonia pretreatment, dilute acid pretreatment, dilute alkali pretreatment, or solvent exposure), physical pretreatment (e.g., steam explosion or irradiation), mechanical pretreatment (e.g., grinding or milling) and biological pretreatment (e.g., application of lignin-solubilizing microorganisms) and combinations thereof, to increase the susceptibility of cellulose to hydrolysis. Thus, the term "cellulosic biomass" encompasses any living or dead biological material that contains a polysaccharide substrate, including but not limited to cellulose, starch, other forms of long-chain carbohydrate polymers, and mixtures of such sources. It may or may not be assembled entirely or primarily from glucose or xylose, and may optionally also contain various other pentose or hexose monomers. Xylose is an aldopentose containing five carbon atoms and an aldehyde group. It is the precursor to hemicellulose, and is often a main constituent of biomass. In some embodiments, the substrate is slurried prior to pretreatment. In some embodiments, the consistency of the slurry is between about 2% and about 30% and more typically between about 4% and about 15%. In some embodiments, the slurry is subjected to a water and/or acid soaking operation prior to pretreatment. In some embodiments, the slurry is dewatered using any suitable method to reduce steam and chemical usage prior to pretreatment. Examples of dewatering devices include, but are not limited to pressurized screw presses (See e.g., WO 2010/022511, incorporated herein by reference) pressurized filters and

[0112] In some embodiments, the pretreatment is carried out to hydrolyze hemicellulose, and/or a portion thereof present in the cellulosic substrate to monomeric pentose and hexose sugars (e.g., xylose, arabinose, mannose, galactose, and/or any combination thereof). In some embodiments, the pretreatment is carried out so that nearly complete hydro-

lysis of the hemicellulose and a small amount of conversion of cellulose to glucose occurs. In some embodiments, an acid concentration in the aqueous slurry from about 0.02% (w/w) to about 2% (w/w), or any amount therebetween, is typically used for the treatment of the cellulosic substrate. Any suitable acid finds use in these methods, including but not limited to, hydrochloric acid, nitric acid, and/or sulfuric acid. In some embodiments, the acid used during pretreatment is sulfuric acid. Steam explosion is one method of performing acid pretreatment of biomass substrates (See e.g., U.S. Pat. No. 4,461,648). Another method of pretreating the slurry involves continuous pretreatment (i.e., the cellulosic biomass is pumped though a reactor continuously). This methods are well-known to those skilled in the art (See e.g., U.S. Pat. No. 7,754,457).

[0113] In some embodiments, alkali is used in the pretreatment. In contrast to acid pretreatment, pretreatment with alkali may not hydrolyze the hemicellulose component of the biomass. Rather, the alkali reacts with acidic groups present on the hemicellulose to open up the surface of the substrate. In some embodiments, the addition of alkali alters the crystal structure of the cellulose so that it is more amenable to hydrolysis. Examples of alkali that find use in the pretreatment include, but are not limited to ammonia, ammonium hydroxide, potassium hydroxide, and sodium hydroxide. One method of alkali pretreatment is Ammonia Freeze Explosion, Ammonia Fiber Explosion or Ammonia Fiber Expansion ("AFEX" process; See e.g., U.S. Pat. Nos. 5,171,592; 5,037,663; 4,600,590; 6,106,888; 4,356,196; 5,939,544; 6,176,176; 5,037,663 and 5,171,592). During this process, the cellulosic substrate is contacted with ammonia or ammonium hydroxide in a pressure vessel for a sufficient time to enable the ammonia or ammonium hydroxide to alter the crystal structure of the cellulose fibers. The pressure is then rapidly reduced, which allows the ammonia to flash or boil and explode the cellulose fiber structure. In some embodiments, the flashed ammonia is then recovered using methods known in the art. In some alternative methods, dilute ammonia pretreatment is utilized. The dilute ammonia pretreatment method utilizes more dilute solutions of ammonia or ammonium hydroxide than AFEX (See e.g., WO2009/045651 and US 2007/0031953). This pretreatment process may or may not produce any monosaccharides.

[0114] Additional pretreatment processes for use in the present invention include chemical treatment of the cellulosic substrate with organic solvents, in methods such as those utilizing organic liquids in pretreatment systems (See e.g., U.S. Pat. No. 4,556,430; incorporated herein by reference). These methods have the advantage that the low boiling point liquids easily can be recovered and reused. Other pretreatments, such as the OrganosolvTM process, also use organic liquids (See e.g., U.S. Pat. No. 7,465,791, which is also incorporated herein by reference). Subjecting the substrate to pressurized water may also be a suitable pretreatment method (See e.g., Weil et al., Appl. Biochem. Biotechnol., 68(1-2): 21-40 [1997], which is incorporated herein by reference). In some embodiments, the pretreated cellulosic biomass is processed after pretreatment by any of several steps, such as dilution with water, washing with water, buffering, filtration, or centrifugation, or any combination of these processes, prior to enzymatic hydrolysis, as is familiar to those skilled in the art. The pretreatment produces a pretreated feedstock composition (e.g., a "pretreated feedstock slurry") that contains a soluble component including the sugars resulting from hydrolysis of the hemicellulose, optionally acetic acid and other inhibitors, and solids including unhydrolyzed feedstock and lignin. In some embodiments, the soluble components of the pretreated feedstock composition are separated from the solids to produce a soluble fraction.

[0115] In some embodiments, the soluble fraction, including the sugars released during pretreatment and other soluble components (e.g., inhibitors), is then sent to fermentation. However, in some embodiments in which the hemicellulose is not effectively hydrolyzed during the pretreatment one or more additional steps are included (e.g., a further hydrolysis step(s) and/or enzymatic treatment step(s) and/or further alkali and/or acid treatment) to produce fermentable sugars. In some embodiments, the separation is carried out by washing the pretreated feedstock composition with an aqueous solution to produce a wash stream and a solids stream comprising the unhydrolyzed, pretreated feedstock. Alternatively, the soluble component is separated from the solids by subjecting the pretreated feedstock composition to a solids-liquid separation, using any suitable method (e.g., centrifugation, microfiltration, plate and frame filtration, cross-flow filtration, pressure filtration, vacuum filtration, etc.). Optionally, in some embodiments, a washing step is incorporated into the solids-liquids separation. In some embodiments, the separated solids containing cellulose, then undergo enzymatic hydrolysis with cellulase enzymes in order to convert the cellulose to glucose. In some embodiments, the pretreated feedstock composition is fed into the fermentation process without separation of the solids contained therein. In some embodiments, the unhydrolyzed solids are subjected to enzymatic hydrolysis with cellulase enzymes to convert the cellulose to glucose after the fermentation process. In some embodiments, the pretreated cellulosic feedstock is subjected to enzymatic hydrolysis with cellulase enzymes.

[0116] As used herein, the term "recovered" refers to the harvesting, isolating, collecting, or recovering of protein from a cell and/or culture medium. In the context of saccharification, it is used in reference to the harvesting the fermentable sugars produced during the saccharification reaction from the culture medium and/or cells. In the context of fermentation, it is used in reference to harvesting the fermentation product from the culture medium and/or cells. Thus, a process can be said to comprise "recovering" a product of a reaction (such as a soluble sugar recovered from saccharification) if the process includes separating the product from other components of a reaction mixture subsequent to at least some of the product being generated in the reaction.

[0117] As used herein, the term "slurry" refers to an aqueous solution in which are dispersed one or more solid components, such as a cellulosic substrate.

[0118] "Increasing" yield of a product (such as a fermentable sugar) from a reaction occurs when a particular component present during the reaction (such as a GH61 protein) causes more product to be produced, compared with a reaction conducted under the same conditions with the same substrate and other substituents, but in the absence of the component of interest.

[0119] "Hydrolyzing" cellulose or other polysaccharide occurs when at least some of the glycosidic bonds between

two monosaccharides present in the substrate are hydrolyzed, thereby detaching from each other the two monomers that were previously bonded.

[0120] A reaction is said to be "substantially free" of a particular enzyme if the amount of that enzyme compared with other enzymes that participate in catalyzing the reaction is less than about 2%, about 1%, or about 0.1% (wt/wt).

[0121] "Fractionating" a liquid (e.g., a culture broth) means applying a separation process (e.g., salt precipitation, column chromatography, size exclusion, and filtration) or a combination of such processes to provide a solution in which a desired protein (e.g., GH61 protein, cellulase enzyme, or combination thereof) comprises a greater percentage of total protein in the solution than in the initial liquid product.

GH61 Variant Proteins with Improved Activity

[0122] GH61 variant proteins of the present invention have certain amino acid substitutions in relation to wild-type GH61a protein. In saccharification reactions, wild-type GH61a protein increases the yield of fermentable sugars. An equivalent amount of GH61 variant proteins instead of the wild type increases the yield of fermentable sugars still further. The present invention provides numerous GH61 variants, as indicated herein. Substitutions that have been shown to improve GH61 activity are included in Table 1, below.

TABLE 1

GH61 Variants with Improved Activity				
Var. No.	Amino Acid Changes	Silent Nucleotide Changes		
1	N35G/E104H/A168P (SEQ ID NO: 5)	t60c/c573g		
2	W42P/E104H/K167A	t60c/c573g/g1026a		
3 4	N35G/W42P/V97Q/A191N W42P/E104H	c573g		
5	E104H/K167A	t60c/c291a/c573g		
6	W42P/A191N	t60c/c291a		
7	N35G/W42P/A191N	t60c/c291a		
8	H20D	0000,02010		
9	V97Q/A191N			
10	N35G/E104H/A191N	t60c/c876t		
11	E104H			
	E104Q			
	H20D/E104D/Q190H/Y192H			
	H20D/Q190E/Y192Q	a312g		
	H20D/E104C			
	H20D/P103H/E104C			
	H20D/P103H	a312g		
	N35G/E104H	t60c/c573g		
	H20D/P103H/E104Q/Q190E H20D/P103H/E104C/Y192Q			
	E104D	t60c		
	N35G/W42P	t60c/c573g		
	A137P	1000,0373g		
	H20D/P103H/E104Q			
	P103E/E104D	t60c		
26	N35G/F68Y/A191N	t379a/c380g/g381c		
27	W42P/A168P			
28	H20D/E104C/Q190E/Y192Q			
29	A142W			
30	N35G			
	H20C/Q190E			
32	W42P/A212P/T236P			
33	N35G/W42P/V97Q/K167A/ A168P	t60c/c573g		
34		c573g		
35	S232A	65/3g		
33	OESEL E			

TABLE 1-continued

TABLE 1-continued

	GH61 Variants with Improved Activity		GH61 Variants with Improved Activity			
Var. No.	Amino Acid Changes	Silent Nucleotide Changes	Var. No.	Amino Acid Changes	Silent Nucleotide Changes	
36	W42P/E104H/K167A/A168P/	c573g		H175M		
37	Q190E W42P/A168P/A212P/T236P			A168N A179W		
	N35G/V97Q/K167A			W131K/H175Q	g1026a	
	N35G/V97Q			Y171A	5	
	N35G/A191N			N170H		
	S127T/K167A/A191N			P163R		
	W42P W42P/E104C/K167A/A168P	t60c/c291a/c573g		A168C G169T		
	K167Q	1000/025120575g		R174F		
	W131V		116	W131Y		
	E176C			I134L		
	K167I/P273S W42P/T87P	c300t		I177V K167E		
	W42P/A212P			H175C		
	K133H			W131I		
	D165N			W42P/A143P		
	D165A			I178G	c72t	
	A168D K218T			N170P A179D/N317K	c732g/c843t/c882t/c909t/	
	P45T		120	111/32/1101/11	c912g	
	Q44V			1162V		
	S164W			I178M		
	I177F A191N			V172A K167A/A191N	t60c/c291a	
	I134P			F132A	000,02514	
61	K133F		131	P163E		
	I134D	.co 201 572		F132M		
	N35G/K167A I162R	t60c/c291a/c573g		A179G I177S		
	N35G/K167A	t204c/t379a c380g/g381c/		K167A	g921a	
		c385t	136	K167F		
	D165W/A246T			A168I		
	I162L S164M			A179N I134A	c792t	
	F132D/A244D			K167E	g972t	
	H181Q			R174K	S	
	I177G	g1026a		S164F		
	L166W I162F			V172L A168H		
	I134V			I134T		
	E176Q			K167H		
	H181S			L166A		
	I178A K167A			S164R R174C		
	V172K			A179P		
	I177H			G169R	g1026a	
	I134N			L173M		
	K133Y N35G/Y139L			D165K E176S		
	A168G			F132L		
	T12A/I162G	c246t		F132I/A179I		
	D165E D165M			F132P S164Q		
	I134M			V172Q		
89	A168P		160	W131D		
	I177D			W131Q		
	S164P H175T			A179H I134H/G270S		
	N187K/S330R	c597g		N170G		
94	H175R		165	A168T		
	L166H			A179C		
	I178L L173H			K133N K167L		
	I177T			L180M		
99	N170Y		170	W131F		
	H175S			I134W	g1026a	
	K167T L166R			I178H N170A		
	V172Y			V172H		
	P163S/E176D			A168H/S205N		
105	S164I		176	I134H	g921a	

TABLE 1-continued

GH61 Variants with Improved Activity				
Var. No.	Amino Acid Changes	Silent Nucleotide Changes		
177	S164C			
178 179	S164K I177C			
180	I178Q			
181 182	L180W I177M			
183	R174D			
184	V172M			
185 186	A179M H175Y			
187	I178P			
188	L173A			
189 190	N170E N170F			
191	N35G/A191N/T258I/T323P/G328A/	t379a/c380g/g381c/c454a/		
192	C341R A168R	c456a/c732t/c843t/c849t		
193	D165I			
194	I162M			
195 196	K167V A179S			
197	E176N			
198 199	I134L/P322L P163L			
200	H181D			
201	N170S			
202 203	R174G I177R			
204	K167C			
205 206	L166Q P163I			
207	S164L/L166I			
208	Y171R			
209 210	F132P/Q190E/A191T F132Q			
211	I134C			
212 213	I177A E176R			
214	G169A			
215	G169K			
216 217	H181A I177L			
218	A168G			
219 220	A179R D165T			
221	K167R			
222	L166V			
223 224	N170C I178R			
225	R174H			
226 227	S164H W131R/L166I			
228				
229				
230 231	N170Q I177P			
232	R174N			
233 234	V172K/S215W D165R			
235	G239D	c520a/c522g		
236				
237 238	H181R I134Y			
239	V172F			
240	V172G			

[0123] Positions that were changed in variants with improved GH61 activity listed in Table 1 include 20, 34, 35, 42, 44, 45, 68, 87, 97, 103, 104, 127, 131, 132, 133, 137, 139, 142, 143, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 190,

191, 192, 192, 205, 212, 215, 218, 232, 236, 239, 244, 246, 258, 270, 273, 317, 322, 323, 328, 330, and 341, wherein the amino acid positions are numbered with reference to SEQ ID NO:2.

[0124] Residues that were changed in variants with improved GH61 activity listed in Table 1 include H20, I134, N35, W42, Q44, P45, F68, T87, V97, P103, E104, S127, W131, F132, K133, A137, Y139, A142, A143, I162, P163, S164, D165, L166, K167, A168, G169, N170, Y171, V172, L173, R174, H175, E176, I177, I178, A179, L180, H181, Q190, A191, Y192, Y192, S205, A212, S215, K218, S232, T236, G239, A244, A246, T258, G270, P273, N317, P322, T323, G328, S330, and C341, wherein the amino acid positions are numbered with reference to SEQ ID NO:2.

[0125] Substitutions occurring in variants with improved GH61 activity listed in Table 1 include H20C/D, I134X, N35G, W42P, Q44V, P45T, F68Y, T87P, V97Q, P103E/H, E104C/D/H/Q, S127T, W131X, F132X, K133X, A137P, Y139L, A142W, A143P, I162X, P163X, S164X, D165X, L166X, K167A/X, A168P/X, G169X, N170X, Y171A/R, V172X, L173X, R174X, H175X, E176X, I177X, I178X, A179X, L180M/W, H181X, Q190E/H, A191N/T, Y192H, Y192Q, S205N, A212P, S215W, K218T, S232A, T236P, G239D, A244D, A246T, T258I, G270S, P273S, N317K, P322L, T323P, G328A, 5330R, and C341R, wherein the amino acid positions are numbered with reference to SEQ ID NO:2.

[0126] As shown herein, the changed residues and substitutions of the GH61 variants of this invention may be combined in a manner that produces an effect that is cumulative or synergistic. Cumulative effects occur when adding an additional mutation increases the effect beyond those of the mutations already present. Synergistic effects occur when having two more mutations in a variant produces an effect than is more than the product of the mutations when incorporated by themselves. This invention includes without limitation any and all combinations of any two, three, four, five, six, seven, eight, nine, ten, or more than ten of the mutations listed in this disclosure.

[0127] Useful combinations include but are not limited to the mutations and mutation sets: N35G/E104H/A168P (SEQ ID NO:5); W42P/E104H/K167A; N35G/W42P/V97Q/ A191N; W42P/E104H; E104H/K167A; W42P/A191N; N35G/W42P/A191N: V97O/A191N; N35G/E104H/ A191N; H20D/E104D/Q190H/Y192H; H20D/Q190E/ Y192Q; H20D/E104C; H20D/P103H/E104C; H20D/ H20D/P103H/E104Q/Q190E; P103H: N35G/E104H; H20D/P103H/E104C/Y192Q; N35G/W42P; H20D/P103H/ E104Q; P103E/E104D; N35G/F68Y/A191N; W42P/ A168P; H20D/E104C/Q190E/Y192Q; H20C/Q190E; W42P/A212P/T236P; N35G/W42P/V97Q/K167A/V97Q/ A168P; W42P/E104H/K167A/A168P/Q190E; A168P/A212P/T236P; N35G/V97Q/K167A; N35G/V97Q; N35G/A191N: 5127T/K167A/A191N; W42P/E104C/ K167A/A168P; K1671/P273S; W42P/T87P; W42P/A212P; N35G/K167A; N35G/K167A; D165W/A246T; F132D/ A244D; N35G/Y139L; T12A/I162G; N187K/S330R; P163S/E176D; W131K/H175Q; W42P/A143P; A179D/ N317K; K167A/A191N; F1321/A1791; I134H/G270S; A168H/S205N; N35G/A191N/T258I/T323P/G328A/ C341R; I134L/P322L; S164L/L1661; F132P/Q190E/ A191T; W131R/L1661; I162A/A191T; and V172K/S215W, wherein the amino acid positions are numbered with reference to SEQ ID NO:2.

GH61 Variant Proteins Made with Multiple Rounds of Activity Enhancement

[0128] GH61 variant proteins can be generated that have been further optimized by subjecting to multiple rounds of variation and selection. In some embodiments, additional rounds of optimization increase saccharification reaction yields beyond what is achieved with one round of variation and selection. Substitutions improving GH61 activity are compiled in Table 2 below.

[0129] Table 2 shows GH61a variants derived from the GH61a protein designated "Variant 1" (SEQ ID NO:5) in Table 1 with improved thermoactivity. The second-round variants usually retained the alterations of Variant 1 compared with wild-type GH61a (N35G/E104H/A168P), along with additional modifications.

TABLE 2

		TABLE 2		287 288	l N
	CITA		1	289	N
_	GH6	1 Variants with Improved Activity C	ompared to Variant 1	290	Ņ
	Var.		Cilant Nivelegalida	291	ì
	Var. No.	Amino Acid Changes	Silent Nucleotide Changes		S
_	140.	Animo Acid Changes	Changes	292	N
	241	N35G/T40A/E104H/A168P/	t60c/c573g	293	N
		P327M	2		A
	242	N35G/P45D/E104H/A168P/	t60c/c573g	294	ľ
		N317R		295	ľ
	243	N35G/E104H/A168P/N317R	t60c/c573g	296	ľ
	244	N35G/E104H/A168P/N317L	t60c/c573g		A
	245	N35G/T54H/E104H/A168P	t60c/c573g	297	N
	246	N35G/E104H/A168P/N317D/	t60c/c573g	298	P A
	247	S329Y	460-7-573-	299	N
	247	N35G/E104H/A137S/A168P/ S232E	t60c/c573g	300	N
	248	N35G/E104H/A168P/N317R/	t60c/c573g	301	N
	240	T320A	100c/c3/3g	302	N
	249	N35G/E104H/A168P/D234E	t60c/c573g	303	ì
	250	N35G/T40S/E104H/A142G/	t60c/c573g	304	N
	250	A168P	100 0/0 3/3g	305	N
	251	N35G/T40S/S78C/V88I/	t60c/c573g	306	N
	201	E104H/S128K/A168P/D234M	000 0 700 700	307	N
	252	N35G/E104H/A168P/S330V	t60c/c573g	308	N
	253	N35G/E104H/A168P/G203E/	t60c/c573g	309	N
		P266S	Ö	310	ľ
	254	N35G/E104H/A168P/D234N	t60c/c573g		A
	255	N35G/E104H/A168P/S286N/	t60c/c573g	311	ľ
		S329H		312	ľ
	256	N35G/E104H/A168P/S330H	t60c/c573g		F
	257	N35G/E104H/A168P/W337R	t60c/c573g	313	ľ
	258	N35G/N66D/E104H/S164E/	t60c/c573g	21.4	S
		A168P/G267T	/	314	ľ
	259	N35G/E104H/A168P/P233V	t60c/c573g	315	N
	260	R34E/N35G/E104H/R145T/	t60c/c573g	316	N
	261	A168P	+60-1-573-	317	N
	261	S24Q/N35G/E104H/A168P/ V237I	t60c/c573g	318	N
	262	Y32S/N35G/E64S/E104H/	t60c/c573g	319	Ņ
	202	A168P	100c/c3/3g	317	1
	263	N35G/E104H/A168P/V333R	t60c/c573g	320	S
	264	N35G/E104H/G144S/A168P/	t60c/c573g		7
		V333Q	g	321	N
	265	V28H/N35G/P45K/E104H/	t60c/c573g		7
		A168P	2	322	N
	266	N35G/E104H/A168P/P327K	t60c/c573g	323	ľ
	267	N35G/N66Q/E104H/A168P	t60c/c573g	324	ľ
	268	N35G/E104H/A168P/G203E	t60c/c573g	325	ľ
	269	N35G/E104H/A168P/S339W	t60c/c573g		A
	270	N35G/P45K/N46E/E104H/	t60c/c573g	326	N
		A150Y/A168P		227	A
	271	N35G/E104H/R130S/A168P	t60c/c573g	327	N
	272	N35G/E104H/R145T/A168P	t60c/c573g/g891a	328 329	l l
	273	N35G/E104H/A168P/S231K	t60c/c573g	330	ľ
	274	N35G/T40A/E104H/A168P/ D234E/P327M	t60c/c573g	331	N
		19237131 32 / IVI		551	-

TABLE 2-continued

GH61 Variants with Improved Activity Compared to Variant 1

Var. No.	Amino Acid Changes	Silent Nucleotide Changes
275	N35G/E104H/A168P/S231H	t60c/c573g
276	N35G/E104H/A168P/N317M	t60c/c573g
277	N35G/E104H/A168P/S330Y	t60c/c573g
278	N35G/E104H/A168P/S329I	t60c/c573g
279	N35G/E104H/A168P/S329R	t60c/c573g
280	N35G/N66D/E104H/A168P/	t60c/c573g
201	P322R/S329L	160 / 2004/ 572
281	N35G/E104H/A168P/P327F	t60c/c288t/c573g
282	N35G/P45D/E104H/A168P	t60c/c573g
283	N35G/E104H/A168P/S332R	t60c/c573g
284	N35G/E104H/A116S/A168P	t60c/c573g
285	N35G/T40A/E104H/A168P/ V230I/P327M	t60c/c573g
286	N35G/T49A/E104H/A168P	t60c/c573g
287	N35G/E104H/A168P/N317T	t60c/c573g
288	N35G/N46Y/E104H/A168P	t60c/c573g
289	N35G/E104H/A168P/G203V	t60c/c573g
290	N35G/E104H/A168P/S329L	t60c/c573g
291	N35G/E104H/R145N/A168P/	t60c/c573g
	S329H	_
292	N35G/A56S/E104H/A168P	t60c/c573g
293	N35G/T40S/T49R/E104H/	t60c/c573g
	A168P/D234E/P327M	
294	N35G/E104H/Q161R/A168P	t60c/c573g
295	N35G/E104H/A168P/S332F	t60c/c573g
296	N35G/P45R/T49A/E104H/	t60c/c573g
	A168P/N317R/T320A	_
297	N35G/E104H/A168P/V237I	t60c/c573g
298	N35G/Q44K/T80V/E104H/	t60c/c573g
270	A168P	1000,03735
299	N35G/E104H/A168P/E336S	+60a/a573 a
		t60c/c573g
300	N35G/E104H/A168P/P233T	t60c/c573g
301	N35G/E104H/A168P/S329Y	t60c/c573g
302	N35G/E104H/A168P/P327L	t60c/c573g
303	N35G/E104H/A168P/N317I	t60c/c573g
304	N35G/E104H/R130H/A168P	t60c/c573g
305	N35G/Q44K/E104H/A168P	t60c/c573g
306	N35G/N66D/E104H/A168P	t60c/c573g
307	N35G/E104H/A168P/S329V	t60c/c573g
308	N35G/E104H/A168P/W337F	t60c/c573g
309	N35G/E104H/A168P/N317H	t60c/c573g
310	N35G/T40L/E104H/S128K/	t60c/c573g
	A168P	
311	N35G/E104H/A168P/A326V	t60c/c573g
312	N35G/T80V/E104H/A168P/	t60c/c573g
	P303T	
313	N35G/E104H/A168P/S231A/	t60c/c573g
	S295L	
314	N35G/E104H/A116Q/A168P	t60c/c573g
315	N35G/E104H/A168P/S330C	t60c/c573g
316	N35G/T40S/E101T/E104H/	t60c/c573g
	A168P/P327M	-
317	N35G/E104H/A168P//A326Q	t60c/c573g
318	N35G/N46R/E104H/A168P	t60c/c573g
319	N35G/P45K/E104H/A168P/	t60c/c573g
517	A219R/S232E	1000,03735
320	S24Q/N35G/E104H/A168P/	t60c/c573g
320	V237I/P303T	100c/c3/3g
221		160-1-572-
321	N35G/E104H/A168P/G203E/	t60c/c573g
222	T281A	160 / 572
322	N35G/A56N/E104H/A168P	t60c/c573g
323	N35G/E104H/A168P/E336G	t60c/c573g
324	N35G/E104H/A168P/E336R	t60c/c573g
325	N35G/T40S/E104H/S128K/	t60c/c573g
	A142G/A168P	
326	N35G/Q44K/S67T/E104H/	t60c/c198t/c573g
	A168P	-
327	N35G/E104H/A168P/N317A	t60c/c573g
328	N35G/E104H/G155N/A168P	t60c/c573g
329	N35G/E104H/Q161E/A168P	t60c/c573g
330	N35G/E104H/N118S/A168P	t60c/c573g
		ē
331	N35G/P45T/V97Q/E104H/	t60c/c573g
	A168P/G267S	

TABLE 2-continued

TABLE 2-continued

TABLE 2-continued		CIVILIA STATE OF THE VICTOR OF			
GH6	51 Variants with Improved Activity Compared to Variant 1		GH61 Variants with Improved Activity Compared to Variant 1		
Var. No.	Amino Acid Changes	Silent Nucleotide Changes	Var. No.	Amino Acid Changes	Silent Nucleotide Changes
332	V28H/N35G/E104H/A168P	t60c/c573g	390	N35G/N46R/E104H/A168P/	t60c/c573g
333	N35G/E104H/A168P/Q184L	t60c/c573g	201	G203E/A263V	
334	N35G/E104H/A168P/N317V	t60c/c573g	391	N35G/P45R/E104H/A168P	t60c/c573g
335	N35G/Q44L/E104H/A168P	t60c/c573g	392	N35G/S67G/E104H/A168P	t60c/c573g
336	N35G/E104H/A168P/S330G	t60c/c573g	393	N35G/E104H/A168P/R199E	t60c/c573g
337	N35G/E104H/A168P/T320A/	t60c/c573g	394	N35G/G69T/E104H/A168P	t60c/c573g
	V333W		395	N35G/E104H/A168P/G203E/	t60c/c573g
338	N35G/E104H/A168P/E336A	t60c/c573g		G268A/G269A/G270A	
339	N35G/E104H/A168P/N335S	t60c/c573g	396	N35G/E104H/A168P/P266S	t60c/c573g
340	N35G/N66M/E104H/A168P	t60c/c573g	397	N35G/E104H/A168P/V324M	t60c/c573g
341	N35G/T54G/E104H/A168P	t60c/c573g	398	N35G/E104H/A168P/G245A	t60c/c573g
342	N35G/E104H/A168P/N317S	t60c/c573g	399	N35G/N66R/E104H/A168P	t60c/c573g
343	N35G/E64L/E104H/A168P	t60c/c573g	400	N35G/E104H/A168P/T236E	t60c/c573g
344	N35G/E104H/S164E/A168P/ A271T	t60c/c573g	401	S24Q/N35G/Q44K/T80H/ E104H/A168P	t60c/c573g
345	N35G/N66A/E104H/A168P	t60c/c573g	402	N35G/E104H/S128D/A168P	t60c/c573g
346	N35G/G83R/E104H/A168P	t60c/c573g	403	N35G/N66D/S78D/E104H/	t60c/c573g
347	N35G/E104H/A168P/N317Q/	t60c/c573g	403	A168P/S253D	1000/03/38
347	T320A	100c/c3/3g	404		t60c/c573g
240		+60-1-573-		N35G/E104H/R130Y/A168P	
348	N35G/E104H/K141A/A168P	t60c/c573g	405	N35G/E104H/A168P/K310I	t60c/c573g
349	N35G/P71T/E104H/A168P	t60c/c573g	406	N35G/E104H/R145E/A168P	t60c/c573g
350	N35G/P71S/E104H/A168P	t60c/c573g	407	N35G/N66D/E104H/S164E/	t60c/c573g
351	N35G/E104H/R130G/A168P	t60c/c573g		A168P/S282D	
352	N35G/E104H/R145Q/A168P	t60c/c573g	408	N35G/E104H/K141P/A168P	t60c/c573g
353	N35G/T70A/E104H/A168P	t60c/c573g	409	N35G/E104H/A168P/Q184R	t60c/c573g
354	N35G/E104H/A168P/K218R	t60c/c573g	410	N35G/E104H/A168P/S231T	t60c/c573g
355	N35G/E104H/A168P/Q184E	t60c/c573g	411	N35G/N66V/E104H/A168P	t60c/c573g
356	N35G/E104H/R130K/A168P	t60c/c573g	412	N35G/E104H/A142L/A168P	t60c/c573g
357	N35G/Q58H/E104H/A168P	t60c/c573g	413	N35G/E104H/R145H/A168P	t60c/c573g
358	Y32S/N35G/E104H/A168P	t60c/c573g	414	N35G/E104H/A168P/K218L	t60c/c573g
359	N35G/E104H/A168P/S329T	t60c/c573g	415	N35G/E104H/K141T/A168P	t60c/c573g
360	N35G/E104H/A168P/S330I	t60c/c573g	416	N35G/E104H/A168P/P233F	t60c/c573g
		ē			
361	Y32S/N35G/P71A/E104H/ A168P	t60c/c573g	417	N35G/T40S/E104H/A168P/ P327M	t60c/c573g
362	N35G/E104H/A168P/S330T	t60c/c573g	418	N35G/T54M/E104H/A168P	t60c/c573g
363	N35G/G82A/E104H/A168P	t60c/c573g	419	S24T/N35G/E104H/S164E/	t60c/c573g
364	N35G/T80V/E104H/A168P	t60c/c573g		A168P	
365	N35G/E104H/A168P/S295T	t60c/c573g	420	N35G/P45T/E104H/A168P	t60c/c573g
366	N35G/N66G/E104H/A168P	t60c/c573g	421	N35G/N66D/E104H/S164E/	t60c/c573g
367	N35G/E104H/R145L/A168P	t60c/c573g		A168P/S231T/S253T	
368	N35G/S67H/E104H/A168P/	t60c/c573g	422	N35G/G69H/E104H/A168P	t60c/c573g
	V230M	2	423	N35G/E104H/S128Y/A168P	t60c/c573g
369	N35G/E104H/G136E/A168P	t60c/c573g	424	N35G/T49Q/E104H/A168P	t60c/c573g
370	N35G/T54S/E104H/A168P	t60c/c573g	425	N35G/T49A/E104H/A168P/	t60c/c573g
371	N35G/P45S/E104H/A168P	t60c/c573g	123	O184H	1000,03738
372	N35G/E104H/A168P/A326M	2	426	N35G/E104H/A168P/G203Y	t60c/c573g
		t60c/c573g/c882t			
373	N35G/N66D/N95E/E104H/	t60c/c573g	427	N35G/Q44K/N66V/E104H/	t60c/c573g
274	S164E/A168P/G267D	t60a/a572 =	420	A168P	+60-/-572
374	N35G/E104H/A168P/S332C	t60c/c573g	428	N35G/E104H/A137M/A168P	t60c/c573g
375	N35G/E104H/S128L/A168P	t60c/c573g	429	N35G/E104H/A168P/P327C	t60c/c573g
376	N35G/T54W/E104H/A168P	t60c/c573g	430	N35G/E104H/A168P/T236R	t60c/c573g
377	N35G/E104H/A168P/G268A/	t60c/c573g	431	N35G/I51A/E104H/A168P	t60c/c573g
	G269A/G270A		432	N35G/S67H/E104H/A168P	t60c/c573g
378	N35G/Q44K/E104H/A168P/	t60c/c573g	433	N35G/E104H/A168P/A326C	t60c/c573g
	S231T	-	434	N35G/T49A/E104H/S128N/	t60c/c573g
379	R34E/N35G/E104H/A168P/	t60c/c573g		A168P	8
	A280D		435	N35G/T49R/E104H/A168P/	t60c/c573g
380	N35G/E104H/A168P/A297T	t60c/g399a/c573g	155	K218L/N317Q	
			126	N35G/E104H/A168P/P266S/	+60a/a572 =
381	N35G/E104H/K141P/R145Q/	t60c/c573g	436		t60c/c573g
382	A168P N35G/P45E/E104HVK141R/	t60c/c573g	437	G267V N35G/E104H/A168P/V237I/	t60c/c573g
	A168P			P303T	
383	N35G/N66T/E104H/A168P	t60c/c573g	438	N35G/T49E/E104H/A168P	t60c/c573g
384	N35G/E104H/S164E/A168P/ S295D	t60c/c573g	439	N35G/P45R/E104H/A168P/	t60c/c573g
205		160-1-572		T320A	160-7-572
385	N35G/E104H/A168P/N317F	t60c/c573g	440	N35G/N66L/E104H/A168P	t60c/c573g
386	N35G/E104H/A168P/N317Q	t60c/c573g	441	N35G/P45R/E104H/A168P/	t60c/c573g
387	N35G/T40G/T49R/S78C/	t60c/c573g		K218L/N317Q	
	E104H/A142G/A168P	-	442	N35G/E104H/R145V/A168P	t60c/c573g
					0
388	N35G/G82S/E104H/A168P	t60c/c573g	443	N35G/N66D/E104H/A168P/	t60c/c573g

TABLE 2-continued

GH61 Variants with Improved Activity Compared to Variant 1				
Var. No.	Amino Acid Changes	Silent Nucleotide Changes		
444	N35G/T80L/E104H/A168P	t60c/c573g		
445	N35G/A55G/E104H/A168P	t60c/c573g		
446	N35G/E104H/A168P/S330A	t60c/c573g		
447	N35G/E104H/K141N/A168P/ P266S	t60c/c573g		
448	N35G/E104H/A142S/A168P	t60c/c573g		
449	N35G/E104H/A168P/Q184G	t60c/c573g		
450	N35G/E104H/N118E/A168P	t60c/c573g		
451	N35G/E104H/A168P/A212M	t60c/c573g		
452	N35G/E104H/A168P/G267D	t60c/c573g		
453	N35G/K93N/E104H/R130Y/ A168P	t60c/c573g		
454	N35G/P45R/T49Y/E104H/ A168P/N317D	t60c/c573g		
455	N35G/E104H/A168P/S329Q	t60c/c573g		
456	N35G/E104H/A168P/V230Q	t60c/c573g		
457	N35G/P45K/E104H/A168P/ A219R	t60c/c573g		
458	N35G/E104H/A142G/A168P	t60c/c573g		
459	N35G/E104H/A168P/S205T	t60c/c573g		
460	N35G/S78D/E104H/S164E/ A168P	t60c/c573g		
461	N35G/E104H/R130E/A168P	t60c/c573g		
462	N35G/E104H/A168P/Q184H	t60c/c573g		
463	N35G/E104H/A116P/A168P	t60c/c573g		
464	N35G/E104H/A142D/A168P	t60c/c573g		
465	V28H/N35G/N46E/Q58H/	t60c/c573g		
102	E104H/A168P	:00 0 :0575g		
466	N35G/E104H/A168P/A280T	t60c/c573g		
467	R34E/N35G/E104H/A168P/ A280T	t60c/c573g		
468	N35G/E104H/A168P/E336L	t60c/c573g		
469	N35G/T49D/E104H/A168P	t60c/c573g		
470	N35G/E104H/A168P/A219T	t60c/c573g		
471	N35G/E104H/A142W/A168P	t60c/c573g		
472	N35G/E104H/A168P/P303T/	t60c/c573g		
	G305D N35G/Q44V/E104H/A168P			
473 474	N35G/Q44V/E104H/A168P/N187D	t60c/c573g		
474	N35G/E104H/G136H/A168P	t60c/c573g t60c/c573g		
473 476	S24Q/N35G/Q44K/E104H/	t60c/c573g		
	A168P/P303T/S332D	_		
477	N35G/E104H/A168P/Q184N	t60c/c573g		
478	N35G/E104H/A168P/S332L	t60c/c573g		
479	S24T/N35G/N66D/S78D/ E104H/A168P/S205T/S253T	t60c/c573g		
480	N35G/E104H/A168P/P327A	t60c/c573g		
481	N35G/T40A/T49Q/S78C/ E104H/A168P	t60c/c573g		
482	N35G/T40L/E104H/A142G/ A168P	t60c/c573g		
483	N35G/T49Y/E104H/A168P/ N317R	t60c/c573g		
484	R34E/N35G/K93T/E104H/ R130E/R145T/A168P/R199E/ K218T/A280D	t60c/c573g		

[0130] Positions that were changed in variants with improved GH61 activity listed in Table 2 include 24, 28, 32, 34, 35, 40, 44, 45, 46, 49, 51, 54, 55, 56, 58, 64, 66, 67, 69, 70, 71, 78, 80, 82, 83, 88, 93, 95, 101, 104, 116, 118, 128, 130, 136, 137, 141, 142, 144, 145, 150, 155, 161, 164, 168, 184, 187, 199, 203, 205, 212, 218, 219, 230, 231, 232, 233, 234, 236, 237, 245, 253, 263, 266, 267, 268, 269, 270, 271, 280, 281, 282, 290, 295, 297, 303, 305, 310, 317, 320, 324, 326, 327, 329, 330, 332, 333, 336, 337, and 339, wherein the amino acid positions are numbered with reference to SEQ ID NO:2.

[0131] Residues that were changed in variants with improved GH61 activity listed in Table 2 include S24, V28,

Y32, R34, N35, T40, Q44, P45, N46, T49, 151, T54, A55, A56, Q58, E64, N66, S67, G69, T70, P71, S78, T80, G82, G83, V88, K93, N95, E101, E104, A116, N118, S128, R130, G136, A137, K141, A142, G144, R145, A150, G155, Q161, S164, A168, Q184, N187, R199, G203, S205, A212, K218, A219, V230, S231, S232, P233, D234, T236, V237, G245, S253, A263, P266, G267, G268, G269, G270, A271, A280, T281, S282, R290, S295, A297, P303, G305, K310, N317, T320, V324, A326, P327, S329, S330, S332, V333, E336, W337, and 5339, wherein the amino acid positions are numbered with reference to SEQ ID NO:2.

[0132] Substitutions occurring in variants with improved GH61 activity listed in Table 2 include S24Q, V28H, Y32S, R34E, N35G, T40A/G/L/S, Q44K, P45D/E/K/R/S, N46E/R, T49A/Q/R/Y, I51A, T54G/M/S/W, A55G, A56S, Q58H/P, E64L/S, N66A/D/G/L/M/Q/R/V, S67G/H/T, G69T, T70A, P71A, S78C/D, T80H/L/V, G82A/S, G83R, V88I, K93N/T, N95E, E101T, E104H, A116Q/S, N118E/S, S128K/L/N, R130E/G/H/K/Y, G136H, A137M/S, K141A/N/P/R, A142D/G/L, G144S, R145H/L/N/Q/T, A150Y, G155N, Q161E/R, S164E, A168P, Q184E/H/L/N/R, N187D, R199E, G203E/V/Y, S205T, A212M, K218L/T, A219R/T, V230I/Q, S231A/H/K/I, S232E, P233F/T, D234E/M/N, T236E, V237I, G245A, S253D/T, A263V, P266S, G267D/V, G268A, G269A, G270A, A271T, A280D/T, T281A, S282D, R290K, S295D/L/T, A297T, P303T, G305D, K310I, N317D/H/I/M/Q/R, T320A, V324M, A326C/Q/V, P327F/ K/L/M, S329H/I/Q/T/Y, S330A/H/I/T/V, S332C/F/R, V333Q, E336L/R/S, W337R, and S339W.

[0133] In some embodiments, the changed residues and substitutions of the GH61 variants of this invention may be combined in a manner that produces an effect that is cumulative or synergistic. Cumulative effects occur when adding an additional mutation increases the effect beyond those of the mutations already present. Synergistic effects occur when having two more mutations in a variant produces an effect than is greater than the product of the mutations when incorporated by themselves. This invention includes without limitation any and all combinations of any two, three, four, five, six, seven, eight, nine, ten, or more than ten of the mutations listed in Table 1, Table 2, or both Tables.

[0134] Useful combinations of mutated positions include but are not limited to N35/T40/E104/A168/P327; N35/P45/ E104/A168/N317; N35/E104/A168/N317; N35/E104/ A168/N317/S329; N35/E104/A137/A168/S232; N35/E104/ A168/N317/T320; N35/E104/A168/D234; N35/T40/E104/ A142/A168; N35/E104/R145/A168; N35/T40/S78N88/ E104/S128K/A168/D234; N35/E104/A168/S330; N35/ E104/A168/G203/P266; N35/E104/A168/D234; N35/E104/ A168/S330; N35/E104/A168/W337; R34/N35/E104/R145/ Y32/N35/E64/E104/A168; V28/N35/P45/E104/ A168; N35/E104/G144/A168/V333; N35/N66/E104/A168; N35/E104/A168/P327; N35/E104/A168/G203; N35/E104/ A168/S339; N35/P45/N46/E104/A150/A168; N35/E104/ A168/S231; N35/T40/E104/A168/D234/P327; N35/E104/ A168/S231; N35/E104/A168/N317; N35/E104/A168/S330; N35/E104/A168/S329; N35/E104/A168/P327; N35/P45/ E104/A168: N35/E104/A116/A168; N35/T40/E104/ A168N230/P327; and N35/E104/A168/S332.

[0135] Useful combinations of mutated residues further include but are not limited to N35/E104/A168/G203; N35/E104/R145/A168/S329; N35/T40/T49/E104/A168/D234/P327; N35/A56/E104/A168; N35/E104/Q161/A168; N35/E104/A168/S332; N35/P45/T49/E104/A168/N317/T320;

N35/E104/A168/V237: N35/E104/A168/E336: N35/E104/ A168/P233; N35/E104/R130/A168; N35/E104/A168/P327; N35/E104/A168/N317; N35/Q44/E104/A168; N35/E104/ A168/A326; N35/E104/A168/N317; N35/T40/E104/S128/ A168; N35/T80/E104/A168/P303; N35/E104/A116/A168; N35/E104/A168/S231/S295; N35/T40/E101/E104/A168/ P327; N35/P45/E104/A168/A219/S232; N35/N46/E104/ N35/E104/A168/A326; N35/E104/A168/G203/ T281; N35/E104/A168/E336; N35/T40/E104/S128/A142/ A168; N35/E104/N118/A168; N35/E104/G155/A168; S24/ N35/E104/A168/V237/P303; N35/E104/O161/A168; N35/ Q44/S67/E104/A168; V28/N35/E104/A168; N35/E104/ A168/Q184; N35/T54/E104/A168; N35/N66/E104/A168; N35/E64/E104/A168; N35/E104/S164/A168/A271; N35/ N66/E104/A168: N35/G83/E104/A168: N35/E104/K141/ A168; and N35/E104/A168/N317/T320.

Useful combinations of mutated residues include but are not limited to N35/E104/R130/A168; N35/E104/ R145/A168; N35/T70/E104/A168; N35/E104/R130/A168; N35/E104/A168/Q184; N35/E104/A168/S329; N35/T49/ E104/A168; Y32/N35/E104/A168; N35/E104/A168/S330; N35/Q58/E104/A168; Y32/N35/P71/E104/A168; N35/ E104/A168/S330; N35/T80/E104/A168; N35/G82/E104/ A168; N35/E104/A168/S295; N35/N66/E104/A168; N35/ T54/E104/A168; N35/P45/E104/A168; N35/E104/S128/ A168; N35/N66/N95/E104/S164/A168; /G267; N35/T54/ E104/A168; N35/P45/E104/K141/A168; N35/E104/A168/ S332; N35/E104/A168/A297; N35/E104/K141/R145/A168; N35/Q44/E104/A168/S231; N35/T40/T49/S78/E104/A142; N35/E104/S164/A168/S295; N35/E104/A168/ N317; N35/P45/E104/A168; N35/G82/E104/A168; N35/ N46/E104/A168/G203/A263; N35/Q58/E104/A168; N35/ G69/E104/A168; N35/S67/E104/A168; N35/E104/A168/ N35/E104/A168/G203/G268/G269/G270; E104/A168/V324; N35/E104/A168/P266; N35/E104/A168/ G245; N35/N66/E104/A168; and S24/N35/Q44/T80/E104/

[0137] Useful combinations of mutated residues further include but are not limited to N35/E104/A168/T236; N35/ E104/A168/K310; N35/E104/R130/A168; N35/N66/S78/ E104/A168/S253; N35/N66/E104/S164/A168/S282; N35/ E104/A142/A168; N35/E104/R145/A168; N35/E104/ A168/S231; N35/E104/A168/O184; N35/E104/A168/ K218; N35/E104/A168/P233; N35/T49/E104/A168/O184; N35/T40/E104/A168/P327; N35/T54/E104/A168; N35/ N66/E104/S164/A168/S231/S253; N35/E104/A168/G203; N35/T49/E104/A168; N35/E104/A168/P266/G267; N35/ Q44/N66/E104/A168; N35/S67/E104/A168; N35/E104/ A137/A168; N35/T49/E104/S128/A168; N35/T49/E104/ A168/K218/N317; N35/I51/E104/A168; N35/E104/A168/ A326; N35/P45/E104/A168/T320; N35/N66/E104/A168; N35/E104/A168/V237/P303; N35/P45/E104/A168/K218/ N317; N35/T80/E104/A168; N35/A55/E104/A168; N35/ E104/K141/A168/P266; N35/E104/A168/S330; N35/N66/ E104/A168/R290; N35/E104/N118/A168; N35/E104/A168/ A212; N35/K93/E104/R130/A168; N35/E104/A168/G267; N35/P45/T49/E104/A168/N317; N35/E104/A168/V230; N35/E104/A168/S329; N35/P45/E104/A168/A219; N35/ S78/E104/S164/A168; N35/E104/A168/S205; N35/E104/ A168/Q184; V28/N35/N46/Q58/E104/A168; N35/E104/ A142/A168; N35/E104/A168/E336; N35/E104/A168/ N35/E104/A168/A219; N35/E104/A168/P303/ G305; R34/N35/E104/A168/A280; N35/E104/A168/N187; N35/E104/G136/A168; N35/E104/A168/Q184; N35/T49/

E104/A168/N317; N35/T40/T49/S78/E104/A168; R34/N35/K93/E104/R130/R145/A168/R199/K218/A280; N35/T40/E104/A142/A168; and N35/N66/E104/A168.

[0138] Useful combinations of mutations further include but are not limited to N35G/T40A/E104H/A168P/P327M; N35G/P45D/E104H/A168P/N317R; N35G/E104H/A168P/ N35G/E104H/A168P/N317D/S329Y; N317R; E104H/A137S/A168P/S232E; N35G/E104H/A168P/ N317R/T320A; N35G/E104H/A168P/D234E; N35G/T40S/ E104H/A142G/A168P; N35G/E104H/R145L/A168P; N35G/T40S/S78C/V88I/E104H/S128K/A168P/D234M; N35G/E104H/A168P/S330V; N35G/E104H/A168P/ N35G/E104H/A168P/D234N: N35G/ G203E/P266S: E104H/A168P/S330H; N35G/E104H/A168P/W337R; R34E/N35G/E104H/R145T/A168P; Y32S/N35G/E64S/ E104H/A168P; V28H/N35G/P45K/E104H/A168P; N35G/ E104H/G144S/A168P/V333Q; N35G/N66Q/E104H/ A168P: N35G/E104H/A168P/P327K; N35G/E104H/ A168P/G203E; N35G/E104H/A168P/S339W; N35G/P45K/ N46E/E104H/A150Y/A168P; N35G/E104H/A168P/ N35G/T40A/E104H/A168P/D234E/P327M; S231K: N35G/E104H/A168P/S231H; N35G/E104H/A168P/ N35G/E104H/A168P/S330Y; N317M: N35G/E104H/ A168P/S329I; N35G/E104H/A168P/P327F; N35G/P45D/ E104H/A168P; N35G/E104H/A116S/A168P; N35G/T40A/ E104H/A168P/V230I/P327M; and N35G/E104H/A168P/ S332R.

[0139] Useful combinations of mutations further include but are not limited to N35G/E104H/A168P/G203V; N35G/ E104H/R145N/A168P/S329H; N35G/T40S/T49R/E104H/ /P327M: N35G/A56S/E104H/A168P: A168P/D234E: N35G/E104H/Q161R/A168P; N35G/E104H/A168P/ S332F; N35G/P45R/T49A/E104H/A168P/N317R/T320A; N35G/E104H/A168P/V237I; N35G/E104H/A168P/E336S; N35G/E104H/A168P/P233T; N35G/E104H/R130H/ N35G/E104H/A168P/P327L; N35G/E104H/ A168P/N317I; N35G/Q44K/E104H/A168P; N35G/E104H/ A168P/A326V; N35G/E104H/A168P/N317H; N35G/T40L/ E104H/S128K/A168P; N35G/T80V/E104H/A168P/P303T; N35G/E104H/A116Q/A168P; N35G/E104H/A168P/ S231A/S295L; N35G/T40S/E101T/E104H/A168P/P327M; N35G/P45K/E104H/A168P/A219R/S232E; N35G/N46R/ E104H/A168P; N35G/E104H/A168P/A326Q; E104H/A168P/G203E/T281A; N35G/E104H/A168P/ E336R; N35G/T40S/E104H/S128K/A142G/A168P; N35G/ E104H/N118S/A168P; N35G/E104H/G155N/A168P; S24Q/N35G/E104H/A168P/V237I/P303T; N35G/E104H/ Q161E/A168P; N35G/Q44K/S67T/E104H/A168P; V28H/ N35G/E104H/A168P; N35G/E104H/A168P/Q184L; N35G/T54G/E104H/A168P; N35G/N66M/E104H/A168P; N35G/E64L/E104H/A168P; N35G/E104H/S164E/A168P/ A271T; N35G/N66A/E104H/A168P; N35G/G83R/E104H/ A168P; N35G/E104H/K141A/A168P; and N35G/E104H/ A168P/N317Q/T320A.

[0140] Useful combinations of mutations further include but are not limited to N35G/E104H/R130G/A168P; N35G/E104H/R145Q/A168P; N35G/T70A/E104H/A168P; N35G/E104H/R130K/A168P; N35G/E104H/A168P/Q184E; N35G/E104H/A168P/S329T; N35G/E104H/A168P/S330I; N35G/O58H/E104H/A168P; N35G/E104H/A168P; N35G/E104H/A168P; N35G/E104H/A168P; N35G/E104H/A168P; N35G/E104H/A168P/S330T; N35G/T80V/E104H/A168P; N35G/G82A/E104H/A168P; N35G/E104H/A168P/S295T; N35G/N66G/E104H/A168P; N35G/T54S/E104H/

A168P; N35G/P45S/E104H/A168P; N35G/E104H/S128L/ A168P; N35G/N66D/N95E/E104H/S164E/A168P/G267D; N35G/T54W/E104H/A168P; N35G/P45E/E104H/K141R/ A168P; N35G/E104H/A168P/S332C; N35G/E104H/ N35G/E104H/K141P/R145Q/A168P; A168P/A297T; N35G/Q44K/E104H/A168P/S231T; N35G/T40G/T49R/ S78C/E104H/A142G; /A168P; N35G/E104H/S164E/ A168P/S295D; N35G/E104H/A168P/N317Q; N35G/P45R/ E104H/A168P; N35G/G82S/E104H/A168P; N35G/N46R/ E104H/A168P/G203E/A263V; N35G/Q58P/E104H/ A168P; N35G/G69T/E104H/A168P; N35G/S67G/E104H/ N35G/E104H/A168P/R199E; N35G/E104H/ A168P/G203E/G268A/G269A/G270A; N35G/E104H/ A168P/V324M; N35G/E104H/A168P/P266S; N35G/ E104H/A168P/G245A; N35G/N66R/E104H/A168P; and S24Q/N35G/Q44K/T80H/E104H/A168P.

[0141] Useful combinations of mutations further include but are not limited to N35G/E104H/A168P/T236E; N35G/ E104H/A168P/K310I; N35G/E104H/R130Y/A168P; N35G/N66D/S78D/E104H/A168P/S253D; N35G/N66D/ E104H/S164E/A168P/S282D; N35G/E104H/A142L/ A168P: N35G/E104H/R145H/A168P; N35G/E104H/ A168P/S231T; N35G/E104H/A168P/Q184R; N35G/ E104H/A168P/K218L; N35G/E104H/A168P/P233F; N35G/T49A/E104H/A168P/Q184H; N35G/T40S/E104H/ A168P/P327M; N35G/T54M/E104H/A168P; N35G/N66D/ E104H/S164E/A168P/S231T/S253T; N35G/E104H/ A168P/G203Y; N35G/T49Q/E104H/A168P; N35G/E104H/ A168P/P266S/G267V; N35G/Q44K/N66V/E104H/A168P; N35G/S67H/E104H/A168P; N35G/E104H/A137M/A168P; N35G/T49A/E104H/S128N/A168P; N35G/T49R/E104H/ A168P/K218L/N317Q; N35G/I51A/E104H/A168P; N35G/ N35G/P45R/E104H/A168P/ E104H/A168P/A326C; T320A; N35G/N66L/E104H/A168P; N35G/E104H/A168P/ V237I/P303T; N35G/P45R/E104H/A168P/K218L/N317Q; N35G/T80L/E104H/A168P; N35G/A55G/E104H/A168P; N35G/E104H/K141N/A168P/P266S; N35G/E104H/ N35G/N66D/E104H/A168P/R290K: A168P/S330A: N35G/E104H/N118E/A168P; N35G/E104H/A168P/ A212M; N35G/K93N/E104H/R130Y/A168P; E104H/A168P/G267D; N35G/P45R/T49Y/E104H/A168P/ N317D; N35G/E104H/A168P/V230Q; N35G/E104H/ A168P/S329Q; N35G/P45K/E104H/A168P/A219R; N35G/ S78D/E104H/S164E/A168P; N35G/E104H/A168P/S205T; N35G/E104H/A168P/Q184H; V28H/N35G/N46E/Q58H/ E104H/A168P; N35G/E104H/A142D/A168P; E104H/A168P/E336L; N35G/E104H/A168P/A280T; N35G/E104H/A168P/A219T; N35G/E104H/A168P/P303T/ G305D; R34E/N35G/E104H/A168P/A280T; N35G/E104H/ A168P/N187D; N35G/E104H/G136H/A168P; N35G/ E104H/A168P/Q184N; N35G/T49Y/E104H/A168P/ N317R; N35G/T40A/T49Q/S78C/E104H/A168P; R34E/ N35G/K93T/E104H/R130E/R145T/A168P/R199E/K218T/ A280D; N35G/T40L/E104H/A142G/A168P; and N35G/ N66G/E104H/A168P.

Production of GH61 Variant Proteins

[0142] In some embodiments, the GH61 variant proteins of this invention are produced by recombinant expression in a host cell. Any suitable method for recombinant expression in any suitable host cell finds use in the present invention. In some embodiments, a nucleotide sequence encoding the protein is obtained, and introduced into a suitable host cell by way of a suitable transfer vector or expression vector. In

some embodiments, the nucleotide sequence is operably linked to a promoter that promotes expression in the host cell. The promoter sequence is often selected to optimize in a cell that is not *M. thermophila*, in which case the promoter is typically heterologous to the GH61 variant protein encoding sequence. In some embodiments, the host cell is a eukaryotic cell and the GH61 variant protein comprises a heterologous signal peptide at the N-terminus.

[0143] Optionally, in some embodiments, the encoding sequence is codon-optimized for the host cell (e.g., a particular species of yeast cell). Any suitable method for obtaining codon-optimized sequences find use in the present invention (e.g., GCG CodonPreference, Genetics Computer Group Wisconsin Package; Codon W, John Peden, University of Nottingham; and McInerney, Bioinform., 14:372-73 [1998]).

[0144] General reference texts relating to gene expression include but are not limited to the most recent editions of Protocols in Molecular Biology (Ausubel et al. eds.); Molecular Cloning: A Laboratory Manual (Sambrook et al. eds.); Advances In Fungal Biotechnology For Industry, Agriculture, And Medicine (Tkacz and Lange, 2004); and Fungi: Biology and Applications (K. Kavanagh ed., 2005). [0145] In some embodiments, culture broth from GH61 protein-producing cells is collected and combined directly with cellulase enzymes in a saccharification reaction. In some alternative embodiments, the broth is fractionated to any extent desired to provide partially or substantially purified GH61 protein, following the activity during the separation process using a GH61 activity assay, using standard protein separation techniques, and following GH61 activity during fractionation with a suitable GH61 activity assay. Such protocols may combine one or more of the following methods (but are not limited to these particular methods): salt precipitation, solid phase binding, affinity chromatography, ion exchange chromatography, molecular size separation, and/or filtration. Protein separation techniques are generally described in Protein Purification: Principles, High Resolution Methods, and Applications, (J. C. Janson, ed., 2011); High Throughput Protein Expression and Purification: Methods and Protocols (S. A. Doyle ed., 2009).

[0146] The present invention provides GH61 variant protein having an amino acid sequence that is at least about 60%, at least about 65%, at least about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, or about 99% identical to SEQ ID NO:2 or a fragment of SEQ ID NO:2 having GH61 activity. In some embodiments, the amino acid sequence of the variant proteins have one or more amino acid substitutions with respect to SEQ ID NO:2 or said fragment. In some embodiments, the substitution(s) that are present in the amino acid sequence result in the variant protein having increased GH61 activity in a saccharification reaction by certain cellulase enzymes under specified conditions, compared with a reference protein comprising SEQ ID NO:2 or said fragment, without any of the substitutions.

[0147] In some embodiments, GH61 variant proteins of this invention comprise one or more of SEQ ID NOS:5, 6, 8, 9,11, and/or 12, or biologically-active fragments of these sequences having GH61 activity. These correspond to Variants 1 (SEQ ID NOS:5 and 6), Variant 5 (SEQ ID NOS: 8 and 9), and Variant 9 (SEQ ID NOS: 11 and 12). In some

embodiments, the variants have more than about 2-fold, 3-fold, or more than 3-fold GH61 activity compared with wild-type GH61a (i.e., SEQ ID NO:2). The combined effect of multiple rounds of optimization yield GH61 variant proteins that have about 3-fold, about 5-fold, about 8-fold, or about 10-fold activity compared with the original parental sequence (SEQ ID NO:2).

[0148] Also provided are polynucleotides encoding such GH61 variant proteins, expression vectors comprising such polynucleotides, and host cells that have been transfected with such vectors so as to express the GH61 variant proteins that are encoded.

Fragments and Variants

[0149] GH61 variant proteins of this invention may comprise one or more substitutions, deletions, or additions in the sequence in addition to the substitutions highlighted above. By way of illustration, the GH61 protein may be longer or shorter by at least about 5, 10, 20, 40, 75, 100, 125, 150, or 200 amino acids; or by about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 15%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, or 80% of the total number of amino acids in the polypeptide, compared with SEQ ID NO:2. The variant or any of these fragments may also be part of a fusion protein in which a portion having GH61 activity is joined to one or more other sequences. Providing the protein retains a degree of GH61 activity or other commercial applicability, the variations may comprise any combination of amino acid substitutions at any position that is not specifically indicated otherwise. Depending on the circumstances, a conservative amino acid substitution may be preferred over other types of substitutions.

[0150] Where an amino acid substitution is a "conservative" substitution, the substituted amino acid that shares one or more chemical property with the amino acid it is replacing. Shared properties include the following: Basic amino acids: arginine (R), lysine (K), histidine (H); acidic amino acids: glutamic acid (E) and aspartic acid (D); uncharged polar amino acids: glutamine (Q) and asparagine (N); hydrophobic amino acids: leucine (L), isoleucine (I), valine (V); aromatic amino acids: phenylalanine (F), tryptophan (W), and tyrosine (Y); sulphur-containing amino acids: cysteine (C), methionine (M); small amino acids: glycine (G), alanine (A), serine (S), threonine (T), proline (P), cysteine (C), and methionine (M).

Obtaining Functional Fragments and Variants

[0151] Functional fragments of GH61 protein variants of this invention can be identified by standard methodology for mapping function within a polypeptide. In some embodiments, recombinant protein is expressed that has effectively been trimmed at the N- or C-terminus, and then tested in a GH61 activity assay. Trimming can continue until activity is lost, at which point the minimum functional unit of the protein would be identified. Fragments containing any portion of the protein down to the identified size would typically be functional, as would be fusion constructs containing at least the functional core of the protein.

[0152] To generate further variants that incorporate one or more amino acid changes in a GH61 encoding sequence, the skilled artisan can change particular nucleotides, and then retest the expressed protein for GH61 activity.

[0153] An effective way to generate a large collection of functional variants is to use a random mutation strategy. The standard texts Protocols in Molecular Biology (Ausubel et al. eds.) and Molecular Cloning: A Laboratory Manual (Sambrook et al. eds.) describe techniques employing chemical mutagenesis, cassette mutagenesis, degenerate oligonucleotides, mutually priming oligonucleotides, linkerscanning mutagenesis, alanine-scanning mutagenesis, and error-prone PCR. Other efficient methods include the E. coli mutator strains of Stratagene (See e.g., Greener et al., Methods Mol. Biol. 57:375 [1996]) and the DNA shuffling technique of Maxygen (See e.g., Patten et al., Curr. Opin. Biotechnol., 8:724 [1997]; Harayama, Tr. Biotechnol., 16:76 [1998]; U.S. Pat. Nos. 5,605,793 and 6,132,970). To increase variation, a technology can be used that generates more abrupt changes, such as DNA shuffling techniques.

[0154] Mutagenesis may be performed in accordance with any of the techniques known in the art, including random and site-specific mutagenesis. Directed evolution can be performed with any of the techniques known in the art to screen for production of variants including shuffling. Mutagenesis and directed evolution methods are well known in the art (See e.g., U.S. Pat. Nos. 5,605,793, 5,830,721, 6,132,970, 6,420,175, 6,277,638, 6,365,408, 6,602,986, 7,288,375, 6,287,861, 6,297,053, 6,576,467, 6,444,468, 5,811238, 6,117,679, 6,165,793, 6,180,406, 6,291,242, 6,995,017, 6,395,547, 6,506,602, 6,519,065, 6,506,603, 6,413,774, 6,573,098, 6,323,030, 6,344,356, 6,372,497, 7,868,138, 5,834,252, 5,928,905, 6,489,146, 6,096,548, 6,387,702, 6,391,552, 6,358,742, 6,482,647, 6,335,160, 6,653,072, 6,355,484, 6,03,344, 6,319,713, 6,613,514, 6,455,253, 6,579,678, 6,586,182, 6,406,855, 6,946,296, 7,534,564, 7,776,598, 5,837,458, 6,391,640, 6,309,883, 7,105,297, 7,795,030, 6,326,204, 6,251,674, 6,716,631, 6,528,311, 6,287,862, 6,335,198, 6,352,859, 6,379,964, 7,148,054, 7,629,170, 7,620,500, 6,365,377, 6,358,740, 6,406,910, 6,413,745, 6,436,675, 6,961,664, 7,430,477, 7,873,499, 7,702,464, 7,783,428, 7,747,391, 7,747,393, 7,751,986, 6,376,246, 6,426,224, 6,423,542, 6,479,652, 6,319,714, 6,521,453, 6,368,861, 7,421,347, 7,058,515, 7,024,312, 7,620,502, 7,853,410, 7,957,912, 7,904,249, and all related US and non-US counterparts; Ling et al., Anal. Biochem., 254(2):157-78 [1997]; Dale et al., Meth. Mol. Biol., 57:369-74 [1996]; Smith, Ann. Rev. Genet., 19:423-462 [1985]; Botstein et al., Science, 229:1193-1201 [1985]; Carter, Biochem. J., 237:1-7 [1986]; Kramer et al., Cell, 38:879-887 [1984]; Wells et al., Gene, 34:315-323 [1985]; Minshull et al., Curr. Op. Chem. Biol., 3:284-290 [1999]; Christians et al., Nat. Biotechnol., 17:259-264 [1999]; Crameri et al., Nature, 391:288-291 [1998]; Crameri, et al., Nat. Biotechnol., 15:436-438 [1997]; Zhang et al., Proc. Nat. Acad. Sci. U.S.A., 94:4504-4509 [1997]; Crameri et al., Nat. Biotechnol., 14:315-319 [1996]; Stemmer, Nature, 370:389-391 [1994]; Stemmer, Proc. Nat. Acad. Sci. USA, 91:10747-10751 [1994]; WO 95/22625; WO 97/0078; WO 97/35966; WO 98/27230; WO 00/42651; WO 01/75767; and WO 2009/152336, all of which are incorporated herein by ref-

[0155] There are commercially available services and kits available to the skilled reader to use in obtaining variants of the claimed proteins. By way of illustration, systems specifically designed for mutagenesis projects include the following: the GeneTailorTM Site-Directed Mutagenesis System sold by InVitrogenTM Life Technologies; the BD

DiversifyTM PCR Random Mutagenesis KitTM, sold by BD Biosciences/Clontech; the Template Generation SystemTM, sold by MJ Research Inc., the XL1-RedTM mutator strain of *E. coli*, sold by Stratagene; and the GeneMorph® Random Mutagenesis Kit, also sold by Stratagene. By employing any of these systems in conjunction with a suitable GH61 activity assay, variants can be generated and tested in a high throughput manner.

[0156] Alternatively or in addition, the user may conduct further evolution of the encoded protein (See e.g., U.S. Pat. No. 7,981,614; US Pat. Appln. Publ. No. 2011/0034342; U.S. Pat. No. 7,795,030; U.S. Pat. No. 7,647,184; U.S. Pat. No. 6,939,689; and U.S. Pat. No. 6,773,900).

[0157] After each iteration of mutagenesis, the user can test and select the desired clones retaining GH61 activity. Optionally, the selected clones can be subject to further rounds of mutagenesis, until the desired degree of variation from the original sequence has been achieved.

Cellulase Enzymes and Compositions

[0158] The GH61 proteins of this invention are useful for increasing the yield of fermentable sugars in a saccharification reaction with one or more cellulase enzymes. The cellulase enzymes can be produced in the same cell as the GH61 protein or in a different cell. In either case, the cellulase enzymes can be expressed from a recombinant encoding region or from a constitutive gene. The cellulase enzymes can be provided in the form of a culture broth (with or without the microorganism producing the enzyme(s)) or supernatant, or purified to any extent desired.

[0159] The terms "cellulase" and "cellulase enzyme" broadly refer to enzymes that catalyze the hydrolysis of the beta-1,4-glycosidic bonds joining individual glucose units in a cellulose containing substrate. Examples of cellulase enzymes suitable for use with the GH61 proteins of this invention are described in more detail later in this section. [0160] Endoglucanases (EGs), comprise a group of cellulase enzymes classified as E.C. 3.2.1.4. These enzymes catalyze the hydrolysis of internal beta-1,4 glycosidic bonds of cellulose. In some embodiments, the present invention comprises an endogenous M. thermophila endoglucanase such as M. thermophila EG2 (See, WO 2007/109441) or a variant thereof. In some additional embodiments, the EG is from S. avermitilis, having a sequence set forth in GenBank accession NP_821730, or a variant thereof (See e.g., US Pat. Appln. Publ. No. 2010/0267089 A1). In some additional embodiments, the EG is a Thermoascus aurantiacus EG or variant thereof. In some further embodiments, the EG is an endogenous EG from a bacteria, a yeast, or a filamentous fungus other than M. thermophila. Indeed, it is contemplated that any suitable EG will find use in combination with the GH61 proteins provided herein. It is not intended that the present invention be limited to any specific EG.

[0161] Beta-glucosidases (BGL), comprise a group of cellulase enzymes classified as E.C. 3.2.1.21. These enzymes hydrolyze cellobiose to glucose. In some embodiments, the BGL is an endogenous *M. thermophila* enzyme, or a variant thereof (See e.g., US Pat. Appln. Publ. No. 2011/0129881 A1; and US Pat. Appln. Publ. No. 2011/0124058 A1). In some alternative embodiments, the BGL is from *Azospirillum irakense* (CelA), or a variant thereof (See e.g., US Pat. Appln. Publ. No. 2011/0114744 A1; and PCT/US2010/038902). Indeed, it is contemplated that any suitable BGL will find use in combination with the GH61

proteins provided herein. It is not intended that the present invention be limited to any specific BGL.

[0162] Cellobiohydrolases comprise a group of cellulase enzymes classified as E.C. 3.2.1.91. Type 1 cellobiohydrolase (CBH1) hydrolyzes cellobiose processively from the reducing end of cellulose chains. Type 2 cellobiohydrolase (CBH2) hydrolyzes cellobiose processively from the nonreducing end of cellulose chains. In some embodiments, the CBH1 and/or CBH2 enzymes used in the present invention are endogenous to M. thermophila, while in some other embodiments, the CBH1 and/or CBH2 enzymes used in the present invention are obtained from bacteria, yeast, and/or a filamentous fungus other than M. thermophila. Indeed, it is contemplated that any suitable CBHs will find use in combination with the GH61 proteins provided herein. It is not intended that the present invention be limited to any specific CBHs. The invention provides compositions comprising a GH61 variant protein in combination with at least one, at least two, at least three, or more than three cellulases selected from EG, BGL, CBH1, CBH2, xylosidase, and/or xylanase. In some embodiments, enzymes are purified or partly purified before combining them, so that the combined mass of the GH61, EG, BGL, CBH1 and CBH2 is at least about 50% or at least about 70% of the total cell-free protein in compositions.

[0163] In addition to one or more cellulase enzymes such as those listed above, in some embodiments, GH61 variant enzymes are combined with other enzymes to produce mixtures with industrial applicability. Such combinations are useful, for example, in rendering a cellulose-containing source into an intermediate that is more amenable to hydrolysis by the cellulase enzymes in the mixture. For example, in some embodiments, enzymes are selected to digest or hydrolyze other components of a particular cellulosic biomass, such as hemicellulose, arabinogalactan, pectin, rhamnogalacturonan and/or lignin.

[0164] In some embodiments, the compositions comprise enzymes selected from endoxylanases (EC 3.2.1.8); β-xylosidases (EC 3.2.1.37); alpha-L-arabinofuranosidases (EC 3.2.1.55); alpha-glucuronidases (EC 3.2.1.139); acetylxylanesterases (EC 3.1.1.72); feruloyl esterases (EC 3.1.1.73); coumaroyl esterases (EC 3.1.1.73); alpha-galactosidases (EC 3.2.1.22); beta-galactosidases (EC 3.2.1.23); beta-mannanases (EC 3.2.1.78); beta-mannosidases (EC 3.2.1.25); endo-polygalacturonases (EC 3.2.1.15); pectin methyl esterases (EC 3.1.1.11); endo-galactanases (EC 3.2.1.89); pectin acetyl esterases (EC 3.1.1.6); endo-pectin lyases (EC 4.2.2.10); pectate lyases (EC 4.2.2.2); alpha rhamnosidases (EC 3.2.1.40); exo-poly-alpha-galacturonosidase (EC 3.2.1. 82); 1,4-alpha-galacturonidase (EC 3.2.1.67); exopolygalacturonate lyases (EC 4.2.2.9); rhamnogalacturonan endolyases EC (4.2.2.B3); rhamnogalacturonan acetylesterases (EC 3.2.1.B11); rhamnogalacturonan galacturonohydrolases (EC 3.2.1.B11); endo-arabinanases (EC 3.2.1.99); laccases (EC 1.10.3.2); manganese-dependent peroxidases (EC 1.10. 3.2); amylases (EC 3.2.1.1), glucoamylases (EC 3.2.1.3), proteases, lipases, and lignin peroxidases (EC 1.11.1.14). Any combination of one, two, three, four, five, or more than five enzymes find use in the compositions of the present invention.

[0165] Cellulase mixtures for efficient enzymatic hydrolysis of cellulose are known (See e.g., Viikari et al., Adv. Biochem. Eng. Biotechnol., 108:121-45 [2007]; and US Pat. Publns. 2009/0061484; US 2008/0057541; and US 2009/

0209009, each of which is incorporated herein by reference). In some embodiments, mixtures of purified naturally occurring or recombinant enzymes are combined with cellulosic feedstock or a product of cellulose hydrolysis. In some embodiments, one or more cell populations, each producing one or more naturally occurring or recombinant cellulases, are combined with cellulosic feedstock or a product of cellulose hydrolysis.

[0166] In some embodiments, the GH61 variant polypeptides of the present invention are present in mixtures comprising enzymes other than cellulases that degrade cellulose, hemicellulose, pectin, and/or lignocellulose.

[0167] In some embodiments, the present invention provides at least one GH61 variant and at least one endoxylanase. Endoxylanases (EC 3.2.1.8) catalyze the endo hydrolysis of 1,4-beta-D-xylosidic linkages in xylans. This enzyme may also be referred to as endo-1,4-beta-xylanase or 1,4-beta-D-xylan xylanohydrolase. In some embodiments, an alternative is EC 3.2.1.136, a glucuronoarabinoxylan endoxylanase, an enzyme that is able to hydrolyze 1,4 xylosidic linkages in glucuronoarabinoxylans.

[0168] In some embodiments, the present invention provides at least one GH61 variant and at least one beta-xylosidase. Beta-xylosidases (EC 3.2.1.37) catalyze the hydrolysis of 1,4-beta-D-xylans, to remove successive D-xylose residues from the non-reducing termini. This enzyme may also be referred to as xylan 1,4-beta-xylosidase, 1,4-beta-D-xylan xylohydrolase, exo-1,4-beta-xylosidase or xylobiase.

[0169] In some embodiments, the present invention provides at least one GH61 variant and at least one α -L-arabinofuranosidase. Alpha-L-arabinofuranosidases (EC 3.2.1.55) catalyze the hydrolysis of terminal non-reducing alpha-L-arabinofuranoside residues in alpha-L-arabinosides. The enzyme acts on alpha-L-arabinofuranosides, alpha-L-arabinans containing (1,3)- and/or (1,5)-linkages, arabinoxylans, and arabinogalactans. Alpha-L-arabinofuranosidase is also known as arabinosidase, alpha-arabinofuranosidase, alpha-L-arabinofuranosidase, alpha-L-arabinofuranosidase, alpha-L-arabinofuranosidase, alpha-L-arabinofuranosidase and alpha-L-arabinanase.

[0170] In some embodiments, the present invention provides at least one GH61 variant and at least one alphaglucuronidase. Alpha-glucuronidases (EC 3.2.1.139) catalyze the hydrolysis of an alpha-D-glucuronoside to D-glucuronate and an alcohol.

[0171] In some embodiments, the present invention provides at least one GH61 variant and at least one acetylxylanesterase. Acetylxylanesterases (EC 3.1.1.72) catalyze the hydrolysis of acetyl groups from polymeric xylan, acetylated xylose, acetylated glucose, alpha-napthyl acetate, and p-nitrophenyl acetate.

[0172] In some embodiments, the present invention provides at least one GH61 variant and at least one feruloyl esterase. Feruloyl esterases (EC 3.1.1.73) have 4-hydroxy-3-methoxycinnamoyl-sugar hydrolase activity (EC 3.1.1.73) that catalyzes the hydrolysis of the 4-hydroxy-3-methoxycinnamoyl (feruloyl) group from an esterified sugar, which is usually arabinose in "natural" substrates, to produce ferulate (4-hydroxy-3-methoxycinnamate). Feruloyl esterase is also known as ferulic acid esterase, hydroxycinnamoyl esterase, FAE-III, cinnamoyl ester hydrolase, FAEA, cinnAE, FAE-I, or FAE-II.

[0173] In some embodiments, the present invention provides at least one GH61 variant and at least one coumaroyl esterase. Coumaroyl esterases (EC 3.1.1.73) catalyze a reaction of the form: coumaroyl-saccharide+H₂O=coumarate+saccharide. In some embodiments, the saccharide is an oligosaccharide or a polysaccharide. This enzyme may also be referred to as trans-4-coumaroyl esterase, trans-p-coumaroyl esterase, p-coumaroyl esterase or p-coumaric acid esterase. The enzyme also falls within EC 3.1.1.73; it may also be referred to as a "feruloyl esterase."

[0174] In some embodiments, the present invention provides at least one GH61 variant and at least one alphagalactosidase. Alpha-galactosidases (EC 3.2.1.22) catalyze the hydrolysis of terminal, non-reducing alpha-D-galactose residues in alpha-D-galactosides, including galactose oligosaccharides, galactomannans, galactans and arabinogalactans. This enzyme may also be referred to as "melibiase." [0175] In some embodiments, the present invention provides at least one GH61 variant and at least one betagalactosidase. Beta-galactosidases (EC 3.2.1.23) catalyze the hydrolysis of terminal non-reducing beta-D-galactose residues in beta-D-galactosides. In some embodiments, the polypeptide is also capable of hydrolyzing alpha-L-arabino-

[0176] In some embodiments, the present invention provides at least one GH61 variant and at least one betamannanase. Beta-mannanases (EC 3.2.1.78) catalyze the random hydrolysis of 1,4-beta-D-mannosidic linkages in mannans, galactomannans and glucomannans. This enzyme may also be referred to as "mannan endo-1,4-beta-mannosidase" or "endo-1,4-mannanase."

sides. This enzyme may also be referred to as exo-(1->4)-

beta-D-galactanase or lactase.

[0177] In some embodiments, the present invention provides at least one GH61 variant and at least one betamannosidase. Beta-mannosidases (EC 3.2.1.25) catalyze the hydrolysis of terminal, non-reducing beta-D-mannose residues in beta-D-mannosides. This enzyme may also be referred to as mannanase or mannase.

[0178] In some embodiments, the present invention provides at least one GH61 variant and at least one glucoamylase. Glucoamylases (EC 3.2.1.3) catalyzes the release of D-glucose from non-reducing ends of oligo- and polysaccharide molecules. Glucoamylase is also generally considered a type of amylase known as amylo-glucosidase.

[0179] In some embodiments, the present invention provides at least one GH61 variant and at least one amylase. Amylases (EC 3.2.1.1) are starch cleaving enzymes that degrade starch and related compounds by hydrolyzing the alpha-1,4 and/or alpha-1,6 glucosidic linkages in an endo- or an exo-acting fashion. Amylases include alpha-amylases (EC 3.2.1.1); beta-amylases (3.2.1.2), amylo-amylases (EC 3.2.1.3), alpha-glucosidases (EC 3.2.1.20), pullulanases (EC 3.2.1.41), and isoamylases (EC 3.2.1.68). In some embodiments, the amylase is an alpha-amylase.

[0180] In some embodiments one or more enzymes that degrade pectin are included in enzyme mixtures that comprise at least one GH61 variant of the present invention. Pectinases catalyze the hydrolysis of pectin into smaller units such as oligosaccharide or monomeric saccharides. In some embodiments, the enzyme mixtures comprise any pectinase, for example an endo-polygalacturonase, a pectin methyl esterase, an endo-galactanase, a pectin acetyl esterase, an endo-pectin lyase, pectate lyase, alpha rhamnosidase, an exo-galacturonase, an exo-polygalacturonate

lyase, a rhamnogalacturonan hydrolase, a rhamnogalacturonan lyase, a rhamnogalacturonan acetyl esterase, a rhamnogalacturonan galacturonohydrolase and/or a xylogalacturonase.

[0181] In some embodiments, the present invention provides at least one GH61 variant and at least one endopolygalacturonase. Endo-polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1,4-alpha-D-galactosiduronic linkages in pectate and other galacturonass. This enzyme may also be referred to as "polygalacturonase pectin depolymerase," "pectinase," "endopolygalacturonase," "pectolase," "pectin hydrolase," "pectin polygalacturonase," "poly-alpha-1,4-galacturonide glycanohydrolase," "endogalacturonase," "endo-D-galacturonase" or "poly(1,4-alpha-D-galacturonide) glycanohydrolase."

[0182] In some embodiments, the present invention provides at least one GH61 variant and at least one pectin methyl esterase. Pectin methyl esterases (EC 3.1.1.11) catalyze the reaction: pectin+n $\rm H_2O=n$ methanol+pectate. The enzyme may also been known as "pectin esterase," "pectin demethoxylase," "pectin methylesterase," "pectase," "pectinoesterase," or "pectin pectylhydrolase."

[0183] In some embodiments, the present invention provides at least one GH61 variant and at least one endogalactanase. Endo-galactanases (EC 3.2.1.89) catalyze the endohydrolysis of 1,4-beta-D-galactosidic linkages in arabinogalactans. The enzyme may also be known as "arabinogalactan endo-1,4-beta-galactosidase," "endo-1,4-beta-galactanase," "galactanase," "arabinogalactanase," or "arabinogalactan 4-beta-D-galactanohydrolase."

[0184] In some embodiments, the present invention provides at least one GH61 variant and at least one pectin acetyl esterase. Pectin acetyl esterases catalyze the deacetylation of the acetyl groups at the hydroxyl groups of GaIUA residues of pectin.

[0185] In some embodiments, the present invention provides at least one GH61 variant and at least one endo-pectin lyase. Endo-pectin lyases (EC 4.2.2.10) catalyze the eliminative cleavage of (1 \rightarrow 4)-alpha-D-galacturonan methyl ester to give oligosaccharides with 4-deoxy-6-O-methyl- α -D-galact-4-enuronosyl groups at their non-reducing ends. The enzyme may also be known as "pectin lyase," "pectin trans-eliminase," "endo-pectin lyase," "polymethylgalacturonic transeliminase," "endo-pectin methyltranseliminase," "pectolyase," "PL," "PNL," "PMGL," or "(1 \rightarrow 4)-6-O-methylalpha-D-galacturonan lyase."

[0186] In some embodiments, the present invention provides at least one GH61 variant and at least one pectate lyase. Pectate lyases (EC 4.2.2.2) catalyze the eliminative cleavage of (1→4)-alpha-D-galacturonan to give oligosaccharides with 4-deoxy-alpha-D-galact-4-enuronosyl groups at their non-reducing ends. The enzyme may also be known "polygalacturonic transeliminase," "pectic acid transeliminase," "polygalacturonate lyase," "endopectin methyltranseliminase," "pectate transeliminase," "endogalacturonate transeliminase," "pectic acid lyase," "PGA lyase," "PPase-N," "endo-alpha-1,4-polygalacturonic acid lyase," "pectin trans-eliminase," "polygalacturonic acid lyase," "pectin trans-eliminase," "polygalacturonic acid trans-eliminase," "polygalacturonic acid trans-eliminase," or "(1→4)-alpha-D-galacturonan lyase."

[0187] In some embodiments, the present invention provides at least one GH61 variant and at least one alpha-

rhamnosidase. Alpha-rhamnosidases (EC 3.2.1.40) catalyze the hydrolysis of terminal non-reducing alpha-L-rhamnose residues in alpha-L-rhamnosides or alternatively in rhamnogalacturonan. This enzyme may also be known as "alpha-L-rhamnosidase T," "alpha-L-rhamnosidase N," or "alpha-L-rhamnoside rhamnohydrolase."

[0188] In some embodiments, the present invention provides at least one GH61 variant and at least one exogalacturonase. Exo-galacturonases (EC 3.2.1.82) hydrolyze pectic acid from the non-reducing end, releasing digalacturonate. The enzyme may also be known as "exo-polyalpha-galacturonosidase," "exopolygalacturonosidase," or "exopolygalacturanosidase."

[0189] In some embodiments, the present invention provides at least one GH61 variant and at least one β -galacturan 1,4-alpha galacturonidase. Exo-galacturonases (EC 3.2.1. 67) catalyze a reaction of the following type: (1,4- α -D-galacturonide)n+H $_2$ O=(1,4- α -D-galacturonide)n-i+D-galacturonate. The enzyme may also be known as "poly [1->4) alpha-D-galacturonide] galacturonohydrolase," "exo-polygalacturonase," "poly(galacturonate) hydrolase," "exo-D-galacturonase," "exo-D-galacturonase," "exo-D-galacturonase," "poly(1,4-alpha-D-galacturonide) galacturonhydrolase."

[0190] In some embodiments, the present invention provides at least one GH61 variant and at least one exopolygalacturonate lyase. Exopolygalacturonate lyases (EC 4.2. 2.9) catalyze eliminative cleavage of 4-(4-deoxy-alpha-D-galact-4-enuronosyl)-D-galacturonate from the reducing end of pectate (i.e., de-esterified pectin). This enzyme may be known as "pectate disaccharide-lyase," "exopectate exolyase," "exopectic acid transeliminase," "exopectate lyase," "exopolygalacturonic acid-trans-eliminase," "PATE," "exo-PATE," "exo-PGL," or "(1→4)-alpha-D-galacturonan reducing-end-disaccharide-lyase."

[0191] In some embodiments, the present invention provides at least one GH61 variant and at least one rhamnogalacturonanase. Rhamnogalacturonanases hydrolyze the linkage between galactosyluronic acid and rhamnopyranosyl in an endo-fashion in strictly alternating rhamnogalacturonan structures, consisting of the disaccharide [(1,2-alpha-L-rhamnoyl-(1,4)-alpha-galactosyluronic acid].

[0192] In some embodiments, the present invention provides at least one GH61 variant and at least one rhamnogalacturonan lyase. Rhamnogalacturonan lyases cleave alpha-L-Rhap-(1→4)-alpha-D-GalpA linkages in an endo-fashion in rhamnogalacturonan by beta-elimination.

[0193] In some embodiments, the present invention provides at least one GH61 variant and at least one rhamnogalacturonan acetyl esterase. Rhamnogalacturonan acetyl esterases catalyze the deacetylation of the backbone of alternating rhamnose and galacturonic acid residues in rhamnogalacturonan.

[0194] In some embodiments, the present invention provides at least one GH61 variant and at least one rhamnogalacturonan galacturonohydrolase. Rhamnogalacturonan galacturonohydrolases hydrolyze galacturonic acid from the non-reducing end of strictly alternating rhamnogalacturonan structures in an exo-fashion. This enzyme may also be known as "xylogalacturonan hydrolase."

[0195] In some embodiments, the present invention provides at least one GH61 variant and at least one endoarabinanase. Endo-arabinanases (EC 3.2.1.99) catalyze endohydrolysis of 1,5-alpha-arabinofuranosidic linkages in

1,5-arabinans. The enzyme may also be known as "endo-arabinase," "arabinan endo-1,5-alpha-L-arabinosidase," "endo-1,5-alpha-L-arabinanase," "endo-alpha-1,5-arabanase," "endo-arabanase," or "1,5-alpha-L-arabinan 1,5-alpha-L-arabinanohydrolase."

[0196] In some embodiments, the present invention provides at least one GH61 variant and at least one enzyme that participates in lignin degradation in an enzyme mixture. Enzymatic lignin depolymerization can be accomplished by lignin peroxidases, manganese peroxidases, laccases, and/or cellobiose dehydrogenases (CDH), often working in synergy. These extracellular enzymes are often referred to as "lignin-modifying enzymes" or "LMEs." Three of these enzymes comprise two glycosylated heme-containing peroxidases, namely lignin peroxidase (LIP), Mn-dependent peroxidase (MNP), and copper-containing phenoloxidase laccase (LCC).

[0197] In some embodiments, the present invention provides at least one GH61 variant and at least one laccase. Laccases are copper containing oxidase enzymes that are found in many plants, fungi and microorganisms. Laccases are enzymatically active on phenols and similar molecules and perform a one electron oxidation. Laccases can be polymeric and the enzymatically active form can be a dimer or trimer.

[0198] In some embodiments, the present invention provides at least one GH61 variant and at least one Mndependent peroxidase. The enzymatic activity of Mn-dependent peroxidase (MnP) in is dependent on Mn2+. Without being bound by theory, it has been suggested that the main role of this enzyme is to oxidize Mn2+ to Mn3+(See e.g, Glenn et al., Arch. Biochem. Biophys., 251:688-696 [1986]). Subsequently, phenolic substrates are oxidized by the Mn3+ generated.

[0199] In some embodiments, the present invention provides at least one GH61 variant and at least one lignin peroxidase. Lignin peroxidase is an extracellular heme peroxidase that catalyses the oxidative depolymerization of dilute solutions of polymeric lignin in vitro. Some of the substrates of LiP, most notably 3,4-dimethoxybenzyl alcohol (veratryl alcohol, VA), are active redox compounds that have been shown to act as redox mediators. VA is a secondary metabolite produced at the same time as LiP by ligninolytic cultures of *P. chrysosporium* and without being bound by theory, has been proposed to function as a physiological redox mediator in the LiP-catalyzed oxidation of lignin in vivo (See e.g., Harvey, et al., FEBS Lett., 195:242-246 [1986]).

[0200] In some embodiments, the present invention provides at least one GH61 variant and at least one protease, amylase, glucoamylase, and/or a lipase that participates in cellulose degradation.

[0201] As used herein, the term "protease" includes enzymes that hydrolyze peptide bonds (peptidases), as well as enzymes that hydrolyze bonds between peptides and other moieties, such as sugars (glycopeptidases). Many proteases are characterized under EC 3.4, and are suitable for use in the invention. Some specific types of proteases include, cysteine proteases including pepsin, papain and serine proteases including chymotrypsins, carboxypeptidases and metalloendopeptidases.

[0202] As used herein, the term "lipase" includes enzymes that hydrolyze lipids, fatty acids, and acylglycerides, including phospoglycerides, lipoproteins, diacylglycerols, and the

like. In plants, lipids are used as structural components to limit water loss and pathogen infection. These lipids include waxes derived from fatty acids, as well as cutin and suberin. [0203] In some additional embodiments, the present invention provides at least one GH61 variant and at least one expansin or expansin-like protein, such as a swollenin (See e.g., Salheimo et al., Eur. J. Biochem., 269:4202-4211 [2002]) or a swollenin-like protein. Expansins are implicated in loosening of the cell wall structure during plant cell growth. Expansins have been proposed to disrupt hydrogen bonding between cellulose and other cell wall polysaccharides without having hydrolytic activity. In this way, they are thought to allow the sliding of cellulose fibers and enlargement of the cell wall. Swollenin, an expansin-like protein contains an N-terminal Carbohydrate Binding Module Family 1 domain (CBD) and a C-terminal expansin-like domain. In some embodiments, an expansin-like protein or swollenin-like protein comprises one or both of such domains and/or disrupts the structure of cell walls (such as disrupting cellulose structure), optionally without producing detectable amounts of reducing sugars.

[0204] In some embodiments, the present invention provides at least one GH61 variant and at least one polypeptide product of a cellulose integrating protein, scaffoldin or a scaffoldin-like protein, for example CipA or CipC from Clostridium thermocellum or Clostridium cellulolyticum, respectively. Scaffoldins and cellulose integrating proteins are multi-functional integrating subunits which may organize cellulolytic subunits into a multi-enzyme complex. This is accomplished by the interaction of two complementary classes of domains (i.e. a cohesion domain on scaffoldin and a dockerin domain on each enzymatic unit). The scaffoldin subunit also bears a cellulose-binding module that mediates attachment of the cellulosome to its substrate. A scaffoldin or cellulose integrating protein for the purposes of this invention may comprise one or both such domains.

[0205] In some embodiments, the present invention provides at least one GH61 variant and at least one cellulose induced protein or modulating protein, for example as encoded by a cip1 or cip2 gene or similar genes from *Trichoderma reesei* (See e.g., Foreman et al., J. Biol. Chem., 278:31988-31997 [2003]).

[0206] In some embodiments, the present invention provides at least one GH61 variant and at least one member of each of the classes of the polypeptides described above, several members of one polypeptide class, or any combination of these polypeptide classes to provide enzyme mixtures suitable for various uses.

[0207] In some embodiments, the enzyme mixture comprises other types of cellulases, selected from but not limited to cellobiohydrolase, endoglucanase, beta-glucosidase, and glycoside hydrolase 61 protein (GH61) cellulases. These enzymes may be wild-type or recombinant enzymes. In some embodiments, the cellobiohydrolase is a type 1 cellobiohydrolase (e.g., a *T. reesei* cellobiohydrolase I). In some embodiments, the endoglucanase comprises a catalytic domain derived from the catalytic domain of a Streptomyces avermitilis endoglucanase (See e.g., US Pat. Appln. Pub. No. 2010/0267089; U.S. Pat. No. 8,206,960; and U.S. Pat. No. 8,088,608, each of which is incorporated herein by reference). In some embodiments, at least one cellulase in the mixtures of the present invention is derived from Acidothermus cellulolyticus, Thermobifida fusca, Humicola grisea, Myceliophthora thermophila, Chaetomium thermophilum, Acremonium sp., Thielavia sp, Trichoderma reesei, Aspergillus sp., or a Chrysosporium sp. In some embodiments, cellulase enzymes of the cellulase mixture work together resulting in decrystallization and hydrolysis of the cellulose from a biomass substrate to yield fermentable sugars, such as but not limited to glucose.

[0208] Some cellulase mixtures for efficient enzymatic hydrolysis of cellulose are known (See e.g., Viikari et al., Adv. Biochem. Eng. Biotechnol., 108:121-45 [2007]; and US Pat. Appln. Publn. Nos. US 2009/0061484, US 2008/0057541, and US 2009/0209009, each of which is incorporated herein by reference in their entireties). In some embodiments, mixtures of purified naturally occurring or recombinant enzymes are combined with cellulosic feedstock or a product of cellulose hydrolysis. Alternatively or in addition, one or more cell populations, each producing one or more naturally occurring or recombinant cellulase, are combined with cellulosic feedstock or a product of cellulose hydrolysis.

[0209] In some embodiments, the enzyme mixture comprises commercially available purified cellulases. Commercial cellulases are known and available (e.g., C2730 cellulase from *Trichoderma reesei* ATCC No. 25921 available from Sigma-Aldrich, Inc.) Any suitable commercially available enzyme finds use in the present invention.

[0210] In some embodiments, the enzyme mixture comprises at least one isolated GH61 variant as provided herein and at least one or more isolated enzymes, including but not limited to at least one isolated CBH1a, isolated CBH2b, isolated endoglucanase (EG) (e.g., EG2 and/or EG1), and/or isolated beta-glucosidase (BGL). In some embodiments, at least 5%, at least 10%, at last 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, or at least 50% of the enzyme mixture is GH61. In some embodiments, the enzyme mixture further comprises a cellobiohydrolase type 1a (e.g., CBH1a), and GH61, wherein the enzymes together comprise at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, or at least 80% of the enzyme mixture. In some embodiments, the enzyme mixture further comprises a beta-glucosidase (BGL), GH61, and CBH, wherein the three enzymes together comprise at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, or at least 85% of the enzyme mixture. In some embodiments, the enzyme mixture further comprises an endoglucanase (EG), GH61, CBH2b, CBH1a, BGL, wherein the five enzymes together comprise at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, or at least 90% of the enzyme mixture. In some embodiments, the enzyme mixture comprises GH61, CBH2b, CBH1, BGL, and at least one EG, in any suitable proportion for the desired reaction.

[0211] In some embodiments, the enzyme mixture composition comprises isolated cellulases in the following proportions by weight (wherein the total weight of the cellulases is 100%): about 20%-10% of GH61, about 20%-10% of GH61, about 30%-25% of CBH1a, about 10%-30% of GH61, about 20%-10% of EG, and about 20%-25% of CBH2b. In some embodiments, the enzyme mixture composition comprises isolated cellulases in the following proportions by weight: about 20%-10% of GH61, about 25%-

15% of BGL, about 20%-30% of CBH1a, about 10%-15% of EG, and about 25%-30% of CBH2b. In some embodiments, the enzyme mixture composition comprises isolated cellulases in the following proportions by weight: about 30%-20% of GH61, about 15%-10% of BGL, about 25%-10% of CBH1a, about 25%-10% of CBH2b, about 15%-10% of EG. In some embodiments, the enzyme mixture composition comprises isolated cellulases in the following proportions by weight: about 40-30% of GH61, about 15%-10% of BGL, about 20%-10% of CBH1a, about 20%-10% of CBH2b, and about 15%-10% of EG.

[0212] In some embodiments, the enzyme mixture composition comprises isolated cellulases in the following proportions by weight: about 50-40% of GH61, about 15%-10% of BGL, about 20%-5% of CBH1a, about 15%-10% of CBH2b, and about 10%-5% of EG. However, in some embodiments, the enzyme mixture composition comprises no EG (e.g., EG2). In some embodiments, the enzyme mixture composition comprises isolated cellulases in the following proportions by weight: about 10%-15% of GH61, about 20%-25% of BGL, about 30%-20% of CBH1a, about 15%-5% of EG, and about 25%-35% of CBH2b. In some embodiments, the enzyme mixture composition comprises isolated cellulases in the following proportions by weight: about 15%-5% of GH61, about 15%-10% of BGL, about 45%-30% of CBH1a, about 25%-5% of EG, and about 40%-10% of CBH2b. In some embodiments, the enzyme mixture composition comprises isolated cellulases in the following proportions by weight: about 10% of GH61, about 15% of BGL, about 40% of CBH1a, about 25% of EG, and about 10% of CBH2b.

[0213] In some embodiments, the enzyme mixtures provided herein further comprise at least one xylan-active enzyme and/or at least one ester-active enzyme. In some embodiments, the enzyme mixture compositions comprise about 0-25% xylanase (e.g., about 2%-5%, about 1%-10%, about 10%-15%, about 15%-25%, about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, or about 15% xylanase) by weight. In some embodiments, the enzyme mixture compositions comprise about 0-15% xylosidase (e.g., about 2%-5%, about 1%-10%, about 10%-15%, about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, or about 15% xylosidase) by weight. In some embodiments, the enzyme mixture compositions comprise about 0-15% esterase (e.g., about 2%-5%, about 1%-10%, about 10%-15%, about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, or about 15% esterase) by weight. It is contemplated that any suitable combination of enzymes and suitable enzyme concentrations will find use in the present invention, as applied using various saccharification reactions and conditions.

[0214] In some embodiments, the enzyme component comprises more than one CBH1a, CBH2b, EG, BGL, and/or GH61 variant enzyme (e.g., 2, 3 or 4 different enzymes), in any suitable combination. In some embodiments, an enzyme mixture composition of the invention further comprises at least one additional protein and/or enzyme. In some embodiments, enzyme mixture compositions of the present invention further comprise at least one additional enzyme other than at least one GH61 variant, BGL, CBH1a, wild-type

GH61, and/or CBH2b. In some embodiments, the enzyme mixture compositions of the invention further comprise at least one additional cellulase, other than at least one GH61 variant, BGL, CBH1a, GH61, and/or CBH2b as described herein. In some embodiments, the GH61 polypeptide variant of the invention is also present in mixtures with noncellulase enzymes that degrade cellulose, hemicellulose, pectin, and/or lignocellulose.

[0215] In some embodiments, GH61 polypeptide variant of the present invention is used in combination with other optional ingredients such as at least one buffer, surfactant, and/or scouring agent. In some embodiments, at least one buffer is used with the GH61 polypeptide variant of the present invention (optionally combined with other enzymes) to maintain a desired pH within the solution in which the GH61 variant is employed. The exact concentration of buffer employed depends on several factors which the skilled artisan can determine. Suitable buffers are well known in the art. In some embodiments, at least one surfactant is used in with the GH61 variant of the present invention. Suitable surfactants include any surfactant compatible with the GH61 variant and, optionally, with any other enzymes being used in the mixture. Exemplary surfactants include, but are not limited to anionic, non-ionic, and ampholytic surfactants. Suitable anionic surfactants include, but are not limited to, linear or branched alkylbenzenesulfonates; alkyl or alkenyl ether sulfates having linear or branched alkyl groups or alkenyl groups; alkyl or alkenyl sulfates; olefinsulfonates; alkanesulfonates, and the like. Suitable counter ions for anionic surfactants include, for example, alkali metal ions, such as sodium and potassium; alkaline earth metal ions, such as calcium and magnesium; ammonium ion; and alkanolamines having from 1 to 3 alkanol groups of carbon number 2 or 3. Ampholytic surfactants suitable for use in the practice of the present invention include, for example, quaternary ammonium salt sulfonates, betaine-type ampholytic surfactants, and the like. Suitable nonionic surfactants generally include polyoxalkylene ethers, as well as higher fatty acid alkanolamides or alkylene oxide adduct thereof, fatty acid glycerine monoesters, and the like. Mixtures of surfactants also find use in the present invention, as is known in the art.

Exemplary Mixtures of Cellulolytic Enzymes and Cofactors

[0216] As a further guide to the reader, yet without implying any limitation in the practice of the present invention, exemplary mixtures of components that may be used as catalysts in a saccharification reaction to generate fermentable sugars from a cellulosic substrate are provided herein. Concentrations are given in wt/vol of each component in the final reaction volume with the cellulose substrate. Also provided are percentages of each component (wt/wt) in relation to the total mass of the components that are listed for addition into each mixture (the "total protein"). This may be a mixture of purified enzymes and/or enzymes in a culture supernatant.

[0217] By way of example, the invention embodies mixtures that comprise at least four, at least five, or all six of the following components. In some embodiments, cellobiohydrolase 1 (CBH1) finds use; in some embodiments CBH1 is present at a concentration of about 0.14 to about 0.23 g/L (about 15% to about 25% of total protein). Exemplary CBH1 enzymes include, but are not limited to *T. emersonii* CBH1 (wild-type) (e.g., SEQ ID NO:125), *M. thermophila* CBH1a

(wild-type) (e.g., SEQ ID NO:128), and the variants CBH1a-983 (SEQ ID NO:134) and CBH1a-145 (SEQ ID NO:131). In some embodiments, cellobiohydrolase 2 (CBH2) finds use; in some embodiments, CBH2 is present at a concentration of about 0.14 to about 0.23 g/L (about 15% to about 25% of total protein). Exemplary CBH2 enzymes include but are not limited to CBH2b from M. thermophila (wild-type) (e.g., SEQ ID NO:137). In some embodiments, endoglucanase 2 (EG2) finds use; in some embodiments, EG2 is present at a concentration of 0 to about 0.05 g/L (0 to about 5% of total protein). Exemplary EGs include, but are not limited to M. thermophila EG2 (wildtype) (e.g., SEQ ID NO:113). In some further embodiments, endoglucanase 1 (EG1) finds use; in some embodiments, EG1 is present at a concentration of about 0.05 to about 0.14 g/L (about 5% to about 15% of total protein). Exemplary EG1s include, but are not limited to M. thermophila EG1b (wild-type) (e.g., SEQ ID NO:110). In some embodiments, beta-glucosidase (BGL) finds use in the present invention; in some embodiments, BGL is present at a concentration of about 0.05 to about 0.09 g/L (about 5% to about 10% of total protein). Exemplary beta-glucosidases include, but are not limited to M. thermophila BGL1 (wild-type) (e.g., SEQ ID NO:116), variant BGL-900 (SEQ ID NO:122), and variant BGL-883 (SEQ ID NO:119). In some further embodiments, GH61 protein and/or protein variants find use; in some embodiments, GH61 enzymes are present at a concentration of about 0.23 to about 0.33 g/L (about 25% to about 35% of total protein). Exemplary GH61s include, but are not limited to M. thermophila GH61a wild-type (SEQ ID NO:2), Variant 1 (SEQ ID NO:5), Variant 5 (SEQ ID NO:8) and/or Variant 9 (SEQ ID NO:11), and/or any other GH61a variant proteins, as well as any of the other GH61 enzymes (e.g., GH61b, GH61c, GH61d, GH61e, GH61f, GH61g, GH61h, GH161i, GH61j, GH61k, GH61l, GH61m, GH61n, GH61o, GH61p, GH61q, GH61r, GH61s, GH61t, GH61u, GH61v, GH61w, GH61x, and/or GH61y) as provided herein.

[0218] In some embodiments, one, two or more than two enzymes are present in the mixtures of the present invention. In some embodiments, GH61p is present at a concentration of about 0.05 to about 0.14 g/L (e.g, about 1% to about 15% of total protein). Exemplary M. thermophila GH61p enzymes include those set forth in SEQ ID NOS:70 and 73. In some embodiments, GH61f is present at a concentration of about 0.05 to about 0.14 g/L (about 1% to about 15% of total protein). An exemplary M. thermophila GH61f is set forth in SEQ ID NO:29. In some additional embodiments, at least one additional GH61 enzyme provided herein (e.g., GH61b, GH61c, GH61d, GH61e, GH61g, GH61h, GH61i, GH61j, GH61k, GH61l, GH61m, GH61n, GH61n, GH61o, GH61q, GH61r, GH61s, GH61t, GH61u, GH61v, GH61w, GH61x, and/or GH61y, finds use at an appropriate concentration (e.g., about 0.05 to about 0.14 g/L [about 1% to about 15% of total protein]).

[0219] In some embodiments, at least one xylanase at a concentration of about 0.05 to about 0.14 g/L (about 1% to about 15% of total protein) finds use in the present invention. Exemplary xylanases include but are not limited to the *M. thermophila* xylanase-3 (SEQ ID NO:149), xylanase-2 (SEQ ID NO:152), xylanase-1 (SEQ ID NO:155), xylanase-6 (SEQ ID NO:158), and xylanase-5 (SEQ ID NO:161).

[0220] In some additional embodiments, at least one beta-xylosidase at a concentration of about 0.05 to about $0.14~\rm g/L$

(e.g., about 1% to about 15% of total protein) finds use in the present invention. Exemplary beta-xylosidases include but are not limited to the *M. thermophila* beta-xylosidase (SEQ ID NO:164).

[0221] In still some additional embodiments, at least one acetyl xylan esterase at a concentration of about 0.05 to about 0.14 g/L (e.g., about 1% to about 15% of total protein) finds use in the present invention. Exemplary acetylxylan esterases include but are not limited to the *M. thermophila* acetylxylan esterase (SEQ ID NO:167).

[0222] In some further additional embodiments, at least one ferulic acid esterase at a concentration of about 0.05 to about 0.14 g/L (e.g., about 1% to about 15% of total protein) finds use in the present invention. Exemplary ferulic esterases include but are not limited to the *M. thermophila* ferulic acid esterase (SEQ ID NO:170).

[0223] In some embodiments, the enzyme mixtures comprise at least one GH61 variant protein as provided herein and at least one cellulase, including but not limited to any of the enzymes described herein. In some embodiments, the enzyme mixtures comprise at least one GH61 variant protein and at least one wild-type GH61 protein. In some embodiments, the enzyme mixtures comprise at least one GH61 variant protein and at least one non-cellulase enzyme. Indeed, it is intended that any combination of enzymes will find use in the enzyme compositions comprising at least one GH61 variant of the present invention.

[0224] The concentrations listed above are appropriate for a final reaction volume with the biomass substrate in which all of the components listed (the "total protein") is about 0.75 g/L, and the amount of glucan is about 93 g/L, subject to routine optimization. The user may empirically adjust the amount of each component and total protein for cellulosic substrates that have different characteristics and/or are processed at a different concentration. Any one or more of the components may be supplemented or substituted with variants with common structural and functional characteristics, as described below.

[0225] Without implying any limitation, the following mixtures further describe some embodiments of the present invention.

[0226] Some mixtures comprise CBH1a within a range of about 15% to about 30% total protein, typically about 20% to about 25%; CBH2 within a range of about 15% to about 30%, typically about 17% to about 22%; EG2 within a range of about 1% to about 10%, typically about 2% to about 5%; BGL1 within a range of about 5% to about 15%, typically about 8% to about 12%; GH61a within a range of about 10% to about 40%, typically about 20% to about 30%; EG1b within a range of about 5% to about 25%, typically about 10% to about 18%; and GH61f within a range of 0% to about 30%; typically about 5% to about 20%.

[0227] In some mixtures, exemplary BGL1s include the BGL1 variant 900 (SEQ ID NO:122) and/or variant 883 (SEQ ID NO:119). In some embodiments, other enzymes are *M. thermophila* wild-type: CBH1a (SEQ ID NO:128), CBH2b (SEQ ID NO:137), EG2 (SEQ ID NO:113), GH61a (SEQ ID NO:2), EG1b (SEQ ID NO:110) and GH61f (SEQ ID NO:29). Any one or more of the components may be supplemented or substituted with variants having common structural and functional characteristics with the component being substituted or supplemented, as described below. In a saccharification reaction, the amount of glucan is generally about 50 to about 300 g/L, typically about 75 to about 150

g/L. The total protein is about 0.1 to about 10 g/L, typically about 0.5 to about 2 g/L, or about 0.75 g/L.

[0228] Some mixtures comprise CBH1 within a range of about 10% to about 30%, typically about 15% to about 25%; CBH2b within a range of about 10% to about 25%, typically about 15% to about 20%; EG2 within a range of about 1% to about 10%, typically about 2% to about 5%; EG1b within a range of about 2% to about 25%, typically about 6% to about 14%; GH61a within a range of about 5% to about 50%, typically about 10% to about 35%; and BGL1 within a range of about 2% to about 15%, typically about 5% to about 12%. Also included is copper sulfate to generate a final concentration of Cu⁺⁺ of about 4 μM to about 200 μM, typically about 25 μM to about 60 μM. However, it is not intended that the added copper be limited to any particular concentration, as any suitable concentration finds use in the present invention and will be determined based on the reaction conditions.

[0229] In an additional mixture, an exemplary CBH1 is wild-type CBH1 from T. emersonii (SEQ ID NO:125), as well as wild-type M. thermophila CBH1a (SEQ ID NO:128), Variant 983 (SEQ ID NO:134), and Variant 145 (SEQ ID NO:131); exemplary CBH2 enzymes include the wild-type (SEQ ID NO:137), Variant 962 (SEQ ID NO:146), Variant 196 (SEQ ID NO:140), and Variant 287 (SEQ ID NO:143); an exemplary EG2 is the wild-type M. thermophila (SEQ ID NO:113); an exemplary EG1b is the wildtype (SEQ ID NO: 110); exemplary GH61a enzymes include wild-type M. thermophila (SEQ ID NO:2), Variant 1 (SEQ ID NO:5), Variant 5 (SEQ ID NO:11), and Variant 9 (SEQ ID NO:11); and exemplary BGLs include wild-type M. thermophila BGL (SEQ ID NO:116), Variant 883 (SEQ ID NO:119), and Variant 900 (SEQ ID NO:122). Any one or more of the components may be supplemented or substituted with other variants having common structural and functional characteristics with the component being substituted or supplemented, as described below. In a saccharification reaction, the amount of glucan is generally about 50 to about 300 g/L, typically about 75 to about 150 g/L. The total protein is about 0.1 to about 10 g/L, typically about 0.5 to about 2 g/L, or about 0.75 g/L.

[0230] Any or all of the components listed in the mixtures referred to above may be supplemented or substituted with variant proteins that are structurally and functionally related, as described herein.

[0231] In some embodiments, the CBH1 cellobiohydrolase used in mixtures of the present invention comprises at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to either SEQ ID NO:128 (M. thermophila), SEQ ID NO:125 (T. emersonii), or a fragment of either SEQ ID NO:128 or SEQ ID NO:125 having cellobiohydrolase activity, as well as variants of M. thermophila CBH1a (e.g., SEQ ID NO:131 and/or SEQ ID NO:133), and variant fragment(s) having cellobiohydrolase activity. Exemplary CBH1 enzymes include, but are not limited to those described in US Pat. Appln. Publn. No. 2012/0003703 A1, which is hereby incorporated herein by reference in its entirety for all purposes.

[0232] In some embodiments, the CBH2b cellobiohydrolase used in the mixtures of the present invention comprises at least about 80%, at least about 85%, at least about 90%,

at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to SEQ ID NO:127 or a fragment of SEQ ID NO:127, as well as at least one variant *M. thermophila* CBH2b enzyme (e.g., SEQ ID NO:140, 143, and/or 146) and/or variant fragment(s) having cellobiohydrolase activity. Exemplary CBH2b enzymes are described in U.S. Patent Appln. Ser. Nos. 61/479,800, 13/459,038, both of which are hereby incorporated herein by reference in their entirety for all purposes.

[0233] In some embodiments, the EG2 endoglucanase used in the mixtures of the present invention comprises at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to SEQ ID NO:113 or a fragment of SEQ ID NO:113 having endoglucanase activity. Exemplary EG2 enzymes are described in U.S. patent application Ser. No. 13/332,114, and WO 2012/088159, both of which are hereby incorporated herein by reference in their entirety for all purposes.

[0234] In some embodiments, the EG1b endoglucanase used in the mixtures of the present invention comprises at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to SEQ ID NO:110 or a fragment of SEQ ID NO:110 having endoglucanase activity.

[0235] In some embodiments, the BGL1 beta-glucosidase used the mixtures of the present invention comprises at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 99%, or 100% identical to SEQ ID NOS:116, 119, and/or 122, or a fragment of SEQ ID NOS:116, 119, and/or 122 having beta-glucosidase activity. Exemplary BGL1 enzymes include, but are not limited to those described in US Pat. Appln. Publ. No. 2011/0129881, WO 2011/041594, and US Pat. Appln. Publ. No. 2011/0124058 A1, all of which are hereby incorporated herein by reference in their entireties for all purposes.

[0236] In some embodiments, the GH61f protein used in the mixtures of the present invention comprises at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 99%, or 100% identical to SEQ ID NO:29, or a fragment of SEQ ID NO:29 having GH61 activity, assayed as described elsewhere in this disclosure.

[0237] In some embodiments, the GH61p protein used in the mixtures of the present invention comprises at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 99%, or 100% identical to SEQ ID NO:70, SEQ ID NO:73, or a fragment of such sequence having GH61p activity.

[0238] In some embodiments, the xylanase used in the mixtures of the present invention comprises at least about

80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to SEQ ID NO:149, SEQ ID NO:151, or a fragment of such sequence having xylanase activity.

GH61 Activity Assays

[0239] The cellulase enhancing activity of GH61 proteins of the invention can be determined using any suitable GH61 activity assay. For example, in some embodiments, a purified and/or recombinant GH61 protein of this invention is obtained, and then assayed for GH61 activity by combining it with cellulase enzymes in a saccharification reaction, and determining if there is an increase in glucose yield, as compared to the same saccharification reaction conducted without the GH61.

[0240] In one approach, GH61 activity can be assayed by combining a cellulosic substrate with cellulase enzymes (e.g., 5-10 mg total weight of cellulase enzymes per gram of substrate) in the presence and absence of GH61 protein. In some embodiments, the cellulase enzymes comprise a defined set of recombinant cellulase enzymes from *M. thermophila*.

[0241] In another approach, broth from a culture of wild-type *M. thermophila* is used (with and without supplementation with GH61 protein and/or GH61 variants). GH61 activity is evidenced by enhanced glucose yield in the presence of exogenous GH61 (i.e., beyond any enhancement resulting from endogenous GH61 in the broth). It is also possible to use a broth supplemented with one or more purified enzymes.

[0242] Suitable enzymes include isolated recombinant enzymes cloned from *M. thermophila*, including but not limited to EG, BGL, CBH1, and/or CBH2, in any combination suitable for the chosen substrate to yield a measurable product.

[0243] In one exemplary assay for measuring GH61 activity from *M. thermophila* derived GH61 proteins and variant proteins, the cellulase enzymes used are *M. thermophila* BGL1 (e.g., SEQ ID NOS:116, 119, and/or 122); See e.g., Badhan et al., Biores. Technol., 98:504-10 [2007]); *M. thermophila* CBH1 (SEQ ID NOS:128, 131, and/or 134); and *M. thermophila* CBH2 (SEQ ID NOS:137, 140, 143 and/or 146). In some embodiments, endoglucanase is also used, such as *M. thermophila* EG2 (SEQ ID NO:113; See e.g., Rosgaard et al., Prog., 22:493-8 [2006]; and Badhan et al., supra).

[0244] Alternatively, commercially available preparations comprising a mixture of cellulase enzymes may be used, such as LaminexTM and SpezymeTM (Genencor), RohamentTM (Rohm GmbH), and CelluzymeTM, CerefloTM and UltrafloTM (Novozymes).

[0245] Assays with cellulose enzymes are typically done at 50° C., but in some embodiments, other temperatures find use (e.g., 35, 45, 55, 60, or 65° C.). In some embodiments, the GH61 enzymes and any other desired enzymes are combined with the substrate and incubated so as to produce fermentable sugars. The sugars are then recovered and quantitated for yield of glucose. One suitable substrate is wheat straw (e.g., pre-treated wheat straw). Other cellulosic substrates listed in this disclosure may be used as an alternative, including corn stover pretreated with sulfuric acid (See e.g., U.S. Pat. No. 7,868,227). Assay methods are

known in the art. For example, the method of Harris et al., (Harris et al., Biochem., 49:3305-3316 [2010], incorporated herein by reference) finds use. In this method, corn stover is pretreated with sulfuric acid, washed, incubated with cellulase enzymes and GH61 for several days, and then the yield of sugars quantitated by refraction. Another method is described in U.S. Pat. No. 7,868,227 (incorporated herein by reference). In this method, the cellulosic substrate is PCS (corn stover pretreated with heat and dilute sulfuric acid, as described in WO 2005/074647; and a cellulose enzyme mixture is Cellucast®, a blend of cellulase enzymes from the fungus Trichoderma reesei (Sigma-Aldrich). Hydrolysis of PCS is conducted in a total reaction volume of 1.0 mL and a PCS concentration of 50 mg/mL in 1 mM manganese sulfate, 50 mM sodium acetate buffer pH 5.0. The test protein is combined with the base cellulase mixture at relative concentrations between 0 and 100% total protein. The protein composition is incubated with the PCS at 65° C. for 7 days. The combined yield of glucose and cellobiose is measured by refractive index detection.

[0246] GH61 activity is calculated as an increase in glucose production from the substrate by the cellulase(s) in the presence of GH61 protein, in comparison with the same reaction mixture in the absence of GH61 protein. Typically, the increase is dose-dependent within at least a 3-fold range of concentrations. GH61 activity can be expressed as a degree of "synergy".

Use of GH61 Variant Protein to Promote Saccharification

[0247] The GH61 variant proteins of the present invention can be used industrially to promote or otherwise modulate the activity of cellulase enzymes.

[0248] In some embodiments, suitably prepared lignocellulose is subjected to enzymatic hydrolysis using one or more cellulase enzymes in the presence of one or more GH61 variant proteins or preparations according to this invention. Thus, in some embodiments, saccharification reactions are carried out by exposing biomass to GH61 variant protein and cellulases, which work in concert to break down the biomass. Typically, the cellulases include at least one endoglucanase (EG), at least one beta-glucosidase (BGL), at least one Type 1 cellobiohydrolase (CBH1), and/or at least one Type 2 cellobiohydrolase (CBH2). In some alternative embodiments, a minimum enzyme mixture is used, for example, comprising GH61 protein in combination with BGL and either CBH1 or CBH2, or both, but with substantially no EG.

[0249] Hydrolysis of the hemicellulose and cellulose components of a lignocellulosic feedstock yields a lignocellulosic hydrolysate comprising xylose and glucose. Other sugars typically present include galactose, mannose, arabinose, fucose, rhamnose, or a combination thereof. Regardless of the means of hydrolyzing the lignocellulosic feedstock (e.g., full acid hydrolysis or chemical pretreatment with or without subsequent enzymatic hydrolysis), the xylose and glucose generally make up a large proportion of the sugars present. In some embodiments, if the lignocellulosic hydrolysate is a hemicellulose hydrolysate resulting from acid pretreatment, xylose will likely be the predominant sugar and lesser amounts of glucose will be present. The relative amount of xylose present in the lignocellulosic hydrolysate will depend on the feedstock and the pretreatment that is employed.

[0250] The cells and compositions of the present invention (including culture broth and/or cell lysates) find use in the production of fermentable sugars from cellulosic biomass. The biomass substrate may be converted to a fermentable sugar by (a) optionally pretreating a cellulosic substrate to increase its susceptibility to hydrolysis; (b) contacting the optionally pretreated cellulosic substrate of step (a) with a composition, culture medium or cell lysate containing at least one GH61 variant and any additional cellulases under conditions suitable for the production of cellobiose and fermentable sugars such as glucose.

[0251] In some embodiments, each of the at least one GH61 variant and additional cellulase enzymes described herein are partially or substantially purified, and the purified proteins are added to the biomass. Alternatively or in addition, the various individual enzymes are recombinantly expressed in different cells, and the media containing the secreted proteins are added to the biomass. The GH61 variant protein(s) and cellulase enzymes are then reacted with the biomass at a suitable temperature for a suitable period.

[0252] In some embodiments, sugars produced by methods of this invention are used to produce an end product such as an alcohol, such as ethanol. Other end-products may be produced, such as acetone, amino acid(s) (e.g., glycine, or lysine), organic acids (e.g., lactic acid, acetic acid, formic acid, citric acid, oxalic acid, or uric acid), glycerol, diols (e.g., 1,3 propanediol or butanediol), or at least one hydrocarbon with 1 to 20 carbon atoms. In some embodiments, cellulosic biomass is treated with at least one composition of the present invention to prepare an animal feed.

[0253] In some embodiments, when GH61 protein (e.g., at least one GH61 variant) is used to increase the yield of fermentable sugars in a saccharification reaction, at least one divalent metal cation or additional cofactor or adjunct compound is added to the reaction at a concentration of about 1 to 100 uM. In some embodiments, the divalent metal cation (e.g., copper) is included at a concentration of about 1 to 90 uM, about 10 to 80 uM, about 15 to 75 uM, about 20 to 70 uM, about 30 to 60 uM, about 40 to 50 uM, about 5 to 10 uM, about 10 to 20 μ M, about 15 to 25 uM, about 20 to 30 uM, about 25 to 35 uM, about 30 to 40 uM, about 35 to 45 uM, about 40 to 50 uM, about 45 to 55 uM, about 50 to 60 uM, about 55 to 65 uM, about 60 to 70 uM, about 65 to 75 uM, about 70 to 80 uM, about 75 to 85 uM, about 80 to 90 uM, about 85 to 95 uM, about 90 to 100 uM, about 95 to 100 uM. or about 1 uM. about 2 uM. about 3 uM. about 4 uM. about 5 uM, about 6 uM, about 7 uM, about 8 uM, about 9 uM, about 10 uM, about 11 uM, about 12 uM, about 13 uM, about 14 uM, about 15 uM, about 16 uM, about 17 uM, about 18 uM, about 19 uM, about 20 uM, about 25 uM, about 30 uM, about 35 uM, about 40 uM, about 45 uM, about 50 uM, about 55 uM, about 60 uM, about 65 uM, about 70 uM, about 75 uM, about 80 uM, about 85 uM, about 90 uM, about 95 uM, or about 100 uM. Divalent cations present in the reaction include, but are not limited to Cu++, Mn++, Co++, Mg++, Ni++, Zn++, and Ca++ at concentrations of 0.001 to 50 mM, 1 μ M to 1 mM, or 10-50 μ M. Indeed, it is not intended that the concentration of divalent metal cation(s) be limited to any particular value, as any suitable concentration finds use in the present invention and will depend upon the reaction conditions, as known in the

Fermentation of Sugars

[0254] In some embodiments, once a suitable cellulosic biomass substrate has been treated with cellulase(s) and at least one GH61 variant protein(s) according to this invention, sugars and other components in the product are fermented to produce various fermentation end products, including but not limited to biofuels, such as ethanol or alcohol mixtures. Depending on the substrate used, other components (e.g., long-chain esters) may also be present.

[0255] Fermentation is the process of extracting energy from the oxidation of organic compounds, such as carbohydrates, using an endogenous electron acceptor. Alcoholic fermentation is a process in which sugars such as xylulose, glucose, fructose, and sucrose are converted into a fermentation end product, including but not limited to biofuel. For example, the fermentation product may comprise alcohol (such as ethanol or butanol) and/or a sugar alcohol, such as xylitol.

[0256] In some embodiments, enzyme compositions comprising at least one GH61 variant of the present invention is reacted with a biomass substrate in the range of about 25° C. to 100° C., about 30° C. to 90° C., about 30° C. to 80° C., and about 30° C. to 70° C. In some embodiments, the biomass is reacted with the enzyme compositions at about 25° C., at about 30° C., at about 35° C., at about 40° C., at about 45° C., at about 50° C., at about 55° C., at about 60° C., at about 65° C., at about 70° C., at about 75° C., at about 80° C., at about 85° C., at about 90° C., at about 95° C. and at about 100° C. In general, the pH range is from about pH 3.0 to 8.5, pH 3.5 to 8.5, pH 4.0 to 7.5, pH 4.0 to 7.0 and pH 4.0 to 6.5. The incubation time may vary for example from 1.0 to 240 hours, from 5.0 to 180 hrs and from 10.0 to 150 hrs. For example, the incubation time is generally at least 1 h, at least 5 hrs, at least 10 hrs, at least 15 hrs, at least 25 hrs, at least 50 h, at least 100 hrs, at least 180, or longer. Incubation of the cellulase under these conditions and subsequent contact with the substrate may result in the release of substantial amounts of fermentable sugars from the substrate (e.g., glucose when the cellulase is combined with beta-glucosidase). For example at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90% or more fermentable sugar may be available as compared to the release of sugar by a wild-type polypeptide.

[0257] Any suitable micro-organism finds use in converting sugar in the sugar hydrolysate to ethanol or other fermentation products. These include yeast from the genera Saccharomyces, Hansenula, Pichia, Kluyveromyces, and Candida. Commercially available yeasts also find use, including but not limited to ETHANOLRED® SAFDISTIL®, THERMOSACC®, FERMIOL®, FERMIVIN®, or SuperstartTM.

[0258] In some embodiments, the yeast is genetically engineered to ferment both hexose and pentose sugars to at least one end-product, including but not limited to ethanol. Alternatively, in some embodiments, the yeast is a strain that has been made capable of xylose and glucose fermentation by one or more non-recombinant methods, such as adaptive evolution or random mutagenesis and selection. For example, in some embodiments, the fermentation is performed with recombinant *Saccharomyces*. In some embodiments, the recombinant yeast is a strain that has been made capable of xylose fermentation by recombinant incorporation of genes encoding xylose reductase (XR) and xylitol

dehydrogenase (XDH) (See e.g., U.S. Pat. Nos. 5,789,210, 5,866,382, 6,582,944 and 7,527,927; and EP 450 530) and/or gene(s) encoding one or more xylose isomerase (XI) (See e.g., U.S. Pat. Nos. 6,475,768 and 7,622,284). In some additional embodiments, the modified yeast strain overexpresses an endogenous and/or heterologous gene encoding xylulokinase (XK). Other yeast can ferment hexose and pentose sugars to at least one end-product, including but not limited to ethanol, such as yeast of the genera *Hansenula*, *Pichia*, *Kluyveromyces* and *Candida* (See e.g., WO 2008/130603).

[0259] A typical temperature range for the fermentation of xylose to ethanol using Saccharomyces spp. is between about 25° C. to about 37° C., although the temperature may be higher (up to 55° C.) if the yeast is naturally or genetically modified to be thermostable. The pH of a typical fermentation employing Saccharomyces spp. is between about 3 and about 6, depending on the pH optimum of the fermentation microorganism. The sugar hydrolysate may also be supplemented with additional nutrients required for growth and fermentation performance of the fermentation microorganism. For example, yeast extract, specific amino acids, phosphate, nitrogen sources, salts, trace elements and vitamins (See e.g., Verduyn et al., Yeast 8:501-170 [1992]; Jorgensen, Appl. Biochem. Biotechnol., 153:44-57 [2009]; and Zhao et al., J. Biotechnol., 139:55-60 [2009]). In some embodiments, the fermentation is conducted under anaerobic conditions, although aerobic or microaerobic conditions also find use.

Use of Copper, Gallic Acid, and Biomass Pretreatment Filtrate to Enhance GH61 Activity

[0260] In some embodiments, GH61 proteins and variants exhibit increased activity in a saccharification reaction when Cu⁺⁺, gallic acid, and/or pretreatment filtrate are added. In some embodiments, wild-type GH61a (SEQ ID NO:2) and/or Variant 1 (SEQ ID NO:5) are used. Similarly, in some embodiments, the present invention encompasses the supplemental addition of Cu⁺⁺, gallic acid, and/or pretreatment filtrate as an enhancing agent in saccharification reactions conducted using any of the GH61a variants shown in Tables 1 and 2, any of the other GH61 proteins described herein, and any active variant or fragment thereof such as may be obtained using any suitable method, including but not limited to the methods provided herein. In some embodiments, enhancing GH61 activity allows saccharification reactions to proceed more quickly and/or with less GH61 or cellulase enzyme.

[0261] In some embodiments, Cu⁺⁺, gallic acid, and other potential cofactors are tested by titrating into a saccharification reaction comprising a GH61 protein, one or more cellulase enzymes (e.g., CBH1, CBH2, and/or BGL), and a cellulosic substrate, and measuring the relative rate of glucose production. Controls may include the combination of GH61 protein, cellulase enzymes, and substrate in the absence of the putative cofactor (to test the relative enhancement), and combinations of cellulase enzymes and substrate with or without cofactor in the absence of GH61 protein (to determine the effect of the putative cofactor on other enzymes in the reaction).

[0262] As shown herein, in some embodiments, Cu⁺⁺ can enhance the activity of GH61a Variant 1 (SEQ ID NO:5). The source of Cu⁺⁺ used in the example was CuSO₄, although any effective copper source can be used as an

alternative. Effective supplemental copper sources include copper salts and metallic copper, or mixtures thereof. Copper salts include copper(II) (Cu⁺) salts and copper(I) (Cu⁺) salts. Copper in metallic copper(0) and copper(I) salts can be oxidized to Cu⁺⁺ in water by oxygen (e.g., by oxygen present in air). Suitable copper(II) and copper(I) salts include sulfates, chlorides, oxides, hydroxides, nitrates, carbonates, hydroxycarbonates (basic carbonates), oxychlorides, and acetates. Suitable sources of metallic copper include metallic copper refined from copper ores, including copper vessels and piping in contact with water and oxygen (e.g., in air).

[0263] In some embodiments, as shown herein, gallic acid and/or pretreated biomass filtrate can also be used to enhance the activity of GH61 protein. In some embodiments, the gallic acid and/or pretreated biomass filtrate are titrated to the optimal dose for the reaction conditions used. Thus, an effective concentration of gallic acid can be determined empirically by titrating it into the reaction mixture, depending on the enzymes being used and the total biomass. In some embodiments, in which gallic acid is utilized, an effective concentration of gallic acid is within the range of about 0.1 to 20 mM, about 0.5 to 5 mM, or about 1 to 2 mM. However, it is not intended that the present invention be limited to any particular concentration of gallic acid, as any suitable concentration finds use in the present invention, depending upon the reaction conditions.

[0264] A cofactor of GH61 in a reaction volume such as Cu⁺⁺ is said to be "supplemented" if it has been added into the reaction volume as a separate reagent, which is in addition to any metal ions that may be bound to GH61 or other reactants beforehand. Depending on the amount or molar ratio of cofactors such as Cu⁺⁺ already present in a GH61 preparation, addition of such cofactors into the reaction may increase the amount of glucose produced per weight of GH61 by 25%, 50%, 2-fold, or more.

[0265] Effective concentrations of supplemented Cu⁺⁺ in the reaction volume may be readily determined empirically as described herein. Depending on reaction conditions, effective supplemented concentrations include but are not limited to 1 μ M to 200 μ M, 4 μ M to 100 μ M, 10 μ M to 100 μ M, or at least 1 μ M, 4 μ M, 10 μ M, 20 μ M, 30 μ M, 40 μ M, or 50 µM in the reaction volume (i.e., the concentration of supplemented copper in the reaction volume). However, it is not intended that the present invention be limited to any particular copper concentration or range of concentrations, as any suitable concentration finds use and will depend upon the reaction conditions used. In some embodiments, prior to or without copper supplementation, copper is present in the GH61 protein preparation, the other enzymes, the cellulase fermentation production media, the pretreated biomass, and/ or any other component of the reaction volume (i.e., in some embodiments, there are other sources of copper present in the reaction than any copper added to the reaction as a supplement). Thus, in some embodiments, the reaction is conducted without the supplemental addition of copper as described herein.

[0266] In some embodiments, inclusion of copper and/or gallic acid in the reaction mixture at an effective concentration or ratio, less GH61 protein is needed to produce the same amount of fermentable sugars from the same cellulase enzymes. In some embodiments, this provides a cost reduction associated with saccharification reactions.

Vectors, Promoters, Other Expression Elements, Host Cells, and Signal Peptides.

[0267] There are numerous general texts that describe molecular biological techniques including the use of vectors, promoters, in vitro amplification methods including the polymerase chain reaction (PCR) and the ligase chain reaction (LCR) (See e.g., Berger and Kimmel, Guide to Molecular Cloning Techniques, Methods in Enzymology, Volume 152 Academic Press, Inc., San Diego, Calif. (Berger); Sambrook et al., Molecular Cloning-A Laboratory Manual (2nd Ed.), Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1989; and *Current Protocols in Molecular Biology*, F. M. Ausubel et al., eds., Current Protocols [as supplemented through 2009]). Introduction of a vector or a DNA construct into a host cell can be effected by any suitable method, including but not limited to calcium phosphate transfection, DEAE-Dextran mediated transfection, electroporation, or other common techniques (See Davis et al., 1986, Basic Methods in Molecular Biology). General references on cell culture techniques and nutrient media for fungal host cells include Gene Manipulations in Fungi, Bennett, J. W. et al., Ed., Academic Press, 1985; More Gene Manipulations in Fungi, Bennett, J. W. et al., Ed., Academic Press, 1991; and The Handbook of Microbiological Media, CRC Press, Boca Raton, Fla., 1993.

Vectors

[0268] The present invention makes use of recombinant constructs comprising at least one sequence encoding at least one GH61 variant as described above. In some embodiments, the present invention provides expression vectors comprising at least one GH61 variant polynucleotide operably linked to a heterologous promoter. Expression vectors of the present invention may be used to transform an appropriate host cell to permit the host to express the GH61 variant protein. Methods for recombinant expression of proteins in fungi and other organisms are well known in the art, and a number expression vectors are available or can be constructed using routine methods (See, e.g., Tkacz and Lange, 2004, Advances in fungal biotechnology for industry, agriculture, and medicine, Kluwer Academic/Plenum Publishers, New York; Zhu et al., Plasmid 6:128-33 [2009]; and Kavanagh, K. 2005, Fungi: biology and applications, Wiley, all of which are incorporated herein by reference).

[0269] Nucleic acid constructs of the present invention comprise a vector, such as, a plasmid, a cosmid, a phage, a virus, a bacterial artificial chromosome (BAC), a yeast artificial chromosome (YAC), and the like, into which a nucleic acid sequence of the invention has been inserted. Polynucleotides of the present invention can be incorporated into any one of a variety of expression vectors suitable for expressing a polypeptide. Suitable vectors include, but are not limited to chromosomal, nonchromosomal and synthetic DNA sequences (e.g., derivatives of SV40); bacterial plasmids; phage DNA; baculovirus; yeast plasmids; vectors derived from combinations of plasmids and phage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus, pseudorabies, adenovirus, adeno-associated virus, retroviruses and many others. Any vector that transduces genetic material into a cell, and, if replication is desired, which is replicable and viable in the relevant host can be used.

[0270] In some embodiments, the construct further comprises regulatory sequences, including, for example, a pro-

moter, operably linked to the protein encoding sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art.

Promoters

[0271] In order to obtain high levels of expression in a particular host it is often useful to express the GH61 variant of the present invention under the control of a heterologous promoter. A promoter sequence may be operably linked to the 5' region of the GH61 variant coding sequence using routine methods.

[0272] Examples of useful promoters for expression of GH61 enzymes include promoters from fungi. In some embodiments, a promoter sequence that drives expression of a gene other than a GH61 gene in a fungal strain may be used. As a non-limiting example, a fungal promoter from a gene encoding an endoglucanase may be used. In some embodiments, a promoter sequence that drives the expression of a GH61 gene in a fungal strain other than the fungal strain from which the GH61 variant was derived may be used. As a non-limiting example, if the GH61 variant is derived from C1, a promoter from a *T. reesei* GH61 gene may be used or a promoter as described in WO 2010/107303, such as but not limited to the sequences identified as SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, or SEQ ID NO:29 in WO 2010/107303.

[0273] Examples of other suitable promoters useful for directing the transcription of the nucleotide constructs of the present invention in a filamentous fungal host cell are promoters obtained from the genes for Aspergillus oryzae TAKA amylase, Rhizomucor miehei aspartic proteinase, Aspergillus niger neutral alpha-amylase, Aspergillus niger acid stable alpha-amylase, Aspergillus niger or Aspergillus awamori glucoamylase (glaA), Rhizomucor miehei lipase, Aspergillus oryzae alkaline protease, Aspergillus oryzae triose phosphate isomerase, Aspergillus nidulans acetamidase, and Fusarium oxysporum trypsin-like protease (WO 96/00787, which is incorporated herein by reference), as well as the NA2-tpi promoter (a hybrid of the promoters from the genes for Aspergillus niger neutral alpha-amylase and Aspergillus oryzae triose phosphate isomerase), promoters such as cbh1, cbh2, egl1, egl2, pepA, hfb1, hfb2, xyn1, amy, and glaA (Nunberg et al., Mol. Cell Biol., 4:2306-2315 [1984]; Boel et al., EMBO J., 3:1581-85 [1984]; and European Pat. Publ. 137280, all of which are incorporated herein by reference), and mutant, truncated, and hybrid promoters thereof. In a yeast host, useful promoters can be from the genes for Saccharomyces cerevisiae enolase (eno-1), Saccharomyces cerevisiae galactokinase (gall), Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (ADH2/GAP), and S. cerevisiae 3-phosphoglycerate kinase. Other useful promoters for yeast host cells are known (See e.g., Romanos et al., Yeast 8:423-488 [1992], incorporated herein by reference. Promoters associated with chitinase production in fungi may be used (See, e.g., Blaiseau and Lafay, Gene 120243-248 [1992] (filamentous fungus Aphanocladium album); Limon et al., Curr. Genet, 28:478-83 (Trichoderma harzianum), both of which are incorporated herein by reference).

[0274] Promoters known to control expression of genes in prokaryotic or eukaryotic cells or their viruses and which can be used in some embodiments of the invention include SV40 promoter, $E.\ coli$ lac or trp promoter, phage lambda P_L promoter, tac promoter, T7 promoter, and the like. In bac-

terial host cells, suitable promoters include the promoters obtained from the *E. coli* lac operon, *Streptomyces coeli-color* agarase gene (dagA), *Bacillus subtilis* levansucranse gene (sacB), *Bacillus licheniformis* α-amylase gene (amyl), *Bacillus stearothermophilus* maltogenic amylase gene (amyM), *Bacillus amyloliquefaciens* α-amylase gene (amyQ), *Bacillus subtilis* xylA and xylB genes and prokaryotic beta-lactamase gene.

[0275] Any other promoter sequence that drives expression in a suitable host cell may be used. Suitable promoter sequences can be identified using well known methods. In one approach, a putative promoter sequence is linked 5' to a sequence encoding a reporter protein, the construct is transfected into the host cell (e.g., M. thermophila) and the level of expression of the reporter is measured. Expression of the reporter can be determined by measuring, for example, mRNA levels of the reporter sequence, an enzymatic activity of the reporter protein, or the amount of reporter protein produced. For example, promoter activity may be determined by using the green fluorescent protein as coding sequence (See e.g., Henriksen et al, Microbiol., 145:729-34 [1999], incorporated herein by reference) or a lacZ reporter gene (Punt et al., Gene, 197:189-93 [1997], incorporated herein by reference). Functional promoters may be derived from naturally occurring promoter sequences by directed evolution methods (See, e.g. Wright et al., Human Gene Therapy, 16:881-892 [2005], incorporated herein by reference.

[0276] Additional promoters include those from *M. thermophila*, provided in U.S. Prov. Patent Appln. Ser. Nos. 61/375,702, 61/375,745, 61/375,753, 61/375,755, and 61/375,760, all of which were filed on Aug. 20, 2010, and are hereby incorporated by reference in their entireties, as well as WO 2010/107303.

Other Expression Elements

[0277] Cloned GH61 variants may also have a suitable transcription terminator sequence, a sequence recognized by a host cell to terminate transcription. The terminator sequence is operably linked to the 3' terminus of the nucleic acid sequence encoding the polypeptide. Any terminator that is functional in the host cell of choice may be used in the present invention.

[0278] For example, exemplary transcription terminators for filamentous fungal host cells can be obtained from the genes for *Aspergillus oryzae* TAKA amylase, *Aspergillus niger* glucoamylase, *Aspergillus nidulans* anthranilate synthase, *Aspergillus niger* alpha-glucosidase, and *Fusarium oxysporum* trypsin-like protease. Suitable transcription terminators are known in the art (See e.g., U.S. Pat. No. 7,399,627, incorporated herein by reference).

[0279] Exemplary terminators for yeast host cells include those obtained from the genes for *Saccharomyces cerevisiae* enolase, *Saccharomyces cerevisiae* cytochrome C (CYC1), and *Saccharomyces cerevisiae* glyceraldehyde-3-phosphate dehydrogenase. Other useful terminators for yeast host cells are known in the art (See e.g., Romanos et al., Yeast 8:423-88 [1992]).

[0280] A suitable leader sequence may be part of a cloned GH61 variant sequence, which is a nontranslated region of an mRNA that is important for translation by the host cell. The leader sequence is operably linked to the 5' terminus of the nucleic acid sequence encoding the polypeptide. Any leader sequence that is functional in the host cell of choice

may be used. Exemplary leaders for filamentous fungal host cells are obtained from the genes for *Aspergillus oryzae* TAKA amylase and *Aspergillus nidulans* triose phosphate isomerase. Suitable leaders for yeast host cells are obtained from the genes for *Saccharomyces cerevisiae* enolase (ENO-1), *Saccharomyces cerevisiae* 3-phosphoglycerate kinase, *Saccharomyces cerevisiae* alpha-factor, and *Saccharomyces cerevisiae* alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (ADH2/GAP).

[0281] In some embodiments, sequences also contain a polyadenylation sequence, which is a sequence operably linked to the 3' terminus of the nucleic acid sequence and which, when transcribed, is recognized by the host cell as a signal to add polyadenosine residues to transcribed mRNA. Any polyadenylation sequence which is functional in the host cell of choice may be used in the present invention. Exemplary polyadenylation sequences for filamentous fungal host cells can be from the genes for *Aspergillus oryzae* TAKA amylase, *Aspergillus niger* glucoamylase, *Aspergillus nidulans* anthranilate synthase, *Fusarium oxysporum* trypsin-like protease, and *Aspergillus niger* alpha-glucosidase. Useful polyadenylation sequences for yeast host cells are known in the art (See e.g., Guo and Sherman, Mol. Cell. Biol., 15:5983-5990 [1995]).

[0282] The expression vector of the present invention optionally contains one or more selectable markers, which facilitate easy selection of transformed cells. A selectable marker is a typically gene, the product of which provides for biocide or viral resistance, resistance to heavy metals, prototrophy to auxotrophs, and the like. Selectable markers for use in a filamentous fungal host cell include, but are not limited to, amdS (acetamidase), argB (ornithine carbamoyltransferase), bar (phosphinothricin acetyltransferase), hph (hygromycin phosphotransferase), niaD (nitrate reductase), pyrG (orotidine-5'-phosphate decarboxylase), sC (sulfate adenyltransferase), and trpC (anthranilate synthase), as well as equivalents thereof. Embodiments for use in an Aspergillus cell include the amdS and pyrG genes of Aspergillus nidulans or Aspergillus orvzae and the bar gene of Streptomyces hygroscopicus. Suitable markers for yeast host cells include but are not limited to ADE2, HIS3, LEU2, LYS2, MET3, TRP1, and URA3.

Host Cells

[0283] In some embodiments, at least one GH61 variant protein of the present invention is expressed from a nucleic acid that has been recombinantly introduced into a suitable host cell line. In some embodiments, the host cell also expresses other proteins of interest, particularly one or more cellulase enzymes that work in concert with at least one GH61 variant protein in the process of saccharification. The cellulase enzymes may be constitutively expressed by the parent strain of the host cell, or they may be expressed from other recombinant nucleic acids that were introduced serially or simultaneously with the GH61 variant encoding sequence.

[0284] Rather than expressing at least one GH61 variant protein and at least one additional cellulase enzyme in the same cell, in some embodiments, the invention is practiced by producing at least one GH61 variant protein in one host cell, and producing one or more cellulases together in another host cell, or in a plurality of host cells. Once such cells have been engineered, cells expressing GH61 protein and cells expressing cellulase enzymes can be combined and

cultured together to produce compositions of this invention containing both GH61 variant proteins and other cellulase enzymes. Alternatively, the culture supernatant or broth from each cell line can be collected separately, optionally fractionated to enrich for the respective activities, and then mixed together to produce the desired combination.

[0285] Suitable fungal host cells include, but are not limited to Ascomycota, Basidiomycota, Deuteromycota, Zygomycota, and Fungi imperfecti. In some embodiments, preferred fungal host cells are yeast cells, and filamentous fungal cells, including all filamentous forms of the subdivision Eumycotina and Oomycota. Filamentous fungi are characterized by a vegetative mycelium with a cell wall composed of chitin, cellulose and other complex polysaccharides, and are morphologically distinct from yeast. In some embodiments, *Trichoderma* is a source of one or more cellulases for use in combination with GH61 variant proteins.

[0286] Any suitable host cell finds use in the present invention, including but not limited to host cells that are species of Achlya, Acremonium, Aspergillus, Aureobasidium, Azospirillum, Bjerkandera, Cellulomonas, Cephalosporium, Ceriporiopsis, Chrysosporium, Clostridium, Coccidioides, Cochliobolus, Coprinus, Coriolus, Corynascus, Cryphonectria, Cryptococcus, Dictyostelium, Diplodia, Elizabethkingia, Endothia, Erwinia, Escherichia, Fusarium, Gibberella, Gliocladium, Gluconacetobacter, Humicola, Hypocrea, Kuraishia, Mucor, Myceliophthora, Neurospora, Nicotiana, Paenibacillus, Penicillium, Periconia, Phaeosphaeria, Phlebia, Piromyces, Podospora, Prevotella, Pyricularia, Rhizobium, Rhizomucor, Rhizopus, Ruminococcus, Saccharomycopsis, Salmonella, Schizophyllum, Scytalidium, Septoria, Sporotrichum, Streptomyces, Talaromyces, Thermoanaerobacter, Thermoascus, Thermotoga, Thielavia, Tolypocladium, Trametes, Trichoderma, Tropaeolum, Uromyces, Verticillium, Volvariella, Wickerhamomyces, or corresponding teleomorphs, or anamorphs, and synonyms or taxonomic equivalents thereof.

[0287] An exemplary host cell is yeast, including but not limited to Candida, Hansenula, Saccharomyces, Schizosaccharomyces, Pichia, Kluyveromyces, or Yarrowia. In some embodiments, the yeast cell is Hansenula polymorpha, Saccharomyces cerevisiae, Saccharomyces carlsbergensis, Saccharomyces diastaticus, Saccharomyces norbensis, Saccharomyces kluyveri, Schizosaccharomyces pombe, Pichia pastoris, Pichia finlandica, Pichia trehalophila, Pichia kodamae, Pichia membranaefaciens, Pichia opuntiae, Pichia thermotolerans, Pichia salictaria, Pichia quercuum, Pichia pijperi, Pichia stipitis, Pichia methanolica, Pichia angusta, Kluyveromyces lactis, Candida albicans, or Yarrowia lipolytica.

[0288] Another exemplary host cell is a *Myceliophthora* species, such as *M. thermophila*. As used herein, the term "C1" refers to *Myceliophthora thermophila*, including a fungal strain described by Garg (See, Garg, Mycopathol., 30: 3-4 [1966]). As used herein, "*Chrysosporium lucknowense*" includes the strains described in U.S. Pat. Nos. 6,015, 707, 5,811,381 and 6,573,086; US Pat. Pub. Nos. 2007/0238155, US 2008/0194005, US 2009/0099079; International Pat. Pub. Nos., WO 2008/073914 and WO 98/15633, all of which are incorporated herein by reference, and include, without limitation, *Chrysosporium lucknowense* Garg 27K, VKM-F 3500 D (Accession No. VKM F-3500-D), C1 strain UV13-6 (Accession No. VKM F-3632

D), C1 strain NG7C-19 (Accession No. VKM F-3633 D), and C1 strain UV18-25 (VKM F-3631 D), all of which have been deposited at the All-Russian Collection of Microorganisms of Russian Academy of Sciences (VKM), Bakhurhina St. 8, Moscow, Russia, 113184, and any derivatives thereof. Although initially described as Chrysosporium lucknowense, C1 may currently be considered a strain of Myceliophthora thermophila. Other C1 strains include cells deposited under accession numbers ATCC 44006, CBS (Centraalbureau voor Schimmelcultures) 122188, CBS 251. 72, CBS 143.77, CBS 272.77, CBS122190, CBS122189, and VKM F-3500D. Exemplary C1 derivatives include modified organisms in which one or more endogenous genes or sequences have been deleted or modified and/or one or more heterologous genes or sequences have been introduced. Derivatives include, but are not limited to UV18#100f Δalp1, UV18#100f Δpyr5 Δalp1, UV18#100.f Δalp1 Δpep4 Δalp2, UV18#100.f Δpyr5 Δalp1 Δpep4 Δalp2 and UV18#100.f Δpyr4 Δpyr5 Δalp1 Δpep4 Δalp2, as described in WO2008073914 and WO2010107303, each of which is incorporated herein by reference.

[0289] In some embodiments, the host cell is a *Trichoderma* species, such as *T. longibrachiatum*, *T. viride*, *Hypocrea jecorina* or *T. reesei*, *T. koningii*, and *T. harzianum*

[0290] In some embodiments, the host cell is a Aspergillus species, such as A. awamori, A. funigatus, A. japonicus, A. nidulans, A. niger, A. aculeatus, A. foetidus, A. oryzae, A. sojae, and A. kawachi.

[0291] In some additional embodiments, the host cell is a Fusarium species, such as F. bactridioides, F. cerealis, F. crookwellense, F. culmorum, F. graminearum, F. graminum. F. oxysporum, F. roseum, and F. venenatum.

[0292] The host cell may also be a *Neurospora* species, such as *N. crassa*. Alternatively, the host cell is a *Humicola* species, such as *H. insolens*, *H. grisea*, and *H. lanuginosa*. Alternatively, the host cell is a *Mucor* species, such as *M. miehei* and *M. circinelloides*. Alternatively, the host cell is a *Rhizopus* species, such as *R. oryzae* and *R. niveus*. Alternatively, the host cell is a *Penicillum* species, such as *P. purpurogenum*, *P. chrysogenum*, and *P. verruculosum*.

[0293] In some embodiments, the host cell is a *Thielavia* species, such as *T. terrestris*. Alternatively, the host cell is a *Tolypocladium* species, such as *T. inflatum* and *T. geodes*. Alternatively, the host cell is a the *Trametes* species, such as *T. villosa* and *T. versicolor*.

[0294] In some embodiments, the host cell is of a *Chrysosporium* species, such as *C. lucknowense*, *C. keratinophilum*, *C. tropicum*, *C. merdarium*, *C. inops*, *C. pannicola*, and *C. zonatum*. In a particular embodiment the host is *C. lucknowense*. Alternatively, the host cell is an algae such as *Chlamydomonas* (e.g., *C. reinhardtii*) or *Phormidium* (P. sp. ATCC29409).

[0295] In some alternative embodiments, the host cell is a prokaryotic cell. Suitable prokaryotic cells include Grampositive, Gram-negative and Gram-variable bacterial cells. Examples of bacterial host cells include, but are not limited to Bacillus (e.g., B. subtilis, B. licheniformis, B. megaterium, B. stearothermophilus and B. amyloliquefaciens), Streptomyces (e.g., S. ambofaciens, S. achromogenes, S. avermitilis, S. coelicolor, S. aureofaciens, S. aureus, S. fungicidicus, S. griseus, and S. lividans), and Streptococcus (e.g., S. equisimiles, S. pyogenes, and S. uberis) species.

[0296] Any suitable eukaryotic or prokaryotic species finds use as host cells, including but not limited to Aspergillus aculeatus, Azospirillum irakense KBC1, Bacillus sp. GL1, Cellulomonas biazotea, Clostridium thermocellum, Thermoanaerobacter brockii, Coccidioides posadasii, Dictyostelium discoideum, Elizabethkingia meningoseptica, Erwinia chrysanthemi, Escherichia coli, Gluconacetobacter xylinus, Hypocrea jecorina, Kuraishia capsulata, Nicotiana tabacum, Paenibacillus sp. C7, Penicillium brasilianum, Periconia sp. BCC 2871, Phaeosphaeria avenaria, Prevotella albensis, Rhizobium leguminosarum, Rhizomucor miehei, Ruminococcus albus, Saccharomycopsis fibuligera, Salmonella typhimurium, Septoria lycopersici, Streptomyces coelicolor, Talaromyces emersonii, Thermotoga maritima, Tropaeolum majus, Uromyces viciae-fabae, and Wickerhamomyces anomalus.

[0297] Strains that may be used in the practice of the invention (both prokaryotic and eukaryotic strains) may be obtained from any suitable source, including but not limited to the American Type Culture Collection (ATCC), or other biological depositories such as Deutsche Sammlung von Mikroorganismen and Zellkulturen GmbH (DSM), Centraalbureau Voor Schimmelcultures (CBS), and the Agricultural Research Service Patent Culture Collection, Northern Regional Research Center (NRRL).

[0298] In some embodiments, host cells are genetically modified to have characteristics that improve genetic manipulation, protein secretion, protein stability or other properties desirable for expression or secretion of a protein. For example, knock-out of Alp1 function results in a cell that is protease deficient. Knock-out of pyr5 function results in a cell with a pyrimidine deficient phenotype. Host cells may be modified to delete endogenous cellulase protein-encoding sequences or otherwise eliminate expression of one or more endogenous cellulases. Expression of one or more unwanted endogenous cellulases may be inhibited to increase the proportion of cellulases of interest, for example, by chemical or UV mutagenesis and subsequent selection. Homologous recombination can be used to induce targeted gene modifications by specifically targeting a gene in vivo to suppress expression of the encoded protein.

Signal Peptides

[0299] In general, polypeptides are secreted from the host cell after being expressed as a pre-protein including a signal peptide (i.e., an amino acid sequence linked to the amino terminus of a polypeptide which directs the encoded polypeptide into the cell's secretory pathway).

[0300] In some embodiments, the secreted part of a GH61 variant is linked at the N-terminal to a heterologous signal peptide, depending on the host cell and other factors. Effective signal peptide coding regions for filamentous fungal host cells include but are not limited to signal peptide coding regions obtained from *Aspergillus oryzae* TAKA amylase, *Aspergillus niger* neutral amylase, *Aspergillus niger* glucoamylase, *Rhizomucor miehei* aspartic proteinase, *Humicola insolens* cellulase, *Humicola lanuginosa* lipase, and *T. reesei* cellobiohydrolase II (TrCBH2).

[0301] Effective signal peptide coding regions for bacterial host cells include but are not limited to signal peptide coding regions obtained from the genes for *Bacillus* NCIB 11837 maltogenic amylase, *Bacillus stearothermophilus* alpha-amylase, *Bacillus licheniformis* subtilisin, *Bacillus licheniformis* beta-lactamase, *Bacillus stearothermophilus*

neutral proteases (nprT, nprS, nprM), and *Bacillus subtilis* prsA. Further signal peptides are known in the art (See e.g., described by Simonen and Palva, Microbiol. Rev., 57:109-137 [1993]).

[0302] Useful signal peptides for yeast host cells also include those from the genes for *Saccharomyces cerevisiae* alpha-factor, *Saccharomyces cerevisiae* SUC2 invertase (see Taussig and Carlson, Nucl. Acids Res., 11:1943-54 [1983]; SwissProt Accession No. P00724; and Romanos et al., Yeast 8:423-488 [1992]). Variants of these signal peptides and other signal peptides are suitable. In addition, the signal peptides provided herein find use in the present invention.

EXPERIMENTAL

[0303] The present invention is described in further detail in the following Examples, which are not in any way intended to limit the scope of the invention as claimed.

[0304] In the experimental disclosure below, the following abbreviations apply: ppm (parts per million); M (molar); mM (millimolar), uM and μM (micromolar); nM (nanomolar); mol (moles); gm and g (gram); mg (milligrams); ug and μg (micrograms); L and 1 (liter); ml and mL (milliliter); cm (centimeters); mm (millimeters); um and µm (micrometers); sec. (seconds); min(s) (minute(s)); h(s) and hr(s) (hour(s)); U (units); MW (molecular weight); rpm (rotations per minute); ° C. (degrees Centigrade); DNA (deoxyribonucleic acid); RNA (ribonucleic acid); HPLC (high pressure liquid chromatography); MES (2-N-morpholino ethanesulfonic acid); FIOPC (fold improvements over positive control); YPD (10 g/L yeast extract, 20 g/L peptone, and 20 g/L dextrose); SOE-PCR (splicing by overlapping extension PCR); PEG (polyethylene glycol); TWEEN®-20 (TWEEN® non-ionic surfactant; Sigma-Aldrich); ARS (ARS Culture Collection or NRRL Culture Collection, Peoria, Ill.); Axygen (Axygen, Inc., Union City, Calif.); Lallemand (Lallemand Ethanol Technology, Milwaukee, Wis.); Dual Biosystems (Dual Biosystems AG, Schlieven, Switzerland); US Biological (United States Biological, Swampscott, Mass.); Megazyme (Megazyme International Ireland, Ltd., Wicklow, Ireland); Genetix (Genetix USA, Inc., Beaverton, Oreg.); Sigma-Aldrich (Sigma-Aldrich, St. Louis, Mo.); Dasgip (Dasgip Biotools, LLC, Shrewsbury, Mass.); Difco (Difco Laboratories, BD Diagnostic Systems, Detroit, Mich.); PCRdiagnostics (PCRdiagnostics, by E. coli SRO, Slovak Republic); Agilent (Agilent Technologies, Inc., Santa Clara, Calif.); Molecular Devices (Molecular Devices, Sunnyvale, Calif.); Symbio (Symbio, Inc., Menlo Park, Calif.); Newport (Newport Scientific, Australia); and Bio-Rad (Bio-Rad Laboratories, Hercules, Calif.).

[0305] The *M. thermophila* strains included in the development of the present invention included a "Strain CF-400" (Δcdh1), which is a derivative of C1 strain ("UV18#100fΔalp1Δpyr5"), modified by deletion of cdh1, wherein cdh1 comprises the polynucleotide sequence of SEQ ID NO:5 of U.S. Pat. No. 8,236,551. "Strain CF-401" (Δcdh1 Δcdh2) (ATCC No. PTA-12255), is a derivative of the C1 strain modified by deletion of both a cdh1 and a cdh2, wherein cdh2 comprises the polynucleotide sequence of SEQ ID NO:7 of U.S. Pat. No. 8,236,551. "Strain CF-402" (+Bgl1) is a derivative of the C1 strain further modified for overexpression of an endogenous beta-glucosidase 1 enzyme (Bgl1). "Strain CF-403" is a derivative of the C1 strain modified with a deletion of cdh1 and further modified to overexpress bgl1. "Strain CF-404" is a derivative of the

C1 strain further modified to overexpress bgl1 with a deletion of both cdh1 and cdh2. "Strain CF-416" is a derivative of the CF-404 strain, further modified to overexpress wild-type GH61a enzyme.

[0306] The following sequences are referred to herein and find use in the present invention

Wild-type M. thermophila C1 GH61a cDNA sequence: (SEQ ID NO: 1) ATGTCCAAGGCCTCTGCTCTCCTCGCTGGCCTGACGGGCGCGCCCTCGT CGCTGCACATGGCCACGTCAGCCACATCGTCGTCAACGGCGTCTACTACA $\tt GGAACTACGACCCCACGACAGACTGGTACCAGCCCAACCCGCCAACAGTC$ $\tt ATCGGCTGGACGGCAGCCGATCAGGATAATGGCTTCGTTGAACCCAACAG$ CTTTGGCACGCCAGATATCATCTGCCACAAGAGCGCCACCCCCGGCGGCG GCCACGCTACCGTTGCTGCCGGAGACAAGATCAACATCGTCTGGACCCCC GAGTGGCCCGAATCCCACATCGGCCCCGTCATTGACTACCTAGCCGCCTG ${\tt CAACGGTGACTGCGAGACCGTCGACAAGTCGTCGCTGCGCTGGTTCAAGA}$ CTGCGCGCCAACGGCAACAGCTGGCTCGTCCAGATCCCGTCGGATCTCAA GGCCGGCAACTACGTCCTCCGCCACGAGATCATCGCCCTCCACGGTGCTC $\tt AGAGCCCCAACGGCGCCCAGGCCTACCCGCAGTGCATCAACCTCCGCGTC$ ACCGGCGGCGCAGCAACCTGCCCAGCGGCGTCGCCGGCACCTCGCTGTA CAAGGCGACCGGGCATCCTCTTCAACCCCTACGTCTCCTCCCCGG $\tt ATTACACCGTCCCCGGCCCGGCCCTCATTGCCGGCGCCCAGCTCGATC$ GCCCAGAGCACGTCGGTCGCCACTGCCACCGGCACGGCCACCGTTCCCGG CGGCGGCGCCAACCCTACCGCCACCACCACCGCCGCCACCTCCGCCG CCCCGAGCACCACCTGAGGACGACCACTACCTCGGCCGCGCAGACTACC GCCCGCCCTCCGGCGATGTGCAGACCAAGTACGGCCAGTGTGGTGGCAA CGGATGGACGGCCCGACGGTGTGCGCCCCCGGCTCGAGCTGCTCCGTCC TCAACGAGTGGTACTCCCAGTGTTTGTAA

Wild-type M. thermophila C1 GH61a polypeptide sequence:

(SEQ ID NO: 2)
MSKASALLAGLTGAALVAAHGHVSHIVVNGVYYRNYDPTTDWYQPNPPTV
IGWTAADQDNGFVEPNSFGTPDIICHKSATPGGGHATVAAGDKINIVWTP
EWPESHIGPVIDYLAACNGDCETVDKSSLRWFKIDGAGYDKAAGRWAADA
LRANGNSWLVQIPSDLKAGNYVLRHEIIALHGAQSPNGAQAYPQCINLRV
TGGGSNLPSGVAGTSLYKATDPGILFNPYVSSPDYTVPGPALIAGAASSI
AQSTSVATATGTATVPGGGGANPTATTTAATSAAPSTTLRTTTTSAAQTT
APPSGDVQTKYGQCGGNGWTGPTVCAPGSSCSVLNEWYSQCL

Wild-type M. thermophila C1 GH61a polypeptide sequence without the signal sequence:

(SEQ ID NO: 3)
HGHVSHIVVNGVYYRNYDPTTDWYQPNPPTVIGWTAADQDNGFVEPNSFG
TPDIICHKSATPGGGHATVAAGDKINIVWTPEWPESHIGPVIDYLAACNG
DCETVDKSSLRWFKIDGAGYDKAAGRWAADALRANGNSWLVQIPSDLKAG

NYVLRHEIIALHGAQSPNGAQAYPQCINLRVTGGGSNLPSGVAGTSLYKA
TDPGILFNPYVSSPDYTVPGPALIAGAASSIAQSTSVATATGTATVPGGG
GANPTATTTAATSAAPSTTLRTTTTSAAQTTAPPSGDVQTKYGQCGGNGW
TGPTVCAPGSSCSVLNEWYSOCL

GH61a Variant 1 cDNA sequence: (SEQ ID NO: 4) ATGTCCAAGGCCTCTGCTCTCCTCGCTGGCCTGACGGGCCCGGCCCTCGT CGCTGCACACGGCCACGTCAGCCACATCGTCGTCAACGGCGTCTACTACA GGGGCTACGACCCCACGACAGACTGGTACCAGCCCAACCCGCCAACAGTC ATCGGCTGGACGGCAGCCGATCAGGATAATGGCTTCGTTGAACCCAACAG CTTTGGCACGCCAGATATCATCTGCCACAAGAGCGCCACCCCGGCGGCG GCCACGCTACCGTTGCTGCCGGAGACAAGATCAACATCGTCTGGACCCCC GAGTGGCCCCACTCCCACATCGGCCCCGTCATTGACTACCTAGCCGCCTG CAACGGTGACTGCGAGACCGTCGACAAGTCGTCGCTGCGCTGGTTCAAGA CTGCGCGCCAACGGCAACAGCTGGCTCGTCCAGATCCCGTCGGATCTCAA GCCCGGCAACTACGTCCTCCGCCACGAGATCATCGCCCTCCACGGTGCTC AGAGCCCCAACGGCGCCCAGGCGTACCCGCAGTGCATCAACCTCCGCGTC ACCGGCGGCGGCAGCAACCTGCCCAGCGGCGTCGCCGGCACCTCGCTGTA CAAGGCGACCGGGCATCCTCTTCAACCCCTACGTCTCCTCCCCGG ATTACACCGTCCCCGGCCCGGCCCTCATTGCCGGCGCCGCCAGCTCGATC GCCCAGAGCACGTCGGTCGCCACTGCCACCGGCACGGCCACCGTTCCCGG CGGCGGCGCCAACCCTACCGCCACCACCACCGCCGCCACCTCCGCCG CCCCGAGCACCACCTGAGGACGACCACTACCTCGGCCGCGCAGACTACC GCCCGCCCTCCGGCGATGTGCAGACCAAGTACGGCCAGTGTGGTGGCAA CGGATGGACGGGCCCGACGGTGTGCGCCCCCGGCTCGAGCTGCTCCGTCC

GH61a Variant 1 polypeptide sequence:

(SEQ ID NO: 5)

MSKASALLAGLTGAALVAAHGHVSHIVVNGVYYRGYDPTTDWYQPNPPTV

IGWTAADQDNGFVEPNSFGTPDIICHKSATPGGGHATVAAGDKINIVWTP

EWPHSHIGPVIDYLAACNGDCETVDKSSLRWFKIDGAGYDKAAGRWAADA

LRANGNSWLVQIPSDLKPGNYVLRHEIIALHGAQSPNGAQAYPQCINLRV

TGGGSNLPSGVAGTSLYKATDPGILFNPYVSSPDYTVPGPALIAGAASSI

AQSTSVATATGTATVPGGGGANPTATTTAATSAAPSTTLRTTTTSAAQTT

APPSGDVOTKYGOCGGNGWTGPTVCAPGSSCSVLNEWYSOCL

TCAACGAGTGGTACTCCCAGTGTTTGTAA

GH61a Variant 1 polypeptide sequence without the signal sequence:

(SEQ ID NO: 6)
HGHVSHIVVNGVYYRGYDPTTDWYQPNPPTVIGWTAADQDNGFVEPNSFG

TPDIICHKSATPGGGHATVAAGDKINIVWTPEWPHSHIGPVIDYLAACNG
DCETVDKSSLRWFKIDGAGYDKAAGRWAADALRANGNSWLVQIPSDLKPG

-continued
NYVLRHEIIALHGAQSPNGAQAYPQCINLRVTGGGSNLPSGVAGTSLYKA
TDPGILFNPYVSSPDYTVPGPALIAGAASSIAQSTSVATATGTATVPGGG
GANPTATTTAATSAAPSTTLRTTTTSAAQTTAPPSGDVQTKYGQCGGNGW
TGPTVCAPGSSCSVLNEWYSQCL

GH61a Variant 5 cDNA sequence (SEQ ID NO: 7) ${\tt ACACAAATGTCCAAGGCCTCTGCTCTCCTCGCTGGCCTGACGGGCGCGGC}$ CCTCGTCGCTGCACACGGCCACGTCAGCCACATCGTCGTCAACGGCGTCT ACTACAGGAACTACGACCCCACGACAGACTGGTACCAGCCCAACCCGCCA ACAGTCATCGGCTGGACGGCAGCCGATCAGGATAATGGCTTCGTTGAACC CAACAGCTTTGGCACGCCAGATATCATCTGCCACAAGAGCGCCACCCCCG GCGGCGGCCACGCTACCGTTGCTGCCGGAGACAAGATCAACATCGTATGG ACCCCGAGTGGCCCCACTCCCACATCGGCCCCGTCATTGACTACCTAGC CGCCTGCAACGGTGACTGCGAGACCGTCGACAAGTCGTCGCTGCGCTGGT GACGCTCTGCGCGCCAACGGCAACAGCTGGCTCGTCCAGATCCCGTCGGA TCTCGCGGCCGGCAACTACGTCCTCCGCCACGAGATCATCGCCCTCCACG GTGCTCAGAGCCCCAACGGCGCCCAGGCGTACCCGCAGTGCATCAACCTC $\tt CGCGTCACCGGCGGCGGCAGCAACCTGCCCAGCGGCGTCGCCGGCACCTC$ $\tt GCTGTACAAGGCGACCGGGCATCCTCTTCAACCCCTACGTCTCCT$ $\tt CCCCGGATTACACCGTCCCCGGCCCGGCCCTCATTGCCGGCGCCGCCAGC$ ${\tt TCGATCGCCCAGAGCACGTCGGTCGCCACTGCCACCGGCACGGCCACCGT}$ TCCCGGCGGCGCCGCCAACCCTACCGCCACCACCACCGCCGCCACCT CCGCCGCCCGAGCACCACCCTGAGGACGACCACTACCTCGGCCGCGCAG ACTACCGCCCCGCCCTCCGGCGATGTGCAGACCAAGTACGGCCAGTGTGG TGGCAACGGATGGACGGCCCGACGGTGTGCGCCCCCGGCTCGAGCTGCT CCGTCCTCAACGAGTGGTACTCCCAGTGTTTGTAA

GH61a Variant 5 polypeptide sequence:

(SEQ ID NO: 8)

MSKASALLAGLTGAALVAAHGHVSHIVVNGVYYRNYDPTTDWYQPNPPTV

IGWTAADQDNGFVEPNSFGTPDIICHKSATPGGGHATVAAGDKINIVWTP

EWPHSHIGPVIDYLAACNGDCETVDKSSLRWFKIDGAGYDKAAGRWAADA

LRANGNSWLVQIPSDLAAGNYVLRHEIIALHGAQSPNGAQAYPQCINLRV

TGGGSNLPSGVAGTSLYKATDPGILFNPYVSSPDYTVPGPALIAGAASSI

AQSTSVATATGTATVPGGGGANPTATTTAATSAAPSTTLRTTTTSAAQTT

APPSGDVQTKYGQCGGNGWTGPTVCAPGSSCSVLNEWYSQCL

GH61a Variant 5 polypeptide sequence without the signal sequence:

(SEQ ID NO: 9)
HGHVSHIVVNGVYYRNYDPTTDWYQPNPPTVIGWTAADQDNGFVEPNSFG
TPDIICHKSATPGGGHATVAAGDKINIVWTPEWPHSHIGPVIDYLAACNG
DCETVDKSSLRWFKIDGAGYDKAAGRWAADALRANGNSWLVQIPSDLAAG
NYVLRHEIIALHGAQSPNGAQAYPQCINLRVTGGGSNLPSGVAGTSLYKA

TDPGILFNPYVSSPDYTVPGPALIAGAASSIAQSTSVATATGTATVPGGG
GANPTATTTAATSAAPSTTLRTTTTSAAQTTAPPSGDVQTKYGQCGGNGW
TGPTVCAPGSSCSVLNEWYSOCL

GH61a Variant 9 cDNA sequence: (SEQ ID NO: 10) CCTCGTCGCTGCACATGGCCACGTCAGCCACATCGTCGTCAACGGCGTCT ACTACAGGAACTACGACCCCACGACAGACTGGTACCAGCCCAACCCGCCA ACAGTCATCGGCTGGACGGCAGCCGATCAGGATAATGGCTTCGTTGAACC CAACAGCTTTGGCACGCCAGATATCATCTGCCACAAGAGCGCCACCCCCG GCGGCGGCCACGCTACCGTTGCTGCCGGAGACAAGATCAACATCCAGTGG ACCCCGAGTGGCCCGAATCCCACATCGGCCCCGTCATTGACTACCTAGC CGCCTGCAACGGTGACTGCGAGACCGTCGACAAGTCGTCGCTGCGCTGGT GACGCTCTGCGCGCCAACGGCAACAGCTGGCTCGTCCAGATCCCGTCGGA TCTCAAGGCCGGCAACTACGTCCTCCGCCACGAGATCATCGCCCTCCACG $\tt GTGCTCAGAGCCCCAACGGCGCCCAGAACTACCCGCAGTGCATCAACCTC$ $\tt CGCGTCACCGGCGGCGGCAGCAACCTGCCCAGCGGCGTCGCCGGCACCTC$ $\tt GCTGTACAAGGCGACCGACCCGGGCATCCTCTTCAACCCCTACGTCTCCT$ CCCCGGATTACACCGTCCCCGGCCCGGCCCTCATTGCCGGCGCCGCCAGC ${\tt TCGATCGCCCAGAGCACGTCGGTCGCCACTGCCACCGGCACGGCCACCGT}$ TCCCGGCGGCGCGCCAACCCTACCGCCACCACCACCGCCGCCACCT

GH61a Variant 9 polypeptide sequence:
(SEQ ID NO: 11)

MSKASALLAGLTGAALVAAHGHVSHIVVNGVYYRNYDPTTDWYQPNPPTV

IGWTAADQDNGFVEPNSFGTPDIICHKSATPGGGHATVAAGDKINIQWTP

EWPESHIGPVIDYLAACNGDCETVDKSSLRWFKIDGAGYDKAAGRWAADA

LRANGNSWLVQIPSDLKAGNYVLRHEIIALHGAQSPNGAQNYPQCINLRV

CCGCCGCCCCGAGCACCACCCTGAGGACGACCACTACCTCGGCCGCGCAG

ACTACCGCCCCGCCCTCCGGCGATGTGCAGACCAAGTACGGCCAGTGTGG
TGGCAACGGATGGACGGGCCCGACGGTTGCGCCCCCGGCTCGAGCTGCT

TGGGSNLPSGVAGTSLYKATDPGILFNPYVSSPDYTVPGPALIAGAASSI AOSTSVATATGTATVPGGGGANPTATTTAATSAAPSTTLRTTTTSAAOTT

~

APPSGDVQTKYGQCGGNGWTGPTVCAPGSSCSVLNEWYSQCL

CCGTCCTCAACGAGTGGTACTCCCAGTGTTTGTAA

GH61a Variant 9 polypeptide sequence without the signal sequence:

(SEQ ID NO: 12) <u>MSKASALLAGLTGAALVAA</u>HGHVSHIVVNGVYYRNYDPTTDWYQPNPPTV

 ${\tt IGWTAADQDNGFVEPNSFGTPDIICHKSATPGGGHATVAAGDKINIQWTP}$ ${\tt EWPESHIGPVIDYLAACNGDCETVDKSSLRWFKIDGAGYDKAAGRWAADA}$

LRANGNSWLVQIPSDLKAGNYVLRHEIIALHGAQSPNGAQNYPQCINLRV

-continued

TGGGSNLPSGVAGTSLYKATDPGILFNPYVSSPDYTVPGPALIAGAASSI

 ${\tt AQSTSVATATGTATVPGGGGANPTATTTAATSAAPSTTLRTTTTSAAQTT}$

APPSGDVQTKYGQCGGNGWTGPTVCAPGSSCSVLNEWYSQCL

[0307] The polynucleotide (SEQ ID NO:13) and amino acid (SEQ ID NO:14) sequences of an *M. thermophila* GH61b are provided below. The signal sequence is shown underlined in SEQ ID NO:14. SEQ ID NO:15 provides the sequence of this GH61b without the signal sequence.

(SEQ ID NO: 13) ATGAAGCTCTCCTCTTTTCCGTCCTGGCCACTGCCCTCACCGTCGAGGG GCATGCCATCTTCCAGAAGGTCTCCGTCAACGGAGCGGACCAGGGCTCCC TCACCGGCCTCCGCGCTCCCAACAACAACAACCCCGTGCAGAATGTCAAC AGCCAGGACATGATCTGCGGCCAGTCGGGATCGACGTCGAACACTATCAT CGAGGTCAAGGCCGGCGATAGGATCGGTGCCTGGTATCAGCATGTCATCG GCGGTGCCCAGTTCCCCAACGACCCAGACAACCCGATTGCCAAGTCGCAC AAGGGCCCCGTCATGGCCTACCTCGCCAAGGTTGACAATGCCGCAACCGC CAGCAAGACGGGCCTGAAGTGGTTCAAGATTTGGGAGGATACCTTTAATC CCAGCACCAAGACCTGGGGTGTCGACAACCTCATCAACAACAACGGCTGG GTGTACTTCAACCTCCCGCAGTGCATCGCCGACGGCAACTACCTCCTCCG CGTCGAGGTCCTCGCTCTGCACTCGGCCTACTCCCAGGGCCAGGCTCAGT ${\tt TCTACCAGTCCTGCGCCCAGATCAACGTATCCGGCGGCGGCTCCTTCACG}$ $\tt CCGGCGTCGACTGTCAGCTTCCCGGGTGCCTACAGCGCCAGCGACCCCGG$ ${\tt TATCCTGATCAACATCTACGGCGCCACCGGCCAGCCCGACAACAACGGCC}$ AGCCGTACACTGCCCCTGGGCCCGCGCCCATCTCCTGC

(SEQ ID NO: 14)

MKLSLFSVLATALTVEGHAIFQKVSVNGADQGSLTGLRAPNNNNPVQNVN

SQDMICGQSGSTSNTIIEVKAGDRIGAWYQHVIGGAQFPNDPDNPIAKSH

KGPVMAYLAKVDNAATASKTGLKWFKIWEDTFNPSTKTWGVDNLINNNGW

VYFNLPQCIADGNYLLRVEVLALHSAYSQGQAQFYQSCAQINVSGGGSFT

PASTVSFPGAYSASDPGILINIYGATGQPDNNGQPYTAPGPAPISC

(SEQ ID NO: 15)
IFQKVSVNGADQGSLTGLRAPNNNNPVQNVNSQDMICGQSGSTSNTIIEV
KAGDRIGAWYQHVIGGAQFPNDPDNPIAKSHKGPVMAYLAKVDNAATASK
TGLKWFKIWEDTFNPSTKTWGVDNLINNNGWVYFNLPQCIADGNYLLRVE
VLALHSAYSQGQAQFYQSCAQINVSGGGSFTPASTVSFPGAYSASDPGIL
INIYGATGQPDNNGQPYTAPGPAPISC

[0308] The polynucleotide (SEQ ID NO:16) and amino acid (SEQ ID NO:17) sequences of an *M. thermophila* GH61c are provided below. The signal sequence is shown underlined in SEQ ID NO:17. SEQ ID NO:18 provides the sequence of this GH61c without the signal sequence.

(SEQ ID NO: 16)

ATGGCCCTCCAGCTCTTGGCGAGCTTGGCCCTCCTCTCAGTGCCGGCCCT TGCCCACGGTGGCTTGGCCAACTACACCGTCGGTGATACTTGGTACAGAG GCTACGACCCAAACCTGCCGCCGGAGACGCAGCTCAACCAGACCTGGATG ATCCAGCGGCAATGGGCCACCATCGACCCCGTCTTCACCGTGTCGGAGCC GTACCTGGCCTGCAACAACCCGGGCGCGCCGCCGCCCTCGTACATCCCCA ${\tt TCCGCGCCGGTGACAAGATCACGGCCGTGTACTGGTACTGGCTGCACGCC}$ ATCGGGCCCATGAGCGTCTGGCTCGCGCGGTGCGGCGACACGCCCGCGGC CGACTGCCGCGACGTCGACGTCAACCGGGTCGGCTGGTTCAAGATCTGGG AGGGCGGCCTGCTGGAGGGTCCCAACCTGGCCGAGGGGCTCTGGTACCAA AAGGACTTCCAGCGCTGGGACGGCTCCCCGTCCCTCTGGCCCGTCACGAT CCCCAAGGGGCTCAAGAGCGGGACCTACATCATCCGGCACGAGATCCTGT CGCTTCACGTCGCCCTCAAGCCCCAGTTTTACCCGGAGTGTGCGCATCTG AATATTACTGGGGGGGGAGACTTGCTGCCACCCGAAGAGACTCTGGTGCG GTTTCCGGGGGTTTACAAAGAGGACGATCCCTCTATCTTCATCGATGTCT ACTCGGAGGAGAACGCGAACCGGACAGATTATACGGTTCCGGGAGGGCCA ATCTGGGAAGGG

(SEQ ID NO: 17)

MALQLLASLALLSVPALAHGGLANYTVGDTWYRGYDPNLPPETQLNQTWM

IQRQWATIDPVFTVSEPYLACNNPGAPPPSYIPIRAGDKITAVYWYWLHA

IGPMSVWLARCGDTPAADCRDVDVNRVGWFKIWEGGLLEGPNLAEGLWYQ

KDFQRWDGSPSLWPVTIPKGLKSGTYIIRHEILSLHVALKPQFYPECAHL

NITGGGDLLPPEETLVRFPGVYKEDDPSIFIDVYSEENANRTDYTVPGGP

IWEG

(SEQ ID NO: 18)
NYTVGDTWYRGYDPNLPPETQLNQTWMIQRQWATIDPVFTVSEPYLACNN
PGAPPPSYIPIRAGDKITAVYWYWLHAIGPMSVWLARCGDTPAADCRDVD
VNRVGWFKIWEGGLLEGPNLAEGLWYQKDFQRWDGSPSLWPVTIPKGLKS
GTYIIRHEILSLHVALKPQFYPECAHLNITGGGDLLPPEETLVRFPGVYK
EDDPSIFIDVYSEENANRTDYTVPGGPIWEG

[0309] The polynucleotide (SEQ ID NO:19) and amino acid (SEQ ID NO:20) sequences of an *M. thermophila* GH61d are provided below. The signal sequence is shown underlined in SEQ ID NO:20. SEQ ID NO:21 provides the sequence of this GH61d without the signal sequence.

(SEQ ID NO: 19)
ATGAAGGCCCTCTCTCTCTCTGCGGCTGCCGGGGCAGTCTCTGCGCATAC
CATCTTCGTCCAGCTCGAAGCAGACGGCACGAGGTACCCGGTTTCGTACG
GGATCCGGGACCCAACCTACGACGGCCCCATCACCGACGTCACATCCAAC
GACGTTGCTTGCAACGGCGGTCCGAACCCGACGACCCCTCCAGCGACGT
CATCACCGTCACCGCGGGCACCACCGTCAAGGCCATCTGGAGGCACACCC
TCCAATCCGGCCCGGACGATCTCATGGACGCCAGCACAAGGGCCCGACC

-continued

CTGGCCTACATCAAGAAGGTCGGCGATGCCACCAAGGACTCGGGCGTCGG
CGGTGGCTGGTTCAAGATCCAGGAGGACGGTTACAACAACGGCCAGTGGG
GCACCAGCACCGTTATCTCCAACGGCGGCGAGACACTACATTGACATCCCG
GCCTGCATCCCCGAGGGTCAGTACCTCCTCCGCGCCGAGATGATCGCCCT
CCACGCGGCCGGGTCCCCCGGCGGCGCTCAGCTCTACATGGAATGTGCCC
AGATCAACATCGTCGGCGGCTCCGGCTCGGTCCCAGCTCGACGGTCAGC
TTCCCCGGCGCGTATAGCCCCAACGACCCGGGTCTCCTCATCAACATCTA
TTCCATGTCGCCCTCGAGCTCGTACACCATCCCGGGCCCGCTTTTCA
AGTGC

(SEQ ID NO: 20)

MKALSLLAAAGAVSA
HTIFVQLEADGTRYPVSYGIRDPTYDGPITDVTSN

DVACNGGPNPTTPSSDVITVTAGTTVKAIWRHTLQSGPDDVMDASHKGPT

LAYIKKVGDATKDSGVGGGWFKIQEDGYNNGQWGTSTVISNGGEHYIDIP

ACIPEGQYLLRAEMIALHAAGSPGGAQLYMECAQINIVGGSGSVPSSTVS

FPGAYSPNDPGLLINIYSMSPSSSYTIPGPPVFKC

(SEQ ID NO: 21)
HTIFVQLEADGTRYPVSYGIRDPTYDGPITDVTSNDVACNGGPNPTTPSS

DVITVTAGTTVKAIWRHTLQSGPDDVMDASHKGPTLAYIKKVGDATKDSG
VGGGWFKIQEDGYNNGQWGTSTVISNGGEHYIDIPACIPEGQYLLRAEMI
ALHAAGSPGGAQLYMECAQINIVGGSGSVPSSTVSFPGAYSPNDPGLLIN
IYSMSPSSSYTIPGPPVFKC

[0310] The polynucleotide (SEQ ID NO:22) and amino acid (SEQ ID NO:23) sequences of an *M. thermophila* GH61e are provided below. The signal sequence is shown underlined in SEQ ID NO:23. SEQ ID NO:24 provides the sequence of this GH61d without the signal sequence.

(SEQ ID NO: 28)

-continued

CCCGTCACGCCATCATCATCATCAGCAGCAGCAGCAACAACAGCGGCGCCC
AAGATGACCAAGAAGATCCAGGAGCCCACCATCACATCGGTCACGGACCT
CCCCACCGACGAGGGCCAAGTGGATCGCGCTCCAAAAGATCTCGTACGTGG
ACCAGACGGGCACGGCGCGGACATACGAGCCGGCGTCGCGCAAGACGCGG
TCGCCAAGAGTCTAG

(SEQ ID NO: 23)

MKSSTPALFAAGLLAQHAAAHSIFQQASSGSTDFDTLCTRMPPNNSPVTS

VTSGDMTCKVGGTKGVSGFCEVNAGDEFTVEMHAQPGDRSCANEAIGGNH

FGPVLIYMSKVDDASTADGSGDWFKVDEFGYDASTKTWGTDKLNENCGKR

TFNIPSHIPAGDYLVRAEAIALHTANQPGGAQFYMSCYQVRISGGEGGQL

PAGVKIPGAYSANDPGILVDIWGNDFNDPPGHSARHAIIIISSSSNNSGA

KMTKKIQEPTITSVTDLPTDEAKWIALQKISYVDQTGTARTYEPASRKTR

SPRV

(SEQ ID NO: 24)
HSIFQQASSGSTDFDTLCTRMPPNNSPVTSVTSGDMTCKVGGTKGVSGFC
EVNAGDEFTVEMHAQPGDRSCANEAIGGNHFGPVLIYMSKVDDASTADGS
GDWFKVDEFGYDASTKTWGTDKLNENCGKRTFNIPSHIPAGDYLVRAEAI
ALHTANQPGGAQFYMSCYQVRISGGEGGQLPAGVKIPGAYSANDPGILVD
IWGNDFNDPPGHSARHAIIIISSSSNNSGAKMTKKIQEPTITSVTDLPTD
EAKWIALQKISYVDQTGTARTYEPASRKTRSPRV

[0311] The polynucleotide (SEQ ID NO:25) and amino acid (SEQ ID NO:26) sequences of an alternative *M. thermophila* GH61e are provided below. The signal sequence is shown underlined in SEQ ID NO:26. SEQ ID NO:27 provides the sequence of this GH61e without the signal sequence.

-continued

CCTGCCGGAGTCAAGATCCCGGGCGCGTACAGTGCCAACGACCCCGGCAT
CCTTGTCGACATCTGGGGTAACGATTTCAACGAGTACGTTATTCCGGGCC
CCCCGGTCATCGACAGCAGCTACTTC

(SEQ ID NO: 26)

MKSSTPALFAAGLLAQHAAAHSIFQQASSGSTDFDTLCTRMPPNNSPVTS

VTSGDMTCNVGGTKGVSGFCEVNAGDEFTVEMHAQPGDRSCANEAIGGNH

FGPVLIYMSKVDDASTADGSGDWFKVDEFGYDASTKTWGTDKLNENCGKR

TFNIPSHIPAGDYLVRAEAIALHTANQPGGAQFYMSCYQVRISGGEGGQL

PAGVKIPGAYSANDPGILVDIWGNDFNEYVIPGPPVIDSSYF

(SEQ ID NO: 27)
HSIFQQASSGSTDFDTLCTRMPPNNSPVTSVTSGDMTCNVGGTKGVSGFC
EVNAGDEFTVEMHAQPGDRSCANEAIGGNHFGPVLIYMSKVDDASTADGS
GDWFKVDEFGYDASTKTWGTDKLNENCGKRTFNIPSHIPAGDYLVRAEAI
ALHTANQPGGAQFYMSCYQVRISGGEGGQLPAGVKIPGAYSANDPGILVD
IWGNDFNEYVIPGPPVIDSSYF

[0312] The polynucleotide (SEQ ID NO:28) and amino acid (SEQ ID NO:29) sequences of a *M. thermophila* GH61f are provided below. The signal sequence is shown underlined in SEQ ID NO:29. SEQ ID NO:30 provides the sequence of this GH61f without the signal sequence.

CGCTCACGCGACCTTCCAGGCCCTCTGGGTCGACGGCGTCGACTACGGCG CGCAGTGTGCCCGTCTGCCCGCGTCCAACTCGCCGGTCACCGACGTGACC TCCAACGCGATCCGCTGCAACGCCAACCCCTCGCCCGCTCGGGGCAAGTG CCCGGTCAAGGCCGGCTCGACCGTTACGGTCGAGATGCATCAGCAACCCG GTGACCGCTCGTGCAGCAGCGAGGCGATCGGCGGGGGGCGCACTACGGCCCC GTGATGGTGTACATGTCCAAGGTGTCGGACGCGGCGTCGGCGGACGGGTC GTCGGGCTGGTTCAAGGTGTTCGAGGACGGCTGGGCCAAGAACCCGTCCG GCGGGTCGGGCGACGACGACTACTGGGGCACCAAGGACCTGAACTCGTGC $\tt TGCGGGAAGATGAACGTCAAGATCCCCGCCGACCTGCCCTCGGGCGACTA$ GCGCCCAGTTCTACATGACCTGCTACCAGCTCACCGTGACCGGCTCCGGC AGCGCCAGCCGCCCACCGTCTCCTTCCCGGGCGCCTACAAGGCCACCGA $\tt CCCGGGCATCCTCGTCAACATCCACGCCCCGCTGTCCGGCTACACCGTGC$ $\tt CCGGCCCGGCCGTCTACTCGGGCGGCTCCACCAAGAAGGCCGGCAGCGCC$ $\tt TGCACCGGCTGCGAGTCCACTTGCGCCGTCGGCTCCGGCCCCACCGCCAC$ $\tt GCGGCTGCACCGTCCAGAAGTACCAGCAGTGCGGCGGCCAGGGCTACACC$ GGCTGCACCAACTGCGCGTCCGGCTCCACCTGCAGCGCGGTCTCGCCGCC CTACTACTCGCAGTGCGTC

(SEQ ID NO: 29)

MKSFTLTTLAALAGNAAAHATFQALWVDGVDYGAQCARLPASNSPVTDVT

SNAIRCNANPSPARGKCPVKAGSTVTVEMHQQPGDRSCSSEAIGGAHYGP

VMVYMSKVSDAASADGSSGWFKVFEDGWAKNPSGGSGDDDYWGTKDLNSC

CGKMNVKIPADLPSGDYLLRAEALALHTAGSAGGAQFYMTCYQLTVTGSG

SASPPTVSFPGAYKATDPGILVNIHAPLSGYTVPGPAVYSGGSTKKAGSA

CTGCESTCAVGSGPTATVSQSPGSTATSAPGGGGGCTVQKYQQCGGQGYT

GCTNCASGSTCSAVSPPYYSOCV

(SEQ ID NO: 30)
HATFQALWVDGVDYGAQCARLPASNSPVTDVTSNAIRCNANPSPARGKCP
VKAGSTVTVEMHQQPGDRSCSSEAIGGAHYGPVMVYMSKVSDAASADGSS
GWFKVFEDGWAKNPSGGSGDDDYWGTKDLNSCCGKMNVKIPADLPSGDYL
LRAEALALHTAGSAGGAQFYMTCYQLTVTGSGSASPPTVSFPGAYKATDP
GILVNIHAPLSGYTVPGPAVYSGGSTKKAGSACTGCESTCAVGSGPTATV
SQSPGSTATSAPGGGGGCTVQKYQQCGGQGYTGCTNCASGSTCSAVSPPY
YSQCV

[0313] The polynucleotide (SEQ ID NO:31) and amino acid (SEQ ID NO:32) sequences of an *M. thermophila* GH61g are provided below. The signal sequence is shown underlined in SEQ ID NO:32. SEQ ID NO:33 provides the sequence of this GH61g without the signal sequence.

(SEO ID NO: 31) ATGAAGGGACTCCTCGGCGCCCCCCCCTCTCGCTGGCCGTCAGCGATGT CTCGGCCCACTACATCTTTCAGCAGCTGACGACGGCGGCGCGTCAAGCACG CTGTGTACCAGTACATCCGCAAGAACACCAACTATAACTCGCCCGTGACC GATCTGACGTCCAACGACCTCCGCTGCAATGTGGGTGCTACCGGTGCGGG CACCGATACCGTCACGGTGCGCCGGCGGATTCGTTCACCTTCACGACCG ATACGCCCGTTTACCACCAGGGCCCGACCTCGATCTACATGTCCAAGGCC CCCGGCAGCGCGTCCGACTACGACGGCAGCGGCGGCTGGTTCAAGATCAA GGACTGGGCTGACTACACCGCCACGATTCCGGAATGTATTCCCCCCGGCG ACTACCTGCTTCGCATCCAGCAACTCGGCATCCACAACCCTTGGCCCGCG GGCATCCCCCAGTTCTACATCTCTTGTGCCCAGATCACCGTGACTGGTGG CGGCAGTGCCAACCCCGGCCCGACCGTCTCCATCCCAGGCGCCTTCAAGG AGACCGACCCGGGCTACACTGTCAACATCTACAACAACTTCCACAACTAC ACCGTCCCTGGCCCAGCCGTCTTCACCTGCAACGGTAGCGGCGGCAACAA CGGCGGCGCTCCAACCCAGTCACCACCACCACCACCACCACCACCAGGC TCCAGCTGCACCGTCGCGAAGTGGGGCCAGTGCGGAGGACAGGGTTACAG CGGCTGCACCGTGTGCGCGGCCGGGTCGACCTGCCAGAAGACCAACGACT ACTACAGCCAGTGCTTGTAG

-continued

(SEQ ID NO: 32)

MKGLLGAAALSLAVSDVSAHYIFQQLTTGGVKHAVYQYIRKNTNYNSPVT

DLTSNDLRCNVGATGAGTDTVTVRAGDSFTFTTDTPVYHQGPTSIYMSKA

PGSASDYDGSGGWFKIKDWADYTATIPECIPPGDYLLRIQQLGIHNPWPA

GIPQFYISCAQITVTGGGSANPGPTVSIPGAFKETDPGYTVNIYNNFHNY

TVPGPAVFTCNGSGGNNGGGSNPVTTTTTTTTRPSTSTAQSQPSSSPTSP

SSCTVAKWGQCGGQGYSGCTVCAAGSTCQKTNDYYSQCL

(SEQ ID NO: 33)
HYIFQQLTTGGVKHAVYQYIRKNTNYNSPVTDLTSNDLRCNVGATGAGTD

TVTVRAGDSFTFTTDTPVYHQGPTSIYMSKAPGSASDYDGSGGWFKIKDW
ADYTATIPECIPPGDYLLRIQQLGIHNPWPAGIPQFYISCAQITVTGGGS
ANPGPTVSIPGAFKETDPGYTVNIYNNFHNYTVPGPAVFTCNGSGGNNGG
GSNPVTTTTTTTTRPSTSTAQSQPSSSPTSPSSCTVAKWGQCGGQGYSGC
TVCAAGSTCQKTNDYYSQCL

[0314] The polynucleotide (SEQ ID NO:34) and amino acid (SEQ ID NO:35) sequences of an alternative *M. thermophila* GH61g are provided below. The signal sequence is shown underlined in SEQ ID NO:35. SEQ ID NO:36 provides the sequence of this GH61g without the signal sequence.

(SEQ ID NO: 34) $\tt CTGACGACGGCGCGTCAAGCACGCTGTGTACCAGTACATCCGCAAGAA$ CACCAACTATAACTCGCCCGTGACCGATCTGACGTCCAACGACCTCCGCT GCAATGTGGGTGCTACCGGTGCGGGCACCGATACCGTCACGGTGCGCGCC GGCGATTCGTTCACCTTCACGACCGATACGCCCGTTTACCACCAGGGCCC GACCTCGATCTACATGTCCAAGGCCCCCGGCAGCGCGTCCGACTACGACG GCAGCGGCGGCTGGTTCAAGATCAAGGACTGGGGTGCCGACTTTAGCAGC GGCCAGGCCACCTGGACCTTGGCGTCTGACTACACCGCCACGATTCCGGA ATGTATTCCCCCCGGCGACTACCTGCTTCGCATCCAGCAACTCGGCATCC ACAACCCTTGGCCCGCGGGCATCCCCCAGTTCTACATCTCTTGTGCCCAG ATCACCGTGACTGGTGGCGGCAGTGCCAACCCCGGCCCGACCGTCTCCAT CCCAGGCGCCTTCAAGGAGACCGACCCGGGCTACACTGTCAACATCTACA ACAACTTCCACAACTACACCGTCCCTGGCCCAGCCGTCTTCACCTGCAAC $\tt GGTAGCGGCGGCAACAACGGCGGCGCTCCAACCCAGTCACCACCACCAC$ $\tt CACCACCACCAGGCCGTCCACCAGCACCGCCCAGTCCCAGCCGTCGT$ $\tt CGAGCCCGACCAGCCCCTCCAGCTGCACCGTCGCGAAGTGGGGCCAGTGC$ GGAGGACAGGGTTACAGCGGCTGCACCGTGTGCGCGGCCGGGTCGACCTG CCAGAAGACCAACGACTACTACAGCCAGTGCTTG

(SEQ ID NO: 35)

MKGLLGAAALSLAVSDVSAHYIFQQLTTGGVKHAVYQYIRKNTNYNSPVT

DLTSNDLRCNVGATGAGTDTVTVRAGDSFTFTTDTPVYHQGPTSIYMSKA

PGSASDYDGSGGWFKIKDWGADFSSGQATWTLASDYTATIPECIPPGDYL

(SEQ ID NO: 40)

-continued

LRIQQLGIHNPWPAGIPQFYISCAQITVTGGGSANPGPTVSIPGAFKETD
PGYTVNIYNNFHNYTVPGPAVFTCNGSGGNNGGGSNPVTTTTTTTTRPST
STAQSQPSSSPTSPSSCTVAKWGQCGGQGYSGCTVCAAGSTCQKTNDYYS
OCL

(SEQ ID NO: 36)
HYIFQQLTTGGVKHAVYQYIRKNTNYNSPVTDLTSNDLRCNVGATGAGTD
TVTVRAGDSFTFTTDTPVYHQGPTSIYMSKAPGSASDYDGSGGWFKIKDW
GADFSSGQATWTLASDYTATIPECIPPGDYLLRIQQLGIHNPWPAGIPQF
YISCAQITVTGGGSANPGPTVSIPGAFKETDPGYTVNIYNNFHNYTVPGP
AVFTCNGSGGNNGGGSNPVTTTTTTTTRPSTSTAQSQPSSSPTSPSSCTV
AKWGQCGGQGYSGCTVCAAGSTCQKTNDYYSQCL

[0315] The polynucleotide (SEQ ID NO:37) and amino acid (SEQ ID NO:38) sequences of an *M. thermophila* GH61h are provided below. The signal sequence is shown underlined in SEQ ID NO:38. SEQ ID NO:39 provides the sequence of this GH61h without the signal sequence.

(SEO ID NO: 37) ATGTCTTCCTTCACCTCCAAGGGTCTCCTTTCCGCCCTCATGGGCGCGCC AACGGTTGCCGCCCACGGTCACGTCACCAACATCGTCATCAACGGCGTCT CATACCAGAACTTCGACCCATTCACGCACCCTTATATGCAGAACCCTCCG ${\tt ACGGTTGTCGGCTGGACCGCGAGCAACACGGACAACGGCTTCGTCGGCCC}$ CGAGTCCTTCTCTAGCCCGGACATCATCTGCCACAAGTCCGCCACCAACG CTGGCGGCCATGCCGTCGCGGCCGGCCGATAAGGTCTTCATCCAGTGG GACACCTGGCCCGAGTCGCACCACGGTCCGGTCATCGACTATCTCGCCGA CTGCGGCGACGCGGGCTGCGAGAAGGTCGACAAGACCACGCTCAAGTTCT TCAAGATCAGCGAGTCCGGCCTGCTCGACGGCACTAACGCCCCCGGCAAG TGGGCGTCCGACACGCTGATCGCCAACAACAACTCGTGGCTGGTCCAGAT CCCGCCCAACATCGCCCCGGGCAACTACGTCCTGCGCCACGAGATCATCG CCCTGCACAGCGCCGGCCAGCAGAACGGCGCCCAGAACTACCCTCAGTGC TTCAACCTGCAGGTCACCGGCTCCGGCACTCAGAAGCCCTCCGGCGTCCT CGGCACCGAGCTCTACAAGGCCACCGACGCCGGCATCCTGGCCAACATCT $\tt GCCTCCGCCGTCCAGCAGACCACCTCGGCCATCACCGCCTCTGCTAGCGC$ ${\tt CATCACCGGCTCCGCTACCGCCGCCGCCCACCGCCTGCCACCACCACCGCCG}$ $\tt CCGCCGCCGCCACCACTACCACCGCTGGCTCCGGTGCTACCGCCACG$ CCCTCGACCGGCGGCTCTCCTTCTTCCGCCCAGCCTGCTCCTACCACCGC TGCCGCTACCTCCAGCCCTGCTCGCCCGACCCGCTGCGCTGGTCTGAAGA AGCGCCGTCGCCACGCCCGTGACGTCAAGGTTGCCCTC

(SEQ ID NO: 38) MSSFTSKGLLSALMGAATVAAHGHVTNIVINGVSYQNFDPFTHPYMQNPP
TVVGWTASNTDNGFVGPESFSSPDIICHKSATNAGGHAVVAAGDKVFIQW

-continued

DTWPESHHGPVIDYLADCGDAGCEKVDKTTLKFFKISESGLLDGTNAPGK
WASDTLIANNNSWLVQIPPNIAPGNYVLRHEIIALHSAGQQNGAQNYPQC
FNLQVTGSGTQKPSGVLGTELYKATDAGILANIYTSPVTYQIPGPAIISG
ASAVQQTTSAITASASAITGSATAAPTAATTTAAAAATTTTTAGSGATAT
PSTGGSPSSAQPAPTTAAATSSPARPTRCAGLKKRRHARDVKVAL

(SEQ ID NO: 39)
AHGHVTNIVINGVSYQNFDPFTHPYMQNPPTVVGWTASNTDNGFVGPESF
SSPDIICHKSATNAGGHAVVAAGDKVFIQWDTWPESHHGPVIDYLADCGD
AGCEKVDKTTLKFFKISESGLLDGTNAPGKWASDTLIANNNSWLVQIPPN
IAPGNYVLRHEIIALHSAGQQNGAQNYPQCFNLQVTGSGTQKPSGVLGTE
LYKATDAGILANIYTSPVTYQIPGPAIISGASAVQQTTSAITASASAITG
SATAAPTAATTTAAAAATTTTTAGSGATATPSTGGSPSSAQPAPTTAAAT
SSPARPTRCAGLKKRRRHARDVKVAL

[0316] The polynucleotide (SEQ ID NO:40) and amino acid (SEQ ID NO:41) sequences of an *M. thermophila* GH61i are provided below. The signal sequence is shown underlined in SEQ ID NO:41. SEQ ID NO:42 provides the sequence of this GH61i without the signal sequence.

(SEQ ID NO: 41)

MKTLAALVVSAALVAAHGYVDHATIGGKDYQFYQPYQDPYMGDNKPDRVS

RSIPGNGPVEDVNSIDLQCHAGAEPAKLHAPAAAGSTVTLYWTLWPDSHV

GPVITYMARCPDTGCQDWSPGTKPVWFKIKEGGREGTSNTPLMTAPSAYT

YTIPSCLKSGYYLVRHEIIALHSAWQYPGAQFYPGCHQLQVTGGGSTVPS

TNLVSFPGAYKGSDPGITYDAYKAQPYTIPGPAVFTC

(SEQ ID NO: 42)
YVDHATIGGKDYQFYQPYQDPYMGDNKPDRVSRSIPGMGPVEDVNSIDLQ
CHAGAEPAKLHAPAAAGSTVTLYWTLWPDSHVGPVITYMARCPDTGCQDW
SPGTKPVWFKIKEGGREGTSNTPLMTAPSAYTYTIPSCLKSGYYLVRHEI
IALHSAWQYPGAQFYPGCHQLQVTGGGSTVPSTNLVSFPGAYKGSDPGIT
YDAYKAQPYTIPGPAVFTC

[0317] The polynucleotide (SEQ ID NO:43) and amino acid (SEQ ID NO:44) sequences of an alternative *M. thermophila* GH61i are provided below. The signal sequence is shown underlined in SEQ ID NO:44. SEQ ID NO:45 provides the sequence of this GH61i without the signal sequence.

(SEO ID NO: 43) CGGCTATGTTGACCACGCCACGATCGGTGGCAAGGATTATCAGTTCTACC AGCCGTACCAGGACCCTTACATGGGCGACACAACAAGCCCGATAGGGTTTTCC CGCTCCATCCCGGGCAACGGCCCCGTGGAGGACGTCAACTCCATCGACCT CCGGCTCGACCGTGACGCTCTACTGGACCCTCTGGCCCGACTCCCACGTC GGCCCCGTCATCACCTACATGGCTCGCTGCCCGACACCGGCTGCCAGGA GTGAGGGCACCTCCAATGTCTGGGCTGCTACCCCGCTCATGACGGCCCCC ${\tt TCCGCCTACACCTACACGATCCCGTCCTGCCTCAAGAGCGGCTACTACCT}$ CGTCCGCCACGAGATCATCGCCCTGCACTCGGCCTGGCAGTACCCCGGCG CCCAGTTCTACCCGGGCTGCCACCAGCTCCAGGTCACCGGCGGCGGCTCC ACCGTGCCCTCTACCAACCTGGTCTCCTTCCCCGGCGCCTACAAGGGGAG CGACCCCGGCATCACCTACGACGCTTACAAGGCGCAACCTTACACCATCC CTGGCCCGGCCGTGTTTACCTGC

(SEQ ID NO: 44)

MKTLAALVVSAALVAAHGYVDHATIGGKDYQFYQPYQDPYMGDNKPDRVS

RSIPGNGPVEDVNSIDLQCHAGAEPAKLHAPAAAGSTVTLYWTLWPDSHV

GPVITYMARCPDTGCQDWSPGTKPVWFKIKEGGREGTSNVWAATPLMTAP

SAYTYTIPSCLKSGYYLVRHEIIALHSAWQYPGAQFYPGCHQLQVTGGGS

TVPSTNLVSFPGAYKGSDPGITYDAYKAQPYTIPGPAVFTC

(SEQ ID NO: 45)
YVDHATIGGKDYQFYQPYQDPYMGDNKPDRVSRSIPGMGPVEDVNSIDLQ
CHAGAEPAKLHAPAAAGSTVTLYWTLWPDSHVGPVITYMARCPDTGCQDW
SPGTKPVWFKIKEGGREGTSNVWAATPLMTAPSAYTYTIPSCLKSGYYLV
RHEIIALHSAWQYPGAQFYPGCHQLQVTGGGSTVPSTNLVSFPGAYKGSD
PGITYDAYKAQPYTIPGPAVFTC

[0318] The polynucleotide (SEQ ID NO:46) and amino acid (SEQ ID NO:47) sequences of an *M. thermophila* GH61j are provided below. The signal sequence is shown

underlined in SEQ ID NO:47. SEQ ID NO:48 provides the sequence of this GH61j without the signal sequence.

(SEQ ID NO: 47)

MRYFLQLAAAAAFAVNSAAGHYIFQQFATGGSKYPPWKYIRRNTNPDWLQ

NGPVTDLSSTDLRCNVGGQVSNGTETITLNAGDEFSFILDTPVYHAGPTS

LYMSKAPGAVADYDGGGAWFKIYDWGPSGTSWTLSGTYTQRIPKCIPDGE

YLLRIQQIGLHNPGAAPQFYISCAQVKVVDGGSTNPTPTAQIPGAFHSND

PGLTVNIYNDPLTNYVVPGPRVSHW

(SEQ ID NO: 48)
HYIFQQFATGGSKYPPWKYIRRNTNPDWLQNGPVTDLSSTDLRCNVGGQV
SNGTETITLNAGDEFSFILDTPVYHAGPTSLYMSKAPGAVADYDGGGAWF
KIYDWGPSGTSWTLSGTYTQRIPKCIPDGEYLLRIQQIGLHNPGAAPQFY
ISCAQVKVVDGGSTNPTPTAQIPGAFHSNDPGLTVNIYNDPLTNYVVPGP

[0319] The polynucleotide (SEQ ID NO:49) and amino acid (SEQ ID NO:50) sequences of an *M. thermophila* GH61k are provided below. The signal sequence is shown underlined in SEQ ID NO:50. SEQ ID NO:51 provides the sequence of this GH61k without the signal sequence.

(SEQ ID NO: 49)
ATGCACCCTTCCTTCTTTTCACGCTTGGGCTGGCGAGCGTGCTTGTCCC
CCTCTCGTCTGCACACACTACCTTCACGACCCTCTTCGTCAACGATGTCA
ACCAAGGTGATGGTACCTGCATTCGCATGGCGAAGAAGAGGGCAATGTCGCC
ACCCATCCTCTCGCAGGCGGTCTCGACTCCGAAGACATGGCCTGTGGTCG
GGATGGTCAAGAACCCGTGGCATTTACGTGTCCGGCCCCAGCTGGTGCCA
AGTTGACTCTCGAGTTTCGCATGTGGCCGATGCTTCGCAGTCCGGATCG
ATCGATCCATCCCACCTTGGCGTCATGGCCATCTACCTCAAGAAGGTTTC

CGACATGAAATCTGACGCGGCCGCTGGCCCGGGCTGGTTCAAGATTTGGG ACCAAGGCTACGACTTGGCGGCCAAGAAGTGGGCCACCGAGAAGCTCATC GACAACAACGGCCTCCTGAGCGTCAACCTTCCAACCGGCTTACCAACCGG $\tt CTACTACCTCGCCCGCCAGGAGATCATCACGCTCCAAAACGTTACCAATG$ ${\tt ACAGGCCAGAGCCCCAGTTCTACGTCGGCTGCGCACAGCTCTACGTCGAG}$ GGCACCTCGGACTCACCCATCCCCTCGGACAAGACGGTCTCCATTCCCGG CCACATCAGCGACCCGGCCGACCCGGGCCTGACCTTCAACGTCTACACGG GCGACGCATCCACCTACAAGCCGCCCGGCCCCGAGGTTTACTTCCCCACC ACCACCACCACCTCCTCCTCCTCCTCCGGAAGCAGCGACAACAAGGG AGCCAGGCGCCAGCAAACCCCCGACGACAAGCAGGCCGACGGCCTCGTTC CAGCCGACTGCCTCAAGAACGCGAACTGGTGCGCCGCTGCCCTGCCG CCGTACACCGACGAGGCCGGCTGCTGGGCCGCCGCCGAGGACTGCAACAA GCAGCTGGACGCGTGCTACACCAGCGCACCCCCCTCGGGCAGCAAGGGGT GCAAGGTCTGGGAGGAGCAGGTGTGCACCGTCGTCTCGCAGAAGTGCGAG GCCGGGGATTTCAAGGGGCCCCCGCAGCTCGGGAAGGAGCTCGGCGAGGG GATCGATGAGCCTATTCCGGGGGGAAAGCTGCCCCCGGCGGTCAACGCGG GAGAGAACGGGAATCATGGCGGAGGTGGTGATGATGATGATGATGAT AATGATGAGGCCGGGGCTGGGGCAGCGTCGACTCTGGCTCCC ${\tt TGGTGCGGCCAAGACTCCCCAACCAAACTCCGAGAGGGCCCGGCGCCGTG}$ AGGCGCATTGGCGGCGACTGGAATCTGCTGAG

(SEQ ID NO: 50)

MHPSLLFTLGLASVLVPLSSAHTTFTTLFVNDVNQGDGTCIRMAKKGNVA

THPLAGGLDSEDMACGRDGQEPVAFTCPAPAGAKLTLEFRMWADASQSGS

IDPSHLGVMAIYLKKVSDMKSDAAAGPGWFKIWDQGYDLAAKKWATEKLI

DNNGLLSVNLPTGLPTGYYLARQEIITLQNVTNDRPEPQFYVGCAQLYVE

GTSDSPIPSDKTVSIPGHISDPADPGLTFNVYTGDASTYKPPGPEVYFPT

TTTTTSSSSSGSSDNKGARRQQTPDDKQADGLVPADCLVKNANWCAAALP

PYTDEAGCWAAAEDCNKQLDACYTSAPPSGSKGCKVWEEQVCTVVSQKCE

AGDFKGPPQLGKELGEGIDEPIPGGKLPPAVNAGENGNHGGGGGDDGDDD

NDEAGAGAAASTPTFAAPGAAKTPQPNSERARRREAHWRRLESAE

(SEQ ID NO: 51)
HTTFTTLFVNDVNQGDGTCIRMAKKGNVATHPLAGGLDSEDMACGRDGQE
PVAFTCPAPAGAKLTLEFRMWADASQSGSIDPSHLGVMAIYLKKVSDMKS
DAAAGPGWFKIWDQGYDLAAKKWATEKLIDNNGLLSVNLPTGLPTGYYLA
RQEIITLQNVTNDRPEPQFYVGCAQLYVEGTSDSPIPSDKTVSIPGHISD
PADPGLTFNVYTGDASTYKPPGPEVYFPTTTTTTSSSSSGSSDNKGARRQ
QTPDDKQADGLVPADCLVKNANWCAAALPPYTDEAGCWAAAEDCNKQLDA
CYTSAPPSGSKGCKVWEEQVCTVVSQKCEAGDFKGPPQLGKELGEGIDEP
IPGGKLPPAVNAGENGNHGGGGGDDGDDDNDEAGAGAASTPTFAAPGAAK
TPQPNSERARRREAHWRRLESAE

[0320] The polynucleotide (SEQ ID NO:52) and amino acid (SEQ ID NO:53) sequences of a *M. thermophila* GH611 are provided below. The signal sequence is shown underlined in SEQ ID NO:53. SEQ ID NO:54 provides the sequence of this GH611 without the signal sequence.

(SEQ ID NO: 52) ATGTTTTCTCTCAAGTTCTTTATCTTGGCCGGTGGGCTTGCTGTCCTCAC CGAGGCTCACATAAGACTAGTGTCGCCCGCCCCTTTTACCAACCCTGACC AGGGCCCCAGCCCACTCCTAGAGGCTGGCAGCGACTATCCCTGCCACAAC $\tt GGCAATGGGGGGGTTATCAGGGAACGCCAACCCAGATGGCAAAGGGTTC$ ${\tt TAAGCAGCAGCTAGCCTTCCAGGGGTCTGCCGTTCATGGGGGTGGCTCCT}$ GCCAAGTGTCCATCACCTACGACGAAAACCCGACCGCTCAGAGCTCCTTC AAGGTCATTCACTCGATTCAAGGTGGCTGCCCCGCCAGGGCCGAGACGAT CCCGGATTGCAGCGCACAAAATATCAACGCCTGCAATATAAAGCCCGATA ATGCCCAGATGGACACCCCGGATAAGTATGAGTTCACGATCCCGGAGGAT CTCCCCAGTGGCAAGGCCACCCTCGCCTGGACATGGATCAACACTATCGG CAACCGCGAGTTTTATATGGCATGCGCCCCGGTTGAGATCACCGGCGACG GCGGTAGCGAGTCGGCTCTGGCTGCCCGACATGGTCATTGCCAAC ATCCCGTCCATCGGAGGAACCTGCGCGACCGAGGAGGGGGAAGTACTACGA ATATCCCAACCCCGGTAAGTCGGTCGAAACCATCCCGGGCTGGACCGATT TGGTTCCCCTGCAAGGCGAATGCGGTGCTGCCTCCGGTGTCTCGGGCTCC GGCGGAAACGCCAGCAGTGCTACCCCTGCCGCAGGGGCCGCCCCGACTCC TGCTGTCCGCGGCCGCCGTCCCACCTGGAACGCC

(SEQ ID NO: 53)

MFSLKFFILAGGLAVLTEAHIRLVSPAPFTNPDQGPSPLLEAGSDYPCHN

GNGGGYQGTPTQMAKGSKQQLAFQGSAVHGGGSCQVSITYDENPTAQSSF

KVIHSIQGGCPARAETIPDCSAQNINACNIKPDNAQMDTPDKYEFTIPED

LPSGKATLAWTWINTIGNREFYMACAPVEITGDGGSESALAALPDMVIAN

IPSIGGTCATEEGKYYEYPNPGKSVETIPGWTDLVPLQGECGAASGVSGS

GGNASSATPAAGAAPTPAVRGRRPTWNA

(SEQ ID NO: 54)
HIRLVSPAPFTNPDQGPSPLLEAGSDYPCHNGNGGGYQGTPTQMAKGSKQ
QLAFQGSAVHGGGSCQVSITYDENPTAQSSFKVIHSIQGGCPARAETIPD
CSAQNINACNIKPDNAQMDTPDKYEFTIPEDLPSGKATLAWTWINTIGNR
EFYMACAPVEITGDGGSESALAALPDMVIANIPSIGGTCATEEGKYYEYP
NPGKSVETIPGWTDLVPLQGECGAASGVSGSGGNASSATPAAGAAPTPAV
RGRRPTWNA

[0321] The polynucleotide (SEQ ID NO:55) and amino acid (SEQ ID NO:56) sequences of a *M. thermophila* GH61m are provided below. The signal sequence is shown underlined in SEQ ID NO:56. SEQ ID NO:57 provides the sequence of this GH61m without the signal sequence.

(SEQ ID NO: 55)

(SEQ ID NO: 56)

MKLATLLAALTLGVADQLSVGSRKFGVYEHIRKNTNYNSPVTDLSDTNLR

CNVGGGSGTSTTVLDVKAGDSFTFFSDVAVYHQGPISLCVDRTSAESMDG

REPDMRCRTGSQAGYLAVTDYDGSGDCFKIYDWGPTFNGGQASWPTRNSY

EYSILKCIRDGEYLLRIQSLAIHNPGALPQFYISCAQVNVTGGGTVTPRS

RRPILIYFNFHSYIVPGPAVFKC

(SEQ ID NO: 57)

DQLSVGSRKFGVYEHIRKNTNYNSPVTDLSDTNLRCNVGGGSGTSTTVLD
VKAGDSFTFFSDVAVYHQGPISLCVDRTSAESMDGREPDMRCRTGSQAGY
LAVTDYDGSGDCFKIYDWGPTFNGGQASWPTRNSYEYSILKCIRDGEYLL
RIQSLAIHNPGALPQFYISCAQVNVTGGGTVTPRSRRPILIYFNFHSYIV
PGPAVFKC

[0322] The polynucleotide (SEQ ID NO:58) and amino acid (SEQ ID NO:59) sequences of an alternative *M. thermophila* GH61m are provided below. The signal sequence is shown underlined in SEQ ID NO:59. SEQ ID NO:60 provides the sequence of this GH61m without the signal sequence.

(SEQ ID NO: 58)

-continued

GGGGACCGACGTTCAACGGGGGCCAGGCGTCGTGGCCGACGAGGAATTCG
TACGAGTACAGCATCCTCAAGTGCATCAGGGACGGCGAATACCTACTGCG
GATTCAGTCCCTGGCCATCCATAACCCAGGTGCCCTTCCGCAGTTCTACA
TCAGCTGCGCCCAGGTGAATGTGACGGGCGGAGGCACCATCTATTTCAAC
TTCCACTCGTATATCGTCCCTGGGCCGGCAGTGTTCAAGTGC

(SEQ ID NO: 59)

MKLATLLAALTLGLSVGSRKFGVYEHIRKNTNYNSPVTDLSDTNLRCNVG

GGSGTSTTVLDVKAGDSFTFFSDVAVYHQGPISLCVDRTSAESMDGREPD

MRCRTGSQAGYLAVTVMTVTDYDGSGDCFKIYDWGPTFNGGQASWPTRNS

YEYSILKCIRDGEYLLRIQSLAIHNPGALPQFYISCAQVNVTGGGTIYFN

FHSYTVPGPAVFKC

(SEQ ID NO: 60)
RKFGVYEHIRKNTNYNSPVTDLSDTNLRCNVGGGSGTSTTVLDVKAGDSF
TFFSDVAVYHQGPISLCVDRTSAESMDGREPDMRCRTGSQAGYLAVTVMT
VTDYDGSGDCFKIYDWGPTFNGGQASWPTRNSYEYSILKCIRDGEYLLRI
OSLAIHNPGALPOFYISCAOVNVTGGGTIYFNFHSYIVPGPAVFKC

[0323] The polynucleotide (SEQ ID NO:61) and amino acid (SEQ ID NO:62) sequences of a *M. thermophila* GH61n are provided below.

(SEQ ID NO: 61)
ATGACCAAGAATGCGCAGAGCAAGCAGGCGTTGAGAACCCAACAAGCGG
CGACATCCGCTGCTACACCTCGCAGACGGCGGCCAACGTCGTGACCGTGC
CGGCCGGCTCGACCATTCACTACATCTCGACCCAGCAGATCAACCACCCC
GGCCCGACTCAGTACTACCTGGCCAAGGTACCCCCGGGCTCGTCGGCCAA
GACCTTTGACGGGTCCGGCGCCGTCTGGTTCAAGATCTCGACCACGATGC
CTACCGTGGACAGCAACAAGCAGATGTTCTGGCCAGGGCAGAACACTTAT
GAGACCTCAAACACCACCATTCCCGCCAACACCCCGGACGGCGAGTACCT
CCTTCGCGTCAAGCAGATCGCCCTCCACATGGCGTCTCAGCCCAACAAGG
TCCAGTTCTACCTCGCCTGCACCCAGATCAAGATCACCGGTGGTCGCAAC
GGCACCCCCAGCCCGTTGGTCGCGCTGCCCGGAGCCTACAAGAGCACCGA
CCCCGGCATCCTGGTCGACATCTACTCCATGAAGCCCGAATCGTACCAGC
CTCCCGGGCCGCCGTTTGGCGGCGGCTAA

(SEQ ID NO: 62)
MTKNAQSKQGVENPTSGDIRCYTSQTAANVVTVPAGSTIHYISTQQINHP
GPTQYYLAKVPPGSSAKTFDGSGAVWFKISTTMPTVDSNKQMFWPGQNTY
ETSNTTIPANTPDGEYLLRVKQIALHMASQPNKVQFYLACTQIKITGGRN
GTPSPLVALPGAYKSTDPGILVDIYSMKPESYQPPGPPVWRG

[0324] The polynucleotide (SEQ ID NO:63) and amino acid (SEQ ID NO:64) sequences of an alternative *M. thermophila* GH61n are provided below. The signal sequence is shown underlined in SEQ ID NO:64. SEQ ID NO:65 provides the sequence of this GH61n without the signal sequence.

CGGGCCGCCGTCTGGCGCGGC

(SEQ ID NO: 63)
ATGAGGCTTCTCGCAAGCTTGTTGCTCGCAGCTACGGCTGTTCAAGCTCA
CTTTGTTAACGGACAGCCCGAAGAGAGTGACTGGTCAGCCACGCGCATGA
CCAAGAATGCGCAGAGCAAGCAGGGCGTTGAGAACCCAACAAGCGGCGAC
ATCCGCTGCTACACCTCGCAGACGGCGGCCAACGTCGTGACCGTGCCGGC
CGGCTCGACCATTCACTACATCTCGACCCAGCAGATCAACCACCCCGGCC
CGACTCAGTACTACCTGGCCAAGGTACCCCCGGCTCGTCGGCCAAGACC
TTTGACGGGTCCGGCGCGTCTGGTTCAAGATCTCGACCACGATGCCTAC
CGTGGACAGCAACAAGCAGATGTTCTGGCCAGGGCAGAACACTTATGAGA
CCTCAAACACCACCATTCCCGCCAACACCCCGGACGGCGAGTACCTCCTT
CGCGTCAAGCAGATCGCCCTCCACATGGCGTCTCAGCCCAACAAGGTCCA
GTTCTACCTCGCCTGCACCCAGATCAAGATCACCGGTGGTCGCAACGGCA
CCCCCAGCCCGCTGGTCGGCCTGCCCGGAGCCTACAAGAGCACCCCGG

(SEQ ID NO: 64)

MRLLASLLLAATAVQAHFVNGQPEESDWSATRMTKNAQSKQGVENPTSGD

IRCYTSQTAANVVTVPAGSTIHYISTQQINHPGPTQYYLAKVPPGSSAKT

FDGSGAVWFKISTTMPTVDSNKQMFWPGQNTYETSNTTIPANTPDGEYLL

RVKQIALHMASQPNKVQFYLACTQIKITGGRNGTPSPLVALPGAYKSTDP

GILVDIYSMKPESYQPPGPPVWRG

(SEQ ID NO: 65)
HFVNGQPEESDWSATRMTKNAQSKQGVENPTSGDIRCYTSQTAANVVTVP
AGSTIHYISTQQINHPGPTQYYLAKVPPGSSAKTFDGSGAVWFKISTTMP
TVDSNKQMFWPGQNTYETSNTTIPANTPDGEYLLRVKQIALHMASQPNKV
QFYLACTQIKITGGRNGTPSPLVALPGAYKSTDPGILVDIYSMKPESYQP
PGPPVWRG

[0325] The polynucleotide (SEQ ID NO:66) and amino acid (SEQ ID NO:67) sequences of an alternative *M. thermophila* GH610 are provided below. The signal sequence is shown underlined in SEQ ID NO:67. SEQ ID NO:68 provides the sequence of this GH610 without the signal sequence.

-continued
GCGTGTGGGCCTACCTGATGCGCTCGACGTCGACCTGCACAGCGCC
TCGAGCCCCGGCGGCGCCCAGTTCTACATGGGCTGTGCACAGATCGAAGT
CACTGGCTCCGGCACCAACTCGGGCTCCGACTTTGTCTCGTTCCCCGGCG
CCTACTCGGCCAACGACCCGGGCATCTTGCTGAGCATCTACGACAGCTCG
GGCAAGCCCAACAATGGCGGGCGCTCGTACCCGATCCCCGGCCCC
CATCTCCTGCTCCGGCAGCGGCGGCGGCGACAACAACGGCGGCGACGCG
GCGACGACAACAACGGTGGTGGCAACAACAACGGCGGCGGCGCCCC
CTGTACGGGCAGTGCGGCGCGCACCACCTGTGC
CCAGGGAACTTGCAAGGTGTCGAACGAATACTACAGCCAGTGCCTCCCC

(SEQ ID NO: 67)

MKPFSLVALATAVSGHAIFQRVSVNGQDQGQLKGVRAPSSNSPIQNVNDA

NMACNANIVYHDNTIIKVPAGARVGAWWQHVIGGPQGANDPDNPIAASHK

GPIQVYLAKVDNAATASPSGLKWFKVAERGLNNGVWAYLMRVELLALHSA

SSPGGAQFYMGCAQIEVTGSGTNSGSDFVSPPGAYSANDPGILLSIYDSS

GKPNNGGRSYPIPGPRPISCSGSGGGGNNGGDGGDDNNGGGNNNGGGSVP

LYGQCGGIGYTGPTTCAQGTCKVSNEYYSQCLP

(SEQ ID NO: 68)
HAIFQRVSVNGQDQGQLKGVRAPSSNSPIQNVNDANMACNANIVYHDNTI
IKVPAGARVGAWWQHVIGGPQGANDPDNPIAASHKGPIQVYLAKVDNAAT
ASPSGLKWFKVAERGLNNGVWAYLMRVELLALHSASSPGGAQFYMGCAQI
EVTGSGTNSGSDFVSFPGAYSANDPGILLSIYDSSGKPNNGGRSYPIPGP
RPISCSGSGGGGNNGGDGGDDNNGGGNNNGGGSVPLYGQCGGIGYTGPTT
CAQGTCKVSNEYYSQCLP

[0326] The polynucleotide (SEQ ID NO:69) and amino acid (SEQ ID NO:70) sequences of a *M. thermophila* GH61p are provided below. The signal sequence is shown underlined in SEQ ID NO:70. SEQ ID NO:71 provides the sequence of this GH61p without the signal sequence.

(SEQ ID NO: 69)
ATGAAGCTCACCTCGTCCCTCGCTGTCCTGGCCGCTGCCGGCGCCCAGGC
TCACTATACCTTCCCTAGGGCCGCACTGGTGTTCGCTCTCTGGCGAGT
GGGAGGTGGTCCGCATGACCGAGAACCATTACTCGCACGGCCCGGTCACC
GATGTCACCAGCCCCGAGATGACCTGCTATCAGTCCGGCGTGCAGGGTGC
GCCCCAGACCGTCCAGGTCAAGGCGGCCTCCCAATTCACCTTCAGCGTGG
ATCCCTCCATCGGCCACCCCGGCCCTCTCCAGTTCTACATGGCTAAGGTG
CCGTCGGGCCAGACGGCCCCCCTCCCAGTCTACATGCTTACCT
CAAGATCTACCAAGACGGCCCGAACGGCCTCGGCACCGACAGCATTACCT
GGCCCAGCGCCGGCAAAACCGAGGTCTCGGTCACCATCCCCAGCTGCATC
GAGGATGGCGAGAAACCGAGGTCTCGGTCACCATCCCCAGCTGCATC

(SEQ ID NO: 70)

MKLTSSLAVLAAAGAQAHYTFPRAGTGGSLSGEWEVVRMTENHYSHGPVT

DVTSPEMTCYQSGVQGAPQTVQVKAGSQFTFSVDPSIGHPGPLQFYMAKV

PSGQTAATFDGTGAVWFKIYQDGPNGLGTDSITWPSAGKTEVSVTIPSCI

EDGEYLLRVEHTPLPTAPAAQNRARSSPSPAAYKATDPGILFQLYWPIPT

EYINPGPAPVSC

(SEQ ID NO: 71)
HYTFPRAGTGGSLSGEWEVVRMTENHYSHGPVTDVTSPEMTCYQSGVQGA
PQTVQVKAGSQFTFSVDPSIGHPGPLQFYMAKVPSGQTAATFDGTGAVWF
KIYQDGPNGLGTDSITWPSAGKTEVSVTIPSCIEDGEYLLRVEHTPLPTA
PAAQNRARSSPSPAAYKATDPGILFQLYWPIPTEYINPGPAPVSC

[0327] The polynucleotide (SEQ ID NO:72) and amino acid (SEQ ID NO:73) sequences of an alternative *M. thermophila* GH61p are provided below. The signal sequence is shown underlined in SEQ ID NO:73. SEQ ID NO:74 provides the sequence of this GH61p without the signal sequence.

(SEQ ID NO: 73)

MKLTSSLAVLAAAGAQAHYTFPRAGTGGSLSGEWEVVRMTENHYSHGPVT

DVTSPEMTCYQSGVQGAPQTVQVKAGSQFTFSVDPSIGHPGPLQFYMAKV

PSGQTAATFDGTGAVWFKIYQDGPNGLGTDSITWPSAGKTEVSVTIPSCI

EDGEYLLRVEHIALHSASSVGGAQFYIACAQLSVTGGSGTLNTGSLVSLP

GAYKATDPGILFQLYWPIPTEYINPGPAPVSC

-continued

(SEQ ID NO: 74)
HYTFPRAGTGGSLSGEWEVVRMTENHYSHGPVTDVTSPEMTCYQSGVQGA
PQTVQVKAGSQFTFSVDPSIGHPGPLQFYMAKVPSGQTAATFDGTGAVWF
KIYQDGPNGLGTDSITWPSAGKTEVSVTIPSCIEDGEYLLRVEHIALHSA
SSVGGAQFYIACAQLSVTGGSGTLNTGSLVSLPGAYKATDPGILFQLYWP
IPTEYINPGPAPVSC

[0328] The polynucleotide (SEQ ID NO:75) and amino acid (SEQ ID NO:76) sequences of an alternative *M. thermophila* GH61q are provided below. The signal sequence is shown underlined in SEQ ID NO:76. SEQ ID NO:77 provides the sequence of this GH61q without the signal sequence.

(SEQ ID NO: 75)
ATGCCGCCACCACGACTGAGCACCTCCTTCCCCTCCTAGCCTTAATAGC
CCCCACCGCCCTGGGGCACTCCCACCTCGGGTACATCATCAACGGCG
AGGTATACCAAGGATTCGACCCGCGGCCGGAGCAGGCGAACTCGCCGTTG
CGCGTGGGCTGGTCGACGGGGGAATCGACGGGTTCGTGGCGCCGGC
CAACTACTCGTCGCCCGACATCATCTGCCACATCGAGGGGGCCAGCCCGC
CGGCGCACGCCCCGTCCGGGCGGGCGACCGGGTGCACTGCAATGGAAC
GGCTGGCCGCTCGGACACGTGGGGCCGGTGCACTGGCGCCCTG
CGGCGGGGTGGACACGTGGGGCCGGTGCACAGCGGC
AGCTGCGGTGGACAAGGTGGAGCGCTGCCGGGGTGGACAAGCGGC

(SEQ ID NO: 76)

MPPPRLSTLLPLLALIAPTALGHSHLGYIIINGEVYQGFDPRPEQANSPL

RVGWSTGAIDDGFVAPANYSSPDIICHIEGASPPAHAPVRAGDRVHVQWN

GWPLGHVGPVLSYLAPCGGLEGSESGCAGVDKRQLRWTKVDDSLPAMEL

(SEQ ID NO: 77)

HSHLGYIIINGEVYQGFDPRPEQANSPLRVGWSTGAIDDGFVAPANYSSP DIICHIEGASPPAHAPVRAGDRVHVQWNGWPLGHVGPVLSYLAPCGGLEG SESGCAGVDKRQLRWTKVDDSLPAMEL

[0329] The polynucleotide (SEQ ID NO:78) and amino acid (SEQ ID NO:79) sequences of an alternative *M. thermophila* GH61q are provided below. The signal sequence is shown underlined in SEQ ID NO:79. SEQ ID NO:80 provides the sequence of this GH61q without the signal sequence.

(SEQ ID NO: 78)
ATGCCGCCACCACGACTGAGCACCTCCTTCCCCTCCTAGCCTTAATAGC
CCCCACCGCCCTGGGGCACTCCCACCTCGGGTACATCATCATCAACGGCG
AGGTATACCAAGGATTCGACCCGCGGCCGGAGCAGGCGAACTCGCCGTTG
CGCGTGGGCTGGTCGACGGGGGCAATCGACGGGTTCGTGGCGCCGGC
CAACTACTCGTCGCCCGACATCATCTGCCACATCGAGGGGGCCAGCCCGC
CGGCGCACGCGCCCGTCCGGGCGGGCGACCGGGTGCACTGCAATGGAAA

(SEQ ID NO: 81)

continued CGGCTGGCCGCTCGGACACGTGGGGCCGGTGCTGTCGTACCTGGCGCCCT GCGGCGGGCTGGAGGGGTCCGAGAGCGGGTGGACGACTCGCTGCCGGCGA TGGAGCTGGTCGGGGCCGCGGGGGGGCGGGGGGGGGGCGACGACGGCAGC $\tt GGCAGCGACGGCAGCGGCAGCGGCAGCGGACGCGTCGGCGTGCCCGG$ GCAGCGCTGGGCCACCGACGTGTTGATCGCGGCCAACAACAGCTGGCAGG ${\tt TCGAGATCCCGCGCGGGCTGCGGGACGGGCCGTACGTGCTGCGCCACGAG}$ GCTCTGCGTCAACCTGTGGGTCGAGGGCGGCGACGCAGCATGGAGCTGG ACCACTTCGACGCCACCCAGTTCTACCGGCCCGACGACCCGGGCATCCTG CTCAACGTGACGGCCGGCCTGCGCTCATACGCCGTGCCGGGCCCGACGCT GGCCGCGGGGCGACGCCGGTGCCGTACGCGCAGCAGAACATCAGCTCGG CGAGGGCGGATGGAACCCCCGTGATTGTCACCAGGAGCACGGAGACGGTG CCCTTCACCGCGGCACCCACGCCAGCCGAGACGCCAGAGCCAAAGGGGG GAGGTATGATGACCAAACCCGAACTAAAGACCTAAATGAACGCTTCTTTT ATAGTAGCCGGCCAGAACAGAAGAGGCTGACAGCGACCTCAAGAAGGGAA CTAGTTGATCATCGTACCCGGTACCTCTCCGTAGCTGTCTGCGCAGATTT CGGCGCTCATAAGGCAGCAGAAACCAACCACGAAGCTTTGAGAGGCGGCA

(SEQ ID NO: 79)

MPPPRLSTLLPLLALIAPTALGHSHLGYIIINGEVYQGFDPRPEQANSPL

RVGWSTGAIDDGFVAPANYSSPDIICHIEGASPPAHAPVRAGDRVHVQWK

RLAARTRGAGAVVPGALRRAGGVRERVDDSLPAMELVGAAGGAGGEDDGS

GSDGSGSGGSGRVGVPGQRWATDVLIAANNSWQVEIPRGLRDGPYVLRHE

IVALHYAAEPGGAQNYPLCVNLWVEGGDGSMELDHFDATQFYRPDDPGIL

LNVTAGLRSYAVPGPTLAAGATPVPYAQQNISSARADGTPVIVTRSTETV

PFTAAPTPAETAEAKGGRYDDQTRTKDLNERFFYSSRPEQKRLTATSRRE

LVDHRTRYLSVAVCADFGAHKAAETNHEALRGGNKHHGGVSE

ATAAGCACCATGGCGGTGTTTCAGAG

(SEQ ID NO: 80)
HSHLGYIIINGEVYQGFDPRPEQANSPLRVGWSTGAIDDGFVAPANYSSP
DIICHIEGASPPAHAPVRAGDRVHVQWKRLAARTRGAGAVVPGALRRAGG
VRERVDDSLPAMELVGAAGGAGGEDDGSGSDGSGSGGSGRVGVPGQRWAT
DVLIAANNSWQVEIPRGLRDGPYVLRHEIVALHYAAEPGGAQNYPLCVNL
WVEGGDGSMELDHFDATQFYRPDDPGILLNVTAGLRSYAVPGPTLAAGAT
PVPYAQQNISSARADGTPVIVTRSTETVPFTAAPTPAETAEAKGGRYDDQ
TRTKDLNERFFYSSRPEQKRLTATSRRELVDHRTRYLSVAVCADFGAHKA
AETNHEALRGGNKHHGGVSE

[0330] The polynucleotide (SEQ ID NO:81) and amino acid (SEQ ID NO:82) sequences of an *M. thermophila* GH61r are provided below. The signal sequence is shown underlined in SEQ ID NO:82. SEQ ID NO:83 provides the sequence of this GH61r without the signal sequence.

(SEQ ID NO: 83)
HATFQQLWHGSSCVRLPASNSPVTNVGSRDFVCNAGTRPVSGKCPVKAGG
TVTIEMHQQPGDRSCNNEAIGGAHWGPVQVYLTKVQDAATADGSTGWFKI
FSDSWSKKPGGNLGDDDNWGTRDLNACCGKMD

[0331] The polynucleotide (SEQ ID NO:84) and amino acid (SEQ ID NO:85) sequences of an alternative *M. thermophila* GH61r are provided below. The signal sequence is shown underlined in SEQ ID NO:85. SEQ ID NO:86 provides the sequence of this GH61r without the signal sequence.

(SEO ID NO: 84) ATGAGGTCGACATTGGCCGGTGCCCTGGCAGCCATCGCTGCTCAGAAAGT AGCCGGCCACGTTTCAGCAGCTCTGGCACGGCTCCTCCTGTGTCC GCCTTCCGGCTAGCAACTCACCCGTCACCAATGTGGGAAGCAGAGACTTC GTCTGCAACGCTGGCACCCGCCCCGTCAGTGGCAAGTGCCCCGTGAAGGC TGGCGGCACCGTCACCATCGAGATGCACCAGCAACCCGGCGACCGCAGCT GCAACAACGAAGCCATCGGAGGGGCGCATTGGGGCCCCGTCCAGGTGTAC CTGACCAAGGTTCAGGACGCCGGCGACGGCCGACGGCTCGACGGCTGGTT CAAGATCTTCTCCGACTCGTGGTCCAAGAAGCCCGGGGGCAACTCGGGCG ACGACGACAACTGGGGCACGCGCGACCTGAACGCCTGCTGCGGGAAGATG ${\tt GACGTGGCCATCCCGGCCGACATCGCGTCGGGCGACTACCTGCTGCGGGC}$ $\tt CGAGGCGCTGGCCCTGCACACGGCCGGACAGGCCGGCGGCGCCCAGTTCT$ ACATGAGCTGCTACCAGATGACGGTCGAGGGCGGCTCCGGGACCGCCAAC CCGCCCACCGTCAAGTTCCCGGGCGCCTACAGCGCCCAACGACCCGGGCAT CCTCGTCAACATCCACGCCCCCCTTTCCAGCTACACCGCGCCCGGCCCGG CCGTCTACGCGGCGCACCATCCGCGAGGCCGGCTCCGCCTGCACCGGC TGCGCGCAGACCTGCAAGGTCGGGTCGTCCCCGAGCGCCGTTGCCCCCGG CAGCGGCGCGGCAACGGCGGCGGGTTCCAACCCCGA

(SEQ ID NO: 85)

MRSTLAGALAAIAAQKVAGHATFQQLWHGSSCVRLPASNSPVTNVGSRDF

VCNAGTRPVSGKCPVKAGGTVTIEMHQQPGDRSCNNEAIGGAHWGPVQVY

LTKVQDAATADGSTGWFKIFSDSWSKKPGGNSGDDDNWGTRDLNACCGKM

DVAIPADIASGDYLLRAEALALHTAGQAGGAQFYMSCYQMTVEGGSGTAN

PPTVKFPGAYSANDPGILVNIHAPLSSYTAPGPAVYAGGTIREAGSACTG

CAOTCKVGSSPSAVAPGSGAGNGGGFOPR

(SEQ ID NO: 86)
HATFQQLWHGSSCVRLPASNSPVTNVGSRDFVCNAGTRPVSGKCPVKAGG
TVTIEMHQQPGDRSCNNEAIGGAHWGPVQVYLTKVQDAATADGSTGWFKI
FSDSWSKKPGGNSGDDDNWGTRDLNACCGKMDVAIPADIASGDYLLRAEA
LALHTAGQAGGAQFYMSCYQMTVEGGSGTANPPTVKFPGAYSANDPGILV
NIHAPLSSYTAPGPAVYAGGTIREAGSACTGCAQTCKVGSSPSAVAPGSG
AGNGGGFQPR

[0332] The polynucleotide (SEQ ID NO:87) and amino acid (SEQ ID NO:88) sequences of an *M. thermophila* GH61s are provided below. The signal sequence is shown underlined in SEQ ID NO:88. SEQ ID NO:89 provides the sequence of this GH61s without the signal sequence.

(SEQ ID NO: 87) ATGCTCCTCACCCTAGCCACACTCGTCACCCTCCTGGCGCGCCACGT CTCGGCTCACGCCCGGCTGTTCCGCGTCTCTGTCGACGGGAAAGACCAGG GCGACGGGCTGAACAAGTACATCCGCTCGCCGGCGACCAACGACCCCGTG CGCGACCTCTCGAGCGCCGCCATCGTGTGCAACACCCAGGGGTCCAAGGC CGCCCGGACTTCGTCAGGGCCGCGGCCGGCGACAAGCTGACCTTCCTCT GGGCGCACGACAACCCGGACGACCCGGTCGACTACGTCCTCGACCCGTCC CACAAGGGCGCCATCCTGACCTACGTCGCCGCCTACCCCTCCGGGGACCC GACCGGCCCCATCTGGAGCAAGCTTGCCGAGGAAGGATTCACCGGCGGGC AGTGGGCGACCATCAAGATGATCGACAACGGCGGCAAGGTCGACGTGACG CTGCCCGAGGCCCTTGCGCCGGGAAAGTACCTGATCCGCCAGGAGCTGCT GGCCCTGCACCGGGCCGACTTTGCCTGCGACGACCCGGCCCACCCCAACC GCGGCGCCGAGTCGTACCCCAACTGCGTCCAGGTGGAGGTGTCGGGCAGC $\tt GGCGACAAGAAGCCGGACCAGAACTTTGACTTCAACAAGGGCTATACCTG$ CGATAACAAAGGACTCCACTTTAAGATCTACATCGGTCAGGACAGCCAGT ATGTGGCCCCGGGGCCGCGCCTTGGAATGGGAGC

(SEQ ID NO: 88)

MLLLTLATLVTLLARHVSAHARLFRVSVDGKDQGDGLNKYIRSPATNDPV

RDLSSAAIVCNTQGSKAAPDFVRAAAGDKLTFLWAHDNPDDPVDYVLDPS

HKGAILTYVAAYPSGDPTGPIWSKLAEEGFTGGQWATIKMIDNGGKVDVT

LPEALAPGKYLIRQELLALHRADFACDDPAHPNRGAESYPNCVQVEVSGS

GDKKPDQNFDFNKGYTCDNKGLHFKIYIGQDSQYVAPGPRPWNGS

-continued

(SEQ ID NO: 89)
HARLFRVSVDGKDQGDGLNKYIRSPATNDPVRDLSSAAIVCNTQGSKAAP
DFVRAAAGDKLTFLWAHDNPDDPVDYVLDPSHKGAILTYVAAYPSGDPTG
PIWSKLAEEGFTGGQWATIKMIDNGGKVDVTLPEALAPGKYLIRQELLAL
HRADFACDDPAHPNRGAESYPNCVQVEVSGSGDKKPDQNFDFNKGYTCDN
KGLHFKIYIGQDSQYVAPGPRPWNGS

[0333] The polynucleotide (SEQ ID NO:90) and amino acid (SEQ ID NO:91) sequences of an M. thermophila GH61t are provided below.

(SEQ ID NO: 90)
ATGTTCACTTCGCTTTGCATCACAGATCATTGGAGGACTCTTAGCAGCCA
CTCTGGGCCAGTCATGAACTATCTCGCCCATTGCACCAATGACGACTGCA
AGTCTTTCAAGGGCGACAGCGGCAACGTCTGGGTCAAGATCGAGCAGCTC
GCGTACAACCCGTCAGCCAACCCCCCCTGGGCGTCTTGCCCCGGCG
AATATCTGCTGCGGCACGAGATCCTGGGTTGCACGTCGTGCACGGGGAACCGTG
ATGGGCGCCCAGTTCTACCCCGGCTGCACCCAGATCAGGGTCACCGAAGG
CGGGAGCACGAGCTGCCCTCGGGTATTGCGCTCCCAGGGCTTACGGCC
CACAAGACGAGGGTACTTGGTCGACTTGTGGAGGGTTAACCAGGGCCAG
GTCAACTACACGGCGCCTGGAGGACCCGTTTGGAGCGAAGCCTGGGACAC
CGAGTTTGGCGGGTCCAACACGACCGAGTGCCCACCATGCTCGACGACC
TGCTCGACTACATGCGGGCCAACGACGAGTGGATCGGCTGGACGGCCTAG
(SEQ ID NO: 91)

MFTSLCITDHWRTLSSHSGPVMNYLAHCTNDDCKSFKGDSGNVWVKIEQL
AYNPSANPPWASDLLREHGAKWKVTIPPSLVPGEYLLRHEILGLHVAGTV
MGAQFYPGCTQIRVTEGGSTQLPSGIALPGAYGPQDEGILVDLWRVNQGQ
VNYTAPGGPVWSEAWDTEFGGSNTTECATMLDDLLDYMAANDEWIGWTA

[0334] The polynucleotide (SEQ ID NO:92) and amino acid (SEQ ID NO:93) sequences of an alternative M. thermophila GH61t are provided below.

(SEQ ID NO: 92)
ATGAACTATCTCGCCCATTGCACCAATGACGACTGCAAGTCTTTCAAGGG
CGACAGCGGCAACGTCTGGGTCAAGATCGAGCACGTCGCGTACAACCCGT
CAGCCAACCCCCCTGGGCGTCTGACCTCCTCCGTGAGCACGGTGCCAAG
TGGAAGGTGACGATCCCGCCCAGTCTTGTCCCCGGCGAATATCTGCTGCG
GCACGAGATCCTGGGGTTGCACGTCGCAGGAACCGTGATGGGCGCCCAGT
TCTACCCCGGCTGCACCCAGATCAGGGTCACCGAAGGCGGGAGCACGCAG
CTGCCCTCGGGTATTGCGCTCCCAGGCGCTTACGGCCCACAAGACGAGGG
TATCTTGGTCGACTTGTGGAGGGTTAACCAGGGCCAGGTCAACTACACGG
CGCCTGGAGGACCCGTTTGGAGCGAAGCGTGGACACCGAGTTTGGCGGG
TCCAACACGACCGAGTGCGCCACCATGCTCGACGACCTGCTCGACTACAT

(SEO ID NO: 97)

-continued

GGCGGCCAACGACGACCCATGCTGCACCGACCAGAACCAGTTCGGGAGTC
TCGAGCCGGGGAGCAAGGCGGCCGGCGGCTCGCCGAGCCTGTACGATACC
GTCTTGGTCCCCGTTCTCCAGAAGAAAGTGCCGACAAAGCTGCAGTGGAG
CGGACCGGCGAGCGTCAACGGGGATGAGTTGACAGAGAGGCCC

(SEQ ID NO: 93)
MNYLAHCTNDDCKSFKGDSGNVWVKIEQLAYNPSANPPWASDLLREHGAK
WKVTIPPSLVPGEYLLRHEILGLHVAGTVMGAQFYPGCTQIRVTEGGSTQ
LPSGIALPGAYGPQDEGILVDLWRVNQGQVNYTAPGGPVWSEAWDTEFGG
SNTTECATMLDDLLDYMAANDDPCCTDQNQFGSLEPGSKAAGGSPSLYDT
VLVPVLQKKVPTKLQWSGPASVNGDELTERP

[0335] The polynucleotide (SEQ ID NO:94) and amino acid (SEQ ID NO:95) sequences of an *M. thermophila* GH61u are provided below. The signal sequence is shown underlined in SEQ ID NO:95. SEQ ID NO:96 provides the sequence of this GH61u without the signal sequence.

(SEQ ID NO: 95)

MKLSAAIAVLAAALAEGHYTFPSIANTADWQYVRITTNFQSNGPVTDVNS

DQIRCYERNPGTGAPGIYNVTAGTTINYNAKSSISHPGPMAFYIAKVPAG

QSAATWDGKGAVWSKIHQEMPHFGTSLTWDSNGRTSMPVTIPRCLQDGEY

LLRAEHIALHSAGSPGGAQFYISCAQLSVTGGSGTWNPRNKVSFPGAYKA

TDPGILINIYYPVPTSYTPAGPPVDTC

GC

(SEQ ID NO: 96)
HYTFPSIANTADWQYVRITTNFQSNGPVTDVNSDQIRCYERNPGTGAPGI
YNVTAGTTINYNAKSSISHPGPMAFYIAKVPAGQSAATWDGKGAVWSKIH

-continued

QEMPHFGTSLTWDSNGRTSMPVTIPRCLQDGEYLLRAEHIALHSAGSPGG AQFYISCAQLSVTGGSGTWNPRNKVSFPGAYKATDPGILINIYYPVPTSY TPAGPPVDTC

[0336] The polynucleotide (SEQ ID NO:97) and amino acid (SEQ ID NO:98) sequences of an *M. thermophila* GH61v are provided below. The signal sequence is shown underlined in SEQ ID NO:98. SEQ ID NO:99 provides the sequence of this GH61v without the signal sequence.

CCACGGCGCCGTGACCAGCTACAACATTGCGGGCAAGGACTACCCTGGAT ${\tt ACTCGGGCTTCGCCCCTACCGGCCAGGATGTCATCCAGTGGCAATGGCCC}$ GACTATAACCCCGTGCTGTCCGCCAGCGACCCCAAGCTCCGCTGCAACGG CGGCACCGGGGCGCTGTATGCCGAGGCGGCCCCCGGCGACACCATCA CGGCCACCTGGGCCCAGTGGACGCACTCCCAGGGCCCGATCCTGGTGTGG ATGTACAAGTGCCCCGGCGACTTCAGCTCCTGCGACGGCTCCGGCGCGGG TTGGTTCAAGATCGACGAGGCCGGCTTCCACGGCGACGGCACGACCGTCT TCCTCGACACCGAGACCCCCTCGGGCTGGGACATTGCCAAGCTGGTCGGC GGCAACAAGTCGTGGAGCAGCAAGATCCCTGACGGCCTCGCCCCGGGCAA TTACCTGGTCCGCCACGAGCTCATCGCCCTGCACCAGGCCAACAACCCGC AATTCTACCCCGAGTGCGCCCAGATCAAGGTCACCGGCTCTGGCACCGCC GAGCCCGCCGCCTCCTACAAGGCCGCCATCCCCGGCTACTGCCAGCAGAG ${\tt ACAAGATCCCCGGTCCCCCGGTCTTCAAGGGCACCGCCTCCGCCAAGGCT}$ CGCGCTTTCCAGGCC

(SEQ ID NO: 98)

MYRTLGSIALLAGGAAAHGAVTSYNIAGKDYPGYSGFAPTGQDVIQWQWP

DYNPVLSASDPKLRCNGGTGAALYAEAAPGDTITATWAQWTHSQGPILVW

MYKCPGDFSSCDGSGAGWFKIDEAGFHGDGTTVFLDTETPSGWDIAKLVG

GNKSWSSKIPDGLAPGNYLVRHELIALHQANNPQFYPECAQIKVTGSGTA

EPAASYKAAIPGYCQQSDPNISFNINDHSLPQEYKIPGPPVFKGTASAKA

RAFQA

(SEQ ID NO: 99)
AVTSYNIAGKDYPGYSGFAPTGQDVIQWQWPDYNPVLSASDPKLRCNGGT
GAALYAEAAPGDTITATWAQWTHSQGPILVWMYKCPGDFSSCDGSGAGWF
KIDEAGFHGDGTTVFLDTETPSGWDIAKLVGGNKSWSSKIPDGLAPGNYL
VRHELIALHQANNPQFYPECAQIKVTGSGTAEPAASYKAAIPGYCQQSDP
NISFNINDHSLPQEYKIPGPPVFKGTASAKARAFQA

[0337] The polynucleotide (SEQ ID NO:100) and amino acid (SEQ ID NO:101) sequences of an *M. thermophila* GH61w are provided below. The signal sequence is shown underlined in SEQ ID NO:101. SEQ ID NO:102 provides the sequence of this GH61w without the signal sequence.

(SEQ ID NO: 100)

(SEQ ID NO: 101)

MLTTTFALLTAALGVSAHYTLPRVGTGSDWQHVRRADNWQNNGFVGDVNS
EQIRCFQATPAGAQDVYTVQAGSTVTYHANPSIYHPGPMQFYLARVPDGQ
DVKSWTGEGAVWFKVYEEQPQFGAQLTWPSNGKSSFEVPIPSCIRAGNYL
LRAEHIALHVAQSQGGAQFYISCAQLQVTGGGSTEPSQKVSFPGAYKSTD
PGILININYPVPTSYONPGPAVFRC

(SEQ ID NO: 102)

HYTLPRVGTGSDWQHVRRADNWQNNGFVGDVNSEQIRCFQATPAGAQDVY
TVQAGSTVTYHANPSIYHPGPMQFYLARVPDGQDVKSWTGEGAVWFKVYE
EQPQFGAQLTWPSNGKSSFEVPIPSCIRAGNYLLRAEHIALHVAQSQGGA
QFYISCAQLQVTGGGSTEPSQKVSFPGAYKSTDPGILININYPVPTSYQN
PGPAVFRC

[0338] The polynucleotide (SEQ ID NO:103) and amino acid (SEQ ID NO:104) sequences of a *M. thermophila* GH61x are provided below. The signal sequence is shown underlined in SEQ ID NO:104. SEQ ID NO:105 provides the sequence of this GH61x without the signal sequence.

(SEQ ID NO: 103)

-continued

AAGATCCCCGAGTGCATCGCCCCCGGCCAGTACCTCCTCCGCGCCGAGAT
GCTTGCCCTGCACGAGCTTCCAACTACCCCGGCGCTCAGTTCTACATGG
AGTGCGCCCAGCTCAATATCGTCGGCGGCACCGGCAGCAAGACGCCGTCC
ACCGTCAGCTTCCCGGGCGCTTACAAGGGTACCGACCCCGGAGTCAAGAT
CAACATCTACTGGCCCCCCGTCACCAGCTACCAGATTCCCGGCCCCGGCG
TGTTCACCTGC

(SEQ ID NO: 104)

 $\underline{\mathsf{MKVLAPLILAGAASA}} \text{HTIFSSLEVGGVNQGIGQGVRVPSYNGPIEDVTSN}$ SIACNGPPNPTTPTNKVITVRAGETVTAVWRYMLSTTGSAPNDIMDSSHK GPTMAYLKKVDNATTDSGVGGGWFKIQEDGLTNGVWGTERVINGQGRHNI KIPECIAPGQYLLRAEMLALHGASNYPGAQFYMECAQLNIVGGTGSKTPS TVSFPGAYKGTDPGVKINIYWPPVTSYQIPGPGVFTC

(SEQ ID NO: 105)

HTIFSSLEVGGVNQGIGQGVRVPSYNGPIEDVTSNSIACNGPPNPTTPTN

KVITVRAGETVTAVWRYMLSTTGSAPNDIMDSSHKGPTMAYLKKVDNATT

DSGVGGGWFKIQEDGLTNGVWGTERVINGQGRHNIKIPECIAPGQYLLRA

EMLALHGASNYPGAQFYMECAQLNIVGGTGSKTPSTVSFPGAYKGTDPGV

KINIYWPPVTSYQIPGPGVFTC

[0339] The polynucleotide (SEQ ID NO:106) and amino acid (SEQ ID NO:107) sequences of an *M. thermophila* GH61y are provided below. The signal sequence is underlined in SEQ ID NO:107. SEQ ID NO:108 provides the sequence of GH61y, without the signal sequence.

(SEQ ID NO: 106)

(SEQ ID NO: 107)

 ${\tt MIDNLPDDSLQPACLRPGHYLVRHEIIALHSAWAEGEAQFYPFPLFPFFP}$

SLLLSGNYTIPGPAIWKCPEAQQNE

PEAQQNE

(SEQ ID NO: 108)

HYLVRHEIIALHSAWAEGEAQFYPFPLFPFFPSLLLSGNYTIPGPAIWKC

[0340] Additional enzymes (i.e., non-GH61 enzymes) that find us in the present invention include, but are not limited to the following enzymes.

[0341] Wild-type EG1b cDNA (SEQ ID NO:109) and amino acid (SEQ ID NO:110) sequences are provided below. The signal sequence is underlined in SEQ ID NO:110. SEQ ID NO:111 provides the sequence of EG1b, without the signal sequence.

(SEQ ID NO: 109)

ATGGGGCAGAAGACTCTCCAGGGGCTGGTGGCGGCGGCGCGCACTGGCAGC CTCGGTGGCGAACGCGCAGCAACCGGGCACCTTCACGCCCGAGGTGCATC CGACGCTGCCGACGTGGAAGTGCACGACGAGCGGCGGGTGCGTCCAGCAG GACACGTCGGTGGTGCTCGACTGGAACTACCGCTGGTTCCACACCGAGGA CGGTAGCAAGTCGTGCATCACCTCTAGCGGCGTCGACCGGACCCTGTGCC CGGACGAGGCGACGTGCCCAAGAACTGCTTCGTCGAGGGCGTCAACTAC ACGAGCAGCGGGGTCGAGACGTCCGGCAGCTCCCTCACCCTCCGCCAGTT CTTCAAGGGCTCCGACGGCGCCATCAACAGCGTCTCCCCGCGCGTCTACC TGCTCGGGGGAGACGGCAACTATGTCGTGCTCAAGCTCCTCGGCCAGGAG CTGAGCTTCGACGTGGACGTATCGTCGCTCCCGTGCGGCGAGAACGCGGC CCTGTACCTGTCCGAGATGGACGCGACGGGAGGACGGAACGAGTACAACA CGGGCGGGCCGAGTACGGGTCGGGCTACTGTGACGCCCAGTGCCCCGTG CAGAACTGGAACAACGGGACGCTCAACACGGGCCGGGTGGGCTCGTGCTG CAACGAGATGGACATCCTCGAGGCCAACTCCAAGGCCGAGGCCTTCACGC CGCACCCTGCATCGGCAACTCGTGCGACAAGAGCGGGTGCGGCTTCAAC GCGTACGCGCGCGGTTACCACAACTACTGGGCCCCCGGCGCACGCTCGA CACGTCCCGGCCTTTCACCATGATCACCCGCTTCGTCACCGACGACGCCA CCACCTCGGGCAAGCTCGCCCGCATCGAGCGCGTCTACGTCCAGGACGGC AAGAAGGTGCCCAGCGCGCGCCCCGGGGGGGACGTCATCACGGCCGACGG GTGCACCTCCGCGCAGCCCTACGGCGGCCTTTCCGGCATGGGCGACGCCC ${\tt TCGGCCGCGGCATGGTCCTGGCCCTGAGCATCTGGAACGACGCGTCCGGG}$ TACATGAACTGGCTCGACGCCGGCAGCAACGGCCCCTGCAGCGACACCGA GGGTAACCCGTCCAACATCCTGGCCAACCACCCGGACGCCCACGTCGTGC TCTCCAACATCCGCTGGGGCGACATCGGCTCCACCGTCGACACCGGCGAT GGCGACAACAACGGCGGCGGCCCCAACCCGTCATCCACCACCACCGCTAC CGCTACCACCACCTCCTCCGGCCCGGCCGAGCCTACCCAGACCCACTACG GCCAGTGTGGAGGGAAAGGATGGACGGCCCTACCCGCTGCGAGACGCCC ${\tt TACACCTGCAAGTACCAGAACGACTGGTACTCGCAGTGCCTGTAG}$

(SEQ ID NO: 110)

MGQKTLQGLVAAAALAASVANAQQPGTFTPEVHPTLPTWKCTTSGGCVQQ

DTSVVLDWNYRWFHTEDGSKSCITSSGVDRTLCPDEATCAKNCFVEGVNY

TSSGVETSGSSLTLRQFFKGSDGAINSVSPRVYLLGGDGNYVVLKLLGQE

LSFDVDVSSLPCGENAALYLSEMDATGGRNEYNTGGAEYGSGYCDAQCPV

QNWNNGTLNTGRVGSCCNEMDILEANSKAEAFTPHPCIGNSCDKSGCGFN

AYARGYHNYWAPGGTLDTSRPFTMITRFVTDDGTTSGKLARIERVYVQDG

KKVPSAAPGGDVITADGCTSAQPYGGLSGMGDALGRGMVLALSIWNDASG

YMNWLDAGSNGPCSDTEGNPSNILANHPDAHVVLSNIRWGDIGSTVDTGD

GDNNGGGPNPSSTTTATATTTSSGPAEPTQTHYGQCGGKGWTGPTRCETP

YTCKYQNDWYSQCL

-continued

QQPGTFTPEVHPTLPTWKCTTSGGCVQQDTSVVLDWNYRWFHTEDGSKSC

ITSSGVDRTLCPDEATCAKNCFVEGVNYTSSGVETSGSSLTLRQFFKGSD

GAINSVSPRVYLLGGDGNYVVLKLLGGELSFDVDVSSLPCGENAALVLSE

(SEO ID NO: 111)

(SEQ ID NO: 112)

GAINSVSPRVYLLGGDGNYVVLKLLGQELSFDVDVSSLPCGENAALYLSE
MDATGGRNEYNTGGAEYGSGYCDAQCPVQNWNNGTLNTGRVGSCCNEMDI
LEANSKAEAFTPHPCIGNSCDKSGCGFNAYARGYHNYWAPGGTLDTSRPF
TMITRFVTDDGTTSGKLARIERVYVQDGKKVPSAAPGGDVITADGCTSAQ
PYGGLSGMGDALGRGMVLALSIWNDASGYMNWLDAGSNGPCSDTEGNPSN
ILANHPDAHVVLSNIRWGDIGSTVDTGDGDNNGGGPNPSSTTTATATTTS

SGPAEPTOTHYGOCGGKGWTGPTRCETPYTCKYONDWYSOCL

[0342] Wild-type *M. thermophila* EG2 polynucleotide (SEQ ID NO:112) and amino acid (SEQ ID NO:113) sequences are provided below. The signal sequence is underlined in SEQ ID NO:113. SEQ ID NO:114 provides the sequence of EG2, without the signal sequence.

ATGAAGTCCTCCATCCTCGCCAGCGTCTTCGCCACGGGCGCCGTGGCTCA AAGTGGTCCGTGGCAGCAATGTGGTGGCATCGGATGGCAAGGATCGACCG ACTGTGTGTCGGGTTACCACTGCGTCTACCAGAACGATTGGTACAGCCAG ${\tt TGCGTGCCTGGCGCGGCGTCGACAACGCTCCAGACATCTACCACGTCCAG}$ GCCCACCGCCACCAGCACCGCCCCTCCGTCGTCCACCACCTCGCCTAGCA AGGGCAAGCTCAAGTGGCTCGGCAGCAACGAGTCGGGCGCCGAGTTCGGG GAGGGCAACTACCCCGGCCTCTGGGGCAAGCACTTCATCTTCCCGTCGAC TTCGGCGATTCAGACGCTCATCAATGATGGATACAACATCTTCCGGATCG ACTTCTCGATGGAGCGTCTGGTGCCCAACCAGTTGACGTCGTCCTTCGAC GAGGGCTACCTCCGCAACCTGACCGAGGTGGTCAACTTCGTGACGAACGC GGGCAAGTACGCCGTCCTGGACCCGCACAACTACGGCCGGTACTACGGCA ACGTCATCACGGACACGACGCGTTCCGGACCTTCTGGACCAACCTGGCC AAGCAGTTCGCCTCCAACTCGCTCGTCATCTTCGACACCAACAACGAGTA CAACACGATGGACCAGACCCTGGTGCTCAACCTCAACCAGGCCGCCATCG ACGGCATCCGGGCCGCCGCGCGCGCCCACTCCCAGTACATCTTCGTCGAGGGC AACGCGTGGAGCCGGGGCCTGGAGCTGGAACACGACCAACACCCAACATGGC CGCCCTGACGGACCCGCAGAACAAGATCGTGTACGAGATGCACCAGTACC ${\tt TCGACTCGGACAGCTCGGGCACCCACGCCGAGTGCGTCAGCAGCAACATC}$ GGCGCCCAGCGCGTCGTCGGAGCCACCCAGTGGCTCCGCGCCAACGGCAA $\tt GCTCGGCGTCCTCGGCGAGTTCGCCGGCGGCGCCCAACGCCGTCTGCCAGC$ AGGCCGTCACCGGCCTCCTCGACCACCTCCAGGACAACAGCGACGTCTGG CTGGGTGCCCTCTGGTGGGCCGCCGGTCCCTGGTGGGGCGACTACATGTA CTCGTTCGAGCCTCCTTCGGGCACCGGCTATGTCAACTACAACTCGATCC

TAAAGAAGTACTTGCCGTAA

(SEQ ID NO: 113)

MKSSILASVFATGAVAQSGPWQQCGGIGWQGSTDCVSGYHCVYQNDWYSQ

CVPGAASTTLQTSTTSRPTATSTAPPSSTTSPSKGKLKWLGSNESGAEFG

EGNYPGLWGKHFIFPSTSAIQTLINDGYNIFRIDFSMERLVPNQLTSSFD

EGYLRNLTEVVNFVTNAGKYAVLDPHNYGRYYGNVITDTNAFRTFWTNLA

KQFASNSLVIFDTNNEYNTMDQTLVLNLNQAAIDGIRAAGATSQYIFVEG

NAWSGAWSWNTTNTNMAALTDPQNKIVYEMHQYLDSDSSGTHAECVSSNI

GAQRVVGATQWLRANGKLGVLGEFAGGANAVCQQAVTGLLDHLQDNSEVW

LGALWWAAGPWWGDYMYSFEPPSGTGYVNYNSILKKYLP

(SEQ ID NO: 114)
QSGPWQQCGGIGWQGSTDCVSGYHCVYQNDWYSQCVPGAASTTLQTSTTS
RPTATSTAPPSSTTSPSKGKLKWLGSNESGAEFGEGNYPGLWGKHFIFPS
TSAIQTLINDGYNIFRIDFSMERLVPNQLTSSFDEGYLRNLTEVVNFVTN
AGKYAVLDPHNYGRYYGNVITDTNAFRTFWTNLAKQFASNSLVIFDTNNE
YNTMDQTLVLNLNQAAIDGIRAAGATSQYIFVEGNAWSGAWSWNTTNTNM
AALTDPQNKIVYEMHQYLDSDSSGTHAECVSSNIGAQRVVGATQWLRANG
KLGVLGEFAGGANAVCQQAVTGLLDHLQDNSEVWLGALWWAAGPWWGDYM
YSFEPPSGTGYVNYNSILKKYLP

[0343] The polynucleotide (SEQ ID NO:115) and amino acid (SEQ ID NO:116) sequences of a wild-type BGL are provided below. The signal sequence is underlined in SEQ ID NO:116. SEQ ID NO:117 provides the polypeptide sequence without the signal sequence.

(SEO ID NO: 115) ATGAAGGCTGCTGCGCTTTCCTGCCTCTTCGGCAGTACCCTTGCCGTTGC AGGCGCCATTGAATCGAGAAAGGTTCACCAGAAGCCCCTCGCGAGATCTG AACCTTTTTACCCGTCGCCATGGATGAATCCCAACGCCGACGGCTGGGCG GAGGCCTATGCCCAGGCCAAGTCCTTTGTCTCCCAAATGACTCTGCTAGA GAAGGTCAACTTGACCACGGGAGTCGGCTGGGGGGCTGAGCAGTGCGTCG GACTCCCCTCTCGGCATCCGAGGAGCCGACTACAACTCAGCGTTCCCCTC TGGCCAGACCGTTGCTGCTACCTGGGATCGCGGTCTGATGTACCGTCGCG GCTACGCAATGGGCCAGGAGGCCAAAGGCAAGGGCATCAATGTCCTTCTC GGACCAGTCGCCGGCCCCTTGGCCGCATGCCCGAGGGCGGTCGTAACTG GGAAGGCTTCGCTCCGGATCCCGTCCTTACCGGCATCGGCATGTCCGAGA CGATCAAGGGCATTCAGGATGCTGGCGTCATCGCTTGTGCGAAGCACTTT ATTGGAAACGAGCAGGAGCACTTCAGACAGGTGCCAGAAGCCCAGGGATA CGGTTACAACATCAGCGAAACCCTCTCCTCCAACATTGACGACAAGACCA TGCACGAGCTCTACCTTTGGCCGTTTGCCGATGCCGTCCGGGCCGGCGTC GGCTCTGTCATGTGCTCGTACCAGCAGGTCAACAACTCGTACGCCTGCCA GAACTCGAAGCTGCTGAACGACCTCCTCAAGAACGAGCTTGGGTTTCAGG

-continued

GCTTCGTCATGAGCGACTGGCAGGCACACACTGGCGCAGCAAGCGCC GTGGCTGGTCTCGATATGTCCATGCCGGGCGACACCCAGTTCAACACTGG $\tt CGTCAGTTTCTGGGGGCGCCAATCTCACCCTCGCCGTCCTCAACGGCACAG$ TCCCTGCCTACCGTCTCGACGACATGGCCATGCGCATCATGGCCGCCCTC TTCAAGGTCACCAAGACCACCGACCTGGAACCGATCAACTTCTCCTTCTG GACCGACGACACTTATGGCCCGATCCACTGGGCCGCCAAGCAGGGCTACC ${\tt AGGAGATTAATTCCCACGTTGACGTCCGCGCCGACCACGGCAACCTCATC}$ CGGGAGATTGCCGCCAAGGGTACGGTGCTGCTGAAGAATACCGGCTCTCT ACCCCTGAACAAGCCAAAGTTCGTGGCCGTCATCGGCGAGGATGCTGGGT CGAGCCCCAACGGCCCAACGGCTGCAGCGACCGCGGCTGTAACGAAGGC ACGCTCGCCATGGGCTGGGGATCCGGCACAGCCAACTATCCGTACCTCGT TTCCCCGACGCCGCTCCAGGCCCGGGCCATCCAGGACGCACGAGGT ACGAGAGCGTCCTGTCCAACTACGCCGAGGAAAAGACAAAGGCTCTGGTC TCGCAGGCCAATGCAACCGCCATCGTCTTCGTCAATGCCGACTCAGGCGA GGGCTACATCAACGTGGACGGTAACGAGGGCGACCGTAAGAACCTGACTC TCTGGAACAACGGTGATACTCTGGTCAAGAACGTCTCGAGCTGGTGCAGC AACACCATCGTCGTCATCCACTCGGTCGGCCCGGTCCTCCTGACCGATTG GTACGACAACCCCAACATCACGGCCATTCTCTGGGCTGGTCTTCCGGGCC AGGAGTCGGGCAACTCCATCACCGACGTGCTTTACGGCAAGGTCAACCCC GCCGCCCGCTCGCCCTTCACTTGGGGCAAGACCCGCGAAAGCTATGGCGC GGACGTCCTGTACAAGCCGAATAATGGCAATGGTGCGCCCCAACAGGACT TCACCGAGGGCGTCTTCATCGACTACCGCTACTTCGACAAGGTTGACGAT GACTCGGTCATCTACGAGTTCGGCCACGGCCTGAGCTACACCACCTTCGA GTACAGCAACATCCGCGTCGTCAAGTCCAACGTCAGCGAGTACCGGCCCA CGACGGCCACGGCCCAGGCCCCGACGTTTGGCAACTTCTCCACCGAC CTCGAGGACTATCTCTTCCCCAAGGACGAGTTCCCCTACATCTACCAGTA CATCTACCCGTACCTCAACACGACCGACCCCCGGAGGGCCTCGGCCGATC CCCACTACGGCCAGACCGCCGAGGAGTTCCTCCCGCCCCACGCCACCGAT GACGACCCCAGCCGCTCCTCCGGTCCTCGGGCGGAAACTCCCCCGGCGG CAACCGCCAGCTGTACGACATTGTCTACACAATCACGGCCGACATCACGA ATACGGGCTCCGTTGTAGGCGAGGGGGGGGCTCCACGTCTCGCTG GGCGGTCCCGAGGATCCCAAGGTGCAGCTGCGCGACTTTGACAGGATGCG GATCGAACCCGGCGAGACGAGGCAGTTCACCGGCCGCCTGACGCGCAGAG ATCTGAGCAACTGGGACGTCACGGTGCAGGACTGGGTCATCAGCAGGTAT CCCAAGACGCATATGTTGGGAGGAGCAGCCGGAAGTTGGATCTCAAGAT TGAGCTTCCTTGA

(SEQ ID NO: 116)

MKAAALSCLFGSTLAVAGA
IESRKVHQKPLARSEPFYPSPWMNPNADGWA

EAYAQAKSFVSQMTLLEKVNLTTGVGWGAEQCVGQVGAIPRLGLRSLCMH

DSPLGIRGADYNSAFPSGQTVAATWDRGLMYRRGYAMGQEAKGKGINVLL GPVAGPLGRMPEGGRNWEGFAPDPVLTGIGMSETIKGIQDAGVIACAKHF IGNEOEHFROVPEAOGYGYNISETLSSNIDDKTMHELYLWPFADAVRAGV GSVMCSYQQVNNSYACQNSKLLNDLLKNELGFQGFVMSDWQAQHTGAASA VAGLDMSMPGDTQFNTGVSFWGANLTLAVLNGTVPAYRLDDMAMRIMAAL FKVTKTTDLEPINFSFWTDDTYGPIHWAAKQGYQEINSHVDVRADHGNLI REIAAKGTVLLKNTGSLPLNKPKFVAVIGEDAGSSPNGPNGCSDRGCNEG TLAMGWGSGTANYPYLVSPDAALOARAIODGTRYESVLSNYAEEKTKALV SOANATAIVFVNADSGEGYINVDGNEGDRKNLTLWNNGDTLVKNVSSWCS NTTVVTHSVGPVLLTDWYDNPNTTATLWAGLPGOESGNSTTDVLYGKVNP AARSPFTWGKTRESYGADVLYKPNNGNGAPQQDFTEGVFIDYRYFDKVDD DSVIYEFGHGLSYTTFEYSNIRVVKSNVSEYRPTTGTTAOAPTFGNFSTD LEDYLFPKDEFPYIYOYIYPYLNTTDPRRASADPHYGOTAEEFLPPHATD DDPOPLLRSSGGNSPGGNROLYDIVYTITADITNTGSVVGEEVPOLYVSL ${\tt GGPEDPKVQLRDFDRMRIEPGETRQFTGRLTRRDLSNWDVTVQDWVISRY}$ PKTAYVGRSSRKLDLKIELP

(SEQ ID NO: 117) ${\tt IESRKVHQKPLARSEPFYPSPWMNPNADGWAEAYAQAKSFVSQMTLLEKV}$ NLTTGVGWGAEQCVGQVGAIPRLGLRSLCMHDSPLGIRGADYNSAFPSGQ TVAATWDRGLMYRRGYAMGOEAKGKGINVLLGPVAGPLGRMPEGGRNWEG ${\tt FAPDPVLTGIGMSETIKGIQDAGVIACAKHFIGNEQEHFRQVPEAQGYGY}$ NISETLSSNIDDKTMHELYLWPFADAVRAGVGSVMCSYQQVNNSYACQNS KLLNDLLKNELGFQGFVMSDWQAQHTGAASAVAGLDMSMPGDTQFNTGVS FWGANLTLAVLNGTVPAYRLDDMAMRIMAALFKVTKTTDLEPINFSFWTD DTYGPIHWAAKOGYOEINSHVDVRADHGNLIREIAAKGTVLLKNTGSLPL NKPKFVAVIGEDAGSSPNGPNGCSDRGCNEGTLAMGWGSGTANYPYLVSP DAALOARAIODGTRYESVLSNYAEEKTKALVSOANATAIVFVNADSGEGY INVDGNEGDRKNLTLWNNGDTLVKNVSSWCSNTIVVIHSVGPVLLTDWYD NPNITATLWAGLPGOESGNSTTDVLYGKVNPAARSPFTWGKTRESYGADV $\verb|LYKPNNGNGAPQQDFTEGVFIDYRYFDKVDDDSVIYEFGHGLSYTTFEYS|$ NIRVVKSNVSEYRPTTGTTAQAPTFGNFSTDLEDYLFPKDEFPYIYQYIY PYLNTTDPRRASADPHYGQTAEEFLPPHATDDDPQPLLRSSGGNSPGGNR OLYDIVYTITADITNTGSVVGEEVPOLYVSLGGPEDPKVOLRDFDRMRIE PGETROFTGRLTRRDLSNWDVTVODWVISRYPKTAYVGRSSRKLDLKIEL

[0344] The polynucleotide (SEQ ID NO:118) and amino acid (SEQ ID NO:119) sequences of a BGL variant ("Variant 883") are provided below. The signal sequence is underlined in SEQ ID NO:119. SEQ ID NO:120 provides the sequence of this BGL variant, without the signal sequence.

P

(SEQ ID NO: 118) ATGAAGGCTGCTGCGCTTTCCTGCCTCTTCGGCAGTACCCTTGCCGTTGC AGGCGCCATTGAATCGAGAAAGGTTCACCAGAAGCCCCTCGCGAGATCTG $\verb|AACCTTTTTACCCGTCGCCATGGATGAATCCCAACGCCGACGGCTGGGCG|$ GAGGCCTATGCCCAGGCCAAGTCCTTTGTCTCCCAAATGACTCTGCTAGA GAAGGTCAACTTGACCACGGGAGTCGGCTGGGGGGGCTGAGCAGTGCGTCG GACTCCCCTCTCGGCATCCGAGGAGCCGACTACAACTCAGCGTTCCCCTC TGGCCAGACCGTTGCTGCTACCTGGGATCGCGGTCTGATGTACCGTCGCG GCTACGCAATGGGCCAGGAGGCCAAAGGCAAGGGCATCAATGTCCTTCTC GGACCAGTCGCCGGCCCCCTTGGCCGCATGCCCGAGGGCGGTCGTAACTG GGAAGGCTTCGCTCCGGATCCCGTCCTTACCGGCATCGGCATGTCCGAGA CGATCAAGGGCATTCAGGATGCTGGCGTCATCGCTTGTGCGAAGCACTTT ATTGGAAACGAGCAGGAGCACTTCAGACAGGTGCCAGAAGCCCAGGGATA CGGTTACAACATCAGCGAAACCCTCTCCTCCAACATTGACGACAAGACCA TGCACGAGCTCTACCTTTGGCCGTTTGCCGATGCCGTCCGGGCCGGCGTC $\tt GGCTCTGTCATGTGCTCGTACAACCAGGTCAACAACTCGTACGCCTGCCA$ ${\tt GAACTCGAAGCTGCTGAACGACCTCCTCAAGAACGAGCTTGGGTTTCAGG}$ GCTTCGTCATGAGCGACTGGTGGGCACAGCACCTGGCGCAGCAAGCGCC GTGGCTGGTCTCGATATGTCCATGCCGGGCGACACCATGTTCAACACTGG $\tt CGTCAGTTTCTGGGGCGCCAATCTCACCCTCGCCGTCCTCAACGGCACAG$ ${\tt TCCCTGCCTACCGTCTCGACGACATGGCCATGCGCATCATGGCCGCCCTC}$ TTCAAGGTCACCAAGACCACCGACCTGGAACCGATCAACTTCTCCTTCTG GACCCGCGACACTTATGGCCCGATCCACTGGGCCGCCAAGCAGGGCTACC AGGAGATTAATTCCCACGTTGACGTCCGCGCCGACCACGGCAACCTCATC CGGAACATTGCCGCCAAGGGTACGGTGCTGCTGAAGAATACCGGCTCTCT CGAGCCCCAACGGCCCAACGGCTGCAGCGACCGCGGCTGTAACGAAGGC ACGCTCGCCATGGGCTGGGGATCCGGCACAGCCAACTATCCGTACCTCGT TTCCCCCGACGCCGCGCTCCAGTTGCGGGCCATCCAGGACGGCACGAGGT ACGAGAGCGTCCTGTCCAACTACGCCGAGGAAAATACAAAGGCTCTGGTC TCGCAGGCCAATGCAACCGCCATCGTCTTCGTCAATGCCGACTCAGGCGA GGGCTACATCAACGTGGACGGTAACGAGGGCGACCGTAAGAACCTGACTC TCTGGAACAACGGTGATACTCTGGTCAAGAACGTCTCGAGCTGGTGCAGC AACACCATCGTCGTCATCCACTCGGTCGGCCCGGTCCTCCTGACCGATTG GTACGACACCCCAACATCACGCCCATTCTCTGGGCTGGTCTTCCGGGCC AGGAGTCGGGCAACTCCATCACCGACGTGCTTTACGGCAAGGTCAACCCC $\tt GCCGCCCGCTCGCCCTTCACTTGGGGCAAGACCCGCGAAAGCTATGGCGC$ $\tt GGACGTCCTGTACAAGCCGAATAATGGCAATTGGGCGCCCCAACAGGACT$ TCACCGAGGGCGTCTTCATCGACTACCGCTACTTCGACAAGGTTGACGAT

GACTCGGTCATCTACGAGTTCGGCCACGGCCTGAGCTACACCACCTTCGA
GTACAGCAACATCCGCGTCGTCAAGTCCAACGTCAGCGAGTACCGGCCCA
CGACGGGCACCACGATTCAGGCCCCGACGTTTGGCAACTTCTCCACCGAC
CTCGAGGACTATCTCTCCCCAAGGACGACTCCCGGAGGGCCTCGGCCGAGTA
CATCTACCCGTACCTCAACACGACCGACCCCGGAGGGCCTCGGCCGATC
CCCACTACGGCCAGACCGCCGAGGAGTTCCTCCCGCCCCACGCCACCGAT
GACGACCCCCAGCCGCTCCTCCGGTCCTCGGGCGGAAACTCCCCCGGCGG
CAACCGCCAGCTGTACGACATTGTCTACACAATCACGGCCGACATCACGA
ATACGGGCTCCGTTGTAGGCGAGGAGGTACCGCAGCTCTACGTCTCGCTG
GGCGGTCCCGAGGATCCCAAGGTGCAGCTCTACGTCTTCGCTG
GATCGAACCCGGCGAGACCGAGGAGTTCACCGGCCGCAGAGA
ATCTGAGCAACTGGGACGTCACGGTGCAGGTTCACGCAGGTAT
CCCAAGACCGCCATTGTTGGGAGGAGCAGCCGGAAGTTGGATCTCAAGAT
TGAGCTTCCTTGA

(SEQ ID NO: 119) $\underline{\mathsf{MKAAALSCLFGSTLAVAGA}} \mathtt{IESRKVHQKPLARSEPFYPSPWMNPNADGWA}$ EAYAQAKSFVSQMTLLEKVNLTTGVGWGAEQCVGQVGAIPRLGLRSLCMH DSPLGIRGADYNSAFPSGQTVAATWDRGLMYRRGYAMGQEAKGKGINVLL ${\tt GPVAGPLGRMPEGGRNWEGFAPDPVLTGIGMSETIKGIQDAGVIACAKHF}$ ${\tt IGNEQEHFRQVPEAQGYGYNISETLSSNIDDKTMHELYLWPFADAVRAGV}$ ${\tt GSVMCSYNQVNNSYACQNSKLLNDLLKNELGFQGFVMSDWWAQHTGAASA}$ VAGLDMSMPGDTMFNTGVSFWGANLTLAVLNGTVPAYRLDDMAMRIMAAL FKVTKTTDLEPINFSFWTRDTYGPIHWAAKQGYQEINSHVDVRADHGNLI RNIAAKGTVLLKNTGSLPLNKPKFVAVIGEDAGPSPNGPNGCSDRGCNEG TLAMGWGSGTANYPYLVSPDAALOLRAIODGTRYESVLSNYAEENTKALV SQANATAIVFVNADSGEGYINVDGNEGDRKNLTLWNNGDTLVKNVSSWCS NTIVVIHSVGPVLLTDWYDNPNITAILWAGLPGQESGNSITDVLYGKVNP AARSPFTWGKTRESYGADVLYKPNNGNWAPQQDFTEGVFIDYRYFDKVDD DSVIYEFGHGLSYTTFEYSNIRVVKSNVSEYRPTTGTTIQAPTFGNFSTD LEDYLFPKDEFPYIPOYIYPYLNTTDPRRASADPHYGOTAEEFLPPHATD DDPOPLLRSSGGNSPGGNROLYDIVYTITADITNTGSVVGEEVPOLYVSL GGPEDPKVQLRDFDRMRIEPGETRQFTGRLTRRDLSNWDVTVQDWVISRY

(SEQ ID NO: 120)
IESRKVHQKPLARSEPFYPSPWMNPNADGWAEAYAQAKSFVSQMTLLEKV
NLTTGVGWGAEQCVGQVGAIPRLGLRSLCMHDSPLGIRGADYNSAFPSGQ
TVAATWDRGLMYRRGYAMGQEAKGKGINVLLGPVAGPLGRMPEGGRNWEG
FAPDPVLTGIGMSETIKGIQDAGVIACAKHFIGNEQEHFRQVPEAQGYGY
NISETLSSNIDDKTMHELYLWPFADAVRAGVGSVMCSYNQVNNSYACQNS
KLLNDLLKNELGFQGFVMSDWWAQHTGAASAVAGLDMSMPGDTMFNTGVS

PKTAYVGRSSRKLDLKTELP

-continued

FWGANLTLAVLNGTVPAYRLDDMAMRIMAALFKVTKTTDLEPINFSFWTR
DTYGPIHWAAKQGYQEINSHVDVRADHGNLIRNIAAKGTVLLKNTGSLPL
NKPKFVAVIGEDAGPSPNGPNGCSDRGCNEGTLAMGWGSGTANYPYLVSP
DAALQLRAIQDGTRYESVLSNYAEENTKALVSQANATAIVFVNADSGEGY
INVDGNEGDRKNLTLWNNGDTLVKNVSSWCSNTIVVIHSVGPVLLTDWYD
NPNITAILWAGLPGQESGNSITDVLYGKVNPAARSPFTWGKTRESYGADV
LYKPNNGNWAPQQDFTEGVFIDYRYFDKVDDDSVIYEFGHGLSYTTFEYS
NIRVVKSNVSEYRPTTGTTIQAPTFGNFSTDLEDYLFPKDEFPYIPQYIY
PYLNTTDPRRASADPHYGQTAEEFLPPHATDDDPQPLLRSSGGNSPGGNR
QLYDIVYTITADITNTGSVVGEEVPQLYVSLGGPEDPKVQLRDFDRMRIE
PGETRQFTGRLTRRDLSNWDVTVQDWVISRYPKTAYVGRSSRKLDLKIEL

[0345] The polynucleotide (SEQ ID NO:121) and amino acid (SEQ ID NO:122) sequences of a BGL variant ("Variant 900") are provided below. The signal sequence is underlined in SEQ ID NO:122. SEQ ID NO:123 provides the sequence of this BGL variant, without the signal sequence.

(SEQ ID NO: 121) ATGAAGGCTGCTGCGCTTTCCTGCCTCTTCGGCAGTACCCTTGCCGTTGC AGGCGCCATTGAATCGAGAAAGGTTCACCAGAAGCCCCTCGCGAGATCTG ${\tt AACCTTTTTACCCGTCGCCATGGATGAATCCCAACGCCATCGGCTGGGCG}$ GAGGCCTATGCCCAGGCCAAGTCCTTTGTCTCCCAAATGACTCTGCTAGA GAAGGTCAACTTGACCACGGGAGTCGGCTGGGGGGGAGGAGCAGTGCGTCG GACTCCCCTCTCGGCGTGCGAGGAACCGACTACAACTCAGCGTTCCCCTC TGGCCAGACCGTTGCTGCTACCTGGGATCGCGGTCTGATGTACCGTCGCG GCTACGCAATGGGCCAGGAGGCCAAAGGCAAGGGCATCAATGTCCTTCTC GGACCAGTCGCCGCCCCCTTGGCCGCATGCCCGAGGGCGGTCGTAACTG GGAAGGCTTCGCTCCGGATCCCGTCCTTACCGGCATCGGCATGTCCGAGA CGATCAAGGGCATTCAGGATGCTGGCGTCATCGCTTGTGCGAAGCACTTT $\tt ATTGGAAACGAGCAGGAGCACTTCAGACAGGTGCCAGAAGCCCAGGGATA$ CGGTTACAACATCAGCGAAACCCTCTCCTCCAACATTGACGACAAGACCA TGCACGAGCTCTACCTTTGGCCGTTTGCCGATGCCGTCCGGGCCGGCGTC $\tt GGCTCTGTCATGTGCTCGTACAACCAGGGCAACAACTCGTACGCCTGCCA$ GAACTCGAAGCTGCTGAACGACCTCCTCAAGAACGAGCTTGGGTTTCAGG $\tt GCTTCGTCATGAGCGACTGGTGGGCACACACTGGCGCAGCAAGCGCC$ GTGGCTGGTCTCGATATGTCCATGCCGGGCGACACCATGGTCAACACTGG CGTCAGTTTCTGGGGCGCCAATCTCACCCTCGCCGTCCTCAACGGCACAG TCCCTGCCTACCGTCTCGACGACATGTGCATGCGCATCATGGCCGCCCTC ${\tt TTCAAGGTCACCAAGACCACCGACCTGGAACCGATCAACTTCTCCTTCTG}$

GACCCGCGACACTTATGGCCCGATCCACTGGGCCGCCAAGCAGGGCTACC AGGAGATTAATTCCCACGTTGACGTCCGCGCCGACCACGGCAACCTCATC $\tt CGGAACATTGCCGCCAAGGGTACGGTGCTGCTGAAGAATACCGGCTCTCT$ ACCCCTGAACAAGCCAAAGTTCGTGGCCGTCATCGGCGAGGATGCTGGGC CGAGCCCCAACGGCCCAACGGCTGCAGCGACCGCGGCTGTAACGAAGGC ACGCTCGCCATGGGCTGGGGATCCGGCACAGCCAACTATCCGTACCTCGT TTCCCCCGACGCCGCGCTCCAGGCGCGGGCCATCCAGGACGCACGAGGT ACGAGAGCGTCCTGTCCAACTACGCCGAGGAAAATACAAAGGCTCTGGTC TCGCAGGCCAATGCAACCGCCATCGTCTTCGTCAATGCCGACTCAGGCGA GGGCTACATCAACGTGGACGGTAACGAGGGCGACCGTAAGAACCTGACTC TCTGGAACAACGGTGATACTCTGGTCAAGAACGTCTCGAGCTGGTGCAGC AACACCATCGTCGTCATCCACTCGGTCGGCCCGGTCCTCCTGACCGATTG GTACGACAACCCCAACATCACGGCCATTCTCTGGGCTGGTCTTCCGGGCC AGGAGTCGGGCAACTCCATCACCGACGTGCTTTACGGCAAGGTCAACCCC GCCGCCCGCTCGCCCTTCACTTGGGGCAAGACCCGCGAAAGCTATGGCGC GGACGTCCTGTACAAGCCGAATAATGGCAATTGGGCGCCCCAACAGGACT ${\tt TCACCGAGGGCGTCTTCATCGACTACCGCTACTTCGACAAGGTTGACGAT}$ GACTCGGTCATCTACGAGTTCGGCCACGGCCTGAGCTACACCACCTTCGA GTACAGCAACATCCGCGTCGTCAAGTCCAACGTCAGCGAGTACCGGCCCA CGACGGCCACCACTTCAGGCCCCGACGTTTGGCAACTTCTCCACCGAC CTCGAGGACTATCTCTTCCCCAAGGACGAGTTCCCCTACATCCCGCAGTA CATCTACCCGTACCTCAACACGACCGACCCCCGGAGGGCCTCGGGCGATC CCCACTACGGCCAGACCGCCGAGGAGTTCCTCCCGCCCCACGCCACCGAT GACGACCCCAGCCGCTCCTCCGGTCCTCGGGCGGAAACTCCCCCGGCGG CAACCGCCAGCTGTACGACATTGTCTACACAATCACGGCCGACATCACGA ATACGGGCTCCGTTGTAGGCGAGGAGGTACCGCAGCTCTACGTCTCGCTG GGCGGTCCCGAGGATCCCAAGGTGCAGCTGCGCGACTTTGACAGGATGCG GATCGAACCCGGCGAGACGAGGCAGTTCACCGGCCGCCTGACGCGCAGAG ATCTGAGCAACTGGGACGTCACGGTGCAGGACTGGGTCATCAGCAGGTAT CCCAAGACGGCATATGTTGGGAGGAGCAGCCGGAAGTTGGATCTCAAGAT TGAGCTTCCTTGA

(SEQ ID NO: 122)

MKAAALSCLFGSTLAVAGA
IESRKVHQKPLARSEPFYPSPWMNPNAIGWA

EAYAQAKSFVSQMTLLEKVNLTTGVGWGEEQCVGNVGAIPRLGLRSLCMH

DSPLGVRGTDYNSAFPSGQTVAATWDRGLMYRRGYAMGQEAKGKGINVLL

GPVAGPLGRMPEGGRNWEGFAPDPVLTGIGMSETIKGIQDAGVIACAKHF

IGNEQEHFRQVPEAQGYGYNISETLSSNIDDKTMHELYLWPFADAVRAGV

GSVMCSYNQGNNSYACQNSKLLNDLLKNELGFQGFVMSDWWAQHTGAASA

VAGLDMSMPGDTMVNTGVSFWGANLTLAVLNGTVPAYRLDDMCMRIMAAL

-continued
FKVTKTTDLEPINFSFWTRDTYGPIHWAAKQGYQEINSHVDVRADHGNLI
RNIAAKGTVLLKNTGSLPLNKPKFVAVIGEDAGPSPNGPNGCSDRGCNEG
TLAMGWGSGTANYPYLVSPDAALQARAIQDGTRYESVLSNYAEENTKALV
SQANATAIVFVNADSGEGYINVDGNEGDRKNLTLWNNGDTLVKNVSSWCS
NTIVVIHSVGPVLLTDWYDNPNITAILWAGLPGQESGNSITDVLYGKVNP
AARSPFTWGKTRESYGADVLYKPNNGNWAPQQDFTEGVFIDYRYFDKVDD
DSVIYEFGHGLSYTTFEYSNIRVVKSNVSEYRPTTGTTIQAPTFGNFSTD
LEDYLFPKDEFPYIPQYIYPYLNTTDPRRASGDPHYGQTAEEFLPPHATD
DDPQPLLRSSGGNSPGGNRQLYDIVYTITADITNTGSVVGEEVPQLYVSL
GGPEDPKVQLRDFDRMRIEPGETRQFTGRLTRRDLSNWDVTVQDWVISRY
PKTAYYGRSSRKLDLKIELP

(SEO ID NO: 123) IESRKVHQKPLARSEPFYPSPWMNPNAIGWAEAYAQAKSFVSQMTLLEKV ${\tt NLTTGVGWGEEQCVGNVGAIPRLGLRSLCMHDSPLGVRGTDYNSAFPSGQ}$ TVAATWDRGLMYRRGYAMGQEAKGKGINVLLGPVAGPLGRMPEGGRNWEG ${\tt FAPDPVLTGIGMSETIKGIQDAGVIACAKHFIGNEQEHFRQVPEAQGYGY}$ ${\tt NISETLSSNIDDKTMHELYLWPFADAVRAGVGSVMCSYNQGNNSYACQNS}$ $\verb|KLLNDLLKNELGFQGFVMSDWWAQHTGAASAVAGLDMSMPGDTMVNTGVS|\\$ FWGANLTLAVLNGTVPAYRLDDMCMRIMAALFKVTKTTDLEPINFSFWTR DTYGPIHWAAKQGYQEINSHVDVRADHGNLIRNIAAKGTVLLKNTGSLPL ${\tt NKPKFVAVIGEDAGPSPNGPNGCSDRGCNEGTLAMGWGSGTANYPYLVSP}$ DAALQARAIQDGTRYESVLSNYAEENTKALVSQANATAIVFVNADSGEGY INVDGNEGDRKNLTLWNNGDTLVKNVSSWCSNTIVVIHSVGPVLLTDWYD NPNITAILWAGLPGOESGNSITDVLYGKVNPAARSPFTWGKTRESYGADV $\verb|LYKPNNGNWAPQQDFTEGVFIDYRYFDKVDDDSVIYEFGHGLSYTTFEYS|$ NIRVVKSNVSEYRPTTGTTIQAPTFGNFSTDLEDYLFPKDEFPYIPQYIY ${\tt PYLNTTDPRRASGDPHYGQTAEEFLPPHATDDDPQPLLRSSGGNSPGGNR}$ QLYDIVYTITADITNTGSVVGEEVPQLYVSLGGPEDPKVQLRDFDRMRIE PGETRQFTGRLTRRDLSNWDVTVQDWVISRYPKTAYVGRSSRKLDLKIEL P

[0346] The polynucleotide (SEQ ID NO:124) and amino acid (SEQ ID NO:125) sequences of wild-type *Talaromyces emersonii* CBH1 are provided below. The signal sequence is shown underlined in SEQ ID NO:125. SEQ ID NO:126 provides the sequence of this CBH1, without the signal sequence.

(SEQ ID NO: 124)
ATGCTTCGACGGGCTCTTCTTCTATCCTCTTCCGCCATCCTTGCTGTCAA

GGCACAGCAGGCCGGCACGGCGACGAGAAACCACCCGCCCCTGACAT

GGCAGGAATGCACCGCCCCTGGGAGCTGCACCACCCAGAACGGGGCGGTC

GTTCTTGATGCGAACTGGCGTTGGGTGCACGATGTGAACGGATACACCAA

-continued
CTGCTACACGGGCAATACCTGGGACCCCACGTACTGCCCTGACGACGAAA
CCTGCGCCCAGAACTGTGCGCTGGACGGCGCGGATTACGAGGGCACCTAC

GGCGTGACTTCGTCGGGCAGCTCCTTGAAACTCAATTTCGTCACCGGGTC GAACGTCGGATCCCGTCTCTACCTGCTGCAGGACGACTCGACCTATCAGA ${\tt TCTTCAAGCTTCTGAACCGCGAGTTCAGCTTTGACGTCGATGTCTCCAAT}$ CTTCCGTGCGGATTGAACGGCGCTCTGTACTTTGTCGCCATGGACGCCGA CGGCGGCGTGTCCAAGTACCCGAACAACAAGGCTGGTGCCAAGTACGGAA CCGGGTATTGCGACTCCCAATGCCCACGGGACCTCAAGTTCATCGACGGC GAGGCCAACGTCGAGGGCTGGCAGCCGTCTTCGAACAACGCCAACACCGG AATTGGCGACCACGGCTCCTGCTGTGCGGAGATGGATGTCTGGGAAGCAA ACAGCATCTCCAATGCGGTCACTCCGCACCCGTGCGACACGCCAGGCCAG ACGATGTGCTCTGGAGATGACTGCGGTGGCACATACTCTAACGATCGCTA CGCGGGAACCTGCGATCCTGACGGCTGTGACTTCAACCCTTACCGCATGG GCAACACTTCTTTCTACGGGCCTGGCAAGATCATCGATACCACCAAGCCC TTCACTGTCGTGACGCAGTTCCTCACTGATGATGGTACGGATACTGGAAC TCTCAGCGAGATCAAGCGCTTCTACATCCAGAACAGCAACGTCATTCCGC AGCCCAACTCGGACATCAGTGGCGTGACCGGCAACTCGATCACGACGGAG $\tt GCACGGTGGCCTGGCCAAGATGGGAGCGGCCATGCAGCAGGGTATGGTCC$ $\tt TGGTGATGAGTTTGTGGGACGACTACGCCGCGCAGATGCTGTGGTTGGAT$ ${\tt TCCGACTACCCGACGGATGCGGACCCCACGACCCCTGGTATTGCCCGTGG}$ AACGTGTCCGACGGACTCGGGCGTCCCATCGGATGTCGAGTCGCAGAGCC

(SEQ ID NO: 125)

MLRRALLLSSSAILAVKAQQAGTATAENHPPLTWQECTAPGSCTTQNGAV
VLDANWRWVHDVNGYTNCYTGNTWDPTYCPDDETCAQNCALDGADYEGTY
GVTSSGSSLKLNFVTGSNVGSRLYLLQDDSTYQIFKLLNREFSFDVDVSN
LPCGLNGALYFVAMDADGGVSKYPNNKAGAKYGTGYCDSQCPRDLKFIDG
EANVEGWQPSSNNANTGIGDHGSCCAEMDVWEANSISNAVTPHPCDTPGQ
TMCSGDDCGGTYSNDRYAGTCDPDGCDFNPYRMGNTSFYGPGKIIDTTKP
FTVVTQFLTDDGTDTGTLSEIKRFYIQNSNVIPQPNSDISGVTGNSITTE
FCTAQKQAFGDTDDFSQHGGLAKMGAAMQQGMVLVMSLWDDYAAQMLWLD
SDYPTDADPTTPGIARGTCPTDSGVPSDVESQSPNSYVTYSNIKFGPINS

CCAACTCCTACGTGACCTACTCGAACATTAAGTTTGGTCCGATCAACTCG

ACCTTCACCGCTTCGTGA

 $(SEQ\ ID\ NO:\ 126)$ QQAGTATAENHPPLTWQECTAPGSCTTQNGAVVLDANWRWVHDVNGYTNC YTGNTWDPTYCPDDETCAQNCALDGADYEGTYGVTSSGSSLKLNFVTGSN

VGSRLYLLQDDSTYQIFKLLNREFSFDVDVSNLPCGLNGALYFVAMDADG GVSKYPNNKAGAKYGTGYCDSQCPRDLKFIDGEANVEGWQPSSNNANTGI GDHGSCCAEMDVWEANSISNAVTPHPCDTPGQTMCSGDDCGGTYSNDRYA GTCDPDGCDFNPYRMGNTSFYGPGKIIDTTKPFTVVTQFLTDDGTDTGTL SEIKRFYIQNSNVIPQPNSDISGVTGNSITTEFCTAQKQAFGDTDDFSQH

 ${\tt GGLAKMGAAMQQGMVLVMSLWDDYAAQMLWLDSDYPTDADPTTPGIARGT}$

continued

CPTDSGVPSDVESQSPNSYVTYSNIKFGPINSTFTAS

[0347] The polynucleotide (SEQ ID NO:127) and amino acid (SEQ ID NO:128) sequences of wild-type *M. thermophila* CBH1a are provided below. The signal sequence is shown underlined in SEQ ID NO:128. SEQ ID NO:129 provides the sequence of this CBH1a, without the signal sequence.

(SEQ ID NO: 127)

TCAGAACGCCTGCACTCTGACCGCTGAGAACCACCCCTCGCTGACGTGGT $\tt CCAAGTGCACGTCTGGCGGCAGCTGCACCAGCGTCCAGGGTTCCATCACC$ ATCGACGCCAACTGGCGGTGGACTCACCGGACCGATAGCGCCACCAACTG CTACGAGGGCAACAAGTGGGATACTTCGTACTGCAGCGATGGTCCTTCTT GCGCCTCCAAGTGCTGCATCGACGGCGCTGACTACTCGAGCACCTATGGC ATCACCACGAGCGGTAACTCCCTGAACCTCAAGTTCGTCACCAAGGGCCA GTACTCGACCAACATCGGCTCGCGTACCTACCTGATGGAGAGCGACACCA AGTACCAGATGTTCCAGCTCCTCGGCAACGAGTTCACCTTCGATGTCGAC GTCTCCAACCTCGGCTGCGGCCTCAATGGCGCCCTCTACTTCGTGTCCAT GGATGCCGATGGTGGCATGTCCAAGTACTCGGGCAACAAGGCAGGTGCCA AGTACGGTACCGGCTACTGTGATTCTCAGTGCCCCCGCGACCTCAAGTTC ATCAACGGCGAGGCCAACGTAGAGAACTGGCAGAGCTCGACCAACGATGC CAACGCCGGCACGGCAAGTACGGCAGCTGCTCCCGAGATGGACGTCT GGGAGGCCAACAACATGGCCGCCGCCTTCACTCCCCACCCTTGCACCGTG ATCGGCCAGTCGCGCGCGAGGGCGACTCGTGCGGCGGTACCTACAGCAC CGACCGCTATGCCGCCATCTGCGACCCCGACGGATGCGACTTCAACTCGT ACCGCCAGGGCAACAAGACCTTCTACGGCAAGGGCATGACGGTCGACACG GCTCTCCGAGATCAAGCGGTTCTACGTCCAGAACGGCAAGGTCATCCCCA ACTCCGAGTCCACCATCCCGGGCGTCGAGGGCAACTCCATCACCCAGGAC TGGTGCGACCGCCAGAAGGCCGCCTTCGGCGACGTGACCGACTTCCAGGA ${\tt CAAGGGCGGCATGGTCCAGATGGGCAAGGCCCTCGCGGGGCCCATGGTCC}$ ${\tt TCGTCATGTCCATCTGGGACGACCACGCCGTCAACATGCTCTGGCTCGAC}$ TCCACCTGGCCCATCGACGGCGCCGGCAAGCCGGGCGCGAGCGCGGTGC CTGCCCCACCACCTCGGGCGTCCCCGCTGAGGTCGAGGCCGAGGCCCCCA $\verb|ACTCCAACGTCATCTTCTCCAACATCCGCTTCGGCCCCATCGGCTCCACC| \\$ $\tt CTCGTCCACCCCGGTCCCCTCCTCGTCCACCACATCCTCCGGTTCCTCCG$

GCCCGACTGGCGGCACGGGTGTCGCTAAGCACTATGAGCAATGCGGAGGA
ATCGGGTTCACTGGCCCTACCCAGTGCGAGAGCCCCTACACTTGCACCAA
GCTGAATGACTGGTACTCGCAGTGCCTGTAA

(SEQ ID NO: 128
MYAKFATLAALVAGAAAQNACTLTAENHPSLTYSKCTSGGSCTSVQGSIT
IDANWRWTHRTDSATNCYEGNKWDTSWCSDGPSCASKCCIDGADYSSTYG
ITTSGNSLNLKFVTKGQYSTNIGSRTYLMESDTKYQMFQLLGNEFTFDVD
VSNLGCGLNGALYFVSMDADGGMSKYSGNKAGAKYGTGYCDSQCPRDLKF
INGEANVENWQSSTNDANAGTGKYGSCCSEMDVWEANNMAAAFTPHPCTV
IGQSRCEGDSCGGTYSTDRYAGICDPDGCDFNSYRQGNKTFYGKGMTVDT
TKKITVVTQFLKNSAGELSEIKRFYVQNGKVIPNSESTIPGVEGNSITQD
WCDRQKAAFGDVTDFQDKGGMVQMGKALAGPMVLVMSIWDDHAVNMLWLD
STWPIDGAGKPGAERGACPTTSGVPAEVEAEAPNSNVIFSNIRFGPIGST
VSGLPDGGSGNPNPPVSSSTPVPSSSTTSSGSSGPTGGTGVAKHYEQCGG
IGFTGPTOCESPYTCTKLNDWYSOCL

(SEQ ID NO: 129)
QNACTLTAENHPSLTYSKCTSGGSCTSVQGSITIDANWRWTHRTDSATNC
YEGNKWDTSWCSDGPSCASKCCIDGADYSSTYGITTSGNSLNLKFVTKGQ
YSTNIGSRTYLMESDTKYQMFQLLGNEFTFDVDVSNLGCGLNGALYFVSM
DADGGMSKYSGNKAGAKYGTGYCDSQCPRDLKFINGEANVENWQSSTNDA
NAGTGKYGSCCSEMDVWEANNMAAAFTPHPCTVIGQSRCEGDSCGGTYST
DRYAGICDPDGCDFNSYRQGNKTFYGKGMTVDTTKKITVVTQFLKNSAGE
LSEIKRFYVQNGKVIPNSESTIPGVEGNSITQDWCDRQKAAFGDVTDFQD
KGGMVQMGKALAGPMVLVMSIWDDHAVNMLWLDSTWPIDGAGKPGAERGA
CPTTSGVPAEVEAEAPNSNVIFSNIRFGPIGSTVSGLPDGGSGNPNPPVS
SSTPVPSSSTTSSGSSGPTGGTGVAKHYEQCGGIGFTGPTQCESPYTCTK
LNDWYSQCL

[0348] The polynucleotide (SEQ ID NO:130) and amino acid (SEQ ID NO:131) sequences of a *M. thermophila* CBH1a variant ("Variant 145") are provided below. The signal sequence is shown underlined in SEQ ID NO:131. SEQ ID NO:132 provides the sequence of this CBH1a, without the signal sequence.

continued GTACTCGACCAACATCGGCTCGCGTACCTGATGGAGAGCGACACCA AGTACCAGATGTTCCAGCTCCTCGGCAACGAGTTCACCTTCGATGTCGAC GTCTCCAACCTCGGCTGCGGCCTCAATGGCGCCCTCTACTTCGTGTCCAT $\tt GGATGCCGATGGTGGCATGTCCAAGTACTCGGGCAACAAGGCAGGTGCCA$ ${\tt AGTACGGTACCGGCTACTGTGATTCTCAGTGCCCCCGCGACCTCAAGTTC}$ ATCAACGGCGAGGCCAACGTAGAGAACTGGCAGAGCTCGACCAACGATGC CAACGCCGGCACGGCAAGTACGGCAGCTGCTCCCGAGATGGACGTCT GGGAGGCCAACAACATGGCCGCCGCCTTCACTCCCCACCCTTGCACCGTG ATCGGCCAGTCGCGCGGGGGGGGGGGCGACTCGTGCGGCGGTACCTACAGCAC CGACCGCTATGCCGCCATCTGCGACCCCGACGGATGCGACTTCAACTCGT ACCGCCAGGGCAACAAGACCTTCTACGGCAAGGGCATGACGGTCGACACG GCTCTCCGAGATCAAGCGGTTCTACGTCCAGAACGGCAAGGTCATCCCCA ACTCCGAGTCCACCATCCCGGGCGTCGAGGGCAACTCCATCACCCAGGAC TGGTGCGACCGCCAGAAGGCCGCCTTCGGCGACGTGACCGACTTCCAGGA CAAGGGCGGCATGGTCCAGATGGGCAAGGCCCTCGCGGGGCCCATGGTCC TCGTCATGTCCATCTGGGACGACCACGCCGTCAACATGCTCTGGCTCGAC ${\tt TCCACCTGGCCCATCGACGGCGCCGGCCCGAGCGCGGTGC}$ $\tt CTGCCCACCACCTCGGGCGTCCCCGCTGAGGTCGAGGCCGAGGCCCCCA$ ${\tt ACTCCAACGTCATCTTCTCCAACATCCGCTTCGGCCCCATCGGCTCCACC}$ $\tt GTCTCCGGCCTGCCCGACGGCGGCAGCGGCAACCCCAACCCGCCGTCAG$ CTCGTCCACCCCGGTCCCCTCCTCGTCCACCACATCCTCCGGTTCCTCCG GCCCGACTGGCGGCACGGGTGTCGCTAAGCACTATGAGCAATGCGGAGGA ATCGGGTTCACTGGCCCTACCCAGTGCGAGAGCCCCTACACTTGCACCAA

(SEQ ID NO: 131)

MYAKFATLAALVAGAAAQNACTLTAENHPSLTWSKCTSGGSCTSVQGSIT

IDANWRWTHRTDSATNCYEGNKWDTSWCSDGPSCASKCCIDGADYSSTYG

ITTSGNSLNLKFVTKGQYSTNIGSRTYLMESDTKYQMFQLLGNEFTFDVD

VSNLGCGLNGALYFVSMDADGGMSKYSGNKAGAKYGTGYCDSQCPRDLKF

INGEANVENWQSSTNDANAGTGKYGSCCSEMDVWEANNMAAAFTPHPCTV

IGQSRCEGDSCGGTYSTDRYAGICDPDGCDFNSYRQGNKTFYGKGMTVDT

TKKITVVTQFLKNSAGELSEIKRFYVQNGKVIPNSESTIPGVEGNSITQD

WCDRQKAAFGDVTDFQDKGGMVQMGKALAGPMVLVMSIWDDHAVNMLWLD

STWPIDGAGKPGAERGACPTTSGVPAEVEAEAPNSNVIFSNIRFGPIGST

VSGLPDGGSGNPNPPVSSSTPVPSSSTTSSGSSGPTGGTGVAKHYEQCGG

GCTGAATGACTGGTACTCGCAGTGCCTGTAA

(SEQ ID NO: 132)
QNACTLTAENHPSLTWSKCTSGGSCTSVQGSITIDANWRWTHRTDSATNC
YEGNKWDTSWCSDGPSCASKCCIDGADYSSTYGITTSGNSLNLKFVTKGQ

YSTNIGSRTYLMESDTKYQMFQLLGNEFTFDVDVSNLGCGLNGALYFVSM
DADGGMSKYSGNKAGAKYGTGYCDSQCPRDLKFINGEANVENWQSSTNDA
NAGTGKYGSCCSEMDVWEANNMAAAFTPHPCTVIGQSRCEGDSCGGTYST
DRYAGICDPDGCDFNSYRQGNKTFYGKGMTVDTTKKITVVTQFLKNSAGE
LSEIKRFYVQNGKVIPNSESTIPGVEGNSITQDWCDRQKAAFGDVTDFQD
KGGMVQMGKALAGPMVLVMSIWDDHAVNMLWLDSTWPIDGAGKPGAERGA
CPTTSGVPAEVEAEAPNSNVIFSNIRFGPIGSTVSGLPDGGSGNPNPPVS
SSTPVPSSSTTSSGSSGPTGGTGVAKHYEQCGGIGFTGPTQCESPYTCTK
LNDWYSOCL

[0349] The polynucleotide (SEQ ID NO:133) and amino acid (SEQ ID NO:134) sequences of a *M. thermophila* CBH1a variant ("Variant 983") are provided below. The signal sequence is shown underlined in SEQ ID NO:134. SEQ ID NO:135 provides the sequence of this CBH1a variant, without the signal sequence.

(SEQ ID NO: 133)

TCAGAACGCCTGCACTCTGAACGCTGAGAACCACCCCTCGCTGACGTGGT CCAAGTGCACGTCTGGCGGCAGCTGCACCAGCGTCCAGGGTTCCATCACC ${\tt ATCGACGCCAACTGGCGGTGGACTCACCGGACCGATAGCGCCACCAACTG}$ CTACGAGGGCAACAAGTGGGATACTTCGTACTGCAGCGATGGTCCTTCTT GCGCCTCCAAGTGCTGCATCGACGGCGCTGACTACTCGAGCACCTATGGC ATCACCACGAGCGGTAACTCCCTGAACCTCAAGTTCGTCACCAAGGGCCA GTACTCGACCAACATCGGCTCGCGTACCTACCTGATGGAGAGCGACACCA AGTACCAGATGTTCCAGCTCCTCGGCAACGAGTTCACCTTCGATGTCGAC GTCTCCAACCTCGGCTGCGGCCTCAATGGCGCCCTCTACTTCGTGTCCAT GGATGCCGATGGTGCCATGTCCAAGTACTCGGGCAACAAGGCAGGTGCCA AGTACGGTACCGGCTACTGTGATTCTCAGTGCCCCCGCGACCTCAAGTTC ATCAACGGCGAGGCCAACGTAGAGAACTGGCAGAGCTCGACCAACGATGC CAACGCCGGCACGGCAGTACGCCAGCTGCTCCCGAGATGGACGTCT $\tt GGGAGGCCAACAACATGGCCGCCGCCTTCACTCCCCACCCTTGCACCGTG$ CGACCGCTATGCCGGCATCTGCGACCCCGACGGATGCGACTTCAACTCGT ACCGCCAGGGCAACAAGACCTTCTACGGCAAGGGCATGACGGTCGACACG GCTCTCCGAGATCAAGCGGTTCTACGTCCAGAACGGCAAGGTCATCCCCA ACTCCGAGTCCACCATCCCGGGCGTCGAGGGCAACTCCATCACCCAGGAG ${\tt TACTGCGACCGCCAGAAGGCCGCCTTCGGCGACGTGACCGACTTCCAGGA}$ ${\tt CAAGGGCGGCATGGTCCAGATGGGCAAGGCCCTCGCGGGGCCCATGGTCC}$ TCGTCATGTCCATCTGGGACGACCACGCCGACAACATGCTCTGGCTCGAC

-continued

MYAKFATLAALVAGAAAQNACTLNAENHPSLTWSKCTSGGSCTSVQGSIT

IDANWRWTHRTDSATNCYEGNKWDTSYCSDGPSCASKCCIDGADYSSTYG

ITTSGNSLNLKFVTKGQYSTNIGSRTYLMESDTKYQMFQLLGNEFTFDVD

VSNLGCGLNGALYFVSMDADGGMSKYSGNKAGAKYGTGYCDSQCPRDLKF

INGEANVENWQSSTNDANAGTGKYGSCCSEMDVWEANNMAAAFTPHPCTV

IGQSRCEGDSCGGTYSTDRYAGICDPDGCDFNSYRQGNKTFYGKGMTVDT

TKKITVVTQFLKNSAGELSEIKRFYVQNGKVIPNSESTIPGVEGNSITQE

YCDRQKAAFGDVTDFQDKGGMVQMGKALAGPMVLVMSIWDDHADNMLWLD

STWPIDGAGKPGAERGACPTTSGVPAEVEAEAPNSNVIFSNIRFGPIGST

VSGLPDGGSGNPNPPVSSSTTVPSSSTTSSGSSGPTGGTGVAKHYEQCGG

IGFTGPTQCESPYTCTKLNDWYSQCL

(SEQ ID NO: 135)
QNACTLNAENHPSLTWSKCTSGGSCTSVQGSITIDANWRWTHRTDSATNC
YEGNKWDTSYCSDGPSCASKCCIDGADYSSTYGITTSGNSLNLKFVTKGQ
YSTNIGSRTYLMESDTKYQMFQLLGNEFTFDVDVSNLGCGLNGALYFVSM
DADGGMSKYSGNKAGAKYGTGYCDSQCPRDLKFINGEANVENWQSSTNDA
NAGTGKYGSCCSEMDVWEANNMAAAFTPHPCTVIGQSRCEGDSCGGTYST
DRYAGICDPDGCDFNSYRQGNKTFYGKGMTVDTTKKITVVTQFLKNSAGE
LSEIKRFYVQNGKVIPNSESTIPGVEGNSITQEYCDRQKAAFGDVTDFQD
KGGMVQMGKALAGPMVLVMSIWDDHADNMLWLDSTWPIDGAGKPGAERGA
CPTTSGVPAEVEAEAPNSNVIFSNIRFGPIGSTVSGLPDGGSGNPNPPVS
SSTPVPSSSTTSSGSSGPTGGTGVAKHYEQCGGIGFTGPTQCESPYTCTK
LNDWYSOCL

[0350] The polynucleotide (SEQ ID NO:136) and amino acid (SEQ ID NO:137) sequences of wild-type *M. thermophila* CBH2b are provided below. The signal sequence is shown underlined in SEQ ID NO:137. SEQ ID NO:138 provides the sequence of this CBH2b, without the signal sequence.

(SEQ ID NO: 136)
ATGGCCAAGAAGCTTTTCATCACCGCCGCGCTTGCGGCTGCCGTGTTGGC
GGCCCCCGTCATTGAGGAGCGCCAGAACTGCGGCGCTGTGTGGACTCAAT
GCGGCGGTAACGGGTGGCAAGGTCCCACATGCTGCGCCTCGGGCTCGACC

TGCGTTGCGCAGAACGAGTGGTACTCTCAGTGCCTGCCCAACAGCCAGGT GACGAGTTCCACCACTCCGTCGTCGACTTCCACCTCGCAGCGCAGCACCA GCACCTCCAGCAGCACCACCAGGAGCGGCAGCTCCTCCTCCTCCTCCACC ${\tt ACGCCCCGCCCGTCTCCAGCCCCGTGACCAGCATTCCCGGCGGTGCGAC}$ $\tt CTCCACGGCGAGCTACTCTGGCAACCCCTTCTCGGGCGTCCGGCTCTTCG$ CCAACGACTACTACAGGTCCGAGGTCCACAATCTCGCCATTCCTAGCATG ACTGGTACTCTGGCGGCCAAGGCTTCCGCCGTCGCCGAAGTCCCTAGCTT CCAGTGGCTCGACCGGAACGTCACCATCGACACCCTGATGGTCCAGACTC TGTCCCAGGTCCGGGCTCTCAATAAGGCCGGTGCCAATCCTCCCTATGCT GCCCAACTCGTCGTCTACGACCTCCCCGACCGTGACTGTGCCGCCGCTGC GTCCAACGGCGAGTTTTCGATTGCAAACGGCGCGCCGCCAACTACAGGA GCTACATCGACGCTATCCGCAAGCACATCATTGAGTACTCGGACATCCGG ATCATCCTGGTTATCGAGCCCGACTCGATGGCCAACATGGTGACCAACAT GAACGTGGCCAAGTGCAGCAACGCCGCGTCGACGTACCACGAGTTGACCG TGTACGCGCTCAAGCAGCTGAACCTGCCCAACGTCGCCATGTATCTCGAC GCCGGCCACGCCGGCTGGCTCGGCTGGCCCGCCAACATCCAGCCCGCCGC CGAGCTGTTTGCCGGCATCTACAATGATGCCGGCAAGCCGGCTGCCGTCC $\tt GCGGCCTGGCCACTAACGTCGCCAACTACAACGCCTGGAGCATCGCTTCG$ GCCCCGTCGTACACGTCGCCTAACCTACCTACGACGAGAAGCACTACAT $\tt CGAGGCCTTCAGCCCGCTCTTGAACTCGGCCGGCTTCCCCGCACGCTTCA$ ${\tt TTGTCGACACTGGCCGCAACGGCAACAACCTACCGGCCAACAACAGTGG}$ GGTGACTGGTGCAATGTCAAGGGCACCGGCTTTGGCGTGCGCCCGACGGC CAACACGGGCCACGAGCTGGTCGATGCCTTTGTCTGGGTCAAGCCCGGCG GCGAGTCCGACGGCACAAGCGACACCAGCGCCGCCCGCTACGACTACCAC TGCGGCCTGTCCGATGCCCTGCAGCCTGCCCCCGAGGCTGGACAGTGGTT $\tt CCAGGCCTACTTCGAGCAGCTGCTCACCAACGCCAACCCGCCCTTCTAA$

(SEQ ID NO: 137)

MAKKLFITAALAAAVLAAPVIEERQNCGAVWTQCGGNGWQGPTCCASGST

CVAQNEWYSQCLPNSQVTSSTTPSSTSTSQRSTSTSSSTTRSGSSSSSSST

TPPPVSSPVTSIPGGATSTASYSGNPFSGVRLFANDYYRSEVHNLAIPSM

TGTLAAKASAVAEVPSFQWLDRNVTIDTLMVQTLSQVRALNKAGANPPYA

AQLVVYDLPDRDCAAAASNGEFSIANGGAANYRSYIDAIRKHIIEYSDIR

IILVIEPDSMANMVTNMNVAKCSNAASTYHELTVYALKQLNLPNVAMYLD

AGHAGWLGWPANIQPAAELFAGIYNDAGKPAAVRGLATNVANYNAWSIAS

APSYTSPNPNYDEKHYIEAFSPLLNSAGFPARFIVDTGRNGKQPTGQQQW

GDWCNVKGTGFGVRPTANTGHELVDAFVWVKPGGESDGTSDTSAARYDYH

CGLSDALQPAPEAGQWFQAYFEQLLTNANPPF

(SEQ ID NO: 138)
APVIEERQNCGAVWTQCGGNGWQGPTCCASGSTCVAQNEWYSQCLPNSQV
TSSTTPSSTSTSQRSTSTSSSTTRSGSSSSSSTTPPPVSSPVTSIPGGAT

-continued
STASYSGNPFSGVRLFANDYYRSEVHNLAIPSMTGTLAAKASAVAEVPSF
QWLDRNVTIDTLMVQTLSQVRALNKAGANPPYAAQLVVYDLPDRDCAAAA
SNGEFSIANGGAANYRSYIDAIRKHIIEYSDIRIILVIEPDSMANMVTNM
NVAKCSNAASTYHELTVYALKQLNLPNVAMYLDAGHAGWLGWPANIQPAA
ELFAGIYNDAGKPAAVRGLATNVANYNAWSIASAPSYTSPNPNYDEKHYI
EAFSPLLNSAGFPARFIVDTGRNGKQPTGQQQWGDWCNVKGTGFGVRPTA
NTGHELVDAFVWVKPGGESDGTSDTSAARYDYHCGLSDALQPAPEAGQWF
OAYFEOLLTNANPPF

[0351] The polynucleotide (SEQ ID NO:139) and amino acid (SEQ ID NO:140) sequences of a *M. thermophila* CBH2b variant ("Variant 196") are provided below. The signal sequence is shown underlined in SEQ ID NO:140. SEQ ID NO:141 provides the sequence of this CBH2b variant, without the signal sequence.

(SEQ ID NO: 139) ATGGCCAAGAAGCTTTTCATCACCGCCGCGCTTGCGGCTGCCGTGTTGGC GGCCCCGTCATTGAGGAGCGCCAGAACTGCGGCGCTGTGTGGACTCAAT GCGGCGGTAACGGGTGGCAAGGTCCCACATGCTGCGCCTCGGGCTCGACC TGCGTTGCGCAGAACGAGTGGTACTCTCAGTGCCTGCCCAACAGCCAGGT GACGAGTTCCACCACTCCGTCGTCGACTTCCACCTCGCAGCGCAGCACCA GCACCTCCAGCAGCACCACCAGGAGCGGCAGCTCCTCCTCCTCCACC ACGCCCACCCCGTCTCCAGCCCCGTGACCAGCATTCCCGGCGGTGCGAC CTCCACGGCGAGCTACTCTGGCAACCCCTTCTCGGGCGTCCGGCTCTTCG CCAACGACTACTACAGGTCCGAGGTCCACAATCTCGCCATTCCTAGCATG ACTGGTACTCTGGCGGCCAAGGCTTCCGCCGTCGCCGAAGTCCCTAGCTT CCAGTGGCTCGACCGGAACGTCACCATCGACACCCTGATGGTCCCGACTC TGTCCCGCGTCCGGGCTCTCAATAAGGCCGGTGCCAATCCTCCCTATGCT GCCCAACTCGTCGTCTACGACCTCCCCGACCGTGACTGTGCCGCCGCTGC GTCCAACGGCGAGTTTTCGATTGCAAACGGCGGCGCCCCCCAACTACAGGA GCTACATCGACGCTATCCGCAAGCACATCATTGAGTACTCGGACATCCGG ATCATCCTGGTTATCGAGCCCGACTCGATGGCCAACATGGTGACCAACAT GAACGTGGCCAAGTGCAGCAACGCCGCGTCGACGTACCACGAGTTGACCG TGTACGCGCTCAAGCAGCTGAACCTGCCCAACGTCGCCATGTATCTCGAC GCCGGCCACGCCGGCTGGCTCGGCTGGCCCAACATCCAGCCCGCCGC $\tt CGAGCTGTTTGCCGGCATCTACAATGATGCCGGCAAGCCGGCTGCCGTCC$ GCGGCCTGGCCACTAACGTCGCCAACTACAACGCCTGGAGCATCGCTTCG GCCCGTCGTACACGTCGCCTAACCCTAACTACGACGAGAAGCACTACAT CGAGGCCTTCAGCCCGCTCTTGAACTCGGCCGGCTTCCCCGCACGCTTCA TTGTCGACACTGGCCGCAACGGCAAACAACCTACCGGCCAACAACAGTGG GGTGACTGGTGCAATGTCAAGGGCACCGGCTTTGGCGTGCGCCCGACGGC

GCGAGTCCGACGGCACAAGCGACACCAGCGCCGCCGCTACGACTACCAC
TGCGGCCTGTCCGATGCCCTGCAGCCTGCCCCGAGGCTGGACAGTGGTT
CCAGGCCTACTTCGAGCAGCTGCTCACCAACGCCAACCCGCCCTTCTAA

(SEQ ID NO: 140)

MAKKLFITAALAAAVLAAPVIEERQNCGAVWTQCGGNGWQGPTCCASGST

CVAQNEWYSQCLPNSQVTSSTTPSSTSTSQRSTSTSSSTTRSGSSSSSSST

TPTPVSSPVTSIPGGATSTASYSGNPFSGVRLFANDYYRSEVHNLAIPSM

TGTLAAKASAVAEVPSFQWLDRNVTIDTLMVPTLSRVRALNKAGANPPYA

AQLVVYDLPDRDCAAAASNGEFSIANGGAANYRSYIDAIRKHIIEYSDIR

IILVIEPDSMANMVTNMNVAKCSNAASTYHELTVYALKQLNLPNVAMYLD

AGHAGWLGWPANIQPAAELFAGIYNDAGKPAAVRGLATNVANYNAWSIAS

APSYTSPNPNYDEKHYIEAFSPLLNSAGFPARFIVDTGRNGKQPTGQQQW

GDWCNVKGTGFGVRPTANTGHELVDAFVWVKPGGESDGTSDTSAARYDYH

CGLSDALOPAPEAGOWFOAYFEOLLTNANPPF

(SEQ ID NO: 141)
APVIEERQNCGAVWTQCGGNGWQGPTCCASGSTCVAQNEWYSQCLPNSQV
TSSTTPSSTSTSQRSTSTSSSTTRSGSSSSSSTTPTPVSSPVTSIPGGAT
STASYSGNPFSGVRLFANDYYRSEVHNLAIPSMTGTLAAKASAVAEVPSF
QWLDRNVTIDTLMVPTLSRVRALNKAGANPPYAAQLVVYDLPDRDCAAAA
SNGEFSIANGGAANYRSYIDAIRKHIIEYSDIRIILVIEPDSMANMVTNM
NVAKCSNAASTYHELTVYALKQLNLPNVAMYLDAGHAGWLGWPANIQPAA
ELFAGIYNDAGKPAAVRGLATNVANYNAWSIASAPSYTSPNPNYDEKHYI
EAFSPLLNSAGFPARFIVDTGRNGKQPTGQQQWGDWCNVKGTGFGVRPTA
NTGHELVDAFVWVKPGGESDGTSDTSAARYDYHCGLSDALQPAPEAGQWF
OAYFEOLLTNANPPF

[0352] The polynucleotide (SEQ ID NO:142) and amino acid (SEQ ID NO:143) sequences of a *M. thermophila* CBH2b variant ("Variant 287") are provided below. The signal sequence is shown underlined in SEQ ID NO:143. SEQ ID NO:144 provides the sequence of this CBH2b variant, without the signal sequence.

(SEQ ID NO: 142)
ATGGCCAAGAAGCTTTTCATCACCGCCGCGCTTGCGGCTGCCGTGTTGGC
GGCCCCCGTCATTGAGGAGCGCCAGAACTGCGGCGCTGTGTGGACTCAAT
GCGGCGGTAACGGGTGGCAAGGTCCCACATGCTGCGCCTCGGGCTCGACC
TGCGTTGCGCAGAACGAGTGGTACTCTCAGTGCCTGCCCAACAGCCAGGT
GACGAGTTCCACCACTCCGTCGTCGACTTCCACCTCGCAGCGCAGCACCA
GCACCTCCAGCAGCACCACAGGAGCGGCAGCTCCTCCTCCTCCACC
ACGCCCCCGCCCGTCTCCAGCCCCGTGACCAGCATTCCCGGCGGTGCGAC
CTCCACGGCGAGCTACTCTGGCAACCCCTTCTCGGGCGTCCGGCTCTTCG
CCAACGACTACTACAGGTCCGAGGTCCACAATCTCGCCATTCCTAGCATG

GGTGACTGGTGCAATGTCAAGGGCACCGGCTTTGGCGTGCGCCCGACGGC

CAACACGGGCCACGAGCTGGTCGATGCCTTTGTCTGGGTCAAGCCCGGCG

 $\tt GCGAGTCCGACGGCACAAGCGACACCAGCGCCGCCCGCTACGACTACCAC$

 $\tt TGCGGCCTGTCCGATGCCCTGCAGCCTGCCCCCGAGGCTGGACAGTGGTT$

 $\tt CCAGGCCTACTTCGAGCAGCTGCTCACCAACGCCAACCCGCCCTTCTAA$

continued

(SEQ ID NO: 143)

MAKKLFITAALAAAVLAAPVIEERQNCGAVWTQCGGNGWQGPTCCASGST

CVAQNEWYSQCLPNSQVTSSTTPSSTSTSQRSTSTSSSTTRSGSSSSSSST

TPPPVSSPVTSIPGGATSTASYSGNPFSGVRLFANDYYRSEVHNLAIPSM

TGTLAAKASAVAEVPSFQWLDRNVTIDTLMVPTLSRVRALNKAGANPPYA

AQLVVYDLPDRDCAAAASNGEFSIANGGAANYRSYIDAIRKHIKEYSDIR

IILVIEPDSMANMVTNMNVAKCSNAASTYHELTVYALKQLNLPNVAMYLD

AGHAGWLGWPANIQPAAELFAGIYNDAGKPAAVRGLATNVANYNAWSIAS

APSYTSPNPNYDEKHYIEAFSPLLNDAGFPARFIVDTGRNGKQPTGQQQW

GDWCNVKGTGFGVRPTANTGHELVDAFVWVKPGGESDGTSDTSAARYDYH

CGLSDALOPAPEAGOWFOAYFEOLLTNANPPF

(SEQ ID NO: 144)
APVIEERQNCGAVWTQCGGNGWQGPTCCASGSTCVAQNEWYSQCLPNSQV
TSSTTPSSTSTSQRSTSTSSSTTRSGSSSSSSTTPPPVSSPVTSIPGGAT
STASYSGNPFSGVRLFANDYYRSEVHNLAIPSMTGTLAAKASAVAEVPSF
QWLDRNVTIDTLMVPTLSRVRALNKAGANPPYAAQLVVYDLPDRDCAAAA
SNGEFSIANGGAANYRSYIDAIRKHIKEYSDIRIILVIEPDSMANMVTNM
NVAKCSNAASTYHELTVYALKQLNLPNVAMYLDAGHAGWLGWPANIQPAA
ELFAGIYNDAGKPAAVRGLATNVANYNAWSIASAPSYTSPNPNYDEKHYI
EAFSPLLNDAGFPARFIVDTGRNGKQPTGQQQWGDWCNVKGTGFGVRPTA

-continued
NTGHELVDAFVWVKPGGESDGTSDTSAARYDYHCGLSDALQPAPEAGQWF

[0353] The polynucleotide (SEQ ID NO:145) and amino acid (SEQ ID NO:146) sequences of a *M. thermophila* CBH2b variant ("Variant 962") are provided below. The signal sequence is shown underlined in SEQ ID NO:146. SEQ ID NO:147 provides the sequence of this CBH2b variant, without the signal sequence.

(SEQ ID NO: 145)

ATGGCCAAGAAGCTTTTCATCACCGCCGCGCTTTGCGGCTGCCGTGTTGGC GGCCCCGTCATTGAGGAGCGCCAGAACTGCGGCGCTGTGTGGACTCAAT GCGGCGGTAACGGGTGGCAAGGTCCCACATGCTGCGCCTCGGGCTCGACC TGCGTTGCGCAGAACGAGTGGTACTCTCAGTGCCTGCCCAACAGCCAGGT GACGAGTTCCACCACTCCGTCGTCGACTTCCACCTCGCAGCGCAGCACCA GCACCTCCAGCAGCACCACCAGGAGCGGCAGCTCCTCCTCCTCCACC ACGCCCACCCCGTCTCCAGCCCCGTGACCAGCATTCCCGGCGGTGCGAC CTCCACGGCGAGCTACTCTGGCAACCCCTTCTCGGGCGTCCGGCTCTTCG CCAACGACTACTACAGGTCCGAGGTCATGAATCTCGCCATTCCTAGCATG ACTGGTACTCTGGCGGCCAAGGCTTCCGCCGTCGCCGAAGTCCCTAGCTT CCAGTGGCTCGACCGGAACGTCACCATCGACACCCTGATGGTCACCACTC TGTCCCAGGTCCGGGCTCTCAATAAGGCCGGTGCCAATCCTCCCTATGCT GCCCAACTCGTCGTCTACGACCTCCCCGACCGTGACTGTGCCGCCGCTGC GTCCAACGGCGAGTTTTCGATTGCAAACGGCGGCAGCGCCAACTACAGGA GCTACATCGACGCTATCCGCAAGCACATCATTGAGTACTCGGACATCCGG ATCATCCTGGTTATCGAGCCCGACTCGATGGCCAACATGGTGACCAACAT GAACGTGGCCAAGTGCAGCAACGCCGCGTCGACGTACCACGAGTTGACCG TGTACGCGCTCAAGCAGCTGAACCTGCCCAACGTCGCCATGTATCTCGAC GCCGGCCACGCCGGCTGGCTCGGCTGGCCCGCCAACATCCAGCCCGCCGC CGAGCTGTTTGCCGGCATCTACAATGATGCCGGCAAGCCGGCTGCCGTCC GCGGCCTGGCCACTAACGTCGCCAACTACAACGCCTGGAGCATCGCTTCG GCCCCGTCGTACACGCAGCCTAACCTACGACGAGAAGCACTACAT CGAGGCCTTCAGCCCGCTCTTGAACTCGGCCGGCTTCCCCGCACGCTTCA TTGTCGACACTGGCCGCAACGGCAAACAACCTACCGGCCAACAACAGTGG GGTGACTGGTGCAATGTCAAGGGCACCGGCTTTGGCGTGCGCCCGACGGC GCGAGTCCGACGGCACAAGCGACACCAGCGCCGCCCGCTACGACTACCAC TGCGGCCTGTCCGATGCCCTGCAGCCTGCCCCCGAGGCTGGACAGTGGTT CCAGGCCTACTTCGAGCAGCTGCTCACCAACGCCAACCCGCCCTTCTAA

(SEQ ID NO: 146)

MAKKLFITAALAAAVLAAPVIEERQNCGAVWTQCGGNGWQGPTCCASGST

CVAQNEWYSQCLPNSQVTSSTTPSSTSTSQRSTSTSSSTTRSGSSSSSST

-continued
TPTPVSSPVTSIPGGATSTASYSGNPFSGVRLFANDYYRSEVMNLAIPSM
TGTLAAKASAVAEVPSFQWLDRNVTIDTLMVTTLSQVRALNKAGANPPYA
AQLVVYDLPDRDCAAAASNGEFSIANGGSANYRSYIDAIRKHIIEYSDIR
IILVIEPDSMANMVTNMNVAKCSNAASTYHELTVYALKQLNLPNVAMYLD
AGHAGWLGWPANIQPAAELFAGIYNDAGKPAAVRGLATNVANYNAWSIAS
APSYTQPNPNYDEKHYIEAFSPLLNSAGFPARFIVDTGRNGKQPTGQQQW
GDWCNVKGTGFGVRPTANTGHELVDAFVWVKPGGESDGTSDTSAARYDYH
CGLSDALOPAPEAGOWFOAYFEOLLTNANPPF

(SEQ ID NO: 147)
APVIEERQNCGAVWTQCGGNGWQGPTCCASGSTCVAQNEWYSQCLPNSQV
TSSTTPSSTSTSQRSTSTSSSTTRSGSSSSSSTTPTPVSSPVTSIPGGAT
STASYSGNPFSGVRLFANDYYRSEVMNLAIPSMTGTLAAKASAVAEVPSF
QWLDRNVTIDTLMVTTLSQVRALNKAGANPPYAAQLVVYDLPDRDCAAAA
SNGEFSIANGGSANYRSYIDAIRKHIIEYSDIRIILVIEPDSMANMVTNM
NVAKCSNAASTYHELTVYALKQLNLPNVAMYLDAGHAGWLGWPANIQPAA
ELFAGIYNDAGKPAAVRGLATNVANYNAWSIASAPSYTQPNPNYDEKHYI
EAFSPLLNSAGFPARFIVDTGRNGKQPTGQQQWGDWCNVKGTGFGVRPTA
NTGHELVDAFVWVKPGGESDGTSDTSAARYDYHCGLSDALQPAPEAGQWF
QAYFEQLLTNANPPF

[0354] The polynucleotide (SEQ ID NO:148) and amino acid (SEQ ID NO:149) sequences of another wild-type *M. thermophila* xylanase ("Xyl3") are provided below. The signal sequence is shown underlined in SEQ ID NO:149. SEQ ID NO:150 provides the sequence of this xylanase without the signal sequence.

(SEO ID NO: 148) ATGCACTCCAAAGCTTTCTTGGCAGCGCTTCTTGCGCCTGCCGTCTCAGG GCAACTGAACGACCTCGCCGTCAGGGCTGGACTCAAGTACTTTGGTACTG CTCTTAGCGAGAGCGTCATCAACAGTGATACTCGGTATGCTGCCATCCTC AGCGACAAGAGCATGTTCGGCCAGCTCGTCCCCGAGAATGGCATGAAGTG GGATGCTACTGAGCCGTCCCGTGGCCAGTTCAACTACGCCTCGGGCGACA TCACGGCCAACACGGCCAAGAAGAATGGCCAGGGCATGCGTTGCCACACC $\tt ATGGTCTGGTACAGCCAGCTCCCGAGCTGGGTCTCCTCGGGCTCGTGGAC$ ${\tt CAGGGACTCGCTCACCTCGGTCATCGAGACGCACATGAACAACGTCATGG}$ $\tt GCCACTACAAGGGCCAATGCTACGCCTGGGATGTCATCAACGAGGCCATC$ $\verb|AATGACGACGGCAACTCCTGGCGCGACAACGTCTTTCTCCGGACCTTTGG|$ GACCGACTACTTCGCCCTGTCCTTCAACCTAGCCAAGAAGGCCGATCCCG ATACCAAGCTGTACTACAACGACTACAACCTCGAGTACAACCAGGCCAAG ACGGACCGCGCTGTTGAGCTCGTCAAGATGGTCCAGGCCGCCGCCGCCCCC CATCGACGGTGTCGGCTTCCAGGGCCACCTCATTGTCGGCTCGACCCCGA CGCGCTCGCAGCTGGCCACCGCCCTCCAGCGCTTCACCGCGCTCGGCCTC

CCTG

TCQKLNDWYWQCL

-continued

GAGGTCGCCTACACCGAGCTCGACATCGCCACTCGAGCCTGCCGGCCTC
TTCGTCGGCGCCCCGGACCCAGGGCAACGACTTCGCCAACGTGGTCGGCT
CTTGCCTCGACACCGCCGGCTGCGTCGGCGTCACCGTCTGGGGCTTCACC
GATGCGCACTCGTGGATCCCGAACACGTTCCCCGGCCAGGGCGACGCCCT
GATCTACGACAGCAACTACAACAAGAAGCCCGCGTGGACCTCGATCTCGT
CCGTCCTGGCCGCCAAGGCCACCGGCGCCCCGCCTCCTCCCACC
ACCCTCGTCACCATCACCACCCCTCCGCCGGCATCCACCACCGCCTCCTC
CTCCTCCAGTGCCACGCCCACGAGCGTCCCGACGCAGAGGTGGGGAC
AGTGCGGCGGCATCGGATGGACGAGGCCCATGG
ACCTGCCAGAAGCTGAACGACTGGTACTGGCAGTG

(SEQ ID NO: 149)

MHSKAFLAALLAPAVSGQLNDLAVRAGLKYFGTALSESVINSDTRYAAIL

SDKSMFGQLVPENGMKWDATEPSRGQFNYASGDITANTAKKNGQGMRCHT

MVWYSQLPSWVSSGSWTRDSLTSVIETHMNNVMGHYKGQCYAWDVINEAI

NDDGNSWRDNVFLRTFGTDYFALSFNLAKKADPDTKLYYNDYNLEYNQAK

TDRAVELVKMVQAAGAPIDGVGFQGHLIVGSTPTRSQLATALQRFTALGL

EVAYTELDIRHSSLPASSSALATQGNDFANVVGSCLDTAGCVGVTVWGFT

DAHSWIPNTFPGQGDALIYDSNYNKKPAWTSISSVLAAKATGAPPASSST

TLVTITTPPPASTTASSSSSATPTSVPTQTRWGQCGGIGWTGPTQCESPW

(SEQ ID NO: 150)
QLNDLAVRAGLKYFGTALSESVINSDTRYAAILSDKSMFGQLVPENGMKW

DATEPSRGQFNYASGDITANTAKKNGQGMRCHTMVWYSQLPSWVSSGSWT
RDSLTSVIETHMNNVMGHYKGQCYAWDVINEAINDDGNSWRDNVFLRTFG
TDYFALSFNLAKKADPDTKLYYNDYNLEYNQAKTDRAVELVKMVQAAGAP
IDGVGFQGHLIVGSTPTRSQLATALQRFTALGLEVAYTELDIRHSSLPAS
SSALATQGNDFANVVGSCLDTAGCVGVTVWGFTDAHSWIPNTFPGQGDAL
IYDSNYNKKPAWTSISSVLAAKATGAPPASSSTTLVTITTPPPASTTASS
SSSATPTSVPTQTRWGQCGGIGWTGPTQCESPWTCQKLNDWYWQCL

[0355] The polynucleotide (SEQ ID NO:151) and amino acid (SEQ ID NO:152) sequences of a wild-type *M. thermophila* xylanase ("Xyl2") are provided below. The signal sequence is shown underlined in SEQ ID NO:152. SEQ ID NO:153 provides the sequence of this xylanase without the signal sequence.

(SEQ ID NO: 151)
ATGGTCTCGTTCACTCCTCCTCACGGTCATCGCCGCTGCGGTGACGAC
GGCCAGCCCTCTCGAGGTGGTCAAGCGCGGCATCCAGCCGGGCACGGCA
CCCACGAGGGGTACTTCTACTCGTTCTGGACCGACGGCCGTGGCTCGGTC
GACTTCAACCCCGGGCCCCGCGGCTCGTACAGCGTCACCTGGAACAACGT
CAACAACTGGGTTGGCGGCAAGGGCTGGAACCCGGGCCCGCCGCAAGA

-continued

(SEQ ID NO: 152)

MVSFTLLLTVIAAAVTTASPLEVVKRGIQPGTGTHEGYFYSFWTDGRGSV

DFNPGPRGSYSVTWNNVNNWVGGKGWNPGPPRKIAYNGTWNNYNVNSYLA

LYGWTRNPLVEYYIVEAYGTYNPSSGTARLGTIEDDGGVYDIYKTTRYNQ

PSIEGTSTFDQYWSVRRQKRVGGTIDTGKHFDEWKRQGNLQLGTWNYMIM

ATEGYOSSGSATIEVREA

(SEQ ID NO: 153)

MVSFTLLLTVIAAAVTTASPLEVVKRGIQPGTGTHEGYFYSFWTDGRGSV

DFNPGPRGSYSVTWNNVNNWVGGKGWNPGPPRKIAYNGTWNNYNVNSYLA

LYGWTRNPLVEYYIVEAYGTYNPSSGTARLGTIEDDGGVYDIYKTTRYNQ

PSIEGTSTFDQYWSVRRQKRVGGTIDTGKHFDEWKRQGNLQLGTWNYMIM

ATEGYQSSGSATIEVREA

[0356] The polynucleotide (SEQ ID NO:154) and amino acid (SEQ ID NO:155) sequences of another wild-type *M. thermophila* xylanase ("Xyl1") are provided below. The signal sequence is shown underlined in SEQ ID NO:155. SEQ ID NO:156 provides the sequence of this xylanase without the signal sequence.

(SEO ID NO: 155)

MRTLTFVLAAAPVAVLAQSPLWGQCGGQGWTGPTTCVSGAVCQFVNDWYS
QCVPGSSNPPTGTTSSTTGSTPAPTGGGGSGTGLHDKFKAKGKLYFGTEI
DHYHLNNNALTNIVKKDFGQVTHENSLKWDATEPSRNQFNFANADAVVNF
AQANGKLIRGHTLLWHSQLPQWVQNINDRNTLTQVIENHVTTLVTRYKGK
ILHWDVVNEIFAEDGSLRDSVFSRVLGEDFVGIAFRAARAADPNAKLYIN
DYNLDIANYAKVTRGMVEKVNKWIAQGIPIDGIGTQCHLAGPGGWNTAAG
VPDALKALAAANVKEIAITELDIAGASANDYLTVMNACLQVSKCVGITVW
GVSDKDSWRSSSNPLLFDSNYQPKAAYNALINAL

(SEQ ID NO: 156)

QSPLWGQCGGQGWTGPTTCVSGAVCQFVNDWYSQCVPGSSNPPTGTTSST

TGSTPAPTGGGGSGTGLHDKFKAKGKLYFGTEIDHYHLNNNALTNIVKKD

FGQVTHENSLKWDATEPSRNQFNFANADAVVNFAQANGKLIRGHTLLWHS

QLPQWVQNINDRNTLTQVIENHVTTLVTRYKGKILHWDVVNEIFAEDGSL

RDSVFSRVLGEDFVGIAFRAARAADPNAKLYINDYNLDIANYAKVTRGMV

EKVNKWIAQGIPIDGIGTQCHLAGPGGWNTAAGVPDALKALAAANVKEIA

ITELDIAGASANDYLTVMNACLQVSKCVGITVWGVSDKDSWRSSSNPLLF

DSNYQPKAAYNALINAL

[0357] The polynucleotide (SEQ ID NO:157) and amino acid (SEQ ID NO:158) sequences of another wild-type *M. thermophila* xylanase ("Xyl6") are provided below. The signal sequence is shown underlined in SEQ ID NO:158. SEQ ID NO:159 provides the sequence of this xylanase without the signal sequence.

(SEQ ID NO: 157)

-continued

(SEQ ID NO: 158)

MVSLKSLLLAAAATLTAVTARPFDFDDGNSTEALAKRQVTPNAQGYHSGY

FYSWWSDGGGQATFTLLEGSHYQVNWRNTGNFVGGKGWNPGTGRTINYGG

SFNPSGNGYLAVYGWTHNPLIEYYVVESYGTYNPGSQAQYKGSFQSDGGT

YNIYVSTRYNAPSIEGTRTFQQYWSIRTSKRVGGSVTMQNHFNAWAQHGM

PLGSHDYQIVATEGYQSSGSSDIYVQTH

(SEQ ID NO: 159)
RPFDFDDGNSTEALAKRQVTPNAQGYHSGYFYSWWSDGGGQATFTLLEGS
HYQVNWRNTGNFVGGKGWNPGTGRTINYGGSFNPSGNGYLAVYGWTHNPL
IEYYVVESYGTYNPGSQAQYKGSFQSDGGTYNIYVSTRYNAPSIEGTRTF
QQYWSIRTSKRVGGSVTMQNHFNAWAQHGMPLGSHDYQIVATEGYQSSGS
SDIYVQTH

[0358] The polynucleotide (SEQ ID NO:160) and amino acid (SEQ ID NO:161) sequences of another wild-type *M. thermophila* xylanase ("Xyl5") are provided below. The signal sequence is shown underlined in SEQ ID NO:161. SEQ ID NO:162 provides the sequence of this xylanase, without the signal sequence.

(SEQ ID NO: 161)

MVTLTRLAVAAAAMISSTGLAAPTPEAGPDLPDFELGVNNLARRALDYNQ

NYRTSGNVNYSPTDNGYSVSFSNAGDFVVGKGWRTGATRNITFSGSTQHT

SGTVLVSVYGWTRNPLIEYYVQEYTSNGAGSAQGEKLGTVESDGGTYEIW

RHQQVNQPSIEGTSTFWQYISNRVSGQRPNGGTVTLANHFAAWQKLGLNL

GQHDYQVLATEGWGNAGGSSQYTVSG

(SEQ ID NO: 162)
APTPEAGPDLPDFELGVNNLARRALDYNQNYRTSGNVNYSPTDNGYSVSF
SNAGDFVVGKGWRTGATRNITFSGSTQHTSGTVLVSVYGWTRNPLIEYYV
QEYTSNGAGSAQGEKLGTVESDGGTYEIWRHQQVNQPSIEGTSTFWQYIS
NRVSGQRPNGGTVTLANHFAAWQKLGLNLGQHDYQVLATEGWGNAGGSSQ

[0359] The polynucleotide (SEQ ID NO:163) and amino acid (SEQ ID NO:164) sequences of a wild-type *M. thermophila* beta-xylosidase are provided below. The signal sequence is shown underlined in SEQ ID NO:164. SEQ ID NO:165 provides the sequence of this xylanase without the signal sequence.

(SEO ID NO: 163)

ACCGGGACACGGGCGAATTCCACCTTCTACAACCCCATCTTCCCCGGCT TCTACCCCGATCCGAGCTGCATCTACGTGCCCGAGCGTGACCACACCTTC TTCTGTGCCTCGTCGAGCTTCAACGCCTTCCCGGGCATCCCGATTCATGC CAGCAAGGACCTGCAGAACTGGAAGTTGATCGGCCATGTGCTGAATCGCA AGGAACAGCTTCCCCGGCTCGCTGAGACCAACCGGTCGACCAGCGGCATC ACTAGTGGACGACCGCCGCCGCAGGAGGACGCTTCCAGATGGGACAATA TTATCTTCAAGGCAAAGAATCCGTATGATCCGAGGTCCTGGTCCAAGGCC GTCCACTTCAACTTCACTGGCTACGACACGGAGCCTTTCTGGGACGAAGA TGGAAAGGTGTACATCACCGGCGCCCCATGCTTGGCATGTTGGCCCCATACA TCCAGCAGGCCGAAGTCGATCTCGACACGGGGGCCGTCGGCGAGTGGCGC ATCATCTGGAACGGAACGGGCGGCATGGCTCCTGAAGGGCCGCACATCTA $\tt CCGCAAAGATGGGTGGTACTACTTGCTGGCTGCTGAAGGGGGGGACCGGCA$ TCGACCATATGGTGACCATGGCCCGGTCGAGAAAAATCTCCAGTCCTTAC GAGTCCAACCCAAACAACCCCGTGTTGACCAACGCCAACACGACCAGTTA GGTGGGCAGTCGCCCTCTCCACCCGCTCCGGTCCAGAATATCTTCACTAC CCCATGGGCCGCGAGACCGTCATGACAGCCGTGAGCTGGCCGAAGGACGA GTGGCCAACCTTCACCCCCATATCTGGCAAGATGAGCGGCTGGCCGATGC

CTCCTTCGCAGAAGGACATTCGCGGAGTCGGCCCCTACGTCAACTCCCCC

-continued

MFFASLLLGLLAGVSASPGHGRNSTFYNPIFPGFYPDPSCIYVPERDHTF

FCASSSFNAFPGIPIHASKDLQNWKLIGHVLNRKEQLPRLAETNRSTSGI
WAPTLRFHDDTFWLVTTLVDDDRPQEDASRWDNIIFKAKNPYDPRSWSKA
VHFNFTGYDTEPFWDEDGKVYITGAHAWHVGPYIQQAEVDLDTGAVGEWR
IIWNGTGGMAPEGPHIYRKDGWYYLLAAEGGTGIDHMVTMARSRKISSPY
ESNPNNPVLTNANTTSYFQTVGHSDLFHDRHGNWWAVALSTRSGPEYLHY
PMGRETVMTAVSWPKDEWPTFTPISGKMSGWPMPPSQKDIRGVGPYVNSP
DPEHLTFPRSAPLPAHLTYWRYPNPSSYTPSPPGHPNTLRLTPSRLNLTA
LNGNYAGADQTFVSRRQQHTLFTYSVTLDYAPRTAGEEAGVTAFLTQNHH
LDLGVVLLPRGSATAPSLPGLSSSTTTTSSSSSRPDEEEEREAGEEEEEG
GQDLMIPHVRFRGESYVPVPAPVVYPIPRAWRGGKLVLEIRACNSTHFSF
RVGPDGRRSERTVVMEASNEAVSWGFTGTLLGIYATSNGGNGTTPAYFSD
WRYTPLEQFRD

(SEQ ID NO: 165)
SPGHGRNSTFYNPIFPGFYPDPSCIYVPERDHTFFCASSSFNAFPGIPIH
ASKDLQNWKLIGHVLNRKEQLPRLAETNRSTSGIWAPTLRFHDDTFWLVT
TLVDDDRPQEDASRWDNIIFKAKNPYDPRSWSKAVHFNFTGYDTEPFWDE
DGKVYITGAHAWHVGPYIQQAEVDLDTGAVGEWRIIWNGTGGMAPEGPHI
YRKDGWYYLLAAEGGTGIDHMVTMARSRKISSPYESNPNNPVLTNANTTS
YFQTVGHSDLFHDRHGNWWAVALSTRSGPEYLHYPMGRETVMTAVSWPKD
EWPTFTPISGKMSGWPMPPSQKDIRGVGPYVNSPDPEHLTFPRSAPLPAH
LTYWRYPNPSSYTPSPPGHPNTLRLTPSRLNLTALNGNYAGADQTFVSRR
QQHTLFTYSVTLDYAPRTAGEEAGVTAFLTQNHHLDLGVVLLPRGSATAP

SLPGLSSSTTTTSSSSSRPDEEEEREAGEEEEGGQDLMIPHVRFRGESY VPVPAPVVYPIPRAWRGGKLVLEIRACNSTHFSFRVGPDGRRSERTVVME ASNEAVSWGFTGTLLGIYATSNGGNGTTPAYFSDWRYTPLEQFRD

[0360] The polynucleotide (SEQ ID NO:166) and amino acid (SEQ ID NO:167) sequences of a wild-type *M. ther-mophila* acetylxylan esterase ("Axe3") are provided below. The signal sequence is shown underlined in SEQ ID NO:167. SEQ ID NO:168 provides the sequence of this acetylxylan esterase without the signal sequence.

(SEQ ID NO: 166) GCTGGCTGCCGCGCACCCGGTCTTCGACGAGCTGATGCGGCCGACGGCGC CGCTGGTGCGCCCGCGGGCGCCCTGCAGCAGGTGACCAACTTTGGCAGC AACCCGTCCAACACGAAGATGTTCATCTACGTGCCCGACAAGCTGGCCCC CAACCCGCCCATCATAGTGGCCATCCACTACTGCACCGGCACCGCCCAGG $\tt CCTACTACTCGGGCTCCCCTTACGCCCGCCTCGCCGACCAGAAGGGCTTC$ ATCGTCATCTACCCGGAGTCCCCCTACAGCGGCACCTGTTGGGACGTCTC GTCGCGCCCCCTGACCCACAACGGCGGCGGCGACAGCAACTCGATCG CCAACATGGTCACCTACACCCTCGAAAAGTACAATGGCGACGCCAGCAAG GTCTTTGTCACCGGCTCCTCGTCCGGCGCCATGATGACGAACGTGATGGC $\tt CGCCGCGTACCCGGAACTGTTCGCGGCAGGAATCGCCTACTCGGGCGTGC$ CCGCCGGCTGCTTCTACAGCCAGTCCGGAGGCACCAACGCGTGGAACAGC TCGTGCGCCAACGGGCAGATCAACTCGACGCCCCAGGTGTGGGCCAAGAT GGTCTTCGACATGTACCCGGAATACGACGGCCCGCGCCCCAAGATGCAGA TCTACCACGGCTCGGCCGACGCCACGCTCAGACCCAGCAACTACAACGAG ACCATCAAGCAGTGGTGCGGCGTCTTCGGCTTCGACTACACCCGCCCCGA CACCACCCAGGCCAACTCCCCGCAGGCCGGCTACACCACCTACACCTGGG GCGAGCAGCAGCTCGTCGGCATCTACGCCCAGGGCGTCGGACACACGGTC CCCATCCGCGGCAGCGACGACATGGCCTTCTTTGGCCTGTGA

(SEQ ID NO: 167)

MKLLGKLSAALALAGSRLAAAHPVFDELMRPTAPLVRPRAALQQVTNFGS

NPSNTKMFIYVPDKLAPNPPIIVAIHYCTGTAQAYYSGSPYARLADQKGF

IVIYPESPYSGTCWDVSSRAALTHNGGGDSNSIANMVTYTLEKYNGDASK

VFVTGSSSGAMMTNVMAAAYPELFAAGIAYSGVPAGCFYSQSGGTNAWNS

SCANGQINSTPQVWAKMVFDMYPEYDGPRPKMQIYHGSADGTLRPSNYNE

TIKQWCGVFGFDYTRPDTTQANSPQAGYTTYTWGEQQLVGIYAQGVGHTV

PIRGSDDMAFFGL

(SEQ ID NO: 168)
HPVFDELMRPTAPLVRPRAALQQVTNFGSNPSNTKMFIYVPDKLAPNPPI
IVAIHYCTGTAQAYYSGSPYARLADQKGFIVIYPESPYSGTCWDVSSRAA
LTHNGGGDSNSIANMVTYTLEKYNGDASKVFVTGSSSGAMMTNVMAAAYP

-continued

ELFAAGIAYSGVPAGCFYSQSGGTNAWNSSCANGQINSTPQVWAKMVFDM

YPEYDGPRPKMQIYHGSADGTLRPSNYNETIKQWCGVFGFDYTRPDTTQA

NSPQAGYTTYTWGEQQLVGIYAQGVGHTVPIRGSDDMAFFGL

[0361] The polynucleotide (SEQ ID NO:169) and amino acid (SEQ ID NO:170) sequences of a wild-type *M. thermophila* ferulic acid esterase ("FAE") are provided below. The signal sequence is shown underlined in SEQ ID NO:170. SEQ ID NO:171 provides the sequence of this xylanase without the signal sequence

(SEQ ID NO: 169) ATGATCTCGGTTCCTGCTCTCGCTCTGGCCCTTCTGGCCGCCGTCCAGGT $\tt CGTCGAGTCTGCCTCGGCTGGCTGTGGCAAGGCGCCCCCTTCCTCGGGCA$ ${\tt CCAAGTCGATGACGGTCAACGGCAAGCAGCGCCAGTACATTCTCCAGCTG}$ CCCAACAACTACGACGCCAACAAGGCCCACAGGGTGGTGATCGGGTACCA $\tt CTGGCGCGACGGATCCATGAACGACGTGGCCAACGGCGGCTTCTACGATC$ TGCGGTCCCGGGCGGCGACAGCACCATCTTCGTTGCCCCCAACGGCCTC AATGCCGGATGGGCCAACGTGGGCGGCGAGGACATCACCTTTACGGACCA GATCGTAGACATGCTCAAGAACGACCTCTGCGTGGACGAGACCCAGTTCT TTGCTACGGGCTGGAGCTATGGCGGTGCCATGAGCCATAGCGTGGCTTGT TCTCGGCCAGACGTCTTCAAGGCCGTCGCGGTCATCGCCGGGGCCCAGCT $\tt GTCCGGCTGCGCCGGCGCACGACGCCCGTGGCGTACCTAGGCATCCACG$ GAGCCGCCGACAACGTCCTGCCCATCGACCTCGGCCGCCAGCTGCGCGAC AAGTGGCTGCAGACCAACGGCTGCAACTACCAGGGCGCCCAGGACCCCGC GCCGGGCCAGCAGCCCACATCAAGACCACCTACAGCTGCTCCCGCGCGC CCGTCACCTGGATCGGCCACGGGGGCGGCCACGTCCCCGACCCCACGGGC AACAACGGCGTCAAGTTTGCGCCCCAGGAGACCTGGGACTTCTTTGATGC CGCCGTCGGAGCGGCCGGCGCGCAGAGCCCGATGACATAA

(SEQ ID NO: 170)

MISVPALALALLAAVQVVESASAGCGKAPPSSGTKSMTVNGKQRQYILQL

PNNYDANKAHRVVIGYHWRDGSMNDVANGGFYDLRSRAGDSTIFVAPNGL

NAGWANVGGEDITFTDQIVDMLKNDLCVDETQFFATGWSYGGAMSHSVAC

SRPDVFKAVAVIAGAQLSGCAGGTTPVAYLGIHGAADNVLPIDLGRQLRD

KWLQTNGCNYQGAQDPAPGQQAHIKTTYSCSRAPVTWIGHGGGHVPDPTG

NNGVKFAPQETWDFFDAAVGAAGAQSPMT

(SEQ ID NO: 171)
ASAGCGKAPPSSGTKSMTVNGKQRQYILQLPNNYDANKAHRVVIGYHWRD
GSMNDVANGGFYDLRSRAGDSTIFVAPNGLNAGWANVGGEDITFTDQIVD
MLKNDLCVDETQFFATGWSYGGAMSHSVACSRPDVFKAVAVIAGAQLSGC
AGGTTPVAYLGIHGAADNVLPIDLGRQLRDKWLQTNGCNYQGAQDPAPGQ
QAHIKTTYSCSRAPVTWIGHGGGHVPDPTGNNGVKFAPQETWDFFDAAVG
AAGAQSPMT

Example 1

Gene Acquisition and Construction of Expression Vectors

[0362] A protein from a strain of *M. thermophila* having the amino acid sequence provided in SEQ ID NO:2 was previously identified as having GH61 activity. It was designated "GH61a". FIG. 1 shows the improvement in glucose yield resulting from having GH61a present in a reaction where crystalline cellulose undergoes saccharification by cellulase enzymes that are contained in culture broth from *M. thermophila* cells.

[0363] In this Example, the wild type GH61a gene from *M. thermophila* was isolated from the genome and the DNA sequence verified. The gene was cloned into a *Saccharomyces cerevisiae/M. thermophila* shuttle vector pYTDX60 using Pml1 cloning sites, using standard methods known in the art. The signal peptide and gene were under the control of a yeast transcription elongation factor 1 promoter (pTEF1). The vector contained the REP2, rep1 and protein D (partial) origin of replication for *S. cerevisiae* and a URA3 resistance marker.

[0364] The resulting plasmid (pYTDX60-GH61a) was transformed into *S. cerevisiae* INVSC1 strain and the transformed host cells were grown in Costar 96 deep well plates for GH61a protein production. The GH61a sequence from the transformants were verified as the wild type GH61a DNA sequence (SEQ ID NO:1) and the encoded polypeptide (SEQ ID NO:2).

Example 2

Shake Flask Procedure

[0365] A single colony of S. cerevisiae containing a plasmid with the GH61a gene was inoculated into 3 mL synthetic defined-uracil (SD-ura) broth (2 g/L synthetic dropout minus uracil without yeast nitrogen base (US Biological), 5 g/L ammonium sulfate, 0.1 g/L calcium chloride, 2 mg/L inositol, 0.5 g/L magnesium sulfate, 1 g/L potassium phosphate monobasic (KH·2PO4), 0.1 g/L sodium chloride) containing 6% glucose. Cells were grown overnight (at least 21 hrs) in an incubator at 30° C. with shaking at 250 rpm. Then, 500 µL of the overnight culture was diluted into either 50 mL SD-ura medium or modified galactose expression medium (30 g/L galactose, 6.7 g/L yeast nitrogen base without amino acids, 5 g/L ammonium sulfate, 24 g/L amino acid mix minus uracil, 10 g/L potassium phosphate monobasic (KH₂PO₄) and 0.38% vitamin mix) containing 2% glucose in a 250 mL baffled sterile shake flask and incubated at 37° C. (for SD-ura medium) or 30° C. (for modified galactose expression medium) for 48 hours. Cells were pelleted by centrifugation (4000 rpm, 15 min, 4° C.). The clear media supernatant containing the secreted GH61a enzyme was collected and stored at 4° C. until used.

Example 3

GH61 Activity Assays

[0366] In some experiments, GH61 activity was determined using a biomass assay. The substrate was wheat straw that had been pretreated under acidic conditions (hereinafter referred to as "pretreated wheat straw"). The reaction was carried out in a total volume of 77 μ L in the presence of 10

mg of pre-treated wheat straw, with 62 μ L of 1×-20× concentrated clear media supernatant ("broth") containing *S. cerevisiae*-produced *M. thermophila* GH61a enzyme and 15 μ L of sodium acetate buffer (pH 5.0), *M. thermophila*-produced cellobiohydrolase 1a (CBH1a), cellobiohydrolase 2b (CBH2b) and beta-glucosidase. The final concentration of sodium acetate was 150 mM and the enzyme loads of CBHs and beta-glucosidase were approximately 0.0025%-0.0125% (CBH1a and CBH2b in 1:1 ratio) and 0.01 to 0.02% with respect to substrate glucan mass in the biomass substrate, respectively.

[0367] Some experiments were also performed in the presence of inhibitors that may arise through the routine preparation or pre-treatment of a cellulose substrate. In this way, GH61 protein variants can be identified that are more resistant to the presence of such inhibitors, and therefore find use with a wider range of feedstocks and have wider applicability in the processing of biomass from different sources.

[0368] In some experiments, the pretreatment filtrate was obtained by washing pretreated substrate solids with water. The GH61 activity assay was carried out with 50 μL of GH61a containing supernatant, 12 μL of pretreatment filtrate, and 15 μL of sodium acetate buffer mixed with CBH1a, CBH2b and beta-glucosidase isolated from *M. thermophila*. Background negative controls were obtained by using media supernatant from cultures of cells without the GH61a gene in the plasmid. Thus, the negative controls represent activities of CBH1a, CBH2b and beta-glucosidase in the absence of GH61a. The reaction was incubated at 50 to 60° C. for 24 to 72 hours with shaking, and then quenched by adding 130 μL H₂O at room temperature.

[0369] Some experiments were carried out in a total volume of 360 μL in the presence of 10 mg of pre-treated wheat straw and 40 µL filtrate (11% total volume), with 262 μL of clear media supernatant containing S. cerevisiaeproduced M. thermophila GH61a enzyme and 48 µL of sodium acetate buffer (pH 5; supplemented with CuSO₄) mixed with M. thermophila-produced CBH1a, CBH2b and β -glucosidase. The final concentrations of sodium acetate and CuSO₄ were 128 mM and 15 μM, respectively, and the enzyme loads of CBH's and beta-glucosidase were 0.01% (CBH1a and CBH2b in 1:1 ratio) and 0.02% with respect to substrate glucan mass in the biomass substrate, respectively. Background negative controls were obtained by using media supernatant from cultures of S. cerevisiae cells without the GH61a gene in the plasmid. Thus, the negative controls represent glucose production by CBH1a, CBH2b and betaglucosidase in the absence of GH61a. The reaction was incubated at 55° C. for 72 hours with shaking.

[0370] The GH61 activity in the reaction mixture was measured by monitoring glucose production, as determined using an enzymatic glucose assay kit (K-GLUC, Megazyme). In a total volume of 200 μL , 20 μL of GH61a reaction mixture was added to 180 μL of 2× concentrated glucose determination reagent (GOPOD Reagent TM , supplied as part of the K-GLUC assay kit). The reaction was incubated at room temperature for 30 minutes and the absorbance of the solution was measured at 510 nm. The glucose oxidase enzyme in the GOPOD reagent reacts with glucose and produces hydrogen peroxide, which then reacts with the 4-aminoantipyrine in the reagent to produce a quinoneimine dye. The amount of quinoneimine dye was measured spectrophotometrically at 510 nm to calculate the total amount of

D-glucose in the reaction mixture. The total amount of glucose in the reaction mixture was also measured using an AGILENT® HPLC 1200 equipped with an AMINEXTM HPX-87H ion exclusion column (300 mm×7.8 mm+Bio-Rad) with 5 mM sulfuric acid in water as eluent at a flow rate of 0.6 mL/min at 65° C. The retention time of glucose was 9.5 minutes.

[0371] Detectable amounts of glucose, as a measure of GH61 activity, were observed under high throughput screening conditions (pH 5, 55° C.). GH61a specific activity in the reaction mixture (which also comprised CBH1a, CBH2b and beta-glucosidase) was determined by subtracting the amount of glucose in the negative control reaction (comprising CBH1a, CBH2b and BGL, but not GH61a) from the total glucose measurement.

Example 4

High Throughput Assays to Identify Improved GH61a Variants

[0372] Plasmid libraries containing variant GH61a genes were transformed into S. cerevisiae INVSC1 strain and plated on SD-ura agar plate containing 2% glucose. After incubation for at least 48 hours at 30° C., colonies were picked using a Q-bot® robotic colony picker (Genetix) into shallow, 96-well well microtiter plates containing 200 µL SD-ura media and 6% glucose. Cells were grown for at least 21 hours at 30° C. with shaking at 250 rpm and 85% humidity. Then, 20 µL of the overnight culture was transferred into 96-deep well microtiter plates containing 380 μL SD-ura medium with 2% glucose as described in Example 2. In some cases, 15 µL of the overnight culture was transferred into 96-deep well microtiter plates containing 285 µL modified galactose expression medium with 2% glucose as described in Example 2. The plates were incubated at 37° C. (for SD-ura medium) or 30° C. (for modified galactose expression medium) with shaking at 250 rpm and 85% humidity for 48 hours. The deep well plates were centrifuged at 4000 rpm for 15 minutes and the clear media supernatant containing the secreted GH61a enzyme was used for the high throughput biomass assay.

[0373] The GH61a libraries were screened for thermoactivity using a biomass-based high throughput method using the assays described in Example 3.

Example 5

Improved GH61 Activity of Engineered GH61a Variants

[0374] Improved GH61a variants were identified from the high throughput screening of various GH61a variant libraries as described in the previous Example. The screening was done by measuring thermoactivity of these variants compared with that of the parental GH61a enzyme (expressed from GH61a DNA; SEQ ID NO:1). The high throughput (HTP) saccharification reactions were conducted at pH 5, 55° C. for 24-72 hrs, using 50 g/L pretreated wheat straw, 0.0025-0.01% of mixture of CBH1a and CBH2b (1:1 ratio), and 0.01 to 0.02% of beta-glucosidase.

Example 6

Shake Flask Validation of Improved GH61a Variants

[0375] Improved GH61a variants identified in the high throughput screening (as described in the previous Example)

were prepared using the shake flask procedure described above. GH61 activities were determined using a biomass assay as described above, in which normalized concentrations of GH61a variants were used for direct comparison of the specific activities of the GH61a variants. Reactions were quenched at different time points between 24 to 72 hours and glucose levels measured for time-course analysis. FIG. 2 shows time course results for three GH61a variants. FIG. 2 also shows specific activities observed under the following assay conditions: pH 5.0, and 55° C., utilizing 50 g/L pretreated wheat straw, 0.0025%-0.0125% of mixture of CBH1a and CBH2b (1:1 ratio) and 0.01 to 0.02% of beta-galactosidase. The protein concentration was normalized in reactions. In this Figure, N=3; error bars represent ±1 standard deviation. GH61 activity is shown as the increase in glucose production by the enzyme combination [CBH1a+ CBH2b+BGL1] supplemented by the GH61 protein, minus the glucose production by the same enzyme combination in the absence of the GH61 protein.

[0376] The results show that Variants 5 and 9 (SEQ ID NOS:6 and 8) have a 2.0 to 2.9 fold improvement over the native GH61a (SEQ ID NO:2); and Variant 1 has a 3.0 to 3.9 fold improvement over GH61a (SEQ ID NO:2).

[0377] Substitutions improving GH61 activity are compiled in Table 6-1 below. This table shows GH61a variants derived from the native GH61a enzyme (SEQ ID NO:2) that were shown to have improved thermoactivity. Improvement in GH61 activity in relation to the parental GH61a protein (SEQ ID NO:2) is indicated with the following scale:

[0378] +=1.1 to 1.9 fold improvement compared with wild-type (SEQ ID NO:2)

[0379] ++=2.0 to 2.9 fold improvement compared with wild-type

[0380] +++=3.0 to 3.9 fold improvement compared with wild-type

TABLE 6-1

	GH61 Variants with Improved Activity											
Var. No.	Amino Acid Changes	Silent Nucleotide Changes	Improve- ment in GH61 Activity									
1	N35G/E104H/A168P	t60c/c573g	+++									
	(SEQ ID NO: 4)											
2	W42P/E104H/K167A	t60c/c573g/g1026a	++									
3	N35G/W42P/V97Q/A191N		++									
4	W42P/E104H	c573g	++									
5	E104H/K167A	t60c/c291a/c573g	++									
6	W42P/A191N	t60c/c291a	++									
7	N35G/W42P/A191N	t60c/c291a	++									
8	H20D		++									
9	V97Q/A191N		++									
10	N35G/E104H/A191N	t60c/c876t	++									
11	E104H		++									
12	E104Q		+									
13	H20D/E104D/Q190H/Y192H		+									
14	H20D/Q190E/Y192Q	a312g	+									
15	H20D/E104C		+									
16	H20D/P103H/E104C		+									
17	H20D/P103H	a312g	+									
18	N35G/E104H	t60c/c573g	+									
19	H20D/P103H/E104Q/Q190E		+									
20	H20D/P103H/E104C/Y192Q		+									
21	E104D	t60c	+									
22	N35G/W42P	t60c/c573g	+									
23	A137P		+									
24	H20D/P103H/E104Q		+									

TABLE 6-1-continued

TABLE 6-1-continued

	GH61 Variants with I	mproved Activity		GH61 Variants with Improved Activity						
Var. No.	Amino Acid Changes	Silent Nucleotide Changes	Improve- ment in GH61 Activity	Var. No.	Amino Acid Changes	Silent Nucleotide Changes	Improve- ment in GH61 Activity			
25	P103E/E104D	t60c	+	92	H175T		+			
26	N35G/F68Y/A191N	t379a/c380g/g381c	+	93	N187K/S330R	c597g	+			
27 28	W42P/A168P H20D/E104C/Q190E/Y192Q		+ +	94 95	H175R L166H		+			
29	A142W		+	96	I178L		+			
30	N35G		+	97	L173H		+			
31	H20C/Q190E		+	98	I177T		+			
32	W42P/A212P/T236P	160 (572	+	99	N170Y		+			
33	N35G/W42P/V97Q/K167A/ A168P	t60c/c573g	+	100 101	H175S K167T		+			
34	V97Q/A168P	c573g	+		L166R		+			
35	S232A	8	+	103	V172Y		+			
36	W42P/E104H/K167A/A168P/	c573g	+	'104			+			
	Q190E			105			+			
37	W42P/A168P/A212P/T236P		+	106	H175M		+			
38 39	N35G/V97Q/K167A N35G/V97Q		+	107 108			+			
40	N35G/A191N		+	109	W131K/H175Q	g1026a	+			
41	S127T/K167A/A191N		+		Y171A	· ·	+			
42	W42P		+		N170H		+			
43	W42P/E104C/K167A/A168P	t60c/c291a/c573g	+		P163R		+			
44 45	K167Q W131V		+	113 114	A168C G169T		+			
46	E176C		+	114	R174F		+			
47	K167I/P273S	c300t	+	116			+			
48	W42P/T87P		+	117	I134L		+			
49	W42P/A212P		+		I177V		+			
50	K133H		+	119			+			
51 52	D165N D165A		+	120	H175C W131I		+			
53	A168D		+	121	W42P/A143P		+			
54	K218T		+	123	I178G	c72t	+			
55	P45T		+	124	N170P		+			
56	Q44V		+	125	A179D/N317K	c732g/c843t/c882t/	+			
57	S164W		+	126	11 (2) /	c909t/c912g				
58 59	I177F A191N		+	126 127	I162V I178M		+			
60	I134P		+		V172A		+			
61	K133F		+	129	K167A/A191N	t60c/c291a	+			
62	I134D		+		F132A		+			
63	N35G/K167A	t60c/c291a/c573g	+	131			+			
64 65	I162R N35G/K167A	t204c/t379a/c380g/	+	132	F132M A179G		+			
0.5	N33G/K10/A	g381c/c385t	+	134			+			
66	D165W/A246T	800100000	+	135	K167A	g921a	+			
67	I162L		+	136		C	+			
68	S164M		+	137			+			
69	F132D/A244D		+	138	A179N	-7024	+			
70 71	H181Q I177G	g1026a	+	139 140	I134A K167E	c792t g972t	+			
72	L166W	510204	+	141	R174K	87720	+			
73	I162F		+	142	S164F		+			
74	I134V		+	143	V172L		+			
75	E176Q		+	144	A168H		+			
76 77	H181S I178A		+	145 146	I134T K167H		+			
78	K167A		+	140	L166A		+			
79	V172K		+	148	S164R		+			
80	I177H		+	149	R174C		+			
81	I134N		+	150	A179P	1000	+			
82	K133Y N25G/V130I		+	151		g1026a	+			
83 84	N35G/Y139L A168G		+	152 153	L173M D165K		+			
85	T12A/I162G	c246t	+		E176S		+			
86	D165E		+	155	F132L		+			
87	D165M		+	156	F132I/A179I		+			
88	I134M		+		F132P		+			
89	A168P		+	158	S164Q		+			
90 91	I177D S164P		+ +	159 160	V172Q W131D		+			
21	510-11		Τ-	100	11 13117		т			

TABLE 6-1-continued

TABLE 6-1-continued

	TABLE 0-1-			TABLE 0-1-continued							
	GH61 Variants with 1	Improved Activity		GH61 Variants with Improved Activity							
Var. No.	Amino Acid Changes	Silent Nucleotide Changes	Improve- ment in GH61 Activity	Var. No.	Amino Acid Changes	Silent Nucleotide Changes	Improve ment in GH61 Activity				
161	W131Q		+	229	L173F		+				
162	A179H		+	230	N170Q		+				
163	I134H/G270S		+	231	I177P		+				
164	N170G		+	232	R174N		+				
165	A168T		+	233	V172K/S215W		+				
166 167	A179C		+	234 235	D165R	o520o/o522a	+				
168	K133N K167L		+	235	G239D H175V	c520a/c522g	+				
169	L180M		+	237	H181R		+				
170	W131F		+	238	I134Y		+				
171	I134W	g1026a	+	239	V172F		+				
172	I178H		+	240	V172G		+				
173	N170A		+								
174	V172H		+								
175	A168H/S205N		+	[0381]	Table 6-2 shows GH6	1a variants deriv	ed from the				
176	I134H	g921a	+	GH61	a protein designated "V						
177	S164C		+		yed thermoactivity. The s						
178	S164K		+								
179 180	I177C I178Q		+		ed the alterations of Varian						
181	L180W		+		a (N35G/E104H/A168P),						
182	I177M		+	tions.]	Improvement in GH61 ac	tivity in relation	to Variant				
183	R174D		+	(SEQ	ID NO:4) is indicated in	Table 6-2 acco	rding to the				
184	V172M		+		ing scale:		C				
185	A179M		+		-	4					
186	H175Y		+		*=0.5 to 1.0 fold in	nprovement con	ipared wi				
187	I178P		+	Varian	t 1 (SEQ ID NO:4)						
107											
188	L173A		+	[0383]	+=1.1 to 1.9 fold in	nnrovement con	nared wi				
188 189	N170E		+		+=1.1 to 1.9 fold in	nprovement con	npared wi				
188 189 190	N170E N170F	4270 / 200 / 201 /	++	Varian	t 1;						
188 189	N170E	t379a/c380g/g381c/ c454a/c456a/c732t/	+	Varian [0384]	t 1; ++=2.0 to 2.9 fold in						
188 189 190 191	N170E N170F N35G/A191N/T258I/T323P/ G328A/C341R		+ + +	Varian	t 1; ++=2.0 to 2.9 fold in						
188 189 190	N170E N170F N35G/A191N/T258I/T323P/ G328A/C341R A168R	c454a/c456a/c732t/	++	Varian [0384]	t 1; ++=2.0 to 2.9 fold in t 1	mprovement con	_				
188 189 190 191	N170E N170F N35G/A191N/T258I/T323P/ G328A/C341R	c454a/c456a/c732t/	+ + + +	Varian [0384]	t 1; ++=2.0 to 2.9 fold in	mprovement con					
188 189 190 191 192 193	N170E N170F N35G/A191N/T258I/T323P/ G328A/C341R A168R D165I	c454a/c456a/c732t/	+ + + + +	Varian [0384] Varian	t 1; ++=2.0 to 2.9 fold in t 1	mprovement con	npared wi				
188 189 190 191 192 193 194	N170E N170F N35G/A191N/T258I/T323P/ G328A/C341R A168R D1651 I162M K167V A179S	c454a/c456a/c732t/	+ + + + +	Varian [0384] Varian	t 1; ++=2.0 to 2.9 fold in t 1	mprovement con	npared wi				
188 189 190 191 192 193 194 195 196 197	N170E N170F N35G/A191N/T258I/T323P/ G328A/C341R A168R D165I I162M K167V A179S E176N	c454a/c456a/c732t/	+ + + + + +	Varian [0384] Varian	t 1; ++=2.0 to 2.9 fold in t 1	mprovement con	npared wi				
188 189 190 191 192 193 194 195 196 197 198	N170E N170F N35G/A191N/T258I/T323P/ G328A/C341R A168R D165I I162M K167V A179S E176N I134L/P322L	c454a/c456a/c732t/	+ + + + + + + + +	Varian [0384] Varian	t 1; ++=2.0 to 2.9 fold in t 1	mprovement con	npared wi				
188 189 190 191 192 193 194 195 196 197 198 199	N170E N170F N35G/A191N/T258I/T323P/ G328A/C341R A168R D165I I162M K167V A179S E176N II34L/P322L P163L	c454a/c456a/c732t/	+ + + + + + + + + +	Varian [0384] Varian G Variant	t 1; ++=2.0 to 2.9 fold in t 1	mprovement con 6-2 ctivity Compared to	npared wi Variant 1 GH61 Activity				
188 189 190 191 192 193 194 195 196 197 198 199 200	N170E N170F N35G/A191N/T258L/T323P/ G328A/C341R A168R D1651 I162M K167V A179S E176N I134L/P322L P163L H181D	c454a/c456a/c732t/	+ + + + + + + + +	Varian [0384] Varian G Varian Number	t 1; ++=2.0 to 2.9 fold in t 1 TABLE H61 Variants with Improved A	mprovement con E 6-2 ctivity Compared to Silent Nucleotide Changes	Nariant 1 GH61 Activity Improvement				
188 189 190 191 192 193 194 195 196 197 198 199 200 201	N170E N170F N35G/A191N/T258L/T323P/ G328A/C341R A168R D1651 I162M K167V A179S E176N I134L/P322L P163L H181D N170S	c454a/c456a/c732t/	+ + + + + + + + + + + +	Varian [0384] Varian G Variant	t 1; ++=2.0 to 2.9 fold in t 1 TABLE H61 Variants with Improved A r Amino Acid Changes N35G/T40A/E104H/A168P/	mprovement con 6-2 ctivity Compared to Silent Nucleotide	npared wariant 1 GH61 Activity				
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202	N170E N170F N35G/A191N/T258L/T323P/ G328A/C341R A168R D165I I162M K167V A179S E176N I134L/P322L P163L H181D N170S R174G	c454a/c456a/c732t/	+ + + + + + + + + + + + +	Varian [0384] Varian G Variant Number	t 1;	mprovement con E 6-2 ctivity Compared to Silent Nucleotide Changes t60c/c573g	Nariant 1 GH61 Activity Improvement				
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203	N170E N170F N35G/A191N/T258I/T323P/ G328A/C341R A168R D165I I162M K167V A179S E176N I134L/P322L P163L H181D N170S R174G I177R	c454a/c456a/c732t/	+ + + + + + + + + + + +	Varian [0384] Varian G Varian Number	t 1;	mprovement con E 6-2 ctivity Compared to Silent Nucleotide Changes	Nariant 1 GH61 Activity Improvement				
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202	N170E N170F N35G/A191N/T258L/T323P/ G328A/C341R A168R D1651 I162M K167V A179S E176N I134L/P322L P163L H181D N170S R174G I177R K167C	c454a/c456a/c732t/	+ + + + + + + + + + + + +	Varian [0384] Varian G Variant Number 241	t 1;	mprovement con E 6-2 ctivity Compared to Y Silent Nucleotide Changes t60c/c573g t60c/c573g	Variant 1 GH61 Activity Improvement				
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205	N170E N170F N35G/A191N/T258I/T323P/ G328A/C341R A168R D165I I162M K167V A179S E176N I134L/P322L P163L H181D N170S R174G I177R	c454a/c456a/c732t/	+ + + + + + + + + + + + + + + +	Varian [0384] Varian G Variant Number	t 1;	mprovement con E 6-2 ctivity Compared to Silent Nucleotide Changes t60c/c573g t60c/c573g t60c/c573g	Nariant 1 GH61 Activity Improvement				
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206	N170E N170F N35G/A191N/T258L/T323P/ G328A/C341R A168R D1651 I162M K167V A179S E176N I134L/P322L P163L H181D N170S R174G I177R K167C L166Q	c454a/c456a/c732t/	+ + + + + + + + + + + + + + + + + + +	Varian [0384] Varian G Varian Number 241 242 243	t 1;	mprovement con E 6-2 Silent Nucleotide Changes t60c/c573g t60c/c573g t60c/c573g t60c/c573g	Variant 1 GH61 Activity Improvement				
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207	N170E N170F N35G/A191N/T258L/T323P/ G328A/C341R A168R D1651 I162M K167V A179S E176N I134L/P322L P163L H181D N170S R174G I177R K167C L166Q P163I	c454a/c456a/c732t/	+ + + + + + + + + + + + + + + + + + +	Varian [0384] Varian G Variant Number 241 242 243 244	t 1;	mprovement con E 6-2 Silent Nucleotide Changes t60c/c573g t60c/c573g t60c/c573g t60c/c573g	Variant 1 GH61 Activity Improvement ++ ++				
188 189 190 191 192 193 194 195 196 197 198 200 201 202 203 204 205 206 207 208 209	N170E N170F N35G/A191N/T258L/T323P/ G328A/C341R A168R D1651 I162M K167V A179S E176N I134L/P322L P163L H181D N170S R174G I177R K167C L166Q P163I S164L/L166I Y171R F132P/Q190E/A191T	c454a/c456a/c732t/	+ + + + + + + + + + + + + + + + + + +	Varian [0384] Varian G Variant Number 241 242 243 244 245	t 1;	mprovement con E 6-2 Silent Nucleotide Changes t60c/c573g t60c/c573g t60c/c573g t60c/c573g	Variant 1 GH61 Activity Improvement ++ ++ ++				
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 207 208 209 210	N170E N170F N35G/A191N/T258L/T323P/ G328A/C341R A168R D1651 I162M K167V A179S E176N I134L/P322L P163L H181D N170S R174G I177R K167C L166Q P163I S164L/L166I Y171R F132P/Q190E/A191T F132Q	c454a/c456a/c732t/	+ + + + + + + + + + + + + + + + + + +	Varian [0384] Varian G Variant Number 241 242 243 244 245	t 1;	mprovement con E 6-2 Silent Nucleotide Changes t60c/c573g t60c/c573g t60c/c573g t60c/c573g	Variant 1 GH61 Activity Improvement ++ ++ ++				
188 189 190 191 192 193 194 195 196 197 198 200 201 202 203 204 205 207 207 208 209 210 211	N170E N170F N35G/A191N/T258L/T323P/ G328A/C341R A168R D1651 I162M K167V A179S E176N I134L/P322L P163L H181D N170S R174G I177R K167C L166Q P163I S164L/L166I Y171R F132P/Q190E/A191T F132P/Q190E/A191T F132Q I134C	c454a/c456a/c732t/	+ + + + + + + + + + + + + + + + + + +	Varian [0384] Varian Varian Variant Number 241 242 243 244 245 246 247	t 1;	mprovement con E 6-2 Silent Nucleotide Changes t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g	Variant 1 GH61 Activity Improvement ++ ++ ++ ++ ++ ++ ++ ++ ++				
188 189 190 191 192 193 194 195 196 197 198 200 201 202 203 204 205 206 207 208 209 211 212	N170E N170F N35G/A191N/T258I/T323P/ G328A/C341R A168R D1651 I162M K167V A179S E176N I134L/P322L P163L H181D N170S R174G I177R K167C L166Q P163I S164L/L166I Y171R F132P/Q190E/A191T F132Q I134C I177A	c454a/c456a/c732t/	+ + + + + + + + + + + + + + + + + + +	Varian [0384] Varian Varian Varian Numbe: 241 242 243 244 245 246	t 1;	mprovement con E 6-2 Silent Nucleotide Changes t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g	Variant 1 GH61 Activity Improvement ++ ++ ++ ++ ++ ++ ++				
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 221 211 212 213	N170E N170F N35G/A191N/T258L/T323P/ G328A/C341R A168R D1651 I162M K167V A179S E176N I134L/P322L P163L H181D N170S R174G I177R K167C L166Q P163I S164L/L166I Y171R F132P/Q190E/A191T F132Q I134C I177A E176R	c454a/c456a/c732t/	+ + + + + + + + + + + + + + + + + + +	Varian [0384] Varian G Variant Numbe: 241 242 243 244 245 246 247 248	t 1;	mprovement con 3 6-2 ctivity Compared to Y Silent Nucleotide Changes t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g	variant 1 GH61 Activity Improvement ++ ++ ++ ++ ++ ++ ++ ++ ++				
188 189 190 191 192 193 194 195 196 200 201 202 203 204 205 206 207 208 209 210 221 211 212 213 214	N170E N170F N35G/A191N/T258L/T323P/ G328A/C341R A168R D1651 I162M K167V A179S E176N I134L/P322L P163L H181D N170S R174G I177R K167C L166Q P163I S164L/L166I Y171R F132P/Q190E/A191T F132Q I134C I177A E176R G169A	c454a/c456a/c732t/	+ + + + + + + + + + + + + + + + + + +	Varian [0384] Varian Varian Varian Numbe: 241 242 243 244 245 246 247 248 249	t 1;	mprovement con E 6-2 ctivity Compared to Y Silent Nucleotide Changes t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g	Variant 1 GH61 Activity Improvement ++ ++ ++ ++ ++ ++ ++ ++ ++ ++				
188 189 190 191 192 193 194 195 197 198 199 200 201 202 203 204 205 206 207 208 209 211 212 213 214 215	N170E N170F N35G/A191N/T258I/T323P/ G328A/C341R A168R D1651 I162M K167V A179S E176N I134L/P322L P163L H181D N170S R174G I177R K167C L166Q P163I S164L/L166I Y171R F132P/Q190E/A191T F132Q I134C I177A E176R G169A G169A	c454a/c456a/c732t/	+ + + + + + + + + + + + + + + + + + +	Varian [0384] Varian G Variant Numbe: 241 242 243 244 245 246 247 248	t 1;	mprovement con 3 6-2 ctivity Compared to Y Silent Nucleotide Changes t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g	variant 1 GH61 Activity Improvement ++ ++ ++ ++ ++ ++ ++ ++ ++				
188 189 190 191 192 193 194 195 196 197 198 200 201 202 203 204 205 206 207 208 209 211 212 213 214 215 216	N170E N170F N35G/A191N/T258I/T323P/ G328A/C341R A168R D1651 I162M K167V A179S E176N I134L/P322L P163L H181D N170S R174G I177R K167C L166Q P163I S164L/L166I Y171R F132P/Q190E/A191T F132P/Q190E/A191T F132Q I134C I177A E176R G169A G169A G169K H181A	c454a/c456a/c732t/	+ + + + + + + + + + + + + + + + + + +	Varian [0384] Varian G Variant Number 241 242 243 244 245 246 247 248 249 250	t 1;	mprovement con Silent Nucleotide Changes t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g	Variant 1 GH61 Activity Improvement ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++				
188 189 190 191 192 193 194 195 196 197 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215	N170E N170F N35G/A191N/T258I/T323P/ G328A/C341R A168R D1651 I162M K167V A179S E176N I134L/P322L P163L H181D N170S R174G I177R K167C L166Q P163I S164L/L166I Y171R F132P/Q190E/A191T F132Q I134C I177A E176R G169A G169K H181A I177L	c454a/c456a/c732t/	+ + + + + + + + + + + + + + + + + + +	Varian [0384] Varian Varian Varian Numbe: 241 242 243 244 245 246 247 248 249	t 1;	mprovement con 3 6-2 ctivity Compared to Silent Nucleotide Changes t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g	Variant 1 GH61 Activity Improvement ++ ++ ++ ++ ++ ++ ++ ++ ++ ++				
188 189 190 191 192 193 194 195 196 197 200 201 202 203 204 205 206 207 208 209 210 211 212 212 213 214 215 216 217 218	N170E N170F N35G/A191N/T258I/T323P/ G328A/C341R A168R D1651 I162M K167V A179S E176N I134L/P322L P163L H181D N170S R174G I177R K167C L166Q P163I S164L/L166I Y171R F132P/Q190E/A191T F132Q I134C I177A E176R G169A G169A G169K H181A I177L A168G	c454a/c456a/c732t/	+ + + + + + + + + + + + + + + + + + +	Varian [0384] Varian G Varian Number 241 242 243 244 245 246 247 248 249 250 251	t 1;	mprovement con 3 6-2 ctivity Compared to Y Silent Nucleotide Changes t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g	Variant 1 GH61 Activity Improvement ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++				
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 211 212 213 214 215 216 217 217 218 219	N170E N170F N35G/A191N/T258I/T323P/ G328A/C341R A168R D1651 I162M K167V A179S E176N I134L/P322L P163L H181D N170S R174G I177R K167C L166Q P163I S164L/L166I Y171R F132P/Q190E/A191T F132Q I134C I177A E176R G169A G169A G169K H181A I177L A168G A179R	c454a/c456a/c732t/	+ + + + + + + + + + + + + + + + + + +	Varian [0384] Varian Varian Varian Varian Varian Varian 241 242 243 244 245 246 247 248 249 250 251 252	t 1;	mprovement con E 6-2 Silent Nucleotide Changes t60c/c573g	Nariant 1 GH61 Activity Improvement ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++				
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 207 208 209 211 212 213 214 215 216 217 218 218	N170E N170F N35G/A191N/T258I/T323P/ G328A/C341R A168R D1651 I162M K167V A179S E176N I134L/P322L P163L H181D N170S R174G I177R K167C L166Q P163I S164L/L166I Y171R F132P/Q190E/A191T F132Q I134C I177A E176R G169A G169A G169K H181A I177L A168G A179R D165T	c454a/c456a/c732t/	+ + + + + + + + + + + + + + + + + + +	Varian [0384] Varian G Varian Number 241 242 243 244 245 246 247 248 249 250 251	t 1;	mprovement con 3 6-2 ctivity Compared to Y Silent Nucleotide Changes t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g t60c/c573g	Variant 1 GH61 Activity Improvem ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++				
188 189 190 191 192 193 194 195 196 199 200 201 202 202 202 202 203 204 205 206 207 208 210 211 212 213 214 215 216 217 218 217 218	N170E N170F N35G/A191N/T258I/T323P/ G328A/C341R A168R D1651 I162M K167V A179S E176N I134L/P322L P163L H181D N170S R174G I177R K167C L166Q P163I S164L/L166I Y171R F132P/Q190E/A191T F132Q I134C I177A E176R G169A G169A G169K H181A I177L A168G A179R	c454a/c456a/c732t/	+ + + + + + + + + + + + + + + + + + +	Varian [0384] Varian Varian Varian Varian Numbe 241 242 243 244 245 246 247 248 249 250 251 252 253	t 1;	mprovement con Silent Nucleotide Changes t60c/c573g	npared w Variant 1 GH61 Activity Improvem ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++				
188 189 190 191 192 193 194 195 196 197 200 201 202 203 204 205 206 211 212 213 214 215 216 217 218 219 220 221 222 222	N170E N170F N35G/A191N/T258I/T323P/ G328A/C341R A168R D1651 I162M K167V A179S E176N I134L/P322L P163L H181D N170S R174G I177R K167C L166Q P163I S164L/L166I Y171R F132P/Q190E/A191T F132P/ G169A G169A G169A G169K H181A I177L A168G A179R D165T K167R	c454a/c456a/c732t/	+ + + + + + + + + + + + + + + + + + +	Varian [0384] Varian G Variant Numbe: 241 242 243 244 245 246 247 248 249 250 251 252 253 254	t 1;	mprovement con 3 6-2 ctivity Compared to Silent Nucleotide Changes t60c/c573g	variant 1 GH61 Activity Improvement ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++				
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 210 211 212 213 214 215 216 217 218 219 220 221 222 223	N170E N170F N35G/A191N/T258I/T323P/ G328A/C341R A168R D1651 I162M K167V A179S E176N I134L/P322L P163L H181D N170S R174G I177R K167C L166Q P163I S164L/L166I Y171R F132P/Q190E/A191T F132Q I134C I177A E176R G169A G169K H181A I177L A168G A179R D165T K167R L166V	c454a/c456a/c732t/	+ + + + + + + + + + + + + + + + + + +	Varian [0384] Varian Varian Varian Varian Numbe 241 242 243 244 245 246 247 248 249 250 251 252 253	t 1;	mprovement con Silent Nucleotide Changes t60c/c573g	Variant 1 GH61 Activity Improvement ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++				
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 207 208 209 211 212 213 214 215 216 227 228 229 220 221 221 221 222 223 224 225 226 227 228 229 229 220 220 221 221 221 221 221 221 222 223 224 225 226 227 227 228 229 229 220 220 221 221 221 221 221 221 221 221	N170E N170F N35G/A191N/T258I/T323P/ G328A/C341R A168R D1651 I162M K167V A179S E176N I134L/P322L P163L H181D N170S R174G I177R K167C L166Q P163I S164L/L166I Y171R F132P/Q190E/A191T F132Q I134C I177A E176R G169A G169A G169A G169K H181A I177L A168G A179R D165T K167R L166V N170C	c454a/c456a/c732t/	+ + + + + + + + + + + + + + + + + + +	Varian [0384] Varian G Variant Numbe: 241 242 243 244 245 246 247 248 249 250 251 252 253 254	t 1;	mprovement con E 6-2 Silent Nucleotide Changes t60c/c573g	variant 1 GH61 Activity Improvement ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++				
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204	N170E N170F N170F N35G/A191N/T258I/T323P/ G328A/C341R A168R D1651 I162M K167V A179S E176N I134L/P322L P163L H181D N170S R174G I177R K167C L166Q P163I S164L/L166I Y171R F132P/Q190E/A191T F132Q I134C I177A E176R G169A G169A G169K H181A I177L A168G A179R D165T K167R L166V N170C I178R	c454a/c456a/c732t/	+ + + + + + + + + + + + + + + + + + +	Varian [0384] Varian G Varian 10384 Varian Varian 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255	t 1;	mprovement con 3 6-2 ctivity Compared to Silent Nucleotide Changes t60c/c573g	Nariant 1 GH61 Activity Improvements ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++				
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 219 210 210 210 211 211 212 213 214 215 216 217 218 219 219 210 210 210 210 210 210 210 210 210 210	N170E N170F N170F N35G/A191N/T258I/T323P/ G328A/C341R A168R D1651 I162M K167V A179S E176N I134L/P322L P163L H181D N170S R174G I177R K167C L166Q P163I S164L/L166I Y171R F132P/Q190E/A191T F132Q I134C I177A E176R G169A G169A G169K H181A I177L A168G A179R D165T K167R L166V N170C I178R R174H	c454a/c456a/c732t/	+ + + + + + + + + + + + + + + + + + +	Varian [0384] Varian Varian Varian Varian Variant Numbe: 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256	t 1;	mprovement con Silent Nucleotide Changes t60c/c573g	npared wi Variant 1 GH61 Activity Improveme ++ ++ + + + + + + + + + + + + + + +				

TABLE 6-2-continued

TABLE 6-2-continued

Vari-		C'I NTI I'I-	GH61	Vari-		Cilora No. 1 ci 1.	GH61
ant Number	Amino Acid Changes	Silent Nucleotide Changes	Activity Improvement	ant Number	Amino Acid Changes	Silent Nucleotide Changes	Activity Improvemen
259	N35G/E104H/A168P/P233V	t60c/c573g	+	314	N35G/E104H/A116Q/A168P	t60c/c573g	+
260	R34E/N35G/E104H/R145T/	t60c/c573g	+	315	N35G/E104H/A168P/S330C	t60c/c573g	+
	A168P			316	N35G/T40S/E101T/E104H/	t60c/c573g	+
261	S24Q/N35G/E104H/A168P/	t60c/c573g	+		A168P/P327M		
	V237I			317	N35G/E104H/A168P/A326Q	t60c/c573g	+
262	Y32S/N35G/E64S/E104H/	t60c/c573g	+	318	N35G/N46R/E104H/A168P	t60c/c573g	+
	A168P			319	N35G/P45K/E104H/A168P/	t60c/c573g	+
263	N35G/E104H/A168P/V333R	t60c/c573g	+		A219R/S232E		
264	N35G/E104H/G144S/A168P/	t60c/c573g	+	320	S24Q/N35G/E104H/A168P/	t60c/c573g	+
	V333Q				V237I/P303T		
265	V28H/N35G/P45K/E104H/	t60c/c573g	+	321	N35G/E104H/A168P/G203E/	t60c/c573g	+
	A168P				T281A		
266	N35G/E104H/A168P/P327K	t60c/c573g	+	322	N35G/A56N/E104H/A168P	t60c/c573g	+
267	N35G/N66Q/E104H/A168P	t60c/c573g	+	323	N35G/E104H/A168P/E336G	t60c/c573g	+
268	N35G/E104H/A168P/G203E	t60c/c573g	+	324	N35G/E104H/A168P/E336R	t60c/c573g	+
269	N35G/E104H/A168P/S339W	t60c/c573g	+	325	N35G/T40S/E104H/S128K/	t60c/c573g	+
270	N35G/P45K/N46E/E104H/	t60c/c573g	+	226	A142G/A168P	+CO-/-1094/-573-	
271	A150Y/A168P	+600/05720		326	N35G/Q44K/S67T/E104H/ A168P	t60c/c198t/c573g	+
271	N35G/E104H/R130S/A168P N35G/E104H/R145T/A168P	t60c/c573g	+	327		+60a/a572a	
272	N35G/E104H/A168P/S231K	t60c/c573g/g891a t60c/c573g	+	327	N35G/E104H/A168P/N317A N35G/E104H/G155N/A168P	t60c/c573g	+
273	N35G/T40A/E104H/A168P/	t60c/c573g	+	328		t60c/c573g t60c/c573g	+
2/4	D234E/P327M	100c/c3/3g	+	330	N35G/E104H/Q161E/A168P N35G/E104H/N118S/A168P	t60c/c573g	+
275	N35G/E104H/A168P/S231H	t60c/c573g	+	331	N35G/P45T/V97Q/E104H/	t60c/c573g	+ +
276	N35G/E104H/A168P/N317M	t60c/c573g	+	331	A168P/G267S	1000re373g	т-
277	N35G/E104H/A168P/S330Y	t60c/c573g	+	332	V28H/N35G/E104H/A168P	t60c/c573g	+
278	N35G/E104H/A168P/S329I	t60c/c573g	+	333	N35G/E104H/A168P/Q184L	t60c/c573g	+
279	N35G/E104H/A168P/S329R	t60c/c573g	+	334	N35G/E104H/A168P/N317V	t60c/c573g	+
280	N35G/N66D/E104H/A168P/	t60c/c573g	+	335	N35G/Q44L/E104H/A168P	t60c/c573g	+
	P322R/S329L		·	336	N35G/E104H/A168P/S330G	t60c/c573g	+
281	N35G/E104H/A168P/P327F	t60c/c288t/c573g	+	337	N35G/E104H/A168P/T320A/	t60c/c573g	+
282	N35G/P45D/E104H/A168P	t60c/c573g	+		V333W	O	
283	N35G/E104H/A168P/S332R	t60c/c573g	+	338	N35G/E104H/A168P/E336A	t60c/c573g	+
284	N35G/E104H/A116S/A168P	t60c/c573g	+	339	N35G/E104H/A168P/N335S	t60c/c573g	+
285	N35G/T40A/E104H/A168P/	t60c/c573g	+	340	N35G/N66M/E104H/A168P	t60c/c573g	+
	V230I/P327M			341	N35G/T54G/E104H/A168P	t60c/c573g	+
286	N35G/T49A/E104H/A168P	t60c/c573g	+	342	N35G/E104H/A168P/N317S	t60c/c573g	+
287	N35G/E104H/A168P/N317T	t60c/c573g	+	343	N35G/E64L/E104H/A168P	t60c/c573g	+
288	N35G/N46Y/E104H/A168P	t60c/c573g	+	344	N35G/E104H/S164E/A168P/	t60c/c573g	+
289	N35G/E104H/A168P/G203V	t60c/c573g	+		A271T		
290	N35G/E104H/A168P/S329L	t60c/c573g	+	345	N35G/N66A/E104H/A168P	t60c/c573g	+
291	N35G/E104H/R145N/A168P/	t60c/c573g	+	346	N35G/G83R/E104H/A168P	t60c/c573g	+
	S329H			347	N35G/E104H/A168P/N317Q/	t60c/c573g	+
292	N35G/A56S/E104H/A168P	t60c/c573g	+		T320A		
293	N35G/T40S/T49R/E104H/	t60c/c573g	+	348	N35G/E104H/K141A/A168P	t60c/c573g	+
	A168P/D234E/P327M			349	N35G/P71T/E104H/A168P	t60c/c573g	+
294	N35G/E104H/Q161R/A168P	t60c/c573g	+	350	N35G/P71S/E104H/A168P	t60c/c573g	+
295	N35G/E104H/A168P/S332F	t60c/c573g	+	351	N35G/E104H/R130G/A168P	t60c/c573g	+
296	N35G/P45R/T49A/E104H/	t60c/c573g	+	352	N35G/E104H/R145Q/A168P	t60c/c573g	+
207	A168P/N317R/T320A	+60a/a572 a		353	N35G/T70A/E104H/A168P	t60c/c573g	+
297 298	N35G/E104H/A168P/V237I	t60c/c573g	+	354	N35G/E104H/A168P/K218R	t60c/c573g	+
298	N35G/Q44K/T80V/E104H/	t60c/c573g	+	355 356	N35G/E104H/A168P/Q184E	t60c/c573g t60c/c573g	+
299	A168P	+60a/a572 a		356 357	N35G/E104H/R130K/A168P		+
300	N35G/E104H/A168P/E336S	t60c/c573g	+	358	N35G/Q58H/E104H/A168P Y32S/N35G/E104H/A168P	t60c/c573g	+
301	N35G/E104H/A168P/P233T N35G/E104H/A168P/S329Y	t60c/c573g t60c/c573g	+	359	N35G/E104H/A168P/S329T	t60c/c573g t60c/c573g	+
302	N35G/E104H/A168P/P327L	t60c/c573g	+	360	N35G/E104H/A168P/S330I	t60c/c573g	+
303	N35G/E104H/A168P/N317I	t60c/c573g	+	361	Y32S/N35G/P71A/E104H/	t60c/c573g	+
304	N35G/E104H/R130H/A168P	t60c/c573g	+	301	A168P	1000/03/3g	т-
305	N35G/Q44K/E104H/A168P	t60c/c573g	+	362	N35G/E104H/A168P/S330T	t60c/c573g	+
306	N35G/N66D/E104H/A168P	t60c/c573g	+	363	N35G/G82A/E104H/A168P	t60c/c573g	+
307	N35G/E104H/A168P/S329V	t60c/c573g	+	364	N35G/T80V/E104H/A168P	t60c/c573g	+
308	N35G/E104H/A168P/W337F	t60c/c573g	+	365	N35G/E104H/A168P/S295T	t60c/c573g	+
309	N35G/E104H/A168P/N317H	t60c/c573g	+	366	N35G/N66G/E104H/A168P	t60c/c573g	+
310	N35G/T40L/E104H/S128K/	t60c/c573g	+	367	N35G/E104H/R145L/A168P	t60c/c573g	+
	A168P	- 0		368	N35G/S67H/E104H/A168P/	t60c/c573g	+
311	N35G/E104H/A168P/A326V	t60c/c573g	+		V230M		•
312	N35G/T80V/E104H/A168P/	t60c/c573g	+	369	N35G/E104H/G136E/A168P	t60c/c573g	+
-	P303T	υ		370	N35G/T54S/E104H/A168P	t60c/c573g	+
313	N35G/E104H/A168P/S231A/	t60c/c573g	+	371	N35G/P45S/E104H/A168P	t60c/c573g	+
515							

TABLE 6-2-continued

TABLE 6-2-continued

G	H61 Variants with Improved Ac	tivity Compared to	Variant 1	GH61 Variants with Improved Activity Compared to Variant						
Vari-			GH61	Vari-			GH61			
ant	A ' A '1 O1	Silent Nucleotide	Activity	ant	A ' A '1 O1	Silent Nucleotide	Activity			
Number	Amino Acid Changes	Changes	Improvement	Number	· Amino Acid Changes	Changes	Improvement			
373	N35G/N66D/N95E/E104H/ S164E/A168P/G267D	t60c/c573g	+	427	N35G/Q44K/N66V/E104H/ A168P	t60c/c573g	+			
374	N35G/E104H/A168P/S332C	t60c/c573g	+	428	N35G/E104H/A137M/A168P	t60c/c573g	+			
375	N35G/E104H/S128L/A168P	t60c/c573g	+	429	N35G/E104H/A168P/P327C	t60c/c573g	+			
376	N35G/T54W/E104H/A168P	t60c/c573g	+	430	N35G/E104H/A168P/T236R	t60c/c573g	+			
377	N35G/E104H/A168P/G268A/	t60c/c573g	+	431	N35G/I51A/E104H/A168P	t60c/c573g	+			
	G269A/G270A	C		432	N35G/S67H/E104H/A168P	t60c/c573g	+			
378	N35G/Q44K/E104H/A168P/	t60c/c573g	+	433	N35G/E104H/A168P/A326C	t60c/c573g	+			
	S231T	, and the second		434	N35G/T49A/E104H/S128N/	t60c/c573g	+			
379	R34E/N35G/E104H/A168P/ A280D	t60c/c573g	+	435	A168P N35G/T49R/E104H/A168P/	t60c/c573g	+			
380	N35G/E104H/A168P/A297T	t60c/g399a/c573g	+	755	K218L/N317Q	100 0/0 3/3g	'			
381	N35G/E104H/K141P/R145Q/	t60c/c573g	+	436	N35G/E104H/A168P/P266S/	t60c/c573g	+			
301	A168P	100 0/0 3/3g	•	750	G267V	100 0/0 3/3g	'			
382	N35G/P45E/E104H/K141R/	t60c/c573g	+	437	N35G/E104H/A168P/V237I/	t60c/c573g	+			
202	A168P	160 (572		420	P303T	160 573				
383	N35G/N66T/E104H/A168P	t60c/c573g	+	438	N35G/T49E/E104H/A168P	t60c/c573g	+			
384	N35G/E104H/S164E/A168P/	t60c/c573g	+	439	N35G/P45R/E104H/A168P/	t60c/c573g	+			
205	S295D N35G/E104H/A168P/N317F	t60a/a572~	1	440	T320A	t60a/a572~				
385 386	N35G/E104H/A168P/N317Q	t60c/c573g t60c/c573g	+	440 441	N35G/N66L/E104H/A168P N35G/P45R/E104H/A168P/	t60c/c573g t60c/c573g	+			
387	N35G/T40G/T49R/S78C/	t60c/c573g	+ +	441	K218L/N317Q	100c/c3/3g	+			
367	E104H/A142G/A168P	100C/C3/3g	T-	442	N35G/E104H/R145V/A168P	t60c/c573g				
388	N35G/G82S/E104H/A168P	t60c/c573g	+	443	N35G/N66D/E104H/A168P/	t60c/c573g	+			
389	N35G/Q58P/E104H/A168P	t60c/c573g	+	773	R290K	100 c/c 3/3g	т			
390	N35G/N46R/E104H/A168P/	t60c/c573g	+	444	N35G/T80L/E104H/A168P	t60c/c573g	+			
570	G203E/A263V	1000/03/35	•	445	N35G/A55G/E104H/A168P	t60c/c573g	+			
391	N35G/P45R/E104H/A168P	t60c/c573g	+	446	N35G/E104H/A168P/S330A	t60c/c573g	+			
392	N35G/S67G/E104H/A168P	t60c/c573g	+	447	N35G/E104H/K141N/A168P/	t60c/c573g	+			
393	N35G/E104H/A168P/R199E	t60c/c573g	+		P266S					
394	N35G/G69T/E104H/A168P	t60c/c573g	+	448	N35G/E104H/A142S/A168P	t60c/c573g	+			
395	N35G/E104H/A168P/G203E/	t60c/c573g	+	449	N35G/E104H/A168P/Q184G	t60c/c573g	+			
	G268A/G269A/G270A	U		450	N35G/E104H/N118E/A168P	t60c/c573g	+			
396	N35G/E104H/A168P/P266S	t60c/c573g	+	451	N35G/E104H/A168P/A212M	t60c/c573g	+			
397	N35G/E104H/A168P/V324M	t60c/c573g	+	452	N35G/E104H/A168P/G267D	t60c/c573g	+			
398	N35G/E104H/A168P/G245A	t60c/c573g	+	453	N35G/K93N/E104H/R130Y/	t60c/c573g	+			
399	N35G/N66R/E104H/A168P	t60c/c573g	+		A168P					
400	N35G/E104H/A168P/T236E	t60c/c573g	+	454	N35G/P45R/T49Y/E104H/	t60c/c573g	+			
401	S24Q/N35G/Q44K/T80H/	t60c/c573g	+		A168P/N317D					
	E104H/A168P			455	N35G/E104H/A168P/S329Q	t60c/c573g	+			
402	N35G/E104H/S128D/A168P	t60c/c573g	+	456	N35G/E104H/A168P/V230Q	t60c/c573g	+			
403	N35G/N66D/S78D/E104H/	t60c/c573g	+	457	N35G/P45K/E104H/A168P/	t60c/c573g	+			
	A168P/S253D				A219R					
404	N35G/E104H/R130Y/A168P	t60c/c573g	+	458	N35G/E104H/A142G/A168P	t60c/c573g	+			
405	N35G/E104H/A168P/K310I	t60c/c573g	+	459	N35G/E104H/A168P/S205T	t60c/c573g	+			
406	N35G/E104H/R145E/A168P	t60c/c573g	+	460	N35G/S78D/E104H/S164E/	t60c/c573g	+			
407	N35G/N66D/E104H/S164E/	t60c/c573g	+	461	A168P	160 573				
400	A168P/S282D	+60a/a572=		461	N35G/E104H/R130E/A168P	t60c/c573g	+			
408	N35G/E104H/K141P/A168P	t60c/c573g	+	462	N35G/E104H/A168P/Q184H	t60c/c573g	+			
409	N35G/E104H/A168P/Q184R	t60c/c573g	+		N35G/E104H/A116P/A168P	t60c/c573g t60c/c573g	+			
410 411	N35G/E104H/A168P/S231T N35G/N66V/E104H/A168P	t60c/c573g t60c/c573g	+	464 465	N35G/E104H/A142D/A168P V28H/N35G/N46E/Q58H/	t60c/c573g	+			
411	N35G/E104H/A142L/A168P	t60c/c573g	+ +	+03	E104H/A168P	1000/03/3g	+			
413	N35G/E104H/R145H/A168P	t60c/c573g	+	466	N35G/E104H/A168P/A280T	t60c/c573g	+			
414	N35G/E104H/A168P/K218L	t60c/c573g	+	467	R34E/N35G/E104H/A168P/	t60c/c573g	+			
415	N35G/E104H/K141T/A168P	t60c/c573g	+	707	A280T		T			
416	N35G/E104H/A168P/P233F	t60c/c573g	+	468	N35G/E104H/A168P/E336L	t60c/c573g	+			
417	N35G/T40S/E104H/A168P/	t60c/c573g	+	469	N35G/T49D/E104H/A168P	t60c/c573g	+			
	P327M		•	470	N35G/E104H/A168P/A219T	t60c/c573g	+			
418	N35G/T54M/E104H/A168P	t60c/c573g	+	471	N35G/E104H/A142W/A168P	t60c/c573g	+			
419	S24T/N35G/E104H/S164E/	t60c/c573g	+	472	N35G/E104H/A168P/P303T/	t60c/c573g	+			
	A168P	-0			G305D	-0	•			
420	N35G/P45T/E104H/A168P	t60c/c573g	+	473	N35G/Q44V/E104H/A168P	t60c/c573g	+			
421	N35G/N66D/E104H/S164E/	t60c/c573g	+	474	N35G/E104H/A168P/N187D	t60c/c573g	+			
	A168P/S231T/S253T	Ü		475	N35G/E104H/G136H/A168P	t60c/c573g	+			
422	N35G/G69H/E104H/A168P	t60c/c573g	+	476	S24Q/N35G/Q44K/E104H/	t60c/c573g	+			
423	N35G/E104H/S128Y/A168P	t60c/c573g	+		A168P/P303T/S332D	Ž.				
424	N35G/T49Q/E104H/A168P	t60c/c573g	+	477	N35G/E104H/A168P/Q184N	t60c/c573g	+			
425	N35G/T49A/E104H/A168P/	t60c/c573g	+	478	N35G/E104H/A168P/S332L	t60c/c573g	+			
	Q184H			479	S24T/N35G/N66D/S78D/	t60c/c573g	+			
426	N35G/E104H/A168P/G203Y	t60c/c573g	+		E104H/A168P/S205T/S253T					
120	1.55 5,215 11211001/02051		•		210 11211100170203 1702331					

TABLE 6-2-continued

C	H61 Variants with Improved Ac	tivity Compared to	Variant 1
Vari- ant Numbe	r Amino Acid Changes	Silent Nucleotide Changes	GH61 Activity Improvement
480	N35G/E104H/A168P/P327A	t60c/c573g	+
481	N35G/T40A/T49Q/S78C/ E104H/A168P	t60c/c573g	+
482	N35G/T40L/E104H/A142G/ A168P	t60c/c573g	+
483	N35G/T49Y/E104H/A168P/ N317R	t60c/c573g	+
484	R34E/N35G/K93T/E104H/ R130E/R145T/A168P/R199E/ K218T/A280D	t60c/c573g	+

Example 7

Selection of Further GH61 Candidates for Strain Improvement

[0385] This example illustrates the selection of potential candidates to further improve whole cellulase broth activity of *M. thermophila* cultures on different types of pretreated substrates like pretreated corn stover and pretreated wheat straw

[0386] In this Example, *M. thermophila*-produced and purified GH61a, GH61p, GH61f, GH61n, CBH1a, CBH2b, AXE3, FAE, and Xyl3, were used to supplement the activity present in culture broths (i.e., "whole broth cellulase base") of the *M. thermophila* strain CF-416 prepared using standard methods known in the art. The broth cellulase base was fixed to 0.5% protein and the single purified enzyme was added at 0.4% (wt added protein/wt glucan) to the saccharification reactions. The whole cellulase broth base and individual enzymes were characterized by standard BCA assays for total protein quantification.

[0387] The saccharification reactions were carried out at 74 g/L glucan load of pretreated wheat straw (PWS) or pretreated corn stover (PCS) at pH 5.0, 55° C. at 950 rpm in the presence of 50 µM copper in high throughput (HTP) 96 deep well plates. Glucose analysis was carried out by the glucose oxidase assay as described above. In each case, the fold improvement was calculated using the formula Fold Improvement=[Total Glucose Production with addition of 0.4% single enzyme to the whole cellulase broth base]/ [glucose production from the 0.5% whole cellulase broth base]. The results are provided in Table 10-1. In this Table, the fold improvements were ranked from 0 to 3; fold improvements less than 1.2x are indicated by "0," fold improvements of >1.2 to <1.5 are indicated by "1," fold improvements of >1.5× to <1.7× improvements are indicated by "2," and fold improvements>1.7 are indicated by "3."

[0388] As indicated by the results in the Table, the greatest benefit was observed using GH61p on pre-treated corn stover (PCS), and GH61a on pre-treated wheatstraw (PWS), indicating that GH61 activity is increases the cellulolytic activity of the reaction mix. In addition to the enzymes listed in Table 10-1, EG1b, Xyl1, Xyl6, beta-xylosidase, and another xylanase were also tested, but did not show any improvement under the test conditions.

TABLE 7-1

	Fold Improvement								
	Fold Improvement Over Whole Cellulase Broth Tested on PCS	Fold Improvement Over Whole Cellulase Broth Tested on PWS							
Whole broth cellulases	1	1							
from CF-416									
CBH1a	1	3							
CBH2b	1	1							
GH61a	2	3							
GH61p	3	2							
GH61f	1	1							
GH61n	1	1							
AXE3	0	1							
FAE	1	1							
Xyl3	0	1							

Example 8

Improvement of GH61 Activity by Copper(II) Ions

[0389] This example illustrates the enhancement in GH61 activity with the addition of copper(II) ion to the saccharification reaction.

[0390] Purified M. thermophila-produced GH61a or S. cerevisiae supernatant containing M. thermophila-GH61a was pre-incubated with different amounts of copper(II) (CuSO₄) at concentrations of 0 to 100 µM at ambient temperature for 30 min. The biomass assay was then performed in a total volume of 300 µL, in the presence of 10 mg of pre-treated wheat straw, using 261 µL of copper-treated GH61 samples, 39 μ L of sodium acetate buffer (pH 5), M. thermophila-produced CBH1a, CBH2b and β-glucosidase. The final concentration of sodium acetate was 120 mM and the enzyme loads of CBHs and β-glucosidase (CBH1a and CBH2b in 1:1 ratio) were 0.01% and 0.02% with respect to substrate glucan mass in the biomass substrate, respectively. Background (negative) controls were obtained by using either water or media supernatant from cultures of S. cerevisiae cells without the GH61a gene in the plasmid. Thus, the negative controls represent activities of CBH1a, CBH2b and beta-glucosidase in the absence of GH61a. The reaction was incubated at 55° C. for 72 hours with shaking. The GH61a activity in the reaction mixture was measured by monitoring glucose production using a glucose oxidase/ peroxidase-based glucose assay.

[0391] Some experiments were also performed without pre-incubating GH61 with copper(II), but instead, by directly adding different amounts of copper(II) (CuSO₄) to the biomass assay reactions as described herein.

[0392] FIG. 3 shows activity of *M. thermophila*-GH61a pre-incubated with different amounts of copper(II) ion. Biomass assays were performed with (A) *S. cerevisiae*-produced *M. thermophila* GH61a Variant 5, and (B) *M. thermophila*-produced wild-type GH61a. Glucose production after 72 h incubation at pH 5, 55° C. was determined by the glucose assay. The data in this Figure indicate GH61a-only activity, in which the amount of glucose produced in control reaction containing CBH and β -glucosidase was subtracted from the total amount of glucose produced in the reactions with GH61a. In this Figure, N=4; and the error bars represent ± 1 standard deviation. Copper concentrations shown are with respect to the total reaction volume.

[0393] The results indicate that the activities of *M. thermophila*-produced GH61a and *S. cerevisiae* supernatant containing *M. thermophila*-GH61a are improved by preincubation with copper(II) ions under the conditions tested. Similar results were obtained when copper(II) was directly added to the biomass assay reactions.

Example 9

Further Evaluation of Copper Requirements in Saccharification Reactions

[0394] This Example describes experiments designed to determine the effects of added copper in saccharification reactions. The saccharification reactions were run in 30 g shake flasks (250 mL flasks) using 82 g/kg glucan of acid-pretreated corn stover and whole broth enzymes produced by M. thermophila strain CF-416 (produced using standard methods known in the art) at a 0.81% total enzyme load with respect to glucan. The reactions were conducted at pH 5.0 or pH 6.0, 55° C. and 250 rpm mixing, with supplementation of either 0 or 50 μM CuSO₄, copper(II) with respect to the total reaction volume. A pH trim was also performed using 2M NaOH at time intervals of 1, 4, 7, 22, 24 29, 46, 52, 70, 75 and 96 hrs, to maintain the pH at the desired value of pH 5.0 or pH 6.0. Samples were removed at 72 hours and the total amount of glucose in the reaction mixture was determined using standard HPLC methods and equipment as known in the art. The results indicated that under the conditions described herein, the effect of copper is dependent on saccharification pH. As shown in FIG. 4, Panel A, at a saccharification pH of pH 5.0, the addition of copper caused an increase in glucose yields by ~3.5% while this effect was not observed when the saccharification was carried out at pH 6.0. Also, the addition of copper may cause a decrease in the total amounts of C5 sugars that are produced as shown in FIG. 4, Panel B.

Example 10

Effect of Reducing Agents on the Cellulolytic Activity of GH61a

[0395] This Example provides experiments conducted to determine the effect of adding reducing agents (e.g., gallic acid and ascorbic acid) to saccharification reactions. In these experiments, enhancement of GH61 activity was tested using Variant 1 (SEQ ID NO:5) in the presence of reducing agents (specifically, ascorbic acid or gallic acid) and pretreatment filtrate, which contains various reducing agents from lignin degradation. Reactions were performed on cellulosic substrates, AVICEL® PH microcrystalline cellulose and phosphoric acid swollen cellulose (PASC), with purified M. thermophila-produced GH61 Variant 1 and beta-glucosidase at 0.3% and 0.08% respectively, with respect to substrate glucan mass, and 128 mM sodium acetate buffer (pH 5) supplemented with 30 μM CuSO₄. Thus, reactions were performed with 0.3% GH61a and 0.08% BGL, where % enzyme loads are with respect to substrate glucan mass (36 g/L AVICEL® cellulose and 5 g/L PASC). Background (negative) controls were beta-glucosidase-only reactions tested in the absence of GH61a. Glucose production after 48 h incubation at pH 5, 55° C. was determined by glucose oxidase/peroxidase-based or HPLC-based glucose assay glucose assay, using methods known in the art.

[0396] FIG. 5 shows the activity of *M. thermophila*-produced GH61a Variant 1 on cellulosic substrates in the presence of ascorbic acid, gallic acid and pretreatment filtrate. Panel A shows the results for AVICEL® PH microcrystalline cellulose and Panel B shows the results for PASC. GH61-only activity is also shown, these results were obtained by subtracting the amount of glucose produced in the beta-glucosidase-only control reaction from the total amount of glucose produced in the reaction that included GH61a. Filtrate dilutions are indicated in this Figure, where undiluted filtrate equals 72% of the total reaction volume. In this Figure, N=4; and the error bars represent ±1 standard deviation.

[0397] The results indicate that supplementing the GH61a reaction with gallic acid improved the GH61 activity in generating soluble sugars from AVICEL® cellulose and PASC, which were then hydrolyzed by beta-glucosidase to generate glucose monomers. The improvement was also observed with diluted pretreatment filtrate, which suggests that the filtrate may contain gallic acid or gallic acid-like reductants that can beneficially impact GH61 activity.

Example 11

Evaluation of Oxygen Limitation in Saccharification Reactions

[0398] This example describes experiments conducted to determine if oxygen is a limiting factor in saccharification reactions. To investigate the level of oxygen required in the overall saccharification efficiency, two shake flask reactions were performed, in which one was left closed throughout the 72 hour reaction, while the other was opened at 4 hrs and 24 hrs for 10 seconds to provide fresh air. The reactions were run in $30\,\mathrm{g}$ shake flasks ($250\,\mathrm{mL}$ flasks) using $87\,\mathrm{g/kg}$ glucan and M. thermophila CF-416 whole broth cellulases. The total protein content in each reaction was 0.81% total enzyme load with respect to glucan. The reactions were conducted at pH 5.0, 55° C. and 250 rpm mixing, with supplementation of 50 μM CuSO₄. Samples were removed at 72 hours and glucose yields were measured by monitoring glucose production using a glucose oxidase/peroxidasebased glucose assay. The results indicated that under the reaction conditions tested, oxygen was not a limiting factor as the two reactions (control vs. the reaction with air supplemented) yielded similar levels of glucose.

Example 12

Enhancement of Saccharification Efficiency by Addition of Surfactants

[0399] This example illustrates the enhancement of overall saccharification yield with the addition of surfactants such as TWEEN®-20 and PEG-4000. Experiments were designed to monitor the enhancement in cellulase activity with different concentrations of TWEEN®-20 or PEG-4000 in the biomass assay. The biomass assay was performed in a total volume of 90 μL , including 10 mg of pre-treated wheat straw, 64.8 μL (72% by volume) of filtrate (or H_2O for no filtrate conditions), and 11.6 μL of a mixture of sodium acetate buffer (pH 5.0, supplemented with CuSO₄), *M. thermophila*-produced cellobiohydrolase 1a (CBH1a), cellobiohydrolase 2b (CBH2b), beta-glucosidase (BGL), and glycoside hydrolase type 61 (GH61a). The final concentration of sodium acetate was 128 mM (with 30 μM CuSO₄)

and the enzyme loads of CBH1a, CBH2b, BGL and GH61a were 0.15%, 0.15%, 0.08% and 0.3% with respect to the substrate glucan mass in the biomass substrate, respectively. Water was used in place of the enzymes as a negative control. Herein, "1x filtrate" indicates 72% of filtrate (i.e., the filtered liquid portion of pre-treated substrate) in the total reaction volume. The amount of glucose in the filtrate background was subtracted from the test data (N=2; Error bars in the Figures represent ±1 standard deviation). The reaction was incubated at 55° C. for 72 hours at pH 5, with shaking at 950 rpm, then was quenched by adding 180 μL of water. The total cellulase activity in the reaction mixture was measured by monitoring glucose production using a glucose oxidase/peroxidase-based glucose assay as known in the art. The results indicate that the total glucose production in the saccharification reaction was enhanced with the addition of TWEEN®-20 or PEG-4000.

[0400] FIG. **6**, Panel A, shows enzymatic hydrolysis activity of the cellulase mixture in the presence of TWEEN®-20. Data shown are total glucose produced by a mixture of GH61a, CBH1a, CBH2b, and BGL at 0.3%, 0.15%, 0.15%,

and 0.08% with respect to the substrate glucan mass in the biomass substrate, respectively. In this Figure, TWEEN®-20 concentrations are expressed as % total reaction volume. [0401] FIG. 6, Panel B, shows enzymatic hydrolysis activity of the cellulase mixture in the presence of PEG-4000. In this Figure, PEG-4000 concentrations are expressed as % total reaction volume.

[0402] While the invention has been described with reference to the specific embodiments, various changes can be made and equivalents can be substituted to adapt to a particular situation, material, composition of matter, process, process step or steps, thereby achieving benefits of the invention without departing from the scope of what is claimed.

[0403] For all purposes in the United States of America, each and every publication and patent document cited in this disclosure is incorporated herein by reference as if each such publication or document was specifically and individually indicated to be incorporated herein by reference. Citation of publications and patent documents is not intended as an indication that any such document is pertinent prior art, nor does it constitute an admission as to its contents or date.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 171 <210> SEQ ID NO 1 <211> LENGTH: 1029 <212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 1 atgtccaagg cctctgctct cctcgctggc ctgacgggcg cggccctcgt cgctgcacat 60 qqccacqtca qccacatcqt cqtcaacqqc qtctactaca qqaactacqa ccccacqaca 120 gactogtace ageceaacee gecaacagte ateggetoga eggeageega teaggataat 180 qqcttcqttq aacccaacaq ctttqqcacq ccaqatatca tctqccacaa qaqcqccacc 240 300 cccggcggcg gccacgctac cgttgctgcc ggagacaaga tcaacatcgt ctggaccccc 360 qaqtqqccq aatcccacat cqqccccqtc attqactacc taqccqcctq caacqqtqac tgegagaceg tegacaagte gtegetgege tggtteaaga ttgaeggege eggetaegae 420 aaggeegeeg geegetggge egeegaeget etgegegeea aeggeaacag etggetegte 480 cagatecegt eggateteaa ggeeggeaac taegteetee geeaegagat categeeete 540 cacggtgctc agagccccaa cggcgcccag gcctacccgc agtgcatcaa cctccgcgtc 600 accggcggcg gcagcaacct gcccagcggc gtcgccggca cctcgctgta caaggcgacc 660 gaccogggca tootottcaa cocctacgto tootoccogg attacaccgt coccggccog 720 gccctcattg ccggcgccgc cagctcgatc gcccagagca cgtcggtcgc cactgccacc 780 ggcacggcca ccgttcccgg cggcggcgc gccaacccta ccgccaccac caccgccgcc 840 accteegeeg eecegageac caccetgagg acgaecacta ceteggeege geagactace 900 gccccgccct ccggcgatgt gcagaccaag tacggccagt gtggtggcaa cggatggacg 960 ggcccgacgg tgtgcgcccc cggctcgagc tgctccgtcc tcaacgagtg gtactcccag 1020 1029 tgtttgtaa

<211> LENGTH: 342 <212> TYPE: PRT <213> ORGANISM: M

<213 > ORGANISM: Myceliophthora thermophila

<400> SEQUENCE: 2

Met Ser Lys Ala Ser Ala Leu Leu Ala Gly Leu Thr Gly Ala Ala Leu 1 5 10 15

Val Ala Ala His Gly His Val Ser His Ile Val Val As
n Gly Val Tyr \$20\$ \$25\$ 30

Tyr Arg Asn Tyr Asp Pro Thr Thr Asp Trp Tyr Gln Pro Asn Pro Pro 35 40 45

Thr Val Ile Gly Trp Thr Ala Ala Asp Gln Asp Asn Gly Phe Val Glu 50 55 60

Pro Asn Ser Phe Gly Thr Pro Asp Ile Ile Cys His Lys Ser Ala Thr 65 70 75 80

Pro Gly Gly Gly His Ala Thr Val Ala Ala Gly Asp Lys Ile Asn Ile 85 90 95

Val Trp Thr Pro Glu Trp Pro Glu Ser His Ile Gly Pro Val Ile Asp \$100\$

Tyr Leu Ala Ala Cys As
n Gly Asp Cys Glu Thr Val Asp Lys Ser Ser 115 120 125

Leu Arg Trp Phe Lys Ile Asp Gly Ala Gly Tyr Asp Lys Ala Ala Gly 130 135 140

Arg Trp Ala Ala Asp Ala Leu Arg Ala Asn Gly Asn Ser Trp Leu Val

Gln Ile Pro Ser Asp Leu Lys Ala Gly Asn Tyr Val Leu Arg His Glu 165 170 175

Ile Ile Ala Leu His Gly Ala Gln Ser Pro Asn Gly Ala Gln Ala Tyr 180 185 190

Pro Gln Cys Ile Asn Leu Arg Val Thr Gly Gly Gly Ser Asn Leu Pro 195 200 205

Ser Gly Val Ala Gly Thr Ser Leu Tyr Lys Ala Thr Asp Pro Gly Ile 210 215 220

Leu Phe Asn Pro Tyr Val Ser Ser Pro Asp Tyr Thr Val Pro Gly Pro 225 230 235

Ala Leu Ile Ala Gly Ala Ala Ser Ser Ile Ala Gln Ser Thr Ser Val $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$

Pro Thr Ala Thr Thr Thr Ala Ala Thr Ser Ala Ala Pro Ser Thr Thr 275 280 285

Leu Arg Thr Thr Thr Thr Ser Ala Ala Gln Thr Thr Ala Pro Pro Ser 290 295 300

Gly Asp Val Gln Thr Lys Tyr Gly Gln Cys Gly Gly Asn Gly Trp Thr 305 310 315 320

Gly Pro Thr Val Cys Ala Pro Gly Ser Ser Cys Ser Val Leu As
n Glu 325 330 335

Trp Tyr Ser Gln Cys Leu

340

<210> SEQ ID NO 3

<211> LENGTH: 323

<212> TYPE: PRT

<213> ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 3 His Gly His Val Ser His Ile Val Val Asn Gly Val Tyr Tyr Arg Asn Tyr Asp Pro Thr Thr Asp Trp Tyr Gln Pro Asn Pro Pro Thr Val Ile Gly Trp Thr Ala Ala Asp Gln Asp Asn Gly Phe Val Glu Pro Asn Ser Phe Gly Thr Pro Asp Ile Ile Cys His Lys Ser Ala Thr Pro Gly Gly Gly His Ala Thr Val Ala Ala Gly Asp Lys Ile Asn Ile Val Trp Thr Pro Glu Trp Pro Glu Ser His Ile Gly Pro Val Ile Asp Tyr Leu Ala Ala Cys Asn Gly Asp Cys Glu Thr Val Asp Lys Ser Ser Leu Arg Trp 105 Phe Lys Ile Asp Gly Ala Gly Tyr Asp Lys Ala Ala Gly Arg Trp Ala 120 Ala Asp Ala Leu Arg Ala Asn Gly Asn Ser Trp Leu Val Gln Ile Pro 135 Ser Asp Leu Lys Ala Gly Asn Tyr Val Leu Arg His Glu Ile Ile Ala 150 Leu His Gly Ala Gln Ser Pro Asn Gly Ala Gln Ala Tyr Pro Gln Cys 170 Ile Asn Leu Arg Val Thr Gly Gly Gly Ser Asn Leu Pro Ser Gly Val Ala Gly Thr Ser Leu Tyr Lys Ala Thr Asp Pro Gly Ile Leu Phe Asn 200 Pro Tyr Val Ser Ser Pro Asp Tyr Thr Val Pro Gly Pro Ala Leu Ile Ala Gly Ala Ala Ser Ser Ile Ala Gln Ser Thr Ser Val Ala Thr Ala Thr Gly Thr Ala Thr Val Pro Gly Gly Gly Gly Ala Asn Pro Thr Ala Thr Thr Thr Ala Ala Thr Ser Ala Ala Pro Ser Thr Thr Leu Arg Thr Thr Thr Thr Ser Ala Ala Gln Thr Thr Ala Pro Pro Ser Gly Asp Val 280 Gln Thr Lys Tyr Gly Gln Cys Gly Gly Asn Gly Trp Thr Gly Pro Thr Val Cys Ala Pro Gly Ser Ser Cys Ser Val Leu Asn Glu Trp Tyr Ser 310 315 Gln Cys Leu <210> SEQ ID NO 4 <211> LENGTH: 1029 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide. <400> SEQUENCE: 4

ggccacg	tca 🤉	gccad	catco	gt c	gtcaa	acggc	gto	ctact	aca	9999	gctac	ga d	ccca	acgaca	120	
gactggt	acc .	agcco	caaco	ec go	ccaa	cagto	ato	egget	gga	cgg	cagco	ga t	cag	gataat	180	
ggcttcg	ttg .	aacco	caaca	ag ct	ttg	gcaco	l ccs	agata	atca	tct	gccac	aa q	gagc	gccacc	240	
cccggcg	gcg (gccad	egeta	ac c	gttg	ctgcc	gga	agaca	aaga	tcaa	acato	gt o	ctgga	accccc	300	
gagtggc	ccc .	actco	ccaca	at c	ggcc	ccgtc	att	gact	acc	tago	cege	tg (caaco	ggtgac	360	
tgcgaga	ccg ·	tcgad	caagt	c gt	cgct	gege	tg	gttca	aaga	ttga	acggo	gc (egget	acgac	420	
aaggccg	ccg (gccg	ctggg	ge eq	geega	acgct	cto	gege	gcca	acg	gcaac	ag o	ctgg	ctcgtc	480	
cagatcc	cgt ·	cggat	tetea	aa go	cccg	gcaac	tad	egte	ctcc	gcca	acgaç	gat o	catco	gccctc	540	
cacggtg	ctc .	agago	cccc	aa c	ggcg	cccag	geg	gtaco	ccgc	agt	gcato	aa o	cctc	egegte	600	
accggcg	gcg (gcago	caaco	et go	cca	gegge	gto	gccg	ggca	cct	gcts	gta d	caago	gcgacc	660	
gacccgg	gca '	tcct	cttca	aa co	cccta	acgto	tco	ctcc	ccgg	atta	acaco	gt o	cccc	ggcccg	720	
gccctca	ttg ·	ccgg	gccg	ge ea	agcto	cgato	gc	ccaga	agca	cgt	eggte	gc (cacto	gccacc	780	
ggcacgg	cca ·	ccgtt	taaag	gg c	ggcg	gegge	gc	caaco	ccta	ccg	ccacc	cac o	cacco	geegee	840	
acctccg	ccg ·	cccc	gagca	ac ca	accct	gagg	acq	gacca	acta	cct	egge	gc (gcaga	actacc	900	
gccccgc	cct	ccgg	gato	gt go	caga	ccaag	tad	egged	cagt	gtg	gtggd	aa o	eggat	ggacg	960	
ggcccga	cgg ·	tgtg	egeed	ec c	ggct	cgago	tg(ctcc	gtcc	tcaa	acgaç	gtg (gtact	cccag	1020	
tgtttgt	aa														1029	
<210 > S <211 > L <212 > T <213 > O <220 > F <223 > O	ENGT YPE : RGAN EATU	H: 34 PRT ISM: RE:	42 Arti			-		polyp	pept:	ides						
<400> S	EQUE	NCE:	5													
Met Ser 1	Lys	Ala	Ser 5	Ala	Leu	Leu	Ala	Gly 10	Leu	Thr	Gly	Ala	Ala 15	Leu		
Val Ala	Ala	His 20	Gly	His	Val	Ser	His 25	Ile	Val	Val	Asn	Gly 30	Val	Tyr		
Tyr Arg	Gly 35	Tyr	Asp	Pro	Thr	Thr 40	Asp	Trp	Tyr	Gln	Pro 45	Asn	Pro	Pro		
Thr Val	Ile	Gly	Trp	Thr	Ala 55	Ala	Asp	Gln	Asp	Asn 60	Gly	Phe	Val	Glu		
Pro Asn 65	Ser	Phe	Gly	Thr	Pro	Asp	Ile	Ile		His	Lys	Ser	Ala			
				70					75					80		
Pro Gly	Gly	Gly	His 85		Thr	Val	Ala	Ala 90		Asp	ГЛа	Ile	Asn 95			
Pro Gly Val Trp		-	85	Ala				90	Gly	_	-		95	Ile		
	Thr	Pro 100	85 Glu	Ala Trp	Pro	His	Ser 105	90 His	Gly	Gly	Pro	Val 110	95 Ile	Ile Asp		

Arg Trp Ala Ala Asp Ala Leu Arg Ala Asn Gly Asn Ser Trp Leu Val 145 $$ 150 $$ 155 $$ 160

atgtccaagg cetetgetet eetegetgge etgaegggeg eggeeetegt egetgeacae

	Ile	Pro	Ser	Asp 165	Leu	Lys	Pro	Gly	Asn 170	Tyr	Val	Leu	Arg	His 175	Glu
Ile	Ile	Ala	Leu 180	His	Gly	Ala	Gln	Ser 185	Pro	Asn	Gly	Ala	Gln 190	Ala	Tyr
Pro	Gln	Сув 195	Ile	Asn	Leu	Arg	Val 200	Thr	Gly	Gly	Gly	Ser 205	Asn	Leu	Pro
Ser	Gly 210	Val	Ala	Gly	Thr	Ser 215	Leu	Tyr	Lys	Ala	Thr 220	Asp	Pro	Gly	Ile
Leu 225	Phe	Asn	Pro	Tyr	Val 230	Ser	Ser	Pro	Asp	Tyr 235	Thr	Val	Pro	Gly	Pro 240
Ala	Leu	Ile	Ala	Gly 245	Ala	Ala	Ser	Ser	Ile 250	Ala	Gln	Ser	Thr	Ser 255	Val
Ala	Thr	Ala	Thr 260	Gly	Thr	Ala	Thr	Val 265	Pro	Gly	Gly	Gly	Gly 270	Ala	Asn
Pro	Thr	Ala 275	Thr	Thr	Thr	Ala	Ala 280	Thr	Ser	Ala	Ala	Pro 285	Ser	Thr	Thr
Leu	Arg 290	Thr	Thr	Thr	Thr	Ser 295	Ala	Ala	Gln	Thr	Thr 300	Ala	Pro	Pro	Ser
Gly 305	Asp	Val	Gln	Thr	Lys 310	Tyr	Gly	Gln	Cys	Gly 315	Gly	Asn	Gly	Trp	Thr 320
Gly	Pro	Thr	Val	Сув 325	Ala	Pro	Gly	Ser	Ser 330	СЛв	Ser	Val	Leu	Asn 335	Glu
Trp	Tyr	Ser	Gln 340	CAa	Leu										
<220 <223)> FE 3> OT	EATUF	RE: INFO	Art: DRMA:					oolyn	pepti	ides				
His		-		0											
	_		vaı		His	Ile	Val	Val		Gly	Val	Tyr	Tyr	_	Gly
Tyr	Asp	Pro		5					10	_		-	-	Arg 15 Val	-
Tyr Gly	_		Thr 20	5 Thr	Asp	Trp	Tyr	Gln 25	10 Pro	Asn	Pro	Pro	Thr	15 Val	Ile
Gly	Trp	Thr 35	Thr 20 Ala	5 Thr Ala	Asp Asp	Trp Gln	Tyr Asp 40	Gln 25 Asn	10 Pro Gly	Asn Phe	Pro Val	Pro Glu 45	Thr 30 Pro	15 Val	Ile Ser
Gly	Trp Gly 50	Thr 35 Thr	Thr 20 Ala Pro	5 Thr Ala Asp	Asp Asp Ile	Trp Gln Ile 55	Tyr Asp 40 Cys	Gln 25 Asn His	10 Pro Gly Lys	Asn Phe Ser	Pro Val Ala 60	Pro Glu 45 Thr	Thr 30 Pro	Val Asn Gly	Ile Ser Gly
Gly Phe	Trp Gly 50 His	Thr 35 Thr	Thr 20 Ala Pro	5 Thr Ala Asp Val	Asp Ile Ala 70	Trp Gln Ile 55 Ala	Tyr Asp 40 Cys	Gln 25 Asn His	10 Pro Gly Lys	Asn Phe Ser Ile	Pro Val Ala 60 Asn	Pro Glu 45 Thr	Thr 30 Pro Pro	Val Asn Gly Trp	Ile Ser Gly Thr
Gly Phe Gly 65	Trp Gly 50 His	Thr 35 Thr Ala	Thr 20 Ala Pro Thr	5 Thr Ala Asp Val His 85	Asp Ile Ala 70 Ser	Trp Gln Ile 55 Ala His	Tyr Asp 40 Cys Gly	Gln 25 Asn His Asp	10 Pro Gly Lys Lys Pro 90	Asn Phe Ser Ile 75 Val	Pro Val Ala 60 Asn	Pro Glu 45 Thr Ile	Thr 30 Pro Pro Val	Val Asn Gly Trp Leu 95	Ile Ser Gly Thr 80 Ala
Gly Phe Gly 65 Pro	Trp Gly 50 His Glu	Thr 35 Thr Ala Trp	Thr 20 Ala Pro Thr Gly 100	Thr Ala Asp Val His 85 Asp	Asp Ile Ala 70 Ser Cys	Trp Gln Ile 55 Ala His	Tyr Asp 40 Cys Gly Ile	Gln 25 Asn His Asp Gly Val	10 Pro Gly Lys Lys Pro 90 Asp	Asn Phe Ser Ile 75 Val	Pro Val Ala 60 Asn Ile Ser	Pro Glu 45 Thr Ile Asp	Thr 30 Pro Pro Val Tyr Leu 110	Val Asn Gly Trp Leu 95 Arg	Ile Ser Gly Thr 80 Ala
Gly Phe Gly 65 Pro	Trp Gly 50 His Glu Cys	Thr 35 Thr Ala Trp Asn Ile 115	Thr 20 Ala Pro Thr Pro Gly 100 Asp	Thr Ala Asp Val His 85 Asp	Asp Ile Ala 70 Ser Cys	Trp Gln Ile 55 Ala His Glu Gly	Tyr Asp 40 Cys Gly Ile Thr Tyr 120	Gln 25 Asn His Asp Gly Val 105 Asp	10 Pro Gly Lys Lys Pro 90 Asp	Asn Phe Ser Ile 75 Val Lys	Pro Val Ala 60 Asn Ile Ser Ala	Pro Glu 45 Thr Ile Asp Ser Gly 125	Thr 30 Pro Val Tyr Leu 110	Val Asn Gly Trp Leu 95 Arg	Ile Ser Gly Thr 80 Ala Trp
Gly Phe Gly 65 Pro Ala Phe	Trp Gly 50 His Glu Cys Lys Asp 130	Thr 35 Thr Ala Trp Asn Ile 115 Ala	Thr 20 Ala Pro Thr Pro Gly 100 Asp	5 Thr Ala Asp Val His 85 Asp Gly	Asp Ile Ala 70 Ser Cys Ala Ala	Trp Gln Ile 55 Ala His Glu Gly Asn 135	Tyr Asp 40 Cys Gly Ile Thr Tyr 120 Gly	Gln 25 Asn His Asp Gly Val 105 Asp	10 Pro Gly Lys Lys Pro 90 Asp Lys	Asn Phe Ser Ile 75 Val Lys Ala Trp	Pro Val Ala 60 Asn Ile Ser Ala Leu 140	Pro Glu 45 Thr Ile Asp Ser Gly 125 Val	Thr 30 Pro Pro Val Tyr Leu 110 Arg	Val Asn Gly Trp Leu 95 Arg	Ile Ser Gly Thr 80 Ala Trp Ala

Leu His Gly Ala Gln Ser Pro Asn Gly Ala Gln Ala Tyr Pro Gln Cys 165 170 175	
Ile Asn Leu Arg Val Thr Gly Gly Gly Ser Asn Leu Pro Ser Gly Val	
Ala Gly Thr Ser Leu Tyr Lys Ala Thr Asp Pro Gly Ile Leu Phe Asn 195 200 205	
Pro Tyr Val Ser Ser Pro Asp Tyr Thr Val Pro Gly Pro Ala Leu Ile 210 215 220	
Ala Gly Ala Ala Ser Ser Ile Ala Gln Ser Thr Ser Val Ala Thr Ala	
225 230 235 240 Thr Gly Thr Ala Thr Val Pro Gly Gly Gly Gly Ala Asn Pro Thr Ala	
245 250 255	
Thr Thr Thr Ala Ala Thr Ser Ala Ala Pro Ser Thr Thr Leu Arg Thr 260 265 270	
Thr Thr Thr Ser Ala Ala Gln Thr Thr Ala Pro Pro Ser Gly Asp Val 275 280 285	
Gln Thr Lys Tyr Gly Gln Cys Gly Gly Asn Gly Trp Thr Gly Pro Thr 290 295 300	
Val Cys Ala Pro Gly Ser Ser Cys Ser Val Leu Asn Glu Trp Tyr Ser 305 310 315 320	
Gln Cys Leu	
<210> SEQ ID NO 7 <211> LENGTH: 1035 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide. <400> SEQUENCE: 7	
acacaaatgt ccaaggeete tgeteteete getggeetga egggegegge eetegteget 60	
gcacacggcc acgtcagcca catcgtcgtc aacggcgtct actacaggaa ctacgacccc 120	
acgacagact ggtaccagcc caaccegcca acagtcateg gctggacggc agccgatcag 180	
gataatggct tcgttgaacc caacagcttt ggcacgccag atatcatctg ccacaagagc 240	
gccacccccg gcggcggcca cgctaccgtt gctgccggag acaagatcaa catcgtatgg 300	
accecegagt ggccccacte ccacategge eccgtcattg actacetage egectgcaac 360	
ggtgactgcg agaccgtcga caagtcgtcg ctgcgctggt tcaagattga cggcgccggc 420	
tacgacaagg cegeeggeeg etgggeegee gaegetetge gegeeaaegg caacagetgg 480	
ctegtecaga tecegtegga tetegeggee ggeaactaeg teeteegeea egagateate 540	
geoetecaeg gtgeteagag eeceaaegge geoeaggegt accegeagtg cateaacete 600	
cgcgtcaccg gcggcggcag caacctgccc agcggcgtcg ccggcacctc gctgtacaag 660	
gegacegace egggeatest etteaacese taegtetest eeseggatta caeegteses 720	
ggcccggccc tcattgccgg cgccgccagc tcgatcgccc agagcacgtc ggtcgccact 780	
gecaceggea eggecacegt teeeggegge ggeggegeea accetacege caceaceace 840	
geogocacet ecgeogocoo gagoaceaco etgaggaega coactacete ggoogogoag 900	
actaccgccc cgccctccgg cgatgtgcag accaagtacg gccagtgtgg tggcaacgga 960	
tggacgggcc cgacggtgtg cgcccccggc tcgagctgct ccgtcctcaa cgagtggtac 1020	

1035

tcccagtgtt tgtaa													
<210> SEQ ID NO 8 <211> LENGTH: 342 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptides.													
<400> SEQUENCE: 8													
Met Ser Lys Ala Ser Ala Leu Leu Ala Gly Leu Thr Gly Ala 2	Ala Leu 15												
Val Ala Ala His Gly His Val Ser His Ile Val Val Asn Gly Val 20 25 30	Val Tyr												
Tyr Arg Asn Tyr Asp Pro Thr Thr Asp Trp Tyr Gln Pro Asn I 35 40 45	Pro Pro												
Thr Val Ile Gly Trp Thr Ala Ala Asp Gln Asp Asn Gly Phe V 50 55 60	Val Glu												
Pro Asn Ser Phe Gly Thr Pro Asp Ile Ile Cys His Lys Ser 265 70 75	Ala Thr 80												
Pro Gly Gly His Ala Thr Val Ala Ala Gly Asp Lys Ile 2	Asn Ile 95												
Val Trp Thr Pro Glu Trp Pro His Ser His Ile Gly Pro Val 1	Ile Asp												
Tyr Leu Ala Ala Cys Asn Gly Asp Cys Glu Thr Val Asp Lys s	Ser Ser												
Leu Arg Trp Phe Lys Ile Asp Gly Ala Gly Tyr Asp Lys Ala i 130 135 140	Ala Gly												
Arg Trp Ala Ala Asp Ala Leu Arg Ala Asn Gly Asn Ser Trp 1 145 150 155	Leu Val 160												
Gln Ile Pro Ser Asp Leu Ala Ala Gly Asn Tyr Val Leu Arg I 165 170	His Glu 175												
Ile Ile Ala Leu His Gly Ala Gln Ser Pro Asn Gly Ala Gln 2 180 185 190	Ala Tyr												
Pro Gln Cys Ile Asn Leu Arg Val Thr Gly Gly Gly Ser Asn 1 195 200 205	Leu Pro												
Ser Gly Val Ala Gly Thr Ser Leu Tyr Lys Ala Thr Asp Pro (210 215 220	Gly Ile												
Leu Phe Asn Pro Tyr Val Ser Ser Pro Asp Tyr Thr Val Pro (225 230 235	Gly Pro 240												
Ala Leu Ile Ala Gly Ala Ala Ser Ser Ile Ala Gln Ser Thr S 245 250	Ser Val 255												
Ala Thr Ala Thr Gly Thr Ala Thr Val Pro Gly Gly Gly Gly 260 265 270	Ala Asn												
Pro Thr Ala Thr Thr Thr Ala Ala Thr Ser Ala Ala Pro Ser 1 275 280 285	Thr Thr												
Leu Arg Thr Thr Thr Ser Ala Ala Gln Thr Thr Ala Pro I 290 295 300	Pro Ser												
Gly Asp Val Gln Thr Lys Tyr Gly Gln Cys Gly Gly Asn Gly 305 310 315	Trp Thr 320												
Gly Pro Thr Val Cys Ala Pro Gly Ser Ser Cys Ser Val Leu 2 325 330	Asn Glu 335												
Trp Tyr Ser Gln Cys Leu													

340

<210> SEQ ID NO 9

<211> LENGTH: 323

<212> TYPE: PRT

<213 > ORGANISM: Artificial sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic polypeptides.

<400> SEQUENCE: 9

His Gly His Val Ser His Ile Val Val Asn Gly Val Tyr Tyr Arg Asn 1 5 10 15

Tyr Asp Pro Thr Thr Asp Trp Tyr Gln Pro Asn Pro Pro Thr Val Ile 20 25 30

Gly Trp Thr Ala Ala Asp Gln Asp Asn Gly Phe Val Glu Pro Asn Ser 35 40 45

Phe Gly Thr Pro Asp Ile Ile Cys His Lys Ser Ala Thr Pro Gly Gly 50 60

Gly His Ala Thr Val Ala Ala Gly Asp Lys Ile Asn Ile Val Trp Thr 65 70 75 80

Pro Glu Trp Pro His Ser His Ile Gly Pro Val Ile Asp Tyr Leu Ala

Ala Cys Asn Gly Asp Cys Glu Thr Val Asp Lys Ser Ser Leu Arg Trp \$100\$ 105 110

Phe Lys Ile Asp Gly Ala Gly Tyr Asp Lys Ala Ala Gly Arg Trp Ala 115 120 125

Ala Asp Ala Leu Arg Ala Asn Gly Asn Ser Trp Leu Val Gln Ile Pro 130 135 140

Ser Asp Leu Ala Ala Gly Asn Tyr Val Leu Arg His Glu Ile Ile Ala 145 150 155 160

Leu His Gly Ala Gln Ser Pro Asn Gly Ala Gln Ala Tyr Pro Gln Cys \$165\$ \$170\$ \$175\$

Ile Asn Leu Arg Val Thr Gly Gly Gly Ser Asn Leu Pro Ser Gly Val

Ala Gly Thr Ser Leu Tyr Lys Ala Thr Asp Pro Gly Ile Leu Phe Asn 195 200 205

Pro Tyr Val Ser Ser Pro Asp Tyr Thr Val Pro Gly Pro Ala Leu Ile 210 215 220

Ala Gly Ala Ala Ser Ser Ile Ala Gln Ser Thr Ser Val Ala Thr Ala 225 230 235 240

Thr Thr Thr Ala Ala Thr Ser Ala Ala Pro Ser Thr Thr Leu Arg Thr
260 265 270

Thr Thr Thr Ser Ala Ala Gln Thr Thr Ala Pro Pro Ser Gly Asp Val 275 280 285

Gln Thr Lys Tyr Gly Gln Cys Gly Gly Asn Gly Trp Thr Gly Pro Thr $290 \hspace{1cm} 295 \hspace{1cm} 300 \hspace{1cm}$

Val Cys Ala Pro Gly Ser Ser Cys Ser Val Leu Asn Glu Trp Tyr Ser 305 310 315 320

Gln Cys Leu

```
<211> LENGTH: 1035
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic polynucleotide.
<400> SEQUENCE: 10
acaaacatgt ccaaggeete tgeteteete getggeetga egggegegge cetegteget
gcacatggcc acgtcagcca catcgtcgtc aacggcgtct actacaggaa ctacgacccc
acgacagact ggtaccagcc caacccgcca acagtcatcg gctggacggc agccgatcag
gataatggct tcgttgaacc caacagcttt ggcacgccag atatcatctg ccacaagagc
                                                                      240
                                                                      300
qccacccccq qcqqcqqcca cqctaccqtt qctqccqqaq acaaqatcaa catccaqtqq
acceegagt ggeorgaate coacategge coegtoattg actaectage egeotgeaac
                                                                      360
ggtgactgcg agaccgtcga caagtcgtcg ctgcgctggt tcaagattga cggcgccggc
                                                                      420
                                                                      480
tacqacaaqq ccqccqqccq ctqqqccqcc qacqctctqc qcqccaacqq caacaqctqq
ctcgtccaga tcccgtcgga tctcaaggcc ggcaactacg tcctccgcca cgagatcatc
                                                                      540
qccctccacq qtqctcaqaq ccccaacqqc qcccaqaact acccqcaqtq catcaacctc
                                                                      600
cgcgtcaccg gcggcggcag caacctgccc agcggcgtcg ccggcacctc gctgtacaag
                                                                      660
                                                                      720
gegacegace egggeatect etteaacece tacqtetect ceeeggatta cacegteece
ggcccggccc tcattgccgg cgccgccagc tcgatcgccc agagcacgtc ggtcgccact
                                                                      780
gccaceggea eggeeacegt teeeggegge ggeggegeea accetacege caceaceace
                                                                      840
geogecacet cogeogecee gageaceace etgaggaega ceactacete ggeogegeag
                                                                      900
actaccgccc cgccctccgg cgatgtgcag accaagtacg gccagtgtgg tggcaacgga
                                                                      960
tggacgggcc cgacggtgtg cgcccccggc tcgagctgct ccgtcctcaa cgagtggtac
                                                                     1020
tcccagtgtt tgtaa
                                                                     1035
<210> SEQ ID NO 11
<211> LENGTH: 342
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic polypeptides.
<400> SEQUENCE: 11
Met Ser Lys Ala Ser Ala Leu Leu Ala Gly Leu Thr Gly Ala Ala Leu
Val Ala Ala His Gly His Val Ser His Ile Val Val Asn Gly Val Tyr
Tyr Arg Asn Tyr Asp Pro Thr Thr Asp Trp Tyr Gln Pro Asn Pro Pro
Thr Val Ile Gly Trp Thr Ala Ala Asp Gln Asp Asn Gly Phe Val Glu
Pro Asn Ser Phe Gly Thr Pro Asp Ile Ile Cys His Lys Ser Ala Thr
Pro Gly Gly Gly His Ala Thr Val Ala Ala Gly Asp Lys Ile Asn Ile
Gln Trp Thr Pro Glu Trp Pro Glu Ser His Ile Gly Pro Val Ile Asp
                                105
                                                    110
Tyr Leu Ala Ala Cys Asn Gly Asp Cys Glu Thr Val Asp Lys Ser Ser
```

		115					120					125			
Leu	Arg 130	Trp	Phe	Lys	Ile	Asp 135	Gly	Ala	Gly	Tyr	Asp 140	Lys	Ala	Ala	Gly
Arg 145	Trp	Ala	Ala		Ala 150	Leu	Arg	Ala	Asn	Gly 155	Asn	Ser	Trp	Leu	Val 160
Gln	Ile	Pro	Ser	Asp 165	Leu	Lys	Ala	Gly	Asn 170	Tyr	Val	Leu	Arg	His 175	Glu
Ile	Ile	Ala	Leu 180	His	Gly	Ala	Gln	Ser 185	Pro	Asn	Gly	Ala	Gln 190	Asn	Tyr
Pro	Gln	Сув 195	Ile	Asn	Leu	Arg	Val 200	Thr	Gly	Gly	Gly	Ser 205	Asn	Leu	Pro
Ser	Gly 210	Val	Ala	Gly	Thr	Ser 215	Leu	Tyr	TÀa	Ala	Thr 220	Asp	Pro	Gly	Ile
Leu 225	Phe	Asn	Pro		Val 230	Ser	Ser	Pro		Tyr 235	Thr	Val	Pro	Gly	Pro 240
Ala	Leu	Ile	Ala	Gly 245	Ala	Ala	Ser	Ser	Ile 250	Ala	Gln	Ser	Thr	Ser 255	Val
Ala	Thr	Ala	Thr 260	Gly	Thr	Ala	Thr	Val 265	Pro	Gly	Gly	Gly	Gly 270	Ala	Asn
Pro	Thr	Ala 275	Thr	Thr	Thr	Ala	Ala 280	Thr	Ser	Ala	Ala	Pro 285	Ser	Thr	Thr
Leu	Arg 290	Thr	Thr	Thr	Thr	Ser 295	Ala	Ala	Gln	Thr	Thr 300	Ala	Pro	Pro	Ser
Gly 305	Asp	Val	Gln	Thr	110 310	Tyr	Gly	Gln		Gly 315	Gly	Asn	Gly	Trp	Thr 320
Gly	Pro	Thr		Сув 325	Ala	Pro	Gly	Ser	Ser 330	Càa	Ser	Val	Leu	Asn 335	Glu
Trp	Tyr	Ser	Gln 340	CAa	Leu										
<211 <212 <213	L> LE 2> TY 3> OF	EQ ID ENGTH PE: RGANI EATUR	H: 34 PRT SM:	12	fici	ial s	seque	ence							
<223	B> OI	HER	INFO	RMAI	: NOI	Syr	thet	ic p	olyp	epti	ldes.				
<400)> SE	EQUEN	ICE :	12											
Met 1	Ser	Lys	Ala	Ser 5	Ala	Leu	Leu	Ala	Gly 10	Leu	Thr	Gly	Ala	Ala 15	Leu
Val	Ala	Ala	His 20	Gly	His	Val	Ser	His 25	Ile	Val	Val	Asn	Gly 30	Val	Tyr
Tyr	Arg	Asn 35	Tyr	Asp	Pro	Thr	Thr 40	Asp	Trp	Tyr	Gln	Pro 45	Asn	Pro	Pro
Thr	Val 50	Ile	Gly	Trp	Thr	Ala 55	Ala	Asp	Gln	Asp	Asn 60	Gly	Phe	Val	Glu
Pro 65	Asn	Ser	Phe	Gly	Thr 70	Pro	Asp	Ile	Ile	Сув 75	His	Lys	Ser	Ala	Thr 80
Pro	Gly	Gly	Gly	His 85	Ala	Thr	Val	Ala	Ala 90	Gly	Asp	Lys	Ile	Asn 95	Ile
Gln	Trp	Thr	Pro 100	Glu	Trp	Pro	Glu	Ser 105	His	Ile	Gly	Pro	Val 110	Ile	Asp
Tyr	Leu	Ala	Ala	CÀa	Asn	Gly	Asp	Cya	Glu	Thr	Val	Asp	ГЛа	Ser	Ser

-continued
115 120 125
Leu Arg Trp Phe Lys Ile Asp Gly Ala Gly Tyr Asp Lys Ala Ala Gly 130 135 140
Arg Trp Ala Ala Asp Ala Leu Arg Ala Asn Gly Asn Ser Trp Leu Val 145 150 155 160
Gln Ile Pro Ser Asp Leu Lys Ala Gly Asn Tyr Val Leu Arg His Glu 165 170 175
Ile Ile Ala Leu His Gly Ala Gln Ser Pro Asn Gly Ala Gln Asn Tyr 180 185 190
Pro Gln Cys Ile Asn Leu Arg Val Thr Gly Gly Gly Ser Asn Leu Pro 195 200 205
Ser Gly Val Ala Gly Thr Ser Leu Tyr Lys Ala Thr Asp Pro Gly Ile 210 215 220
Leu Phe Asn Pro Tyr Val Ser Ser Pro Asp Tyr Thr Val Pro Gly Pro 225 230 235 240
Ala Leu Ile Ala Gly Ala Ala Ser Ser Ile Ala Gln Ser Thr Ser Val 245 250 255
Ala Thr Ala Thr Gly Thr Ala Thr Val Pro Gly Gly Gly Ala Asn 260 265 270
Pro Thr Ala Thr Thr Ala Ala Thr Ser Ala Ala Pro Ser Thr Thr 275 280 285
Leu Arg Thr Thr Thr Ser Ala Ala Gln Thr Thr Ala Pro Pro Ser 290 295 300
Gly Asp Val Gln Thr Lys Tyr Gly Gln Cys Gly Gly Asn Gly Trp Thr 305 310 315 320
Gly Pro Thr Val Cys Ala Pro Gly Ser Ser Cys Ser Val Leu Asn Glu 325 330 335
Trp Tyr Ser Gln Cys Leu 340
<210> SEQ ID NO 13 <211> LENGTH: 738 <212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 13
atgaagetet ecetettte egteetggee actgeeetea eegtegaggg geatgeeate 60
ttccagaagg tctccgtcaa cggagcggac cagggctccc tcaccggcct ccgcgctccc 120
aacaacaaca accccgtgca gaatgtcaac agccaggaca tgatctgcgg ccagtcggga 180
tegaegtega acaetateat egaggteaag geeggegata ggateggtge etggtateag 240
catgicateg geggtgeeca giteeceaac gacceagaca accegatige caagtegeac 300
aagggccccg tcatggccta cctcgccaag gttgacaatg ccgcaaccgc cagcaagacg 360
ggcctgaagt ggttcaagat ttgggaggat acctttaatc ccagcaccaa gacctggggt 420
gtcgacaacc tcatcaacaa caacggctgg gtgtacttca acctcccgca gtgcatcgcc 480
gacggcaact acctectecg egtegaggte etegetetge acteggeeta eteceaggge 540
caggeteagt tetaceagte etgegeecag ateaaegtat eeggeggegg eteetteaeg 600
ccggcgtcga ctgtcagctt cccgggtgcc tacagcgcca gcgaccccgg tatcctgatc 660

720

aacatctacg gcgccaccgg ccagcccgac aacaacggcc agccgtacac tgcccctggg

738

cccgcgccca tctcctgc <210> SEQ ID NO 14 <211> LENGTH: 246 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 14 Met Lys Leu Ser Leu Phe Ser Val Leu Ala Thr Ala Leu Thr Val Glu Gly His Ala Ile Phe Gln Lys Val Ser Val Asn Gly Ala Asp Gln Gly Ser Leu Thr Gly Leu Arg Ala Pro Asn Asn Asn Pro Val Gln Asn Val Asn Ser Gln Asp Met Ile Cys Gly Gln Ser Gly Ser Thr Ser Asn 55 Thr Ile Ile Glu Val Lys Ala Gly Asp Arg Ile Gly Ala Trp Tyr Gln 65 70 75 80 His Val Ile Gly Gly Ala Gln Phe Pro Asn Asp Pro Asp Asn Pro Ile Ala Lys Ser His Lys Gly Pro Val Met Ala Tyr Leu Ala Lys Val Asp 105 Asn Ala Ala Thr Ala Ser Lys Thr Gly Leu Lys Trp Phe Lys Ile Trp 120 Glu Asp Thr Phe Asn Pro Ser Thr Lys Thr Trp Gly Val Asp Asn Leu 135 Ile Asn Asn Asn Gly Trp Val Tyr Phe Asn Leu Pro Gln Cys Ile Ala Asp Gly Asn Tyr Leu Leu Arg Val Glu Val Leu Ala Leu His Ser Ala 170 Tyr Ser Gln Gly Gln Ala Gln Phe Tyr Gln Ser Cys Ala Gln Ile Asn 185 Val Ser Gly Gly Ser Phe Thr Pro Ala Ser Thr Val Ser Phe Pro 200 Gly Ala Tyr Ser Ala Ser Asp Pro Gly Ile Leu Ile Asn Ile Tyr Gly Ala Thr Gly Gln Pro Asp Asn Asn Gly Gln Pro Tyr Thr Ala Pro Gly Pro Ala Pro Ile Ser Cys <210> SEQ ID NO 15 <211> LENGTH: 227 <212> TYPE: PRT <213 > ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 15 Ile Phe Gln Lys Val Ser Val Asn Gly Ala Asp Gln Gly Ser Leu Thr 10 Gly Leu Arg Ala Pro Asn Asn Asn Pro Val Gln Asn Val Asn Ser Gln Asp Met Ile Cys Gly Gln Ser Gly Ser Thr Ser Asn Thr Ile Ile Glu Val Lys Ala Gly Asp Arg Ile Gly Ala Trp Tyr Gln His Val Ile

<400> SEQUENCE: 17

		50					55					60						
G 6	_	Gly	Ala	Gln	Phe	Pro 70	Asn	Asp	Pro	Asp	Asn 75	Pro	Ile	Ala	Lys	Ser 80		
Н	is	Lys	Gly	Pro	Val 85	Met	Ala	Tyr	Leu	Ala 90	Lys	Val	Asp	Asn	Ala 95	Ala		
T	hr	Ala	Ser	Lys 100	Thr	Gly	Leu	ГÀз	Trp 105	Phe	Lys	Ile	Trp	Glu 110	Asp	Thr		
P	he	Asn	Pro 115	Ser	Thr	Lys	Thr	Trp 120	Gly	Val	Asp	Asn	Leu 125	Ile	Asn	Asn		
A		Gly 130	Trp	Val	Tyr	Phe	Asn 135	Leu	Pro	Gln	Cys	Ile 140	Ala	Asp	Gly	Asn		
	yr 45	Leu	Leu	Arg	Val	Glu 150	Val	Leu	Ala	Leu	His 155	Ser	Ala	Tyr	Ser	Gln 160		
G	ly	Gln	Ala	Gln	Phe 165	Tyr	Gln	Ser	Cya	Ala 170	Gln	Ile	Asn	Val	Ser 175	Gly		
G	ly	Gly	Ser	Phe 180	Thr	Pro	Ala	Ser	Thr 185	Val	Ser	Phe	Pro	Gly 190	Ala	Tyr		
S	er	Ala	Ser 195	Asp	Pro	Gly	Ile	Leu 200	Ile	Asn	Ile	Tyr	Gly 205	Ala	Thr	Gly		
G		Pro 210	Asp	Asn	Asn	Gly	Gln 215	Pro	Tyr	Thr	Ala	Pro 220	Gly	Pro	Ala	Pro		
	1e 25	Ser	Cha															
<	211 212	> LE > TY	Q II INGTH IPE: IGANI	H: 7	62	eliop	phtho	ora t	herr	noph:	ila							
<	400	> SE	QUEI	ICE :	16													
a	tgg	ccct	cc a	agct	cttg	gc ga	agcti	tggc	cto	ectet	cag	tgc	cggc	ect 1	gcc	cacggt	60	
g	gct	tggc	ca a	acta	cacc	gt c	ggtga	atact	t tg	gtaca	agag	gcta	acga	ecc a	aaaco	tgccg	120	
С	cgg	agac	gc a	agct	caac	ca ga	acct	ggato	g ato	ccago	egge	aat	gggc	cac o	catco	gacccc	180	
g	tct	tcac	eg t	gtc	ggag	cc gt	cacct	tggc	c tg	caaca	aacc	cgg	gege	gec (gaaga	cctcg	240	
t	aca	tccc	ca t	ccg	egee	gg t	gacaa	agato	c acq	ggac	gtgt	act	ggta	ctg (gctgo	cacgcc	300	
a	tcg	ggcc	ca t	gag	egte	tg g	ctcg	cgcgg	g tg	cggc	gaca	cgc	ccgc	ggc (cgact	geege	360	
g	acg	tcga	ıcg t	caa	ccgg	gt c	ggct	ggtto	c aaq	gatci	ggg	agg	gegg	cct (gctgg	gagggt	420	
С	cca	.acct	gg (cga	aaaa.	ct c1	ggta	accaa	a aaq	ggact	tcc	agc	gctg	gga (egget	ccccg	480	
t	ccc	tctg	igc (cgt	cacg	at co	cccaa	agggg	g cto	caaga	agcg	gga	ccta	cat «	catco	eggcac	540	
g	aga	tcct	gt (geti	tcac	gt c	gadat	tcaaç	g cc	ccagt	ttt	acc	cgga	gtg 1	gege	catctg	600	
а	ata	ttac	tg g	9999	cgga	ga ci	tgct	tgcca	a cc	cgaaq	gaga	ctc	tggt	gcg (gttto	cgggg	660	
g	ttt	acaa	ag a	agga	cgat	cc c1	ctat	tcttc	c ato	cgato	gtct	act	cgga	gga g	gaaco	gcgaac	720	
C	gga	.caga	itt a	atac	ggtt	cc g	ggag	ggcca	a ato	etgg	gaag	gg					762	
<	211 212	> LE > TY	Q II NGTH PE: RGANI	H: 2	54	eliop	phtho	ora t	her	noph:	ila							
		-																

Leu Ala His Gly Gly Leu Ala Asn Tyr Thr Val Gly Asp Thr Trp Tyr Arg Gly Tyr Asp Pro Asn Leu Pro Pro Glu Thr Gln Leu Asn Gln Thr Trp Met Ile Gln Arg Gln Trp Ala Thr Ile Asp Pro Val Phe Thr Val Ser Glu Pro Tyr Leu Ala Cys Asn Asn Pro Gly Ala Pro Pro Pro Ser Tyr Ile Pro Ile Arg Ala Gly Asp Lys Ile Thr Ala Val Tyr Trp Tyr Trp Leu His Ala Ile Gly Pro Met Ser Val Trp Leu Ala Arg Cys Gly 105 Asp Thr Pro Ala Ala Asp Cys Arg Asp Val Asp Val Asn Arg Val Gly 120 Trp Phe Lys Ile Trp Glu Gly Gly Leu Leu Glu Gly Pro Asn Leu Ala 135 Glu Gly Leu Trp Tyr Gln Lys Asp Phe Gln Arg Trp Asp Gly Ser Pro 150 155 Ser Leu Trp Pro Val Thr Ile Pro Lys Gly Leu Lys Ser Gly Thr Tyr Ile Ile Arg His Glu Ile Leu Ser Leu His Val Ala Leu Lys Pro Gln 180 185 Phe Tyr Pro Glu Cys Ala His Leu Asn Ile Thr Gly Gly Gly Asp Leu Leu Pro Pro Glu Glu Thr Leu Val Arg Phe Pro Gly Val Tyr Lys Glu 215 Asp Asp Pro Ser Ile Phe Ile Asp Val Tyr Ser Glu Glu Asn Ala Asn Arg Thr Asp Tyr Thr Val Pro Gly Gly Pro Ile Trp Glu Gly 245 <210> SEQ ID NO 18 <211> LENGTH: 231 <212> TYPE: PRT <213 > ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 18 Asn Tyr Thr Val Gly Asp Thr Trp Tyr Arg Gly Tyr Asp Pro Asn Leu Pro Pro Glu Thr Gln Leu Asn Gln Thr Trp Met Ile Gln Arg Gln Trp Ala Thr Ile Asp Pro Val Phe Thr Val Ser Glu Pro Tyr Leu Ala Cys Asn Asn Pro Gly Ala Pro Pro Pro Ser Tyr Ile Pro Ile Arg Ala Gly 55 Asp Lys Ile Thr Ala Val Tyr Trp Tyr Trp Leu His Ala Ile Gly Pro Met Ser Val Trp Leu Ala Arg Cys Gly Asp Thr Pro Ala Ala Asp Cys Arg Asp Val Asp Val Asn Arg Val Gly Trp Phe Lys Ile Trp Glu Gly

Met Ala Leu Gln Leu Leu Ala Ser Leu Ala Leu Leu Ser Val Pro Ala

-continued	
100 105 110	
Gly Leu Leu Glu Gly Pro Asn Leu Ala Glu Gly Leu Trp Tyr Gln Lys 115 120 125	
Asp Phe Gln Arg Trp Asp Gly Ser Pro Ser Leu Trp Pro Val Thr Ile 130 135 140	
Pro Lys Gly Leu Lys Ser Gly Thr Tyr Ile Ile Arg His Glu Ile Leu 145 150 155 160	
Ser Leu His Val Ala Leu Lys Pro Gln Phe Tyr Pro Glu Cys Ala His 165 170 175	
Leu Asn Ile Thr Gly Gly Gly Asp Leu Leu Pro Pro Glu Glu Thr Leu 180 185 190	
Val Arg Phe Pro Gly Val Tyr Lys Glu Asp Asp Pro Ser Ile Phe Ile 195 200 205	
Asp Val Tyr Ser Glu Glu Asn Ala Asn Arg Thr Asp Tyr Thr Val Pro 210 215 220	
Gly Gly Pro Ile Trp Glu Gly 225 230	
<210> SEQ ID NO 19 <211> LENGTH: 705 <212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila	
<400> SEQUENCE: 19	60
atgaaggccc teteteteet tgeggetgcc ggggcagtet etgegcatac catettegte	60
cagctcgaag cagacggcac gaggtacccg gtttcgtacg ggatccggga cccaacctac gacggcccca tcaccgacgt cacatccaac gacgttgctt gcaacggcgg tccgaacccg	120
acgaccoct ccagogacgt catcaccgtc accgogggca ccaccgtcaa ggccatctgg	240
aggeacacce tecaateegg eceggacgat gteatggacg ecagecacaa gggeecgace	300
ctggcctaca tcaagaaggt cggcgatgcc accaaggact cgggcgtcgg cggtggctgg	360
ttcaagatcc aggaggacgg ttacaacaac ggccagtggg gcaccagcac cgttatctcc	420
aacggcggcg agcactacat tgacatcccg gcctgcatcc ccgagggtca gtacctcctc	480
cgcgccgaga tgatcgccct ccacgcggcc gggtcccccg gcggcgctca gctctacatg	540
gaatgtgeec agateaacat egteggegge teeggetegg tgeecagete gaeggteage	600
ttccccggcg cgtatagccc caacgacccg ggtctcctca tcaacatcta ttccatgtcg	660
coctogaget egtacaceat ecegggeeeg ecegttttea agtge	705
<210> SEQ ID NO 20 <211> LENGTH: 235 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila	
<400> SEQUENCE: 20	
Met Lys Ala Leu Ser Leu Leu Ala Ala Gly Ala Val Ser Ala His 1 5 10 15	
Thr Ile Phe Val Gln Leu Glu Ala Asp Gly Thr Arg Tyr Pro Val Ser 20 25 30	
Tyr Gly Ile Arg Asp Pro Thr Tyr Asp Gly Pro Ile Thr Asp Val Thr 35 40 45	
Gara Anna Anna Wall Alla Gara Anna Glas Glas Glas Glas Glas Glas Glas Gla	

Ser Asn Asp Val Ala Cys Asn Gly Gly Pro Asn Pro Thr Thr Pro Ser

	50					55					60				
Ser 65	Asp	Val	Ile	Thr	Val 70	Thr	Ala	Gly	Thr	Thr 75	Val	Lys	Ala	Ile	Trp 80
Arg	His	Thr	Leu	Gln 85	Ser	Gly	Pro	Asp	Asp 90	Val	Met	Asp	Ala	Ser 95	His
Lys	Gly	Pro	Thr 100	Leu	Ala	Tyr	Ile	Lys 105	Lys	Val	Gly	Asp	Ala 110	Thr	ГЛа
Asp	Ser	Gly 115	Val	Gly	Gly	Gly	Trp 120	Phe	Lys	Ile	Gln	Glu 125	Asp	Gly	Tyr
Asn	Asn 130	Gly	Gln	Trp	Gly	Thr 135	Ser	Thr	Val	Ile	Ser 140	Asn	Gly	Gly	Glu
His 145	Tyr	Ile	Asp	Ile	Pro 150	Ala	Cys	Ile	Pro	Glu 155	Gly	Gln	Tyr	Leu	Leu 160
Arg	Ala	Glu	Met	Ile 165	Ala	Leu	His	Ala	Ala 170	Gly	Ser	Pro	Gly	Gly 175	Ala
Gln	Leu	Tyr	Met 180	Glu	Cya	Ala	Gln	Ile 185	Asn	Ile	Val	Gly	Gly 190	Ser	Gly
Ser	Val	Pro 195	Ser	Ser	Thr	Val	Ser 200	Phe	Pro	Gly	Ala	Tyr 205	Ser	Pro	Asn
Asp	Pro 210	Gly	Leu	Leu	Ile	Asn 215	Ile	Tyr	Ser	Met	Ser 220	Pro	Ser	Ser	Ser
Tyr 225	Thr	Ile	Pro	Gly	Pro 230	Pro	Val	Phe	Lys	Cys 235					
)> SE														
<213	2> TY 3> OF 0> SE	PE:	PRT SM:	Мусе	eliop	htho	ora t	herm	nophi	lla					
<212 <213 <400	2> TY 3> OF	PE : GANI QUEN	PRT SM:	Мусе 21							Thr	Arg	Tyr	Pro 15	Val
<212 <213 <400 His 1	2> TY 3> OF 0> SE	TPE: RGANI RQUEN Ile	PRT SM: ICE: Phe	Myce 21 Val 5	Gln	Leu	Glu	Ala	Asp 10	Gly		_	-	15	
<212 <213 <400 His 1 Ser	2> TY 3> OF 0> SE Thr	TPE: CGANI CQUEN Ile Gly	PRT ISM: ICE: Phe Ile 20	Myce 21 Val 5 Arg	Gln Asp	Leu Pro	Glu Thr	Ala Tyr 25	Asp 10 Asp	Gly	Pro	Ile	Thr 30	15 Asp	Val
<212 <213 <400 His 1 Ser	2> TY 3> OF 0> SE Thr	PE: RGANI RQUEN Ile Gly Asn 35	PRT SM: ICE: Phe Ile 20 Asp	Myce 21 Val 5 Arg Val	Gln Asp Ala	Leu Pro Cys	Glu Thr Asn 40	Ala Tyr 25 Gly	Asp 10 Asp	Gly Gly Pro	Pro Asn	Ile Pro 45	Thr 30 Thr	15 Asp Thr	Val Pro
<212 <213 <400 His 1 Ser Thr	2> TY 3> OF Thr Tyr Ser	PE: GANI QUEN Ile Gly Asn 35	PRT:SM: ICE: Phe Ile 20 Asp Val	Myce 21 Val 5 Arg Val	Gln Asp Ala Thr	Leu Pro Cys Val 55	Glu Thr Asn 40 Thr	Ala Tyr 25 Gly Ala	Asp 10 Asp Gly	Gly Gly Pro Thr	Pro Asn Thr 60	Ile Pro 45 Val	Thr 30 Thr	15 Asp Thr	Val Pro Ile
<212 <213 <400 His 1 Ser Thr Ser	2> TY 3> OF Thr Tyr Ser Ser 50	PE: GANI CQUEN Ile Gly Asn 35 Asp	PRT SM: UCE: Phe Ile 20 Asp Val	Mycee 21 Val 5 Arg Val Ile	Gln Asp Ala Thr Gln 70	Leu Pro Cys Val 55 Ser	Glu Thr Asn 40 Thr	Ala Tyr 25 Gly Ala Pro	Asp 10 Asp Gly Gly	Gly Gly Pro Thr Asp 75	Pro Asn Thr 60 Val	Ile Pro 45 Val	Thr 30 Thr Lys	Asp Thr Ala	Val Pro Ile Ser 80
<212 <213 <400 His 1 Ser Thr Ser Trp 65 His	22> TY 3> OF 3> OF Thr Tyr Ser Ser 50	YPE: CGANI CQUEN Ile Gly Asn 35 Asp His	PRT CSM: UCE: Phe Ile 20 Asp Val Thr	Myce 21 Val 5 Arg Val Ile Leu Thr 85	Gln Asp Ala Thr Gln 70 Leu	Leu Pro Cys Val 55 Ser	Glu Thr Asn 40 Thr Gly	Ala Tyr 25 Gly Ala Pro	Asp 10 Asp Gly Asp Lys 90	Gly Pro Thr Asp 75	Pro Asn Thr 60 Val	Ile Pro 45 Val Met	Thr 30 Thr Lys Asp	15 Asp Thr Ala Ala Ala 95	Val Pro Ile Ser 80 Thr
<212 <213 <400 His 1 Ser Thr Ser Trp 65 His	2> TY 3> OF Thr Tyr Ser Ser 50 Arg	YPE: GANI CQUEN Ile Gly Asn 35 Asp His Gly Ser	PRT CSM: UCE: Phe Ile 20 Asp Val Thr Pro Gly 100	Mycee 21 Val 5 Arg Val Ile Leu Thr 85 Val	Gln Asp Ala Thr Gln 70 Leu Gly	Leu Pro Cys Val 55 Ser Ala Gly	Glu Thr Asn 40 Thr Gly Tyr	Ala Tyr 25 Gly Ala Pro Ile Trp 105	Asp 10 Asp Gly Gly Asp Lys 90 Phe	Gly Gly Pro Thr Asp 75 Lys	Pro Asn Thr 60 Val Val	Ile Pro 45 Val Met Gly	Thr 30 Thr Lys Asp Asp Glu 110	Asp Thr Ala Ala 95 Asp	Val Pro Ile Ser 80 Thr
<212 <213 <400 His 1 Ser Thr Ser Trp 65 His Lys	2> TY 3> OF Thr Tyr Ser Ser 50 Arg	PE: GANJ QUEN Ile Gly Asn 35 Asp His Gly Ser Asn 115	PRT SM: UCE: Phe Ile 20 Asp Val Thr Pro Gly 100 Gly	Mycee 21 Val 5 Arg Val Ile Leu Thr 85 Val Gln	Gln Asp Ala Thr Gln 70 Leu Gly	Leu Pro Cys Val 55 Ser Ala Gly	Glu Thr Asn 40 Thr Gly Tyr Cly Thr 120	Ala Tyr 25 Gly Ala Pro Ile Trp 105 Ser	Asp 10 Asp Gly Gly Asp Lys 90 Phe	Gly Pro Thr Asp 75 Lys Val	Pro Asn Thr 60 Val Val Ile	Ile Pro 45 Val Met Gly Gln Ser 125	Thr 30 Thr Lys Asp Asp Glu 110	15 Asp Thr Ala Ala Ala S Asp	Val Pro Ile Ser 80 Thr Gly
<212 <213 <400 His 1 Ser Thr Fer Trp 65 His Lys Tyr Glu	2> TYS 3> OF Thr Tyr Ser Arg Lys Asp Asn	YPE: GANJ CQUEN Ile Gly Asn 35 Asp His Gly Ser Asn 115	PRT SM: ICE: Phe Ile 20 Asp Val Thr Pro Gly 100 Gly Ile	Mycee 21 Val 5 Arg Val Ile Leu Thr 85 Val Gln Asp	Gln Asp Ala Thr Gln 70 Leu Gly Trp	Leu Pro Cys Val 55 Ser Ala Gly Gly Pro 135	Glu Thr Asn 40 Thr Gly Tyr Gly Thr 120 Ala	Ala Tyr 25 Gly Ala Pro Ile Trp 105 Ser Cys	Asp 10 Asp Gly Gly Asp Lys 90 Phe Thr	Gly Gly Pro Thr Asp 75 Lys Val	Pro Asn Thr 60 Val Val Ile Glu 140	Ile Pro 45 Val Met Gly Gln Ser 125	Thr 30 Thr Lys Asp Asp Glu 110 Asn Gln	15 Asp Thr Ala Ala Ala 95 Asp Gly Tyr	Val Pro Ile Ser 80 Thr Gly Gly Leu

```
Gly Ser Val Pro Ser Ser Thr Val Ser Phe Pro Gly Ala Tyr Ser Pro
Asn Asp Pro Gly Leu Leu Ile Asn Ile Tyr Ser Met Ser Pro Ser Ser
                            200
Ser Tyr Thr Ile Pro Gly Pro Pro Val Phe Lys Cys
<210> SEQ ID NO 22
<211> LENGTH: 915
<212> TYPE: DNA
<213 > ORGANISM: Myceliophthora thermophila
<400> SEQUENCE: 22
atgaagtegt ctacceegge ettgttegee getgggetee ttgeteagea tgetgeggee
                                                                       60
cactecatet tecageagge gageagegge tegacegaet ttgatacget gtgcaceegg
atgccgccca acaatagccc cgtcactagt gtgaccagcg gcgacatgac ctgcaaagtc
                                                                      180
ggcggcacca agggggtgtc cggcttctgc gaggtgaacg ccggcgacga gttcacggtt
                                                                      240
                                                                      300
gagatgcacg cgcagcccgg cgaccgctcg tgcgccaacg aggccatcgg cgggaaccac
tteggeeegg teeteateta catgageaag gtegaegaeg eeteeaeege egaegggtee
                                                                      360
ggcgactggt tcaaggtgga cgagttcggc tacgacgcaa gcaccaagac ctggggcacc
                                                                      420
gacaagetea aegagaaetg eggeaagege aeetteaaea teeceageea cateeeegeg
                                                                      480
ggcgactatc tcgtccgggc cgaggctatc gcgctacaca ctgccaacca gccaggcggc
                                                                      540
gegeagttet acatgagetg etateaagte aggattteeg geggegaagg gggeeagetg
                                                                      600
cctgccggag tcaagatccc gggcgcgtac agtgccaacg accccggcat ccttgtcgac
                                                                      660
atctggggta acgatttcaa cgacceteca ggacaetegg ceegteaege cateateate
                                                                      720
atcagcagca gcagcaacaa cagcggcgcc aagatgacca agaagatcca ggagcccacc
                                                                      780
atcacatcgg tcacggacct ccccaccgac gaggccaagt ggatcgcgct ccaaaagatc
                                                                      840
togtacgtgg accagacggg cacggcgcgg acatacgagc cggcgtcgcg caagacgcgg
                                                                      900
tcgccaagag tctag
                                                                      915
<210> SEQ ID NO 23
<211> LENGTH: 304
<212> TYPE: PRT
<213 > ORGANISM: Myceliophthora thermophila
<400> SEQUENCE: 23
Met Lys Ser Ser Thr Pro Ala Leu Phe Ala Ala Gly Leu Leu Ala Gln
His Ala Ala Ala His Ser Ile Phe Gln Gln Ala Ser Ser Gly Ser Thr
Asp Phe Asp Thr Leu Cys Thr Arg Met Pro Pro Asn Asn Ser Pro Val
Thr Ser Val Thr Ser Gly Asp Met Thr Cys Lys Val Gly Gly Thr Lys
Gly Val Ser Gly Phe Cys Glu Val Asn Ala Gly Asp Glu Phe Thr Val
Glu Met His Ala Gln Pro Gly Asp Arg Ser Cys Ala Asn Glu Ala Ile
                                    90
```

Gly Gly Asn His Phe Gly Pro Val Leu Ile Tyr Met Ser Lys Val Asp

100

-continued

			100					103					110		
Asp	Ala	Ser 115	Thr	Ala	Asp	Gly	Ser 120	Gly	Asp	Trp	Phe	Lys 125	Val	Asp	Glu
Phe	Gly 130	Tyr	Asp	Ala	Ser	Thr 135	Lys	Thr	Trp	Gly	Thr 140	Asp	Lys	Leu	Asn
Glu 145	Asn	Сув	Gly	Lys	Arg 150	Thr	Phe	Asn	Ile	Pro 155	Ser	His	Ile	Pro	Ala 160
Gly	Asp	Tyr	Leu	Val 165	Arg	Ala	Glu	Ala	Ile 170	Ala	Leu	His	Thr	Ala 175	Asn
Gln	Pro	Gly	Gly 180	Ala	Gln	Phe	Tyr	Met 185	Ser	Cys	Tyr	Gln	Val 190	Arg	Ile
Ser	Gly	Gly 195	Glu	Gly	Gly	Gln	Leu 200	Pro	Ala	Gly	Val	Lys 205	Ile	Pro	Gly
Ala	Tyr 210	Ser	Ala	Asn	Asp	Pro 215	Gly	Ile	Leu	Val	Asp 220	Ile	Trp	Gly	Asn
Asp 225	Phe	Asn	Asp	Pro	Pro 230	Gly	His	Ser	Ala	Arg 235	His	Ala	Ile	Ile	Ile 240
Ile	Ser	Ser	Ser	Ser 245	Asn	Asn	Ser	Gly	Ala 250	Lys	Met	Thr	Lys	Lys 255	Ile
Gln	Glu	Pro	Thr 260	Ile	Thr	Ser	Val	Thr 265	Asp	Leu	Pro	Thr	Asp 270	Glu	Ala
Lys	Trp	Ile 275	Ala	Leu	Gln	Lys	Ile 280	Ser	Tyr	Val	Asp	Gln 285	Thr	Gly	Thr
Ala	Arg 290	Thr	Tyr	Glu	Pro	Ala 295	Ser	Arg	Lys	Thr	Arg 300	Ser	Pro	Arg	Val
<211 <212)> SE L> LE 2> TY 3> OF	ENGTH PE:	H: 28	34	elion	phtho	ora t	hern	nophi	ila					
<211 <212 <213	L> LE 2> TY	ENGTH PE: RGANI	H: 28 PRT [SM:	84 Myce	eliop	phtho	ora t	herm	nophi	ila					
<211 <212 <213 <400	L> LE 2> T\ 3> OF	ENGTH PE: RGANI	H: 28 PRT (SM:	84 Myce 24							Thr	Asp	Phe	Asp 15	Thr
<211 <212 <213 <400 His	L> LE 2> TY 3> OF 0> SE	ENGTH PE: RGANI EQUEN	H: 28 PRT (SM: VCE: Phe	Myce 24 Gln 5	Gln	Ala	Ser	Ser	Gly 10	Ser		_		15	
<211 <212 <213 <400 His 1	l> LE 2> TY 3> OF 0> SE Ser	ENGTH PE: RGANI EQUEN Ile	H: 28 PRT SM: NCE: Phe Arg 20	Myce 24 Gln 5 Met	Gln Pro	Ala Pro	Ser Asn	Ser Asn 25	Gly 10 Ser	Ser Pro	Val	Thr	Ser 30	15 Val	Thr
<211 <212 <213 <400 His 1 Leu	L> LE 2> TY 3> OF 3> SE Ser	ENGTH YPE: GGANI EQUEN Ile Thr Asp 35	H: 28 PRT ISM: NCE: Phe Arg 20 Met	Myce 24 Gln 5 Met	Gln Pro Cys	Ala Pro Lys	Ser Asn Val 40	Ser Asn 25 Gly	Gly 10 Ser	Ser Pro Thr	Val Lys	Thr Gly 45	Ser 30 Val	Val Ser	Thr Gly
<211 <212 <213 <400 His 1 Leu Ser	L> LE 2> TY 3> OF 3> OF Ser Cys Gly	ENGTH PE: CGANI EQUEN Thr Asp 35	H: 28 PRT ISM: ICE: Phe Arg 20 Met Val	Myce 24 Gln 5 Met Thr	Gln Pro Cys Ala	Ala Pro Lys Gly 55	Ser Asn Val 40 Asp	Ser Asn 25 Gly	Gly 10 Ser Gly	Ser Pro Thr	Val Lys Val 60	Thr Gly 45 Glu	Ser 30 Val Met	15 Val Ser His	Thr Gly Ala
<2113 1 <2123 1 <4000 His 1 Leu Ser Phe Gln 65	L> LE S> TY B> OF Ser Cys Gly Cys 50	ENGTHERECT PROBLEM PRO	H: 28 PRT ISM: UCE: Phe Arg 20 Met Val	Myce 24 Gln 5 Met Thr Asn	Gln Pro Cys Ala Ser 70	Ala Pro Lys Gly 55 Cys	Ser Asn Val 40 Asp	Ser Asn 25 Gly Glu Asn	Gly 10 Ser Gly Phe	Ser Pro Thr Thr Ala 75	Val Lys Val 60 Ile	Thr Gly 45 Glu Gly	Ser 30 Val Met	15 Val Ser His	Thr Gly Ala His
<211	L> LE Cys Cys Gly Cys Fo	ENGTH YPE: GGANJ GQUEN Ile Thr Asp 35 Glu Gly	PH: 28 PRT ISM: ISM: Phe Arg 20 Met Val Asp	Myce 24 Gln 5 Met Thr Asn Arg	Gln Pro Cys Ala Ser 70	Ala Pro Lys Gly 55 Cys	Ser Asn Val 40 Asp Ala	Ser Asn 25 Gly Glu Asn Ser	Gly 10 Ser Gly Phe Glu Lys 90	Ser Pro Thr Thr Ala 75 Val	Val Lys Val 60 Ile Asp	Thr Gly 45 Glu Gly Asp	Ser 30 Val Met Gly	Val Ser His Asn Ser 95	Thr Gly Ala His 80 Thr
<2113 < 212 < 213 < 4000 His 1 Leu Ser Phe GIn 65 Phe Ala	L> LE L> TY L> TY L> OF Ser Cys Gly Cys 50 Pro Gly	ENGTH (PE: GGAN) EQUEN Ile Thr Asp 35 Glu Gly Pro	PRT ISM: USM: WCE: Phe Arg 20 Met Val Asp Val Ser 100	Myce 24 Gln 5 Met Thr Asn Arg Leu 85 Gly	Gln Pro Cys Ala Ser 70 Ile Asp	Ala Pro Lys Gly 55 Cys Tyr	Ser Asn Val 40 Asp Ala Met	Ser Asn 25 Gly Glu Asn Ser Lys 105	Gly 10 Ser Gly Phe Glu Lys 90 Val	Ser Pro Thr Thr Ala 75 Val	Val Lys Val 60 Ile Asp	Thr Gly 45 Glu Gly Asp	Ser 30 Val Met Gly Ala Gly 110	Val Ser His Asn Ser 95	Thr Gly Ala His 80 Thr
<2113 < 212 < 213 < 400 His 1 Leu Ser Phe Gln 65 Phe Ala Ala	L> LE 2> TV 3> OF Ser Cys Gly Cys 50 Pro Gly	ENGTH (PE: RGAN) Ile Thr Asp 35 Glu Gly Pro Gly Thr	H: 28 PRT ISM: ISM: VCE: Phe Arg 20 Met Val Asp Val Ser 1000 Lys	Myce 24 Gln 5 Met Thr Asn Arg Leu 85 Gly	Gln Pro Cys Ala Ser 70 Ile Asp	Ala Pro Lys Gly 55 Cys Tyr Trp	Ser Asn Val 40 Asp Ala Met Thr 120	Ser Asn 25 Gly Glu Asn Ser Lys 105 Asp	Gly 10 Ser Gly Phe Glu Lys 90 Val	Ser Pro Thr Thr Ala 75 Val Asp	Val Lys Val 60 Ile Asp Glu Asn	Thr Gly 45 Glu Gly Asp Phe Glu 125	Ser 30 Val Met Gly Ala Gly 110 Asn	Val Ser His Asn Ser Tyr Cys	Thr Gly Ala His 80 Thr Asp
<2113 < 212 < 213 < 400 His 1 Leu Ser Phe Gln 65 Phe Ala Ala Lys	L> LE 2> TY 2> OF TY	ENGTH (PE: RGAN) Ile Thr Asp 35 Glu Gly Pro Gly Thr 115	H: 28 PRT [SM: ISM: ISM: Phe Arg 20 Met Val Asp Val Ser 1000 Lys	Myce 24 Gln 5 Met Thr Asn Arg Leu 85 Gly Thr	Gln Pro Cys Ala Ser 70 Ile Asp Trp	Ala Pro Lys Gly 55 Cys Tyr Trp Gly Pro 135	Ser Asn Val 40 Asp Ala Met Thr 120 Ser	Ser Asn 25 Gly Glu Asn Ser Lys 105 Asp	Gly 10 Ser Gly Phe Glu Lys 90 Val Lys	Ser Pro Thr Thr Ala 75 Val Asp Leu Pro	Val Lys Val 60 Ile Asp Glu Asn	Thr Gly 45 Glu Gly Asp Phe Glu 125 Gly	Ser 30 Val Met Gly Ala Gly 110 Asn	15 Val Ser His Asn Ser 95 Tyr Cys	Thr Gly Ala His 80 Thr Asp Gly Leu

105

Ala Gln Phe Tyr Met Ser Cys Tyr Gln Val Arg Ile Ser Gly Gly Glu 165 170 175
Gly Gly Gln Leu Pro Ala Gly Val Lys Ile Pro Gly Ala Tyr Ser Ala 180 185 190
Asn Asp Pro Gly Ile Leu Val Asp Ile Trp Gly Asn Asp Phe Asn Asp
Pro Pro Gly His Ser Ala Arg His Ala Ile Ile Ile Ser Ser
210 215 220
Ser Asn Asn Ser Gly Ala Lys Met Thr Lys Lys Ile Gln Glu Pro Thr 225 230 235 240
Ile Thr Ser Val Thr Asp Leu Pro Thr Asp Glu Ala Lys Trp Ile Ala 245 250 255
Leu Gln Lys Ile Ser Tyr Val Asp Gln Thr Gly Thr Ala Arg Thr Tyr 260 265 270
Glu Pro Ala Ser Arg Lys Thr Arg Ser Pro Arg Val
2,5
<210> SEQ ID NO 25 <211> LENGTH: 726
<212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila
<400> SEQUENCE: 25
atgaagtegt etaceeegge ettgttegee getgggetee ttgeteagea tgetgeggee 60
cactocatet tecageagge gageagegge tegacegaet ttgataeget gtgeaceegg 120
atgccgccca acaatagccc cgtcactagt gtgaccagcg gcgacatgac ctgcaacgtc 180
ggcggcacca agggggtgtc gggcttctgc gaggtgaacg ccggcgacga gttcacggtt 240
gagatgcacg cgcagcccgg cgaccgctcg tgcgccaacg aggccatcgg cgggaaccac 300 ttcggcccgg tcctcatcta catgagcaag gtcgacgacg cctccactgc cgacgggtcc 360
ggcgactggt tcaaggtgga cgagttcggc tacgacgcaa gcaccaagac ctggggcacc 420
gacaagctca acgagaactg cggcaagcgc accttcaaca tccccagcca catccccgcg 480
ggcgactate tegteeggge egaggetate gegetacaea etgeeaacea geeaggegge 540
gcgcagttct acatgagctg ctatcaagtc aggatttccg gcggcgaagg gggccagctg 600
cctgccggag tcaagatccc gggcgcgtac agtgccaacg accccggcat ccttgtcgac 660
atctggggta acgatttcaa cgagtacgtt attccgggcc ccccggtcat cgacagcagc 720
tacttc 726
<210> SEQ ID NO 26 <211> LENGTH: 242 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila
<400> SEQUENCE: 26
Met Lys Ser Ser Thr Pro Ala Leu Phe Ala Ala Gly Leu Leu Ala Gln 1 5 10 15
His Ala Ala His Ser Ile Phe Gln Gln Ala Ser Ser Gly Ser Thr
Asp Phe Asp Thr Leu Cys Thr Arg Met Pro Pro Asn Asn Ser Pro Val
Thr Ser Val Thr Ser Gly Asp Met Thr Cys Asn Val Gly Gly Thr Lys

	50					55					60				
Gly 65	Val	Ser	Gly	Phe	Сув 70	Glu	Val	Asn	Ala	Gly 75	Asp	Glu	Phe	Thr	Val 80
Glu	Met	His	Ala	Gln 85	Pro	Gly	Asp	Arg	Ser 90	Cys	Ala	Asn	Glu	Ala 95	Ile
Gly	Gly	Asn	His 100	Phe	Gly	Pro	Val	Leu 105	Ile	Tyr	Met	Ser	Lys 110	Val	Asp
Asp	Ala	Ser 115	Thr	Ala	Asp	Gly	Ser 120	Gly	Asp	Trp	Phe	Lys 125	Val	Asp	Glu
Phe	Gly 130	Tyr	Asp	Ala	Ser	Thr 135	Lys	Thr	Trp	Gly	Thr 140	Asp	Lys	Leu	Asn
Glu 145	Asn	CÀa	Gly	ГÀа	Arg 150	Thr	Phe	Asn	Ile	Pro 155	Ser	His	Ile	Pro	Ala 160
Gly	Asp	Tyr	Leu	Val 165	Arg	Ala	Glu	Ala	Ile 170	Ala	Leu	His	Thr	Ala 175	Asn
Gln	Pro	Gly	Gly 180	Ala	Gln	Phe	Tyr	Met 185	Ser	Сув	Tyr	Gln	Val 190	Arg	Ile
Ser	Gly	Gly 195	Glu	Gly	Gly	Gln	Leu 200	Pro	Ala	Gly	Val	Lys 205	Ile	Pro	Gly
Ala	Tyr 210	Ser	Ala	Asn	Asp	Pro 215	Gly	Ile	Leu	Val	Asp 220	Ile	Trp	Gly	Asn
Asp 225	Phe	Asn	Glu	Tyr	Val 230	Ile	Pro	Gly	Pro	Pro 235	Val	Ile	Asp	Ser	Ser 240
Tyr	Phe														
<210> SEQ ID NO 27 <211> LENGTH: 222															
				22											
<212	L> LE 2> TY 3> OF	PE:	PRT		eliop	htho	ora t	herr	nophi	ila					
<212 <213	2 > T	PE : RGANI	PRT ISM:	Мус	eliop	phtho	ora t	herr	nophi	ila					
<212 <213 <400	2 > T? 3 > OF	(PE : RGAN] EQUEN	PRT ISM: NCE:	Мусе 27	_				_		Thr	Asp	Phe	Asp 15	Thr
<212 <213 <400 His 1	2> TY 3> OF 0> SE	(PE: RGANI EQUEN	PRT ISM: NCE: Phe	Myce 27 Gln 5	Gln	Ala	Ser	Ser	Gly 10	Ser				15	
<212 <213 <400 His 1	2 > TY 3 > OF 0 > SE Ser	TPE: RGANI EQUEN Ile Thr	PRT ISM: NCE: Phe Arg 20	Myce 27 Gln 5 Met	Gln Pro	Ala Pro	Ser Asn	Ser Asn 25	Gly 10 Ser	Ser Pro	Val	Thr	Ser 30	15 Val	Thr
<212 <213 <400 His 1 Leu	2> TY 3> OF 5> SF Ser Cys	PE: RGANI EQUEN Ile Thr Asp 35	PRT ISM: NCE: Phe Arg 20 Met	Myce 27 Gln 5 Met	Gln Pro Cys	Ala Pro Asn	Ser Asn Val 40	Ser Asn 25 Gly	Gly 10 Ser	Ser Pro Thr	Val Lys	Thr Gly 45	Ser 30 Val	15 Val Ser	Thr Gly
<212 <213 <400 His 1 Leu Ser	2> TY 3> OF 3> OF Ser Cys Gly	(PE: RGANI EQUEN Ile Thr Asp 35	PRT ISM: NCE: Phe Arg 20 Met	Myce 27 Gln 5 Met Thr	Gln Pro Cys Ala	Ala Pro Asn Gly 55	Ser Asn Val 40 Asp	Ser Asn 25 Gly	Gly 10 Ser Gly	Ser Pro Thr	Val Lys Val 60	Thr Gly 45 Glu	Ser 30 Val Met	15 Val Ser His	Thr Gly Ala
<212 <213 <400 His 1 Leu Ser Phe	2> TY 3> OF 3> OF 50> SE Cys Gly Cys 50	REE: RGANI EQUEN Thr Asp 35 Glu Gly	PRT ISM: NCE: Phe Arg 20 Met Val Asp	Myce 27 Gln 5 Met Thr Asn	Gln Pro Cys Ala Ser 70	Ala Pro Asn Gly 55 Cys	Ser Asn Val 40 Asp	Ser Asn 25 Gly Glu Asn	Gly 10 Ser Gly Phe	Ser Pro Thr Thr Ala 75	Val Lys Val 60	Thr Gly 45 Glu Gly	Ser 30 Val Met	Val Ser His	Thr Gly Ala His
<212 <213 <400 His 1 Leu Ser Phe Gln 65 Phe	22> TY 3> OF Ser Cys Gly Cys 50	YPE: GGANI GQUEN Ile Thr Asp 35 Glu Gly	PRT ISM: ISM: Phe Arg 20 Met Val Asp	Myce 27 Gln 5 Met Thr Asn Arg	Gln Pro Cys Ala Ser 70 Ile	Ala Pro Asn Gly 55 Cys	Ser Asn Val 40 Asp Ala	Ser Asn 25 Gly Glu Asn Ser	Gly 10 Ser Gly Phe Glu Lys 90	Ser Pro Thr Thr Ala 75 Val	Val Lys Val 60 Ile	Thr Gly 45 Glu Gly Asp	Ser 30 Val Met Gly	15 Val Ser His Asn	Thr Gly Ala His 80 Thr
<212 <213 <400 His 1 Leu Ser Phe Gln 65 Phe	22> TY 3> OF Ser Cys Gly Cys 50 Pro	YPE: GGANI GQUEN Ile Thr Asp 35 Glu Gly Pro	PRT ISM: ISM: NCE: Phe Arg 20 Met Val Asp Val Ser 100	Myce 27 Gln 5 Met Thr Asn Arg Leu 85 Gly	Gln Pro Cys Ala Ser 70 Ile Asp	Ala Pro Asn Gly 55 Cys Tyr	Ser Asn Val 40 Asp Ala Met	Ser Asn 25 Gly Glu Asn Ser Lys 105	Gly 10 Ser Gly Phe Glu Lys 90 Val	Ser Pro Thr Thr Ala 75 Val	Val Lys Val 60 Ile Asp	Thr Gly 45 Glu Gly Asp	Ser 30 Val Met Gly Ala Gly 110	15 Val Ser His Asn Ser 95	Thr Gly Ala His 80 Thr
<212 <213 <400 His 1 Leu Ser Phe Gln 65 Phe Ala	22> TY 3> OF Ser Cys Gly Cys 50 Pro Gly	YPE: GGAN: GQUEN Thr Asp 35 Glu Gly Pro Gly Thr 115	PRT ISM: ISM: NCE: Phe Arg 20 Met Val Asp Val Ser 100 Lys	Myce 27 Gln 5 Met Thr Asn Arg Leu 85 Gly	Gln Pro Cys Ala Ser 70 Ile Asp	Ala Pro Asn Gly 55 Cys Tyr Trp	Ser Asn Val 40 Asp Ala Met Thr 120	Ser Asn 25 Glu Asn Ser Lys 105 Asp	Gly 10 Ser Gly Phe Glu Lys 90 Val	Ser Pro Thr Thr Ala 75 Val Asp	Val Lys Val 60 Ile Asp Glu Asn	Thr Gly 45 Glu Gly Asp Phe Glu 125	Ser 30 Val Met Gly Ala Gly 110	15 Val Ser His Asn Ser 95 Tyr	Thr Gly Ala His 80 Thr Asp
<212 <213 <400 His 1 Leu Ser Phe Gln 65 Phe Ala Ala	2> TY 3> OF 0> SE Cys Gly Cys 50 Pro Gly Asp Ser	YPE: GGAN: GQUEN Thr Asp 35 Glu Gly Pro Gly Thr 115	PRT ISM: ISM: Phe Arg 20 Met Val Asp Val Ser 100 Lys	Mycee 27 Gln 5 Met Thr Asn Arg Leu 85 Gly Thr Asn	Gln Pro Cys Ala Ser 70 Ile Asp Trp	Ala Pro Asn Gly 55 Cys Tyr Trp Gly Pro 135	Ser Asn Val 40 Asp Ala Met Thr 120 Ser	Ser Asn 25 Gly Glu Asn Ser Lys 105 Asp	Gly 10 Ser Gly Phe Glu Lys 90 Val Lys	Ser Pro Thr Thr Ala 75 Val Asp Leu Pro	Val Lys Val 60 Ile Asp Glu Asn	Thr Gly 45 Glu Gly Asp Phe Glu 125 Gly	Ser 30 Val Met Gly Ala Gly 110 Asn	15 Val Ser His Asn Ser 95 Tyr Cys	Thr Gly Ala His 80 Thr Asp Gly Leu

Gly Gly Gln Leu Pro Ala Gly Val Lys Ile Pro Gly Ala Tyr Ser Ala 180 185 190 Asn Asp Pro Gly Ile Leu Val Asp Ile Trp Gly Asn Asp Phe Asn Glu 205 Tyr Val Ile Pro Gly Pro Pro Val Ile Asp Ser Ser Tyr Phe 210 215 220 <210 > SEQ ID NO 28 <211 > LENGTH: 969 <212 > TypE: DNA <213 > ORGANISM: Myceliophthora thermophila <4400 > SEQUENCE: 28 atgaagteet teacecteae cactetggee geettggetg geaacgeege egeteacgeg 60
Asn Asp Pro Gly Ile Leu Val Asp Ile Trp Gly Asn Asp Phe Asn Glu 195 Tyr Val Ile Pro Gly Pro Pro Val Ile Asp Ser Ser Tyr Phe 210 <210> SEQ ID NO 28 <211> LENGTH: 969 <212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 28
Tyr Val Ile Pro Gly Pro Pro Val Ile Asp Ser Ser Tyr Phe 210 215 220 <210> SEQ ID NO 28 <211> LENGTH: 969 <212> TypE: DNA <213> ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 28
210 215 220 <210 > SEQ ID NO 28 <211 > LENGTH: 969 <212 > TYPE: DNA <213 > ORGANISM: Myceliophthora thermophila <400 > SEQUENCE: 28
<211> LENGTH: 969 <212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 28
atgaagtest teacesteas sastetgges geostggetg geaacgesgs costeacgeg 60
acguageous consecutor energy of genergy genutycogo cyclonegry
acettecagg ccctctgggt cgacggcgte gactacggcg cgcagtgtgc ccgtctgccc 120
gegtecaact egeeggteac egaegtgace tecaaegega teegetgeaa egeeaaecee 180
tegecegete ggggcaagtg eeeggteaag geeggetega eegttaeggt egagatgeat 240
cagcaacceg gtgacegete gtgcagcage gaggegateg geggggegea etaeggeece 300
gtgatggtgt acatgtccaa ggtgtcggac gcggcgtcgg cggacgggtc gtcgggctgg 360
ttcaaggtgt tcgaggacgg ctgggccaag aacccgtccg gcgggtcggg cgacgacgac 420
tactggggca ccaaggacct gaactcgtgc tgcgggaaga tgaacgtcaa gatccccgcc 480
gacctgccct cgggcgacta cctgctccgg gccgaggccc tcgcgctgca cacggccggc 540
agegegggeg gegeceagtt ctacatgace tgetaecage teacegtgae eggeteegge 600
agegecagee egeceacegt etectteeeg ggegeetaca aggecacega eeegggeate 660
ctcgtcaaca tccacgcccc gctgtccggc tacaccgtgc ccggcccggc
ggeggeteca ecaagaagge eggeagegee tgeacegget gegagteeae ttgegeegte 780
ggctccggcc ccaccgccac cgtctcccag tcgcccggtt ccaccgccac ctcggccccc 840
ggcggcggcg gcggctgcac cgtccagaag taccagcagt gcggcggcca gggctacacc 900
ggctgcacca actgcgcgtc cggctccacc tgcagcgcgg tctcgccgcc ctactactcg 960
cagtgcgtc 969
<210> SEQ ID NO 29 <211> LENGTH: 323 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila
<400> SEQUENCE: 29
Met Lys Ser Phe Thr Leu Thr Thr Leu Ala Ala Leu Ala Gly Asn Ala 1 5 10 15
Ala Ala His Ala Thr Phe Gln Ala Leu Trp Val Asp Gly Val Asp Tyr 20 25 30
Gly Ala Gln Cys Ala Arg Leu Pro Ala Ser Asn Ser Pro Val Thr Asp 35 40 45
Val Thr Ser Asn Ala Ile Arg Cys Asn Ala Asn Pro Ser Pro Ala Arg 50 55 60
Gly Lys Cys Pro Val Lys Ala Gly Ser Thr Val Thr Val Glu Met His 65 70 75 80

Gln	Gln	Pro	Gly	Asp 85	Arg	Ser	Cys	Ser	Ser 90	Glu	Ala	Ile	Gly	Gly 95	Ala
His	Tyr	Gly	Pro 100	Val	Met	Val	Tyr	Met 105	Ser	Lys	Val	Ser	Asp 110	Ala	Ala
Ser	Ala	Asp 115	Gly	Ser	Ser	Gly	Trp 120	Phe	Lys	Val	Phe	Glu 125	Asp	Gly	Trp
Ala	Lys 130	Asn	Pro	Ser	Gly	Gly 135	Ser	Gly	Asp	Asp	Asp 140	Tyr	Trp	Gly	Thr
Lys 145	Asp	Leu	Asn	Ser	Cys 150	Cys	Gly	Lys	Met	Asn 155	Val	ГÀЗ	Ile	Pro	Ala 160
Asp	Leu	Pro	Ser	Gly 165	Asp	Tyr	Leu	Leu	Arg 170	Ala	Glu	Ala	Leu	Ala 175	Leu
His	Thr	Ala	Gly 180	Ser	Ala	Gly	Gly	Ala 185	Gln	Phe	Tyr	Met	Thr 190	CÀa	Tyr
Gln	Leu	Thr 195	Val	Thr	Gly	Ser	Gly 200	Ser	Ala	Ser	Pro	Pro 205	Thr	Val	Ser
Phe	Pro 210	Gly	Ala	Tyr	Lys	Ala 215	Thr	Asp	Pro	Gly	Ile 220	Leu	Val	Asn	Ile
His 225	Ala	Pro	Leu	Ser	Gly 230	Tyr	Thr	Val	Pro	Gly 235	Pro	Ala	Val	Tyr	Ser 240
Gly	Gly	Ser	Thr	Lys 245	Lys	Ala	Gly	Ser	Ala 250	Сув	Thr	Gly	Сув	Glu 255	Ser
Thr	Cys	Ala	Val 260	Gly	Ser	Gly	Pro	Thr 265	Ala	Thr	Val	Ser	Gln 270	Ser	Pro
Gly	Ser	Thr 275	Ala	Thr	Ser	Ala	Pro 280	Gly	Gly	Gly	Gly	Gly 285	Сув	Thr	Val
Gln	Lys 290	Tyr	Gln	Gln	Сла	Gly 295	Gly	Gln	Gly	Tyr	Thr 300	Gly	Сув	Thr	Asn
Cys 305	Ala	Ser	Gly	Ser	Thr 310	CAa	Ser	Ala	Val	Ser 315	Pro	Pro	Tyr	Tyr	Ser 320
Gln	Cys	Val													
<210)> SI	EQ II	ои о	30											
	L> LE 2> TY			05											
<213	3 > OF	RGAN]	ISM:	Мус	eliop	hth	ora t	herr	nophi	ila					
< 400	O> SI	EQUE	ICE:	30											
His 1	Ala	Thr	Phe	Gln 5	Ala	Leu	Trp	Val	Asp 10	Gly	Val	Asp	Tyr	Gly 15	Ala
Gln	Cys	Ala	Arg 20	Leu	Pro	Ala	Ser	Asn 25	Ser	Pro	Val	Thr	Asp 30	Val	Thr
Ser	Asn	Ala 35	Ile	Arg	CAa	Asn	Ala 40	Asn	Pro	Ser	Pro	Ala 45	Arg	Gly	Lys
Cya	Pro 50	Val	Lys	Ala	Gly	Ser 55	Thr	Val	Thr	Val	Glu 60	Met	His	Gln	Gln
Pro 65	Gly	Asp	Arg	Ser	Сув 70	Ser	Ser	Glu	Ala	Ile 75	Gly	Gly	Ala	His	Tyr 80
Gly	Pro	Val	Met	Val 85	Tyr	Met	Ser	Lys	Val 90	Ser	Asp	Ala	Ala	Ser 95	Ala
Asp	Gly	Ser	Ser 100	Gly	Trp	Phe	Lys	Val 105	Phe	Glu	Asp	Gly	Trp 110	Ala	Lys

accaacgact actacagcca gtgcttgtag

-continued

Asn Pro Ser Gly Gly Ser Gly Asp Asp Asp Tyr Trp Gly Thr Lys Asp 115 120 125
Leu Asn Ser Cys Cys Gly Lys Met Asn Val Lys Ile Pro Ala Asp Leu 130 135 140
Pro Ser Gly Asp Tyr Leu Leu Arg Ala Glu Ala Leu Ala Leu His Thr 145 150 155 160
Ala Gly Ser Ala Gly Gly Ala Gln Phe Tyr Met Thr Cys Tyr Gln Leu 165 170 175
Thr Val Thr Gly Ser Gly Ser Ala Ser Pro Pro Thr Val Ser Phe Pro
Gly Ala Tyr Lys Ala Thr Asp Pro Gly Ile Leu Val Asn Ile His Ala 195 200 205
Pro Leu Ser Gly Tyr Thr Val Pro Gly Pro Ala Val Tyr Ser Gly Gly
210 215 220 Ser Thr Lys Lys Ala Gly Ser Ala Cys Thr Gly Cys Glu Ser Thr Cys
225 230 235 240
Ala Val Gly Ser Gly Pro Thr Ala Thr Val Ser Gln Ser Pro Gly Ser 245 250 255
Thr Ala Thr Ser Ala Pro Gly Gly Gly Gly Cys Thr Val Gln Lys 260 265 270
Tyr Gln Gln Cys Gly Gly Gln Gly Tyr Thr Gly Cys Thr Asn Cys Ala 275 280 285
Ser Gly Ser Thr Cys Ser Ala Val Ser Pro Pro Tyr Tyr Ser Gln Cys 290 295 300
Val 305
<210> SEQ ID NO 31 <211> LENGTH: 870
<212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila
<400> SEQUENCE: 31
atgaagggac teeteggege egeegeeete tegetggeeg teagegatgt eteggeeeae 60
tacatctttc agcagctgac gacgggcggc gtcaagcacg ctgtgtacca gtacatccgc 120 aagaacacca actataactc gcccgtgacc gatctgacgt ccaacgacct ccgctgcaat 180
gtgggtgcta ccggtgcggg caccgatacc gtcacggtgc gcgccggcga ttcgttcacc 240
ttcacgaccg atacgcccgt ttaccaccag ggcccgacct cgatctacat gtccaaggcc 300
cccggcagcg cgtccgacta cgacggcagc ggcggctggt tcaagatcaa ggactgggct 360
gactacaccg ccacgattcc ggaatgtatt ccccccggcg actacctgct tcgcatccag 420
caacteggea tecacaacee ttggeeegeg ggeateeeee agttetaeat etettgtgee 480
cagatcaccg tgactggtgg cggcagtgcc aaccccggcc cgaccgtctc catcccaggc 540
geetteaagg agacegacee gggetacaet gteaacatet acaacaaett ecacaaetae 600
accgtccctg gcccagccgt cttcacctgc aacggtagcg gcggcaacaa cggcggcggc 660
tecaacecag teaceaceae caceaecace aceaecagge egtecaceag cacegeceag 720
teccageegt egtegageee gaeeageeee tecagetgea eegtegegaa gtggggeeag 780
tgoggaggac agggttacag oggotgoaco gtgtgogogg oogggtogac otgocagaag 840

870

```
<210> SEQ ID NO 32
<211> LENGTH: 289
<212> TYPE: PRT
<213> ORGANISM: Myceliophthora thermophila
<400> SEQUENCE: 32
Met Lys Gly Leu Leu Gly Ala Ala Ala Leu Ser Leu Ala Val Ser Asp
Val Ser Ala His Tyr Ile Phe Gln Gln Leu Thr Thr Gly Gly Val Lys
His Ala Val Tyr Gln Tyr Ile Arg Lys Asn Thr Asn Tyr Asn Ser Pro
Val Thr Asp Leu Thr Ser Asn Asp Leu Arg Cys Asn Val Gly Ala Thr 50 \\
Gly Ala Gly Thr Asp Thr Val Thr Val Arg Ala Gly Asp Ser Phe Thr 65 70 75 80
Phe Thr Thr Asp Thr Pro Val Tyr His Gln Gly Pro Thr Ser Ile Tyr 85 90 95
Met Ser Lys Ala Pro Gly Ser Ala Ser Asp Tyr Asp Gly Ser Gly Gly
                              105
Trp Phe Lys Ile Lys Asp Trp Ala Asp Tyr Thr Ala Thr Ile Pro Glu
                          120
Cys Ile Pro Pro Gly Asp Tyr Leu Leu Arg Ile Gln Gln Leu Gly Ile
His Asn Pro Trp Pro Ala Gly Ile Pro Gln Phe Tyr Ile Ser Cys Ala
        150
                                    155
Gln Ile Thr Val Thr Gly Gly Gly Ser Ala Asn Pro Gly Pro Thr Val
                                 170
Ser Ile Pro Gly Ala Phe Lys Glu Thr Asp Pro Gly Tyr Thr Val Asn
                               185
Ile Tyr Asn Asn Phe His Asn Tyr Thr Val Pro Gly Pro Ala Val Phe
Thr Cys Asn Gly Ser Gly Gly Asn Asn Gly Gly Gly Ser Asn Pro Val
        215
Thr Thr Thr Thr Thr Thr Thr Arg Pro Ser Thr Ser Thr Ala Gln
Ser Gln Pro Ser Ser Ser Pro Thr Ser Pro Ser Ser Cys Thr Val Ala $245$
Lys Trp Gly Gln Cys Gly Gly Gln Gly Tyr Ser Gly Cys Thr Val Cys
Ala Ala Gly Ser Thr Cys Gln Lys Thr Asn Asp Tyr Tyr Ser Gln Cys
Leu
<210> SEQ ID NO 33
<211> LENGTH: 270
<212> TYPE: PRT
<213> ORGANISM: Myceliophthora thermophila
<400> SEQUENCE: 33
His Tyr Ile Phe Gln Gln Leu Thr Thr Gly Gly Val Lys His Ala Val
```

Leu	Thr	Ser 35	Asn	Asp	Leu	Arg	Cys 40	Asn	Val	Gly	Ala	Thr 45	Gly	Ala	Gly	
Thr	Asp 50	Thr	Val	Thr	Val	Arg 55	Ala	Gly	Asp	Ser	Phe 60	Thr	Phe	Thr	Thr	
Asp 65	Thr	Pro	Val	Tyr	His 70	Gln	Gly	Pro	Thr	Ser 75	Ile	Tyr	Met	Ser	Eys	
Ala	Pro	Gly	Ser	Ala 85	Ser	Asp	Tyr	Asp	Gly 90	Ser	Gly	Gly	Trp	Phe 95	ГÀа	
Ile	Lys	Asp	Trp 100	Ala	Asp	Tyr	Thr	Ala 105	Thr	Ile	Pro	Glu	Cys 110	Ile	Pro	
Pro	Gly	Asp 115	Tyr	Leu	Leu	Arg	Ile 120	Gln	Gln	Leu	Gly	Ile 125	His	Asn	Pro	
Trp	Pro 130	Ala	Gly	Ile	Pro	Gln 135	Phe	Tyr	Ile	Ser	Cys 140	Ala	Gln	Ile	Thr	
Val 145	Thr	Gly	Gly	Gly	Ser 150	Ala	Asn	Pro	Gly	Pro 155	Thr	Val	Ser	Ile	Pro 160	
Gly	Ala	Phe	Lys	Glu 165	Thr	Asp	Pro	Gly	Tyr 170	Thr	Val	Asn	Ile	Tyr 175	Asn	
Asn	Phe	His	Asn 180	Tyr	Thr	Val	Pro	Gly 185	Pro	Ala	Val	Phe	Thr 190	CÀa	Asn	
Gly	Ser	Gly 195	Gly	Asn	Asn	Gly	Gly 200	Gly	Ser	Asn	Pro	Val 205	Thr	Thr	Thr	
Thr	Thr 210	Thr	Thr	Thr	Arg	Pro 215	Ser	Thr	Ser	Thr	Ala 220	Gln	Ser	Gln	Pro	
Ser 225	Ser	Ser	Pro	Thr	Ser 230	Pro	Ser	Ser	Сув	Thr 235	Val	Ala	Lys	Trp	Gly 240	
Gln	Cys	Gly	Gly	Gln 245	Gly	Tyr	Ser	Gly	Сув 250	Thr	Val	Сув	Ala	Ala 255	Gly	
Ser	Thr	CÀa	Gln 260	Lys	Thr	Asn	Asp	Tyr 265	Tyr	Ser	Gln	CÀa	Leu 270			
<213 <213 <213	1> LI 2> T 3> OI	ENGTI YPE : RGAN:		34 Myc	eliop	phtho	ora t	cherr	nophi	ila						
ctga	acgad	egg s	gegge	cgtca	aa go	cacgo	ctgtg	g tao	ccagt	aca	tcc	gcaa	gaa (cacca	aactat	60
aact	cgc	ccg 1	tgac	cgat	ct ga	acgt	ccaa	gad	cctcc	eget	gcaa	atgt	ggg 1	tgcta	accggt	120
gcg	ggcad	ccg a	atac	cgtca	ac g	gtgc	gege	gg g	cgatt	cgt	tcad	cctt	cac (gacco	gatacg	180
accé	gttta	acc a	acca	gggc	cc ga	acct	cgato	c tac	catgt	cca	agg	cccc	egg (cagc	gegtee	240
gact	acga	acg (gcag	egge	gg ct	ggti	caaç	g ato	caago	gact	9999	gtgc	cga (cttta	agcagc	300
ggc	caggo	cca (cctg	gacci	tt g	gcgt	ctgad	c tac	cacco	gcca	cgat	tcc	gga a	atgta	attccc	360
ccc	ggcga	act a	acct	gctt	eg ea	atcca	agcaa	a cto	eggea	atcc	acaa	accci	ttg (geee	gcgggc	420
atco	ccca	agt 1	tcta	catci	tc ti	gtg	ccaç	g ato	cacco	gtga	ctg	gtgg	egg (cagto	gccaac	480
ccc	ggcc	cga (ccgt	ctcca	at co	ccag	gege	c tto	caago	gaga	ccga	accc	999 (ctaca	actgtc	540
aaca	atcta	aca a	acaa	ette	ca ca	aacta	acaco	gto	ccctg	ggcc	cago	ccgt	ett (cacct	gcaac	600

Tyr Gln Tyr Ile Arg Lys Asn Thr Asn Tyr Asn Ser Pro Val Thr Asp 20 25 30

ggtageggeg ge	aacaac	gg cg	ggcgg	gete	aac	cccag	jtca	cca	ccac	cac o	cacca	accacc	660
accaggccgt cc	accagca	ac co	gecea	agtco	cag	gccgt	cgt	cga	gada	gac (cagco	ecctcc	720
agctgcaccg to	gcgaagt	g gg	ggcca	agtgo	gga	aggac	agg	gtt	acago	egg (ctgca	accgtg	780
tgegeggeeg gg	jtcgacct	eg de	cagaa	agaco	aac	cgact	act	aca	gcca	gtg (cttg		834
<210 > SEQ ID <211 > LENGTH: <212 > TYPE: P <213 > ORGANIS	303 PRT	elior	oht.hc	ora t	herr	mophi	la						
<400> SEQUENC	_												
_		C1	77.	77.0	77.0	T 011	Com	T 011	7.7.0	1707	Com	7 am	
Met Lys Gly L 1	.eu ьеи 5	GIY	Ala	АТА	AIA	10	ser	ьец	Ala	Val	15	Asp	
Val Ser Ala H 2	His Tyr 10	Ile	Phe	Gln	Gln 25	Leu	Thr	Thr	Gly	Gly 30	Val	Lys	
His Ala Val T 35	yr Gln	Tyr	Ile	Arg 40	Lys	Asn	Thr	Asn	Tyr 45	Asn	Ser	Pro	
Val Thr Asp L 50	eu Thr	Ser	Asn 55	Asp	Leu	Arg	Cys	Asn 60	Val	Gly	Ala	Thr	
Gly Ala Gly T 65	hr Asp	Thr 70	Val	Thr	Val	_	Ala 75	Gly	Asp	Ser	Phe	Thr 80	
Phe Thr Thr A	ap Thr	Pro	Val	Tyr	His	Gln 90	Gly	Pro	Thr	Ser	Ile 95	Tyr	
Met Ser Lys A	ala Pro	Gly	Ser	Ala	Ser 105	Asp	Tyr	Asp	Gly	Ser	Gly	Gly	
Trp Phe Lys I 115	le Lys	Asp	Trp	Gly 120	Ala	Asp	Phe	Ser	Ser 125	Gly	Gln	Ala	
Thr Trp Thr L	eu Ala	Ser	Asp 135	Tyr	Thr	Ala	Thr	Ile 140	Pro	Glu	СЛа	Ile	
Pro Pro Gly A	ap Tyr	Leu 150	Leu	Arg	Ile		Gln 155	Leu	Gly	Ile	His	Asn 160	
Pro Trp Pro A	ala Gly 165	Ile	Pro	Gln	Phe	Tyr 170	Ile	Ser	CÀa	Ala	Gln 175	Ile	
Thr Val Thr G	Sly Gly .80	Gly	Ser	Ala	Asn 185	Pro	Gly	Pro	Thr	Val 190	Ser	Ile	
Pro Gly Ala P 195	he Lys	Glu	Thr	Asp 200	Pro	Gly	Tyr	Thr	Val 205	Asn	Ile	Tyr	
Asn Asn Phe H	lis Asn	Tyr	Thr 215	Val	Pro	Gly	Pro	Ala 220	Val	Phe	Thr	Cys	
Asn Gly Ser G 225	sly Gly	Asn 230	Asn	Gly	Gly	-	Ser 235	Asn	Pro	Val	Thr	Thr 240	
Thr Thr Thr T	hr Thr	Thr	Arg	Pro	Ser	Thr 250	Ser	Thr	Ala	Gln	Ser 255	Gln	
Pro Ser Ser S		Thr	Ser	Pro	Ser 265		Cys	Thr	Val	Ala 270		Trp	
Gly Gln Cys G		Gln	Gly	Tyr 280		Gly	Cys	Thr	Val 285		Ala	Ala	
Gly Ser Thr C	ys Gln	Lys			Asp	Tyr	Tyr			Сув	Leu		
290			295					300					

		PE:		Мус	eliop	htho	ora t	herr	nophi	ila						
< 400)> SI	EQUE	ICE :	36												
His 1	Tyr	Ile	Phe	Gln 5	Gln	Leu	Thr	Thr	Gly 10	Gly	Val	Lys	His	Ala 15	Val	
Tyr	Gln	Tyr	Ile 20	Arg	ГÀЗ	Asn	Thr	Asn 25	Tyr	Asn	Ser	Pro	Val 30	Thr	Asp	
Leu	Thr	Ser 35	Asn	Asp	Leu	Arg	Cys 40	Asn	Val	Gly	Ala	Thr 45	Gly	Ala	Gly	
Thr	Asp 50	Thr	Val	Thr	Val	Arg 55	Ala	Gly	Asp	Ser	Phe 60	Thr	Phe	Thr	Thr	
Asp 65	Thr	Pro	Val	Tyr	His 70	Gln	Gly	Pro	Thr	Ser 75	Ile	Tyr	Met	Ser	80 Lys	
Ala	Pro	Gly	Ser	Ala 85	Ser	Asp	Tyr	Asp	Gly 90	Ser	Gly	Gly	Trp	Phe 95	Lys	
Ile	ГЛа	Asp	Trp 100	Gly	Ala	Asp	Phe	Ser 105	Ser	Gly	Gln	Ala	Thr 110	Trp	Thr	
Leu	Ala	Ser 115	Asp	Tyr	Thr	Ala	Thr 120	Ile	Pro	Glu	Cys	Ile 125	Pro	Pro	Gly	
Asp	Tyr 130	Leu	Leu	Arg	Ile	Gln 135	Gln	Leu	Gly	Ile	His 140	Asn	Pro	Trp	Pro	
Ala 145	Gly	Ile	Pro	Gln	Phe 150	Tyr	Ile	Ser	Cys	Ala 155	Gln	Ile	Thr	Val	Thr 160	
Gly	Gly	Gly	Ser	Ala 165	Asn	Pro	Gly	Pro	Thr 170	Val	Ser	Ile	Pro	Gly 175	Ala	
Phe	Lys	Glu	Thr 180	Asp	Pro	Gly	Tyr	Thr 185	Val	Asn	Ile	Tyr	Asn 190	Asn	Phe	
His	Asn	Tyr 195	Thr	Val	Pro	Gly	Pro 200	Ala	Val	Phe	Thr	Сув 205	Asn	Gly	Ser	
Gly	Gly 210	Asn	Asn	Gly	Gly	Gly 215	Ser	Asn	Pro	Val	Thr 220	Thr	Thr	Thr	Thr	
Thr 225	Thr	Thr	Arg	Pro	Ser 230	Thr	Ser	Thr	Ala	Gln 235	Ser	Gln	Pro	Ser	Ser 240	
Ser	Pro	Thr	Ser	Pro 245	Ser	Ser	Суз	Thr	Val 250	Ala	ГÀа	Trp	Gly	Gln 255	Сув	
Gly	Gly	Gln	Gly 260	Tyr	Ser	Gly	Cys	Thr 265	Val	Cys	Ala	Ala	Gly 270	Ser	Thr	
Сув	Gln	Lys 275	Thr	Asn	Asp	Tyr	Tyr 280	Ser	Gln	Cys	Leu					
		EQ II ENGTH														
		PE:		Myzer	eliop	hth.	ora t	herr	onhi	ila						
		EQUE				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	JIU (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	юрп	LIG						
atgt	ctto	cct t	caco	ctcca	aa gg	ggtct	cctt	tco	egeed	ctca	tggg	gegeg	ggc a	aacgg	gttgcc	60
gccc	cacgo	gtc a	acgto	cacca	aa ca	atcgt	cato	aac	ggcg	gtct	cata	accaç	gaa d	etteg	gaccca	120
ttca	ecgca	acc c	ttat	tatg	ca ga	aacco	eteeg	g aco	gttg	gtcg	gct	ggaco	ege (gagca	aacacg	180
gaca	acgg	gct t	cgt	egge	2C C	gagto	cctto	tct	agco	ccgg	acat	cato	ctg (ccaca	agtcc	240
gcca	ccaa	acg o	ctgg	cggc	ca to	gccgt	cgto	g gcg	ggaag	ggcg	ataa	aggto	ctt o	catco	agtgg	300

_																
gaca	accto	ggc (ccgaç	gtcgc	ca co	cacgo	gtac	g gto	catco	gact	atct	cgc	cga	ctgc	ggcgac	360
gegg	ggctg	geg a	agaaq	ggtcg	ga ca	aagao	ccaco	gcto	caagt	tct	tcaa	agato	cag	cgagt	ccggc	420
ctg	ctcga	acg g	gcact	aaco	ge e	cccg	gcaaç	g tgg	ggcgt	ccg	acad	eget	gat	cgcca	acaac	480
aact	cgt	ggc t	ggt	ccaga	at co	ccgc	ccaac	ato	gcc	ccgg	gcaa	acta	cgt	cctgo	gccac	540
gaga	atcat	cg o	ccctç	gcaca	ag c	geegg	gccag	g cag	gaaco	ggcg	ccca	agaa	cta	cccto	agtgc	600
ttca	acct	gc a	aggto	cacco	gg ct	ccgg	gcact	caç	gaago	ccct	ccg	gagt	cct	cggca	accgag	660
ctct	acaa	agg o	ccaco	gace	ga a	ggcat	cacte	g gco	caaca	atct	acad	cata	gcc	cgtca	acctac	720
caga	atcco	eeg g	geee	ggcca	at ca	atcto	eggge	ge	ctcc	gccg	tcca	agca	gac	cacct	cggcc	780
atca	accgo	ect o	etget	ageg	ge ea	atcad	ccggo	t tc	egeta	accg	ccg	egee	cac	ggcts	gccacc	840
acca	accgo	eeg o	ccgc	gccg	ge ea	accao	ctaco	c acc	cacco	gctg	gcto	ccggt	tgc	tacco	gccacg	900
ccct	cgad	ccg (gegge	ctctc	cc ti	cctt	ccgcc	cag	gaat	gctc	ctac	ccac	cgc	tgccg	gctacc	960
tcca	agcco	etg o	ctcg	ccga	ac co	egete	geget	ggt	ctga	aaga	agc	geegt	cg	ccaco	gcccgt	1020
gaco	gtcaa	agg t	tgc	cctc												1038
<211 <212 <213	0 > SI L > LI 2 > TY 3 > OF	ENGTH (PE : RGAN)	H: 34 PRT ISM:	16 Myce	eliop	phtho	ora t	herr	nophi	ila						
Met 1	Ser	Ser	Phe	Thr 5	Ser	Lys	Gly	Leu	Leu 10	Ser	Ala	Leu	Met	Gly 15	Ala	
Ala	Thr	Val	Ala 20	Ala	His	Gly	His	Val 25	Thr	Asn	Ile	Val	Ile 30	Asn	Gly	
Val	Ser	Tyr 35	Gln	Asn	Phe	Asp	Pro 40	Phe	Thr	His	Pro	Tyr 45	Met	Gln	Asn	
Pro	Pro 50	Thr	Val	Val	Gly	Trp 55	Thr	Ala	Ser	Asn	Thr 60	Asp	Asn	Gly	Phe	
Val 65	Gly	Pro	Glu	Ser	Phe 70	Ser	Ser	Pro	Asp	Ile 75	Ile	Сув	His	Lys	Ser 80	
Ala	Thr	Asn	Ala	Gly 85	Gly	His	Ala	Val	Val 90	Ala	Ala	Gly	Asp	Lys 95	Val	
Phe	Ile	Gln	Trp 100	Asp	Thr	Trp	Pro	Glu 105	Ser	His	His	Gly	Pro 110	Val	Ile	
Asp	Tyr	Leu 115	Ala	Asp	CÀa	Gly	Asp 120	Ala	Gly	Cya	Glu	Lys 125	Val	Asp	Lys	
Thr	Thr 130	Leu	ГÀа	Phe	Phe	Lys 135	Ile	Ser	Glu	Ser	Gly 140	Leu	Leu	Asp	Gly	
Thr 145	Asn	Ala	Pro	Gly	Lys 150	Trp	Ala	Ser	Asp	Thr 155	Leu	Ile	Ala	Asn	Asn 160	
Asn	Ser	Trp	Leu	Val 165	Gln	Ile	Pro	Pro	Asn 170	Ile	Ala	Pro	Gly	Asn 175	Tyr	
Val	Leu	Arg	His 180	Glu	Ile	Ile	Ala	Leu 185	His	Ser	Ala	Gly	Gln 190	Gln	Asn	
Gly	Ala	Gln 195	Asn	Tyr	Pro	Gln	Cys 200	Phe	Asn	Leu	Gln	Val 205	Thr	Gly	Ser	

Gly Thr Gln Lys Pro Ser Gly Val Leu Gly Thr Glu Leu Tyr Lys Ala 210 215 220

Thr Asp Ala Gly Ile Leu Ala Asn Ile Tyr Thr Ser Pro Val Thr Tyr Gln Ile Pro Gly Pro Ala Ile Ile Ser Gly Ala Ser Ala Val Gln Gln Thr Thr Ser Ala Ile Thr Ala Ser Ala Ser Ala Ile Thr Gly Ser Ala 265 Thr Ala Ala Pro Thr Ala Ala Thr Thr Thr Ala Ala Ala Ala Thr Thr Thr Thr Ala Gly Ser Gly Ala Thr Ala Thr Pro Ser Thr Gly Gly Ser Pro Ser Ser Ala Gln Pro Ala Pro Thr Thr Ala Ala Ala Thr Ser Ser Pro Ala Arg Pro Thr Arg Cys Ala Gly Leu Lys Lys Arg Arg Arg His Ala Arg Asp Val Lys Val Ala Leu 340 <210> SEQ ID NO 39 <211> LENGTH: 326 <212> TYPE: PRT <213 > ORGANISM: Myceliophthora thermophila <400> SEOUENCE: 39 Ala His Gly His Val Thr Asn Ile Val Ile Asn Gly Val Ser Tyr Gln Asn Phe Asp Pro Phe Thr His Pro Tyr Met Gln Asn Pro Pro Thr Val 25 Val Gly Trp Thr Ala Ser Asn Thr Asp Asn Gly Phe Val Gly Pro Glu Ser Phe Ser Ser Pro Asp Ile Ile Cys His Lys Ser Ala Thr Asn Ala Gly Gly His Ala Val Val Ala Ala Gly Asp Lys Val Phe Ile Gln Trp 65 70 75 80 Asp Thr Trp Pro Glu Ser His His Gly Pro Val Ile Asp Tyr Leu Ala Asp Cys Gly Asp Ala Gly Cys Glu Lys Val Asp Lys Thr Thr Leu Lys Phe Phe Lys Ile Ser Glu Ser Gly Leu Leu Asp Gly Thr Asn Ala Pro Gly Lys Trp Ala Ser Asp Thr Leu Ile Ala Asn Asn Asn Ser Trp Leu Val Gln Ile Pro Pro Asn Ile Ala Pro Gly Asn Tyr Val Leu Arg His Glu Ile Ile Ala Leu His Ser Ala Gly Gln Gln Asn Gly Ala Gln Asn Tyr Pro Gln Cys Phe Asn Leu Gln Val Thr Gly Ser Gly Thr Gln Lys 185 Pro Ser Gly Val Leu Gly Thr Glu Leu Tyr Lys Ala Thr Asp Ala Gly Ile Leu Ala Asn Ile Tyr Thr Ser Pro Val Thr Tyr Gln Ile Pro Gly Pro Ala Ile Ile Ser Gly Ala Ser Ala Val Gln Gln Thr Thr Ser Ala

Concinued	
225 230 235 240	
Ile Thr Ala Ser Ala Ser Ala Ile Thr Gly Ser Ala Thr Ala Ala Pro 245 250 255	
Thr Ala Ala Thr Thr Thr Ala Ala Ala Ala Ala Thr Thr Thr Thr Thr 260 265 270	
Ala Gly Ser Gly Ala Thr Ala Thr Pro Ser Thr Gly Gly Ser Pro Ser 275 280 285	
Ser Ala Gln Pro Ala Pro Thr Thr Ala Ala Ala Thr Ser Ser Pro Ala 290 295 300	
Arg Pro Thr Arg Cys Ala Gly Leu Lys Lys Arg Arg Arg His Ala Arg 305 310 315 320	
Asp Val Lys Val Ala Leu 325	
<210> SEQ ID NO 40 <211> LENGTH: 714 <212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila	
<400> SEQUENCE: 40	
atgaagacge tegeegeest egtggteteg geegeesteg tggeegegea eggetatgtt	60
gaccacgcca cgatcggtgg caaggattat cagttctacc agccgtacca ggacccttac	120
atgggcgaca acaagcccga tagggtttcc cgctccatcc cgggcaacgg ccccgtggag	180
gacgtcaact ccatcgacct ccagtgccac gccggtgccg aaccggccaa gctccacgcc	240
cccgccgccg ccggctcgac cgtgacgctc tactggaccc tctggcccga ctcccacgtc	300
ggccccgtca tcacctacat ggctcgctgc cccgacaccg gctgccagga ctggtccccg	360
ggaactaage cegtttggtt caagatcaag gaaggeggee gtgagggeae etecaatace	420
ccgctcatga cggccccctc cgcctacacc tacacgatcc cgtcctgcct caagagcggc	480
tactaceteg teegecaega gateategee etgeaetegg cetggeagta eeeeggegee	540
cagttctace egggetgeca ecagetecag gteaceggeg geggetecae egtgecetet	600
accaacctgg teteetteee eggegeetae aaggggageg acceeggeat cacctaegae	660
gettacaagg egeaacetta caccatecet ggeeeggeeg tgtttacetg etga	714
<210> SEQ ID NO 41 <211> LENGTH: 237 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila	
<400> SEQUENCE: 41	
Met Lys Thr Leu Ala Ala Leu Val Val Ser Ala Ala Leu Val Ala Ala 1 5 10 15	
His Gly Tyr Val Asp His Ala Thr Ile Gly Gly Lys Asp Tyr Gln Phe 20 25 30	
Tyr Gln Pro Tyr Gln Asp Pro Tyr Met Gly Asp Asn Lys Pro Asp Arg 35 40 45	
Val Ser Arg Ser Ile Pro Gly Asn Gly Pro Val Glu Asp Val Asn Ser 50 55 60	
Ile Asp Leu Gln Cys His Ala Gly Ala Glu Pro Ala Lys Leu His Ala 65 70 75 80	

Pro Ala Ala Ala Gly Ser Thr Val Thr Leu Tyr Trp Thr Leu Trp Pro

				85					90					95	
Asp	Ser	His	Val 100	Gly	Pro	Val	Ile	Thr 105	Tyr	Met	Ala	Arg	Cys 110	Pro	Asp
Thr	Gly	Суз 115	Gln	Asp	Trp	Ser	Pro 120	Gly	Thr	Lys	Pro	Val 125	Trp	Phe	Lys
Ile	Lys 130	Glu	Gly	Gly	Arg	Glu 135	Gly	Thr	Ser	Asn	Thr 140	Pro	Leu	Met	Thr
Ala 145	Pro	Ser	Ala	Tyr	Thr 150	Tyr	Thr	Ile	Pro	Ser 155	Сув	Leu	Lys	Ser	Gly 160
Tyr	Tyr	Leu	Val	Arg 165	His	Glu	Ile	Ile	Ala 170	Leu	His	Ser	Ala	Trp 175	Gln
Tyr	Pro	Gly	Ala 180	Gln	Phe	Tyr	Pro	Gly 185	Cys	His	Gln	Leu	Gln 190	Val	Thr
Gly	Gly	Gly 195	Ser	Thr	Val	Pro	Ser 200	Thr	Asn	Leu	Val	Ser 205	Phe	Pro	Gly
Ala	Tyr 210	Lys	Gly	Ser	Asp	Pro 215	Gly	Ile	Thr	Tyr	Asp 220	Ala	Tyr	Lys	Ala
Gln 225	Pro	Tyr	Thr	Ile	Pro 230	Gly	Pro	Ala	Val	Phe 235	Thr	CAa			
		EQ II													
		PE : RGANI		Мусе	eliop	htho	ora t	herm	nophi	lla					
< 400)> SE	EQUEN	ICE :	42											
Tyr 1	Val	Asp	His	Ala 5	Thr	Ile	Gly	Gly	Lys 10	Asp	Tyr	Gln	Phe	Tyr 15	Gln
Pro	Tyr	Gln	Asp 20	Pro	Tyr	Met	Gly	Asp 25	Asn	Lys	Pro	Asp	Arg 30	Val	Ser
Arg	Ser	Ile 35	Pro	Gly	Asn	Gly	Pro 40	Val	Glu	Asp	Val	Asn 45	Ser	Ile	Asp
Leu	Gln 50	Cys	His	Ala	Gly	Ala 55	Glu	Pro	Ala	Lys	Leu 60	His	Ala	Pro	Ala
Ala 65	Ala	Gly	Ser	Thr	Val 70	Thr	Leu	Tyr	Trp	Thr 75	Leu	Trp	Pro	Asp	Ser 80
His	Val	Gly	Pro	Val 85	Ile	Thr	Tyr	Met	Ala 90	Arg	СЛа	Pro	Asp	Thr 95	Gly
Cys	Gln	Asp	Trp 100	Ser	Pro	Gly	Thr	Lys 105	Pro	Val	Trp	Phe	Lys 110	Ile	Lys
Glu	Gly	Gly 115	Arg	Glu	Gly	Thr	Ser 120	Asn	Thr	Pro	Leu	Met 125	Thr	Ala	Pro
Ser	Ala 130	Tyr	Thr	Tyr	Thr	Ile 135	Pro	Ser	CÀa	Leu	Lys 140	Ser	Gly	Tyr	Tyr
Leu 145	Val	Arg	His	Glu	Ile 150	Ile	Ala	Leu	His	Ser 155	Ala	Trp	Gln	Tyr	Pro 160
Gly	Ala	Gln	Phe	Tyr 165	Pro	Gly	Cys	His	Gln 170	Leu	Gln	Val	Thr	Gly 175	Gly
Gly	Ser	Thr	Val 180	Pro	Ser	Thr	Asn	Leu 185	Val	Ser	Phe	Pro	Gly 190	Ala	Tyr
Lys	Gly	Ser 195	Asp	Pro	Gly	Ile	Thr 200	Tyr	Asp	Ala	Tyr	Lув 205	Ala	Gln	Pro

```
Tyr Thr Ile Pro Gly Pro Ala Val Phe Thr Cys
    210
<210> SEQ ID NO 43
<211> LENGTH: 723
<212> TYPE: DNA
<213> ORGANISM: Myceliophthora thermophila
<400> SEQUENCE: 43
atgaagacgc tegeegeeet egtggteteg geegeeeteg tggeegegea eggetatgtt
                                                                       60
gaccacgcca cgatcggtgg caaggattat cagttctacc agccgtacca ggacccttac
atgggcgaca acaagcccga tagggtttcc cgctccatcc cgggcaacgg ccccgtggag
gacgtcaact ccatcgacct ccagtgccac gccggtgccg aaccggccaa gctccacgcc
                                                                      240
cocgoogcog coggetogac ogtgacgete tactggacce tetggecoga etcecacgte
ggccccgtca tcacctacat ggctcgctgc cccgacaccg gctgccagga ctggtccccg
                                                                      360
ggaactaagc cegtttggtt caagatcaag gaaggeggee gtgagggeac etceaatgte
                                                                      420
tgggctgcta ccccgctcat gacggccccc tccgcctaca cctacacgat cccgtcctgc
                                                                      480
ctcaagagcg gctactacct cgtccgccac gagatcatcg ccctgcactc ggcctggcag
                                                                      540
taccceggeg cecagtteta ceegggetge caccagetee aggteacegg eggeggetee
                                                                      600
accgtgccct ctaccaacct ggtctccttc cccggcgcct acaaggggag cgaccccggc
                                                                      660
atcacctacg acgettacaa ggegeaacet tacaccatee etggeeegge egtgtttace
                                                                      720
tqc
                                                                      723
<210> SEQ ID NO 44
<211> LENGTH: 241
<212> TYPE: PRT
<213 > ORGANISM: Myceliophthora thermophila
<400> SEQUENCE: 44
Met Lys Thr Leu Ala Ala Leu Val Val Ser Ala Ala Leu Val Ala Ala
His Gly Tyr Val Asp His Ala Thr Ile Gly Gly Lys Asp Tyr Gln Phe
Tyr Gln Pro Tyr Gln Asp Pro Tyr Met Gly Asp Asn Lys Pro Asp Arg
Val Ser Arg Ser Ile Pro Gly Asn Gly Pro Val Glu Asp Val Asn Ser
Ile Asp Leu Gln Cys His Ala Gly Ala Glu Pro Ala Lys Leu His Ala
Pro Ala Ala Ala Gly Ser Thr Val Thr Leu Tyr Trp Thr Leu Trp Pro
Asp Ser His Val Gly Pro Val Ile Thr Tyr Met Ala Arg Cys Pro Asp
                                105
Thr Gly Cys Gln Asp Trp Ser Pro Gly Thr Lys Pro Val Trp Phe Lys
                            120
Ile Lys Glu Gly Gly Arg Glu Gly Thr Ser Asn Val Trp Ala Ala Thr
Pro Leu Met Thr Ala Pro Ser Ala Tyr Thr Tyr Thr Ile Pro Ser Cys
                                        155
Leu Lys Ser Gly Tyr Tyr Leu Val Arg His Glu Ile Ile Ala Leu His
```

165 170 Ser Ala Trp Gln Tyr Pro Gly Ala Gln Phe Tyr Pro Gly Cys His Gln 180 185 Leu Gln Val Thr Gly Gly Gly Ser Thr Val Pro Ser Thr Asn Leu Val Ser Phe Pro Gly Ala Tyr Lys Gly Ser Asp Pro Gly Ile Thr Tyr Asp Ala Tyr Lys Ala Gln Pro Tyr Thr Ile Pro Gly Pro Ala Val Phe Thr Cys <210> SEQ ID NO 45 <211> LENGTH: 223 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 45 Tyr Val Asp His Ala Thr Ile Gly Gly Lys Asp Tyr Gln Phe Tyr Gln Arg Ser Ile Pro Gly Asn Gly Pro Val Glu Asp Val Asn Ser Ile Asp 40 Leu Gln Cys His Ala Gly Ala Glu Pro Ala Lys Leu His Ala Pro Ala Ala Ala Gly Ser Thr Val Thr Leu Tyr Trp Thr Leu Trp Pro Asp Ser His Val Gly Pro Val Ile Thr Tyr Met Ala Arg Cys Pro Asp Thr Gly Cys Gln Asp Trp Ser Pro Gly Thr Lys Pro Val Trp Phe Lys Ile Lys Glu Gly Gly Arg Glu Gly Thr Ser Asn Val Trp Ala Ala Thr Pro Leu Met Thr Ala Pro Ser Ala Tyr Thr Tyr Thr Ile Pro Ser Cys Leu Lys Ser Gly Tyr Tyr Leu Val Arg His Glu Ile Ile Ala Leu His Ser Ala Trp Gln Tyr Pro Gly Ala Gln Phe Tyr Pro Gly Cys His Gln Leu Gln 165 170 175Val Thr Gly Gly Ser Thr Val Pro Ser Thr Asn Leu Val Ser Phe Pro Gly Ala Tyr Lys Gly Ser Asp Pro Gly Ile Thr Tyr Asp Ala Tyr Lys Ala Gln Pro Tyr Thr Ile Pro Gly Pro Ala Val Phe Thr Cys 215 210 <210> SEQ ID NO 46 <211> LENGTH: 675 <212> TYPE: DNA <213 > ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 46

cactacatct	tccagcagtt	cgcgacgggc	gggtccaagt	acccgccctg	gaagtacatc	120
cggcgcaaca	ccaacccgga	ctggctgcag	aacgggccgg	tgacggacct	gtcgtcgacc	180
gacctgcgct	gcaacgtggg	cgggcaggtc	agcaacggga	ccgagaccat	caccttgaac	240
gccggcgacg	agttcagctt	catcctcgac	acgcccgtct	accatgccgg	ccccacctcg	300
ctctacatgt	ccaaggcgcc	cggagctgtg	gccgactacg	acggcggcgg	ggcctggttc	360
aagatctacg	actggggtcc	gtcggggacg	agctggacgt	tgagtggcac	gtacactcag	420
agaattccca	agtgcatccc	tgacggcgag	tacctcctcc	gcatccagca	gatcgggctc	480
cacaaccccg	gegeegegee	acagttctac	atcagctgcg	ctcaagtcaa	ggtcgtcgat	540
ggcggcagca	ccaatccgac	cccgaccgcc	cagattccgg	gagccttcca	cagcaacgac	600
cctggcttga	ctgtcaatat	ctacaacgac	cctctcacca	actacgtcgt	cccgggacct	660
agagtttcgc	actgg					675
<210> SEQ 1 <211> LENG <212> TYPE	ΓH: 225					

<213 > ORGANISM: Myceliophthora thermophila

<400> SEQUENCE: 47

Met Arg Tyr Phe Leu Gln Leu Ala Ala Ala Ala Ala Phe Ala Val Asn 1 $$ 5 $$ 10 $$ 15

Ser Ala Ala Gly His Tyr Ile Phe Gln Gln Phe Ala Thr Gly Gly Ser \$20\$

Lys Tyr Pro Pro Trp Lys Tyr Ile Arg Arg Asn Thr Asn Pro Asp Trp $_{\rm 35}$ $_{\rm 40}$ $_{\rm 45}$

Leu Gln Asn Gly Pro Val Thr Asp Leu Ser Ser Thr Asp Leu Arg Cys $50 \hspace{1.5cm} 55 \hspace{1.5cm} 60 \hspace{1.5cm}$

Asn Val Gly Gly Gln Val Ser Asn Gly Thr Glu Thr Ile Thr Leu Asn 65 70 75 80

Ala Gly Asp Glu Phe Ser Phe Ile Leu Asp Thr Pro Val Tyr His Ala 85 90 95

Gly Pro Thr Ser Leu Tyr Met Ser Lys Ala Pro Gly Ala Val Ala Asp 100 105 110

Gly Thr Ser Trp Thr Leu Ser Gly Thr Tyr Thr Gln Arg Ile Pro Lys 130 135 140

His Asn Pro Gly Ala Ala Pro Gln Phe Tyr Ile Ser Cys Ala Gln Val \$165\$

Lys Val Val Asp Gly Gly Ser Thr Asn Pro Thr Pro Thr Ala Gln Ile \$180\$

Pro Gly Ala Phe His Ser Asn Asp Pro Gly Leu Thr Val Asn Ile Tyr 195 $\,$ 200 $\,$ 205

Trp 225

```
<210> SEQ ID NO 48
<211> LENGTH: 205
<212> TYPE: PRT
<213> ORGANISM: Myceliophthora thermophila
<400> SEQUENCE: 48
His Tyr Ile Phe Gln Gln Phe Ala Thr Gly Gly Ser Lys Tyr Pro Pro
                        10
Trp Lys Tyr Ile Arg Arg Asn Thr Asn Pro Asp Trp Leu Gln Asn Gly
Pro Val Thr Asp Leu Ser Ser Thr Asp Leu Arg Cys Asn Val Gly Gly
Gln Val Ser Asn Gly Thr Glu Thr Ile Thr Leu Asn Ala Gly Asp Glu
Phe Ser Phe Ile Leu Asp Thr Pro Val Tyr His Ala Gly Pro Thr Ser
Leu Tyr Met Ser Lys Ala Pro Gly Ala Val Ala Asp Tyr Asp Gly Gly
Gly Ala Trp Phe Lys Ile Tyr Asp Trp Gly Pro Ser Gly Thr Ser Trp
Thr Leu Ser Gly Thr Tyr Thr Gln Arg Ile Pro Lys Cys Ile Pro Asp
                          120
Gly Glu Tyr Leu Leu Arg Ile Gln Gln Ile Gly Leu His Asn Pro Gly
Ala Ala Pro Gln Phe Tyr Ile Ser Cys Ala Gln Val Lys Val Val Asp
                   150
Gly Gly Ser Thr Asn Pro Thr Pro Thr Ala Gln Ile Pro Gly Ala Phe
His Ser Asn Asp Pro Gly Leu Thr Val Asn Ile Tyr Asn Asp Pro Leu
                    185
Thr Asn Tyr Val Val Pro Gly Pro Arg Val Ser His Trp
<210> SEQ ID NO 49
<211> LENGTH: 1332
<212> TYPE: DNA
<213> ORGANISM: Myceliophthora thermophila
<400> SEQUENCE: 49
atgcacccct cccttctttt cacgcttggg ctggcgagcg tgcttgtccc cctctcgtct
gcacacacta cetteacgae cetettegte aacgatgtea accaaggtga tggtacetge
attequatqq eqaaqaaqqq caatqteqee acceateete teqeaqqeqq teteqaetee
gaagacatgg cctgtggtcg ggatggtcaa gaacccgtgg catttacgtg tccggcccca
                                                                    240
getggtgeca agttgaetet egagtttege atgtgggeeg atgettegea gteeggateg
                                                                    300
atogatocat cocaccitgg cgicatggcc atctaccica agaaggittc cgacatgaaa
                                                                     360
tetgaegegg cegetggeee gggetggtte aagatttggg accaaggeta egaettggeg
                                                                    420
gccaagaagt gggccaccga gaagctcatc gacaacaacg gcctcctgag cgtcaacctt
                                                                     480
ccaaccggct taccaaccgg ctactacctc gcccgccagg agatcatcac gctccaaaac
gttaccaatg acaggccaga gccccagttc tacgtcggct gcgcacagct ctacgtcgag
                                                                     600
ggcacctegg acteacecat ececteggae aagaeggtet ecatteeegg ceacateage
```

-continued	
gaccoggoog accoggoot gacottcaac gtotacacgg gogacgoatc cacctacaag	720
ccgcccggcc ccgaggttta cttccccacc accaccacca ccacctcctc ctcctcc	780
ggaagcagcg acaacaaggg agccaggcgc cagcaaaccc ccgacgacaa gcaggccgac	840
ggcctcgttc cagccgactg cctcgtcaag aacgcgaact ggtgcgccgc tgccctgccg	900
ccgtacaccg acgaggccgg ctgctgggcc gccgccgagg actgcaacaa gcagctggac	960
gcgtgctaca ccagcgcacc cccctcgggc agcaaggggt gcaaggtctg ggaggagcag	1020
gtgtgcaccg tcgtctcgca gaagtgcgag gccggggatt tcaaggggcc cccgcagctc	1080
gggaaggage teggegaggg gategatgag cetatteegg ggggaaaget geeceeggeg	1140
gtcaacgcgg gagagaacgg gaatcatggc ggaggtggtg gtgatgatgg tgatgatgat	1200
aatgatgagg ccggggctgg ggcagcgtcg actccgactt ttgctgctcc tggtgcggcc	1260
aagactcccc aaccaaactc cgagagggcc cggcgccgtg aggcgcattg gcggcgactg	1320
gaatctgctg ag	1332
<210> SEQ ID NO 50 <211> LENGTH: 444 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila	
<400> SEQUENCE: 50	
Met His Pro Ser Leu Leu Phe Thr Leu Gly Leu Ala Ser Val Leu Val 1 5 10 15	
Pro Leu Ser Ser Ala His Thr Thr Phe Thr Thr Leu Phe Val Asn Asp 20 25 30	
Val Asn Gln Gly Asp Gly Thr Cys Ile Arg Met Ala Lys Lys Gly Asn 35 40 45	
Val Ala Thr His Pro Leu Ala Gly Gly Leu Asp Ser Glu Asp Met Ala 50 55 60	
Cys Gly Arg Asp Gly Gln Glu Pro Val Ala Phe Thr Cys Pro Ala Pro 65 70 75 80	
Ala Gly Ala Lys Leu Thr Leu Glu Phe Arg Met Trp Ala Asp Ala Ser 85 90 95	
Gln Ser Gly Ser Ile Asp Pro Ser His Leu Gly Val Met Ala Ile Tyr 100 105 110	
Leu Lys Lys Val Ser Asp Met Lys Ser Asp Ala Ala Ala Gly Pro Gly 115 120 125	
Trp Phe Lys Ile Trp Asp Gln Gly Tyr Asp Leu Ala Ala Lys Lys Trp 130 135 140	
Ala Thr Glu Lys Leu Ile Asp Asn Asn Gly Leu Leu Ser Val Asn Leu 145 150 155 160	
Pro Thr Gly Leu Pro Thr Gly Tyr Tyr Leu Ala Arg Gln Glu Ile Ile 165 170 175	
Thr Leu Gln Asn Val Thr Asn Asp Arg Pro Glu Pro Gln Phe Tyr Val 180 185 190	
Gly Cys Ala Gln Leu Tyr Val Glu Gly Thr Ser Asp Ser Pro Ile Pro 195 200 205	
Ser Asp Lys Thr Val Ser Ile Pro Gly His Ile Ser Asp Pro Ala Asp 210 215 220	

Pro Gly Leu Thr Phe Asn Val Tyr Thr Gly Asp Ala Ser Thr Tyr Lys 225 230 230 235

Pro Pro Gly Pro	Glu Val 245	Tyr l	Phe Pro	Thr 250	Thr	Thr	Thr	Thr	Thr 255	Ser
Ser Ser Ser Ser 260	Gly Ser	Ser A	Asp Asr 265		Gly	Ala	Arg	Arg 270	Gln	Gln
Thr Pro Asp Asp 275	Lys Gln		Asp Gly 280	Leu	Val	Pro	Ala 285	Asp	Cya	Leu
Val Lys Asn Ala 290	Asn Trp	Cys 1 295	Ala Ala	Ala	Leu	Pro 300	Pro	Tyr	Thr	Asp
Glu Ala Gly Cys 305	Trp Ala 310	Ala A	Ala Glu	Asp	Суs 315	Asn	Lys	Gln	Leu	Asp 320
Ala Cys Tyr Thr	Ser Ala 325	Pro I	Pro Ser	Gly 330	Ser	ГÀа	Gly	СЛа	335	Val
Trp Glu Glu Gln 340	Val Cys	Thr V	Val Val 345		Gln	Lys	Cys	Glu 350	Ala	Gly
Asp Phe Lys Gly 355	Pro Pro		Leu Gly 360	ГÀа	Glu	Leu	Gly 365	Glu	Gly	Ile
Asp Glu Pro Ile 370	-	375	-			380				-
Glu Asn Gly Asn 385	390				395					400
Asn Asp Glu Ala	Gly Ala 405	Gly A	Ala Ala	Ser 410	Thr	Pro	Thr	Phe	Ala 415	Ala
Pro Gly Ala Ala 420	Lys Thr	Pro (Gln Pro 425		Ser	Glu	Arg	Ala 430	Arg	Arg
Arg Glu Ala His 435	Trp Arg		Leu Glu 440	Ser	Ala	Glu				
<210> SEQ ID NO <211> LENGTH: 42 <212> TYPE: PRT	3			morah i	ila					
<210> SEQ ID NO <211> LENGTH: 42	3 Myceliop			mophi	ila					
<210> SEQ ID NO <211> LENGTH: 42 <212> TYPE: PRT <213> ORGANISM:	3 Mycelior 51	ohthoi	ra ther	_		Val	Asn	Gln	Gly 15	Asp
<210> SEQ ID NO <211> LENGTH: 42 <212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: His Thr Thr Phe	3 Myceliop 51 Thr Thr 5	hthor Leu l	ra ther Phe Val	Asn 10	Asp				15	
<210> SEQ ID NO <211> LENGTH: 42 <212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: His Thr Thr Phe 1 Gly Thr Cys Ile	3 Myceliop 51 Thr Thr 5 Arg Met	Leu I Ala I Ser (ra ther Phe Val Lys Lys 25	Asn 10 Gly	Asp Asn	Val	Ala	Thr 30	15 His	Pro
<pre><210> SEQ ID NO <211> LENGTH: 42 <212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: His Thr Thr Phe 1 Gly Thr Cys Ile</pre>	Mycelion 51 Thr Thr 5 Arg Met Leu Asp	Leu l Ala l Ser (ra ther Phe Val Lys Lys 25 Glu Asp 40	Asn 10 Gly Met	Asp Asn Ala	Val Cys	Ala Gly 45	Thr 30 Arg	15 His Asp	Pro Gly
<pre><210> SEQ ID NO <211> LENGTH: 42 <212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: His Thr Thr Phe 1 Gly Thr Cys Ile</pre>	3 Myceliop 51 Thr Thr 5 Arg Met Leu Asp Ala Phe	Leu I Ala I Ser (Thr (55	ra ther Phe Val Lys Lys 25 Glu Asp 40 Cys Pro	Asn 10 Gly Met	Asp Asn Ala Pro	Val Cys Ala 60	Ala Gly 45 Gly	Thr 30 Arg Ala	15 His Asp Lys	Pro Gly Leu
<pre><210> SEQ ID NO <211> LENGTH: 42 <212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: His Thr Thr Phe 1 Gly Thr Cys Ile</pre>	Mycelion 51 Thr Thr 5 Arg Met Leu Asp Ala Phe Arg Met 70	Leu I Ala I Ser (Thr (55	ra ther Phe Val Lys Lys 25 Glu Asp 40 Cys Pro	Asn 10 Gly Met Ala	Asp Asn Ala Pro Ser 75	Val Cys Ala 60 Gln	Ala Gly 45 Gly Ser	Thr 30 Arg Ala Gly	His Asp Lys Ser	Pro Gly Leu Ile
<pre><210> SEQ ID NO <211> LENGTH: 42 <212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: His Thr Thr Phe 1 Gly Thr Cys Ile</pre>	Mycelion 51 Thr Thr 5 Arg Met Leu Asp Ala Phe Arg Met 70 Leu Gly 85	Leu I Ala I Ser (Thr (55 Trp I	ra ther Phe Val Lys Lys 25 Glu Asp 40 Cys Pro	Asn 10 Gly Met Ala Ala Ile 90 Pro	Asp Asn Ala Pro Ser 75 Tyr	Val Cys Ala 60 Gln Leu	Ala Gly 45 Gly Ser	Thr 30 Arg Ala Gly Lys	His Asp Lys Ser Val	Pro Gly Leu Ile 80 Ser
<pre><210> SEQ ID NO <211> LENGTH: 42 <212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: His Thr Thr Phe 1 Gly Thr Cys Ile 20 Leu Ala Gly Gly 35 Gln Glu Pro Val 50 Thr Leu Glu Phe 65 Asp Pro Ser His</pre> Asp Met Lys Ser	Mycelion 51 Thr Thr 5 Arg Met Leu Asp Ala Phe Arg Met 70 Leu Gly 85 Asp Ala	Leu 1 Ala 1 Ser (Thr (Trp 1 Ala 1 Ala 1 Ala 1	ra ther Phe Val Lys Lys 25 Glu Asp 40 Cys Pro Ala Asp Met Ala Ala Gly 105	Asn 10 Gly Met Ala Ala Ile 90 Pro	Asp Asn Ala Pro Ser 75 Tyr	Val Cys Ala 60 Gln Leu	Ala Gly 45 Gly Ser Lys	Thr 30 Arg Ala Gly Lys Lys	His Asp Lys Ser Val 95	Pro Gly Leu Ile 80 Ser
<pre><210> SEQ ID NO <211> LENGTH: 42 <212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: His Thr Thr Phe 1 Gly Thr Cys Ile 20 Leu Ala Gly Gly 35 Gln Glu Pro Val 50 Thr Leu Glu Phe 65 Asp Pro Ser His Asp Met Lys Ser 100 Asp Gln Gly Tyr</pre>	Mycelion 51 Thr Thr 5 Arg Met Leu Asp Ala Phe Arg Met 70 Leu Gly 85 Asp Ala Asp Leu	Leu I Ala I Ser (Thr (55 Trp I Val I Ala I	ra ther Phe Val Lys Lys 25 Glu Asp 40 Cys Pro Ala Asp Met Ala Ala Gly 105 Ala Lys	Asn 10 Gly Met Ala Ala Ile 90 Pro	Asp Asn Ala Pro Ser 75 Tyr Gly	Val Cys Ala 60 Gln Leu Trp	Ala Gly 45 Gly Ser Lys Phe Thr 125	Thr 30 Arg Ala Gly Lys Lys 110 Glu	His Asp Lys Ser Val 95 Ile	Pro Gly Leu Ile 80 Ser Trp Leu

-continued	
145 150 155 160	
Thr Asn Asp Arg Pro Glu Pro Gln Phe Tyr Val Gly Cys Ala Gln Leu 165 170 175	
Tyr Val Glu Gly Thr Ser Asp Ser Pro Ile Pro Ser Asp Lys Thr Val	
Ser Ile Pro Gly His Ile Ser Asp Pro Ala Asp Pro Gly Leu Thr Phe 195 200 205	
Asn Val Tyr Thr Gly Asp Ala Ser Thr Tyr Lys Pro Pro Gly Pro Glu 210 215 220	
Val Tyr Phe Pro Thr Thr Thr Thr Thr Ser Ser Ser Ser Gly 225 230 235 240	
Ser Ser Asp Asn Lys Gly Ala Arg Arg Gln Gln Thr Pro Asp Asp Lys 245 250 255	
Gln Ala Asp Gly Leu Val Pro Ala Asp Cys Leu Val Lys Asn Ala Asn 260 265 270	
Trp Cys Ala Ala Ala Leu Pro Pro Tyr Thr Asp Glu Ala Gly Cys Trp 275 280 285	
Ala Ala Ala Glu Asp Cys Asn Lys Gln Leu Asp Ala Cys Tyr Thr Ser 290 295 300	
Ala Pro Pro Ser Gly Ser Lys Gly Cys Lys Val Trp Glu Glu Gln Val 305 310 315 320	
Cys Thr Val Val Ser Gln Lys Cys Glu Ala Gly Asp Phe Lys Gly Pro 325 330 335	
Pro Gln Leu Gly Lys Glu Leu Gly Glu Gly Ile Asp Glu Pro Ile Pro 340 345 350	
Gly Gly Lys Leu Pro Pro Ala Val Asn Ala Gly Glu Asn Gly Asn His 355 360 365	
Gly Gly Gly Gly Asp Asp Gly Asp Asp Asp Asp Asp Glu Ala Gly 370 375 380	
Ala Gly Ala Ala Ser Thr Pro Thr Phe Ala Ala Pro Gly Ala Ala Lys 385 390 395 400	
Thr Pro Gln Pro Asn Ser Glu Arg Ala Arg Arg Arg Glu Ala His Trp 405 410 415	
Arg Arg Leu Glu Ser Ala Glu 420	
<210> SEQ ID NO 52 <211> LENGTH: 834 <212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila	
<pre><400> SEQUENCE: 52</pre>	60
3 3 33 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	20
	80
	40
	00
aaggtcattc actcgattca aggtggctgc cccgccaggg ccgagacgat cccggattgc 3	60

420

480

agegeacaaa atateaaege etgeaatata aageeegata atgeeeagat ggacaeeeeg

gataagtatg agttcacgat cccggaggat ctccccagtg gcaaggccac cctcgcctgg

acatggatca acactatcgg caaccgcgag ttttatatgg catgcgcccc ggttgagatc atcccgtcca tcggaggaac ctgcgcgacc gaggagggga agtactacga atatcccaac cccggtaagt cggtcgaaac catcccgggc tggaccgatt tggttcccct gcaaggcgaa tgcggtgctg cctccggtgt ctcgggctcc ggcggaaacg ccagcagtgc tacccctgcc gcaggggccg ccccgactcc tgctgtccgc ggccgccgtc ccacctggaa cgcc <210> SEQ ID NO 53 <211> LENGTH: 278 <212> TYPE: PRT <213 > ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 53 Met Phe Ser Leu Lys Phe Phe Ile Leu Ala Gly Gly Leu Ala Val Leu 1 5 10 15 Thr Glu Ala His Ile Arg Leu Val Ser Pro Ala Pro Phe Thr Asn Pro Asp Gln Gly Pro Ser Pro Leu Leu Glu Ala Gly Ser Asp Tyr Pro Cys 40 His Asn Gly Asn Gly Gly Gly Tyr Gln Gly Thr Pro Thr Gln Met Ala 55 Lys Gly Ser Lys Gln Gln Leu Ala Phe Gln Gly Ser Ala Val His Gly Gly Gly Ser Cys Gln Val Ser Ile Thr Tyr Asp Glu Asn Pro Thr Ala 90 Gln Ser Ser Phe Lys Val Ile His Ser Ile Gln Gly Gly Cys Pro Ala 105 Arg Ala Glu Thr Ile Pro Asp Cys Ser Ala Gln Asn Ile Asn Ala Cys Asn Ile Lys Pro Asp Asn Ala Gln Met Asp Thr Pro Asp Lys Tyr Glu Phe Thr Ile Pro Glu Asp Leu Pro Ser Gly Lys Ala Thr Leu Ala Trp Thr Trp Ile Asn Thr Ile Gly Asn Arg Glu Phe Tyr Met Ala Cys Ala Pro Val Glu Ile Thr Gly Asp Gly Gly Ser Glu Ser Ala Leu Ala Ala Leu Pro Asp Met Val Ile Ala Asn Ile Pro Ser Ile Gly Gly Thr Cys Ala Thr Glu Glu Gly Lys Tyr Tyr Glu Tyr Pro Asn Pro Gly Lys Ser 210 215 220 Val Glu Thr Ile Pro Gly Trp Thr Asp Leu Val Pro Leu Gln Gly Glu 230 Cys Gly Ala Ala Ser Gly Val Ser Gly Ser Gly Gly Asn Ala Ser Ser 250 Ala Thr Pro Ala Ala Gly Ala Ala Pro Thr Pro Ala Val Arg Gly Arg

Arg Pro Thr Trp Asn Ala 275

_																	_
<211	L> LE	EQ II ENGTH	H: 25														
		PE:		Мус	eliop	hth	ora t	herr	nophi	lla							
< 400)> SI	EQUE	ICE :	54													
His 1	Ile	Arg	Leu	Val 5	Ser	Pro	Ala	Pro	Phe 10	Thr	Asn	Pro	Asp	Gln 15	Gly		
Pro	Ser	Pro	Leu 20	Leu	Glu	Ala	Gly	Ser 25	Asp	Tyr	Pro	СЛа	His 30	Asn	Gly		
Asn	Gly	Gly 35	Gly	Tyr	Gln	Gly	Thr 40	Pro	Thr	Gln	Met	Ala 45	ГЛа	Gly	Ser		
Lys	Gln 50	Gln	Leu	Ala	Phe	Gln 55	Gly	Ser	Ala	Val	His 60	Gly	Gly	Gly	Ser		
Cya 65	Gln	Val	Ser	Ile	Thr 70	Tyr	Asp	Glu	Asn	Pro 75	Thr	Ala	Gln	Ser	Ser 80		
Phe	ГЛа	Val	Ile	His 85	Ser	Ile	Gln	Gly	Gly 90	Cys	Pro	Ala	Arg	Ala 95	Glu		
Thr	Ile	Pro	Asp 100	CÀa	Ser	Ala	Gln	Asn 105	Ile	Asn	Ala	CÀa	Asn 110	Ile	ГЛа		
Pro	Asp	Asn 115	Ala	Gln	Met	Asp	Thr 120	Pro	Asp	Lys	Tyr	Glu 125	Phe	Thr	Ile		
Pro	Glu 130	Asp	Leu	Pro	Ser	Gly 135	Lys	Ala	Thr	Leu	Ala 140	Trp	Thr	Trp	Ile		
Asn 145	Thr	Ile	Gly	Asn	Arg 150	Glu	Phe	Tyr	Met	Ala 155	CÀa	Ala	Pro	Val	Glu 160		
Ile	Thr	Gly	Asp	Gly 165	Gly	Ser	Glu	Ser	Ala 170	Leu	Ala	Ala	Leu	Pro 175	Asp		
Met	Val	Ile	Ala 180	Asn	Ile	Pro	Ser	Ile 185	Gly	Gly	Thr	CAa	Ala 190	Thr	Glu		
Glu	Gly	Lys 195	Tyr	Tyr	Glu	Tyr	Pro 200	Asn	Pro	Gly	Lys	Ser 205	Val	Glu	Thr		
Ile	Pro 210	Gly	Trp	Thr	Asp	Leu 215	Val	Pro	Leu	Gln	Gly 220	Glu	Cys	Gly	Ala		
Ala 225	Ser	Gly	Val	Ser	Gly 230	Ser	Gly	Gly	Asn	Ala 235	Ser	Ser	Ala	Thr	Pro 240		
Ala	Ala	Gly	Ala	Ala 245	Pro	Thr	Pro	Ala	Val 250	Arg	Gly	Arg	Arg	Pro 255	Thr		
Trp	Asn	Ala															
-210)	EQ II	OM C	55													
		ENGTI															
		(PE : RGANI		Мус	eliop	hth	ora t	herr	nophi	lla							
< 400)> SI	EQUE	ICE :	55													
atga	aagct	cg o	ccac	gata	ct co	gccg	ccct	c acc	cata	1999	tggd	ccga	cca (gctca	agcgtc	6	60
gggt	ccaç	gaa a	agtti	ggc	gt gt	acga	agcad	c att	cgca	aga	acac	gaad	cta d	caact	cgccc	12	20
gtta	accga	acc t	gtc	ggaca	ac ca	aacct	gege	c tgo	caacç	gtcg	gcgg	9999	etc (gggca	accagc	18	В0
acca	accgt	gc t	cgad	egte	aa gg	gccg	gagad	c teg	gttca	ecct	tctt	cago	cga o	gttg	gccgtc	24	40
taco	cacca	agg g	ggcc	catci	cc go	ctgt	gcgtg	g gad	ccgga	ecca	gtg	cagaç	gag (catgo	gatgga	3(00
cggg	gaaco	egg a	acato	geget	eg ed	cgaa	ctgg	c tca	acaaq	gctg	gcta	acct	ggc (ggtga	actgac	36	60

20

25

```
tacgacgggt ccggtgactg tttcaagatc tatgactggg gaccgacgtt caacgggggc
caggogtogt ggoogacgag gaattogtac gagtacagca tootcaagtg catcagggac
ggcgaatacc tactgcggat tcagtccctg gccatccata acccaggtgc ccttccgcag
ttctacatca gctgcgccca ggtgaatgtg acgggcggag gcaccgtcac cccgagatca
aggogacoga tootgatota titcaactto cactogtata togtocotgg googgoagtg
                                                                     672
ttcaagtgct ag
<210> SEQ ID NO 56
<211> LENGTH: 223
<212> TYPE: PRT
<213 > ORGANISM: Myceliophthora thermophila
<400> SEQUENCE: 56
Met Lys Leu Ala Thr Leu Leu Ala Ala Leu Thr Leu Gly Val Ala Asp
Gln Leu Ser Val Gly Ser Arg Lys Phe Gly Val Tyr Glu His Ile Arg
Lys Asn Thr Asn Tyr Asn Ser Pro Val Thr Asp Leu Ser Asp Thr Asn
                         40
Leu Arg Cys Asn Val Gly Gly Ser Gly Thr Ser Thr Thr Val Leu
                      55
Asp Val Lys Ala Gly Asp Ser Phe Thr Phe Phe Ser Asp Val Ala Val
Tyr His Gln Gly Pro Ile Ser Leu Cys Val Asp Arg Thr Ser Ala Glu
                                   90
Ser Met Asp Gly Arg Glu Pro Asp Met Arg Cys Arg Thr Gly Ser Gln
                           105
Ala Gly Tyr Leu Ala Val Thr Asp Tyr Asp Gly Ser Gly Asp Cys Phe
Lys Ile Tyr Asp Trp Gly Pro Thr Phe Asn Gly Gly Gln Ala Ser Trp
Pro Thr Arg Asn Ser Tyr Glu Tyr Ser Ile Leu Lys Cys Ile Arg Asp
                             155
Gly Glu Tyr Leu Leu Arg Ile Gln Ser Leu Ala Ile His Asn Pro Gly
Ala Leu Pro Gln Phe Tyr Ile Ser Cys Ala Gln Val Asn Val Thr Gly
Gly Gly Thr Val Thr Pro Arg Ser Arg Arg Pro Ile Leu Ile Tyr Phe
Asn Phe His Ser Tyr Ile Val Pro Gly Pro Ala Val Phe Lys Cys
<210> SEQ ID NO 57
<211> LENGTH: 208
<212> TYPE: PRT
<213 > ORGANISM: Myceliophthora thermophila
<400> SEQUENCE: 57
Asp Gln Leu Ser Val Gly Ser Arg Lys Phe Gly Val Tyr Glu His Ile
                                   10
Arg Lys Asn Thr Asn Tyr Asn Ser Pro Val Thr Asp Leu Ser Asp Thr
```

Asn Leu Arg Cys Asn Val Gly Gly Gly Ser Gly Thr Ser Thr Thr Val Leu Asp Val Lys Ala Gly Asp Ser Phe Thr Phe Phe Ser Asp Val Ala Val Tyr His Gln Gly Pro Ile Ser Leu Cys Val Asp Arg Thr Ser Ala Glu Ser Met Asp Gly Arg Glu Pro Asp Met Arg Cys Arg Thr Gly Ser Gln Ala Gly Tyr Leu Ala Val Thr Asp Tyr Asp Gly Ser Gly Asp Cys Phe Lys Ile Tyr Asp Trp Gly Pro Thr Phe Asn Gly Gly Gln Ala Ser Trp Pro Thr Arg Asn Ser Tyr Glu Tyr Ser Ile Leu Lys Cys Ile Arg Asp Gly Glu Tyr Leu Leu Arg Ile Gln Ser Leu Ala Ile His Asn Pro 150 155 Gly Ala Leu Pro Gln Phe Tyr Ile Ser Cys Ala Gln Val Asn Val Thr Gly Gly Gly Thr Val Thr Pro Arg Ser Arg Arg Pro Ile Leu Ile Tyr 185 Phe Asn Phe His Ser Tyr Ile Val Pro Gly Pro Ala Val Phe Lys Cys 200 <210> SEQ ID NO 58 <211> LENGTH: 642 <212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 58 atgaageteg ceaegeteet egeegeeete acceteggge teagegtegg gteeagaaag 60 tttggcgtgt acgagcacat tcgcaagaac acgaactaca actcgcccgt taccgacctg teggacacca acetgegetg caacgtegge gggggetegg geaceageae caeegtgete gacgtcaagg ccggagactc gttcaccttc ttcagcgacg ttgccgtcta ccaccagggg cccatctcgc tgtgcgtgga ccggaccagt gcagagagca tggatggacg ggaaccggac atgcgctgcc gaactggctc acaagctggc tacctggcgg tgactgtgat gactgtgact gactacgacg ggtccggtga ctgtttcaag atctatgact ggggaccgac gttcaacggg ggccaggcgt cgtggccgac gaggaattcg tacgagtaca gcatcctcaa gtgcatcagg qacqqcqaat acctactqcq qattcaqtcc ctqqccatcc ataacccaqq tqcccttccq cagttctaca tcagctgcgc ccaggtgaat gtgacgggcg gaggcaccat ctatttcaac 600 642 ttccactcgt atatcgtccc tgggccggca gtgttcaagt gc <210> SEQ ID NO 59 <211> LENGTH: 214 <212> TYPE: PRT <213 > ORGANISM: Myceliophthora thermophila <400> SEOUENCE: 59 Met Lys Leu Ala Thr Leu Leu Ala Ala Leu Thr Leu Gly Leu Ser Val 5

Gly Ser Arg Lys Phe Gly Val Tyr Glu His Ile Arg Lys Asn Thr Asn

20

-continued

			20					25					30		
Tyr	Asn	Ser 35	Pro	Val	Thr	Asp	Leu 40	Ser	Asp	Thr	Asn	Leu 45	Arg	CÀa	Asn
Val	Gly 50	Gly	Gly	Ser	Gly	Thr 55	Ser	Thr	Thr	Val	Leu 60	Asp	Val	Lys	Ala
Gly 65	Asp	Ser	Phe	Thr	Phe 70	Phe	Ser	Asp	Val	Ala 75	Val	Tyr	His	Gln	Gly 80
Pro	Ile	Ser	Leu	Сув 85	Val	Asp	Arg	Thr	Ser 90	Ala	Glu	Ser	Met	Asp 95	Gly
Arg	Glu	Pro	Asp 100	Met	Arg	Cys	Arg	Thr 105	Gly	Ser	Gln	Ala	Gly 110	Tyr	Leu
Ala	Val	Thr 115	Val	Met	Thr	Val	Thr 120	Asp	Tyr	Asp	Gly	Ser 125	Gly	Asp	Cys
Phe	Lys 130	Ile	Tyr	Asp	Trp	Gly 135	Pro	Thr	Phe	Asn	Gly 140	Gly	Gln	Ala	Ser
Trp 145	Pro	Thr	Arg	Asn	Ser 150	Tyr	Glu	Tyr	Ser	Ile 155	Leu	Lys	CÀa	Ile	Arg 160
Asp	Gly	Glu	Tyr	Leu 165	Leu	Arg	Ile	Gln	Ser 170	Leu	Ala	Ile	His	Asn 175	Pro
Gly	Ala	Leu	Pro 180	Gln	Phe	Tyr	Ile	Ser 185	Cys	Ala	Gln	Val	Asn 190	Val	Thr
Gly	Gly	Gly 195	Thr	Ile	Tyr	Phe	Asn 200	Phe	His	Ser	Tyr	Ile 205	Val	Pro	Gly
Pro	Ala 210	Val	Phe	Lys	CAa										
<211 <212)> SE L> LE 2> TY	ENGTI	I: 19												
	3 > OF	RGAN]		Мус	eliop	htho	ora t	herr	nophi	ila					
< 400	3 > OF 0 > SE		SM:	_	eliop	phtho	ora t	herr	nophi	ila					
)> SE	EQUE	SM:	60			ora t His		_		Asn	Thr	Asn	Tyr 15	Asn
Arg 1)> SE Lys	EQUEN Phe	SM: ICE: Gly	60 Val 5	Tyr	Glu		Ile	Arg 10	Lys				15	
Arg 1 Ser)> SI Lys Pro	EQUEN Phe Val	ISM: ICE: Gly Thr 20	60 Val 5 Asp	Tyr Leu	Glu Ser	His	Ile Thr 25	Arg 10 Asn	Lys Leu	Arg	Сув	Asn 30	15 Val	Gly
Arg 1 Ser Gly	Lys Pro Gly	Phe Val Ser 35	ISM: ICE: Gly Thr 20 Gly	60 Val 5 Asp	Tyr Leu Ser	Glu Ser Thr	His Asp Thr	Ile Thr 25 Val	Arg 10 Asn Leu	Lys Leu Asp	Arg Val His	Cys Lys 45	Asn 30 Ala	15 Val Gly	Gly Asp
Arg 1 Ser Gly Ser	Lys Pro Gly Phe	Phe Val Ser 35	ISM: ICE: Gly Thr 20 Gly Phe	60 Val 5 Asp Thr	Tyr Leu Ser Ser	Glu Ser Thr Asp 55	His Asp Thr 40	Ile Thr 25 Val	Arg 10 Asn Leu Val	Lys Leu Asp Tyr	Arg Val His	Cys Lys 45 Gln	Asn 30 Ala Gly	15 Val Gly Pro	Gly Asp Ile
Arg 1 Ser Gly Ser Ser	Lys Pro Gly Phe 50 Leu	Phe Val Ser 35 Thr	SM: Gly Thr 20 Gly Phe	60 Val 5 Asp Thr Phe	Tyr Leu Ser Ser Arg	Glu Ser Thr Asp 55 Thr	His Asp Thr 40 Val	Ile Thr 25 Val Ala	Arg 10 Asn Leu Val	Lys Leu Asp Tyr Ser 75	Arg Val His 60 Met	Cys Lys 45 Gln Asp	Asn 30 Ala Gly	Val Gly Pro Arg	Gly Asp Ile Glu 80
Arg 1 Ser Gly Ser Ser 65)> SE Lys Pro Gly Phe 50 Leu	Phe Val Ser 35 Thr Cys	ISM: Gly Thr 20 Gly Phe Val	60 Val 5 Asp Thr Phe Asp	Tyr Leu Ser Ser Arg 70	Glu Ser Thr Asp 55 Thr	His Asp Thr 40 Val	Ile Thr 25 Val Ala Ala Ser	Arg 10 Asn Leu Val Glu Gln 90	Lys Leu Asp Tyr Ser 75 Ala	Arg Val His 60 Met	Cys Lys 45 Gln Asp	Asn 30 Ala Gly Gly Leu	Val Gly Pro Arg Ala 95	Gly Asp Ile Glu 80 Val
Arg 1 Ser Gly Ser Fro)> SE Lys Pro Gly Phe 50 Leu Asp	CQUENT Phe Val Ser 35 Thr Cys Met	ISM: Gly Thr 20 Gly Phe Val Arg Thr 100	60 Val 5 Asp Thr Phe Asp Cys 85 Val	Tyr Leu Ser Ser Arg 70 Arg	Glu Ser Thr Asp 55 Thr Thr	His Asp Thr 40 Val Ser	Thr 25 Val Ala Ala Ser Asp 105	Arg 10 Asn Leu Val Glu Gln 90 Gly	Lys Leu Asp Tyr Ser 75 Ala Ser	Arg Val His 60 Met Gly	Cys Lys 45 Gln Asp Tyr	Asn 30 Ala Gly Leu Cys 110	Val Gly Pro Arg Ala 95	Gly Asp Ile Glu 80 Val
Arg 1 Ser Gly Ser Fro Thr	D)> SELYS Pro Gly Phe 50 Leu Asp Val	CQUEN Phe Val Ser 35 Thr Cys Met Met	ISM: Gly Thr 20 Gly Phe Val Arg Thr 100	60 Val 5 Asp Thr Phe Asp Cys 85 Val	Tyr Leu Ser Ser Arg 70 Arg	Glu Ser Thr Asp 55 Thr Thr Thr	His Asp Thr 40 Val Ser Gly Tyr	Thr 25 Val Ala Ala Ser Asp 105 Asn	Arg 10 Asn Leu Val Glu Glu Gly Gly	Lys Leu Asp Tyr Ser 75 Ala Ser Gly	Arg Val His 60 Met Gly Gly	Cys Lys 45 Gln Asp Tyr Asp	Asn 30 Ala Gly Leu Cys 110 Ser	Val Gly Pro Arg Ala 95 Phe	Gly Asp Ile Glu 80 Val Lys
Arg 1 Ser Gly Ser Fro Thr Thr	D)> SELYS Pro Gly Phe 50 Leu Asp Val Tyr Arg 130	CQUENT Phe Val Ser 35 Thr Cys Met Asp 115 Asn	ISM: Gly Thr 20 Gly Phe Val Arg Thr 100 Trp	60 Val 5 Asp Thr Phe Asp Cys 85 Val Gly	Tyr Leu Ser Ser Arg 70 Arg Thr	Glu Ser Thr Asp 55 Thr Thr Thr Thr 135	His Asp Thr 40 Val Ser Gly Tyr	Thr 25 Val Ala Ala Ser Asp 105 Asn	Arg 10 Asn Leu Val Glu Gln 90 Gly Gly	Lys Leu Asp Tyr Ser 75 Ala Ser Gly	Arg Val His 60 Met Gly Gly Gln Cys 140	Cys Lys 45 Gln Asp Tyr Asp Ala 125	Asn 30 Ala Gly Gly Leu Cys 110 Ser	15 Val Gly Pro Arg Ala 95 Phe Trp Asp	Gly Asp Ile Glu 80 Val Lys Pro Gly

25

	Pro	Gln	Phe	Tyr 165	Ile	Ser	Cys	Ala	Gln 170	Val	Asn	Val	Thr	Gly 175	Gly	
Gly	Thr	Ile	Tyr 180	Phe	Asn	Phe	His	Ser 185	Tyr	Ile	Val	Pro	Gly 190	Pro	Ala	
Val	Phe	Lys 195	Cys													
<211 <212	L> LE 2> TY	ENGTH PE:		79	eliop	htho	ora t	herr	nophi	lla						
<400)> SI	EQUE	ICE :	61												
atga	ccaa	iga a	atgc	gcaga	ag ca	agca	aggg	gtt	gaga	acc	caad	caago	gg (cgaca	atccgc	: 60
tgct	acad	ect o	egcaç	gacgo	gc gg	gccaa	acgto	gtg	gacco	gtgc	cgg	ccgg	ete (gacca	attcac	120
taca	tcto	ga o	cca	gcaga	at ca	acca	accc	gge	cccga	ctc	agta	actac	ect (ggcca	aggta	180
cccc	ccgg	get o	gtc	ggcca	aa ga	ecct	tgad	999	gtee	ggcg	ccgt	ctg	gtt d	caaga	atctcg	240
acca	cgat	gc o	ctaco	gtgg	ga ca	agcaa	acaaq	g cag	gatgt	tct	ggc	cagg	gca (gaaca	acttat	300
gaga	eccto	caa a	acaco	cacca	at to	ccg	ccaac	c acc	cccg	gacg	gcga	agtao	cct o	cctto	gcgtc	360
aago	agat	.cg d	ccct	ccaca	at go	gegte	ctcaç	g cco	caaca	agg	tcca	agtto	cta d	cctcç	geetge	420
acco	agat	ca a	agato	cacco	gg to	ggtcg	gcaad	gge	cacco	cca	gcc	gct	ggt (cgcgc	etgeec	480
ggag	geeta	ica a	agago	cacco	ga co	ccgg	gcato	ctg	ggtc	jaca	tcta	actco	cat q	gaago	ccgaa	540
tcgt	acca	igc o	etecc	gggg	ec go	ccgt	ctg	g cgo	egget	aa						579
<211 <212	L> LE 2> TY		NO H: 19													
\Z13	3 > OF	RGAN]	ISM:	Мус	eliop	hth	ora t	herr	nophi	lla						
			SM: ICE:	-	eliop	hth	ora t	herr	nophi	lla						
<400)> SI	EQUE	ICE :	62					_		Glu	Asn	Pro	Thr 15	Ser	
<400 Met 1)> SI Thr	EQUE1	ICE : Asn	62 Ala 5	Gln	Ser	Lys	Gln	Gly 10	Val						
<400 Met 1 Gly)> SI Thr Asp	EQUEN Lys Ile	Asn Arg 20	62 Ala 5 Cys	Gln Tyr	Ser Thr	Lys Ser	Gln Gln 25	Gly 10	Val Ala	Ala	Asn	Val 30	15	Thr	
<400 Met 1 Gly Val	Thr Asp	Lys Ile Ala 35	Asn Arg 20 Gly	62 Ala 5 Cys	Gln Tyr Thr	Ser Thr	Lys Ser His 40	Gln Gln 25 Tyr	Gly 10 Thr Ile	Val Ala Ser	Ala Thr Val	Asn Gln 45	Val 30 Gln	15 Val	Thr Asn	
<400 Met 1 Gly Val	Thr Asp Pro Pro	Lys Ile Ala 35 Gly	Asn Arg 20 Gly Pro	62 Ala 5 Cys Ser	Gln Tyr Thr	Ser Thr Ile Tyr 55	Lys Ser His 40 Tyr	Gln Gln 25 Tyr Leu	Gly 10 Thr Ile	Val Ala Ser Lys	Ala Thr Val 60	Asn Gln 45 Pro	Val 30 Gln Pro	15 Val Ile	Thr Asn Ser	
<400 Met 1 Gly Val His Ser 65	Thr Asp Pro Pro 50 Ala	Lys Ile Ala 35 Gly Lys	Asn Arg 20 Gly Pro	62 Ala 5 Cys Ser Thr	Gln Tyr Thr Gln Asp	Ser Thr Ile Tyr 55 Gly	Lys Ser His 40 Tyr	Gln Gln 25 Tyr Leu Gly	Gly 10 Thr Ile Ala	Val Ala Ser Lys Val 75	Ala Thr Val 60 Trp	Asn Gln 45 Pro	Val 30 Gln Pro Lys	15 Val Ile Gly	Thr Asn Ser Ser 80	
<4000 Met 1 Gly Val His Ser 65)> SI Thr Asp Pro 50 Ala	Lys Ile Ala 35 Gly Lys	Asn Arg 20 Gly Pro Thr	62 Ala 5 Cys Ser Thr Phe	Gln Tyr Thr Gln Asp 70 Val	Ser Thr Ile Tyr 55 Gly Asp	Lys Ser His 40 Tyr Ser	Gln 25 Tyr Leu Gly Asn	Gly 10 Thr Ile Ala Ala Lys	Val Ala Ser Lys Val 75 Gln	Ala Thr Val 60 Trp	Asn Gln 45 Pro Phe	Val 30 Gln Pro Lys	15 Val Ile Gly Ile Pro	Thr Asn Ser Ser 80 Gly	
<4000 Met 1 Gly Val His Ser 65 Thr)> SF Thr Asp Pro 50 Ala Thr	Lys Ile Ala 35 Gly Lys Met	Arg 20 Gly Pro Thr Tyr 100	62 Ala 5 Cys Ser Thr Phe Glu	Gln Tyr Thr Gln Asp 70 Val	Ser Thr Ile Tyr 55 Gly Asp	Lys Ser His 40 Tyr Ser Ser	Gln 25 Tyr Leu Gly Asn Thr 105	Gly 10 Thr Ile Ala Ala Lys 90 Thr	Val Ala Ser Lys Val 75 Gln Ile	Ala Thr Val 60 Trp Met	Asn Gln 45 Pro Phe Ala	Val 30 Gln Pro Lys Trp Asn 110	15 Val Ile Gly Ile Pro 95	Thr Asn Ser Ser 80 Gly Pro	
<4000 Met 1 Gly Val His Ser 65 Thr	O> SI Thr Asp Pro 50 Ala Thr Asn	Lys Ile Ala 35 Gly Lys Met Thr	Arg 20 Gly Pro Thr Tyr 100 Tyr	62 Ala 5 Cys Ser Thr Phe Cys Cys Leu	Gln Tyr Thr Gln Asp 70 Val Thr	Ser Thr Ile Tyr 55 Gly Asp Ser Arg	Lys Ser His 40 Tyr Ser Asn Val	Gln 25 Tyr Leu Gly Asn Thr 105	Gly 10 Thr Ile Ala Ala Lys 90 Thr	Val Ala Ser Lys Val 75 Gln Ile	Ala Thr Val 60 Trp Met Pro	Asn Gln 45 Pro Phe Ala Leu 125	Val 30 Gln Pro Lys Trp Asn 110 His	15 Val Ile Gly Ile Pro 95	Thr Asn Ser Ser 80 Gly Pro	
<4000 Met 1 Gly Val His Ser 65 Thr Gln Asp	O> SI Thr Asp Pro 50 Ala Thr Asn Gly Gln	Lys Ile Ala 35 Gly Lys Met Thr Glu 115	Arg 20 Gly Pro Thr 100 Tyr Asn	62 Ala 5 Cys Ser Thr Phe Thr 85 Glu Leu Lys	Gln Tyr Thr Gln Asp 70 Val Thr Leu Val	Ser Thr Ile Tyr 55 Gly Asp Ser Arg Gln 135	Lys Ser His 40 Tyr Ser Asn Val 120 Phe	Gln 25 Tyr Leu Gly Asn Thr 105 Lys	Gly 10 Thr Ile Ala Ala Lys 90 Thr Gln Leu	Val Ala Ser Lys Val 75 Gln Ile Ala	Ala Thr Val 60 Trp Met Pro Ala Cys 140	Asn Gln 45 Pro Phe Ala Leu 125 Thr	Val 30 Gln Pro Lys Trp Asn 110 His	15 Val Ile Gly Ile Pro 95 Thr	Thr Asn Ser Ser 80 Gly Pro Ala	

				165					170					175		
Met	Lys	Pro	Glu 180	Ser	Tyr	Gln	Pro	Pro 185	Gly	Pro	Pro	Val	Trp 190	Arg	Gly	
<211 <212	L> LE 2> TY	EQ II ENGTH PE: RGANI	I: 67 DNA	72	eliop	hth	ora t	herr	nophi	ila						
< 400)> SE	EQUE	ICE :	63												
atga	iggct	tc t	cgca	agct	t gt	tgct	cgca	a gct	acg	gctg	ttca	aagct	ca (ctttg	gttaac	60
ggad	cagco	cg a	agag	gagto	ga ct	ggt	cagco	c acq	gegea	atga	ccaa	agaat	gc (gcaga	agcaag	120
cago	gcgt	tg a	ıgaad	ccaa	ac aa	gcg	gcgad	ato	ccgct	gct	acad	cctc	gca q	gacgo	geggee	180
aaco	gtegt	ga c	egte	geegg	ge eg	gct	cgaco	c att	cact	aca	tct	egaco	cca ç	gcaga	atcaac	240
caco	ccgg	gee o	gact	cagt	a ct	acct	ggco	aag	ggtad	ccc	ccg	gataq	gtc	ggcca	aagacc	300
tttç	gacgo	ggt o	cggc	gaag	gt ct	ggti	caaç	g ato	ctcga	acca	cgat	gcct	cac (egtgg	gacagc	360
aaca	agca	iga t	gtto	tgg	cc aç	gggc	agaad	c act	tato	gaga	cct	caaac	cac o	cacca	attccc	420
gcca	acac	ecc c	ggad	ggcg	ga gt	acct	cctt	c g	egtea	aagc	agat	cgc	cct (ccaca	atggcg	480
tctc	cagco	ca a	caaç	ggtco	ca gt	tcta	accto	geo	etgea	accc	agat	caaç	gat (cacco	ggtggt	540
cgca	acgo	gca c	cccc	cagco	ec go	etggt	cgcg	g cto	geeeg	ggag	ccta	acaaç	gag (cacco	gacccc	600
ggca	tcct	gg t	cgac	catct	a ct	ccat	gaag	g cco	gaat	cgt	acca	agcct	cc o	gggg	eegeee	660
gtct	ggcg	geg g	lc													672
<211 <212	L> LE 2> TY	EQ II ENGTH PE: RGANI	I: 22 PRT	24	eliop	hth	ora t	herr	nophi	ila						
< 400)> SE	EQUEN	ICE :	64												
Met 1	Arg	Leu	Leu	Ala 5	Ser	Leu	Leu	Leu	Ala 10	Ala	Thr	Ala	Val	Gln 15	Ala	
His	Phe	Val	Asn 20	Gly	Gln	Pro	Glu	Glu 25	Ser	Asp	Trp	Ser	Ala 30	Thr	Arg	
Met	Thr	Lуs 35	Asn	Ala	Gln	Ser	Lys 40	Gln	Gly	Val	Glu	Asn 45	Pro	Thr	Ser	
Gly	Asp 50	Ile	Arg	Сув	Tyr	Thr 55	Ser	Gln	Thr		Ala 60	Asn	Val	Val	Thr	
Val 65	Pro	Ala	Gly	Ser	Thr 70	Ile	His	Tyr	Ile	Ser 75	Thr	Gln	Gln	Ile	Asn 80	
His	Pro	Gly	Pro	Thr 85	Gln	Tyr	Tyr	Leu	Ala 90	Lys	Val	Pro	Pro	Gly 95	Ser	
Ser	Ala	Lys	Thr 100	Phe	Asp	Gly	Ser	Gly 105	Ala	Val	Trp	Phe	Lys 110	Ile	Ser	
Thr	Thr	Met 115	Pro	Thr	Val	Asp	Ser 120	Asn	Lys	Gln	Met	Phe 125	Trp	Pro	Gly	
Gln	Asn 130	Thr	Tyr	Glu	Thr	Ser 135	Asn	Thr	Thr	Ile	Pro 140	Ala	Asn	Thr	Pro	
Asp 145	Gly	Glu	Tyr	Leu	Leu 150	Arg	Val	Lys	Gln	Ile 155	Ala	Leu	His	Met	Ala 160	
Ser	Gln	Pro	Asn	Lys	Val	Gln	Phe	Tyr	Leu	Ala	Cys	Thr	Gln	Ile	Lys	

				165					170					175		
Ile	Thr	Gly	Gly 180	Arg	Asn	Gly	Thr	Pro 185	Ser	Pro	Leu	Val	Ala 190	Leu	Pro	
Gly	Ala	Tyr 195	Lys	Ser	Thr	Asp	Pro 200	Gly	Ile	Leu	Val	Asp 205	Ile	Tyr	Ser	
Met	Lys 210	Pro	Glu	Ser	Tyr	Gln 215	Pro	Pro	Gly	Pro	Pro 220	Val	Trp	Arg	Gly	
<211 <212	L> LE 2> T	EQ II ENGTH PE: RGANI	H: 20 PRT	8	eliop	phtho	ora t	herm	nophi	lla						
< 400)> SI	EQUEN	ICE :	65												
His 1	Phe	Val	Asn	Gly 5	Gln	Pro	Glu	Glu	Ser 10	Asp	Trp	Ser	Ala	Thr 15	Arg	
Met	Thr	Lys	Asn 20	Ala	Gln	Ser	Lys	Gln 25	Gly	Val	Glu	Asn	Pro 30	Thr	Ser	
Gly	Asp	Ile 35	Arg	Cys	Tyr	Thr	Ser 40	Gln	Thr	Ala	Ala	Asn 45	Val	Val	Thr	
Val	Pro 50	Ala	Gly	Ser	Thr	Ile 55	His	Tyr	Ile	Ser	Thr 60	Gln	Gln	Ile	Asn	
His 65	Pro	Gly	Pro	Thr	Gln 70	Tyr	Tyr	Leu	Ala	Lys 75	Val	Pro	Pro	Gly	Ser 80	
Ser	Ala	Lys	Thr	Phe 85	Asp	Gly	Ser	Gly	Ala 90	Val	Trp	Phe	ГЛЗ	Ile 95	Ser	
Thr	Thr	Met	Pro 100	Thr	Val	Asp	Ser	Asn 105	Lys	Gln	Met	Phe	Trp 110	Pro	Gly	
		115					120		Thr			125				
Asp	Gly 130	Glu	Tyr	Leu	Leu	Arg 135	Val	Lys	Gln	Ile	Ala 140	Leu	His	Met	Ala	
Ser 145	Gln	Pro	Asn	Lys	Val 150	Gln	Phe	Tyr	Leu	Ala 155	Cys	Thr	Gln	Ile	Lys 160	
				165					Ser 170					175		
			180					185	Ile				190			
Met	ГЛЗ	Pro 195	Glu	Ser	Tyr	Gln	Pro 200	Pro	Gly	Pro	Pro	Val 205	Trp	Arg	Gly	
<211 <212	L> LE 2> TY	EQ II ENGTH PE: RGANI	H: 84	19	eliop	phtho	ora t	herm	nophi	lla						
< 400)> SI	EQUEN	ICE:	66												
atga	agco	ect t	tago	cctc	gt co	gecet	ggcg	g act	gccg	gtga	gegg	gccat	gc d	catct	tccag	60
cggg	gtgto	gg t	caac	ggg	a go	gacca	agggo	caç	getea	agg	gggt	gcgg	ggc 9	geegt	cgagc	120
aact	cccc	ga t	ccaç	gaaco	gt ca	aacga	atgeo	aac	atgg	geet	gcaa	acgco	caa o	catto	gtgtac	180
caco	gacaa	aca c	ccato	catca	aa go	gtgc	ccgcg	g gga	gcco	gcg	tegg	gegeg	gtg g	gtggd	cagcac	240
gtca	tcgg	geg g	ggccg	gcagg	gg cg	gccaa	acgao	0.00	gaca	acc	cgat	cgc	ege d	ctccc	cacaag	300

-continued	
ggccccatcc aggtctacct ggccaaggtg gacaacgcgg cgacggcgtc gccgtcgggc	360
ctcaagtggt tcaaggtggc cgagcgcggc ctgaacaacg gcgtgtgggc ctacctgatg	420
cgcgtcgagc tgctcgccct gcacagcgcc tcgagccccg gcggcgccca gttctacatg	480
ggctgtgcac agatcgaagt cactggctcc ggcaccaact cgggctccga ctttgtctcg	540
ttccccggcg cctactcggc caacgacccg ggcatcttgc tgagcatcta cgacagctcg	600
ggcaageeca acaatggegg gegetegtae eegateeceg geeegegeee cateteetge	660
teeggeageg geggeggegg caacaaegge ggegaeggeg gegaegaeaa caaeggtggt	720
ggcaacaaca acggcggcgg cagcgtcccc ctgtacgggc agtgcggcgg catcggctac	780
acgggcccga ccacctgtgc ccagggaact tgcaaggtgt cgaacgaata ctacagccag	840
tgcctcccc	849
<210> SEQ ID NO 67 <211> LENGTH: 283 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila	
<400> SEQUENCE: 67	
Met Lys Pro Phe Ser Leu Val Ala Leu Ala Thr Ala Val Ser Gly His 1 10 15	
Ala Ile Phe Gln Arg Val Ser Val Asn Gly Gln Asp Gln Gly Gln Leu 20 25 30	
Lys Gly Val Arg Ala Pro Ser Ser Asn Ser Pro Ile Gln Asn Val Asn 35 40 45	
Asp Ala Asn Met Ala Cys Asn Ala Asn Ile Val Tyr His Asp Asn Thr 50 55 60	
Ile Ile Lys Val Pro Ala Gly Ala Arg Val Gly Ala Trp Trp Gln His 65 70 75 80	
Val Ile Gly Gly Pro Gln Gly Ala Asn Asp Pro Asp Asn Pro Ile Ala 85 90 95	
Ala Ser His Lys Gly Pro Ile Gln Val Tyr Leu Ala Lys Val Asp Asn 100 105 110	
Ala Ala Thr Ala Ser Pro Ser Gly Leu Lys Trp Phe Lys Val Ala Glu 115 120 125	
Arg Gly Leu Asn Asn Gly Val Trp Ala Tyr Leu Met Arg Val Glu Leu 130 135 140	
Leu Ala Leu His Ser Ala Ser Ser Pro Gly Gly Ala Gln Phe Tyr Met 145 150 155 160	
Gly Cys Ala Gln Ile Glu Val Thr Gly Ser Gly Thr Asn Ser Gly Ser 165 170 175	
Asp Phe Val Ser Phe Pro Gly Ala Tyr Ser Ala Asn Asp Pro Gly Ile 180 185 190	
Leu Leu Ser Ile Tyr Asp Ser Ser Gly Lys Pro Asn Asn Gly Gly Arg	
Ser Tyr Pro Ile Pro Gly Pro Arg Pro Ile Ser Cys Ser Gly Ser Gly 210 215 220	
Gly Gly Gly Asn Asn Gly Gly Asp Gly Gly Asp Asp Asn Asn Gly Gly	
225 230 235 240 Gly Asn Asn Gly Gly Gly Ser Val Pro Leu Tyr Gly Gln Cys Gly	
245 250 255	

```
Val Ser Asn Glu Tyr Tyr Ser Gln Cys Leu Pro
<210> SEQ ID NO 68
<211> LENGTH: 268
<212> TYPE: PRT
<213 > ORGANISM: Myceliophthora thermophila
<400> SEQUENCE: 68
His Ala Ile Phe Gln Arg Val Ser Val As<br/>n Gly Gln Asp Gln Gly Gln \,
Leu Lys Gly Val Arg Ala Pro Ser Ser Asn Ser Pro Ile Gln Asn Val
Asn Asp Ala Asn Met Ala Cys Asn Ala Asn Ile Val Tyr His Asp Asn
Thr Ile Ile Lys Val Pro Ala Gly Ala Arg Val Gly Ala Trp Trp Gln
His Val Ile Gly Gly Pro Gln Gly Ala Asn Asp Pro Asp Asn Pro Ile
Ala Ala Ser His Lys Gly Pro Ile Gln Val Tyr Leu Ala Lys Val Asp
Asn Ala Ala Thr Ala Ser Pro Ser Gly Leu Lys Trp Phe Lys Val Ala
                             105
Glu Arg Gly Leu Asn Asn Gly Val Trp Ala Tyr Leu Met Arg Val Glu
                120
Leu Leu Ala Leu His Ser Ala Ser Ser Pro Gly Gly Ala Gln Phe Tyr
                      135
Met Gly Cys Ala Gln Ile Glu Val Thr Gly Ser Gly Thr Asn Ser Gly
Ser Asp Phe Val Ser Phe Pro Gly Ala Tyr Ser Ala Asn Asp Pro Gly
                        170
Ile Leu Leu Ser Ile Tyr Asp Ser Ser Gly Lys Pro Asn Asn Gly Gly
Arg Ser Tyr Pro Ile Pro Gly Pro Arg Pro Ile Ser Cys Ser Gly Ser
Gly Gly Gly Asn Asn Gly Gly Asp Gly Gly Asp Asp Asn Asn Gly
Gly Gly Asn Asn Asn Gly Gly Gly Ser Val Pro Leu Tyr Gly Gln Cys
Gly Gly Ile Gly Tyr Thr Gly Pro Thr Thr Cys Ala Gln Gly Thr Cys
                            250
Lys Val Ser Asn Glu Tyr Tyr Ser Gln Cys Leu Pro
           260
<210> SEQ ID NO 69
<211> LENGTH: 639
<212> TYPE: DNA
<213> ORGANISM: Myceliophthora thermophila
<400> SEQUENCE: 69
atgaagetea eetegteeet egetgteetg geegetgeeg gegeeeagge teactatace
                                                                     60
ttccctaggg ccggcactgg tggttcgctc tctggcgagt gggaggtggt ccgcatgacc
```

Gly Ile Gly Tyr Thr Gly Pro Thr Thr Cys Ala Gln Gly Thr Cys Lys

<400> SEQUENCE: 71

gaga	aacca	att a	actc	gcaco	gg co	ccggt	caco	gat	gtca	acca	gcco	ccgaç	gat q	gacct	gctat	180
cagt	ccgg	geg t	gcag	gggtg	ge ge	ccca	agaco	gto	ccago	gtca	aggo	ggg	etc o	ccaat	tcacc	240
ttca	agcgt	gg a	atcc	ctcca	at co	ggcca	accc	gge	ccct	ctcc	agtt	ctac	cat q	ggcta	aggtg	300
ccgt	cggg	gee a	agaco	ggccg	ge ea	acctt	tgad	gge	cacgo	ggag	ccgt	gtgg	gtt (caaga	atctac	360
caaç	gacgo	gee o	gaad	ggc	et co	ggcad	ccga	ago	catta	acct	ggco	ccago	ege o	eggea	aaacc	420
gag	gtete	gg t	caco	catco	cc ca	agcto	gcato	gag	ggato	ggcg	agta	acct	gct o	ccggg	gtcgag	480
caca	accc	ccc t	ccct	cacaç	ge ge	ccago	cagco	g caa	aaaco	gag	ctcg	geteç	gtc a	accat	cccca	540
gct	gcata	aca a	aggco	cacco	ga co	ccggg	gcato	cto	ette	cagc	tcta	actg	gcc (catco	ccgacc	600
gagt	acat	ca a	accc	egge	ec go	gaaa	ccgt	tct	tgct	aa						639
<213	0> SI L> LI 2> TY 3> OF	ENGTH PE:	H: 23	12	eliop	phtho	ora t	herr	nophi	ila						
< 400)> SI	EQUE	ICE :	70												
Met 1	Lys	Leu	Thr	Ser 5	Ser	Leu	Ala	Val	Leu 10	Ala	Ala	Ala	Gly	Ala 15	Gln	
Ala	His	Tyr	Thr 20	Phe	Pro	Arg	Ala	Gly 25	Thr	Gly	Gly	Ser	Leu 30	Ser	Gly	
Glu	Trp	Glu 35	Val	Val	Arg	Met	Thr 40	Glu	Asn	His	Tyr	Ser 45	His	Gly	Pro	
Val	Thr 50	Asp	Val	Thr	Ser	Pro 55	Glu	Met	Thr	Cys	Tyr 60	Gln	Ser	Gly	Val	
Gln 65	Gly	Ala	Pro	Gln	Thr 70	Val	Gln	Val	Lys	Ala 75	Gly	Ser	Gln	Phe	Thr 80	
Phe	Ser	Val	Asp	Pro 85	Ser	Ile	Gly	His	Pro 90	Gly	Pro	Leu	Gln	Phe 95	Tyr	
Met	Ala	Lys	Val 100	Pro	Ser	Gly	Gln	Thr 105	Ala	Ala	Thr	Phe	Asp 110	Gly	Thr	
Gly	Ala	Val 115	Trp	Phe	Lys	Ile	Tyr 120	Gln	Asp	Gly	Pro	Asn 125	Gly	Leu	Gly	
Thr	Asp 130	Ser	Ile	Thr	Trp	Pro 135	Ser	Ala	Gly	Lys	Thr 140	Glu	Val	Ser	Val	
Thr 145	Ile	Pro	Ser	CAa	Ile 150	Glu	Asp	Gly	Glu	Tyr 155	Leu	Leu	Arg	Val	Glu 160	
His	Thr	Pro	Leu	Pro 165	Thr	Ala	Pro	Ala	Ala 170	Gln	Asn	Arg	Ala	Arg 175	Ser	
Ser	Pro	Ser	Pro 180	Ala	Ala	Tyr	Lys	Ala 185	Thr	Asp	Pro	Gly	Ile 190	Leu	Phe	
Gln	Leu	Tyr 195	Trp	Pro	Ile	Pro	Thr 200	Glu	Tyr	Ile	Asn	Pro 205	Gly	Pro	Ala	
Pro	Val 210	Ser	Сув													
<213 <213	0 > SI L > LI 2 > TY 3 > OF	ENGTI (PE :	H: 19	95	eliop	phtho	ora t	herr	nophi	ila						

His Tyr Thr Phe Pro Arg Ala Gly Thr Gly Gly Ser Leu Ser Gly Glu Trp Glu Val Val Arg Met Thr Glu Asn His Tyr Ser His Gly Pro Val Thr Asp Val Thr Ser Pro Glu Met Thr Cys Tyr Gln Ser Gly Val Gln Gly Ala Pro Gln Thr Val Gln Val Lys Ala Gly Ser Gln Phe Thr Phe Ser Val Asp Pro Ser Ile Gly His Pro Gly Pro Leu Gln Phe Tyr Met Ala Lys Val Pro Ser Gly Gln Thr Ala Ala Thr Phe Asp Gly Thr Gly Ala Val Trp Phe Lys Ile Tyr Gln Asp Gly Pro Asn Gly Leu Gly Thr 105 Asp Ser Ile Thr Trp Pro Ser Ala Gly Lys Thr Glu Val Ser Val Thr 120 Ile Pro Ser Cys Ile Glu Asp Gly Glu Tyr Leu Leu Arg Val Glu His 135 Thr Pro Leu Pro Thr Ala Pro Ala Ala Gln Asn Arg Ala Arg Ser Ser 150 Pro Ser Pro Ala Ala Tyr Lys Ala Thr Asp Pro Gly Ile Leu Phe Gln Leu Tyr Trp Pro Ile Pro Thr Glu Tyr Ile Asn Pro Gly Pro Ala Pro 185 Val Ser Cys <210> SEQ ID NO 72 <211> LENGTH: 695 <212> TYPE: DNA <213 > ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 72 atgaagetea cetegteeet egetgteetg geegetgeeg gegeeeagge teactatace tteeetaggg ceggeactgg tggttegete tetggegagt gggaggtggt cegeatgace gagaccatta ctogoacggo coggtoacog atgtoacoag cocogagatg acctgotato agtccggcgt gcagggtgcg ccccagaccg tccaggtcaa ggcgggctcc caattcacct tcagcgtgga tccctccatc ggccaccccg gccctctcca gttctacatg gctaaggtgc cgtcgggcca gacggccgcc acctttgacg gcacgggagc cgtgtggttc aagatctacc aagacggccc gaacggcctc ggcaccgaca gcattacctg gcccagcgcc ggcaaaaccg 420 aggteteggt caccatecee agetgeateg aggatggega gtacetgete egggtegage 480 acategeget ceaeagegee ageagegtgg geggegeeea gttetacate geetgegeee 540 ageteteegt caceggegge teeggeacee teaacaeggg etegetegte teeetgeeeg 600 gegectacaa ggecacegae eegggeatee tettecaget etactggeee atecegaceg 660 agtacatcaa ccccggcccg gcccccgtct cttgc <210> SEQ ID NO 73

<211> LENGTH: 232

<212> TYPE: PRT

<213> ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 73 Met Lys Leu Thr Ser Ser Leu Ala Val Leu Ala Ala Ala Gly Ala Gln Ala His Tyr Thr Phe Pro Arg Ala Gly Thr Gly Gly Ser Leu Ser Gly Glu Trp Glu Val Val Arg Met Thr Glu Asn His Tyr Ser His Gly Pro Val Thr Asp Val Thr Ser Pro Glu Met Thr Cys Tyr Gln Ser Gly Val Gln Gly Ala Pro Gln Thr Val Gln Val Lys Ala Gly Ser Gln Phe Thr Phe Ser Val Asp Pro Ser Ile Gly His Pro Gly Pro Leu Gln Phe Tyr 90 Met Ala Lys Val Pro Ser Gly Gln Thr Ala Ala Thr Phe Asp Gly Thr 105 100 Gly Ala Val Trp Phe Lys Ile Tyr Gln Asp Gly Pro Asn Gly Leu Gly Thr Asp Ser Ile Thr Trp Pro Ser Ala Gly Lys Thr Glu Val Ser Val 135 Thr Ile Pro Ser Cys Ile Glu Asp Gly Glu Tyr Leu Leu Arg Val Glu 150 His Ile Ala Leu His Ser Ala Ser Ser Val Gly Gly Ala Gln Phe Tyr 165 170 Ile Ala Cys Ala Gln Leu Ser Val Thr Gly Gly Ser Gly Thr Leu Asn Thr Gly Ser Leu Val Ser Leu Pro Gly Ala Tyr Lys Ala Thr Asp Pro 200 Gly Ile Leu Phe Gln Leu Tyr Trp Pro Ile Pro Thr Glu Tyr Ile Asn Pro Gly Pro Ala Pro Val Ser Cys <210> SEQ ID NO 74 <211> LENGTH: 215 <213 > ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 74 His Tyr Thr Phe Pro Arg Ala Gly Thr Gly Gly Ser Leu Ser Gly Glu Trp Glu Val Val Arg Met Thr Glu Asn His Tyr Ser His Gly Pro Val Thr Asp Val Thr Ser Pro Glu Met Thr Cys Tyr Gln Ser Gly Val Gln 40 Gly Ala Pro Gln Thr Val Gln Val Lys Ala Gly Ser Gln Phe Thr Phe 55 Ser Val Asp Pro Ser Ile Gly His Pro Gly Pro Leu Gln Phe Tyr Met Ala Lys Val Pro Ser Gly Gln Thr Ala Ala Thr Phe Asp Gly Thr Gly Ala Val Trp Phe Lys Ile Tyr Gln Asp Gly Pro Asn Gly Leu Gly Thr

100 105 110		
Asp Ser Ile Thr Trp Pro Ser Ala Gly Lys Thr Glu Val Ser Val Thr 115 120 125		
Ile Pro Ser Cys Ile Glu Asp Gly Glu Tyr Leu Leu Arg Val Glu His 130 135 140		
Ile Ala Leu His Ser Ala Ser Ser Val Gly Gly Ala Gln Phe Tyr Ile 145 150 155 160		
Ala Cys Ala Gln Leu Ser Val Thr Gly Gly Ser Gly Thr Leu Asn Thr		
Gly Ser Leu Val Ser Leu Pro Gly Ala Tyr Lys Ala Thr Asp Pro Gly 180 185 190		
Ile Leu Phe Gln Leu Tyr Trp Pro Ile Pro Thr Glu Tyr Ile Asn Pro 195 200 205		
Gly Pro Ala Pro Val Ser Cys 210 215		
<210> SEQ ID NO 75 <211> LENGTH: 447 <212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 75		
atgoogocac cacgactgag caccotcott cocotcotag cottaatago coccacogoc	60	i 0
ctggggcact cccacctcgg gtacatcatc atcaacggcg aggtatacca aggattcgac	120	20
ccgcggccgg agcaggcgaa ctcgccgttg cgcgtgggct ggtcgacggg ggcaatcgac	180	30
gacgggttcg tggcgccggc caactactcg tcgcccgaca tcatctgcca catcgagggg	240	10
gccagcccgc cggcgcacgc gcccgtccgg gcgggcgacc gggtgcacgt gcaatggaac	300	00
ggctggccgc tcggacacgt ggggccggtg ctgtcgtacc tggcgccctg cggcgggctg	360	0
gaggggtccg agagcgggtg cgccggggtg gacaagcggc agctgcggtg gaccaaggtg	420	20
gacgactege tgeeggegat ggagetg	447	ŧ 7
<210> SEQ ID NO 76 <211> LENGTH: 149 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila		
<400> SEQUENCE: 76		
Met Pro Pro Pro Arg Leu Ser Thr Leu Leu Pro Leu Leu Ala Leu Ile 1 5 10 15		
Ala Pro Thr Ala Leu Gly His Ser His Leu Gly Tyr Ile Ile Ile Asn 20 25 30		
Gly Glu Val Tyr Gln Gly Phe Asp Pro Arg Pro Glu Gln Ala Asn Ser 35 40 45		
Pro Leu Arg Val Gly Trp Ser Thr Gly Ala Ile Asp Asp Gly Phe Val		
Ala Pro Ala Asn Tyr Ser Ser Pro Asp Ile Ile Cys His Ile Glu Gly 65 70 75 80		
Ala Ser Pro Pro Ala His Ala Pro Val Arg Ala Gly Asp Arg Val His 85 90 95		
Val Gln Trp Asn Gly Trp Pro Leu Gly His Val Gly Pro Val Leu Ser 100 105 110		

Tyr Leu Ala Pro Cys Gly Gly Leu Glu Gly Ser Glu Ser Gly Cys Ala Gly Val Asp Lys Arg Gln Leu Arg Trp Thr Lys Val Asp Asp Ser Leu 135 140 Pro Ala Met Glu Leu 145 <210> SEQ ID NO 77 <211> LENGTH: 127 <212> TYPE: PRT <213 > ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 77 His Ser His Leu Gly Tyr Ile Ile Ile Asn Gly Glu Val Tyr Gln Gly Phe Asp Pro Arg Pro Glu Gln Ala Asn Ser Pro Leu Arg Val Gly Trp Ser Thr Gly Ala Ile Asp Asp Gly Phe Val Ala Pro Ala Asn Tyr Ser Ser Pro Asp Ile Ile Cys His Ile Glu Gly Ala Ser Pro Pro Ala His Ala Pro Val Arg Ala Gly Asp Arg Val His Val Gln Trp Asn Gly Trp 65 70 75 80 Pro Leu Gly His Val Gly Pro Val Leu Ser Tyr Leu Ala Pro Cys Gly Gly Leu Glu Gly Ser Glu Ser Gly Cys Ala Gly Val Asp Lys Arg Gln Leu Arg Trp Thr Lys Val Asp Asp Ser Leu Pro Ala Met Glu Leu 120 <210> SEQ ID NO 78 <211> LENGTH: 1176 <212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 78 atgccgccac cacgactgag caccetectt cecetectag cettaatage eeccacegee 60 ctggggcact cccacctcgg gtacatcatc atcaacggcg aggtatacca aggattcgac ccgcggccgg agcaggcgaa ctcgccgttg cgcgtgggct ggtcgacggg ggcaatcgac gacgggttcg tggcgccggc caactactcg tcgcccgaca tcatctgcca catcgagggg gccagcccgc cggcgcacgc gcccgtccgg gcgggcgacc gggtgcacgt gcaatggaaa eggetggeeg eteggaeaeg tggggeeggt getgtegtae etggegeeet geggeggget 360 420 ggaggggtcc gagagcgggt ggacgactcg ctgccggcga tggagctggt cggggccgcg gggggegegg ggggegagga egaeggeage ggeagegaeg geageggeag eggeggeage 480 ggacgcgtcg gcgtgcccgg gcagcgctgg gccaccgacg tgttgatcgc ggccaacaac 600 agetggeagg tegagateee gegegggetg eggaeggge egtaegtget gegeeaegag atogtogogo tgcactacgo ggoogagoco ggoggogogo agaactacco gototgogto 660 aacctgtggg tcgaggggg cgacggcagc atggagctgg accacttcga cgccacccag 720 ttctaccggc ccgacgaccc gggcatcctg ctcaacgtga cggccggcct gcgctcatac 780 840 gccgtgccgg gcccgacgct ggccgcgggg gcgacgccgg tgccgtacgc gcagcagaac

cocticaceg egagegega tegaacece gtgattgtea coaggageac ggagaegggg cocticaceg egacaceac gecageegag aeggeagaa ceaasggggg gaggtatgat 960 gaccaaacec gaactaaaga cetaaatgaa egettettt atagtageeg geagaacag 1020 aagaggetga cagegacete aagaagggaa ctagttgate ategtaceeg gtacetetee 1080 gtagetgtet gegeagattt eggegeteat aaggeageag aaaceaacea egaagetttg 1140 agaggeggea ataagcacea tggeggtgtt teagag 1176 <210									
gaccasaccc gaactaasga cetaastga cgettettt stagtageeg gecagaacag 1020 aagaggetga cagegacctc aagaaggaa ctagttegate ategtacceg gtacetetee 1080 gtagetgtet gegeagattt eggegeteat aaggeageag aaaccaacca egaagetttg 1140 agaggeggea ataagcacca tggeggtgtt teagag 1176 <pre> <pre> <pre> <pre></pre></pre></pre></pre>	atcagetegg (cgagggcg	ga tggaa	cccc g	tgattgtca	ccaggag	cac gga	gacggtg	900
aagaggetga cagegacete aagaagggaa ctagttgate ategtacecg gtacetetec 1080 gtagetgtet gegeagatt eggegeteat aaggeagag aaaccaacea egaagetttg 1140 agaggegga ataagcaacea tggeggtgtt teagag 1176 2210 SEQ ID NO 79 2211 LENGTH: 392 2212 TYPE: PRT 2213 ORGANISH: Myceliophthora thermophila 2400 SEQUENCE: 79 Met Pro Pro Pro Arg Leu Ser Thr Leu Leu Pro Leu Leu Ala Leu Ile 1 Fs 10 15 Ala Pro Thr Ala Leu Gly His Ser His Leu Gly Tyr Ile Ile Ile Asn 20 25 Gly Glu Val Tyr Gln Gly Phe Asp Pro Arg Pro Glu Gln Ala Asn Ser 35 40 25 Pro Leu Arg Val Gly Trp Ser Thr Gly Ala Ile Asp Asp Gly Phe Val 50 75 80 Ala Pro Ala Asn Tyr Ser Ser Pro Asp Ile Ile Cys His Ile Glu Gly Gly 65 75 80 Ala Ser Pro Pro Ala His Ala Pro Val Arg Ala Gly Asp Arg Val His 85 95 Val Gln Trp Lye Arg Leu Ala Ala Arg Thr Arg Gly Ala Gly Ala Val 100 100 105 Val Pro Gly Ala Leu Arg Arg Ala Gly Gly Val Arg Glu Arg Val Asp 115 120 Asp Ser Leu Pro Ala Met Glu Leu Val Gly Ala Ala Gly Gly Ala Gly 136 140 Gly Glu Asp Asp Gly Ser Gly Ser Asp Gly Ser Gly Ser Gly Gly Ser 145 150 160 Gly Arg Val Gly Val Pro Gly Gln Arg Trp Ala Thr Asp Val Leu Ile 175 160 Gly Arg Val Gly Val Pro Gly Gln Arg Trp Ala Thr Asp Val Leu Ile 175 175 Ala Ala Asn Asn Ser Trp Gln Val Glu Ile Val Ala Leu His Tyr Ala Ala 2195 220 Glu Pro Tyr Val Leu Arg His Glu Ile Val Ala Leu His Tyr Ala Ala 2195 220 Glu Gly Gly Asp Gly Ser Met Glu Leu Asp His Phe Asp Ala Thr Gln 225 220 Glu Gly Gly Asp Gly Ser Met Glu Leu Asp His Phe Asp Ala Thr Gln 225 220 Phe Tyr Arg Pro Asp Asp Pro Gly Ile Leu Leu Asn Val Thr Ala Gly 245 250 Pro Val Pro Tyr Ala Gln Gln Asn Ile Ser Ser Ala Arg Ala Asp Gly	cccttcaccg (eggeacee	ac gccag	ccgag a	cggcagaag	ccaaagg	ggg gag	gtatgat	960
gtagetgtet gegeagatte eggegeteat aaggeageag aaaceaacea egaagetttg 1140 agaaggegegea ataagcaacea tggeggtgtt teagag 1176 <pre> <210 > SEQ ID NO 79 <211 > LENGTHER: 392 <212 > TYPE: PRT <213 > ORGANISM: Myceliophthora thermophila <400 > SEQUENCE: 79 Met Pro Pro Pro Arg Leu Ser Thr Leu Leu Pro Leu Leu Ala Leu IIe 15 Ala Pro Thr Ala Leu Gly His Ser His Leu Gly Tyr IIe IIe IIe Asm 20 Gly Glu Val Tyr Gln Gly Phe Asp Pro Arg Pro Glu Gln Ala Asn Ser 45 Pro Leu Arg Val Gly Trp Ser Thr Gly Ala IIe Asp Asp Gly Phe Val 50 Ala Pro Ala Asn Tyr Ser Pro Asp IIe IIe Cys His IIe Glu Gly 77 Ala Ser Pro Pro Ala His Ala Pro Val Arg Ala Gly Asp Arg Val His 85 85 Val Gln Trp Lys Arg Leu Ala Ala Arg Thr Arg Gly Ala Gly Ala Val 100 Val Pro Gly Ala Leu Arg Arg Ala Gly Gly Val Arg Glu Arg Val Asp 115 Asp Ser Leu Pro Ala Met Glu Leu Val Gly Ala Ala Gly Gly Pla Ala Gly Gly Ser 145 Gly Gly Asp Asp Gly Ser Gly Ser Asp Gly Ser Gly Ser Gly Gly Ser 145 Gly Ala Ola Asp Asp Gly Ser Gly Ser Asp Gly Ser Gly Ser Gly Gly Ser 145 Gly Gly Asp Asp Ser Iteu Pro Ala Met Glu Leu Val Gly Ala Thr Asp Val Leu IIe 175 Ala Ala Asn Asn Asn Ser Trp Gln Val Glu IIe Pro Arg Gly Leu Arg Asp 180 Gly Pro Tyr Val Leu Arg His Glu IIe Val Ala Leu His Tyr Ala Ala 2195 Glu Pro Gly Gly Ala Gln Asn Tyr Pro Leu Cys Val Asn Leu Trp Val 210 Glu Gly Gly Asp Gly Ser Met Glu Leu Asp His Phe Asp Ala Thr Gln 225 Glu Gly Gly Asp Asp Pro Gly IIe Leu Leu Asn Val Thr Ala Gly 245 Dee Tyr Arg Pro Asp Asp Pro Gly IIe Leu Leu Asn Val Thr Ala Gly 255 Leu Arg Ser Tyr Ala Val Pro Gly Pro Thr Leu Ala Ala Ala Gly Ala Thr 260 Pro Val Pro Tyr Ala Gln Gln Asn IIe Ser Ser Ala Arg Ala Asp Gly </pre>	gaccaaaccc g	gaactaaa	ga cctaa	atgaa c	gcttcttt	atagtago	ccg gcc	agaacag	1020
### ### ### ### ### ### ### ### ### ##	aagaggctga d	cagegace	tc aagaa	gggaa c	tagttgatc	atcgtaco	ccg gta	cctctcc	1080
C210	gtagctgtct g	gcgcagat	tt cggcg	ctcat a	aggcagcag	aaaccaa	cca cga	agctttg	1140
<pre>2212> TYPE: PRT 2213> ORGANISM: Myceliophthora thermophila 2400> SEQUENCE: 79 Met Pro Pro Pro Arg Leu Ser Thr Leu Leu Pro Leu Leu Ala Leu Ile 15 Ala Pro Thr Ala Leu Gly His Ser His Leu Gly Tyr Ile Ile Asn 20 Gly Glu Val Tyr Gln Gly Phe Asp Pro Arg Pro Glu Gln Ala Asn Ser 45 Pro Leu Arg Val Gly Trp Ser Thr Gly Ala Ile Asp Asp Gly Phe Val 55 Ala Pro Ala Asn Tyr Ser Ser Pro Asp Ile Ile Cys His Ile Glu Gly 65 Ala Pro Ala Asn Tyr Ser Pro Asp Ile Ile Cys His Ile Glu Gly 65 Ala Ser Pro Pro Ala His Ala Pro Val Arg Ala Gly Asp Arg Val His 85 Wal Gln Trp Lys Arg Leu Ala Ala Arg Thr Arg Gly Ala Gly Ala Val 110 Val Pro Gly Ala Leu Arg Arg Ala Gly Gly Val Arg Glu Arg Val Asp 125 Asp Ser Leu Pro Ala Met Glu Leu Val Gly Ala Ala Gly Gly Ala Gly 130 Gly Glu Asp Asp Gly Ser Gly Ser Asp Gly Ser Gly Ser Gly Gly Ser 160 Gly Arg Val Gly Val Pro Gly Gln Arg Trp Ala Thr Asp Val Leu Ile 175 Ala Ala Asn Asn Ser Trp Gln Val Glu Ile Pro Arg Gly Leu Arg Asp 180 Gly Pro Tyr Val Leu Arg His Glu Ile Val Ala Leu His Tyr Ala Ala 210 Glu Gly Gly Ala Gln Asn Tyr Pro Leu Cys Val Asn Leu Trp Val 225 Glu Gly Gly Ala Gln Asp Pro Gly Ile Leu Leu Asp His Phe Asp Ala Thr Gln 225 Leu Arg Ser Tyr Ala Val Pro Gly Pro Thr Leu Ala Ala Gly Ala Thr 270 Pro Val Pro Tyr Ala Gln Gln Asn Ile Ser Ser Ala Arg Ala Gly Ala Thr 270 Pro Val Pro Tyr Ala Gln Gln Asn Ile Ser Ser Ala Arg Ala Gly Ala Thr 270 Pro Val Pro Tyr Ala Gln Gln Asn Ile Ser Ser Ala Arg Ala Gly Ala Thr 270 Pro Val Pro Tyr Ala Gln Gln Asn Ile Ser Ser Ala Arg Ala Gly Ala Thr 270 Pro Val Pro Tyr Ala Gln Gln Asn Ile Ser Ser Ala Arg Ala Arg Ala Gly Ala Thr 270 Pro Val Pro Tyr Ala Gln Gln Asn Ile Ser Ser Ala Arg Ala Arg Ala Gly Ala Thr 270 Pro Val Pro Tyr Ala Gln Gln Asn Ile Ser Ser Ala Arg Ala Arg Ala Gly Ala Thr 270 Pro Val Pro Tyr Ala Gln Gln Asn Ile Ser Ser Ala Arg Ala Arg Ala Gly Ala Gly 265</pre>	agaggeggea a	ataagcac	ca tggcg	gtgtt t	cagag				1176
Met Pro Pro Pro Pro Arg Leu Ser Thr Leu Leu Pro Leu Leu Ala Leu Ile 1	<211> LENGTH <212> TYPE:	H: 392 PRT	eliophth	ora the	rmophila				
1	<400> SEQUE	NCE: 79							
20 25 30 Gly Glu Val Tyr Gln Gly Phe Asp Pro Arg Pro Glu Gln Ala Asn Ser 45 50 Pro Leu Arg Val Gly Trp Ser Thr Gly Ala Ile Asp Asp Gly Phe Val 55 50 Ala Pro Ala Asn Tyr Ser Ser Pro Asp Ile Ile Cys His Ile Glu Gly 80 85 85 85 87 87 88 11e Ile Cys His Ile Glu Gly 80 85 85 86 85 86 85 86 86 87 87 89 85 86 86 86 86 86 86 86 86 86 86 86 86 86		_	Leu Ser	Thr Le		Leu Leu			
35	Ala Pro Thr		Gly His		s Leu Gly	Tyr Ile		e Asn	
50 55 60 Ala Pro Ala Asn Tyr Ser Ser Pro Asp 11e I1e Cys His I1e Glu Gly 75 80 Ala Ser Pro Pro Ala His Ala Pro Val Arg Ala Gly Asp Arg Val His 95 95 Val Gln Trp Lys Arg Leu Ala Ala Arg Thr Arg Gly Ala Gly Ala Val 100 100 Val Pro Gly Ala Leu Arg Arg Ala Gly Gly Val Arg Glu Arg Val Asp 115 110 Asp Ser Leu Pro Ala Met Glu Leu Val Gly Ala Ala Gly Gly Ala Gly 140 140 Gly Glu Asp Asp Gly Ser Gly Ser Asp Gly Ser Gly Ser Gly Ser Gly Gly Ser 145 150 Gly Arg Val Gly Val Pro Gly Gln Arg Trp Ala Thr Asp Val Leu Ile 175 165 Ala Ala Asn Asn Ser Trp Gln Val Glu Ile Pro Arg Gly Leu Arg Asp 180 185 Gly Pro Tyr Val Leu Arg His Glu Ile Val Ala Leu His Tyr Ala Ala 205 190 Glu Pro Gly Gly Ala Gln Asn Tyr Pro Leu Cys Val Asn Leu Trp Val 215 220 Glu Gly Gly Asp Gly Ser Met Glu Leu Asp His Phe Asp Ala Thr Gln 235 240 Phe Tyr Arg Pro Asp Asp Asp Pro Gly Ile Leu Leu Asn Val Thr Ala Gly 255 255 Leu Arg Ser Tyr Ala Val Pro Gly Pro Thr Leu Ala Ala Gly Ala Thr 270 Pro Val Pro Tyr Ala Gln Gln Asn Ile Ser Ser Ala Arg Ala Asp Gly		Tyr Gln	Gly Phe		o Arg Pro		Ala As	n Ser	
65 70 75 80 Ala Ser Pro Pro Ala His Ala Pro Val Arg 90 Ala Gly Asp Arg Val His 95 Val Gln Trp Lys Arg Leu Ala Ala Arg Thr Arg Gly Ala Gly Ala Val 100 100	-	Val Gly	_	Thr Gl	y Ala Ile		Gly Ph	e Val	
S5 90 95 95 96 95 96 95 96 95 96 96		Asn Tyr		Pro As	_	Cys His	Ile Gl	_	
100 105 110 110 105 110	Ala Ser Pro		His Ala	Pro Va	_	Gly Asp	-		
115	Val Gln Trp		Leu Ala			Gly Ala	-	a Val	
130	_	Ala Leu	Arg Arg		y Gly Val	-	Arg Va	l Asp	
145 150 155 160 Gly Arg Val Gly Val Pro Gly Gln Arg Trp Ala Thr Asp Val Leu Ile 165 160 Ala Ala Asn Asn Asn Ser Trp Gln Val Glu Ile Pro Arg Gly Leu Arg Asp 180 Asp 185 Gly Pro Tyr Val Leu Arg His Glu Ile Val Ala Leu His Tyr Ala Ala 205 Tyr Ala Ala 205 Glu Pro Gly Gly Ala Gln Asn Tyr Pro Leu Cys Val Asn Leu Trp Val 210 220 Glu Gly Gly Asp Gly Ser Met Glu Leu Asp His Phe Asp Ala Thr Gln 235 240 Phe Tyr Arg Pro Asp Asp Pro Gly Ile Leu Leu Asn Val Thr Ala Gly 255 255 Leu Arg Ser Tyr Ala Val Pro Gly Pro Thr Leu Ala Ala Gly Ala Thr 270 270 Pro Val Pro Tyr Ala Gln Gln Asn Ile Ser Ser Ala Arg Ala Asp Gly	=	Pro Ala			l Gly Ala	_	Gly Al	a Gly	
Ala Ala Asn Asn Ser Trp Gln Val Glu Ile Pro Arg Gly Leu Arg Asp 180		Asp Gly	_	Ser As		_	Gly Gl	-	
180 185 190 Gly Pro Tyr Val Leu Arg His Glu Ile Val Ala Leu His Tyr Ala Ala 205 Glu Pro Gly Gly Ala Gln Asn Tyr Pro Leu Cys Val Asn Leu Trp Val 210 Glu Gly Gly Asp Gly Ser Met Glu Leu Asp His Phe Asp Ala Thr Gln 225 Phe Tyr Arg Pro Asp Asp Pro Gly Ile Leu Leu Asn Val Thr Ala Gly 245 Leu Arg Ser Tyr Ala Val Pro Gly Pro Thr Leu Ala Ala Gly Ala Thr 270 Pro Val Pro Tyr Ala Gln Gln Asn Ile Ser Ser Ala Arg Ala Asp Gly	Gly Arg Val	-	Pro Gly	Gln Ar		Thr Asp			
Glu Pro Gly Gly Ala Gln Asn Tyr Pro Leu Cys Val Asn Leu Trp Val 210 Glu Gly Gly Asp Gly Ser Met Glu Leu Asp His Phe Asp Ala Thr Gln 225 Phe Tyr Arg Pro Asp Asp Pro Gly Ile Leu Leu Asn Val Thr Ala Gly 255 Leu Arg Ser Tyr Ala Val Pro Gly Pro Thr Leu Ala Ala Gly Ala Thr 270 Pro Val Pro Tyr Ala Gln Gln Asn Ile Ser Ser Ala Arg Ala Asp Gly	Ala Ala Asn		Trp Gln		_	Arg Gly		g Asp	
Glu Gly Gly Asp Gly Ser Met Glu Leu Asp His Phe Asp Ala Thr Gln 225 Phe Tyr Arg Pro Asp Asp Pro Gly Ile Leu Leu Asn Val Thr Ala Gly 245 Leu Arg Ser Tyr Ala Val Pro Gly Pro Thr Leu Ala Ala Gly Ala Thr 260 Pro Val Pro Tyr Ala Gln Gln Asn Ile Ser Ser Ala Arg Ala Asp Gly		Val Leu	Arg His		e Val Ala		Tyr Al	a Ala	
Phe Tyr Arg Pro Asp Asp Pro Gly Ile Leu Leu Asn Val Thr Ala Gly 245 Leu Arg Ser Tyr Ala Val Pro Gly Pro Thr Leu Ala Ala Gly Ala Thr 260 Pro Val Pro Tyr Ala Gln Gln Asn Ile Ser Ser Ala Arg Ala Asp Gly		Gly Ala		-	o Leu Cys		Leu Tr	p Val	
Leu Arg Ser Tyr Ala Val Pro Gly Pro Thr Leu Ala Ala Gly Ala Thr 260 Pro Val Pro Tyr Ala Gln Gln Asn Ile Ser Ser Ala Arg Ala Asp Gly		Asp Gly		Glu Le	_	_	Ala Th		
260 265 270 Pro Val Pro Tyr Ala Gln Gln Asn Ile Ser Ser Ala Arg Ala Asp Gly	Phe Tyr Arg		Asp Pro	Gly Il		Asn Val			
	Leu Arg Ser	_	Val Pro	_		Ala Ala	_	a Thr	
		Tyr Ala	Gln Gln		e Ser Ser	_	Ala As	p Gly	

Thr Pro Val Ile Val Thr Arg Ser Thr Glu Thr Val Pro Phe Thr Ala

290 295 300 Ala Pro Thr Pro Ala Glu Thr Ala Glu Ala Lye Gly Gly Arg Tyr Agg 305 Asg Gln Thr Arg Thr Lye Asg Leu Ass Glu Arg Phe Phe Tyr Ser Ser San San Ser Pro Glu Gln Lye Arg Leu Thr Ala Thr Ser Arg Arg Glu Leu Val 345 Asg His Arg Thr Arg Tyr Leu Ser Val Ala Val Cye Ala Asg Phe Gly 355 Ala His Lye Ala Ala Glu Thr Ass His Glu Ala Leu Arg Gly Gly Ass 365 Ala His Lye Ala Ala Glu Thr Ass His Glu Ala Leu Arg Gly Gly Ass 365 Ala His Lye Ala Ala Gly Thr Ass His Glu Ala Leu Arg Gly Gly Ass 3770 Asg Ser Glu 390 Asg Ser Glu 390 Asg Ser Glu Ala Leu Arg Gly Gly Ass 3770 Asg Ser Glu Ala Leu Arg Gly Gly Ass 3770 Asg Ser His His Gly Gly Tyr Ile Ile Ile Ass Gly Glu Val Tyr Gln Gly 1 Ser Glu Ala Leu Arg Val Gly Thr 1 Ser His Ser His Leu Gly Tyr Ile Ile Ile Ass Gly Glu Val Tyr Gln Gly I Ser Tyre: Pro Tyre Asg Arg Arg Mar Val Ala Pro Ala Ass Tyr Ser Arg Arg Arg Val His Val Gly Try Ser Arg Arg Arg Val His Val Glu Try Lye Arg Leu 7 Ser Arg Arg Mar Val Arg Ala Gly Asg Arg Val His Val Glu Try Lye Arg Leu 7 Ser Arg Ala Gly Arg Val Ala Gly Glu Val Pro Gly Ala Leu Arg 8 Ser Arg Ala Gly Arg Val Ala Gly Gly Glu Arg Arg Gly Arg Arg Val His Val Glu Try Lye Arg Leu 7 Ser Arg Ala Gly Arg Glu Arg Val Ala Gly Gly Glu Arg Arg Gly Arg Arg Val His Val Glu Try Lye Arg Leu 7 Ser Arg Ala Gly Arg Glu Arg Val Arg Gly Gly Gly Glu Arg Arg Gly Arg Arg Val His Val Gly Ala Ser Income 1 120 Ser 125 Ser Arg Ala Gly Ala Arg Glu Arg Val Arg Gly Gly Glu Arg Arg Arg Gly Arg Arg Arg Arg Arg Arg Arg Arg Gly Arg Gly Arg Gly Arg Gly Gly Gly Arg Gly Gly Gly Gly Gly Gly Gly Arg Gly													COII	CIII	ueu	
310 316 316 317 328 328 329		290					295					300				
Arg Pro Glu Gln Lys Arg Leu Thr Ala Thr Ser Arg Arg Glu Leu Val 345 Asp His Arg Thr Arg Tyr Leu Ser Val Ala Val Cys Ala Asp Phe Gly 355 Ala His Lys Ala Ala Glu Thr Asn His Glu Ala Leu Arg Gly Gly Asn 370 Ala His Lys Ala Ala Glu Thr Asn His Glu Ala Leu Arg Gly Gly Asn 370 Ala His Lys Ala Ala Glu Thr Asn His Glu Ala Leu Arg Gly Gly Asn 370 Ala His Lys Ala Ala Glu Thr Asn His Glu Ala Leu Arg Gly Gly Asn 370 Ala His Lys Ala Ala Glu Thr Asn His Glu Ala Leu Arg Gly Gly Asn 370 Ala Sec III No 80 All Leu Arg Gly Gly Val Ser Glu Ala Sec III No 80 Ala Sec III Sec III No 80 Ala Sec III Sec III Sec III Sec III III III III III III III III III I		Pro	Thr	Pro	Ala		Thr	Ala	Glu	Ala		Gly	Gly	Arg	Tyr	
Agg His Arg Thr Arg Tyr Leu Ser Val Ala Val Cys Ala Asg Phe Gly Ala Ala Sin Ala	Asp	Gln	Thr	Arg		Lys	Asp	Leu	Asn		Arg	Phe	Phe	Tyr		Ser
355	Arg	Pro	Glu		Lys	Arg	Leu	Thr		Thr	Ser	Arg	Arg		Leu	Val
170	Asp	His		Thr	Arg	Tyr	Leu		Val	Ala	Val	Cys		Asp	Phe	Gly
SEQ ID No 80 C211> LENGTH: 370 C212> TYPE: PRT C213> ORGANISM: Myceliophthoral thermophila C400> SEQUENCE: 80 His Ser His Leu Gly Tyr Ile Ile Ile Asn Gly Glu Val Tyr Gln Gly Is The Asn Ser Pro Leu Arg Val Gly Trg 35 Ser Thr Gly Ala Ile Asn Asn Ser Pro Leu Arg Val Gly Trg 35 Ser Thr Gly Ala Ile Asn Asn Ser Pro Leu Arg Val Gly Trg 35 Ser Thr Gly Ala Ile Asn Asn Asn Ser Pro Leu Arg Val Gly Trg 35 Ser Thr Gly Ala Ile Asn Asn Asn Ser Pro Leu Arg Val Gly Trg 36 And Trg 46 Ser Pro Asn Tyr Ser 46 And Asn Tyr Ser 45 And Trg 47 And Trg 48	Ala		Lys	Ala	Ala	Glu		Asn	His	Glu	Ala		Arg	Gly	Gly	Asn
<pre></pre>		His	His	Gly	Gly		Ser	Glu								
No.	<211 <212 <213	L> LE 2> TY 3> OF	ENGTI (PE : RGAN)	H: 3' PRT ISM:	70 Мус	eliop	phthe	ora t	herr	nophi	ila					
10						Tur	Tla	Tla	Tla	Δan	Glv	Glu	Val	Тул	Gln	Glv
Ser Thr Gly Ala Ile Asp Asp Gly Phe Val Ala Pro Ala Asn Tyr Ser Asp So		DCI	1115	пси	5	171	110	110	110		Cly	Olu	vai	171		Gly
Ser Pro So Asp Ile Ile Cys Sis His Sis Ile Glu Gly Ala Ser Go Pro Pro Pro Pro Ala His Sign Sign Arg Ala Ser Go Pro Pro Pro Ala His Sign Arg Ala Gly Ala Ser Arg Sign Arg Ala Ser Tro Go Pro Pro Ala His Sign Arg Ala Ser Tro Go Pro Sign Arg Sign Arg Ala Sign Arg Sign Ar	Phe	Asp	Pro	_	Pro	Glu	Gln	Ala		Ser	Pro	Leu	Arg		Gly	Trp
50 55 60 Ala Pro Val Arg Ala Gly Asp Arg Val His Val Gln Trp Lys Arg Leu Arg Leu Arg Arg<	Ser	Thr		Ala	Ile	Asp	Asp		Phe	Val	Ala	Pro		Asn	Tyr	Ser
65 70 75 80 Ala Ala Arg Thr Arg SS Gly Ala Gly Ala Gly Ala Sy So Val Pro Gly Ala Leu Arg SS Arg SS Arg Ala Ala Gly Gly Val Arg SS Glu Arg SS A	Ser		Asp	Ile	Ile	CAa		Ile	Glu	Gly	Ala		Pro	Pro	Ala	His
Arg Ala Gly Val Arg Glu Arg Glu Arg Val Arg A		Pro	Val	Arg	Ala		Asp	Arg	Val	His		Gln	Trp	Lys	Arg	
Ser 100 105 110	Ala	Ala	Arg	Thr		Gly	Ala	Gly	Ala		Val	Pro	Gly	Ala		Arg
115	Arg	Ala	Gly		Val	Arg	Glu	Arg		Asp	Asp	Ser	Leu		Ala	Met
130	Glu	Leu		Gly	Ala	Ala	Gly		Ala	Gly	Gly	Glu		Asp	Gly	Ser
145 150 155 160 Gln Val Glu Ile Pro 165 Arg Gly Leu Arg 170 Asp Gly Pro Tyr Val Leu Arg 175 Arg 175 His Glu Ile Val Ala Leu His Tyr Ala Ala Ala Glu Pro Gly Gly Ala Gln 180 Fro Gly 190 Asp Gly Pro Tyr Arg Gly Ser 205 Asn Tyr Pro 195 Leu Cys Val Asn Leu Trp Val Glu Gly Gly Asp Gly Ser 205 Asp Gly Ser 205 Met Glu Leu Asp His Pro 215 Ala Thr Gln Pro Tyr Arg Pro Asp Asp 220 Pro Gly Ile Leu Leu Asn Val 230 Thr Ala Gly Leu Arg Ser Tyr Ala Val 240 Pro Gly Pro Thr Leu Ala Ala Gly Ala Thr Pro Val Pro Tyr Ala Gln	Gly		Asp	Gly	Ser	Gly		Gly	Gly	Ser	Gly		Val	Gly	Val	Pro
His Glu Ile Val Ala Leu His Tyr Ala Ala Glu Pro Gly Gly Ala Gln 180		Gln	Arg	Trp	Ala		Asp	Val	Leu	Ile		Ala	Asn	Asn	Ser	
Asn Tyr Pro Leu Cys Val Asn Leu Trp Val Glu Gly Gly Asp Gly Ser 200 Trp Val Glu Gly Gly Asp Gly Ser 200 Trp Val Glu Gly Gly Asp Gly Ser 200 Trp Val Glu Gly Gly Asp Gly Ser 200 Trp Gly Ile Leu Leu Asn Val Thr Ala Gly Leu Arg Ser Tyr Ala Val 225 Trp Gly Pro Thr Leu Ala Ala Gly Ala Thr Pro Val Pro Tyr Ala Gln	Gln	Val	Glu	Ile		Arg	Gly	Leu	Arg		Gly	Pro	Tyr	Val		Arg
Met Glu Leu Asp His Phe Asp Ala Thr Gln Phe Tyr Arg Pro Asp Asp Asp 210	His	Glu	Ile		Ala	Leu	His	Tyr		Ala	Glu	Pro	Gly	_	Ala	Gln
210 215 220 210 215 220 210 210 210 210 210 210 210 210 210	Asn	Tyr		Leu	CÀa	Val	Asn		Trp	Val	Glu	Gly	_	Asp	Gly	Ser
225 230 235 240 Pro Gly Pro Thr Leu Ala Ala Gly Ala Thr Pro Val Pro Tyr Ala Gln	Met		Leu	Asp	His	Phe		Ala	Thr	Gln	Phe		Arg	Pro	Asp	Asp
		Gly	Ile	Leu	Leu		Val	Thr	Ala	Gly		Arg	Ser	Tyr	Ala	
	Pro	Gly	Pro	Thr		Ala	Ala	Gly	Ala		Pro	Val	Pro	Tyr		Gln

Gln Asn Ile Ser Ser Ala Arg Ala Asp Gly Thr Pro Val Ile Val Thr 260 265 270	
Arg Ser Thr Glu Thr Val Pro Phe Thr Ala Ala Pro Thr Pro Ala Glu 275 280 285	
Thr Ala Glu Ala Lys Gly Gly Arg Tyr Asp Asp Gln Thr Arg Thr Lys 290 295 300	
Asp Leu Asn Glu Arg Phe Phe Tyr Ser Ser Arg Pro Glu Gln Lys Arg 305 310 315 320	
Leu Thr Ala Thr Ser Arg Arg Glu Leu Val Asp His Arg Thr Arg Tyr 325 330 335	
Leu Ser Val Ala Val Cys Ala Asp Phe Gly Ala His Lys Ala Ala Glu 340 345 350	
Thr Asn His Glu Ala Leu Arg Gly Gly Asn Lys His His Gly Gly Val 355 360 365	
Ser Glu 370	
<210> SEQ ID NO 81 <211> LENGTH: 453 <212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 81	
•	50
gccacgtttc agcagctctg gcacggctcc tcctgtgtcc gccttccggc tagcaactca 12	
cccgtcacca atgtgggaag cagagacttc gtctgcaacg ctggcacccg ccccgtcagt 18	30
ggcaagtgcc ccgtgaaggc tggcggcacc gtcaccatcg agatgcacca gcaacccggc 24	10
gaccgcagct gcaacaacga agccatcgga ggggcgcatt ggggccccgt ccaggtgtac 30	00
ctgaccaagg ttcaggacgc cgcgacggcc gacggctcga cgggctggtt caagatcttc 36	50
teegaetegt ggtecaagaa geeegggge aacttgggeg acgaegaeaa etggggeaeg 42	20
cgcgacctga acgcctgctg cgggaagatg gac 45	53
<210> SEQ ID NO 82 <211> LENGTH: 151 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila	
<400> SEQUENCE: 82	
Met Arg Ser Thr Leu Ala Gly Ala Leu Ala Ala Ile Ala Ala Gln Lys 1 5 10 15	
Val Ala Gly His Ala Thr Phe Gln Gln Leu Trp His Gly Ser Ser Cys 20 25 30	
Val Arg Leu Pro Ala Ser Asn Ser Pro Val Thr Asn Val Gly Ser Arg 35 40 45	
Asp Phe Val Cys Asn Ala Gly Thr Arg Pro Val Ser Gly Lys Cys Pro 50 60	
Val Lys Ala Gly Gly Thr Val Thr Ile Glu Met His Gln Gln Pro Gly 65 70 75 80	
Asp Arg Ser Cys Asn Asn Glu Ala Ile Gly Gly Ala His Trp Gly Pro 85 90 95	
Val Gln Val Tyr Leu Thr Lys Val Gln Asp Ala Ala Thr Ala Asp Gly 100 105 110	

Ser Thr Gly Trp Phe Lys Ile Phe Ser Asp Ser Trp Ser Lys Lys Pro 120 Gly Gly Asn Leu Gly Asp Asp Asp Asn Trp Gly Thr Arg Asp Leu Asn Ala Cys Cys Gly Lys Met Asp <210> SEQ ID NO 83 <211> LENGTH: 132 <212> TYPE: PRT <213 > ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 83 His Ala Thr Phe Gln Gln Leu Trp His Gly Ser Ser Cys Val Arg Leu Pro Ala Ser Asn Ser Pro Val Thr Asn Val Gly Ser Arg Asp Phe Val Cys Asn Ala Gly Thr Arg Pro Val Ser Gly Lys Cys Pro Val Lys Ala Gly Gly Thr Val Thr Ile Glu Met His Gln Gln Pro Gly Asp Arg Ser Cys Asn Asn Glu Ala Ile Gly Gly Ala His Trp Gly Pro Val Gln Val Tyr Leu Thr Lys Val Gln Asp Ala Ala Thr Ala Asp Gly Ser Thr Gly Trp Phe Lys Ile Phe Ser Asp Ser Trp Ser Lys Lys Pro Gly Gly Asn Leu Gly Asp Asp Asp Asn Trp Gly Thr Arg Asp Leu Asn Ala Cys Cys 120 Gly Lys Met Asp 130 <210> SEQ ID NO 84 <211> LENGTH: 837 <212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 84 atgaggtcga cattggccgg tgccctggca gccatcgctg ctcagaaagt agccggccac gecaegttte ageagetetg geaeggetee teetgtgtee geetteegge tageaactea cccgtcacca atgtgggaag cagagacttc gtctgcaacg ctggcacccg ccccgtcagt ggcaagtgcc cegtgaagge tggcggcace gtcaccateg agatgcacca gcaacceggc 240 gaccgcaget geaacaacga agecategga ggggegeatt ggggeeeegt eeaggtgtae 300 ctgaccaagg ttcaggacgc cgcgacggcc gacggctcga cgggctggtt caagatcttc 360 tecgaetegt ggteeaagaa geeeggggge aactegggeg aegaegaeaa etggggeaeg cgcgacctga acgcctgctg cgggaagatg gacgtggcca tcccggccga catcgcgtcg 480 ggcgactacc tgctgcgggc cgaggcgctg gccctgcaca cggccggaca ggccggcggc gcccagttct acatgagctg ctaccagatg acggtcgagg gcggctccgg gaccgccaac 600 660 cogoccacog toaagttooc gggogoctac agogocaacg accogggoat cotogtcaac

780 837

atccgcgagg ccggctccgc ctgcaccggc tgcgcgcaga cctgcaaggt cgggtcgtcc
ccgagcgccg ttgcccccgg cagcggcgcg ggcaacggcg gcgggttcca accccga
<210> SEQ ID NO 85 <211> LENGTH: 279 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila
<400> SEQUENCE: 85
Met Arg Ser Thr Leu Ala Gly Ala Leu Ala Ala Ile Ala Ala Gln Lys 1 5 10 15
Val Ala Gly His Ala Thr Phe Gln Gln Leu Trp His Gly Ser Ser Cys 20 25 30
Val Arg Leu Pro Ala Ser Asn Ser Pro Val Thr Asn Val Gly Ser Arg 35 40 45
Asp Phe Val Cys Asn Ala Gly Thr Arg Pro Val Ser Gly Lys Cys Pro 50 60
Val Lys Ala Gly Gly Thr Val Thr Ile Glu Met His Gln Gln Pro Gly 70 75 80
Asp Arg Ser Cys Asn Asn Glu Ala Ile Gly Gly Ala His Trp Gly Pro 85 90 95
Val Gln Val Tyr Leu Thr Lys Val Gln Asp Ala Ala Thr Ala Asp Gly 100 105 110
Ser Thr Gly Trp Phe Lys Ile Phe Ser Asp Ser Trp Ser Lys Lys Pro 115 120 125
Gly Gly Asn Ser Gly Asp Asp Asp Asn Trp Gly Thr Arg Asp Leu Asn 130 135 140
Ala Cys Cys Gly Lys Met Asp Val Ala Ile Pro Ala Asp Ile Ala Ser 145 150 155 160
Gly Asp Tyr Leu Leu Arg Ala Glu Ala Leu Ala Leu His Thr Ala Gly 165 170 175
Gln Ala Gly Gly Ala Gln Phe Tyr Met Ser Cys Tyr Gln Met Thr Val 180 185 190
Glu Gly Gly Ser Gly Thr Ala Asn Pro Pro Thr Val Lys Phe Pro Gly 195 200 205
Ala Tyr Ser Ala Asn Asp Pro Gly Ile Leu Val Asn Ile His Ala Pro 210 215 220
Leu Ser Ser Tyr Thr Ala Pro Gly Pro Ala Val Tyr Ala Gly Gly Thr 225 230 235 240
Ile Arg Glu Ala Gly Ser Ala Cys Thr Gly Cys Ala Gln Thr Cys Lys 245 250 255
Val Gly Ser Ser Pro Ser Ala Val Ala Pro Gly Ser Gly Ala Gly Asn 260 265 270
Gly Gly Phe Gln Pro Arg 275
<210> SEQ ID NO 86 <211> LENGTH: 260 <212> TYPE: PRT
<213> ORGANISM: Myceliophthora thermophila
<400> SEQUENCE: 86
His Ala Thr Phe Gln Gln Leu Trp His Gly Ser Ser Cys Val Arg Leu

-concluded
1 5 10 15
Pro Ala Ser Asn Ser Pro Val Thr Asn Val Gly Ser Arg Asp Phe Val 20 25 30
Cys Asn Ala Gly Thr Arg Pro Val Ser Gly Lys Cys Pro Val Lys Ala 35 40 45
Gly Gly Thr Val Thr Ile Glu Met His Gln Gln Pro Gly Asp Arg Ser 50 55 60
Cys Asn Asn Glu Ala Ile Gly Gly Ala His Trp Gly Pro Val Gln Val 65 70 75 80
Tyr Leu Thr Lys Val Gln Asp Ala Ala Thr Ala Asp Gly Ser Thr Gly 85 90 95
Trp Phe Lys Ile Phe Ser Asp Ser Trp Ser Lys Lys Pro Gly Gly Asn 100 105 110
Ser Gly Asp Asp Asp Asn Trp Gly Thr Arg Asp Leu Asn Ala Cys Cys 115 120 125
Gly Lys Met Asp Val Ala Ile Pro Ala Asp Ile Ala Ser Gly Asp Tyr 130 135 140
Leu Leu Arg Ala Glu Ala Leu Ala Leu His Thr Ala Gly Gln Ala Gly 145 150 155 160
Gly Ala Gln Phe Tyr Met Ser Cys Tyr Gln Met Thr Val Glu Gly Gly 165 170 175
Ser Gly Thr Ala Asn Pro Pro Thr Val Lys Phe Pro Gly Ala Tyr Ser 180 185 190
Ala Asn Asp Pro Gly Ile Leu Val Asn Ile His Ala Pro Leu Ser Ser 195 200 205
Tyr Thr Ala Pro Gly Pro Ala Val Tyr Ala Gly Gly Thr Ile Arg Glu 210 215 220
Ala Gly Ser Ala Cys Thr Gly Cys Ala Gln Thr Cys Lys Val Gly Ser 225 230 235 240
Ser Pro Ser Ala Val Ala Pro Gly Ser Gly Ala Gly Asn Gly Gly Gly 245 250 255
Phe Gln Pro Arg 260
<210> SEQ ID NO 87 <211> LENGTH: 735 <212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila
<pre><400> SEQUENCE: 87</pre>
atgetectee teaccetage cacactegte accetectgg egegecacgt eteggeteae 60
gcccggctgt tccgcgtctc tgtcgacggg aaagaccagg gcgacgggct gaacaagtac 120
atcegetege eggegaceaa egacecegtg egegacetet egagegeege categtgtge 180
aacacccagg ggtccaaggc cgcccggac ttcgtcaggg ccgcgggccgg cgacaagctg 240
accttectet gggegeaega caacceggae gacceggteg actaegteet egaccegtee 300
cacaagggeg ceateetgae etaegtegee geetaeeeet eeggggaeee gaeeggeeee 360
atotggagoa agottgooga ggaaggatto acoggogggo agtgggogao catcaagatg 420
ategacaaeg geggeaaggt egaegtgaeg etgeeegagg eeettgegee gggaaagtae 480
ctgatccgcc aggagctgct ggccctgcac cgggccgact ttgcctgcga cgacccggcc 540

-continued	
caccccaacc geggegeega gtegtacecc aactgegtee aggtggaggt gtegggeage	600
ggcgacaaga agccggacca gaactttgac ttcaacaagg gctatacctg cgataacaaa	660
ggactccact ttaagatcta catcggtcag gacagccagt atgtggcccc ggggccgcgg	720
ccttggaatg ggagc	735
<210> SEQ ID NO 88 <211> LENGTH: 245 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila	
<400> SEQUENCE: 88	
Met Leu Leu Eu Thr Leu Ala Thr Leu Val Thr Leu Leu Ala Arg His 1 10 15	
Val Ser Ala His Ala Arg Leu Phe Arg Val Ser Val Asp Gly Lys Asp 20 25 30	
Gln Gly Asp Gly Leu Asn Lys Tyr Ile Arg Ser Pro Ala Thr Asn Asp 35 40 45	
Pro Val Arg Asp Leu Ser Ser Ala Ala Ile Val Cys Asn Thr Gln Gly 50 60	
Ser Lys Ala Ala Pro Asp Phe Val Arg Ala Ala Ala Gly Asp Lys Leu 65 70 75 80	
Thr Phe Leu Trp Ala His Asp Asn Pro Asp Asp Pro Val Asp Tyr Val 85 90 95	
Leu Asp Pro Ser His Lys Gly Ala Ile Leu Thr Tyr Val Ala Ala Tyr 100 105 110	
Pro Ser Gly Asp Pro Thr Gly Pro Ile Trp Ser Lys Leu Ala Glu Glu 115 120 125	
Gly Phe Thr Gly Gly Gln Trp Ala Thr Ile Lys Met Ile Asp Asn Gly 130 135 140	
Gly Lys Val Asp Val Thr Leu Pro Glu Ala Leu Ala Pro Gly Lys Tyr 145 150 155 160	
Leu Ile Arg Gln Glu Leu Leu Ala Leu His Arg Ala Asp Phe Ala Cys 165 170 175	
Asp Asp Pro Ala His Pro Asn Arg Gly Ala Glu Ser Tyr Pro Asn Cys 180 185 190	
Val Gln Val Glu Val Ser Gly Ser Gly Asp Lys Lys Pro Asp Gln Asn 195 200 205	
Phe Asp Phe Asn Lys Gly Tyr Thr Cys Asp Asn Lys Gly Leu His Phe 210 215 220	
Lys Ile Tyr Ile Gly Gln Asp Ser Gln Tyr Val Ala Pro Gly Pro Arg 225 230 235 240	
Pro Trp Asn Gly Ser 245	
<pre><210> SEQ ID NO 89 <211> LENGTH: 226 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila</pre>	
<400> SEQUENCE: 89	
His Ala Arg Leu Phe Arg Val Ser Val Asp Gly Lys Asp Gln Gly Asp 1 10 15	

Gly Leu Asn Lys Tyr Ile Arg Ser Pro Ala Thr Asn Asp Pro Val Arg

_																
			20					25					30			
Asp	Leu	Ser 35	Ser	Ala	Ala	Ile	Val 40	Cas	Asn	Thr	Gln	Gly 45	Ser	Lys	Ala	
	D-		D.						a.		.		mı	D1		
Ala	Pro 50	Asp	Рne	val	Arg	Ala 55	ALA	ALA	GTÀ	Asp	FÀS	ьeu	Thr	rne	ьеи	
Trp	Ala	His	Asp	Asn	Pro	Asp	Asp	Pro	Val	Asp	Tyr	Val	Leu	Asp	Pro	
65			-		70	-	-			75	-			•	80	
Ser	His	Lys	Gly		Ile	Leu	Thr	Tyr		Ala	Ala	Tyr	Pro		Gly	
				85					90					95		
Asp	Pro	Thr	Gly 100	Pro	Ile	Trp	Ser	Lys 105	Leu	Ala	Glu	Glu	Gly 110	Phe	Thr	
a.	G7	a.		7.7	m'	T 7	Ŧ.		T.7		7.	a.			**- 1	
GIY	GIY	115	Trp	Ala	Thr	iie	ьуs 120	Met	IIe	Aap	Asn	125	GIY	гуз	vai	
Asp	Val	Thr	Leu	Pro	Glu	Ala	Leu	Ala	Pro	Glv	Lvs	Tvr	Leu	Ile	Ara	
~ P	130					135				1	140	- 1 -			3	
	Glu	Leu	Leu	Ala	Leu	His	Arg	Ala	Asp		Ala	Cys	Asp	Asp		
145					150					155					160	
Ala	His	Pro	Asn	_	Gly	Ala	Glu	Ser	-	Pro	Asn	CAa	Val		Val	
				165					170					175		
Glu	Val	Ser	Gly 180	Ser	Gly	Asp	Lys	Lys 185	Pro	Asp	Gln	Asn	Phe 190	Asp	Phe	
Aan	Larc	G1++		Thr	Cys	Δar	Δαν		Gl v	Len	шіс	Dhe		T1e	Тугт	
ASII	пув	195	ıyr	1111	cyn	vsb	200	пув	GTÅ	ьeu	чта	205	пув	тте	түт	
Ile	Gly	Gln	Asp	Ser	Gln	Tyr	Val	Ala	Pro	Gly	Pro	Arg	Pro	Trp	Asn	
	210		-			215				-	220	J		-		
Gly	Ser															
225																
<210)> SI	50 TI	D NO	90												
<211	> LF	ENGTI	H: 6	00												
	2 > T? 3 > OF				elio	hth	ora 1	her	noph:	ila						
<400)> SI	EOUEI	NCE:	90												
		-			at ~	2000	at a a	- +~		act -	++~	7000	300	1+ 2+	10000	
															gggcca	60
gtca	tgaa	act a	atct:	egee.	ca t	gca	ccaat	ga (cgact	tgca	agt	cttt	caa q	gggcg	gacagc	120
ggca	acgt	ct q	gggt	caag	at c	gagc	agct	g gc	gtac	aacc	cgt	cagc	caa o	cccc	cctgg	180
gcgt	ctga	acc t	tcct	ccgt	ga g	cacg	gtgc	c aaq	gtgg	aagg	tga	cgat	ccc (geeea	agtctt	240
gtco	caago	geg a	aata	tata	ct g	egge	acga	g at	cctg	gggt	tgc.	acgt	ege a	aggaa	accgtg	300
																360
															agcacg	
cago	etge	ect o	caaa.	tatt	gc g	ctcc	cagg	get	ttac	ggcc	cac	aaga	cga q	gggta	atcttg	420
gtcg	gactt	gt	ggag	ggtt	aa c	cagg	gcca	g gt	caact	taca	cgg	egeet	tgg a	aggad	ccgtt	480
tgga	gcga	aag o	cgtg	ggac	ac c	gagti	ttgg	gg:	gtcc	aaca	cga	ccga	gtg (egeca	accatg	540
ctcc	aca:	add t	tact:	agaa.	ta di	at.aa	aaa.	g as	caac	gadt	aus.	t.daa.	eta 1	gadd	gcctag	600
CCC	, acy	(-gec'	cyac	ca c	99	-990	o aat	-gac	gugi	aaa	99	-cy (, acy	Joeray	000
<210)> SI	50 TI	D NO	91												
<211	> LF	ENGTI	H: 1:													
	2 > T? 3 > OF			Myc	elioj	ohth	ora 1	her	noph:	ila						
									-							
< 400)> SI	:QUEI	NCE:	91												

Met Phe Thr Ser Leu Cys Ile Thr Asp His Trp Arg Thr Leu Ser Ser 1 10 15	
His Ser Gly Pro Val Met Asn Tyr Leu Ala His Cys Thr Asn Asp Asp 20 25 30	
Cys Lys Ser Phe Lys Gly Asp Ser Gly Asn Val Trp Val Lys Ile Glu 35 40 45	
Gln Leu Ala Tyr Asn Pro Ser Ala Asn Pro Pro Trp Ala Ser Asp Leu 50 55 60	
Leu Arg Glu His Gly Ala Lys Trp Lys Val Thr Ile Pro Pro Ser Leu 65 70 75 80	
Val Pro Gly Glu Tyr Leu Leu Arg His Glu Ile Leu Gly Leu His Val 85 90 95	
Ala Gly Thr Val Met Gly Ala Gln Phe Tyr Pro Gly Cys Thr Gln Ile 100 105 110	
Arg Val Thr Glu Gly Gly Ser Thr Gln Leu Pro Ser Gly Ile Ala Leu 115 120 125	
Pro Gly Ala Tyr Gly Pro Gln Asp Glu Gly Ile Leu Val Asp Leu Trp 130 135 140	
Arg Val Asn Gln Gly Gln Val Asn Tyr Thr Ala Pro Gly Gly Pro Val 145 150 155 160	
Trp Ser Glu Ala Trp Asp Thr Glu Phe Gly Gly Ser Asn Thr Thr Glu 165 170 175	
Cys Ala Thr Met Leu Asp Asp Leu Leu Asp Tyr Met Ala Ala Asn Asp 180 185 190	
Glu Trp Ile Gly Trp Thr Ala 195	
<210> SEQ ID NO 92 <211> LENGTH: 693 <212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila	
<400> SEQUENCE: 92	
atgaactate tegeceattg caccaatgae gaetgeaagt ettteaaggg egaeagegge	60
aacgtetggg teaagatega geagetegeg taeaaceegt eageeaacee eeeetgggeg	120
tetgacetee teegtgagea eggtgeeaag tggaaggtga egateeegee eagtettgte	180
cccggcgaat atctgctgcg gcacgagatc ctggggttgc acgtcgcagg aaccgtgatg	240
ggcgcccagt tctaccccgg ctgcacccag atcagggtca ccgaaggcgg gagcacgcag	300
ctgccctcgg gtattgcgct cccaggcgct tacggcccac aagacgaggg tatcttggtc	360
gacttgtgga gggttaacca gggccaggtc aactacacgg cgcctggagg acccgtttgg	420
agegaagegt gggacacega gtttggeggg tecaacaega eegagtgege caccatgete	480
gacgacctgc togactacat ggcggccaac gacgacccat gctgcaccga ccagaaccag	540
ttcgggagtc tcgagccggg gagcaaggcg gccggcggct cgccgagcct gtacgatacc	600
gtcttggtcc ccgttctcca gaagaaagtg ccgacaaagc tgcagtggag cggaccggcg	660
agcgtcaacg gggatgagtt gacagagagg ccc	693
<210> SEQ ID NO 93	

<211> LENGTH: 231

<212> TYPE: PRT

<213> ORGANISM: Myceliophthora thermophila																
< 40	0> SI	EQUEI	ICE :	93												
Met 1	Asn	Tyr	Leu	Ala 5	His	Cys	Thr	Asn	Asp 10	Asp	Càa	Lys	Ser	Phe 15	Lys	
Gly	Asp	Ser	Gly 20	Asn	Val	Trp	Val	Lys 25	Ile	Glu	Gln	Leu	Ala 30	Tyr	Asn	
Pro	Ser	Ala 35	Asn	Pro	Pro	Trp	Ala 40	Ser	Asp	Leu	Leu	Arg 45	Glu	His	Gly	
Ala	Lys 50	Trp	ГÀа	Val	Thr	Ile 55	Pro	Pro	Ser	Leu	Val 60	Pro	Gly	Glu	Tyr	
Leu 65	Leu	Arg	His	Glu	Ile 70	Leu	Gly	Leu	His	Val 75	Ala	Gly	Thr	Val	Met 80	
Gly	Ala	Gln	Phe	Tyr 85	Pro	Gly	Cys	Thr	Gln 90	Ile	Arg	Val	Thr	Glu 95	Gly	
Gly	Ser	Thr	Gln 100	Leu	Pro	Ser	Gly	Ile 105	Ala	Leu	Pro	Gly	Ala 110	Tyr	Gly	
Pro	Gln	Asp 115	Glu	Gly	Ile	Leu	Val 120	Asp	Leu	Trp	Arg	Val 125	Asn	Gln	Gly	
Gln	Val 130	Asn	Tyr	Thr	Ala	Pro 135	Gly	Gly	Pro	Val	Trp 140	Ser	Glu	Ala	Trp	
Asp 145	Thr	Glu	Phe	Gly	Gly 150	Ser	Asn	Thr	Thr	Glu 155	CÀa	Ala	Thr	Met	Leu 160	
Asp	Asp	Leu	Leu	Asp 165	Tyr	Met	Ala	Ala	Asn 170	Asp	Asp	Pro	Сла	Cys 175	Thr	
Asp	Gln	Asn	Gln 180	Phe	Gly	Ser	Leu	Glu 185	Pro	Gly	Ser	Lys	Ala 190	Ala	Gly	
Gly	Ser	Pro 195	Ser	Leu	Tyr	Asp	Thr 200	Val	Leu	Val	Pro	Val 205	Leu	Gln	ГЛа	
Lys	Val 210	Pro	Thr	ГЛа	Leu	Gln 215	Trp	Ser	Gly	Pro	Ala 220	Ser	Val	Asn	Gly	
Asp 225	Glu	Leu	Thr	Glu	Arg 230	Pro										
<21:	0> SI 1> LI 2> TY 3> OF	ENGTI YPE :	H: 68 DNA	31	eliop	htho	ora t	herr	noph:	ila						
< 40	O> SI	EQUEI	ICE:	94												
atg	aagct	ga g	geget	gcc	at co	gccgt	gata	c gcg	ggac	gccc	ttg	ccga	999 9	gcact	tatacc	60
ttc	cccaç	gca t	cgc	caaca	ac go	geega	actgo	g caa	atato	gtgc	gcat	cac	gac (caact	tccag	120
agc	aacgo	gcc (ccgt	gacg	ga co	gtcaa	actc	g gad	ccaga	atcc	ggt	gcta	cga 🤅	gegea	aacccg	180
ggc	accgg	gcg (cccc	egge	at ct	acaa	acgto	c acç	ggcc	ggca	caad	ccat	caa (ctaca	aacgcc	240
aag	tagta	cca t	cctco	ccac	cc gg	ggaco	ccato	g gco	cttct	caca	ttg	ccaa	ggt 1	caaq	gccggc	300
cag	tagga	ccg (ccaco	ctgg	ga co	gtaa	aggg	gc gc	egtet	ggt	ccaa	agat	cca (ccago	gagatg	360
ccg	cactt	tg q	gcaco	cage	ct ca	acct	gggad	e te	caac	ggcc	gcad	cctc	cat o	gaaa	gtcacc	420
atc	aaaa	get (gtate	gcag	ga co	gega	agtat	ctg	gctg	gtg	caga	agca	cat 1	gaa	ctccac	480
agc	gccgg	gca q	gccc	egge	gg cg	gecea	agtto	c tac	catt	ctt	gtg	ccca	gct (ctcaç	gtcacc	540
ggc	ggcag	geg (ggaco	ctgga	aa co	ccaç	ggaad	c aag	ggtgt	cgt	tcc	ccgg	ege (ctaca	aaggcc	600

actgaccogg goatootgat caacatotac taccoogtoo ogactagota cactooogot 660																
ggto	cccc	cg t	cgac	cacct	g c											681
<211 <212	L> LE 2> TY	EQ II ENGTH PE: RGANI	H: 22 PRT	27	eliop	htho	ora t	herm	nophi	.la						
<400)> SE	EQUE	ICE :	95												
Met 1	ГЛа	Leu	Ser	Ala 5	Ala	Ile	Ala	Val	Leu 10	Ala	Ala	Ala	Leu	Ala 15	Glu	
Gly	His	Tyr	Thr 20	Phe	Pro	Ser	Ile	Ala 25	Asn	Thr	Ala	Asp	Trp 30	Gln	Tyr	
Val	Arg	Ile 35	Thr	Thr	Asn	Phe	Gln 40	Ser	Asn	Gly	Pro	Val 45	Thr	Asp	Val	
Asn	Ser 50	Asp	Gln	Ile	Arg	Сув 55	Tyr	Glu	Arg	Asn	Pro 60	Gly	Thr	Gly	Ala	
Pro 65	Gly	Ile	Tyr	Asn	Val 70	Thr	Ala	Gly	Thr	Thr 75	Ile	Asn	Tyr	Asn	Ala 80	
ГÀа	Ser	Ser	Ile	Ser 85	His	Pro	Gly	Pro	Met 90	Ala	Phe	Tyr	Ile	Ala 95	Lys	
Val	Pro	Ala	Gly 100	Gln	Ser	Ala	Ala	Thr 105	Trp	Asp	Gly	Lys	Gly 110	Ala	Val	
Trp	Ser	Lys 115	Ile	His	Gln	Glu	Met 120	Pro	His	Phe	Gly	Thr 125	Ser	Leu	Thr	
Trp	Asp 130	Ser	Asn	Gly	Arg	Thr 135	Ser	Met	Pro	Val	Thr 140	Ile	Pro	Arg	Cys	
Leu 145	Gln	Asp	Gly	Glu	Tyr 150	Leu	Leu	Arg	Ala	Glu 155	His	Ile	Ala	Leu	His 160	
Ser	Ala	Gly	Ser	Pro 165	Gly	Gly	Ala	Gln	Phe 170	Tyr	Ile	Ser	Сув	Ala 175	Gln	
Leu	Ser	Val	Thr 180	Gly	Gly	Ser	Gly	Thr 185	Trp	Asn	Pro	Arg	Asn 190	Lys	Val	
Ser	Phe	Pro 195	Gly	Ala	Tyr	Lys	Ala 200	Thr	Asp	Pro	Gly	Ile 205	Leu	Ile	Asn	
Ile	Tyr 210	Tyr	Pro	Val	Pro	Thr 215	Ser	Tyr	Thr	Pro	Ala 220	Gly	Pro	Pro	Val	
Asp 225	Thr	Сув														
<211	> LE	EQ II ENGTH PE:	H: 21													
<213	3 > OF	RGANI	SM:	Мусе	eliop	hthe	ra t	herm	nophi	.la						
<400)> SE	EQUEN	ICE :	96												
His 1	Tyr	Thr	Phe	Pro 5	Ser	Ile	Ala	Asn	Thr 10	Ala	Asp	Trp	Gln	Tyr 15	Val	
Arg	Ile	Thr	Thr 20	Asn	Phe	Gln	Ser	Asn 25	Gly	Pro	Val	Thr	Asp	Val	Asn	
Ser	Asp	Gln 35	Ile	Arg	Cys	Tyr	Glu 40	Arg	Asn	Pro	Gly	Thr 45	Gly	Ala	Pro	
Gly	Ile	Tyr	Asn	Val	Thr	Ala	Gly	Thr	Thr	Ile	Asn	Tyr	Asn	Ala	Lys	

50 55 60	
Ser Ser Ile Ser His Pro Gly Pro Met Ala Phe Tyr Ile Ala Lys Val 65 70 75 80	
Pro Ala Gly Gln Ser Ala Ala Thr Trp Asp Gly Lys Gly Ala Val Trp 85 90 95	
Ser Lys Ile His Gln Glu Met Pro His Phe Gly Thr Ser Leu Thr Trp	
Asp Ser Asn Gly Arg Thr Ser Met Pro Val Thr Ile Pro Arg Cys Leu 115 120 125	
Gln Asp Gly Glu Tyr Leu Leu Arg Ala Glu His Ile Ala Leu His Ser 130 135 140	
Ala Gly Ser Pro Gly Gly Ala Gln Phe Tyr Ile Ser Cys Ala Gln Leu	
Ser Val Thr Gly Gly Ser Gly Thr Trp Asn Pro Arg Asn Lys Val Ser	
Phe Pro Gly Ala Tyr Lys Ala Thr Asp Pro Gly Ile Leu Ile Asn Ile	
180 185 190 Tyr Tyr Pro Val Pro Thr Ser Tyr Thr Pro Ala Gly Pro Pro Val Asp	
195 200 205	
Thr Cys 210	
<210> SEQ ID NO 97 <211> LENGTH: 765 <212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila	
<400> SEQUENCE: 97	
atgtaccgca cgctcggttc cattgccctg ctcgcggggg gcgctgccgc ccacggcgcc	60
gtgaccaget acaacattge gggcaaggac taccetggat actegggett egeceetace	120
ggccaggatg tcatccagtg gcaatggccc gactataacc ccgtgctgtc cgccagcgac	180
cccaagctcc gctgcaacgg cggcaccggg gcggcgctgt atgccgaggc ggcccccggc	240
gacaccatca eggecacetg ggeceagtgg aegeacteee agggeeegat eetggtgtgg	300
atgtacaagt gccccggcga cttcagctcc tgcgacggct ccggcgcggg ttggttcaag	360
ategacgagg ceggetteca eggegaegge aegacegtet teetegacae egagaceece	420
tcgggctggg acattgccaa gctggtcggc ggcaacaagt cgtggagcag caagatccct	480
gacggcctcg ccccgggcaa ttacctggtc cgccacgagc tcatcgccct gcaccaggcc	540
aacaacccgc aattctaccc cgagtgcgcc cagatcaagg tcaccggctc tggcaccgcc	600
gagecegeeg ceteetacaa ggeegecate eeeggetaet geeageagag egaceecaae	660
atttegttea acateaacga ceactecete eegeaggagt acaagateee eggteeeeeg	720
gtottcaagg gcaccgcotc cgccaaggot cgcgctttcc aggcc	765
<210> SEQ ID NO 98 <211> LENGTH: 255 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila	
<400> SEQUENCE: 98	
Met Tyr Arg Thr Leu Gly Ser Ile Ala Leu Leu Ala Gly Gly Ala Ala	

Ala His Gly Ala Val Thr Ser Tyr Asn Ile Ala Gly Lys Asp Tyr Pro Gly Tyr Ser Gly Phe Ala Pro Thr Gly Gln Asp Val Ile Gln Trp Gln Trp Pro Asp Tyr Asn Pro Val Leu Ser Ala Ser Asp Pro Lys Leu Arg Cys Asn Gly Gly Thr Gly Ala Ala Leu Tyr Ala Glu Ala Ala Pro Gly Asp Thr Ile Thr Ala Thr Trp Ala Gln Trp Thr His Ser Gln Gly Pro Ile Leu Val Trp Met Tyr Lys Cys Pro Gly Asp Phe Ser Ser Cys Asp Gly Ser Gly Ala Gly Trp Phe Lys Ile Asp Glu Ala Gly Phe His Gly 115 120 Asp Gly Thr Thr Val Phe Leu Asp Thr Glu Thr Pro Ser Gly Trp Asp 135 Ile Ala Lys Leu Val Gly Gly Asn Lys Ser Trp Ser Ser Lys Ile Pro 150 Asp Gly Leu Ala Pro Gly Asn Tyr Leu Val Arg His Glu Leu Ile Ala Leu His Gln Ala Asn Asn Pro Gln Phe Tyr Pro Glu Cys Ala Gln Ile 185 Lys Val Thr Gly Ser Gly Thr Ala Glu Pro Ala Ala Ser Tyr Lys Ala 200 Ala Ile Pro Gly Tyr Cys Gln Gln Ser Asp Pro Asn Ile Ser Phe Asn Ile Asn Asp His Ser Leu Pro Gln Glu Tyr Lys Ile Pro Gly Pro Pro 230 235 Val Phe Lys Gly Thr Ala Ser Ala Lys Ala Arg Ala Phe Gln Ala <210> SEQ ID NO 99 <211> LENGTH: 236 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 99 Ala Val Thr Ser Tyr Asn Ile Ala Gly Lys Asp Tyr Pro Gly Tyr Ser 1 $$ 10 $$ 15 Gly Phe Ala Pro Thr Gly Gln Asp Val Ile Gln Trp Gln Trp Pro Asp Tyr Asn Pro Val Leu Ser Ala Ser Asp Pro Lys Leu Arg Cys Asn Gly Gly Thr Gly Ala Ala Leu Tyr Ala Glu Ala Ala Pro Gly Asp Thr Ile Thr Ala Thr Trp Ala Gln Trp Thr His Ser Gln Gly Pro Ile Leu Val Trp Met Tyr Lys Cys Pro Gly Asp Phe Ser Ser Cys Asp Gly Ser Gly Ala Gly Trp Phe Lys Ile Asp Glu Ala Gly Phe His Gly Asp Gly Thr Thr Val Phe Leu Asp Thr Glu Thr Pro Ser Gly Trp Asp Ile Ala Lys

-continued	
115 120 125	
Leu Val Gly Gly Asn Lys Ser Trp Ser Ser Lys Ile Pro Asp Gly Leu 130 135 140	
Ala Pro Gly Asn Tyr Leu Val Arg His Glu Leu Ile Ala Leu His Gln 145 150 150 160	
Ala Asn Asn Pro Gln Phe Tyr Pro Glu Cys Ala Gln Ile Lys Val Thr 165 170 175	
Gly Ser Gly Thr Ala Glu Pro Ala Ala Ser Tyr Lys Ala Ala Ile Pro 180 185 190	
Gly Tyr Cys Gln Gln Ser Asp Pro Asn Ile Ser Phe Asn Ile Asn Asp 195 200 205	
His Ser Leu Pro Gln Glu Tyr Lys Ile Pro Gly Pro Pro Val Phe Lys 210 215 220	
Gly Thr Ala Ser Ala Lys Ala Arg Ala Phe Gln Ala 225 230 235	
<210> SEQ ID NO 100 <211> LENGTH: 675 <212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila	
<400> SEQUENCE: 100	
atgctgacaa caaccttcgc cctcctgacg gccgctctcg gcgtcagcgc ccattatacc	60
ctccccaggg tcgggaccgg ttccgactgg cagcacgtgc ggcgggctga caactggcaa	120
aacaacggct tcgtcggcga cgtcaactcg gagcagatca ggtgcttcca ggcgacccct	180
geoggegeee aagaegteta eactgtteag gegggatega eegtgaeeta eeacgeeaac	240
cccagtatet accaeeeegg ecceatgeag ttetaeetgg eccgegttee ggaeggaeag	300
gacgtcaagt cgtggaccgg cgagggtgcc gtgtggttca aggtgtacga ggagcagcct	360
caatttggcg cccagctgac ctggcctagc aacggcaaga gctcgttcga ggttcctatc	420
cccagctgca ttcgggcggg caactacctc ctccgcgctg agcacatcgc cctgcacgtt	480
gcccaaagcc agggcggcgc ccagttctac atctcgtgcg cccagctcca ggtcactggt	540
ggcggcagca ccgagcette teagaaggtt teetteeegg gtgcetacaa gteeacegae	600
cccggcattc ttatcaacat caactacccc gtccctacct cgtaccagaa tccgggtccg	660
gctgtcttcc gttgc	675
<210> SEQ ID NO 101 <211> LENGTH: 225 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila	
<400> SEQUENCE: 101	
Met Leu Thr Thr Thr Phe Ala Leu Leu Thr Ala Ala Leu Gly Val Ser 1 5 10 15	
Ala His Tyr Thr Leu Pro Arg Val Gly Thr Gly Ser Asp Trp Gln His 20 25 30	
Val Arg Arg Ala Asp Asn Trp Gln Asn Asn Gly Phe Val Gly Asp Val 35 40 45	
Asn Ser Glu Gln Ile Arg Cys Phe Gln Ala Thr Pro Ala Gly Ala Gln 50 55 60	

Asp Val Tyr Thr Val Gln Ala Gly Ser Thr Val Thr Tyr His Ala Asn

65					70					75					80
	_		_			~ 7	_		~ 7		_			_	
Pro	ser	IIe	Tyr	н1s 85	Pro	GIY	Pro	Met	90	Pne	Tyr	Leu	Ala	Arg 95	Val
Pro .	Asp	Gly	Gln 100	Asp	Val	ГÀЗ	Ser	Trp 105	Thr	Gly	Glu	Gly	Ala 110	Val	Trp
Phe	Lys	Val 115	Tyr	Glu	Glu	Gln	Pro 120	Gln	Phe	Gly	Ala	Gln 125	Leu	Thr	Trp
Pro	Ser 130	Asn	Gly	ГЛа	Ser	Ser 135	Phe	Glu	Val	Pro	Ile 140	Pro	Ser	Cys	Ile
Arg	Ala	Gly	Asn	Tyr	Leu 150	Leu	Arg	Ala	Glu	His 155	Ile	Ala	Leu	His	Val 160
Ala	Gln	Ser	Gln	Gly 165	Gly	Ala	Gln	Phe	Tyr 170	Ile	Ser	CAa	Ala	Gln 175	Leu
Gln	Val	Thr	Gly 180	Gly	Gly	Ser	Thr	Glu 185	Pro	Ser	Gln	Lys	Val 190	Ser	Phe
Pro	Gly	Ala 195	Tyr	Lys	Ser	Thr	Asp 200	Pro	Gly	Ile	Leu	Ile 205	Asn	Ile	Asn
Tyr	Pro 210	Val	Pro	Thr	Ser	Tyr 215	Gln	Asn	Pro	Gly	Pro 220	Ala	Val	Phe	Arg
Сув 225															
<211 <212 <213	<210> SEQ ID NO 102 <211> LENGTH: 208 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 102														
					7 200	77.27	C1	The	C1	Cor	7 cm	Паса	Cln	III a	1707
His 1	ıyr	III	ьец	5	Arg	vai	GIY	Inr	10	ser	Asp	тrр	GIII	15 15	vai
Arg .	Arg	Ala	Asp 20	Asn	Trp	Gln	Asn	Asn 25	Gly	Phe	Val	Gly	Asp 30	Val	Asn
Ser	Glu	Gln 35	Ile	Arg	CAa	Phe	Gln 40	Ala	Thr	Pro	Ala	Gly 45	Ala	Gln	Asp
Val	Tyr 50	Thr	Val	Gln	Ala	Gly 55	Ser	Thr	Val	Thr	Tyr 60	His	Ala	Asn	Pro
Ser 65	Ile	Tyr	His	Pro	Gly 70	Pro	Met	Gln	Phe	Tyr 75	Leu	Ala	Arg	Val	Pro 80
Asp	Gly	Gln	Asp	Val 85	Lys	Ser	Trp	Thr	Gly 90	Glu	Gly	Ala	Val	Trp 95	Phe
Lys	Val	Tyr	Glu 100	Glu	Gln	Pro	Gln	Phe 105	Gly	Ala	Gln	Leu	Thr 110	Trp	Pro
Ser .	Asn	Gly 115	Lys	Ser	Ser	Phe	Glu 120	Val	Pro	Ile	Pro	Ser 125	Cha	Ile	Arg
Ala	Gly 130	Asn	Tyr	Leu	Leu	Arg 135	Ala	Glu	His	Ile	Ala 140	Leu	His	Val	Ala
Gln 145	Ser	Gln	Gly	Gly	Ala 150	Gln	Phe	Tyr	Ile	Ser 155	Сув	Ala	Gln	Leu	Gln 160
Val	Thr	Gly	Gly	Gly 165	Ser	Thr	Glu	Pro	Ser 170	Gln	Lys	Val	Ser	Phe 175	Pro
Gly	Ala	Tyr	Lys 180	Ser	Thr	Asp	Pro	Gly 185	Ile	Leu	Ile	Asn	Ile 190	Asn	Tyr

Pro	Val	Pro 195	Thr	Ser	Tyr	Gln	Asn 200	Pro	Gly	Pro	Ala	Val 205	Phe	Arg	CÀa	
<213 <213	L> LI 2> T	EQ II ENGTI YPE: RGAN	1: 7: DNA	11	eliop	phtho	ora t	herr	nophi	ila						
< 400)> SI	EQUEI	ICE :	103												
atga	aaggt	ttc t	cgc	gece	et ga	attci	ggc	ggt	geeg	gcca	gcg	ccca	cac (catct	tctca	60
tcc	etega	agg t	ggg	egge	gt ca	aacca	aggg	ato	gggg	cagg	gtgt	ccg	egt (geegt	cgtac	120
aac	ggtc	cga t	cga	ggac	gt ga	acgt	ccaa	c teg	gatco	gcct	gcaa	acggg	gcc (ccca	aacccg	180
acga	acgc	ega d	ccaa	caag	gt ca	atca	eggto	c cgg	ggaag	ggcg	agad	ggtg	gac q	ggaag	gtctgg	240
cggt	acat	tgc t	gag	cacca	ac co	ggat	egge	2 220	caaco	gaca	tcat	ggad	cag (cagco	cacaag	300
ggc	ccga	cca t	ggc	ctac	ct ca	aagaa	aggto	gad	caaco	gcca	ccad	ccga	ctc q	gggc	gtcggc	360
ggc	ggat	ggt t	caaq	gatco	ca go	gagga	acggo	ctt	acca	aacg	gcgt	ctg	999 (cacco	gagcgc	420
gtca	atcaa	acg (gcca	gggc	eg e	cacaa	acato	aaç	gatco	cccg	agt	gcato	ege (cccc	ggccag	480
tac	ctcct	tcc (gege	cgaga	at go	ettg	ccct	g cad	ggag	gctt	ccaa	actac	ccc (egge	gctcag	540
ttc	acat	tgg a	agtg	egee	ca go	ctcaa	atato	gto	ggcg	ggca	ccg	gcago	caa 🤉	gacgo	ccgtcc	600
acc	gtcaç	gct t	ccc	gggc	gc tt	acaa	agggt	aco	cgaco	cccg	gagt	caaç	gat (caaca	atctac	660
tgg	cccc	ccg t	cac	cagct	a co	cagat	tccc	gg	cccc	ggcg	tgtt	caco	ctg (C		711
<213 <213	L> LI 2> T	EQ II ENGTI YPE: RGANI	H: 23 PRT	37	eliop	phtho	ora t	herr	nophi	ila						
< 400)> SI	EQUEI	ICE :	104												
Met 1	ГÀа	Val	Leu	Ala 5	Pro	Leu	Ile	Leu	Ala 10	Gly	Ala	Ala	Ser	Ala 15	His	
Thr	Ile	Phe	Ser 20	Ser	Leu	Glu	Val	Gly 25	Gly	Val	Asn	Gln	Gly 30	Ile	Gly	
Gln	Gly	Val 35	Arg	Val	Pro	Ser	Tyr 40	Asn	Gly	Pro	Ile	Glu 45	Asp	Val	Thr	
Ser	Asn 50	Ser	Ile	Ala	CAa	Asn 55	Gly	Pro	Pro	Asn	Pro 60	Thr	Thr	Pro	Thr	
Asn 65	Lys	Val	Ile	Thr	Val 70	Arg	Ala	Gly	Glu	Thr 75	Val	Thr	Ala	Val	Trp 80	
Arg	Tyr	Met	Leu	Ser 85	Thr	Thr	Gly	Ser	Ala 90	Pro	Asn	Asp	Ile	Met 95	Asp	
Ser	Ser	His	Lys 100	Gly	Pro	Thr	Met	Ala 105	Tyr	Leu	ГÀв	Lys	Val 110	Asp	Asn	
Ala	Thr	Thr 115	Asp	Ser	Gly	Val	Gly 120	Gly	Gly	Trp	Phe	Lys 125	Ile	Gln	Glu	
Asp	Gly 130	Leu	Thr	Asn	Gly	Val 135	Trp	Gly	Thr	Glu	Arg 140	Val	Ile	Asn	Gly	
Gln 145	Gly	Arg	His	Asn	Ile 150	Lys	Ile	Pro	Glu	Сув 155	Ile	Ala	Pro	Gly	Gln 160	
Tyr	Leu	Leu	Arg	Ala 165	Glu	Met	Leu	Ala	Leu 170	His	Gly	Ala	Ser	Asn 175	Tyr	

Gly Thr Gly Ser Lys Thr Pro Ser Thr Val Ser Phe Pro Gly Ala Tyr 200 Lys Gly Thr Asp Pro Gly Val Lys Ile Asn Ile Tyr Trp Pro Pro Val Thr Ser Tyr Gln Ile Pro Gly Pro Gly Val Phe Thr Cys <210> SEQ ID NO 105 <211> LENGTH: 222 <212> TYPE: PRT <213 > ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 105 His Thr Ile Phe Ser Ser Leu Glu Val Gly Gly Val Asn Gln Gly Ile Gly Gln Gly Val Arg Val Pro Ser Tyr Asn Gly Pro Ile Glu Asp Val Thr Ser Asn Ser Ile Ala Cys Asn Gly Pro Pro Asn Pro Thr Thr Pro Thr Asn Lys Val Ile Thr Val Arg Ala Gly Glu Thr Val Thr Ala Val Trp Arg Tyr Met Leu Ser Thr Thr Gly Ser Ala Pro Asn Asp Ile Met Asp Ser Ser His Lys Gly Pro Thr Met Ala Tyr Leu Lys Lys Val Asp 90 Asn Ala Thr Thr Asp Ser Gly Val Gly Gly Gly Trp Phe Lys Ile Gln 100 105 Glu Asp Gly Leu Thr Asn Gly Val Trp Gly Thr Glu Arg Val Ile Asn Gly Gln Gly Arg His Asn Ile Lys Ile Pro Glu Cys Ile Ala Pro Gly 135 Gln Tyr Leu Leu Arg Ala Glu Met Leu Ala Leu His Gly Ala Ser Asn Tyr Pro Gly Ala Gln Phe Tyr Met Glu Cys Ala Gln Leu Asn Ile Val Gly Gly Thr Gly Ser Lys Thr Pro Ser Thr Val Ser Phe Pro Gly Ala Tyr Lys Gly Thr Asp Pro Gly Val Lys Ile Asn Ile Tyr Trp Pro Pro Val Thr Ser Tyr Gln Ile Pro Gly Pro Gly Val Phe Thr Cys 215 <210> SEQ ID NO 106 <211> LENGTH: 225 <212> TYPE: DNA <213 > ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 106 atgategaca acetecetga tgaeteceta caaceegeet geeteegeee gggeeactae ctegteegee aegagateat egegetgeae teggeetggg eegagggega ggeeeagtte 120 taccecttee ecettittee tittitteee teeettetti tgteeggtaa etacaegatt

Pro Gly Ala Gln Phe Tyr Met Glu Cys Ala Gln Leu Asn Ile Val Gly

cccggtcccg cgatctggaa gtgcccagag gcacagcaga acgag	225
<210> SEQ ID NO 107 <211> LENGTH: 75 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila	
<400> SEQUENCE: 107	
Met Ile Asp Asn Leu Pro Asp Asp Ser Leu Gln Pro Ala Cys Leu Arg 1 5 10 15	
Pro Gly His Tyr Leu Val Arg His Glu Ile Ile Ala Leu His Ser Ala 20 25 30	
Trp Ala Glu Gly Glu Ala Gln Phe Tyr Pro Phe Pro Leu Phe Pro Phe 35 40 45	
Phe Pro Ser Leu Leu Ser Gly Asn Tyr Thr Ile Pro Gly Pro Ala 50 55 60	
Ile Trp Lys Cys Pro Glu Ala Gln Gln Asn Glu 65 70 75	
<210> SEQ ID NO 108 <211> LENGTH: 57 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila	
<400> SEQUENCE: 108	
His Tyr Leu Val Arg His Glu Ile Ile Ala Leu His Ser Ala Trp Ala 1 5 10 15	
Glu Gly Glu Ala Gln Phe Tyr Pro Phe Pro Leu Phe Pro Phe Pro Phe Pro 20 30	
Ser Leu Leu Ser Gly Asn Tyr Thr Ile Pro Gly Pro Ala Ile Trp 35 40 45	
Lys Cys Pro Glu Ala Gln Gln Asn Glu 50 55	
<210> SEQ ID NO 109 <211> LENGTH: 1395 <212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila	
<400> SEQUENCE: 109	
atggggcaga agacteteca ggggetggtg geggeggegg eaetggeage eteggtggeg	60
aacgcgcagc aaccgggcac cttcacgccc gaggtgcatc cgacgctgcc gacgtggaag	120
tgcacgacga gcggcgggtg cgtccagcag gacacgtcgg tggtgctcga ctggaactac	180
cgctggttcc acaccgagga cggtagcaag tcgtgcatca cctctagcgg cgtcgaccgg	240
accetgtgee eggacgagge gaegtgegee aagaactget tegtegaggg egteaactae	360
acgageageg gggtegagac gteeggeage teeeteacee teegceagtt etteaaggge	
teegaeggeg ceateaacag egteteeceg egegtetace tgeteggggg agaeggeaac tatgtegtge teaageteet eggeeaggag etgagetteg aegtggaegt ategtegete	420
ccgtgcggcg agaacgcggc cctgtacctg tccgagatgg acgcgacggg aggacggaac	540
gagtacaaca cgggcgggc cetgtacetg teegagatgg acgegacggg aggacggaac	600
cagaactgga acaacgggac gctcaacacg ggccgggtgg gctcgtgctg caacgagatg	660
gacatoctog aggocaacto caaggoogag goottcacgo ogcaccoott catoggoaac	720
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-

tcgt	gega	aca a	agago	gggt	g cg	ggatt	caac	geg	gtaco	gege	gcg	gttad	cca	caact	actgg	780
gccc	ccgg	geg g	gcaco	geteç	ga ca	acgto	cccgc	g cct	ttca	acca	tgat	caco	ccg	cttc	gtcacc	840
gaco	gacgo	gca d	ccaco	ctcgg	gg ca	aagct	cgcc	c cgo	catco	gagc	gcgt	cta	gt	ccago	gacggc	900
aaga	aggt	ge d	cago	gegg	ge ge	eceg	99999	g gad	egtea	atca	cgg	ccga	gg	gtgca	acctcc	960
gcgc	cagco	ect a	ecggo	egge	ct tt	ccgg	gcato	9 999	cgaco	gece	tcg	geege	gg	catgo	gteetg	1020
gccc	tgaç	gca t	ctg	gaaco	ga co	gegt	ccggc	g tac	catga	aact	ggct	cgad	gc ·	eggea	agcaac	1080
ggco	ccctç	gca ç	gegad	cacco	ga go	ggtaa	acccc	g tco	caaca	atcc	tgg	ccaa	ca	cccgg	gacgcc	1140
caco	gtcgt	gc t	ctco	caaca	at co	egete	99999	gad	catco	ggct	ccad	ccgt	ga ·	cacco	ggcgat	1200
ggcg	gacaa	aca a	acggo	ggcg	gg co	cccaa	acccc	g tca	atcca	acca	ccad	ccgct	ac	cgcta	accacc	1260
acct	ccto	ecg g	geeeg	ggccg	ga go	cctac	ccaç	g acc	ccact	acg	gcca	agtgt	gg ·	aggga	aaagga	1320
tgga	cggg	gee o	ctaco	eeget	g cg	gagad	egeee	c tac	cacct	gca	agta	accaç	gaa	cgact	ggtac	1380
tege	agto	gcc t	gtag	3												1395
<211 <212 <213	L> LE 2> T\ 3> OF	ENGTI (PE : RGAN)		Myc	eliop	phtho	ora t	herr	nophi	ila						
Met 1	Gly	Gln	Lys	Thr 5	Leu	Gln	Gly	Leu	Val 10	Ala	Ala	Ala	Ala	Leu 15	Ala	
Ala	Ser	Val	Ala 20	Asn	Ala	Gln	Gln	Pro 25	Gly	Thr	Phe	Thr	Pro	Glu	Val	
His	Pro	Thr 35	Leu	Pro	Thr	Trp	Lys 40	CÀa	Thr	Thr	Ser	Gly 45	Gly	CÀa	Val	
Gln	Gln 50	Asp	Thr	Ser	Val	Val 55	Leu	Asp	Trp	Asn	Tyr 60	Arg	Trp	Phe	His	
Thr 65	Glu	Asp	Gly	Ser	Lys 70	Ser	Сув	Ile	Thr	Ser 75	Ser	Gly	Val	Asp	Arg 80	
Thr	Leu	Сла	Pro	Asp	Glu	Ala	Thr	СЛа	Ala 90	ГЛа	Asn	СЛа	Phe	Val 95	Glu	
Gly	Val	Asn	Tyr 100	Thr	Ser	Ser	Gly	Val 105	Glu	Thr	Ser	Gly	Ser 110	Ser	Leu	
Thr	Leu	Arg 115	Gln	Phe	Phe	Lys	Gly 120	Ser	Asp	Gly	Ala	Ile 125	Asn	Ser	Val	
Ser	Pro 130	Arg	Val	Tyr	Leu	Leu 135	Gly	Gly	Asp	Gly	Asn 140	Tyr	Val	Val	Leu	
Lys 145	Leu	Leu	Gly	Gln	Glu 150	Leu	Ser	Phe	Asp	Val 155	Asp	Val	Ser	Ser	Leu 160	
Pro	Cys	Gly	Glu	Asn 165	Ala	Ala	Leu	Tyr	Leu 170	Ser	Glu	Met	Asp	Ala 175	Thr	
Gly	Gly	Arg	Asn 180	Glu	Tyr	Asn	Thr	Gly 185	Gly	Ala	Glu	Tyr	Gly 190	Ser	Gly	
Tyr	Cys	Asp 195	Ala	Gln	CAa	Pro	Val 200	Gln	Asn	Trp	Asn	Asn 205	Gly	Thr	Leu	
Asn	Thr 210	Gly	Arg	Val	Gly	Ser 215	Cys	Cys	Asn	Glu	Met 220	Asp	Ile	Leu	Glu	

Ala Asn Ser Lys Ala Glu Ala Phe Thr Pro His Pro Cys Ile Gly Asn

225					230					235					240
Ser	Сув	Asp	Lys	Ser 245	Gly	Сув	Gly	Phe	Asn 250	Ala	Tyr	Ala	Arg	Gly 255	Tyr
His	Asn	Tyr	Trp 260	Ala	Pro	Gly	Gly	Thr 265	Leu	Asp	Thr	Ser	Arg 270	Pro	Phe
Thr	Met	Ile 275	Thr	Arg	Phe	Val	Thr 280	Asp	Asp	Gly	Thr	Thr 285	Ser	Gly	Lys
Leu	Ala 290	Arg	Ile	Glu	Arg	Val 295	Tyr	Val	Gln	Asp	Gly 300	Lys	Lys	Val	Pro
Ser 305	Ala	Ala	Pro	Gly	Gly 310	Asp	Val	Ile	Thr	Ala 315	Asp	Gly	CÀa	Thr	Ser 320
Ala	Gln	Pro	Tyr	Gly 325	Gly	Leu	Ser	Gly	Met 330	Gly	Asp	Ala	Leu	Gly 335	Arg
Gly	Met	Val	Leu 340	Ala	Leu	Ser	Ile	Trp 345	Asn	Asp	Ala	Ser	Gly 350	Tyr	Met
Asn	Trp	Leu 355	Asp	Ala	Gly	Ser	Asn 360	Gly	Pro	Сув	Ser	Asp 365	Thr	Glu	Gly
Asn	Pro 370	Ser	Asn	Ile	Leu	Ala 375	Asn	His	Pro	Asp	Ala 380	His	Val	Val	Leu
Ser 385	Asn	Ile	Arg	Trp	Gly 390	Asp	Ile	Gly	Ser	Thr 395	Val	Asp	Thr	Gly	Asp 400
Gly	Asp	Asn	Asn	Gly 405	Gly	Gly	Pro	Asn	Pro 410	Ser	Ser	Thr	Thr	Thr 415	Ala
Thr	Ala	Thr	Thr 420	Thr	Ser	Ser	Gly	Pro 425	Ala	Glu	Pro	Thr	Gln 430	Thr	His
Tyr	Gly	Gln 435	CAa	Gly	Gly	Lys	Gly 440	Trp	Thr	Gly	Pro	Thr 445	Arg	Сла	Glu
Thr	Pro 450	Tyr	Thr	САа	ГÀЗ	Tyr 455	Gln	Asn	Asp	Trp	Tyr 460	Ser	Gln	Сув	Leu
<210)> SI	EQ II	ои с	111											
<212	2 > T	ENGTH (PE : RGAN)	PRT		eliop	hth	ora t	herr	nophi	ila					
< 400)> SI	EQUE	ICE :	111											
Gln 1	Gln	Pro	Gly	Thr 5	Phe	Thr	Pro	Glu	Val 10	His	Pro	Thr	Leu	Pro 15	Thr
Trp	Lys	Сув	Thr 20	Thr	Ser	Gly	Gly	Сув 25	Val	Gln	Gln	Asp	Thr 30	Ser	Val
Val	Leu	Asp 35	Trp	Asn	Tyr	Arg	Trp 40	Phe	His	Thr	Glu	Asp 45	Gly	Ser	Lys
Ser	Сув 50	Ile	Thr	Ser	Ser	Gly 55	Val	Asp	Arg	Thr	Leu 60	Сув	Pro	Asp	Glu
Ala 65	Thr	Cys	Ala	ГЛа	Asn 70	CÀa	Phe	Val	Glu	Gly 75	Val	Asn	Tyr	Thr	Ser 80
Ser	Gly	Val	Glu	Thr 85	Ser	Gly	Ser	Ser	Leu 90	Thr	Leu	Arg	Gln	Phe 95	Phe
Lys	Gly	Ser	Asp	Gly	Ala	Ile	Asn	Ser 105	Val	Ser	Pro	Arg	Val 110	Tyr	Leu
Leu	Gly	Gly 115	Asp	Gly	Asn	Tyr	Val 120	Val	Leu	Lys	Leu	Leu 125	Gly	Gln	Glu

Leu Ser Phe Asp Val Asp Val Ser Ser Leu Pro Cys Gly Glu Asn Ala 130 135 140
Ala Leu Tyr Leu Ser Glu Met Asp Ala Thr Gly Gly Arg Asn Glu Tyr 145 150 155 160
Asn Thr Gly Gly Ala Glu Tyr Gly Ser Gly Tyr Cys Asp Ala Gln Cys 165 170 175
Pro Val Gln Asn Trp Asn Asn Gly Thr Leu Asn Thr Gly Arg Val Gly 180 185 190
Ser Cys Cys Asn Glu Met Asp Ile Leu Glu Ala Asn Ser Lys Ala Glu 195 200 205
Ala Phe Thr Pro His Pro Cys Ile Gly Asn Ser Cys Asp Lys Ser Gly 210 215 220
Cys Gly Phe Asn Ala Tyr Ala Arg Gly Tyr His Asn Tyr Trp Ala Pro 225 230 235 240
Gly Gly Thr Leu Asp Thr Ser Arg Pro Phe Thr Met Ile Thr Arg Phe 245 250 255
Val Thr Asp Asp Gly Thr Thr Ser Gly Lys Leu Ala Arg Ile Glu Arg 260 265 270
Val Tyr Val Gln Asp Gly Lys Lys Val Pro Ser Ala Ala Pro Gly Gly 275 280 285
Asp Val Ile Thr Ala Asp Gly Cys Thr Ser Ala Gln Pro Tyr Gly Gly 290 295 300
Leu Ser Gly Met Gly Asp Ala Leu Gly Arg Gly Met Val Leu Ala Leu 305 310 315 320
Ser Ile Trp Asn Asp Ala Ser Gly Tyr Met Asn Trp Leu Asp Ala Gly 325 330 335
Ser Asn Gly Pro Cys Ser Asp Thr Glu Gly Asn Pro Ser Asn Ile Leu 340 345 350
Ala Asn His Pro Asp Ala His Val Val Leu Ser Asn Ile Arg Trp Gly 355 360 365
Asp Ile Gly Ser Thr Val Asp Thr Gly Asp Gly Asp Asn Asn Gly Gly 370 375 380
Gly Pro Asn Pro Ser Ser Thr Thr Thr Ala Thr Ala Thr Thr Thr Ser 385 390 395 400
Ser Gly Pro Ala Glu Pro Thr Gln Thr His Tyr Gly Gln Cys Gly Gly 405 410 415
Lys Gly Trp Thr Gly Pro Thr Arg Cys Glu Thr Pro Tyr Thr Cys Lys 420 425 430
Tyr Gln Asn Asp Trp Tyr Ser Gln Cys Leu 435 440
<210> SEQ ID NO 112 <211> LENGTH: 1170 <212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 112
atgaagteet eeateetege cagegtette gecaegggeg eegtggetea aagtggteeg 60
tggcagcaat gtggtggcat cggatggcaa ggatcgaccg actgtgtgtc gggttaccac 120
tgcgtctacc agaacgattg gtacagccag tgcgtgcctg gcgcggcgtc gacaacgctc 180
cagacateta ecaegteeag geocaeegee accageaeeg eceeteegte gtecaeeaee 240

	t cacat aaca	aggggaaggt	caagtgggtg	ggcagcaacg	agt cadacac	casattagaa	300
	ccgcccagca	agggcaagct	caageggeee	ggcagcaacg	agregggege	cgagcccggg	300
	gagggcaact	accccggcct	ctggggcaag	cacttcatct	tcccgtcgac	ttcggcgatt	360
	cagacgctca	tcaatgatgg	atacaacatc	ttccggatcg	acttctcgat	ggagcgtctg	420
	gtgcccaacc	agttgacgtc	gtccttcgac	gagggctacc	tccgcaacct	gaccgaggtg	480
	gtcaacttcg	tgacgaacgc	gggcaagtac	gccgtcctgg	acccgcacaa	ctacggccgg	540
	tactacggca	acgtcatcac	ggacacgaac	gcgttccgga	ccttctggac	caacctggcc	600
	aagcagttcg	cctccaactc	gctcgtcatc	ttcgacacca	acaacgagta	caacacgatg	660
,	gaccagaccc	tggtgctcaa	cctcaaccag	gccgccatcg	acggcatccg	ggccgccggc	720
,	gcgacctcgc	agtacatctt	cgtcgagggc	aacgcgtgga	gcggggcctg	gagctggaac	780
	acgaccaaca	ccaacatggc	cgccctgacg	gacccgcaga	acaagatcgt	gtacgagatg	840
	caccagtacc	tcgactcgga	cagctcgggc	acccacgccg	agtgcgtcag	cagcaacatc	900
,	ggcgcccagc	gcgtcgtcgg	agccacccag	tggctccgcg	ccaacggcaa	gctcggcgtc	960
	ctcggcgagt	tcgccggcgg	cgccaacgcc	gtctgccagc	aggccgtcac	cggcctcctc	1020
,	gaccacctcc	aggacaacag	cgacgtctgg	ctgggtgccc	tctggtgggc	cgccggtccc	1080
	tggtggggcg	actacatgta	ctcgttcgag	cctccttcgg	gcaccggcta	tgtcaactac	1140
	aactcgatcc	taaagaagta	cttgccgtaa				1170
	<210> SEO 1	ID NO 113					

<210> SEQ ID NO 113 <211> LENGTH: 389

<212> TYPE: PRT

<213> ORGANISM: Myceliophthora thermophila

<400> SEQUENCE: 113

Met Lys Ser Ser Ile Leu Ala Ser Val Phe Ala Thr Gly Ala Val Ala 1 $$ 5 $$ 10 $$ 15

Gln Ser Gly Pro Trp Gln Gln Cys Gly Gly Ile Gly Trp Gln Gly Ser $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$

Thr Asp Cys Val Ser Gly Tyr His Cys Val Tyr Gln Asn Asp Trp Tyr 35 40 45

Ser Gln Cys Val Pro Gly Ala Ala Ser Thr Thr Leu Gln Thr Ser Thr 50 55 60

Thr Ser Arg Pro Thr Ala Thr Ser Thr Ala Pro Pro Ser Ser Thr Thr 65 70 75 80

Ser Pro Ser Lys Gly Lys Leu Lys Trp Leu Gly Ser Asn Glu Ser Gly 85 90 95

Ala Glu Phe Gly Glu Gly Asn Tyr Pro Gly Leu Trp Gly Lys His Phe $100 \,$ $105 \,$ $110 \,$

Ile Phe Pro Ser Thr Ser Ala Ile Gln Thr Leu Ile Asn Asp Gly Tyr 115 120 125

Asn Ile Phe Arg Ile Asp Phe Ser Met Glu Arg Leu Val Pro Asn Gln

Leu Thr Ser Ser Phe Asp Glu Gly Tyr Leu Arg Asn Leu Thr Glu Val 145 $$ 150 $$ 155 $$ 160

Val Asn Phe Val Thr Asn Ala Gly Lys Tyr Ala Val Leu Asp Pro His 165 170 175

Asn Tyr Gly Arg Tyr Tyr Gly Asn Val Ile Thr Asp Thr Asn Ala Phe \$180\$

nrg	Thr	Phe 195	Trp	Thr	Asn	Leu	Ala 200	Lys	Gln	Phe	Ala	Ser 205	Asn	Ser	Leu
Val	Ile 210	Phe	Asp	Thr	Asn	Asn 215	Glu	Tyr	Asn	Thr	Met 220	Asp	Gln	Thr	Leu
Val 225	Leu	Asn	Leu	Asn	Gln 230	Ala	Ala	Ile	Asp	Gly 235	Ile	Arg	Ala	Ala	Gly 240
Ala	Thr	Ser	Gln	Tyr 245	Ile	Phe	Val	Glu	Gly 250	Asn	Ala	Trp	Ser	Gly 255	Ala
Trp	Ser	Trp	Asn 260	Thr	Thr	Asn	Thr	Asn 265	Met	Ala	Ala	Leu	Thr 270	Asp	Pro
Gln	Asn	Lys 275	Ile	Val	Tyr	Glu	Met 280	His	Gln	Tyr	Leu	Asp 285	Ser	Asp	Ser
Ser	Gly 290	Thr	His	Ala	Glu	Сув 295	Val	Ser	Ser	Asn	Ile 300	Gly	Ala	Gln	Arg
Val 305	Val	Gly	Ala	Thr	Gln 310	Trp	Leu	Arg	Ala	Asn 315	Gly	Lys	Leu	Gly	Val 320
Leu	Gly	Glu	Phe	Ala 325	Gly	Gly	Ala	Asn	Ala 330	Val	Càa	Gln	Gln	Ala 335	Val
Thr	Gly	Leu	Leu 340	Asp	His	Leu	Gln	Asp 345	Asn	Ser	Glu	Val	Trp 350	Leu	Gly
Ala	Leu	Trp 355	Trp	Ala	Ala	Gly	Pro 360	Trp	Trp	Gly	Asp	Tyr 365	Met	Tyr	Ser
Phe	Glu 370	Pro	Pro	Ser	Gly	Thr 375	Gly	Tyr	Val	Asn	Tyr 380	Asn	Ser	Ile	Leu
385 Lys	Lys	Tyr	Leu	Pro											
)> SE														
<211 <212	0 > SE L > LE 2 > TY 3 > OF	ENGTI PE:	H: 37	73	eliop	phtho	ora t	herr	nophi	ila					
<211 <212 <213	L> LE 2> TY	ENGTH (PE : RGAN)	H: 37 PRT [SM:	73 Myce	eliop	phtho	ora t	herr	nophi	ila					
<211 <212 <213 <400	L> LE 2> T\ 3> OF	ENGTH (PE : RGAN) EQUEN	H: 37 PRT ISM: ICE:	73 Myce 114	_				_		Gly	Trp	Gln	Gly 15	Ser
<211 <212 <213 <400 Gln 1	L> LE 2> TY 3> OF 0> SE	ENGTH (PE: RGAN) EQUEN	H: 37 PRT ISM: ICE: Pro	73 Myce 114 Trp 5	Gln	Gln	Cys	Gly	Gly 10	Ile				15	
<211 <212 <213 <400 Gln 1	L> LE 2> T) 3> OF)> SE Ser	ENGTH (PE: RGAN) EQUEN Gly	H: 37 PRT ISM: NCE: Pro Val 20	Myce 114 Trp 5	Gln Gly	Gln Tyr	Cys His	Gly Cys 25	Gly 10 Val	Ile Tyr	Gln	Asn	Asp 30	15 Trp	Tyr
<211 <212 <213 <400 Gln 1 Thr	L> LE 2> TY 3> OF D> SE Ser	ENGTH YPE: RGANI EQUEN Gly Cys Cys 35	H: 37 PRT ISM: NCE: Pro Val 20 Val	Myce 114 Trp 5 Ser	Gln Gly Gly	Gln Tyr Ala	Cys His Ala 40	Gly Cys 25 Ser	Gly 10 Val	Ile Tyr Thr	Gln Leu	Asn Gln 45	Asp 30 Thr	15 Trp Ser	Tyr Thr
<211 <212 <213 <400 Gln 1 Thr Ser	L> LE 2> TY 3> OF 3> OF Ser Asp Gln Ser	ENGTH (PE: (GAN) EQUEN Gly Cys Cys 35 Arg	H: 37 PRT ISM: NCE: Pro Val 20 Val	Myce 114 Trp 5 Ser Pro	Gln Gly Gly Ala	Gln Tyr Ala Thr 55	Cys His Ala 40 Ser	Gly Cys 25 Ser	Gly 10 Val Thr	Ile Tyr Thr	Gln Leu Pro 60	Asn Gln 45 Ser	Asp 30 Thr	15 Trp Ser Thr	Tyr Thr
<2113 2123</213</400</td Gln 1 Thr Ser 65	L> LE 2> TY 3> OF Ser Asp Gln Ser 50	ENGTH (PE: (PE: (PE: (PE: (PE: (PE: (PE: (PE:	PRT ISM: UCE: Pro Val 20 Val Pro	Myce 114 Trp 5 Ser Pro Thr	Gln Gly Gly Ala Lys 70	Gln Tyr Ala Thr 55 Leu	Cys His Ala 40 Ser	Gly Cys 25 Ser Thr	Gly 10 Val Thr Ala	Ile Tyr Thr Pro Gly 75	Gln Leu Pro 60 Ser	Asn Gln 45 Ser Asn	Asp 30 Thr Ser	Trp Ser Thr	Tyr Thr Thr Gly 80
<211 < 212 < 213 < 400 Gln 1 Thr Ser Thr Ala	1> LE 2> TY 3> OF Ser Asp Gln Ser 50	ENGTH (PE: (PE: (PE: (PE: (PE: (PE: (PE: (PE:	PRT ISM: PRT ISM: Val 20 Val Pro Lys Gly	Myce 114 Trp 5 Ser Pro Thr Gly	Gln Gly Gly Ala Lys 70 Gly	Gln Tyr Ala Thr 55 Leu Asn	Cys His Ala 40 Ser Lys	Gly Cys 25 Ser Thr Trp	Gly 10 Val Thr Ala Leu Gly 90	Ile Tyr Thr Pro Gly 75 Leu	Gln Leu Pro 60 Ser Trp	Asn Gln 45 Ser Asn	Asp 30 Thr Ser Glu	15 Trp Ser Thr Ser His 95	Tyr Thr Thr Gly 80 Phe
<2113 < 212 < 213 < 4000 Gln 1 Thr Ser Thr Ala Ile	1> LE 2> TY 3> OF Ser Asp Gln Ser 50 Pro	ENGTH (PE: RGAN) EQUEN Gly Cys Cys 35 Arg Ser Phe	PRT ISM: ISM: Val 20 Val Pro Lys Gly Ser 100	Myce 114 Trp 5 Ser Pro Thr Gly Glu 85 Thr	Gln Gly Ala Lys 70 Gly Ser	Gln Tyr Ala Thr 55 Leu Asn Ala	Cys His Ala 40 Ser Lys Tyr	Gly Cys 25 Ser Thr Trp Pro Gln 105	Gly 10 Val Thr Ala Leu Gly 90 Thr	Ile Tyr Thr Pro Gly 75 Leu Leu	Gln Leu Pro 60 Ser Trp	Asn Gln 45 Ser Asn Gly Asn	Asp 30 Thr Ser Glu Lys Asp 110	Trp Ser Thr Ser Gly	Tyr Thr Thr Gly 80 Phe
<2113 < 4000 Gln 1 Thr Ser 65 Ala Ile Asn	l> LE 22 TV	ENGTH (PE: RGAN) GQUEN Gly Cys 35 Arg Ser Phe Pro	PRT ISM: ISM: Val 20 Val Pro Lys Gly Ser 100 Arg	Myce 114 Trp 5 Ser Pro Thr Gly Glu 85 Thr	Gln Gly Ala Lys 70 Gly Ser Asp	Gln Tyr Ala Thr 55 Leu Asn Ala	Cys His Ala 40 Ser Lys Tyr Ile Ser 120	Gly Cys 25 Ser Thr Trp Pro Gln 105 Met	Gly 10 Val Thr Ala Leu Gly 90 Thr	Ile Tyr Thr Pro Gly 75 Leu Leu Arg	Gln Leu Pro 60 Ser Trp Ile Leu	Asn Gln 45 Ser Asn Gly Asn Val	Asp 30 Thr Ser Glu Lys Asp 110 Pro	Trp Ser Thr Ser Gly Asn	Tyr Thr Gly 80 Phe Tyr

Asn Tyr Gly Arg Tyr Tyr Gly Asn Val Ile Thr Asp Thr Asn Ala Phe 165 170 175	
Arg Thr Phe Trp Thr Asn Leu Ala Lys Gln Phe Ala Ser Asn Ser Leu 180 185 190	
Val Ile Phe Asp Thr Asn Asn Glu Tyr Asn Thr Met Asp Gln Thr Leu 195 200 205	
Val Leu Asn Leu Asn Gln Ala Ala Ile Asp Gly Ile Arg Ala Ala Gly 210 215 220	
Ala Thr Ser Gln Tyr Ile Phe Val Glu Gly Asn Ala Trp Ser Gly Ala 225 230 235 240	
Trp Ser Trp Asn Thr Thr Asn Thr Asn Met Ala Ala Leu Thr Asp Pro 245 250 255	
Gln Asn Lys Ile Val Tyr Glu Met His Gln Tyr Leu Asp Ser Asp Ser 260 265 270	
Ser Gly Thr His Ala Glu Cys Val Ser Ser Asn Ile Gly Ala Gln Arg 275 280 285	
Val Val Gly Ala Thr Gln Trp Leu Arg Ala Asn Gly Lys Leu Gly Val 290 295 300	
Leu Gly Glu Phe Ala Gly Gly Ala Asn Ala Val Cys Gln Gln Ala Val 305 310 315 320	
Thr Gly Leu Leu Asp His Leu Gln Asp Asn Ser Glu Val Trp Leu Gly 325 330 335	
Ala Leu Trp Trp Ala Ala Gly Pro Trp Trp Gly Asp Tyr Met Tyr Ser 340 345 350	
Phe Glu Pro Pro Ser Gly Thr Gly Tyr Val Asn Tyr Asn Ser Ile Leu 355 360 365	
Lys Lys Tyr Leu Pro 370	
<210> SEQ ID NO 115 <211> LENGTH: 2613 <212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila	
<400> SEQUENCE: 115	
atgaaggetg etgegettte etgeetette ggeagtacee ttgeegttge aggegeeatt	60
gaategagaa aggtteacea gaageeeete gegagatetg aacettttta eeegtegeea	120
tggatgaate ccaacgeega eggetgggeg gaggeetatg eccaggeeaa gteetttgte	180
teccaaatga etetgetaga gaaggteaae ttgaceaegg gagteggetg gggggetgag	240
cagtgcgtcg gccaagtggg cgcgatccct cgccttggac ttcgcagtct gtgcatgcat	300
gactecete teggeateeg aggageegae tacaaeteag egtteeeete tggeeagaee	360
gttgctgcta cctgggatcg cggtctgatg taccgtcgcg gctacgcaat gggccaggag	420
gccaaaggca agggcatcaa tgtccttctc ggaccagtcg ccggccccct tggccgcatg	480
cccgagggcg gtcgtaactg ggaaggcttc gctccggatc ccgtccttac cggcatcggc	540
atgteegaga egateaaggg eatteaggat getggegtea tegettgtge gaageaettt	600
attggaaacg agcaggagca cttcagacag gtgccagaag cccagggata cggttacaac	660
atcagogaaa coototooto caacattgao gacaagacca tgcaogagot ctacotttgg	720
cegtttgeeg atgeegteeg ggeeggegte ggetetgtea tgtgetegta ceageaggte	780

```
aacaactcgt acgcctgcca gaactcgaag ctgctgaacg acctcctcaa gaacgagctt
                                                                      840
gggtttcagg gcttcgtcat gagcgactgg caggcacagc acactggcgc agcaagcgcc
                                                                     900
gtggctggtc tcgatatgtc catgccgggc gacacccagt tcaacactgg cgtcagtttc
                                                                     960
tggggcgcca atctcaccct cgccgtcctc aacggcacag tccctgccta ccgtctcgac
                                                                    1020
gacatggcca tgcgcatcat ggccgccctc ttcaaggtca ccaagaccac cgacctggaa
                                                                    1080
ccgatcaact tctccttctg gaccgacgac acttatggcc cgatccactg ggccgccaag
                                                                    1140
cagggctacc aggagattaa ttcccacgtt gacgtccgcg ccgaccacgg caacctcatc
cgggagattg ccgccaaggg tacggtgctg ctgaagaata ccggctctct acccctgaac
aagccaaagt tegtggeegt categgegag gatgetgggt egageeecaa egggeecaae
                                                                    1320
                                                                    1380
ggctgcagcg accgcggctg taacgaaggc acgctcgcca tgggctgggg atccggcaca
gecaactate egtacetegt tteeceegae geegegetee aggeeeggge cateeaggae
                                                                    1440
                                                                    1500
ggcacgaggt acgagagcgt cctgtccaac tacgccgagg aaaagacaaa ggctctggtc
                                                                    1560
tegeaggeea atgeaacege categtette gteaatgeeg acteaggega gggetacate
aacgtggacg gtaacgaggg cgaccgtaag aacctgactc tctggaacaa cggtgatact
                                                                    1620
ctggtcaaga acgtctcgag ctggtgcagc aacaccatcg tcgtcatcca ctcggtcggc
                                                                    1680
ccggtcctcc tgaccgattg gtacgacaac cccaacatca cggccattct ctgggctggt
                                                                    1740
cttccgggcc aggagtcggg caactccatc accgacgtgc tttacggcaa ggtcaacccc
                                                                    1800
geogeoeget egecetteae ttggggeaag accegegaaa getatggege ggaegteetg
                                                                    1860
tacaagccga ataatggcaa tggtgcgccc caacaggact tcaccgaggg cgtcttcatc
                                                                    1920
gactaccgct acttcgacaa ggttgacgat gactcggtca tctacgagtt cggccacggc
                                                                    1980
ctgagetaca ccacettega gtacageaac atcegegteg teaagtecaa egteagegag
                                                                    2040
taccggccca cgacgggcac cacggcccag gccccgacgt ttggcaactt ctccaccgac
                                                                    2100
ctcgaggact atctcttccc caaggacgag ttcccctaca tctaccagta catctacccg
                                                                    2160
                                                                    2220
taceteaaca egacegacee eeggagggee teggeegate eecactaegg eeagacegee
                                                                    2280
gaggagttcc tcccgcccca cgccaccgat gacgaccccc agccgctcct ccggtcctcg
ggcggaaact cccccggcgg caaccgccag ctgtacgaca ttgtctacac aatcacggcc
                                                                    2340
gacatcacga atacgggctc cgttgtaggc gaggaggtac cgcagctcta cgtctcgctg
                                                                    2400
ggcggtcccg aggatcccaa ggtgcagctg cgcgactttg acaggatgcg gatcgaaccc
ggcgagacga ggcagttcac cggccgcctg acgcgcagag atctgagcaa ctgggacgtc
acqqtqcaqq actqqqtcat caqcaqqtat cccaaqacqq catatqttqq qaqqaqcaqc
                                                                    2580
cggaagttgg atctcaagat tgagcttcct tga
                                                                     2613
```

```
<210> SEQ ID NO 116
<211> LENGTH: 870
```

<ZII> LENGTH: 8/U

<212> TYPE: PRT

<213> ORGANISM: Myceliophthora thermophila

<400> SEQUENCE: 116

Met Lys Ala Ala Ala Leu Ser Cys Leu Phe Gly Ser Thr Leu Ala Val

Ala Gly Ala Ile Glu Ser Arg Lys Val His Gln Lys Pro Leu Ala Arg 20 25 30

Ser	Glu	Pro 35	Phe	Tyr	Pro	Ser	Pro 40	Trp	Met	Asn	Pro	Asn 45	Ala	Asp	Gly
Trp	Ala 50	Glu	Ala	Tyr	Ala	Gln 55	Ala	Lys	Ser	Phe	Val 60	Ser	Gln	Met	Thr
Leu 65	Leu	Glu	Lys	Val	Asn 70	Leu	Thr	Thr	Gly	Val 75	Gly	Trp	Gly	Ala	Glu 80
Gln	Cys	Val	Gly	Gln 85	Val	Gly	Ala	Ile	Pro 90	Arg	Leu	Gly	Leu	Arg 95	Ser
Leu	Cys	Met	His 100	Asp	Ser	Pro	Leu	Gly 105	Ile	Arg	Gly	Ala	Asp 110	Tyr	Asn
Ser	Ala	Phe 115	Pro	Ser	Gly	Gln	Thr 120	Val	Ala	Ala	Thr	Trp 125	Asp	Arg	Gly
Leu	Met 130	Tyr	Arg	Arg	Gly	Tyr 135	Ala	Met	Gly	Gln	Glu 140	Ala	Lys	Gly	Lys
Gly 145	Ile	Asn	Val	Leu	Leu 150	Gly	Pro	Val	Ala	Gly 155	Pro	Leu	Gly	Arg	Met 160
Pro	Glu	Gly	Gly	Arg 165	Asn	Trp	Glu	Gly	Phe 170	Ala	Pro	Asp	Pro	Val 175	Leu
Thr	Gly	Ile	Gly 180	Met	Ser	Glu	Thr	Ile 185	Lys	Gly	Ile	Gln	Asp 190	Ala	Gly
Val	Ile	Ala 195	Cys	Ala	Lys	His	Phe 200	Ile	Gly	Asn	Glu	Gln 205	Glu	His	Phe
Arg	Gln 210	Val	Pro	Glu	Ala	Gln 215	Gly	Tyr	Gly	Tyr	Asn 220	Ile	Ser	Glu	Thr
Leu 225	Ser	Ser	Asn	Ile	Asp 230	Asp	Lys	Thr	Met	His 235	Glu	Leu	Tyr	Leu	Trp 240
Pro	Phe	Ala	Asp	Ala 245	Val	Arg	Ala	Gly	Val 250	Gly	Ser	Val	Met	Cys 255	Ser
Tyr	Gln	Gln	Val 260	Asn	Asn	Ser	Tyr	Ala 265	Cys	Gln	Asn	Ser	Lys 270	Leu	Leu
Asn	Asp	Leu 275	Leu	Lys	Asn	Glu	Leu 280	Gly	Phe	Gln	Gly	Phe 285	Val	Met	Ser
Asp	Trp 290	Gln	Ala	Gln	His	Thr 295	Gly	Ala	Ala	Ser	Ala 300	Val	Ala	Gly	Leu
Asp 305	Met	Ser	Met	Pro	Gly 310	Asp	Thr	Gln	Phe	Asn 315	Thr	Gly	Val	Ser	Phe 320
Trp	Gly	Ala	Asn	Leu 325	Thr	Leu	Ala	Val	Leu 330	Asn	Gly	Thr	Val	Pro 335	Ala
Tyr	Arg	Leu	Asp 340	Asp	Met	Ala	Met	Arg 345	Ile	Met	Ala	Ala	Leu 350	Phe	ГЛа
Val	Thr	Lys 355	Thr	Thr	Asp	Leu	Glu 360	Pro	Ile	Asn	Phe	Ser 365	Phe	Trp	Thr
Asp	Asp 370	Thr	Tyr	Gly	Pro	Ile 375	His	Trp	Ala	Ala	180 280	Gln	Gly	Tyr	Gln
Glu 385	Ile	Asn	Ser	His	Val 390	Asp	Val	Arg	Ala	Asp 395	His	Gly	Asn	Leu	Ile 400
Arg	Glu	Ile	Ala	Ala 405	Lys	Gly	Thr	Val	Leu 410	Leu	Lys	Asn	Thr	Gly 415	Ser
Leu	Pro	Leu	Asn 420	Lys	Pro	Lys	Phe	Val 425	Ala	Val	Ile	Gly	Glu 430	Asp	Ala

Gly	Ser	Ser 435	Pro	Asn	Gly	Pro	Asn 440	Gly	Cha	Ser	Asp	Arg 445	Gly	Cha	Asn
Glu	Gly 450	Thr	Leu	Ala	Met	Gly 455	Trp	Gly	Ser	Gly	Thr 460	Ala	Asn	Tyr	Pro
Tyr 465	Leu	Val	Ser	Pro	Asp 470	Ala	Ala	Leu	Gln	Ala 475	Arg	Ala	Ile	Gln	Asp 480
Gly	Thr	Arg	Tyr	Glu 485	Ser	Val	Leu	Ser	Asn 490	Tyr	Ala	Glu	Glu	Lys 495	Thr
Lys	Ala	Leu	Val 500	Ser	Gln	Ala	Asn	Ala 505	Thr	Ala	Ile	Val	Phe 510	Val	Asn
Ala	Asp	Ser 515	Gly	Glu	Gly	Tyr	Ile 520	Asn	Val	Asp	Gly	Asn 525	Glu	Gly	Asp
Arg	Lys 530	Asn	Leu	Thr	Leu	Trp 535	Asn	Asn	Gly	Asp	Thr 540	Leu	Val	Lys	Asn
Val 545	Ser	Ser	Trp	Cys	Ser 550	Asn	Thr	Ile	Val	Val 555	Ile	His	Ser	Val	Gly 560
Pro	Val	Leu	Leu	Thr 565	Asp	Trp	Tyr	Asp	Asn 570	Pro	Asn	Ile	Thr	Ala 575	Ile
Leu	Trp	Ala	Gly 580	Leu	Pro	Gly	Gln	Glu 585	Ser	Gly	Asn	Ser	Ile 590	Thr	Asp
Val	Leu	Tyr 595	Gly	Lys	Val	Asn	Pro 600	Ala	Ala	Arg	Ser	Pro 605	Phe	Thr	Trp
Gly	Lys 610	Thr	Arg	Glu	Ser	Tyr 615	Gly	Ala	Asp	Val	Leu 620	Tyr	Lys	Pro	Asn
Asn 625	Gly	Asn	Gly	Ala	Pro 630	Gln	Gln	Asp	Phe	Thr 635	Glu	Gly	Val	Phe	Ile 640
Asp	Tyr	Arg	Tyr	Phe 645	Asp	ГÀв	Val	Asp	Asp 650	Asp	Ser	Val	Ile	Tyr 655	Glu
Phe	Gly	His	Gly 660	Leu	Ser	Tyr	Thr	Thr 665	Phe	Glu	Tyr	Ser	Asn 670	Ile	Arg
Val	Val	Lys 675	Ser	Asn	Val	Ser	Glu 680	Tyr	Arg	Pro	Thr	Thr 685	Gly	Thr	Thr
Ala	Gln 690	Ala	Pro	Thr	Phe	Gly 695	Asn	Phe	Ser	Thr	Asp 700	Leu	Glu	Asp	Tyr
Leu 705	Phe	Pro	Lys	Asp	Glu 710	Phe	Pro	Tyr	Ile	Tyr 715	Gln	Tyr	Ile	Tyr	Pro 720
Tyr	Leu	Asn	Thr	Thr 725	Asp	Pro	Arg	Arg	Ala 730	Ser	Ala	Asp	Pro	His 735	Tyr
Gly	Gln	Thr	Ala 740	Glu	Glu	Phe	Leu	Pro 745	Pro	His	Ala	Thr	Asp 750	Asp	Asp
Pro	Gln	Pro 755	Leu	Leu	Arg	Ser	Ser 760	Gly	Gly	Asn	Ser	Pro 765	Gly	Gly	Asn
Arg	Gln 770	Leu	Tyr	Asp	Ile	Val 775	Tyr	Thr	Ile	Thr	Ala 780	Asp	Ile	Thr	Asn
Thr 785	Gly	Ser	Val	Val	Gly 790	Glu	Glu	Val	Pro	Gln 795	Leu	Tyr	Val	Ser	Leu 800
Gly	Gly	Pro	Glu	Asp 805	Pro	Lys	Val	Gln	Leu 810	Arg	Asp	Phe	Asp	Arg 815	Met
Arg	Ile	Glu	Pro 820	Gly	Glu	Thr	Arg	Gln 825	Phe	Thr	Gly	Arg	Leu 830	Thr	Arg
Arg	Asp	Leu	Ser	Asn	Trp	Asp	Val	Thr	Val	Gln	Asp	Trp	Val	Ile	Ser

		835					840					845			
Arg	Tyr 850	Pro	Lys	Thr	Ala	Tyr 855	Val	Gly	Arg	Ser	Ser 860	Arg	Lys	Leu	Asp
Leu 865	Lys	Ile	Glu	Leu	Pro 870										
<211 <212)> SE L> LE 2> TY	ENGTH PE:	1: 85 PRT		elion	oht he	ora t	herr	nonh i	ila					
)> SE			_											
Ile 1	Glu	Ser	Arg	Lys 5	Val	His	Gln	Lys	Pro 10	Leu	Ala	Arg	Ser	Glu 15	Pro
Phe	Tyr	Pro	Ser 20	Pro	Trp	Met	Asn	Pro 25	Asn	Ala	Asp	Gly	Trp 30	Ala	Glu
Ala	Tyr	Ala 35	Gln	Ala	Lys	Ser	Phe 40	Val	Ser	Gln	Met	Thr 45	Leu	Leu	Glu
ГÀа	Val 50	Asn	Leu	Thr	Thr	Gly 55	Val	Gly	Trp	Gly	Ala 60	Glu	Gln	CÀa	Val
Gly 65	Gln	Val	Gly	Ala	Ile 70	Pro	Arg	Leu	Gly	Leu 75	Arg	Ser	Leu	Cya	Met 80
His	Asp	Ser	Pro	Leu 85	Gly	Ile	Arg	Gly	Ala 90	Asp	Tyr	Asn	Ser	Ala 95	Phe
Pro	Ser	Gly	Gln 100	Thr	Val	Ala	Ala	Thr 105	Trp	Asp	Arg	Gly	Leu 110	Met	Tyr
Arg	Arg	Gly 115	Tyr	Ala	Met	Gly	Gln 120	Glu	Ala	ГÀз	Gly	Lys 125	Gly	Ile	Asn
Val	Leu 130	Leu	Gly	Pro	Val	Ala 135	Gly	Pro	Leu	Gly	Arg 140	Met	Pro	Glu	Gly
145				Glu	150					155					160
Gly	Met	Ser	Glu	Thr 165	Ile	Lys	Gly	Ile	Gln 170	Asp	Ala	Gly	Val	Ile 175	Ala
CÀa	Ala	ГÀа	His 180	Phe	Ile	Gly	Asn	Glu 185	Gln	Glu	His	Phe	Arg 190	Gln	Val
		195		Gly			200					205			
Asn	Ile 210	Asp	Asp	ГÀа	Thr	Met 215	His	Glu	Leu	Tyr	Leu 220	Trp	Pro	Phe	Ala
Asp 225	Ala	Val	Arg	Ala	Gly 230	Val	Gly	Ser	Val	Met 235	Cys	Ser	Tyr	Gln	Gln 240
Val	Asn	Asn	Ser	Tyr 245	Ala	CAa	Gln	Asn	Ser 250	Lys	Leu	Leu	Asn	Asp 255	Leu
Leu	Lys	Asn	Glu 260	Leu	Gly	Phe	Gln	Gly 265	Phe	Val	Met	Ser	Asp 270	Trp	Gln
Ala	Gln	His 275	Thr	Gly	Ala	Ala	Ser 280	Ala	Val	Ala	Gly	Leu 285	Asp	Met	Ser
Met	Pro 290	Gly	Asp	Thr	Gln	Phe 295	Asn	Thr	Gly	Val	Ser 300	Phe	Trp	Gly	Ala
Asn 305	Leu	Thr	Leu	Ala	Val 310	Leu	Asn	Gly	Thr	Val 315	Pro	Ala	Tyr	Arg	Leu 320

Asp	Asp	Met	Ala	Met 325	Arg	Ile	Met	Ala	Ala 330	Leu	Phe	ГÀв	Val	Thr 335	ГÀв
Thr	Thr	Asp	Leu 340	Glu	Pro	Ile	Asn	Phe 345	Ser	Phe	Trp	Thr	Asp 350	Asp	Thr
Tyr	Gly	Pro 355	Ile	His	Trp	Ala	Ala 360	Lys	Gln	Gly	Tyr	Gln 365	Glu	Ile	Asn
Ser	His 370	Val	Asp	Val	Arg	Ala 375	Asp	His	Gly	Asn	Leu 380	Ile	Arg	Glu	Ile
Ala 385	Ala	Lys	Gly	Thr	Val 390	Leu	Leu	Lys	Asn	Thr 395	Gly	Ser	Leu	Pro	Leu 400
Asn	Lys	Pro	Lys	Phe 405	Val	Ala	Val	Ile	Gly 410	Glu	Asp	Ala	Gly	Ser 415	Ser
Pro	Asn	Gly	Pro 420	Asn	Gly	Cys	Ser	Asp 425	Arg	Gly	Сув	Asn	Glu 430	Gly	Thr
Leu	Ala	Met 435	Gly	Trp	Gly	Ser	Gly 440	Thr	Ala	Asn	Tyr	Pro 445	Tyr	Leu	Val
Ser	Pro 450	Asp	Ala	Ala	Leu	Gln 455	Ala	Arg	Ala	Ile	Gln 460	Asp	Gly	Thr	Arg
Tyr 465	Glu	Ser	Val	Leu	Ser 470	Asn	Tyr	Ala	Glu	Glu 475	Lys	Thr	Lys	Ala	Leu 480
Val	Ser	Gln	Ala	Asn 485	Ala	Thr	Ala	Ile	Val 490	Phe	Val	Asn	Ala	Asp 495	Ser
Gly	Glu	Gly	Tyr 500	Ile	Asn	Val	Asp	Gly 505	Asn	Glu	Gly	Asp	Arg 510	Lys	Asn
Leu	Thr	Leu 515	Trp	Asn	Asn	Gly	Asp 520	Thr	Leu	Val	ГÀв	Asn 525	Val	Ser	Ser
Trp	Сув 530	Ser	Asn	Thr	Ile	Val 535	Val	Ile	His	Ser	Val 540	Gly	Pro	Val	Leu
Leu 545	Thr	Asp	Trp	Tyr	Asp 550	Asn	Pro	Asn	Ile	Thr 555	Ala	Ile	Leu	Trp	Ala 560
Gly	Leu	Pro	Gly	Gln 565	Glu	Ser	Gly	Asn	Ser 570	Ile	Thr	Asp	Val	Leu 575	Tyr
Gly	Lys	Val	Asn 580	Pro	Ala	Ala	Arg	Ser 585	Pro	Phe	Thr	Trp	Gly 590	ГÀа	Thr
Arg	Glu	Ser 595	Tyr	Gly	Ala	Asp	Val 600	Leu	Tyr	Lys	Pro	Asn 605	Asn	Gly	Asn
Gly	Ala 610	Pro	Gln	Gln	Asp	Phe 615	Thr	Glu	Gly	Val	Phe 620	Ile	Asp	Tyr	Arg
Tyr 625	Phe	Asp	ГÀа	Val	Asp 630	Asp	Asp	Ser	Val	Ile 635	Tyr	Glu	Phe	Gly	His 640
Gly	Leu	Ser	Tyr	Thr 645	Thr	Phe	Glu	Tyr	Ser 650	Asn	Ile	Arg	Val	Val 655	Lys
Ser	Asn	Val	Ser 660	Glu	Tyr	Arg	Pro	Thr 665	Thr	Gly	Thr	Thr	Ala 670	Gln	Ala
Pro	Thr	Phe 675	Gly	Asn	Phe	Ser	Thr 680	Asp	Leu	Glu	Asp	Tyr 685	Leu	Phe	Pro
Lys	Asp 690	Glu	Phe	Pro	Tyr	Ile 695	Tyr	Gln	Tyr	Ile	Tyr 700	Pro	Tyr	Leu	Asn
Thr 705	Thr	Asp	Pro	Arg	Arg 710	Ala	Ser	Ala	Asp	Pro 715	His	Tyr	Gly	Gln	Thr 720
Ala	Glu	Glu	Phe	Leu	Pro	Pro	His	Ala	Thr	Asp	Asp	Asp	Pro	Gln	Pro

											COII	LIII	uea		
-			725					730					735		
Leu Leu		Ser :	Ser	Gly	Gly	Asn	Ser 745	Pro	Gly	Gly	Asn	Arg 750	Gln	Leu	
Tyr Asp	Ile \ 755	/al '	Tyr	Thr	Ile	Thr 760	Ala	Asp	Ile	Thr	Asn 765	Thr	Gly	Ser	
Val Val 770	Gly (Glu (Glu	Val	Pro 775	Gln	Leu	Tyr	Val	Ser 780	Leu	Gly	Gly	Pro	
Glu Asp 785	Pro I	ja ,	Val	Gln 790	Leu	Arg	Asp	Phe	Asp 795	Arg	Met	Arg	Ile	Glu 800	
Pro Gly	Glu :		Arg 805	Gln	Phe	Thr	Gly	Arg 810	Leu	Thr	Arg	Arg	Asp 815	Leu	
Ser Asn	_	Asp '	Val	Thr	Val	Gln	Asp 825	Trp	Val	Ile	Ser	Arg 830	Tyr	Pro	
Lys Thr	Ala :	ſyr '	Val	Gly	Arg	Ser 840	Ser	Arg	Lys	Leu	Asp 845	Leu	Lys	Ile	
Glu Leu 850	Pro														
<210 > SI <211 > LI <212 > TY <213 > OB <220 > FI <223 > OY	ENGTH YPE: I RGANIS EATURI THER	: 26: DNA SM: 1 E: INFO	13 Arti RMAT			-		polyr	nucle	eoti∢	de .				
<400> SI	EQUEN	CE:	118												
atgaagg	ctg ct	geg	cttt	c ct	tgcct	tctto	gge	cagta	accc	ttg	ccgt	tgc a	aggcg	gccatt	60
gaatcga	gaa aq	ggtt	cacc	a ga	aagc	ccct	g gc	gagat	ctg	aac	ettti	tta (cccgt	cgcca	a 120
tggatga:			_					-	_				=	_	
cagtgcgt	_	_						_							
gactccc															
gttgctg	cta co	ctgg	gato	g c	ggtci	tgato	g tao	ccgt	egeg	gcta	acgc	aat 🤉	gggco	aggag	g 420
gccaaag	gca aç	gggc	atca	aa t	gtcct	ttct	gga	accaç	gtcg	ccg	gccc	cct 1	ggco	gcato	g 480
cccgagg	geg gt	cgt	aact	g g	gaag	gctto	c gct	ccg	gatc	ccgi	teeti	tac (eggea	tegge	540
atgtccga	aga co	gate	aagg	gg ca	attca	aggat	get	ggc	gtca	tcg	ettg	tgc (gaago	acttt	600
attggaaa	acg ag	gcag	gago	ca ct	ttcaç	gacag	g gt	gcca	gaag	ccca	aggg.	ata (eggtt	acaac	660
atcagcga	aaa co	cctc	tcct	C C	aacat	ttgad	ga ga	caaga	acca	tgc	acga	get (ctaco	tttgg	720
ccgtttg	ccg at	gcc	gtco	g g	gccg	gcgto	gg(ctct	gtca	tgt	gctc	gta	caaco	aggto	780
aacaacto	cgt ac	egee	tgcc	a ga	aacto	cgaaq	g cto	gctga	aacg	acci	tcct	caa 🤉	gaaco	gagctt	840
gggtttca	agg go	cttc	gtca	at ga	agcga	actg	g tg	ggca	cagc	aca	ctgg	ege a	agcaa	gegee	900
gtggctg	gtc to	cgat	atgt	c ca	atgc	cggg	gad	cacca	atgt	tcaa	acac	tgg (egtea	gtttc	960
tggggcg	cca at	ctc	acco	et c	gccgt	tcct	c aad	egge	acag	tcc	ctgc	cta (ccgto	tegae	1020
gacatgg	cca to	gege	atca	at g	gccg	ccct	c tto	caag	gtca	ccaa	agac	cac (cgaco	tggaa	a 1080
ccgatca	act to	ctcc	ttct	g ga	accc	gcgad	c act	tato	ggcc	cgat	tcca	ctg (ggaag	gccaac	1140
anager-			a + + -	+ .			- ~-					~~~		+	1000

cagggctacc aggagattaa ttcccacgtt gacgtccgcg ccgaccacgg caacctcatc 1200

cggaacattg ccgccaaggg	tacggtgctg	ctgaagaata	ccggctctct	acccctgaac	1260
aagccaaagt tcgtggccgt	catcggcgag	gatgctgggc	cgagccccaa	cgggcccaac	1320
ggctgcagcg accgcggctg	taacgaaggc	acgctcgcca	tgggctgggg	atccggcaca	1380
gccaactatc cgtacctcgt	ttcccccgac	geegegetee	agttgcgggc	catccaggac	1440
ggcacgaggt acgagagcgt	cctgtccaac	tacgccgagg	aaaatacaaa	ggctctggtc	1500
tegeaggeea atgeaacege	catcgtcttc	gtcaatgccg	actcaggcga	gggctacatc	1560
aacgtggacg gtaacgaggg	cgaccgtaag	aacctgactc	tctggaacaa	cggtgatact	1620
ctggtcaaga acgtctcgag	ctggtgcagc	aacaccatcg	tcgtcatcca	ctcggtcggc	1680
ccggtcctcc tgaccgattg	gtacgacaac	cccaacatca	cggccattct	ctgggctggt	1740
cttccgggcc aggagtcggg	caactccatc	accgacgtgc	tttacggcaa	ggtcaacccc	1800
geegeeeget egeeetteae	ttggggcaag	acccgcgaaa	gctatggcgc	ggacgtcctg	1860
tacaagccga ataatggcaa	ttgggcgccc	caacaggact	tcaccgaggg	cgtcttcatc	1920
gactaccgct acttcgacaa	ggttgacgat	gactcggtca	tctacgagtt	cggccacggc	1980
ctgagctaca ccaccttcga	gtacagcaac	atccgcgtcg	tcaagtccaa	cgtcagcgag	2040
taccggccca cgacgggcac	cacgattcag	gccccgacgt	ttggcaactt	ctccaccgac	2100
ctcgaggact atctcttccc	caaggacgag	ttcccctaca	tcccgcagta	catctacccg	2160
tacctcaaca cgaccgaccc	ccggagggcc	teggeegate	cccactacgg	ccagaccgcc	2220
gaggagttee teeegeeeea	cgccaccgat	gacgaccccc	agccgctcct	ccggtcctcg	2280
ggcggaaact cccccggcgg	caaccgccag	ctgtacgaca	ttgtctacac	aatcacggcc	2340
gacatcacga atacgggctc	cgttgtaggc	gaggaggtac	cgcagctcta	cgtctcgctg	2400
ggcggtcccg aggatcccaa	ggtgcagctg	cgcgactttg	acaggatgcg	gatcgaaccc	2460
ggcgagacga ggcagttcac	cggccgcctg	acgcgcagag	atctgagcaa	ctgggacgtc	2520
acggtgcagg actgggtcat	cagcaggtat	cccaagacgg	catatgttgg	gaggagcagc	2580
cggaagttgg atctcaagat	tgagcttcct	tga			2613
<210> SEQ ID NO 119 <211> LENGTH: 870 <212> TYPE: PRT <213> ORGANISM: Artif <220> FEATURE: <223> OTHER INFORMATI			ides.		
<400> SEQUENCE: 119					
Met Lys Ala Ala Ala L 1 5	eu Ser Cys :	Leu Phe Gly 10	Ser Thr Le	ı Ala Val 15	

Ala Gly Ala Ile Glu Ser Arg Lys Val His Gln Lys Pro Leu Ala Arg \$20\$ \$25\$ \$30

Ser Glu Pro Phe Tyr Pro Ser Pro Trp Met Asn Pro Asn Ala Asp Gly 35 40 45

Trp Ala Glu Ala Tyr Ala Gln Ala Lys Ser Phe Val Ser Gln Met Thr 50 55 60

Leu Leu Glu Lys Val Asn Leu Thr Thr Gly Val Gly Trp Gly Ala Glu 65 $$ 70 $$ 75 $$ 80

Gln Cys Val Gly Gln Val Gly Ala Ile Pro Arg Leu Gly Leu Arg Ser \$90\$

Leu	Cys	Met	His 100	Asp	Ser	Pro	Leu	Gly 105	Ile	Arg	Gly	Ala	Asp 110	Tyr	Asn
Ser	Ala	Phe 115	Pro	Ser	Gly	Gln	Thr 120	Val	Ala	Ala	Thr	Trp 125	Asp	Arg	Gly
Leu	Met 130	Tyr	Arg	Arg	Gly	Tyr 135	Ala	Met	Gly	Gln	Glu 140	Ala	Lys	Gly	ГЛа
Gly 145	Ile	Asn	Val	Leu	Leu 150	Gly	Pro	Val	Ala	Gly 155	Pro	Leu	Gly	Arg	Met 160
Pro	Glu	Gly	Gly	Arg 165	Asn	Trp	Glu	Gly	Phe 170	Ala	Pro	Asp	Pro	Val 175	Leu
Thr	Gly	Ile	Gly 180	Met	Ser	Glu	Thr	Ile 185	Lys	Gly	Ile	Gln	Asp 190	Ala	Gly
Val	Ile	Ala 195	CÀa	Ala	ГЛа	His	Phe 200	Ile	Gly	Asn	Glu	Gln 205	Glu	His	Phe
Arg	Gln 210	Val	Pro	Glu	Ala	Gln 215	Gly	Tyr	Gly	Tyr	Asn 220	Ile	Ser	Glu	Thr
Leu 225	Ser	Ser	Asn	Ile	Asp 230	Asp	Lys	Thr	Met	His 235	Glu	Leu	Tyr	Leu	Trp 240
Pro	Phe	Ala	Asp	Ala 245	Val	Arg	Ala	Gly	Val 250	Gly	Ser	Val	Met	Сув 255	Ser
Tyr	Asn	Gln	Val 260	Asn	Asn	Ser	Tyr	Ala 265	Сув	Gln	Asn	Ser	Lys 270	Leu	Leu
Asn	Asp	Leu 275	Leu	ГÀа	Asn	Glu	Leu 280	Gly	Phe	Gln	Gly	Phe 285	Val	Met	Ser
Asp	Trp 290	Trp	Ala	Gln	His	Thr 295	Gly	Ala	Ala	Ser	Ala 300	Val	Ala	Gly	Leu
Asp 305	Met	Ser	Met	Pro	Gly 310	Asp	Thr	Met	Phe	Asn 315	Thr	Gly	Val	Ser	Phe 320
Trp	Gly	Ala	Asn	Leu 325	Thr	Leu	Ala	Val	Leu 330	Asn	Gly	Thr	Val	Pro 335	Ala
Tyr	Arg	Leu	Asp 340	Asp	Met	Ala	Met	Arg 345	Ile	Met	Ala	Ala	Leu 350	Phe	ГЛа
Val	Thr	155 155	Thr	Thr	Asp	Leu	Glu 360	Pro	Ile	Asn	Phe	Ser 365	Phe	Trp	Thr
Arg	Asp 370	Thr	Tyr	Gly	Pro	Ile 375	His	Trp	Ala	Ala	380 Tàs	Gln	Gly	Tyr	Gln
Glu 385	Ile	Asn	Ser	His	Val 390	Asp	Val	Arg	Ala	Asp 395	His	Gly	Asn	Leu	Ile 400
Arg	Asn	Ile	Ala	Ala 405	ГÀа	Gly	Thr	Val	Leu 410	Leu	ГÀа	Asn	Thr	Gly 415	Ser
Leu	Pro	Leu	Asn 420	ГÀа	Pro	Lys	Phe	Val 425	Ala	Val	Ile	Gly	Glu 430	Asp	Ala
Gly	Pro	Ser 435	Pro	Asn	Gly	Pro	Asn 440	Gly	Сла	Ser	Asp	Arg 445	Gly	CÀa	Asn
Glu	Gly 450	Thr	Leu	Ala	Met	Gly 455	Trp	Gly	Ser	Gly	Thr 460	Ala	Asn	Tyr	Pro
Tyr 465	Leu	Val	Ser	Pro	Asp 470	Ala	Ala	Leu	Gln	Leu 475	Arg	Ala	Ile	Gln	Asp 480
Gly	Thr	Arg	Tyr	Glu 485	Ser	Val	Leu	Ser	Asn 490	Tyr	Ala	Glu	Glu	Asn 495	Thr
Lys	Ala	Leu	Val	Ser	Gln	Ala	Asn	Ala	Thr	Ala	Ile	Val	Phe	Val	Asn

												COII	CIII	ucu	
			500					505					510		
Ala	Asp	Ser 515	Gly	Glu	Gly	Tyr	Ile 520	Asn	Val	Asp	Gly	Asn 525	Glu	Gly	Asp
Arg	Lys 530	Asn	Leu	Thr	Leu	Trp 535	Asn	Asn	Gly	Asp	Thr 540	Leu	Val	Lys	Asn
Val 545	Ser	Ser	Trp	CAa	Ser 550	Asn	Thr	Ile	Val	Val 555	Ile	His	Ser	Val	Gly 560
Pro	Val	Leu	Leu	Thr 565	Asp	Trp	Tyr	Asp	Asn 570	Pro	Asn	Ile	Thr	Ala 575	Ile
Leu	Trp	Ala	Gly 580		Pro	Gly	Gln	Glu 585	Ser	Gly	Asn	Ser	Ile 590	Thr	Asp
Val	Leu	Tyr 595	Gly	Lys	Val	Asn	Pro 600	Ala	Ala	Arg	Ser	Pro 605	Phe	Thr	Trp
Gly	Lys 610	Thr	Arg	Glu	Ser	Tyr 615	Gly	Ala	Asp	Val	Leu 620	Tyr	Lys	Pro	Asn
Asn 625	Gly	Asn	Trp	Ala	Pro 630	Gln	Gln	Asp	Phe	Thr 635	Glu	Gly	Val	Phe	Ile 640
Asp	Tyr	Arg	Tyr	Phe 645	Asp	Lys	Val	Asp	Asp 650	Asp	Ser	Val	Ile	Tyr 655	Glu
Phe	Gly	His	Gly 660	Leu	Ser	Tyr	Thr	Thr 665	Phe	Glu	Tyr	Ser	Asn 670	Ile	Arg
Val	Val	Lys 675	Ser	Asn	Val	Ser	Glu 680		Arg	Pro	Thr	Thr 685	Gly	Thr	Thr
Ile	Gln 690	Ala	Pro	Thr	Phe	Gly 695	Asn	Phe	Ser	Thr	Asp 700	Leu	Glu	Asp	Tyr
Leu 705	Phe	Pro	Lys	Asp	Glu 710	Phe	Pro	Tyr	Ile	Pro 715	Gln	Tyr	Ile	Tyr	Pro 720
Tyr	Leu	Asn	Thr	Thr 725	Asp	Pro	Arg	Arg	Ala 730	Ser	Ala	Asp	Pro	His 735	Tyr
Gly	Gln	Thr	Ala 740	Glu	Glu	Phe	Leu	Pro 745	Pro	His	Ala	Thr	Asp 750	Asp	Asp
Pro	Gln	Pro 755	Leu	Leu	Arg	Ser	Ser 760	Gly	Gly	Asn	Ser	Pro 765	Gly	Gly	Asn
Arg	Gln 770	Leu	Tyr	Asp	Ile	Val 775	Tyr	Thr	Ile	Thr	Ala 780	Asp	Ile	Thr	Asn
Thr 785	Gly	Ser	Val	Val			Glu			Gln 795		Tyr	Val	Ser	Leu 800
Gly	Gly	Pro	Glu	Asp 805	Pro	Lys	Val	Gln	Leu 810	Arg	Asp	Phe	Asp	Arg 815	Met
Arg	Ile	Glu	Pro 820	Gly	Glu	Thr	Arg	Gln 825	Phe	Thr	Gly	Arg	Leu 830	Thr	Arg
Arg	Asp	Leu 835	Ser	Asn	Trp	Asp	Val 840	Thr	Val	Gln	Asp	Trp 845	Val	Ile	Ser
Arg	Tyr 850	Pro	Lys	Thr	Ala	Tyr 855	Val	Gly	Arg	Ser	Ser 860	Arg	Lys	Leu	Asp
Leu 865	Lys	Ile	Glu	Leu	Pro 870										
)> SI														

<211> LENGTH: 851
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence

		EATUR		RMAT	ION:	Syr	nthet	ic p	olyp	ept i	.des .				
< 400)> SE	EQUEN	ICE :	120											
Ile 1	Glu	Ser	Arg	Lys 5	Val	His	Gln	Lys	Pro 10	Leu	Ala	Arg	Ser	Glu 15	Pro
Phe	Tyr	Pro	Ser 20	Pro	Trp	Met	Asn	Pro 25	Asn	Ala	Asp	Gly	Trp 30	Ala	Glu
Ala	Tyr	Ala 35	Gln	Ala	Lys	Ser	Phe 40	Val	Ser	Gln	Met	Thr 45	Leu	Leu	Glu
rys	Val 50	Asn	Leu	Thr	Thr	Gly 55	Val	Gly	Trp	Gly	Ala 60	Glu	Gln	Cys	Val
Gly 65	Gln	Val	Gly	Ala	Ile 70	Pro	Arg	Leu	Gly	Leu 75	Arg	Ser	Leu	Cys	Met 80
His	Asp	Ser	Pro	Leu 85	Gly	Ile	Arg	Gly	Ala 90	Asp	Tyr	Asn	Ser	Ala 95	Phe
Pro	Ser	Gly	Gln 100	Thr	Val	Ala	Ala	Thr 105	Trp	Asp	Arg	Gly	Leu 110	Met	Tyr
Arg	Arg	Gly 115	Tyr	Ala	Met	Gly	Gln 120	Glu	Ala	Lys	Gly	Lys 125	Gly	Ile	Asn
Val	Leu 130	Leu	Gly	Pro	Val	Ala 135	Gly	Pro	Leu	Gly	Arg 140	Met	Pro	Glu	Gly
Gly 145	Arg	Asn	Trp	Glu	Gly 150	Phe	Ala	Pro	Asp	Pro 155	Val	Leu	Thr	Gly	Ile 160
Gly	Met	Ser	Glu	Thr 165	Ile	Lys	Gly	Ile	Gln 170	Asp	Ala	Gly	Val	Ile 175	Ala
Cys	Ala	Lys	His 180	Phe	Ile	Gly	Asn	Glu 185	Gln	Glu	His	Phe	Arg 190	Gln	Val
Pro	Glu	Ala 195	Gln	Gly	Tyr	Gly	Tyr 200	Asn	Ile	Ser	Glu	Thr 205	Leu	Ser	Ser
Asn	Ile 210	Asp	Asp	Lys	Thr	Met 215	His	Glu	Leu	Tyr	Leu 220	Trp	Pro	Phe	Ala
Asp 225	Ala	Val	Arg	Ala	Gly 230	Val	Gly	Ser	Val	Met 235	Cys	Ser	Tyr	Asn	Gln 240
Val	Asn	Asn	Ser	Tyr 245	Ala	Cys	Gln	Asn	Ser 250	Lys	Leu	Leu	Asn	Asp 255	Leu
Leu	ГЛа	Asn	Glu 260	Leu	Gly	Phe	Gln	Gly 265	Phe	Val	Met	Ser	Asp 270	Trp	Trp
Ala	Gln	His 275	Thr	Gly	Ala	Ala	Ser 280	Ala	Val	Ala	Gly	Leu 285	Asp	Met	Ser
Met	Pro 290	Gly	Aap	Thr	Met	Phe 295	Asn	Thr	Gly	Val	Ser 300	Phe	Trp	Gly	Ala
Asn 305	Leu	Thr	Leu	Ala	Val 310	Leu	Asn	Gly	Thr	Val 315	Pro	Ala	Tyr	Arg	Leu 320
Asp	Asp	Met	Ala	Met 325	Arg	Ile	Met	Ala	Ala 330	Leu	Phe	rya	Val	Thr 335	Lys
Thr	Thr	Asp	Leu 340	Glu	Pro	Ile	Asn	Phe 345	Ser	Phe	Trp	Thr	Arg 350	Asp	Thr
Tyr	Gly	Pro 355	Ile	His	Trp	Ala	Ala 360	Lys	Gln	Gly	Tyr	Gln 365	Glu	Ile	Asn
Ser	His 370	Val	Asp	Val	Arg	Ala 375	Asp	His	Gly	Asn	Leu 380	Ile	Arg	Asn	Ile

Ala 385	Ala	Lys	Gly	Thr	Val 390	Leu	Leu	Lys	Asn	Thr 395	Gly	Ser	Leu	Pro	Leu 400
Asn	Lys	Pro	Lys	Phe 405	Val	Ala	Val	Ile	Gly 410	Glu	Asp	Ala	Gly	Pro 415	Ser
Pro	Asn	Gly	Pro 420	Asn	Gly	Cys	Ser	Asp 425	Arg	Gly	Cys	Asn	Glu 430	Gly	Thr
Leu	Ala	Met 435	Gly	Trp	Gly	Ser	Gly 440	Thr	Ala	Asn	Tyr	Pro 445	Tyr	Leu	Val
Ser	Pro 450	Asp	Ala	Ala	Leu	Gln 455	Leu	Arg	Ala	Ile	Gln 460	Asp	Gly	Thr	Arg
Tyr 465	Glu	Ser	Val	Leu	Ser 470	Asn	Tyr	Ala	Glu	Glu 475	Asn	Thr	Lys	Ala	Leu 480
Val	Ser	Gln	Ala	Asn 485	Ala	Thr	Ala	Ile	Val 490	Phe	Val	Asn	Ala	Asp 495	Ser
Gly	Glu	Gly	Tyr 500	Ile	Asn	Val	Asp	Gly 505	Asn	Glu	Gly	Asp	Arg 510	TÀa	Asn
Leu	Thr	Leu 515	Trp	Asn	Asn	Gly	Asp 520	Thr	Leu	Val	Lys	Asn 525	Val	Ser	Ser
Trp	Сув 530	Ser	Asn	Thr	Ile	Val 535	Val	Ile	His	Ser	Val 540	Gly	Pro	Val	Leu
Leu 545	Thr	Asp	Trp	Tyr	Asp 550	Asn	Pro	Asn	Ile	Thr 555	Ala	Ile	Leu	Trp	Ala 560
Gly	Leu	Pro	Gly	Gln 565	Glu	Ser	Gly	Asn	Ser 570	Ile	Thr	Asp	Val	Leu 575	Tyr
Gly	Lys	Val	Asn 580	Pro	Ala	Ala	Arg	Ser 585	Pro	Phe	Thr	Trp	Gly 590	Lys	Thr
Arg	Glu	Ser 595	Tyr	Gly	Ala	Asp	Val 600	Leu	Tyr	Lys	Pro	Asn 605	Asn	Gly	Asn
Trp	Ala 610	Pro	Gln	Gln	Asp	Phe 615	Thr	Glu	Gly	Val	Phe 620	Ile	Asp	Tyr	Arg
Tyr 625	Phe	Asp	Lys	Val	Asp 630	Asp	Asp	Ser	Val	Ile 635	Tyr	Glu	Phe	Gly	His 640
Gly	Leu	Ser	Tyr	Thr 645	Thr	Phe	Glu	Tyr	Ser 650	Asn	Ile	Arg	Val	Val 655	Lys
Ser	Asn	Val	Ser 660	Glu	Tyr	Arg	Pro	Thr 665	Thr	Gly	Thr	Thr	Ile 670	Gln	Ala
Pro	Thr	Phe 675	Gly	Asn	Phe	Ser	Thr 680	Asp	Leu	Glu	Asp	Tyr 685	Leu	Phe	Pro
Lys	Asp 690	Glu	Phe	Pro	Tyr	Ile 695	Pro	Gln	Tyr	Ile	Tyr 700	Pro	Tyr	Leu	Asn
Thr 705	Thr	Asp	Pro	Arg	Arg 710	Ala	Ser	Ala	Aap	Pro 715	His	Tyr	Gly	Gln	Thr 720
Ala	Glu	Glu	Phe	Leu 725	Pro	Pro	His	Ala	Thr 730	Asp	Asp	Asp	Pro	Gln 735	Pro
Leu	Leu	Arg	Ser 740	Ser	Gly	Gly	Asn	Ser 745	Pro	Gly	Gly	Asn	Arg 750	Gln	Leu
Tyr	Asp	Ile 755	Val	Tyr	Thr	Ile	Thr 760	Ala	Asp	Ile	Thr	Asn 765	Thr	Gly	Ser
Val	Val 770	Gly	Glu	Glu	Val	Pro 775	Gln	Leu	Tyr	Val	Ser 780	Leu	Gly	Gly	Pro

Glu Asp Pro Lys Val Gln Leu Arg Asp Phe Asp Arg Met Arg Ile Glu 785 790 795 800
Pro Gly Glu Thr Arg Gln Phe Thr Gly Arg Leu Thr Arg Arg Asp Leu 805 810 815
Ser Asn Trp Asp Val Thr Val Gln Asp Trp Val Ile Ser Arg Tyr Pro
820 825 830
Lys Thr Ala Tyr Val Gly Arg Ser Ser Arg Lys Leu Asp Leu Lys Ile 835 840 845
Glu Leu Pro 850
<210> SEQ ID NO 121 <211> LENGTH: 2613 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide.
<400> SEQUENCE: 121
atgaaggetg etgegettte etgeetette ggeagtaece ttgeegttge aggegeeatt 60
gaatcgagaa aggttcacca gaagcccctc gcgagatctg aaccttttta cccgtcgcca 120
tggatgaatc ccaacgccat cggctgggcg gaggcctatg cccaggccaa gtcctttgtc 180
tcccaaatga ctctgctaga gaaggtcaac ttgaccacgg gagtcggctg gggggaggag 240
cagtgcgtcg gcaacgtggg cgcgatccct cgccttggac ttcgcagtct gtgcatgcat 300
gactecete teggegtgeg aggaacegae tacaacteag egtteceete tggecagace 360
gttgctgcta cctgggatcg cggtctgatg taccgtcgcg gctacgcaat gggccaggag 420
gccaaaggca agggcatcaa tgtccttctc ggaccagtcg ccggccccct tggccgcatg 480 cccgagggcg gtcgtaactg ggaaggcttc gctccggatc ccgtccttac cggcatcggc 540
atgtccgaga cgatcaaggg cattcaggat gctggcgtca tcgcttgtgc gaagcacttt 600
attggaaacg agcaggagca cttcagacag gtgccagaag cccagggata cggttacaac 660
atcagegaaa eceteteete eaacattgae gacaagaeca tgeaegaget etacetttgg 720
ccgtttgccg atgccgtccg ggccggcgtc ggctctgtca tgtgctcgta caaccagggc 780
aacaactcgt acgcctgcca gaactcgaag ctgctgaacg acctcctcaa gaacgagctt 840
gggtttcagg gcttcgtcat gagcgactgg tgggcacagc acactggcgc agcaagcgcc 900
gtggctggtc tcgatatgtc catgccgggc gacaccatgg tcaacactgg cgtcagtttc 960
tggggcgcca atotoaccot cgccgtcctc aacggcacag tccctgccta ccgtctcgac 1020
gacatgtgca tgcgcatcat ggccgccctc ttcaaggtca ccaagaccac cgacctggaa 1080
cegateaact teteettetg gaceegegae aettatggee egateeactg ggeegecaag 1140
cagggctacc aggagattaa ttcccacgtt gacgtccgcg ccgaccacgg caacctcatc 1200
cggaacattg ccgccaaggg tacggtgctg ctgaagaata ccggctctct acccctgaac 1260
aagccaaagt tcgtggccgt catcggcgag gatgctgggc cgagccccaa cgggcccaac 1320
ggctgcagcg accgcggctg taacgaaggc acgctcgcca tgggctgggg atccggcaca 1380
gccaactate egtacetegt tteeceegae geegegetee aggegeggge catecaggae 1440
ggcacgaggt acgagagcgt cctgtccaac tacgccgagg aaaatacaaa ggctctggtc 1500
tcgcaggcca atgcaaccgc catcgtcttc gtcaatgccg actcaggcga gggctacatc 1560

aaco																	
	gtgga	acg g	gtaad	gagg	gg cg	gacco	gtaag	, aad	ectga	actc	tcts	ggaad	aa o	eggte	gata	ct	1620
ctg	gtcaa	aga a	acgto	ctcga	ag ct	ggtg	gcago	aad	cacca	tcg	tcgt	cato	ca o	etegg	gtcg	gc	1680
ccgg	gtcct	cc t	gaco	gatt	g gt	acga	caac		caaca	itca	cgg	catt	ct	ctggg	gctg	gt	1740
ctto	ccggg	gcc a	aggag	gtcgg	gg ca	aacto	cato	aco	gaco	gtgc	ttta	acggo	aa q	ggtca	acc	CC	1800
gccg	geeeg	get o	gcc	ettea	ac tt	gggg	gcaag	g acc	cgcg	gaaa	gcta	atggo	gc g	ggaco	gtcc	tg	1860
taca	aagco	ega a	ataat	ggca	aa tt	ggg	gaac	caa	cago	gact	tcac	ccgaç	ggg (egtet	tca	tc	1920
gact	acco	get a	actto	egaca	aa gg	gttga	cgat	gad	eteg	gtca	tcta	acgag	jtt (egged	cacg	gc	1980
ctga	agcta	aca o	ccaco	ettes	ga gt	cacaç	gcaac	ato	eegeg	gtcg	tcaa	agtco	aa o	egtea	agcg	ag	2040
taco	ggc	cca c	gac	gggca	ac ca	acgat	tcag	g gcc	ccga	ecgt	ttgg	gcaac	tt d	ctcca	accg	ac	2100
ctc	gagga	act a	atcto	ettec	ec ca	aagga	acgag	, tto	ccct	aca	tccc	gcag	jta d	catct	acc	cg	2160
taco	ctcaa	aca o	gaco	cgaco	ec c	cggag	gggcc	te	gggc	gatc	ccca	actac	gg (ccaga	accg	cc	2220
gagg	gagtt	cc t	caaq	geee	ca co	gccac	cgat	gad	gaco	ccc	agco	gcto	ect o	ccggt	cct	cg	2280
ggcg	ggaaa	act o	cccc	egge	gg ca	aacco	gccag	goto	gtaco	jaca	ttgt	ctac	ac a	aatca	acgg	cc	2340
gaca	atcad	ega a	ataco	gggct	.c c	gttgt	aggo	gaç	gagg	gtac	cgca	agcto	ta d	egtet	cgc	tg	2400
ggc	ggtco	ccg a	aggat	ccca	aa go	gtgca	gctg	g cgo	cgact	ttg	acaç	ggato	geg g	gatco	gaac	cc	2460
ggcg	gagad	ega g	ggcag	gttca	ac co	ggccg	geete	g aco	gegea	agag	atct	gago	aa o	ctggg	gacg	tc	2520
acgo	gtgca	agg a	actg	ggtca	at ca	agcaç	gtat		caaga	cgg	cata	atgtt	gg g	gagga	agca	gc	2580
cgga	aagtt	gg a	atcto	caaga	at to	gagct	tcct	tga	ì								2613
<210)> SI	EO II	OM C	122													
<211 <212 <213 <220	L> LF 2> TY 3> OF 0> FF	EQ II ENGTH (PE: RGAN] EATUR THER	H: 87 PRT [SM: RE:	70 Arti			_		oolyp	oept:	ides .						
<211 <212 <213 <220 <223	L> LH 2> TY 3> OH 0> FH 3> OT	ENGTH PE: RGANI EATUR	H: 8' PRT (SM: RE: INF(70 Arti DRMAT			_		oolyp	oept:	ides						
<211 <212 <213 <220 <223 <400	L > LI 2 > TY 3 > OF 0 > FI 3 > OT	ENGTH (PE: RGANI EATUR THER EQUEN	H: 8' PRT ISM: RE: INFO	70 Arti DRMAT 122	CION	: Syr	- nthet	ic p		_			Leu	Ala 15	Val		
<211 <212 <213 <220 <223 <400 Met 1	L> LH 2> TY 3> OF 0> FH 3> OT 0> SH	ENGTH (PE: RGANI EATUR THER EQUEN	H: 8' PRT ISM: RE: INFO NCE: Ala	Arti DRMAT 122 Ala 5	TION:	: Syr Ser	- nthet Cys	ic p	Phe	Gly	Ser	Thr					
<211 <212 <213 <220 <223 <400 Met 1	L> LH 2> TY 3> OF 3> OT 3> OT D> SH Lys	ENGTH (PE: RGANI EATUF THER EQUEN Ala	H: 8° PRT ISM: RE: INFO ICE: Ala Ile 20	Arti DRMAT 122 Ala 5 Glu	Leu Ser	: Syr Ser Arg	- Cys Lys	Leu Val	Phe 10 His	Gly Gln	Ser Lys	Thr Pro	Leu 30	15	Arg	ī	
<211 <212 <213 <220 <223 <400 Met 1 Ala Ser	L> LH 2> TY 3> OF 3> OF 3> OY 5 Lys Gly	ENGTH YPE: RGANI EATUR THER EQUEN Ala Ala Pro 35	H: 8' PRT ISM: SE: INFO CE: Ala Ile 20 Phe	Arti DRMAT 122 Ala 5 Glu Tyr	Leu Ser Pro	: Syr Ser Arg Ser	Cys Lys Pro 40	ic p Leu Val 25 Trp	Phe 10 His	Gly Gln Asn	Ser Lys Pro	Thr Pro Asn 45	Leu 30 Ala	15 Ala	Arg Gly		
<211 <212 <213 <220 <223 <400 Met 1 Ala Ser	1> LH 22> TY 33> OF 33> OF 33> OT 50> SE Lys Gly Ala 50	ENGTH (PE: RGAN) FHER Ala Ala Pro 35	H: 8' PRT ISM: INF(INF(Ala Ile 20 Phe Ala	Arti DRMAT 122 Ala 5 Glu Tyr	Leu Ser Pro	Ser Arg Ser Gln 55	Cys Lys Pro 40 Ala	Leu Val 25 Trp	Phe 10 His Met	Gly Gln Asn Phe	Ser Lys Pro Val 60	Thr Pro Asn 45 Ser	Leu 30 Ala Gln	15 Ala Ile	Arg Gly Thr		
<211 <212 <213 <220 <220 <400 Met 1 Ala Ser Trp Leu 65	1> LH2 2> TY 3> OF FF 3> OF FF 3> OT FF 3> OT FF 3> OT FF 4 50 SF 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ENGTH (PE: GAN) EATUR HER Ala Ala Pro 35 Glu	H: 8' PRT ISM: ISM: INFC INFC Ala Ile 20 Phe Ala Lys	Arti DRMAT 122 Ala 5 Glu Tyr Tyr Val	Leu Ser Pro Ala Asn 70	Ser Arg Ser Gln 55	Cys Lys Pro 40 Ala	Leu Val 25 Trp Lys	Phe 10 His Met Ser	Gly Gln Asn Phe Val	Ser Lys Pro Val 60	Thr Pro Asn 45 Ser Trp	Leu 30 Ala Gln	15 Ala Ile Met	Arg Gly Thr Glu		
<211 <212 <213 <220 <223 <400 Met 1 Ala Ser Trp Leu 65 Gln	1> LH 2> TY 3> OP 3> OF 3> OY 3> OY Gly Glu Ala 50 Leu	ENGTH (PE: CGAN) EATUH THER Ala Ala Pro 35 Glu Val	H: 8' PRT SM: SM: RE: INF Ala Ile 20 Phe Ala Lys Gly	Arti DRMAT 122 Ala 5 Glu Tyr Tyr Val Asn 85	Leu Ser Pro Ala Asn 70	Ser Arg Ser Gln 55 Leu Gly	Cys Lys Pro 40 Ala Thr	Leu Val 25 Trp Lys Thr	Phe 10 His Met Ser Gly Pro 90	Gly Gln Asn Phe Val 75 Arg	Ser Lys Pro Val 60 Gly	Thr Pro Asn 45 Ser Trp Gly	Leu 30 Ala Gln Gly Leu	15 Ala Ile Met Glu Arg	Arg Gly Thr Glu 80 Ser		
<211 <212 <213 <220 <223 <400 Met 1 Ala Ser Trp Leu 65 Gln Leu	1> LH 2> TY 3> OF 3> OT 3> OT Clys Gly Ala 50 Leu Cys	ENGTH (PE: PE: PE: PE: PE: PE: PE: PE: PE: PE:	H: 8' PRT : ISM:: ISM:: ISM:: INFC Ala Ile 20 Phe Ala Lys Gly His 1000	Arti DRMAT 122 Ala 5 Glu Tyr Tyr Val Asn 85 Asp	Leu Ser Pro Ala Asn 70 Val	Ser Arg Ser Gln 55 Leu Gly Pro	Cys Lys Pro 40 Ala Thr Ala	Leu Val 25 Trp Lys Thr Ile Gly 105	Phe 10 His Met Ser Gly Pro 90 Val	Gly Gln Asn Phe Val 75 Arg	Ser Lys Pro Val 60 Gly Leu Gly	Thr Pro Asn 45 Ser Trp Gly Thr	Leu 30 Ala Gln Gly Leu Asp	Ala Ile Met Glu Arg 95	Arg Gly Thr Glu 80 Ser		

Gly Ile Asn Val Leu Leu Gly Pro Val Ala Gly Pro Leu Gly Arg Met 145 \$150\$

_															
Pro	Glu	Gly	Gly	Arg 165	Asn	Trp	Glu	Gly	Phe 170	Ala	Pro	Asp	Pro	Val 175	Leu
Thr	Gly	Ile	Gly 180	Met	Ser	Glu	Thr	Ile 185	Lys	Gly	Ile	Gln	Asp 190	Ala	Gly
Val	Ile	Ala 195	Сла	Ala	Lys	His	Phe 200	Ile	Gly	Asn	Glu	Gln 205	Glu	His	Phe
Arg	Gln 210	Val	Pro	Glu	Ala	Gln 215	Gly	Tyr	Gly	Tyr	Asn 220	Ile	Ser	Glu	Thr
Leu 225	Ser	Ser	Asn	Ile	Asp 230	Asp	Lys	Thr	Met	His 235	Glu	Leu	Tyr	Leu	Trp 240
Pro	Phe	Ala	Asp	Ala 245	Val	Arg	Ala	Gly	Val 250	Gly	Ser	Val	Met	Сув 255	Ser
Tyr	Asn	Gln	Gly 260	Asn	Asn	Ser	Tyr	Ala 265	Cys	Gln	Asn	Ser	Lys 270	Leu	Leu
Asn	Asp	Leu 275	Leu	Lys	Asn	Glu	Leu 280	Gly	Phe	Gln	Gly	Phe 285	Val	Met	Ser
Asp	Trp 290	Trp	Ala	Gln	His	Thr 295	Gly	Ala	Ala	Ser	Ala 300	Val	Ala	Gly	Leu
Asp 305	Met	Ser	Met	Pro	Gly 310	Aap	Thr	Met	Val	Asn 315	Thr	Gly	Val	Ser	Phe 320
Trp	Gly	Ala	Asn	Leu 325	Thr	Leu	Ala	Val	Leu 330	Asn	Gly	Thr	Val	Pro 335	Ala
Tyr	Arg	Leu	Asp 340	Asp	Met	CAa	Met	Arg 345	Ile	Met	Ala	Ala	Leu 350	Phe	Lys
Val	Thr	Lys 355	Thr	Thr	Asp	Leu	Glu 360	Pro	Ile	Asn	Phe	Ser 365	Phe	Trp	Thr
Arg	Asp 370	Thr	Tyr	Gly	Pro	Ile 375	His	Trp	Ala	Ala	380 TÀ2	Gln	Gly	Tyr	Gln
Glu 385	Ile	Asn	Ser	His	Val 390	Asp	Val	Arg	Ala	Asp 395	His	Gly	Asn	Leu	Ile 400
Arg	Asn	Ile	Ala	Ala 405	Lys	Gly	Thr	Val	Leu 410	Leu	Lys	Asn	Thr	Gly 415	Ser
Leu	Pro	Leu	Asn 420	Lys	Pro	Lys	Phe	Val 425	Ala	Val	Ile	Gly	Glu 430	Asp	Ala
Gly	Pro	Ser 435	Pro	Asn	Gly	Pro	Asn 440	Gly	Cys	Ser	Asp	Arg 445	Gly	Cys	Asn
Glu	Gly 450	Thr	Leu	Ala	Met	Gly 455	Trp	Gly	Ser	Gly	Thr 460	Ala	Asn	Tyr	Pro
Tyr 465	Leu	Val	Ser	Pro	Asp 470	Ala	Ala	Leu	Gln	Ala 475	Arg	Ala	Ile	Gln	Asp 480
Gly	Thr	Arg	Tyr	Glu 485	Ser	Val	Leu	Ser	Asn 490	Tyr	Ala	Glu	Glu	Asn 495	Thr
Lys	Ala	Leu	Val 500	Ser	Gln	Ala	Asn	Ala 505	Thr	Ala	Ile	Val	Phe 510	Val	Asn
Ala	Asp	Ser 515	Gly	Glu	Gly	Tyr	Ile 520	Asn	Val	Asp	Gly	Asn 525	Glu	Gly	Asp
Arg	Lys 530	Asn	Leu	Thr	Leu	Trp 535	Asn	Asn	Gly	Asp	Thr 540	Leu	Val	Lys	Asn
Val 545	Ser	Ser	Trp	СЛа	Ser 550	Asn	Thr	Ile	Val	Val 555	Ile	His	Ser	Val	Gly 560

											_	COII	CIII	ueu	
Pro	Val	Leu	Leu	Thr 565	Asp	Trp	Tyr	Asp	Asn 570	Pro	Asn	Ile	Thr	Ala 575	Ile
Leu	Trp	Ala	Gly 580	Leu	Pro	Gly	Gln	Glu 585	Ser	Gly	Asn	Ser	Ile 590	Thr	Asp
Val	Leu	Tyr 595	Gly	ГЛа	Val	Asn	Pro 600	Ala	Ala	Arg	Ser	Pro 605	Phe	Thr	Trp
Gly	Lys 610	Thr	Arg	Glu	Ser	Tyr 615	Gly	Ala	Asp	Val	Leu 620	Tyr	Lys	Pro	Asn
Asn 625	Gly	Asn	Trp	Ala	Pro 630	Gln	Gln	Asp	Phe	Thr 635	Glu	Gly	Val	Phe	Ile 640
Asp	Tyr	Arg	Tyr	Phe 645	Asp	Lys	Val	Asp	Asp 650	Asp	Ser	Val	Ile	Tyr 655	Glu
Phe	Gly	His	Gly 660	Leu	Ser	Tyr	Thr	Thr 665	Phe	Glu	Tyr	Ser	Asn 670	Ile	Arg
Val	Val	Lys 675	Ser	Asn	Val	Ser	Glu 680	Tyr	Arg	Pro	Thr	Thr 685	Gly	Thr	Thr
Ile	Gln 690	Ala	Pro	Thr	Phe	Gly 695	Asn	Phe	Ser	Thr	Asp 700	Leu	Glu	Asp	Tyr
Leu 705	Phe	Pro	Lys	Asp	Glu 710	Phe	Pro	Tyr	Ile	Pro 715	Gln	Tyr	Ile	Tyr	Pro 720
Tyr	Leu	Asn	Thr	Thr 725	Asp	Pro	Arg	Arg	Ala 730	Ser	Gly	Asp	Pro	His 735	Tyr
Gly	Gln	Thr	Ala 740	Glu	Glu	Phe	Leu	Pro 745	Pro	His	Ala	Thr	Asp 750	Asp	Asp
Pro	Gln	Pro 755	Leu	Leu	Arg	Ser	Ser 760	Gly	Gly	Asn	Ser	Pro 765	Gly	Gly	Asn
Arg	Gln 770	Leu	Tyr	Asp	Ile	Val 775	Tyr	Thr	Ile	Thr	Ala 780	Asp	Ile	Thr	Asn
Thr 785	Gly	Ser	Val	Val	Gly 790	Glu	Glu	Val	Pro	Gln 795	Leu	Tyr	Val	Ser	Leu 800
Gly	Gly	Pro	Glu	Asp 805	Pro	Lys	Val	Gln	Leu 810	Arg	Asp	Phe	Asp	Arg 815	Met
Arg	Ile	Glu	Pro 820	Gly	Glu	Thr	Arg	Gln 825	Phe	Thr	Gly	Arg	Leu 830	Thr	Arg
Arg	Asp	Leu 835	Ser	Asn	Trp	Asp	Val 840	Thr	Val	Gln	Asp	Trp 845	Val	Ile	Ser
Arg	Tyr 850	Pro	Lys	Thr	Ala	Tyr 855	Val	Gly	Arg	Ser	Ser 860	Arg	Lys	Leu	Asp
Leu 865	ГЛа	Ile	Glu	Leu	Pro 870										
<213 <213 <213 <220	0 > SI 1 > LI 2 > T 3 > OI 0 > FI 3 > O	ENGTI YPE : RGAN: EATUI	H: 85 PRT ISM: RE:	51 Art:			-		20122	nent:	ides				
						. ~yı		1	- ~ ± y 1	- or c		•			
< 400	D> SI	±QUE1	NCE:	123											
Ile 1	Glu	Ser	Arg	Lys 5	Val	His	Gln	Lys	Pro 10	Leu	Ala	Arg	Ser	Glu 15	Pro
Phe	Tyr	Pro	Ser 20	Pro	Trp	Met	Asn	Pro 25	Asn	Ala	Ile	Gly	Trp 30	Ala	Glu

Ala	Tyr	Ala 35	Gln	Ala	Lys	Ser	Phe 40	Val	Ser	Gln	Met	Thr 45	Leu	Leu	Glu
Lys	Val 50	Asn	Leu	Thr	Thr	Gly 55	Val	Gly	Trp	Gly	Glu 60	Glu	Gln	Сув	Val
Gly 65	Asn	Val	Gly	Ala	Ile 70	Pro	Arg	Leu	Gly	Leu 75	Arg	Ser	Leu	Сув	Met 80
His	Asp	Ser	Pro	Leu 85	Gly	Val	Arg	Gly	Thr 90	Asp	Tyr	Asn	Ser	Ala 95	Phe
Pro	Ser	Gly	Gln 100	Thr	Val	Ala	Ala	Thr 105	Trp	Asp	Arg	Gly	Leu 110	Met	Tyr
Arg	Arg	Gly 115	Tyr	Ala	Met	Gly	Gln 120	Glu	Ala	Lys	Gly	Lys 125	Gly	Ile	Asn
Val	Leu 130	Leu	Gly	Pro	Val	Ala 135	Gly	Pro	Leu	Gly	Arg 140	Met	Pro	Glu	Gly
Gly 145	Arg	Asn	Trp	Glu	Gly 150	Phe	Ala	Pro	Asp	Pro 155	Val	Leu	Thr	Gly	Ile 160
Gly	Met	Ser	Glu	Thr 165	Ile	Lys	Gly	Ile	Gln 170	Asp	Ala	Gly	Val	Ile 175	Ala
Cys	Ala	Lys	His 180	Phe	Ile	Gly	Asn	Glu 185	Gln	Glu	His	Phe	Arg 190	Gln	Val
Pro	Glu	Ala 195	Gln	Gly	Tyr	Gly	Tyr 200	Asn	Ile	Ser	Glu	Thr 205	Leu	Ser	Ser
Asn	Ile 210	Asp	Asp	rys	Thr	Met 215	His	Glu	Leu	Tyr	Leu 220	Trp	Pro	Phe	Ala
Asp 225	Ala	Val	Arg	Ala	Gly 230	Val	Gly	Ser	Val	Met 235	CÀa	Ser	Tyr	Asn	Gln 240
Gly	Asn	Asn	Ser	Tyr 245	Ala	Cys	Gln	Asn	Ser 250	Lys	Leu	Leu	Asn	Asp 255	Leu
Leu	Lys	Asn	Glu 260	Leu	Gly	Phe	Gln	Gly 265	Phe	Val	Met	Ser	Asp 270	Trp	Trp
Ala	Gln	His 275	Thr	Gly	Ala	Ala	Ser 280	Ala	Val	Ala	Gly	Leu 285	Asp	Met	Ser
Met	Pro 290	Gly	Asp	Thr	Met	Val 295	Asn	Thr	Gly	Val	Ser 300	Phe	Trp	Gly	Ala
Asn 305	Leu	Thr	Leu	Ala	Val 310	Leu	Asn	Gly	Thr	Val 315	Pro	Ala	Tyr	Arg	Leu 320
Asp	Asp	Met	Сув	Met 325	Arg	Ile	Met	Ala	Ala 330	Leu	Phe	Lys	Val	Thr 335	Lys
Thr	Thr	Asp	Leu 340	Glu	Pro	Ile	Asn	Phe 345	Ser	Phe	Trp	Thr	Arg 350	Asp	Thr
Tyr	Gly	Pro 355	Ile	His	Trp	Ala	Ala 360	Lys	Gln	Gly	Tyr	Gln 365	Glu	Ile	Asn
Ser	His 370	Val	Asp	Val	Arg	Ala 375	Asp	His	Gly	Asn	Leu 380	Ile	Arg	Asn	Ile
Ala 385	Ala	Lys	Gly	Thr	Val 390	Leu	Leu	Lys	Asn	Thr 395	Gly	Ser	Leu	Pro	Leu 400
Asn	Lys	Pro	Lys	Phe 405	Val	Ala	Val	Ile	Gly 410	Glu	Asp	Ala	Gly	Pro 415	Ser
Pro	Asn	Gly	Pro 420	Asn	Gly	CÀa	Ser	Asp 425	Arg	Gly	CÀa	Asn	Glu 430	Gly	Thr
Leu	Ala	Met		Trp	Gly	Ser	Gly	Thr	Ala	Asn	Tyr	Pro	Tyr	Leu	Val

		435					440					445			
Ser	Pro 450	Asp	Ala	Ala	Leu	Gln 455	Ala	Arg	Ala	Ile	Gln 460	Asp	Gly	Thr	Arg
Tyr 465	Glu	Ser	Val	Leu	Ser 470	Asn	Tyr	Ala	Glu	Glu 475	Asn	Thr	Lys	Ala	Leu 480
Val	Ser	Gln	Ala	Asn 485	Ala	Thr	Ala	Ile	Val 490	Phe	Val	Asn	Ala	Asp 495	Ser
Gly	Glu	Gly	Tyr 500	Ile	Asn	Val	Asp	Gly 505	Asn	Glu	Gly	Asp	Arg 510	Lys	Asn
Leu	Thr	Leu 515	Trp	Asn	Asn	Gly	Asp 520	Thr	Leu	Val	Lys	Asn 525	Val	Ser	Ser
Trp	Cys 530	Ser	Asn	Thr	Ile	Val 535	Val	Ile	His	Ser	Val 540	Gly	Pro	Val	Leu
Leu 545	Thr	Asp	Trp	Tyr	Asp 550	Asn	Pro	Asn	Ile	Thr 555	Ala	Ile	Leu	Trp	Ala 560
Gly	Leu	Pro	Gly	Gln 565	Glu	Ser	Gly	Asn	Ser 570	Ile	Thr	Asp	Val	Leu 575	Tyr
Gly	Lys	Val	Asn 580	Pro	Ala	Ala	Arg	Ser 585	Pro	Phe	Thr	Trp	Gly 590	Lys	Thr
Arg	Glu	Ser 595	Tyr	Gly	Ala	Asp	Val 600	Leu	Tyr	Lys	Pro	Asn 605	Asn	Gly	Asn
Trp	Ala 610	Pro	Gln	Gln	Asp	Phe 615	Thr	Glu	Gly	Val	Phe 620	Ile	Asp	Tyr	Arg
Tyr 625	Phe	Asp	Lys	Val	Asp 630	Asp	Asp	Ser	Val	Ile 635	Tyr	Glu	Phe	Gly	His 640
Gly	Leu	Ser	Tyr	Thr 645	Thr	Phe	Glu	Tyr	Ser 650	Asn	Ile	Arg	Val	Val 655	Lys
Ser	Asn	Val	Ser 660	Glu	Tyr	Arg	Pro	Thr 665	Thr	Gly	Thr	Thr	Ile 670	Gln	Ala
Pro	Thr	Phe 675	Gly	Asn	Phe	Ser	Thr 680	Asp	Leu	Glu	Asp	Tyr 685	Leu	Phe	Pro
ГÀа	Asp 690	Glu	Phe	Pro	Tyr	Ile 695	Pro	Gln	Tyr	Ile	Tyr 700	Pro	Tyr	Leu	Asn
Thr 705	Thr	Asp	Pro	Arg	Arg 710	Ala	Ser	Gly	Asp	Pro 715	His	Tyr	Gly	Gln	Thr 720
Ala	Glu	Glu	Phe	Leu 725	Pro	Pro	His	Ala	Thr 730	Asp	Asp	Asp	Pro	Gln 735	Pro
Leu	Leu	Arg	Ser 740	Ser	Gly	Gly	Asn	Ser 745	Pro	Gly	Gly	Asn	Arg 750	Gln	Leu
Tyr	Asp	Ile 755	Val	Tyr	Thr	Ile	Thr 760	Ala	Asp	Ile	Thr	Asn 765	Thr	Gly	Ser
Val	Val 770	Gly	Glu	Glu	Val	Pro 775	Gln	Leu	Tyr	Val	Ser 780	Leu	Gly	Gly	Pro
Glu 785	Asp	Pro	ГЛа	Val	Gln 790	Leu	Arg	Asp	Phe	Asp 795	Arg	Met	Arg	Ile	Glu 800
Pro	Gly	Glu	Thr	Arg 805	Gln	Phe	Thr	Gly	Arg 810	Leu	Thr	Arg	Arg	Asp 815	Leu
Ser	Asn	Trp	Asp 820	Val	Thr	Val	Gln	Asp 825	Trp	Val	Ile	Ser	Arg 830	Tyr	Pro
Lys	Thr	Ala 835	Tyr	Val	Gly	Arg	Ser 840	Ser	Arg	Lys	Leu	Asp 845	Leu	Lys	Ile

Glu Leu Pro 850 <210> SEQ ID NO 124 <211> LENGTH: 1368 <212> TYPE: DNA <213 > ORGANISM: Talaromyces emersonii <400> SEQUENCE: 124 atgettegae gggetettet tetateetet teegeeatee ttgetgteaa ggeacageag gccggcacgg cgacggcaga gaaccacccg ccctgacat ggcaggaatg caccgccct 180 qqqaqctqca ccacccaqaa cqqqqcqqtc qttcttqatq cqaactqqcq ttqqqtqcac gatgtgaacg gatacaccaa ctgctacacg ggcaatacct gggaccccac gtactgccct 240 gacgacgaaa cctgcgccca gaactgtgcg ctggacggcg cggattacga gggcacctac 300 ggcgtgactt cgtcgggcag ctccttgaaa ctcaatttcg tcaccgggtc gaacgtcgga 360 teceqtetet acctqctqca qqacqacteq acctateaqa tetteaaqet tetqaaceqe 420 qaqttcaqct ttqacqtcqa tqtctccaat cttccqtqcq qattqaacqq cqctctqtac 480 tttgtcgcca tggacgccga cggcggcgtg tccaagtacc cgaacaacaa ggctggtgcc 540 600 aaqtacqqaa ccqqqtattq cqactcccaa tqcccacqqq acctcaaqtt catcqacqqc gaggccaacg tcgagggctg gcagccgtct tcgaacaacg ccaacaccgg aattggcgac 660 cacggeteet getgtgegga gatggatgte tgggaageaa acagcatete caatgeggte 720 actocgcaco ogtgogacao gocaggocag acgatgtgot otggagatga otgoggtggo 780 acatacteta acgategeta egegggaace tgegateetg aeggetgtga etteaaceet 840 taccgcatgg gcaacacttc tttctacggg cctggcaaga tcatcgatac caccaagccc 900 ttcactgtcg tgacgcagtt cctcactgat gatggtacgg atactggaac tctcagcgag 960 atcaagcgct tctacatcca gaacagcaac gtcattccgc agcccaactc ggacatcagt 1020 ggcgtgaccg gcaactcgat cacgacggag ttctgcactg ctcagaagca ggcctttggc 1080 gacacggacg acttetetea geaeggtgge etggeeaaga tgggagegge eatgeageag 1140 ggtatggtcc tggtgatgag tttgtgggac gactacgccg cgcagatgct gtggttggat 1200 tecgaetace egaeggatge ggaececaeg acceetggta ttgecegtgg aacgtgteeg acggactcgg gcgtcccatc ggatgtcgag tcgcagagcc ccaactccta cgtgacctac 1320 togaacatta agtttggtoc gatcaactog accttcacog ottogtga 1368 <210> SEQ ID NO 125 <211> LENGTH: 455 <212> TYPE: PRT <213 > ORGANISM: Talaromyces emersonii <400> SEQUENCE: 125 Met Leu Arg Arg Ala Leu Leu Ser Ser Ser Ala Ile Leu Ala Val 10 Lys Ala Gln Gln Ala Gly Thr Ala Thr Ala Glu Asn His Pro Pro Leu Thr Trp Gln Glu Cys Thr Ala Pro Gly Ser Cys Thr Thr Gln Asn Gly 35 40

Ala Val Val Leu Asp Ala Asn Trp Arg Trp Val His Asp Val Asn Gly

	50					55					60				
Tyr 65	Thr	Asn	Сув	Tyr	Thr 70	Gly	Asn	Thr	Trp	Asp 75	Pro	Thr	Tyr	Сув	Pro 80
Asp	Asp	Glu	Thr	Сув 85	Ala	Gln	Asn	Cys	Ala 90	Leu	Asp	Gly	Ala	Asp 95	Tyr
Glu	Gly	Thr	Tyr 100	Gly	Val	Thr	Ser	Ser 105	Gly	Ser	Ser	Leu	Lys 110	Leu	Asn
Phe	Val	Thr 115	Gly	Ser	Asn	Val	Gly 120	Ser	Arg	Leu	Tyr	Leu 125	Leu	Gln	Asp
Asp	Ser 130	Thr	Tyr	Gln	Ile	Phe 135	Lys	Leu	Leu	Asn	Arg 140	Glu	Phe	Ser	Phe
Asp 145	Val	Asp	Val	Ser	Asn 150	Leu	Pro	Cys	Gly	Leu 155	Asn	Gly	Ala	Leu	Tyr 160
Phe	Val	Ala	Met	Asp 165	Ala	Asp	Gly	Gly	Val 170	Ser	Lys	Tyr	Pro	Asn 175	Asn
Lys	Ala	Gly	Ala 180	Lys	Tyr	Gly	Thr	Gly 185	Tyr	Cys	Asp	Ser	Gln 190	CÀa	Pro
Arg	Asp	Leu 195	Lys	Phe	Ile	Asp	Gly 200	Glu	Ala	Asn	Val	Glu 205	Gly	Trp	Gln
Pro	Ser 210	Ser	Asn	Asn	Ala	Asn 215	Thr	Gly	Ile	Gly	Asp 220	His	Gly	Ser	Cya
Cys 225	Ala	Glu	Met	Asp	Val 230	Trp	Glu	Ala	Asn	Ser 235	Ile	Ser	Asn	Ala	Val 240
Thr	Pro	His	Pro	Сув 245	Asp	Thr	Pro	Gly	Gln 250	Thr	Met	Сув	Ser	Gly 255	Asp
Asp	Сув	Gly	Gly 260	Thr	Tyr	Ser	Asn	Asp 265	Arg	Tyr	Ala	Gly	Thr 270	Сув	Asp
Pro	Asp	Gly 275	CÀa	Asp	Phe	Asn	Pro 280	Tyr	Arg	Met	Gly	Asn 285	Thr	Ser	Phe
Tyr	Gly 290	Pro	Gly	Lys	Ile	Ile 295	Asp	Thr	Thr	ГÀа	Pro 300	Phe	Thr	Val	Val
Thr 305	Gln	Phe	Leu	Thr	Asp 310	Asp	Gly	Thr	Asp	Thr 315	Gly	Thr	Leu	Ser	Glu 320
Ile	Lys	Arg	Phe	Tyr 325	Ile	Gln	Asn	Ser	Asn 330	Val	Ile	Pro	Gln	Pro 335	Asn
Ser	Asp	Ile	Ser 340	Gly	Val	Thr	Gly	Asn 345	Ser	Ile	Thr	Thr	Glu 350	Phe	Cys
Thr	Ala	Gln 355	ГЛа	Gln	Ala	Phe	Gly 360	Asp	Thr	Asp	Asp	Phe 365	Ser	Gln	His
Gly	Gly 370	Leu	Ala	ГÀа	Met	Gly 375	Ala	Ala	Met	Gln	Gln 380	Gly	Met	Val	Leu
Val 385	Met	Ser	Leu	Trp	390 Asp	Asp	Tyr	Ala	Ala	Gln 395	Met	Leu	Trp	Leu	Asp 400
Ser	Asp	Tyr	Pro	Thr 405	Asp	Ala	Asp	Pro	Thr 410	Thr	Pro	Gly	Ile	Ala 415	Arg
Gly	Thr	СЛа	Pro 420	Thr	Asp	Ser	Gly	Val 425	Pro	Ser	Asp	Val	Glu 430	Ser	Gln
Ser	Pro	Asn 435	Ser	Tyr	Val	Thr	Tyr 440	Ser	Asn	Ile	Lys	Phe 445	Gly	Pro	Ile
Asn	Ser 450	Thr	Phe	Thr	Ala	Ser 455									

<211	L> LI	EQ II ENGTH TPE:	H: 43												
<213	3 > OF	RGANI	SM:		aromy	/ces	emei	soni	li						
< 400)> SI	EQUEN	ICE :	126											
Gln 1	Gln	Ala	Gly	Thr 5	Ala	Thr	Ala	Glu	Asn 10	His	Pro	Pro	Leu	Thr 15	Trp
Gln	Glu	Сув	Thr 20	Ala	Pro	Gly	Ser	Сув 25	Thr	Thr	Gln	Asn	Gly 30	Ala	Val
Val	Leu	Asp 35	Ala	Asn	Trp	Arg	Trp 40	Val	His	Asp	Val	Asn 45	Gly	Tyr	Thr
Asn	Cys 50	Tyr	Thr	Gly	Asn	Thr 55	Trp	Asp	Pro	Thr	Tyr 60	Cys	Pro	Asp	Asp
Glu 65	Thr	Cys	Ala	Gln	Asn 70	CÀa	Ala	Leu	Asp	Gly 75	Ala	Asp	Tyr	Glu	Gly 80
Thr	Tyr	Gly	Val	Thr 85	Ser	Ser	Gly	Ser	Ser 90	Leu	Lys	Leu	Asn	Phe 95	Val
Thr	Gly	Ser	Asn 100	Val	Gly	Ser	Arg	Leu 105	Tyr	Leu	Leu	Gln	Asp 110	Asp	Ser
Thr	Tyr	Gln 115	Ile	Phe	Lys	Leu	Leu 120	Asn	Arg	Glu	Phe	Ser 125	Phe	Asp	Val
Asp	Val 130	Ser	Asn	Leu	Pro	Cys 135	Gly	Leu	Asn	Gly	Ala 140	Leu	Tyr	Phe	Val
Ala 145	Met	Asp	Ala	Asp	Gly 150	Gly	Val	Ser	Lys	Tyr 155	Pro	Asn	Asn	Lys	Ala 160
Gly	Ala	Lys	Tyr	Gly 165	Thr	Gly	Tyr	Cys	Asp 170	Ser	Gln	Cys	Pro	Arg 175	Asp
Leu	Lys	Phe	Ile 180	Aap	Gly	Glu	Ala	Asn 185	Val	Glu	Gly	Trp	Gln 190	Pro	Ser
Ser	Asn	Asn 195	Ala	Asn	Thr	Gly	Ile 200	Gly	Asp	His	Gly	Ser 205	Cys	Сув	Ala
Glu	Met 210	Asp	Val	Trp	Glu	Ala 215	Asn	Ser	Ile	Ser	Asn 220	Ala	Val	Thr	Pro
His 225	Pro	Сув	Asp	Thr	Pro 230	Gly	Gln	Thr	Met	Сув 235	Ser	Gly	Asp	Asp	Cys 240
Gly	Gly	Thr	Tyr	Ser 245	Asn	Asp	Arg	Tyr	Ala 250	Gly	Thr	Cys	Asp	Pro 255	Asp
Gly	Cys	Asp	Phe 260	Asn	Pro	Tyr	Arg	Met 265	Gly	Asn	Thr	Ser	Phe 270	Tyr	Gly
Pro	Gly	Lys 275	Ile	Ile	Asp	Thr	Thr 280	Lys	Pro	Phe	Thr	Val 285	Val	Thr	Gln
Phe	Leu 290	Thr	Asp	Asp	Gly	Thr 295	Asp	Thr	Gly	Thr	Leu 300	Ser	Glu	Ile	Lys
Arg 305	Phe	Tyr	Ile	Gln	Asn 310	Ser	Asn	Val	Ile	Pro 315	Gln	Pro	Asn	Ser	Asp 320
Ile	Ser	Gly	Val	Thr 325	Gly	Asn	Ser	Ile	Thr 330	Thr	Glu	Phe	Cys	Thr 335	Ala
Gln	Lys	Gln	Ala 340	Phe	Gly	Asp	Thr	Asp 345	Asp	Phe	Ser	Gln	His 350	Gly	Gly
Leu	Ala	Lys	Met	Gly	Ala	Ala	Met	Gln	Gln	Gly	Met	Val	Leu	Val	Met

-continued	
355 360 365	
Ser Leu Trp Asp Asp Tyr Ala Ala Gln Met Leu Trp Leu Asp Ser Asp 370 375 380	
Tyr Pro Thr Asp Ala Asp Pro Thr Thr Pro Gly Ile Ala Arg Gly Thr 385 390 395 400	
Cys Pro Thr Asp Ser Gly Val Pro Ser Asp Val Glu Ser Gln Ser Pro 405 410 415	
Asn Ser Tyr Val Thr Tyr Ser Asn Ile Lys Phe Gly Pro Ile Asn Ser 420 425 430	
Thr Phe Thr Ala Ser 435	
<210> SEQ ID NO 127 <211> LENGTH: 1581 <212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila	
<400> SEQUENCE: 127	
atgtacgcca agttcgcgac cctcgccgcc cttgtggctg gcgccgctgc tcagaacgcc	60
tgcactctga ccgctgagaa ccacccctcg ctgacgtggt ccaagtgcac gtctggcggc	120
agetgeacea gegtecaggg ttecateace ategacgeca aetggeggtg gaeteacegg	180
accgatagcg ccaccaactg ctacgagggc aacaagtggg atacttcgta ctgcagcgat	240
ggteettett gegeeteeaa gtgetgeate gaeggegetg actaetegag eacetatgge	300
atcaccacga gcggtaactc cctgaacctc aagttcgtca ccaagggcca gtactcgacc	360
aacatcggct cgcgtaccta cctgatggag agcgacacca agtaccagat gttccagctc	420
ctcggcaacg agttcacctt cgatgtcgac gtctccaacc tcggctgcgg cctcaatggc	480
gccctctact tcgtgtccat ggatgccgat ggtggcatgt ccaagtactc gggcaacaag	540
geaggtgeea agtaeggtae eggetaetgt gatteteagt geeceegega eeteaagtte	600
atcaacggcg aggccaacgt agagaactgg cagagctcga ccaacgatgc caacgccggc	660
acgggcaagt acggcagctg ctgctccgag atggacgtct gggaggccaa caacatggcc	720
geogeettea etecceacce ttgcaccgtg ateggecagt egegetgega gggegaeteg	780
tgcggcggta cctacagcac cgaccgctat gccggcatct gcgaccccga cggatgcgac	840
ttcaactcgt accgccaggg caacaagacc ttctacggca agggcatgac ggtcgacacg	900
accaagaaga tcacggtcgt cacccagttc ctcaagaact cggccggcga gctctccgag	960
atcaagcggt tctacgtcca gaacggcaag gtcatcccca actccgagtc caccatcccg	1020
ggcgtcgagg gcaactccat cacccaggac tggtgcgacc gccagaaggc cgccttcggc	1080
gacgtgaccg acttccagga caagggcggc atggtccaga tgggcaaggc cctcgcgggg	1140
cccatggtcc tcgtcatgtc catctgggac gaccacgccg tcaacatgct ctggctcgac	1200
tccacctggc ccatcgacgg cgccggcaag ccgggcgccg agcgcggtgc ctgccccacc	1260
acctegggeg teccegetga ggtegaggee gaggeeecca actecaaegt catettetee	1320
aacateeget teggeeceat eggeteeace gteteeggee tgeeegaegg eggeagegge	1380
aaccccaacc cgcccgtcag ctcgtccacc ccggtcccct cctcgtccac cacatcctcc	1440
ggttcctccg gcccgactgg cggcacgggt gtcgctaagc actatgagca atgcggagga	1500

ategggttca etggeectae eeagtgegag ageecetaea ettgeaceaa getgaatgae 1560

1581

tggt	tggtactcgc agtgcctgta a														
<211	<210> SEQ ID NO 128 <211> LENGTH: 526 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila														
<213	3 > OF	RGANI	SM:	_	eliop	htho	ora t	herm	nophi	lla					
< 400)> SE	EQUEN	ICE:	128											
Met 1	Tyr	Ala	ГЛЗ	Phe 5	Ala	Thr	Leu	Ala	Ala 10	Leu	Val	Ala	Gly	Ala 15	Ala
Ala	Gln	Asn	Ala 20	CAa	Thr	Leu	Thr	Ala 25	Glu	Asn	His	Pro	Ser 30	Leu	Thr
Tyr	Ser	Lув 35	Cys	Thr	Ser	Gly	Gly 40	Ser	Cys	Thr	Ser	Val 45	Gln	Gly	Ser
Ile	Thr 50	Ile	Asp	Ala	Asn	Trp 55	Arg	Trp	Thr	His	Arg 60	Thr	Asp	Ser	Ala
Thr 65	Asn	Cys	Tyr	Glu	Gly 70	Asn	Lys	Trp	Asp	Thr 75	Ser	Trp	Cys	Ser	Asp 80
Gly	Pro	Ser	Cys	Ala 85	Ser	Lys	Cys	Cys	Ile 90	Asp	Gly	Ala	Asp	Tyr 95	Ser
Ser	Thr	Tyr	Gly 100	Ile	Thr	Thr	Ser	Gly 105	Asn	Ser	Leu	Asn	Leu 110	Lys	Phe
Val	Thr	Lys 115	Gly	Gln	Tyr	Ser	Thr 120	Asn	Ile	Gly	Ser	Arg 125	Thr	Tyr	Leu
Met	Glu 130	Ser	Asp	Thr	Lys	Tyr 135	Gln	Met	Phe	Gln	Leu 140	Leu	Gly	Asn	Glu
Phe 145	Thr	Phe	Asp	Val	Asp 150	Val	Ser	Asn	Leu	Gly 155	Cys	Gly	Leu	Asn	Gly 160
Ala	Leu	Tyr	Phe	Val 165	Ser	Met	Asp	Ala	Asp 170	Gly	Gly	Met	Ser	Lys 175	Tyr
Ser	Gly	Asn	Lys 180	Ala	Gly	Ala	Lys	Tyr 185	Gly	Thr	Gly	Tyr	Cys 190	Asp	Ser
Gln	Сув	Pro 195	Arg	Asp	Leu	Lys	Phe 200	Ile	Asn	Gly	Glu	Ala 205	Asn	Val	Glu
Asn	Trp 210	Gln	Ser	Ser	Thr	Asn 215	Asp	Ala	Asn	Ala	Gly 220	Thr	Gly	Lys	Tyr
Gly 225	Ser	Cys	Cys	Ser	Glu 230	Met	Asp	Val	Trp	Glu 235	Ala	Asn	Asn	Met	Ala 240
Ala	Ala	Phe	Thr	Pro 245	His	Pro	Cys	Thr	Val 250	Ile	Gly	Gln	Ser	Arg 255	Cya
Glu	Gly	Asp	Ser 260	Cys	Gly	Gly	Thr	Tyr 265	Ser	Thr	Asp	Arg	Tyr 270	Ala	Gly
Ile	Cys	Asp 275	Pro	Asp	Gly	Cys	Asp 280	Phe	Asn	Ser	Tyr	Arg 285	Gln	Gly	Asn
Lys	Thr 290	Phe	Tyr	Gly	Lys	Gly 295	Met	Thr	Val	Asp	Thr 300	Thr	Lys	Lys	Ile
Thr 305	Val	Val	Thr	Gln	Phe 310	Leu	Lys	Asn	Ser	Ala 315	Gly	Glu	Leu	Ser	Glu 320
Ile	Lys	Arg	Phe	Tyr 325	Val	Gln	Asn	Gly	1330	Val	Ile	Pro	Asn	Ser 335	Glu
Ser	Thr	Ile	Pro 340	Gly	Val	Glu	Gly	Asn 345	Ser	Ile	Thr	Gln	Asp 350	Trp	Cys

Gly Gly Met Val Gln Met Gly Lys Ala Leu Ala Gly Pro Met Val Leu Val Met Ser Ile Trp Asp Asp His Ala Val Asn Met Leu Trp Leu Asp Ser Thr Trp Pro Ile Asp Gly Ala Gly Lys Pro Gly Ala Glu Arg Gly Ala Cys Pro Thr Thr Ser Gly Val Pro Ala Glu Val Glu Ala Glu Ala Pro Asn Ser Asn Val Ile Phe Ser Asn Ile Arg Phe Gly Pro Ile Gly Ser Thr Val Ser Gly Leu Pro Asp Gly Gly Ser Gly Asn Pro Asn Pro 455 Pro Val Ser Ser Ser Thr Pro Val Pro Ser Ser Ser Thr Thr Ser Ser 470 Gly Ser Ser Gly Pro Thr Gly Gly Thr Gly Val Ala Lys His Tyr Glu Gln Cys Gly Gly Ile Gly Phe Thr Gly Pro Thr Gln Cys Glu Ser Pro 505 Tyr Thr Cys Thr Lys Leu Asn Asp Trp Tyr Ser Gln Cys Leu <210> SEQ ID NO 129 <211> LENGTH: 509 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 129 Gln Asn Ala Cys Thr Leu Thr Ala Glu Asn His Pro Ser Leu Thr Tyr Ser Lys Cys Thr Ser Gly Gly Ser Cys Thr Ser Val Gln Gly Ser Ile Thr Ile Asp Ala Asn Trp Arg Trp Thr His Arg Thr Asp Ser Ala Thr Asn Cys Tyr Glu Gly Asn Lys Trp Asp Thr Ser Trp Cys Ser Asp Gly Pro Ser Cys Ala Ser Lys Cys Cys Ile Asp Gly Ala Asp Tyr Ser Ser 65 70 75 80 Thr Tyr Gly Ile Thr Thr Ser Gly Asn Ser Leu Asn Leu Lys Phe Val Thr Lys Gly Gln Tyr Ser Thr Asn Ile Gly Ser Arg Thr Tyr Leu Met Glu Ser Asp Thr Lys Tyr Gln Met Phe Gln Leu Leu Gly Asn Glu Phe 120 Thr Phe Asp Val Asp Val Ser Asn Leu Gly Cys Gly Leu Asn Gly Ala 135 Leu Tyr Phe Val Ser Met Asp Ala Asp Gly Gly Met Ser Lys Tyr Ser Gly Asn Lys Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp Ser Gln Cys Pro Arg Asp Leu Lys Phe Ile Asn Gly Glu Ala Asn Val Glu Asn

Asp Arg Gln Lys Ala Ala Phe Gly Asp Val Thr Asp Phe Gln Asp Lys

60

										COII	CIII	uea	
	180					185					190		
Trp Gln S	Ser Ser 195	Thr	Asn	Asp	Ala 200	Asn	Ala	Gly	Thr	Gly 205	Lys	Tyr	Gly
Ser Cys C	Cys Ser	Glu	Met	Asp 215	Val	Trp	Glu	Ala	Asn 220	Asn	Met	Ala	Ala
Ala Phe T 225	Thr Pro	His	Pro 230	Cys	Thr	Val	Ile	Gly 235	Gln	Ser	Arg	Cys	Glu 240
Gly Asp S	Ser Cys	Gly 245	Gly	Thr	Tyr	Ser	Thr 250	Asp	Arg	Tyr	Ala	Gly 255	Ile
Cys Asp I	Pro Asp 260		Cys	Asp	Phe	Asn 265	Ser	Tyr	Arg	Gln	Gly 270	Asn	Lys
Thr Phe T	Tyr Gly 275	Lys	Gly	Met	Thr 280	Val	Asp	Thr	Thr	Lys 285	Lys	Ile	Thr
Val Val 1 290	Thr Gln	Phe	Leu	Lуs 295	Asn	Ser	Ala	Gly	Glu 300	Leu	Ser	Glu	Ile
Lys Arg E 305	Phe Tyr	Val	Gln 310	Asn	Gly	Lys	Val	Ile 315	Pro	Asn	Ser	Glu	Ser 320
Thr Ile F	Pro Gly	Val 325	Glu	Gly	Asn	Ser	Ile 330	Thr	Gln	Asp	Trp	Cys 335	Asp
Arg Gln I	Lys Ala 340	Ala	Phe	Gly	Asp	Val 345	Thr	Asp	Phe	Gln	Asp 350	Lys	Gly
Gly Met V	/al Gln 355	Met	Gly	Lys	Ala 360	Leu	Ala	Gly	Pro	Met 365	Val	Leu	Val
Met Ser I 370	lle Trp	Asp	Asp	His 375	Ala	Val	Asn	Met	Leu 380	Trp	Leu	Asp	Ser
Thr Trp E 385	Pro Ile		Gly 390	Ala	Gly	Lys	Pro	Gly 395	Ala	Glu	Arg	Gly	Ala 400
Cys Pro 1	Thr Thr	Ser 405	Gly	Val	Pro	Ala	Glu 410	Val	Glu	Ala	Glu	Ala 415	Pro
Asn Ser A	Asn Val 420		Phe	Ser	Asn	Ile 425	Arg	Phe	Gly	Pro	Ile 430	Gly	Ser
Thr Val S	Ser Gly 135	Leu	Pro	Asp	Gly 440	Gly	Ser	Gly	Asn	Pro 445	Asn	Pro	Pro
Val Ser S 450	Ser Ser	Thr	Pro	Val 455	Pro	Ser	Ser	Ser	Thr 460	Thr	Ser	Ser	Gly
Ser Ser 0 465	Gly Pro		Gly 470		Thr	Gly		Ala 475		His	Tyr	Glu	Gln 480
Cys Gly C	Gly Ile	Gly 485	Phe	Thr	Gly	Pro	Thr 490	Gln	Сув	Glu	Ser	Pro 495	Tyr
Thr Cys T	Thr Lys 500	Leu	Asn	Asp	Trp	Tyr 505	Ser	Gln	CAa	Leu			
<210> SEÇ <211> LEN <212> TYF <213> ORC <220> FEF <223> OTH	NGTH: 1! PE: DNA GANISM: ATURE:	581 Arti					oolyr	nucle	eotic	de.			
<400> SEQ	QUENCE :	130											
atgtacgcc	ca agtt	cgcga	ic co	ctcg	ccgc	ctt	gtgg	gctg	gcg	ccgct	gc t	caga	aacgcc

tgcactctga ccgctgagaa ccacccctcg ctgacgtggt ccaagtgcac gtctggcggc

agetgeacea gegteeage	g ttccatcacc atc	gacgcca actggcggtg	gactcaccgg	180
accgatagcg ccaccaact	g ctacgagggc aaca	aagtggg atacttcgtg	gtgcagcgat	240
ggtccttctt gcgcctcca	a gtgctgcatc gac	ggcgctg actactcgag	cacctatggc	300
atcaccacga gcggtaact	c cctgaacctc aag	ttcgtca ccaagggcca	gtactcgacc	360
aacategget egegtaeet	a cctgatggag agc	gacacca agtaccagat	gttccagctc	420
ctcggcaacg agttcacct	t cgatgtcgac gtc	tccaacc tcggctgcgg	cctcaatggc	480
gccctctact tcgtgtcca	t ggatgccgat ggt	ggcatgt ccaagtactc	gggcaacaag	540
gcaggtgcca agtacggta	c cggctactgt gat	teteagt geeeeegega	cctcaagttc	600
atcaacggcg aggccaacg	t agagaactgg caga	agctcga ccaacgatgc	caacgccggc	660
acgggcaagt acggcagct	g ctgctccgag atg	gacgtct gggaggccaa	caacatggcc	720
gccgccttca ctccccac	c ttgcaccgtg atc	ggccagt cgcgctgcga	gggcgactcg	780
tgcggcggta cctacagca	c cgaccgctat gcc	ggcatct gcgaccccga	cggatgcgac	840
ttcaactcgt accgccag	g caacaagacc ttc	tacggca agggcatgac	ggtcgacacg	900
accaagaaga tcacggtc	t cacccagtte ete	aagaact cggccggcga	gctctccgag	960
atcaagcggt tctacgtco	a gaacggcaag gtc	atcccca actccgagtc	caccateceg	1020
ggcgtcgagg gcaactcca	t cacccaggac tgg	tgcgacc gccagaaggc	cgccttcggc	1080
gacgtgaccg acttccagg	a caagggcggc atg	gtccaga tgggcaaggc	cctcgcgggg	1140
cccatggtcc tcgtcatgt	c catctgggac gac	cacgccg tcaacatgct	ctggctcgac	1200
tccacctggc ccatcgac	g cgccggcaag ccg	ggcgccg agcgcggtgc	ctgccccacc	1260
acctcgggcg tccccgct	a ggtcgaggcc gagg	gccccca actccaacgt	catcttctcc	1320
aacatccgct tcggcccca	t cggctccacc gtc	teeggee tgeeegaegg	cggcagcggc	1380
aaccccaacc cgcccgtca	g ctcgtccacc ccg	gteceet eetegteeae	cacatcctcc	1440
ggttcctccg gcccgacto	g cggcacgggt gtcg	gctaagc actatgagca	atgcggagga	1500
atcgggttca ctggcccta	c ccagtgcgag agc	ccctaca cttgcaccaa	gctgaatgac	1560
tggtactcgc agtgcctgt	a a			1581
<pre><210> SEQ ID NO 131 <211> LENGTH: 526 <212> TYPE: PRT <213> ORGANISM: Art: <220> FEATURE: <223> OTHER INFORMA! <400> SEQUENCE: 131</pre>	-	olypeptides.		

Trp Ser Lys Cys Thr Ser Gly Gly Ser Cys Thr Ser Val Gln Gly Ser 35 40

Ile Thr Ile Asp Ala Asn Trp Arg Trp Thr His Arg Thr Asp Ser Ala 50 $\,$

Thr Asn Cys Tyr Glu Gly Asn Lys Trp Asp Thr Ser Trp Cys Ser Asp 65 70 75 80

Gly Pro Ser Cys Ala Ser Lys Cys Cys Ile Asp Gly Ala Asp Tyr Ser

				85					90					95	
Ser	Thr	Tyr	Gly 100	Ile	Thr	Thr	Ser	Gly 105	Asn	Ser	Leu	Asn	Leu 110	Lys	Phe
Val	Thr	Lys 115	Gly	Gln	Tyr	Ser	Thr 120	Asn	Ile	Gly	Ser	Arg 125	Thr	Tyr	Leu
Met	Glu 130	Ser	Asp	Thr	Lys	Tyr 135	Gln	Met	Phe	Gln	Leu 140	Leu	Gly	Asn	Glu
Phe 145	Thr	Phe	Asp	Val	Asp 150	Val	Ser	Asn	Leu	Gly 155	Сув	Gly	Leu	Asn	Gly 160
Ala	Leu	Tyr	Phe	Val 165	Ser	Met	Asp	Ala	Asp 170	Gly	Gly	Met	Ser	Lys 175	Tyr
Ser	Gly	Asn	Lys 180	Ala	Gly	Ala	Lys	Tyr 185	Gly	Thr	Gly	Tyr	Cys 190	Asp	Ser
Gln	Cys	Pro 195	Arg	Asp	Leu	Lys	Phe 200	Ile	Asn	Gly	Glu	Ala 205	Asn	Val	Glu
Asn	Trp 210	Gln	Ser	Ser	Thr	Asn 215	Asp	Ala	Asn	Ala	Gly 220	Thr	Gly	ГÀа	Tyr
Gly 225	Ser	Cys	CÀa	Ser	Glu 230	Met	Asp	Val	Trp	Glu 235	Ala	Asn	Asn	Met	Ala 240
Ala	Ala	Phe	Thr	Pro 245	His	Pro	Cys	Thr	Val 250	Ile	Gly	Gln	Ser	Arg 255	Cha
Glu	Gly	Asp	Ser 260	CAa	Gly	Gly	Thr	Tyr 265	Ser	Thr	Asp	Arg	Tyr 270	Ala	Gly
Ile	Cya	Asp 275	Pro	Asp	Gly	CÀa	Asp 280	Phe	Asn	Ser	Tyr	Arg 285	Gln	Gly	Asn
ГÀЗ	Thr 290	Phe	Tyr	Gly	Lys	Gly 295	Met	Thr	Val	Asp	Thr 300	Thr	Lys	Lys	Ile
Thr 305	Val	Val	Thr	Gln	Phe 310	Leu	Lys	Asn	Ser	Ala 315	Gly	Glu	Leu	Ser	Glu 320
Ile	Lys	Arg	Phe	Tyr 325	Val	Gln	Asn	Gly	330	Val	Ile	Pro	Asn	Ser 335	Glu
Ser	Thr	Ile	Pro 340	Gly	Val	Glu	Gly	Asn 345	Ser	Ile	Thr	Gln	Asp 350	Trp	CÀa
Asp	Arg	Gln 355	ГÀз	Ala	Ala	Phe	Gly 360	Asp	Val	Thr	Asp	Phe 365	Gln	Asp	ГÀз
Gly	Gly 370	Met	Val	Gln	Met	Gly 375	Lys	Ala	Leu	Ala	Gly 380	Pro	Met	Val	Leu
Val 385	Met	Ser	Ile	Trp	390	Asp	His	Ala	Val	Asn 395	Met	Leu	Trp	Leu	Asp 400
Ser	Thr	Trp	Pro	Ile 405	Asp	Gly	Ala	Gly	Lys 410	Pro	Gly	Ala	Glu	Arg 415	Gly
Ala	Cha	Pro	Thr 420	Thr	Ser	Gly	Val	Pro 425	Ala	Glu	Val	Glu	Ala 430	Glu	Ala
Pro	Asn	Ser 435	Asn	Val	Ile	Phe	Ser 440	Asn	Ile	Arg	Phe	Gly 445	Pro	Ile	Gly
Ser	Thr 450	Val	Ser	Gly	Leu	Pro 455	Asp	Gly	Gly	Ser	Gly 460	Asn	Pro	Asn	Pro
Pro 465	Val	Ser	Ser	Ser	Thr 470	Pro	Val	Pro	Ser	Ser 475	Ser	Thr	Thr	Ser	Ser 480
Gly	Ser	Ser	Gly	Pro 485	Thr	Gly	Gly	Thr	Gly 490	Val	Ala	ГÀз	His	Tyr 495	Glu

Gln	Cys	Gly	Gly 500	Ile	Gly	Phe	Thr	Gly 505	Pro	Thr	Gln	Cys	Glu 510	Ser	Pro
Tyr	Thr	Cys 515	Thr	Lys	Leu	Asn	Asp 520	Trp	Tyr	Ser	Gln	Сув 525	Leu		
<211 <212 <213 <220	L> LE 2> TY 3> OF 0> FE	EQ II ENGTH PE: RGANI EATUF	I: 50 PRT SM: RE:	09 Arti			_		oolyr	oept i	ides .				
< 400)> SE	EQUEN	ICE :	132											
Gln 1	Asn	Ala	CAa	Thr 5	Leu	Thr	Ala	Glu	Asn 10	His	Pro	Ser	Leu	Thr 15	Trp
Ser	Lys	Cys	Thr 20	Ser	Gly	Gly	Ser	Сув 25	Thr	Ser	Val	Gln	Gly 30	Ser	Ile
Thr	Ile	Asp 35	Ala	Asn	Trp	Arg	Trp 40	Thr	His	Arg	Thr	Asp 45	Ser	Ala	Thr
Asn	Сув 50	Tyr	Glu	Gly	Asn	Lув 55	Trp	Asp	Thr	Ser	Trp 60	Cys	Ser	Aap	Gly
Pro 65	Ser	Cys	Ala	Ser	Lys 70	Cys	Cys	Ile	Asp	Gly 75	Ala	Asp	Tyr	Ser	Ser 80
Thr	Tyr	Gly	Ile	Thr 85	Thr	Ser	Gly	Asn	Ser 90	Leu	Asn	Leu	Lys	Phe 95	Val
Thr	Lys	Gly	Gln 100	Tyr	Ser	Thr	Asn	Ile 105	Gly	Ser	Arg	Thr	Tyr 110	Leu	Met
Glu	Ser	Asp 115	Thr	Lys	Tyr	Gln	Met 120	Phe	Gln	Leu	Leu	Gly 125	Asn	Glu	Phe
Thr	Phe 130	Asp	Val	Asp	Val	Ser 135	Asn	Leu	Gly	Cys	Gly 140	Leu	Asn	Gly	Ala
Leu 145	Tyr	Phe	Val	Ser	Met 150	Asp	Ala	Asp	Gly	Gly 155	Met	Ser	Lys	Tyr	Ser 160
Gly	Asn	Lys	Ala	Gly 165	Ala	Lys	Tyr	Gly	Thr 170	Gly	Tyr	Cys	Asp	Ser 175	Gln
CAa	Pro	Arg	Asp 180	Leu	Lys	Phe	Ile	Asn 185	Gly	Glu	Ala	Asn	Val 190	Glu	Asn
Trp	Gln	Ser 195	Ser	Thr	Asn	Asp	Ala 200	Asn	Ala	Gly	Thr	Gly 205	Lys	Tyr	Gly
Ser	Cys 210	Cys	Ser	Glu	Met	Asp 215	Val	Trp	Glu	Ala	Asn 220	Asn	Met	Ala	Ala
Ala 225	Phe	Thr	Pro	His	Pro 230	Cys	Thr	Val	Ile	Gly 235	Gln	Ser	Arg	Cys	Glu 240
Gly	Asp	Ser	Cys	Gly 245	Gly	Thr	Tyr	Ser	Thr 250	Asp	Arg	Tyr	Ala	Gly 255	Ile
CAa	Asp	Pro	Asp 260	Gly	Cys	Asp	Phe	Asn 265	Ser	Tyr	Arg	Gln	Gly 270	Asn	ГÀа
Thr	Phe	Tyr 275	Gly	Lys	Gly	Met	Thr 280	Val	Asp	Thr	Thr	Lys 285	Lys	Ile	Thr
Val	Val 290	Thr	Gln	Phe	Leu	Lys 295	Asn	Ser	Ala	Gly	Glu 300	Leu	Ser	Glu	Ile
Lys 305	Arg	Phe	Tyr	Val	Gln 310	Asn	Gly	Lys	Val	Ile 315	Pro	Asn	Ser	Glu	Ser 320

Thr Ile Pro Gly Val Glu Gly Asn Ser Ile Thr Gln Asp Trp Cys Asp 325 330 335	
Arg Gln Lys Ala Ala Phe Gly Asp Val Thr Asp Phe Gln Asp Lys Gly 340 345 350	
Gly Met Val Gln Met Gly Lys Ala Leu Ala Gly Pro Met Val Leu Val 355 360 365	
Met Ser Ile Trp Asp Asp His Ala Val Asn Met Leu Trp Leu Asp Ser 370 375 380	
Thr Trp Pro Ile Asp Gly Ala Gly Lys Pro Gly Ala Glu Arg Gly Ala 385 390 395 400	
Cys Pro Thr Thr Ser Gly Val Pro Ala Glu Val Glu Ala Glu Ala Pro 405 410 415	
Asn Ser Asn Val Ile Phe Ser Asn Ile Arg Phe Gly Pro Ile Gly Ser 420 425 430	
Thr Val Ser Gly Leu Pro Asp Gly Gly Ser Gly Asn Pro Asn Pro Pro 435 440 445	
Val Ser Ser Ser Thr Pro Val Pro Ser Ser Ser Thr Thr Ser Ser Gly 450 460	
Ser Ser Gly Pro Thr Gly Gly Thr Gly Val Ala Lys His Tyr Glu Gln 465 470 475 480	
Cys Gly Gly Ile Gly Phe Thr Gly Pro Thr Gln Cys Glu Ser Pro Tyr 485 490 495	
Thr Cys Thr Lys Leu Asn Asp Trp Tyr Ser Gln Cys Leu 500 505	
<210> SEQ ID NO 133	
<211> LENGTH: 1581 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide. <400> SEQUENCE: 133	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide.	60
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide. <400> SEQUENCE: 133	60 120
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide. <400> SEQUENCE: 133 atgtacgcca agttcgcgac cctcgccgcc cttgtggctg gcgccgctgc tcagaacgcc</pre>	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide. <400> SEQUENCE: 133 atgtacgcca agttcgcgac cctcgccgcc cttgtggctg gcgccgctgc tcagaacgcc tgcactctga acgctgagaa ccacccctcg ctgacgtggt ccaagtgcac gtctggcggc</pre>	120
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide. <400> SEQUENCE: 133 atgtacgcca agttcgcgac cetegeegee ettgtggetg gegeegetge teagaacgee tgcactctga acgetgagaa ceacceeteg etgacgtggt ecaagtgcac gtetggegge agetgcacca gegtccaggg ttccatcacc ategacgcca actggeggtg gactcaccgg</pre>	120 180
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide. <400> SEQUENCE: 133 atgtacgcca agttcgcgac cetcgccgcc ettgtggetg gegeegetge teagaacgce tgcactctga acgetgagaa ceaccecteg etgacgtggt ecaagtgcac gtctggegge agetgcacca gegtccaggg ttccatcacc atcgacgcca actggeggtg gactcaccgg accgatagcg ceaccaactg etacgagggc aacaagtggg atacttcgta etgcagcgat</pre>	120 180 240
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide. <400> SEQUENCE: 133 atgtacgcca agttcgcgac cctcgccgcc cttgtggctg gcgccgctgc tcagaacgcc tgcactctga acgctgagaa ccacccctcg ctgacgtggt ccaagtgcac gtctggcggc agctgcacca gcgtccaggg ttccatcacc atcgacgcca actggcggtg gactcaccgg accgatagcg ccaccaactg ctacgagggc aacaagtggg atacttcgta ctgcagcgat ggtccttctt gcgcctccaa gtgctgcatc gacggcgctg actactcgag cacctatggc</pre>	120 180 240 300
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide. <400> SEQUENCE: 133 atgtacgcca agttcgcgac cetcgccgcc ettgtggetg gegeegetge teagaacgcc tgcactctga acgetgagaa ceaccecteg etgacgtggt ecaagtgcac gtetggegge agetgcacca gegtccaggg ttccatcacc atcgacgcca actggcggtg gactcaccgg accgatagcg ceaccaactg etacgaggge aacaagtggg atacttegta etgacgcgat ggtcettett gegeetccaa gtgetgcate gacggcgetg actactcgag cacetatgge atcaccacga geggtaacte ectgaacete aagttegtea ecaagggcca gtactcgace</pre>	120 180 240 300 360
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide. <400> SEQUENCE: 133 atgtacgcca agttcgcgac cctcgccgcc cttgtggctg gcgccgctgc tcagaacgcc tgcactctga acgctgagaa ccacccctcg ctgacgtggt ccaagtgcac gtctggcggc agctgcacca gcgtccaggg ttccatcacc atcgacgcca actggcggtg gactcaccgg accgatagcg ccaccaactg ctacgagggc aacaagtggg atacttcgta ctgcagcgat ggtccttctt gcgcctccaa gtgctgcatc gacggcgtg actactcgag cacctatggc atcaccacga gcggtaactc cctgaacctc aagttcgtca ccaagggcca gtactcgacc aacatcggct cgcgtaccta cctgatggag agcgacacca agtaccagat gttccagctc</pre>	120 180 240 300 360 420
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide. <400> SEQUENCE: 133 atgtacgcca agttcgcgac cctcgccgcc cttgtggctg gcgccgctgc tcagaacgcc tgcactctga acgctgagaa ccacccctcg ctgacgtggt ccaagtgcac gtctggcggc agctgcacca gcgtccaggg ttccatcacc atcgacgcca actggcggtg gactcaccgg accgatagcg ccaccaactg ctacgagggc aacaagtggg atacttcgta ctgcagcgat ggtccttctt gcgcctccaa gtgctgcatc gacggcgctg actactcgag cacctatggc atcaccacga gcggtaactc cctgaacctc aagttcgtca ccaagggcca gtactcgacc aacatcggct cgcgtaccta cctgatggag agcgacacca agtaccagat gttccagctc ctcggcaacg agttcacctt cgatgtcgac gtctccaacc tcggctgcgg cctcaatggc</pre>	120 180 240 300 360 420 480
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide. <400> SEQUENCE: 133 atgtacgcca agttcgcgac cetcgccgcc ettgtggetg gegecgetge teagaacgce tgcactctga acgetgagaa ceaccecteg etgacgtggt ecaagtgcac gtetggegge agetgcacca gegtecaggg ttecateace ategacgcca actggeggtg gacteacegg accgatageg ceaccaactg etacgaggge aacaagtggg atacttegta etgeagegat ggteettett gegeetecaa gtgetgcate gacggegetg actactegag cacetatgge atcaccacga geggtaacte eetgaacete aagttegtea ecaagggeca gtactegace aacategget egegtaceta eetgatggag agegacacca agtaccagat gttecagete cteggcaacg agtteacett egatgtegac gtetecaace teggetgegg eetcaatgge geeetetact tegtgtecat ggatgecgat ggtggcatgt ecaagtacte gggeaacaag geeetetact tegtgtecat ggatgecgat ggtggcatgt ecaagtacte gggeaacaag</pre>	120 180 240 300 360 420 480
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide. <400> SEQUENCE: 133 atgtacgcca agttcgcgac cetcgccgcc ettgtggctg gegeegetge teagaacgce tgcactctga acgctgagaa ecaccectcg etgacgtggt ecaagtgcac gtctggegge agctgcacca gegtecaggg ttccatcacc atcgacgcca actggeggtg gactcacegg accgatageg ecaccaactg etacgaggge aacaagtggg atacttegta etgcagegat ggteettett gegeetecaa gtgetgcate gacggegetg actactegag eacetatgge atcaccacga geggtaacte ectgaacete aagttegtea ecaagggeca gtactegace aacategget egegtaceta ectgatggag agcgacacca agtaccagat gttecagete eteggeaacg agttcacett egatgtegac gtetecaace teggetgegg ecteaatgge gecetetact tegtgtecat ggatgecgat ggtggcatgt ecaagtacte gggcaacaag geaggtgeca agtacggtac eggetactgt gatteteagt gececegega ecteaagtte</pre>	120 180 240 300 360 420 480 540
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide. <400> SEQUENCE: 133 atgtacgcca agttcgcgac cctcgccgcc cttgtggctg gcgccgctgc tcagaacgcc tgcactctga acgctgagaa ccacccctcg ctgacgtgt ccaagtgcac gtctggcggc agctgcacca gcgtccaggg ttccatcacc atcgacgca actggcggtg gactcaccgg accgatagcg ccaccaactg ctacgagggc aacaagtggg atacttcgta ctgcagcgat ggtccttctt gcgcctccaa gtgctgcatc gacggcgctg actactcgag cacctatggc atcaccacga gcggtaactc cctgaacctc aagttcgtca ccaagggcca gtactcgacc aacatcggct cgcgtaccta cctgatggag agcgacacca agtaccagat gttccagctc ctcggcaacg agttcacctt cgatgtcgac gtctccaacc tcggctgcgg cctcaatggc gccctctact tcgtgtccat ggatgccgat ggtggcatgt ccaagtactc gggcaacaag gcaggtgcca agtacggtac cggctactgt gattctcagt gcccccgcga cctcaagttc atcaacggcg aggccaacgt agagaactgg cagagctcga ccaacgatgc caacgccggc</pre>	120 180 240 300 360 420 480 540 600
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide. <400> SEQUENCE: 133 atgtacgcca agttcgcgac cetcgccgcc cttgtggctg gcgccgctgc tcagaacgcc tgcactctga acgctgagaa ccacccctcg ctgacgtggt ccaagtgcac gtctggcggc agctgcacca gcgtccaggg ttccatcacc atcgacgcca actggcggtg gactcaccgg accgatagcg ccaccaactg ctacgagggc aacaagtggg atacttcgta ctgcagcgat ggtccttctt gcgcctccaa gtgctgcatc gacggcgtg actactcgag cacctatggc atcaccacga gcggtaactc cctgaacctc aagttcgtca ccaagggcca gtactcgacc aacatcggct cgcgtaccta cctgatggag agcgacacca agtaccagat gttccagctc ctcggcaacg agttcacctt cgatgtcgac gtctccaacc tcggctgcgg cctcaatggc gcctctact tcgtgtccat ggatgccgat ggtggcatgt ccaagtactc gggcaacaag gcaggtgcca agtacggtac cggctactgt gattctcagt gcccccgcga cctcaagtc atcaacggcg aggccaacgt agagaactgg cagagctcga ccaacgatgc caacgccggc acgggcaagt acggcaacgt ctgctccgag atggacgtc gggaggccaa caacatggcc</pre>	120 180 240 300 360 420 480 540 600 660 720

accaagaaga tcacggtcgt cacccagttc ctcaagaact cggccggcga gctctccgag	960
atcaagcggt tctacgtcca gaacggcaag gtcatcccca actccgagtc caccatcccg	1020
ggcgtcgagg gcaactccat cacccaggag tactgcgacc gccagaaggc cgccttcggc	1080
gacgtgaccg acttccagga caagggcggc atggtccaga tgggcaaggc cctcgcgggg	1140
cccatggtcc tcgtcatgtc catctgggac gaccacgccg acaacatgct ctggctcgac	1200
tccacctggc ccatcgacgg cgccggcaag ccgggcgccg agcgcggtgc ctgccccacc	1260
acctegggeg teccegetga ggtegaggee gaggeeecca actecaaegt catettetee	1320
aacateeget teggeeceat eggeteeace gteteeggee tgeeegaegg eggeagegge	1380
aaccccaacc cgcccgtcag ctcgtccacc ccggtcccct cctcgtccac cacatcctcc	1440
ggttcctccg gcccgactgg cggcacgggt gtcgctaagc actatgagca atgcggagga	1500
atogggttca otggoodtac ocagtgogag agooddtaca ottgoaccaa gotgaatgac	1560
tggtactcgc agtgcctgta a	1581
<210> SEQ ID NO 134 <211> LENGTH: 526 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptides. <400> SEQUENCE: 134	
Met Tyr Ala Lys Phe Ala Thr Leu Ala Ala Leu Val Ala Gly Ala Ala 1 5 10 15	
Ala Gln Asn Ala Cys Thr Leu Asn Ala Glu Asn His Pro Ser Leu Thr	
Trp Ser Lys Cys Thr Ser Gly Gly Ser Cys Thr Ser Val Gln Gly Ser 35 40 45	
Ile Thr Ile Asp Ala Asn Trp Arg Trp Thr His Arg Thr Asp Ser Ala 50 55 60	
Thr Asn Cys Tyr Glu Gly Asn Lys Trp Asp Thr Ser Tyr Cys Ser Asp 65 70 75 80	
Gly Pro Ser Cys Ala Ser Lys Cys Cys Ile Asp Gly Ala Asp Tyr Ser 85 90 95	
Ser Thr Tyr Gly Ile Thr Thr Ser Gly Asn Ser Leu Asn Leu Lys Phe 100 105 110	
Val Thr Lys Gly Gln Tyr Ser Thr Asn Ile Gly Ser Arg Thr Tyr Leu 115 120 125	
Met Glu Ser Asp Thr Lys Tyr Gln Met Phe Gln Leu Leu Gly Asn Glu 130 135 140	
Phe Thr Phe Asp Val Asp Val Ser Asn Leu Gly Cys Gly Leu Asn Gly 145 150 155 160	
Ala Leu Tyr Phe Val Ser Met Asp Ala Asp Gly Gly Met Ser Lys Tyr 165 170 175	
Ser Gly Asn Lys Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp Ser 180 185 190	
Gln Cys Pro Arg Asp Leu Lys Phe Ile Asn Gly Glu Ala Asn Val Glu 195 200 205	

Asn Trp Gln Ser Ser Thr Asn Asp Ala Asn Ala Gly Thr Gly Lys Tyr

210 215 220

Gly 225	Ser	Cys	CÀa	Ser	Glu 230	Met	Asp	Val	Trp	Glu 235	Ala	Asn	Asn	Met	Ala 240
Ala	Ala	Phe	Thr	Pro 245	His	Pro	Cys	Thr	Val 250	Ile	Gly	Gln	Ser	Arg 255	Cha
Glu	Gly	Asp	Ser 260	Cys	Gly	Gly	Thr	Tyr 265	Ser	Thr	Asp	Arg	Tyr 270	Ala	Gly
Ile	Cys	Asp 275	Pro	Asp	Gly	CAa	Asp 280	Phe	Asn	Ser	Tyr	Arg 285	Gln	Gly	Asn
Lys	Thr 290	Phe	Tyr	Gly	Lys	Gly 295	Met	Thr	Val	Asp	Thr 300	Thr	Lys	Lys	Ile
Thr 305	Val	Val	Thr	Gln	Phe 310	Leu	Lys	Asn	Ser	Ala 315	Gly	Glu	Leu	Ser	Glu 320
Ile	Lys	Arg	Phe	Tyr 325	Val	Gln	Asn	Gly	330 Lys	Val	Ile	Pro	Asn	Ser 335	Glu
Ser	Thr	Ile	Pro 340	Gly	Val	Glu	Gly	Asn 345	Ser	Ile	Thr	Gln	Glu 350	Tyr	Cys
Asp	Arg	Gln 355	Lys	Ala	Ala	Phe	Gly 360	Asp	Val	Thr	Asp	Phe 365	Gln	Asp	Lys
Gly	Gly 370	Met	Val	Gln	Met	Gly 375	Lys	Ala	Leu	Ala	Gly 380	Pro	Met	Val	Leu
Val 385	Met	Ser	Ile	Trp	390	Asp	His	Ala	Asp	Asn 395	Met	Leu	Trp	Leu	Asp 400
Ser	Thr	Trp	Pro	Ile 405	Asp	Gly	Ala	Gly	Lys 410	Pro	Gly	Ala	Glu	Arg 415	Gly
Ala	Cys	Pro	Thr 420	Thr	Ser	Gly	Val	Pro 425	Ala	Glu	Val	Glu	Ala 430	Glu	Ala
Pro	Asn	Ser 435	Asn	Val	Ile	Phe	Ser 440	Asn	Ile	Arg	Phe	Gly 445	Pro	Ile	Gly
Ser	Thr 450	Val	Ser	Gly	Leu	Pro 455	Asp	Gly	Gly	Ser	Gly 460	Asn	Pro	Asn	Pro
Pro 465	Val	Ser	Ser	Ser	Thr 470	Pro	Val	Pro	Ser	Ser 475	Ser	Thr	Thr	Ser	Ser 480
Gly	Ser	Ser	Gly	Pro 485	Thr	Gly	Gly	Thr	Gly 490	Val	Ala	Lys	His	Tyr 495	Glu
Gln	Cys	Gly	Gly 500	Ile	Gly	Phe	Thr	Gly 505	Pro	Thr	Gln	Cys	Glu 510	Ser	Pro
Tyr	Thr	Сув 515	Thr	Lys	Leu	Asn	Asp 520	Trp	Tyr	Ser	Gln	Сув 525	Leu		
<21	0> SE L> LE 2> TY	ENGTI	I: 50												
	3 > OF			Art:	lfic:	ial S	Seque	ence							
)> FI 3> O			ORMA:	rion	: Syr	nthet	ic p	ooly	ept:	ides				
)> SI					4		_		-	·				
					T	7	7.7 -	G7	7	TT# -	D	C	T e	ml	Was
Gln 1	Asn	Ala	cys	Thr 5	ьeu	Asn	Ala	GIU	Asn 10	HIS	Pro	ser	ьeu	Thr 15	Trp
Ser	ГЛа	СЛа	Thr 20	Ser	Gly	Gly	Ser	Сув 25	Thr	Ser	Val	Gln	Gly 30	Ser	Ile
Thr	Ile	Asp 35	Ala	Asn	Trp	Arg	Trp 40	Thr	His	Arg	Thr	Asp 45	Ser	Ala	Thr

Asn	Сув 50	Tyr	Glu	Gly	Asn	Lys 55	Trp	Asp	Thr	Ser	Tyr 60	Сув	Ser	Aap	Gly
Pro 65	Ser	Сув	Ala	Ser	Lys 70	Сув	Сув	Ile	Asp	Gly 75	Ala	Asp	Tyr	Ser	Ser 80
Thr	Tyr	Gly	Ile	Thr 85	Thr	Ser	Gly	Asn	Ser 90	Leu	Asn	Leu	Lys	Phe 95	Val
Thr	Lys	Gly	Gln 100	Tyr	Ser	Thr	Asn	Ile 105	Gly	Ser	Arg	Thr	Tyr 110	Leu	Met
Glu	Ser	Asp 115	Thr	Lys	Tyr	Gln	Met 120	Phe	Gln	Leu	Leu	Gly 125	Asn	Glu	Phe
Thr	Phe 130	Asp	Val	Asp	Val	Ser 135	Asn	Leu	Gly	Càa	Gly 140	Leu	Asn	Gly	Ala
Leu 145	Tyr	Phe	Val	Ser	Met 150	Asp	Ala	Asp	Gly	Gly 155	Met	Ser	TÀa	Tyr	Ser 160
Gly	Asn	Lys	Ala	Gly 165	Ala	Lys	Tyr	Gly	Thr 170	Gly	Tyr	Cys	Asp	Ser 175	Gln
CÀa	Pro	Arg	Asp 180	Leu	Lys	Phe	Ile	Asn 185	Gly	Glu	Ala	Asn	Val 190	Glu	Asn
Trp	Gln	Ser 195	Ser	Thr	Asn	Asp	Ala 200	Asn	Ala	Gly	Thr	Gly 205	Lys	Tyr	Gly
Ser	Cys 210	Cys	Ser	Glu	Met	Asp 215	Val	Trp	Glu	Ala	Asn 220	Asn	Met	Ala	Ala
Ala 225	Phe	Thr	Pro	His	Pro 230	Сув	Thr	Val	Ile	Gly 235	Gln	Ser	Arg	Сув	Glu 240
Gly	Asp	Ser	Càa	Gly 245	Gly	Thr	Tyr	Ser	Thr 250	Asp	Arg	Tyr	Ala	Gly 255	Ile
Cys	Asp	Pro	Asp 260	Gly	Cys	Asp	Phe	Asn 265	Ser	Tyr	Arg	Gln	Gly 270	Asn	Lys
Thr	Phe	Tyr 275	Gly	Lys	Gly	Met	Thr 280	Val	Asp	Thr	Thr	Lys 285	Lys	Ile	Thr
Val	Val 290	Thr	Gln	Phe	Leu	Lys 295	Asn	Ser	Ala	Gly	Glu 300	Leu	Ser	Glu	Ile
305 Tàs	Arg	Phe	Tyr	Val	Gln 310	Asn	Gly	ГЛа	Val	Ile 315	Pro	Asn	Ser	Glu	Ser 320
Thr	Ile	Pro	Gly	Val 325	Glu	Gly	Asn	Ser	Ile 330	Thr	Gln	Glu	Tyr	Сув 335	Asp
Arg	Gln	ГЛа	Ala 340	Ala	Phe	Gly	Asp	Val 345	Thr	Asp	Phe	Gln	Asp 350	Lys	Gly
Gly	Met	Val 355	Gln	Met	Gly	Lys	Ala 360	Leu	Ala	Gly	Pro	Met 365	Val	Leu	Val
Met	Ser 370	Ile	Trp	Asp	Asp	His 375	Ala	Asp	Asn	Met	Leu 380	Trp	Leu	Asp	Ser
Thr 385	Trp	Pro	Ile	Asp	Gly 390	Ala	Gly	Lys	Pro	Gly 395	Ala	Glu	Arg	Gly	Ala 400
Cys	Pro	Thr	Thr	Ser 405	Gly	Val	Pro	Ala	Glu 410	Val	Glu	Ala	Glu	Ala 415	Pro
Asn	Ser	Asn	Val 420	Ile	Phe	Ser	Asn	Ile 425	Arg	Phe	Gly	Pro	Ile 430	Gly	Ser
Thr	Val	Ser 435	Gly	Leu	Pro	Asp	Gly 440	Gly	Ser	Gly	Asn	Pro 445	Asn	Pro	Pro

Val Ser Ser Ser Thr Pro Val Pro Ser Ser Ser Thr Thr Ser Ser Gly 450 455 460	
Ser Ser Gly Pro Thr Gly Gly Thr Gly Val Ala Lys His Tyr Glu Gln 465 470 475 480	
Cys Gly Gly Ile Gly Phe Thr Gly Pro Thr Gln Cys Glu Ser Pro Tyr	
485 490 495	
Thr Cys Thr Lys Leu Asn Asp Trp Tyr Ser Gln Cys Leu 500 505	
<210> SEQ ID NO 136 <211> LENGTH: 1449 <212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila	
<400> SEQUENCE: 136	
atggccaaga agetttteat cacegeegeg ettgeggetg eegtgttgge ggeeeeegte	60
attgaggage gecagaactg eggegetgtg tggaeteaat geggeggtaa egggtggeaa	120
ggteccaeat getgegeete gggetegaee tgegttgege agaacgagtg gtaeteteag	180
tgcctgccca acagccaggt gacgagttcc accactccgt cgtcgacttc cacctcgcag	240
cgcagcacca gcacctccag cagcaccacc aggagcggca gctcctcctc ctcctccacc	300
acgcccccgc ccgtctccag ccccgtgacc agcattcccg gcggtgcgac ctccacggcg	360
agetactetg geaacccett etegggegte eggetetteg ecaaegaeta etaeaggtee	420
gaggtccaca atctcgccat tcctagcatg actggtactc tggcggccaa ggcttccgcc	480
gtcgccgaag tccctagctt ccagtggctc gaccggaacg tcaccatcga caccctgatg	540
gtccagactc tgtcccaggt ccgggctctc aataaggccg gtgccaatcc tccctatgct	600
gcccaacteg tegtetaega ceteecegae egtgaetgtg eegeegetge gtccaaegge	660
gagttttcga ttgcaaacgg cggcgccgcc aactacagga gctacatcga cgctatccgc	720
aagcacatca ttgagtacte ggacateegg atcateetgg ttategagee egactegatg	780
gccaacatgg tgaccaacat gaacgtggcc aagtgcagca acgccgcgtc gacgtaccac	840
gagttgaccg tgtacgcgct caagcagctg aacctgccca acgtcgccat gtatctcgac	900
geoggecaeg ceggetgget eggetggece gecaacatee ageoegeege egagetgttt	960
geoggeatet acaatgatge eggeaageog getgeegtee geggeetgge cactaaegte	1020
gccaactaca acgcctggag catcgcttcg gccccgtcgt acacgtcgcc taaccctaac	1080
tacgacgaga agcactacat cgaggcette agcccgetet tgaactcgge eggetteece	1140
gcacgettea ttgtegacae tggeegeaae ggeaaacaae etaceggeea acaacagtgg	1200
ggtgactggt gcaatgtcaa gggcaccggc tttggcgtgc gcccgacggc caacacgggc	1260
cacgagetgg tegatgeett tgtetgggte aageeeggeg gegagteega eggeacaage	1320
gacaccageg eegecegeta egactaceae tgeggeetgt eegatgeeet geageetgee	1380
cccgaggctg gacagtggtt ccaggcctac ttcgagcagc tgctcaccaa cgccaacccg	1440
cccttctaa	1449

<210> SEQ ID NO 137 <211> LENGTH: 482 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila

< 400)> SI	OUE	ICE :	137											
					Phe	Ile	Thr	Ala	Ala 10	Leu	Ala	Ala	Ala	Val 15	Leu
Ala	Ala	Pro	Val 20	Ile	Glu	Glu	Arg	Gln 25	Asn	СЛа	Gly	Ala	Val 30	Trp	Thr
Gln	Cys	Gly 35	Gly	Asn	Gly	Trp	Gln 40	Gly	Pro	Thr	CÀa	Суз 45	Ala	Ser	Gly
Ser	Thr 50	Cys	Val	Ala	Gln	Asn 55	Glu	Trp	Tyr	Ser	Gln 60	CÀa	Leu	Pro	Asn
Ser 65	Gln	Val	Thr	Ser	Ser 70	Thr	Thr	Pro	Ser	Ser 75	Thr	Ser	Thr	Ser	Gln 80
Arg	Ser	Thr	Ser	Thr 85	Ser	Ser	Ser	Thr	Thr 90	Arg	Ser	Gly	Ser	Ser 95	Ser
Ser	Ser	Ser	Thr 100	Thr	Pro	Pro	Pro	Val 105	Ser	Ser	Pro	Val	Thr 110	Ser	Ile
Pro	Gly	Gly 115	Ala	Thr	Ser	Thr	Ala 120	Ser	Tyr	Ser	Gly	Asn 125	Pro	Phe	Ser
Gly	Val 130	Arg	Leu	Phe	Ala	Asn 135	Asp	Tyr	Tyr	Arg	Ser 140	Glu	Val	His	Asn
Leu 145	Ala	Ile	Pro	Ser	Met 150	Thr	Gly	Thr	Leu	Ala 155	Ala	ГÀв	Ala	Ser	Ala 160
Val	Ala	Glu	Val	Pro 165	Ser	Phe	Gln	Trp	Leu 170	Asp	Arg	Asn	Val	Thr 175	Ile
Asp	Thr	Leu	Met 180	Val	Gln	Thr	Leu	Ser 185	Gln	Val	Arg	Ala	Leu 190	Asn	Lys
Ala	Gly	Ala 195	Asn	Pro	Pro	Tyr	Ala 200	Ala	Gln	Leu	Val	Val 205	Tyr	Asp	Leu
Pro	Asp 210	Arg	Asp	Сла	Ala	Ala 215	Ala	Ala	Ser	Asn	Gly 220	Glu	Phe	Ser	Ile
Ala 225	Asn	Gly	Gly	Ala	Ala 230	Asn	Tyr	Arg	Ser	Tyr 235	Ile	Asp	Ala	Ile	Arg 240
ГÀа	His	Ile	Ile	Glu 245	Tyr	Ser	Asp	Ile	Arg 250	Ile	Ile	Leu	Val	Ile 255	Glu
Pro	Asp	Ser	Met 260	Ala	Asn	Met	Val	Thr 265	Asn	Met	Asn	Val	Ala 270	Lys	Cys
Ser	Asn	Ala 275	Ala	Ser	Thr	Tyr	His 280	Glu	Leu	Thr	Val	Tyr 285	Ala	Leu	ГÀа
Gln	Leu 290	Asn	Leu	Pro	Asn	Val 295	Ala	Met	Tyr	Leu	300	Ala	Gly	His	Ala
Gly 305	Trp	Leu	Gly	Trp	Pro 310	Ala	Asn	Ile	Gln	Pro 315	Ala	Ala	Glu	Leu	Phe 320
Ala	Gly	Ile	Tyr	Asn 325	Asp	Ala	Gly	Lys	Pro 330	Ala	Ala	Val	Arg	Gly 335	Leu
Ala	Thr	Asn	Val 340	Ala	Asn	Tyr	Asn	Ala 345	Trp	Ser	Ile	Ala	Ser 350	Ala	Pro
Ser	Tyr	Thr 355	Ser	Pro	Asn	Pro	Asn 360	Tyr	Asp	Glu	Lys	His 365	Tyr	Ile	Glu
Ala	Phe 370	Ser	Pro	Leu	Leu	Asn 375	Ser	Ala	Gly	Phe	Pro 380	Ala	Arg	Phe	Ile
Val 385	Asp	Thr	Gly	Arg	Asn 390	Gly	Lys	Gln	Pro	Thr 395	Gly	Gln	Gln	Gln	Trp 400

Gly	Asp	Trp	CAa	Asn 405	Val	Lys	Gly	Thr	Gly 410	Phe	Gly	Val	Arg	Pro 415	Thr
Ala	Asn	Thr	Gly 420	His	Glu	Leu	Val	Asp 425	Ala	Phe	Val	Trp	Val 430	Lys	Pro
Gly	Gly	Glu 435	Ser	Asp	Gly	Thr	Ser 440	Asp	Thr	Ser	Ala	Ala 445	Arg	Tyr	Asp
Tyr	His 450	Cys	Gly	Leu	Ser	Asp 455	Ala	Leu	Gln	Pro	Ala 460	Pro	Glu	Ala	Gly
Gln 465	Trp	Phe	Gln	Ala	Tyr 470	Phe	Glu	Gln	Leu	Leu 475	Thr	Asn	Ala	Asn	Pro 480
Pro	Phe														
<211 <212)> SE L> LE 2> TY 3> OF	NGTH	I: 46 PRT		liop	htho	ora t	herm	nophi	.la					
< 400)> SE	QUEN	ICE :	138											
Ala 1	Pro	Val	Ile	Glu 5	Glu	Arg	Gln	Asn	Сув 10	Gly	Ala	Val	Trp	Thr 15	Gln
CAa	Gly	Gly	Asn 20	Gly	Trp	Gln	Gly	Pro 25	Thr	Cys	CAa	Ala	Ser 30	Gly	Ser
Thr	Cys	Val 35	Ala	Gln	Asn	Glu	Trp 40	Tyr	Ser	Gln	Cys	Leu 45	Pro	Asn	Ser
Gln	Val 50	Thr	Ser	Ser	Thr	Thr 55	Pro	Ser	Ser	Thr	Ser 60	Thr	Ser	Gln	Arg
Ser 65	Thr	Ser	Thr	Ser	Ser 70	Ser	Thr	Thr	Arg	Ser 75	Gly	Ser	Ser	Ser	Ser 80
Ser	Ser	Thr	Thr	Pro 85	Pro	Pro	Val	Ser	Ser 90	Pro	Val	Thr	Ser	Ile 95	Pro
Gly	Gly	Ala	Thr 100	Ser	Thr	Ala	Ser	Tyr 105	Ser	Gly	Asn	Pro	Phe 110	Ser	Gly
Val	Arg	Leu 115	Phe	Ala	Asn	Asp	Tyr 120	Tyr	Arg	Ser	Glu	Val 125	His	Asn	Leu
Ala	Ile 130	Pro	Ser	Met	Thr	Gly 135	Thr	Leu	Ala	Ala	Lys 140	Ala	Ser	Ala	Val
145				Ser	150		_		_	155					160
Thr	Leu	Met	Val	Gln 165	Thr	Leu	Ser	Gln	Val 170	Arg	Ala	Leu	Asn	Lys 175	Ala
Gly	Ala	Asn	Pro 180	Pro	Tyr	Ala	Ala	Gln 185	Leu	Val	Val	Tyr	Asp 190	Leu	Pro
Asp	Arg	Asp 195	Cya	Ala	Ala	Ala	Ala 200	Ser	Asn	Gly	Glu	Phe 205	Ser	Ile	Ala
Asn	Gly 210	Gly	Ala	Ala	Asn	Tyr 215	Arg	Ser	Tyr	Ile	Asp 220	Ala	Ile	Arg	Lys
His 225	Ile	Ile	Glu	Tyr	Ser 230	Asp	Ile	Arg	Ile	Ile 235	Leu	Val	Ile	Glu	Pro 240
Asp	Ser	Met	Ala	Asn 245	Met	Val	Thr	Asn	Met 250	Asn	Val	Ala	Lys	Сув 255	Ser
Asn	Ala	Ala	Ser 260	Thr	Tyr	His	Glu	Leu 265	Thr	Val	Tyr	Ala	Leu 270	Lys	Gln

Leu	Asn	Leu 275	Pro	Asn	Val	Ala	Met 280	Tyr	Leu	Asp	Ala	Gly 285	His	Ala	Gly	
Trp	Leu 290	Gly	Trp	Pro	Ala	Asn 295	Ile	Gln	Pro	Ala	Ala 300	Glu	Leu	Phe	Ala	
Gly 305	Ile	Tyr	Asn	Asp	Ala 310	Gly	Lys	Pro	Ala	Ala 315	Val	Arg	Gly	Leu	Ala 320	
Thr	Asn	Val	Ala	Asn 325	Tyr	Asn	Ala	Trp	Ser 330	Ile	Ala	Ser	Ala	Pro 335	Ser	
Tyr	Thr	Ser	Pro 340	Asn	Pro	Asn	Tyr	Asp 345	Glu	Lys	His	Tyr	Ile 350	Glu	Ala	
Phe	Ser	Pro 355	Leu	Leu	Asn	Ser	Ala 360	Gly	Phe	Pro	Ala	Arg 365	Phe	Ile	Val	
Asp	Thr 370	Gly	Arg	Asn	Gly	Lys 375	Gln	Pro	Thr	Gly	Gln 380	Gln	Gln	Trp	Gly	
Asp 385	Trp	Cys	Asn	Val	390 Lys	Gly	Thr	Gly	Phe	Gly 395	Val	Arg	Pro	Thr	Ala 400	
Asn	Thr	Gly	His	Glu 405	Leu	Val	Asp	Ala	Phe 410	Val	Trp	Val	Lys	Pro 415	Gly	
Gly	Glu	Ser	Asp 420	Gly	Thr	Ser	Asp	Thr 425	Ser	Ala	Ala	Arg	Tyr 430	Asp	Tyr	
His	Cys	Gly 435	Leu	Ser	Asp	Ala	Leu 440	Gln	Pro	Ala	Pro	Glu 445	Ala	Gly	Gln	
Trp	Phe 450	Gln	Ala	Tyr	Phe	Glu 455	Gln	Leu	Leu	Thr	Asn 460	Ala	Asn	Pro	Pro	
Phe 465																
<211 <212 <213 <220)> FE	ENGTH PE: RGANI EATUR	H: 14 DNA ISM: RE:				_		oolyr	nucle	eotic	de.				
<400)> SE	EQUE	ICE :	139												
atgg	gccaa	iga a	agctt	ttca	at ca	accgo	cgcc	g ctt	gegg	gctg	ccgt	gtt	ggc g	ggaad	cccgtc	60
atto	gagga	igc g	gccag	gaact	g cg	ggcgc	etgte	g tgg	gacto	aat	gcgg	gaggt	aa o	gggt	ggcaa	120
ggto	ccac	cat o	getge	egeet	c gg	ggcto	egaco	tgo	gttg	gege	agaa	acgaç	gtg g	gtact	ctcag	180
tgcc	etgeo	cca a	acago	ccago	gt ga	acgaç	gttcc	acc	cacto	ecgt	cgt	cgact	tc	cacct	cgcag	240
cgca	gcac	cca ç	gcaco	ctcca	ag ca	agcac	cacc	agg	gagco	ggca	gcto	cctco	etc o	ctcct	ccacc	300
acgo	ccac	ecc o	eegte	ctcca	ag co	cccgt	gaco	ago	atto	ccg	gcgg	gtgc	gac o	ctcca	ecggcg	360
agct	acto	tg g	gcaac	ccct	t ct	cggg	gagta	c cgg	gctct	tcg	ccaa	acgao	cta d	ctaca	aggtcc	420
gagg	gteca	aca a	atcto	gcca	at to	cctac	gcato	g act	ggta	actc	tgg	egge	caa ç	ggctt	ccgcc	480
gtc	geega	ag t	ccct	agct	t co	agto	ggcto	gad	cgga	acg	tcac	ccato	ga (cacco	tgatg	540
gtco	cgac	ctc t	gtco	eegee	gt co	gggg	etete	aat	aagg	geeg	gtg	ccaat	cc t	ccct	atgct	600
gccc	caact	.cg t	cgto	ctaco	ga co	etece	ecgac	c cgt	gact	gtg	ccgo	ccgct	gc (gtcca	aacggc	660
gagt	tttc	ga t	tgca	aaac	gg cg	gege	eegee	aac	ctaca	ıgga	gcta	acato	ga d	egeta	atccgc	720
aago	cacat	ca t	tgag	gtact	c gg	gacat	ccgg	g ato	catco	tgg	ttat	cgaç	gee (egact	cgatg	780

gccaacatgg tgaccaacat gaacgtggcc aagtgcagca acgccgcgtc gacgtaccac	840
gagttgaccg tgtacgcgct caagcagctg aacctgccca acgtcgccat gtatctcgac	900
gccggccacg ccggctggct cggctggccc gccaacatcc agcccgccgc cgagctgttt	960
geeggeatet acaatgatge eggeaageeg getgeegtee geggeetgge cactaaegte	1020
gccaactaca acgcctggag catcgcttcg gccccgtcgt acacgtcgcc taaccctaac	1080
tacgacgaga agcactacat cgaggccttc agcccgctct tgaactcggc cggcttcccc	1140
gcacgettea ttgtegacae tggeegeaae ggeaaacaae etaceggeea acaacagtgg	1200
ggtgactggt gcaatgtcaa gggcaccggc tttggcgtgc gcccgacggc caacacgggc	1260
cacgagetgg tegatgeett tgtetgggte aageeeggeg gegagteega eggeacaage	1320
gacaccageg cegecegeta egactaceae tgeggeetgt cegatgeeet geageetgee	1380
cccgaggctg gacagtggtt ccaggcctac ttcgagcagc tgctcaccaa cgccaacccg	1440
cccttctaa	1449
<210> SEQ ID NO 140 <211> LENGTH: 482 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptides.	
<400> SEQUENCE: 140	
Met Ala Lys Lys Leu Phe Ile Thr Ala Ala Leu Ala Ala Ala Val Leu 1 15	
Ala Ala Pro Val Ile Glu Glu Arg Gln Asn Cys Gly Ala Val Trp Thr 20 25 30	
Gln Cys Gly Gly Asn Gly Trp Gln Gly Pro Thr Cys Cys Ala Ser Gly 35 40 45	
Ser Thr Cys Val Ala Gln Asn Glu Trp Tyr Ser Gln Cys Leu Pro Asn 50 55 60	
Ser Gln Val Thr Ser Ser Thr Thr Pro Ser Ser Thr Ser Thr Ser Gln	
Arg Ser Thr Ser Thr Ser Ser Ser Thr Thr Arg Ser Gly Ser Ser Ser	
85 90 95	
Ser Ser Ser Thr Thr Pro Thr Pro Val Ser Ser Pro Val Thr Ser Ile 100 105 110	
Pro Gly Gly Ala Thr Ser Thr Ala Ser Tyr Ser Gly Asn Pro Phe Ser 115 120 125	
Gly Val Arg Leu Phe Ala Asn Asp Tyr Tyr Arg Ser Glu Val His Asn 130 135 140	
Leu Ala Ile Pro Ser Met Thr Gly Thr Leu Ala Ala Lys Ala Ser Ala 145 150 155 160	
Val Ala Glu Val Pro Ser Phe Gln Trp Leu Asp Arg Asn Val Thr Ile 165 170 175	
Asp Thr Leu Met Val Pro Thr Leu Ser Arg Val Arg Ala Leu Asn Lys 180 185 190	
Ala Gly Ala Asn Pro Pro Tyr Ala Ala Gln Leu Val Val Tyr Asp Leu 195 200 205	

Lys	His	Ile	Ile	Glu 245	Tyr	Ser	Asp	Ile	Arg 250	Ile	Ile	Leu	Val	Ile 255	Glu
Pro	Asp	Ser	Met 260	Ala	Asn	Met	Val	Thr 265	Asn	Met	Asn	Val	Ala 270	Lys	Сув
Ser	Asn	Ala 275	Ala	Ser	Thr	Tyr	His 280	Glu	Leu	Thr	Val	Tyr 285	Ala	Leu	Lys
Gln	Leu 290	Asn	Leu	Pro	Asn	Val 295	Ala	Met	Tyr	Leu	300	Ala	Gly	His	Ala
Gly 305	Trp	Leu	Gly	Trp	Pro 310	Ala	Asn	Ile	Gln	Pro 315	Ala	Ala	Glu	Leu	Phe 320
Ala	Gly	Ile	Tyr	Asn 325	Asp	Ala	Gly	Lys	Pro 330	Ala	Ala	Val	Arg	Gly 335	Leu
Ala	Thr	Asn	Val 340	Ala	Asn	Tyr	Asn	Ala 345	Trp	Ser	Ile	Ala	Ser 350	Ala	Pro
Ser	Tyr	Thr 355	Ser	Pro	Asn	Pro	Asn 360	Tyr	Asp	Glu	Lys	His 365	Tyr	Ile	Glu
Ala	Phe 370	Ser	Pro	Leu	Leu	Asn 375	Ser	Ala	Gly	Phe	Pro 380	Ala	Arg	Phe	Ile
Val 385	Asp	Thr	Gly	Arg	Asn 390	Gly	ГÀв	Gln	Pro	Thr 395	Gly	Gln	Gln	Gln	Trp 400
Gly	Asp	Trp	Сув	Asn 405	Val	Lys	Gly	Thr	Gly 410	Phe	Gly	Val	Arg	Pro 415	Thr
Ala	Asn	Thr	Gly 420	His	Glu	Leu	Val	Asp 425	Ala	Phe	Val	Trp	Val 430	Lys	Pro
Gly	Gly	Glu 435	Ser	Asp	Gly	Thr	Ser 440	Asp	Thr	Ser	Ala	Ala 445	Arg	Tyr	Asp
Tyr	His 450	Сув	Gly	Leu	Ser	Asp 455	Ala	Leu	Gln	Pro	Ala 460	Pro	Glu	Ala	Gly
Gln 465	Trp	Phe	Gln	Ala	Tyr 470	Phe	Glu	Gln	Leu	Leu 475	Thr	Asn	Ala	Asn	Pro 480
Pro	Phe														
<213 <213 <223	0 > SI L > LI 2 > TY 3 > OF 0 > FI 3 > OT	ENGTI (PE : RGAN: EATUI	H: 40 PRT ISM: RE:	55 Art:					oolyr	pept:	ides				
< 400)> SI	EQUEI	ICE :	141											
Ala 1	Pro	Val	Ile	Glu 5	Glu	Arg	Gln	Asn	Cys 10	Gly	Ala	Val	Trp	Thr 15	Gln
CAa	Gly	Gly	Asn 20	Gly	Trp	Gln	Gly	Pro 25	Thr	Суз	CAa	Ala	Ser 30	Gly	Ser
Thr	Сув	Val 35	Ala	Gln	Asn	Glu	Trp 40	Tyr	Ser	Gln	CAa	Leu 45	Pro	Asn	Ser
Gln	Val 50	Thr	Ser	Ser	Thr	Thr 55	Pro	Ser	Ser	Thr	Ser 60	Thr	Ser	Gln	Arg
Ser 65	Thr	Ser	Thr	Ser	Ser 70	Ser	Thr	Thr	Arg	Ser 75	Gly	Ser	Ser	Ser	Ser 80
Ser	Ser	Thr	Thr	Pro	Thr	Pro	Val	Ser	Ser	Pro	Val	Thr	Ser	Ile	Pro

Ala Asn Gly Gly Ala Ala Asn Tyr Arg Ser Tyr Ile Asp Ala Ile Arg 225 230 235 240

				85					90					95	
Gly	Gly	Ala	Thr 100	Ser	Thr	Ala	Ser	Tyr 105	Ser	Gly	Asn	Pro	Phe 110	Ser	Gly
Val	Arg	Leu 115	Phe	Ala	Asn	Asp	Tyr 120	Tyr	Arg	Ser	Glu	Val 125	His	Asn	Leu
Ala	Ile 130	Pro	Ser	Met	Thr	Gly 135	Thr	Leu	Ala	Ala	Lys 140	Ala	Ser	Ala	Val
Ala 145	Glu	Val	Pro	Ser	Phe 150	Gln	Trp	Leu	Asp	Arg 155	Asn	Val	Thr	Ile	Asp 160
Thr	Leu	Met	Val	Pro 165	Thr	Leu	Ser	Arg	Val 170	Arg	Ala	Leu	Asn	Lys 175	Ala
Gly	Ala	Asn	Pro 180	Pro	Tyr	Ala	Ala	Gln 185	Leu	Val	Val	Tyr	Asp 190	Leu	Pro
Asp	Arg	Asp 195	CÀa	Ala	Ala	Ala	Ala 200	Ser	Asn	Gly	Glu	Phe 205	Ser	Ile	Ala
Asn	Gly 210	Gly	Ala	Ala	Asn	Tyr 215	Arg	Ser	Tyr	Ile	Asp 220	Ala	Ile	Arg	ГÀа
His 225	Ile	Ile	Glu	Tyr	Ser 230	Asp	Ile	Arg	Ile	Ile 235	Leu	Val	Ile	Glu	Pro 240
Asp	Ser	Met	Ala	Asn 245	Met	Val	Thr	Asn	Met 250	Asn	Val	Ala	Lys	Сув 255	Ser
Asn	Ala	Ala	Ser 260	Thr	Tyr	His	Glu	Leu 265	Thr	Val	Tyr	Ala	Leu 270	Lys	Gln
Leu	Asn	Leu 275	Pro	Asn	Val	Ala	Met 280	Tyr	Leu	Asp	Ala	Gly 285	His	Ala	Gly
Trp	Leu 290	Gly	Trp	Pro	Ala	Asn 295	Ile	Gln	Pro	Ala	Ala 300	Glu	Leu	Phe	Ala
Gly 305	Ile	Tyr	Asn	Asp	Ala 310	Gly	Lys	Pro	Ala	Ala 315	Val	Arg	Gly	Leu	Ala 320
Thr	Asn	Val	Ala	Asn 325	Tyr	Asn	Ala	Trp	Ser 330	Ile	Ala	Ser	Ala	Pro 335	Ser
Tyr	Thr	Ser	Pro 340	Asn	Pro	Asn	Tyr	Asp 345	Glu	Lys	His	Tyr	Ile 350	Glu	Ala
Phe	Ser	Pro 355	Leu	Leu	Asn	Ser	Ala 360	Gly	Phe	Pro	Ala	Arg 365	Phe	Ile	Val
Asp	Thr 370	Gly	Arg	Asn	Gly	Lys 375	Gln	Pro	Thr	Gly	Gln 380	Gln	Gln	Trp	Gly
385	Trp	Cys	Asn	Val	390	Gly	Thr	Gly	Phe	Gly 395	Val	Arg	Pro	Thr	Ala 400
Asn	Thr	Gly	His	Glu 405	Leu	Val	Asp	Ala	Phe 410	Val	Trp	Val	Lys	Pro 415	Gly
Gly	Glu	Ser	Asp 420	Gly	Thr	Ser	Asp	Thr 425	Ser	Ala	Ala	Arg	Tyr 430	Asp	Tyr
His	Сув	Gly 435	Leu	Ser	Asp	Ala	Leu 440	Gln	Pro	Ala	Pro	Glu 445	Ala	Gly	Gln
Trp	Phe 450	Gln	Ala	Tyr	Phe	Glu 455	Gln	Leu	Leu	Thr	Asn 460	Ala	Asn	Pro	Pro
Phe															

465

<211> LENGTH: 1449 <212> TYPE: DNA

<213 > ORGANISM: Artificial Sequence

-continued

```
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic polynucleotide.
<400> SEQUENCE: 142
atggccaaga agettttcat cacegeegeg ettgeggetg eegtgttgge ggeeeeegte
                                                                       60
attgaggagc gccagaactg cggcgctgtg tggactcaat gcggcggtaa cgggtggcaa
                                                                     120
ggtcccacat gctgcgcctc gggctcgacc tgcgttgcgc agaacgagtg gtactctcag
tgcctgccca acagccaggt gacgagttcc accactccgt cgtcgacttc cacctcgcag
cqcaqcacca qcacctccaq caqcaccacc aqqaqcqqca qctcctcctc ctcctccacc
acgececege cegtetecag eccegtgace ageatteceg geggtgegac etceaeggeg
                                                                     360
agetactetg geaacceett etegggegte eggetetteg ceaacgaeta etacaggtee
                                                                     420
                                                                     480
gaggtccaca atctcgccat tcctagcatg actggtactc tggcggccaa ggcttccgcc
qtcqccqaaq tccctaqctt ccaqtqqctc qaccqqaacq tcaccatcqa caccctqatq
                                                                     540
qtcccqactc tqtcccqcqt ccqqqctctc aataaqqccq qtqccaatcc tccctatqct
                                                                     600
geceaacteg tegtetaega ceteceegae egtgaetgtg cegeegetge gtecaaegge
                                                                     660
                                                                     720
qaqttttcqa ttqcaaacqq cqqcqccqcc aactacaqqa qctacatcqa cqctatccqc
aagcacatca aggagtactc ggacatccgg atcatcctgg ttatcgagcc cgactcgatg
                                                                     780
gccaacatgg tgaccaacat gaacgtggcc aagtgcagca acgccgcgtc gacgtaccac
                                                                     840
gagttgaccg tgtacgcgct caagcagctg aacctgccca acgtcgccat gtatctcgac
                                                                     900
geeggeeaeg eeggetgget eggetggeee geeaaeatee ageeegeege egagetgttt
                                                                     960
geeggeatet acaatgatge eggeaageeg getgeegtee geggeetgge cactaaegte
                                                                    1020
gccaactaca acgcctggag catcgcttcg gccccgtcgt acacgtcgcc taaccctaac
                                                                    1080
tacgacgaga agcactacat cgaggcette agecegetet tgaacgacge eggetteece
                                                                    1140
gcacgettea ttgtegaeae tggeegeaae ggeaaaeaae etaceggeea acaaeagtgg
                                                                    1200
ggtgactggt gcaatgtcaa gggcaccggc tttggcgtgc gcccgacggc caacacgggc
                                                                    1260
cacgagetgg tegatgeett tgtetgggte aageeeggeg gegagteega eggeacaage
gacaccageg cegecegeta egactaceae tgeggeetgt cegatgeeet geageetgee
cccgaggctg gacagtggtt ccaggcctac ttcgagcagc tgctcaccaa cgccaacccg
                                                                    1440
cccttctaa
                                                                     1449
<210> SEQ ID NO 143
<211> LENGTH: 482
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic polypeptides.
<400> SEQUENCE: 143
Met Ala Lys Lys Leu Phe Ile Thr Ala Ala Leu Ala Ala Ala Val Leu
Ala Ala Pro Val Ile Glu Glu Arg Gln Asn Cys Gly Ala Val Trp Thr
                                25
Gln Cys Gly Gly Asn Gly Trp Gln Gly Pro Thr Cys Cys Ala Ser Gly
```

40

Ser	Thr 50	Сув	Val	Ala	Gln	Asn 55	Glu	Trp	Tyr	Ser	Gln 60	Сла	Leu	Pro	Asn
Ser 65	Gln	Val	Thr	Ser	Ser 70	Thr	Thr	Pro	Ser	Ser 75	Thr	Ser	Thr	Ser	Gln 80
Arg	Ser	Thr	Ser	Thr 85	Ser	Ser	Ser	Thr	Thr 90	Arg	Ser	Gly	Ser	Ser 95	Ser
Ser	Ser	Ser	Thr 100	Thr	Pro	Pro	Pro	Val 105	Ser	Ser	Pro	Val	Thr 110	Ser	Ile
Pro	Gly	Gly 115	Ala	Thr	Ser	Thr	Ala 120	Ser	Tyr	Ser	Gly	Asn 125	Pro	Phe	Ser
Gly	Val 130	Arg	Leu	Phe	Ala	Asn 135	Asp	Tyr	Tyr	Arg	Ser 140	Glu	Val	His	Asn
Leu 145	Ala	Ile	Pro	Ser	Met 150	Thr	Gly	Thr	Leu	Ala 155	Ala	Lys	Ala	Ser	Ala 160
Val	Ala	Glu	Val	Pro 165	Ser	Phe	Gln	Trp	Leu 170	Asp	Arg	Asn	Val	Thr 175	Ile
Asp	Thr	Leu	Met 180	Val	Pro	Thr	Leu	Ser 185	Arg	Val	Arg	Ala	Leu 190	Asn	ГЛа
Ala	Gly	Ala 195	Asn	Pro	Pro	Tyr	Ala 200	Ala	Gln	Leu	Val	Val 205	Tyr	Asp	Leu
Pro	Asp 210	Arg	Asp	Cys	Ala	Ala 215	Ala	Ala	Ser	Asn	Gly 220	Glu	Phe	Ser	Ile
Ala 225	Asn	Gly	Gly	Ala	Ala 230	Asn	Tyr	Arg	Ser	Tyr 235	Ile	Asp	Ala	Ile	Arg 240
ГÀа	His	Ile	Lys	Glu 245	Tyr	Ser	Asp	Ile	Arg 250	Ile	Ile	Leu	Val	Ile 255	Glu
Pro	Asp	Ser	Met 260	Ala	Asn	Met	Val	Thr 265	Asn	Met	Asn	Val	Ala 270	Lys	CÀa
Ser	Asn	Ala 275	Ala	Ser	Thr	Tyr	His 280	Glu	Leu	Thr	Val	Tyr 285	Ala	Leu	Lys
Gln	Leu 290	Asn	Leu	Pro	Asn	Val 295	Ala	Met	Tyr	Leu	Asp	Ala	Gly	His	Ala
Gly 305	Trp	Leu	Gly	Trp	Pro 310	Ala	Asn	Ile	Gln	Pro 315	Ala	Ala	Glu	Leu	Phe 320
Ala	Gly	Ile	Tyr	Asn 325	Asp	Ala	Gly	Lys	Pro 330	Ala	Ala	Val	Arg	Gly 335	Leu
Ala	Thr	Asn	Val 340	Ala	Asn	Tyr	Asn	Ala 345	Trp	Ser	Ile	Ala	Ser 350	Ala	Pro
Ser	Tyr	Thr 355	Ser	Pro	Asn	Pro	Asn 360	Tyr	Asp	Glu	Lys	His 365	Tyr	Ile	Glu
Ala	Phe 370	Ser	Pro	Leu	Leu	Asn 375	Asp	Ala	Gly	Phe	Pro 380	Ala	Arg	Phe	Ile
Val 385	Asp	Thr	Gly	Arg	Asn 390	Gly	Lys	Gln	Pro	Thr 395	Gly	Gln	Gln	Gln	Trp 400
Gly	Asp	Trp	Cys	Asn 405	Val	Lys	Gly	Thr	Gly 410	Phe	Gly	Val	Arg	Pro 415	Thr
Ala	Asn	Thr	Gly 420	His	Glu	Leu	Val	Asp 425	Ala	Phe	Val	Trp	Val 430	Lys	Pro
Gly	Gly	Glu 435	Ser	Asp	Gly	Thr	Ser 440	Asp	Thr	Ser	Ala	Ala 445	Arg	Tyr	Asp

Tyr	His 450	Cys	Gly	Leu	Ser	Asp 455	Ala	Leu	Gln	Pro	Ala 460	Pro	Glu	Ala	Gly
Gln 465	Trp	Phe	Gln	Ala	Tyr 470	Phe	Glu	Gln	Leu	Leu 475	Thr	Asn	Ala	Asn	Pro 480
Pro	Phe														
<211 <212 <213 <220	L> LE 2> TY 3> OF 0> FE	EQ II ENGTH PE: RGANI EATUR	H: 46 PRT SM: RE:	55 Arti			_		oolyg	pepti	ides				
<400)> SE	EQUEN	ICE :	144											
Ala 1	Pro	Val	Ile	Glu 5	Glu	Arg	Gln	Asn	Cys 10	Gly	Ala	Val	Trp	Thr 15	Gln
CÀa	Gly	Gly	Asn 20	Gly	Trp	Gln	Gly	Pro 25	Thr	Cys	Cys	Ala	Ser 30	Gly	Ser
Thr	Cys	Val 35	Ala	Gln	Asn	Glu	Trp 40	Tyr	Ser	Gln	CÀa	Leu 45	Pro	Asn	Ser
Gln	Val 50	Thr	Ser	Ser	Thr	Thr 55	Pro	Ser	Ser	Thr	Ser 60	Thr	Ser	Gln	Arg
Ser 65	Thr	Ser	Thr	Ser	Ser 70	Ser	Thr	Thr	Arg	Ser 75	Gly	Ser	Ser	Ser	Ser 80
Ser	Ser	Thr	Thr	Pro 85	Pro	Pro	Val	Ser	Ser 90	Pro	Val	Thr	Ser	Ile 95	Pro
Gly	Gly	Ala	Thr 100	Ser	Thr	Ala	Ser	Tyr 105	Ser	Gly	Asn	Pro	Phe 110	Ser	Gly
Val	Arg	Leu 115	Phe	Ala	Asn	Asp	Tyr 120	Tyr	Arg	Ser	Glu	Val 125	His	Asn	Leu
Ala	Ile 130	Pro	Ser	Met	Thr	Gly 135	Thr	Leu	Ala	Ala	Lys 140	Ala	Ser	Ala	Val
Ala 145	Glu	Val	Pro	Ser	Phe 150	Gln	Trp	Leu	Asp	Arg 155	Asn	Val	Thr	Ile	Asp 160
Thr	Leu	Met	Val	Pro 165	Thr	Leu	Ser	Arg	Val 170	Arg	Ala	Leu	Asn	Lys 175	Ala
Gly	Ala	Asn	Pro 180	Pro	Tyr	Ala	Ala	Gln 185	Leu	Val	Val	Tyr	Asp 190	Leu	Pro
Asp	_	Asp 195	_							_				Ile	Ala
Asn	Gly 210	Gly	Ala	Ala	Asn	Tyr 215	Arg	Ser	Tyr	Ile	Asp 220	Ala	Ile	Arg	Lys
His 225	Ile	Lys	Glu	Tyr	Ser 230	Asp	Ile	Arg	Ile	Ile 235	Leu	Val	Ile	Glu	Pro 240
Asp	Ser	Met	Ala	Asn 245	Met	Val	Thr	Asn	Met 250	Asn	Val	Ala	Lys	Сув 255	Ser
Asn	Ala	Ala	Ser 260	Thr	Tyr	His	Glu	Leu 265	Thr	Val	Tyr	Ala	Leu 270	Lys	Gln
Leu	Asn	Leu 275	Pro	Asn	Val	Ala	Met 280	Tyr	Leu	Asp	Ala	Gly 285	His	Ala	Gly
Trp	Leu 290	Gly	Trp	Pro	Ala	Asn 295	Ile	Gln	Pro	Ala	Ala 300	Glu	Leu	Phe	Ala
Gly	Ile	Tyr	Asn	Aap	Ala	Gly	Lys	Pro	Ala	Ala	Val	Arg	Gly	Leu	Ala

Concinuca	
305 310 315 32	20
Thr Asn Val Ala Asn Tyr Asn Ala Trp Ser Ile Ala Ser Ala Pro Se 325 330 335	er
Tyr Thr Ser Pro Asn Pro Asn Tyr Asp Glu Lys His Tyr Ile Glu Al	La
Phe Ser Pro Leu Leu Asn Asp Ala Gly Phe Pro Ala Arg Phe Ile Va 355 360 365	al
Asp Thr Gly Arg Asn Gly Lys Gln Pro Thr Gly Gln Gln Gln Trp Gl 370 375 380	Ly
Asp Trp Cys Asn Val Lys Gly Thr Gly Phe Gly Val Arg Pro Thr Al 385 390 395 40	
Asn Thr Gly His Glu Leu Val Asp Ala Phe Val Trp Val Lys Pro Gl	ц
Gly Glu Ser Asp Gly Thr Ser Asp Thr Ser Ala Ala Arg Tyr Asp Ty 420 425 430	yr
His Cys Gly Leu Ser Asp Ala Leu Gln Pro Ala Pro Glu Ala Gly Gl 435 440 445	Ln
Trp Phe Gln Ala Tyr Phe Glu Gln Leu Leu Thr Asn Ala Asn Pro Pr 450 455 460	co
Phe 465	
<210> SEQ ID NO 145 <211> LENGTH: 1449 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide. <400> SEQUENCE: 145	
atggccaaga agetttteat caeegeegeg ettgeggetg eegtgttgge ggeeee	egte 60
attgaggagc gccagaactg cggcgctgtg tggactcaat gcggcggtaa cgggtgg	gcaa 120
ggtcccacat gctgcgcctc gggctcgacc tgcgttgcgc agaacgagtg gtactct	cag 180
tgcctgccca acagccaggt gacgagttcc accactccgt cgtcgacttc cacctcg	gcag 240
egeageacea geacetecag cageaceace aggageggea getectecte etecte	cacc 300
acgcccaccc ccgtctccag ccccgtgacc agcattcccg gcggtgcgac ctccacg	ggcg 360
agetactetg geaacceett etegggegte eggetetteg ecaaegaeta etaeage	gtee 420
gaggtcatga atctcgccat tcctagcatg actggtactc tggcggccaa ggcttcc	ggc 480
gtcgccgaag tccctagctt ccagtggctc gaccggaacg tcaccatcga caccctg	gatg 540
gtcaccactc tgtcccaggt ccgggctctc aataaggccg gtgccaatcc tccctat	get 600
gcccaactcg togtctacga cotccccgac cgtgactgtg ccgccgctgc gtccaac	cggc 660
gagttttcga ttgcaaacgg cggcagcgcc aactacagga gctacatcga cgctatc	ccgc 720
aagcacatca ttgagtactc ggacatccgg atcatcctgg ttatcgagcc cgactcg	gatg 780
gccaacatgg tgaccaacat gaacgtggcc aagtgcagca acgccgcgtc gacgtac	ccac 840
gagttgaccg tgtacgcgct caagcagctg aacctgccca acgtcgccat gtatctc	cgac 900
geoggecaeg ceggetgget eggetggeee gecaacatee ageoegeege egagetg	gttt 960

gccggcatct acaatgatgc cggcaagccg gctgccgtcc gcggcctggc cactaacgtc 1020

gccaactaca acgcctggag catcgcttcg gccccgtcgt acacgcagcc taaccctaac	1080
tacgacgaga agcactacat cgaggcette agcccgetet tgaactegge eggetteece	1140
gcacgettca ttgtcgacac tggccgcaac ggcaaacaac ctaccggcca acaacagtgg	1200
ggtgactggt gcaatgtcaa gggcaccggc tttggcgtgc gcccgacggc caacacgggc	1260
cacgagetgg tegatgeett tgtetgggte aageeeggeg gegagteega eggeacaage	1320
gacaccageg eegecegeta egactaceae tgeggeetgt eegatgeeet geageetgee	1380
cccgaggctg gacagtggtt ccaggcctac ttcgagcagc tgctcaccaa cgccaacccg	1440
cccttctaa	1449
<210> SEQ ID NO 146 <211> LENGTH: 482 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptides.	
<400> SEQUENCE: 146	
Met Ala Lys Lys Leu Phe Ile Thr Ala Ala Leu Ala Ala Ala Val Leu 1 5 10 15	
Ala Ala Pro Val Ile Glu Glu Arg Gln Asn Cys Gly Ala Val Trp Thr 20 25 30	
Gln Cys Gly Gly Asn Gly Trp Gln Gly Pro Thr Cys Cys Ala Ser Gly 35 40 45	
Ser Thr Cys Val Ala Gln Asn Glu Trp Tyr Ser Gln Cys Leu Pro Asn 50 55 60	
Ser Gln Val Thr Ser Ser Thr Thr Pro Ser Ser Thr Ser Thr Ser Gln 65 70 80	
Arg Ser Thr Ser Thr Ser Ser Ser Thr Thr Arg Ser Gly Ser Ser Ser 85 90 95	
Ser Ser Ser Thr Thr Pro Thr Pro Val Ser Ser Pro Val Thr Ser Ile 100 105 110	
Pro Gly Gly Ala Thr Ser Thr Ala Ser Tyr Ser Gly Asn Pro Phe Ser 115 120 125	
Gly Val Arg Leu Phe Ala Asn Asp Tyr Tyr Arg Ser Glu Val Met Asn 130 135 140	
Leu Ala Ile Pro Ser Met Thr Gly Thr Leu Ala Ala Lys Ala Ser Ala 145 150 160	
Val Ala Glu Val Pro Ser Phe Gln Trp Leu Asp Arg Asn Val Thr Ile 165 170 175	
Asp Thr Leu Met Val Thr Thr Leu Ser Gln Val Arg Ala Leu Asn Lys 180 185 190	
Ala Gly Ala Asn Pro Pro Tyr Ala Ala Gln Leu Val Val Tyr Asp Leu 195 200 205	
Pro Asp Arg Asp Cys Ala Ala Ala Ala Ser Asn Gly Glu Phe Ser Ile 210 215 220	
Ala Asn Gly Gly Ser Ala Asn Tyr Arg Ser Tyr Ile Asp Ala Ile Arg 225 230 240	
Lys His Ile Ile Glu Tyr Ser Asp Ile Arg Ile Ile Leu Val Ile Glu 245 250 255	

Pro Asp Ser Met Ala Asn Met Val Thr Asn Met Asn Val Ala Lys Cys 260 270

280 Gln Leu Asn Leu Pro Asn Val Ala Met Tyr Leu Asp Ala Gly His Ala Gly Trp Leu Gly Trp Pro Ala Asn Ile Gln Pro Ala Ala Glu Leu Phe Ala Gly Ile Tyr Asn Asp Ala Gly Lys Pro Ala Ala Val Arg Gly Leu Ala Thr Asn Val Ala Asn Tyr Asn Ala Trp Ser Ile Ala Ser Ala Pro Ser Tyr Thr Gln Pro Asn Pro Asn Tyr Asp Glu Lys His Tyr Ile Glu Ala Phe Ser Pro Leu Leu Asn Ser Ala Gly Phe Pro Ala Arg Phe Ile 375 Val Asp Thr Gly Arg Asn Gly Lys Gln Pro Thr Gly Gln Gln Gln Trp 390 395 Gly Asp Trp Cys Asn Val Lys Gly Thr Gly Phe Gly Val Arg Pro Thr Ala Asn Thr Gly His Glu Leu Val Asp Ala Phe Val Trp Val Lys Pro 425 Gly Gly Glu Ser Asp Gly Thr Ser Asp Thr Ser Ala Ala Arg Tyr Asp 440 Tyr His Cys Gly Leu Ser Asp Ala Leu Gln Pro Ala Pro Glu Ala Gly 455 Gln Trp Phe Gln Ala Tyr Phe Glu Gln Leu Leu Thr Asn Ala Asn Pro 470 Pro Phe <210> SEQ ID NO 147 <211> LENGTH: 465 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptides. <400> SEQUENCE: 147 Ala Pro Val Ile Glu Glu Arg Gln Asn Cys Gly Ala Val Trp Thr Gln Cys Gly Gly Asn Gly Trp Gln Gly Pro Thr Cys Cys Ala Ser Gly Ser Thr Cys Val Ala Gln Asn Glu Trp Tyr Ser Gln Cys Leu Pro Asn Ser Gln Val Thr Ser Ser Thr Thr Pro Ser Ser Thr Ser Thr Ser Gln Arg 55 Ser Thr Ser Thr Ser Ser Ser Thr Thr Arg Ser Gly Ser Ser Ser Ser Ser Thr Thr Pro Thr Pro Val Ser Ser Pro Val Thr Ser Ile Pro 90 Gly Gly Ala Thr Ser Thr Ala Ser Tyr Ser Gly Asn Pro Phe Ser Gly 105 Val Arg Leu Phe Ala Asn Asp Tyr Tyr Arg Ser Glu Val Met Asn Leu 120

Ser Asn Ala Ala Ser Thr Tyr His Glu Leu Thr Val Tyr Ala Leu Lys

Ala		Pro	Ser	Met	Thr		Thr	Leu	Ala	Ala		Ala	Ser	Ala	Val
	130					135					140				
Ala 145	Glu	Val	Pro	Ser	Phe 150	Gln	Trp	Leu	Asp	Arg 155	Asn	Val	Thr	Ile	Asp 160
Thr	Leu	Met	Val	Thr 165	Thr	Leu	Ser	Gln	Val 170	Arg	Ala	Leu	Asn	Lys 175	Ala
Gly	Ala	Asn	Pro 180	Pro	Tyr	Ala	Ala	Gln 185	Leu	Val	Val	Tyr	Asp 190	Leu	Pro
Asp	Arg	Asp 195	Суз	Ala	Ala	Ala	Ala 200	Ser	Asn	Gly	Glu	Phe 205	Ser	Ile	Ala
Asn	Gly 210	Gly	Ser	Ala	Asn	Tyr 215	Arg	Ser	Tyr	Ile	Asp 220	Ala	Ile	Arg	Lys
His 225	Ile	Ile	Glu	Tyr	Ser 230	Asp	Ile	Arg	Ile	Ile 235	Leu	Val	Ile	Glu	Pro 240
Asp	Ser	Met	Ala	Asn 245	Met	Val	Thr	Asn	Met 250	Asn	Val	Ala	Lys	Сув 255	Ser
Asn	Ala	Ala	Ser 260	Thr	Tyr	His	Glu	Leu 265	Thr	Val	Tyr	Ala	Leu 270	Lys	Gln
Leu	Asn	Leu 275	Pro	Asn	Val	Ala	Met 280	Tyr	Leu	Asp	Ala	Gly 285	His	Ala	Gly
Trp	Leu 290	Gly	Trp	Pro	Ala	Asn 295	Ile	Gln	Pro	Ala	Ala 300	Glu	Leu	Phe	Ala
Gly 305	Ile	Tyr	Asn	Asp	Ala 310	Gly	Lys	Pro	Ala	Ala 315	Val	Arg	Gly	Leu	Ala 320
Thr	Asn	Val	Ala	Asn 325	Tyr	Asn	Ala	Trp	Ser 330	Ile	Ala	Ser	Ala	Pro 335	Ser
Tyr	Thr	Gln	Pro 340	Asn	Pro	Asn	Tyr	Asp 345	Glu	Lys	His	Tyr	Ile 350	Glu	Ala
Phe	Ser	Pro 355	Leu	Leu	Asn	Ser	Ala 360	Gly	Phe	Pro	Ala	Arg 365	Phe	Ile	Val
Asp	Thr 370	Gly	Arg	Asn	Gly	Lys 375	Gln	Pro	Thr	Gly	Gln 380	Gln	Gln	Trp	Gly
Asp 385	Trp	Сув	Asn	Val	Lys 390	Gly	Thr	Gly	Phe	Gly 395	Val	Arg	Pro	Thr	Ala 400
Asn	Thr	Gly	His	Glu 405	Leu	Val	Asp	Ala	Phe 410	Val	Trp	Val	Lys	Pro 415	Gly
Gly	Glu	Ser	Asp 420	Gly	Thr	Ser	Asp	Thr 425	Ser	Ala	Ala	Arg	Tyr 430	Asp	Tyr
His	Cys	Gly 435	Leu	Ser	Asp	Ala	Leu 440	Gln	Pro	Ala	Pro	Glu 445	Ala	Gly	Gln
Trp	Phe 450	Gln	Ala	Tyr	Phe	Glu 455	Gln	Leu	Leu	Thr	Asn 460	Ala	Asn	Pro	Pro
Phe 465															
<211 <212	L> LI 2> T	EQ II ENGTI YPE:	H: 12 DNA	239	elio	~h+ ►-		- h c	non't	:1-					
		rgan. Equei		•	≈±±0]	PII L FI	∍⊥a 1	erī	"obu:	тта					
		~													

-continued	
gacctcgccg tcagggctgg actcaagtac tttggtactg ctcttagcga gagcgtcatc	120
aacagtgata ctcggtatgc tgccatcctc agcgacaaga gcatgttcgg ccagctcgtc	180
cccgagaatg gcatgaagtg ggatgctact gagccgtccc gtggccagtt caactacgcc	240
tegggegaca teaeggeeaa caeggeeaag aagaatggee agggeatgeg ttgeeacace	300
atggtctggt acagccagct eccgagctgg gtctcetcgg gctcgtggac cagggactcg	360
ctcacctcgg tcatcgagac gcacatgaac aacgtcatgg gccactacaa gggccaatgc	420
tacgcctggg atgtcatcaa cgaggccatc aatgacgacg gcaactcctg gcgcgacaac	480
gtctttctcc ggacctttgg gaccgactac ttcgccctgt ccttcaacct agccaagaag	540
gccgatcccg ataccaagct gtactacaac gactacaacc tcgagtacaa ccaggccaag	600
acggaccgcg ctgttgagct cgtcaagatg gtccaggccg ccggcgcgcc catcgacggt	660
gtcggcttcc agggccacct cattgtcggc tcgaccccga cgcgctcgca gctggccacc	720
gecetecage getteacege geteggeete gaggtegeet acacegaget egacateege	780
cactegagee tgceggeete ttegteggeg etegegaeee agggeaaega ettegeeaae	840
gtggtcggct cttgcctcga caccgccggc tgcgtcggcg tcaccgtctg gggcttcacc	900
gatgcgcact cgtggatccc gaacacgttc cccggccagg gcgacgccct gatctacgac	960
agcaactaca acaagaagcc cgcgtggacc tcgatctcgt ccgtcctggc cgccaaggcc	1020
accggcgccc cgcccgcctc gtcctccacc accctcgtca ccatcaccac ccctccgccg	1080
gcatccacca ccgcctcctc ctcctccagt gccacgccca cgagcgtccc gacgcagacg	1140
aggtggggac agtgcggcgg catcggatgg acggggccga cccagtgcga gagcccatgg	1200
acctgccaga agctgaacga ctggtactgg cagtgcctg	1239
<210> SEQ ID NO 149 <211> LENGTH: 413 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 149	
C4007 DEGOEMCE. 147	

Met His Ser Lys Ala Phe Leu Ala Ala Leu Leu Ala Pro Ala Val Ser 1 $$ 5 $$ 10 $$ 15 10

Gly Gln Leu Asn Asp Leu Ala Val Arg Ala Gly Leu Lys Tyr Phe Gly $20 \\ 25 \\ 30$

Thr Ala Leu Ser Glu Ser Val Ile Asn Ser Asp Thr Arg Tyr Ala Ala 35 404045

Ile Leu Ser Asp Lys Ser Met Phe Gly Gln Leu Val Pro Glu Asn Gly

Met Lys Trp Asp Ala Thr Glu Pro Ser Arg Gly Gln Phe Asn Tyr Ala 65 70 75 80

Ser Gly Asp Ile Thr Ala Asn Thr Ala Lys Lys Asn Gly Gln Gly Met

Arg Cys His Thr Met Val Trp Tyr Ser Gln Leu Pro Ser Trp Val Ser 100 105 110 105

Ser Gly Ser Trp Thr Arg Asp Ser Leu Thr Ser Val Ile Glu Thr His

 $\hbox{Met Asn Asn Val Met Gly His Tyr Lys Gly Gln Cys Tyr Ala Trp Asp } \\$

Val Ile Asn Glu Ala Ile Asn Asp Asp Gly Asn Ser Trp Arg Asp Asn

145					150					155					160
Val	Phe	Leu	Arg	Thr 165	Phe	Gly	Thr	Asp	Tyr 170	Phe	Ala	Leu	Ser	Phe 175	Asn
Leu	Ala	ГЛа	Lys 180	Ala	Asp	Pro	Asp	Thr 185	Lys	Leu	Tyr	Tyr	Asn 190	Asp	Tyr
Asn	Leu	Glu 195	Tyr	Asn	Gln	Ala	Lys 200	Thr	Asp	Arg	Ala	Val 205	Glu	Leu	Val
Lys	Met 210	Val	Gln	Ala	Ala	Gly 215	Ala	Pro	Ile	Asp	Gly 220	Val	Gly	Phe	Gln
Gly 225	His	Leu	Ile	Val	Gly 230	Ser	Thr	Pro	Thr	Arg 235	Ser	Gln	Leu	Ala	Thr 240
Ala	Leu	Gln	Arg	Phe 245	Thr	Ala	Leu	Gly	Leu 250	Glu	Val	Ala	Tyr	Thr 255	Glu
Leu	Asp	Ile	Arg 260	His	Ser	Ser	Leu	Pro 265	Ala	Ser	Ser	Ser	Ala 270	Leu	Ala
Thr	Gln	Gly 275	Asn	Asp	Phe	Ala	Asn 280	Val	Val	Gly	Ser	Сув 285	Leu	Asp	Thr
Ala	Gly 290	Cya	Val	Gly	Val	Thr 295	Val	Trp	Gly	Phe	Thr 300	Asp	Ala	His	Ser
Trp 305	Ile	Pro	Asn	Thr	Phe 310	Pro	Gly	Gln	Gly	Asp 315	Ala	Leu	Ile	Tyr	Asp 320
Ser	Asn	Tyr	Asn	Lys 325	Lys	Pro	Ala	Trp	Thr 330	Ser	Ile	Ser	Ser	Val 335	Leu
Ala	Ala	ГЛа	Ala 340	Thr	Gly	Ala	Pro	Pro 345	Ala	Ser	Ser	Ser	Thr 350	Thr	Leu
Val	Thr	Ile 355	Thr	Thr	Pro	Pro	Pro 360	Ala	Ser	Thr	Thr	Ala 365	Ser	Ser	Ser
Ser	Ser 370	Ala	Thr	Pro	Thr	Ser 375	Val	Pro	Thr	Gln	Thr 380	Arg	Trp	Gly	Gln
Cys 385	Gly	Gly	Ile	Gly	Trp 390	Thr	Gly	Pro	Thr	Gln 395	CÀa	Glu	Ser	Pro	Trp 400
Thr	Сув	Gln	Lys	Leu 405	Asn	Asp	Trp	Tyr	Trp 410	Gln	Сув	Leu			
	0 > SI														
<21	1 > Ll 2 > T 3 > Ol	YPE:	PRT		21 1 2	oh+h	ara 1	- how	monh	:1-					
	3 > 01 0 > SI			-	erroj	pricri	ora i	riieri	порп.	LIA					
	Leu				Ala	Val	Arg	Ala	Gly 10	Leu	Lys	Tyr	Phe	Gly 15	Thr
	Leu	Ser			Val	Ile	Asn			Thr	Arg	Tyr			Ile
т	C.s.	7 ~~	20	Con	Mot	Db.	C1	25 Cln	Lon	T7~7	D	G1	30 3an	C1	Mot
	Ser	35	•				40					45		•	
Lys	Trp 50	Asp	Ala	Thr	Glu	Pro 55	Ser	Arg	Gly	Gln	Phe 60	Asn	Tyr	Ala	Ser
Gly 65	Asp	Ile	Thr	Ala	Asn 70	Thr	Ala	Lys	ГÀа	Asn 75	Gly	Gln	Gly	Met	Arg 80
Cys	His	Thr	Met	Val 85	Trp	Tyr	Ser	Gln	Leu 90	Pro	Ser	Trp	Val	Ser 95	Ser

Gly Se	r Trp	Thr 100	Arg	Asp	Ser	Leu	Thr 105	Ser	Val	Ile	Glu	Thr 110	His	Met	
Asn As	n Val		Gly	His	Tyr	Lys 120	Gly	Gln	Cys	Tyr	Ala 125	Trp	Asp	Val	
Ile As		ı Ala	Ile	Asn	Asp 135	Asp	Gly	Asn	Ser	Trp 140	Arg	Asp	Asn	Val	
Phe Le 145	u Arg	J Thr	Phe	Gly 150	Thr	Asp	Tyr	Phe	Ala 155	Leu	Ser	Phe	Asn	Leu 160	
Ala Ly	a Lys	8 Ala	Asp 165	Pro	Asp	Thr	Lys	Leu 170	Tyr	Tyr	Asn	Asp	Tyr 175	Asn	
Leu Gl	u Tyr	180	Gln	Ala	Lys	Thr	Asp 185	Arg	Ala	Val	Glu	Leu 190	Val	Lys	
Met Va	l Glr 195		Ala	Gly	Ala	Pro 200	Ile	Asp	Gly	Val	Gly 205	Phe	Gln	Gly	
His Le 21		e Val	Gly	Ser	Thr 215	Pro	Thr	Arg	Ser	Gln 220	Leu	Ala	Thr	Ala	
Leu Gl 225	n Arç	y Phe	Thr	Ala 230	Leu	Gly	Leu	Glu	Val 235	Ala	Tyr	Thr	Glu	Leu 240	
Asp Il	e Arç	y His	Ser 245	Ser	Leu	Pro	Ala	Ser 250	Ser	Ser	Ala	Leu	Ala 255	Thr	
Gln Gl	y Asr	1 Asp 260		Ala	Asn	Val	Val 265	Gly	Ser	Cys	Leu	Asp 270	Thr	Ala	
Gly Cy	s Val 275		Val	Thr	Val	Trp 280	Gly	Phe	Thr	Asp	Ala 285	His	Ser	Trp	
Ile Pr 29		n Thr	Phe	Pro	Gly 295	Gln	Gly	Asp	Ala	Leu 300	Ile	Tyr	Asp	Ser	
Asn Ty 305	r Asr	ı Lys	Lys	Pro 310	Ala	Trp	Thr	Ser	Ile 315	Ser	Ser	Val	Leu	Ala 320	
Ala Ly	s Ala	Thr	Gly 325	Ala	Pro	Pro	Ala	Ser 330	Ser	Ser	Thr	Thr	Leu 335	Val	
Thr Il	e Thi	Thr 340	Pro	Pro	Pro	Ala	Ser 345	Thr	Thr	Ala	Ser	Ser 350	Ser	Ser	
Ser Al	a Thi 355		Thr	Ser	Val	Pro 360	Thr	Gln	Thr	Arg	Trp 365	Gly	Gln	СЛа	
Gly Gl 37		e Gly	Trp	Thr	Gly 375	Pro	Thr	Gln	Сув	Glu 380	Ser	Pro	Trp	Thr	
Cys Gl 385	n Lys	Leu	Asn	Asp 390	Trp	Tyr	Trp	Gln	Сув 395	Leu					
<210> <211>															
<212> <213>				elio	phth	ora 1	her	moph:	ila						
<400>	SEQUE	ENCE :	151												
atggtc															
ctcgag	gtgg	tcaa	gege	gg c	atcca	agcc	9 999	cacg	ggca	ccca	acga	999	gtact	tctac	120
tcgttc	tgga	ccga	cggc	eg t	ggct	eggt	ga ga	cttca	aacc	ccg	ggcc	ccg ·	cggct	cgtac	180
agcgtc	acct	ggaa	caac	gt c	aaca	actg	g gti	ggc	ggca	aggg	gctg	gaa	cccg	ggcccg	240
ccgcgc	aaga	ttgc	gtac	aa c	ggca	cctg	gaa	caact	caca	acgt	gaa	cag	ctaco	ctegee	300
ctgtac	ggct	ggac	tege	aa c	eege	tggt	c gaç	gtati	caca	tcgt	gga	ggc .	ataco	ggcacg	360

tacaacccct cgtcgggcac ggcgcggctg ggcaccatcg aggacgacgg cggcgtgtac gacatetaca agaegaegeg gtacaaeeag eegteeateg aggggaeete eacettegae cagtactggt ccgtccgccg ccagaagcgc gtcggcggca ctatcgacac gggcaagcac tttgacgagt ggaagcgcca gggcaacctc cagctcggca cctggaacta catgatcatg gccaccgagg gctaccagag ctctggttcg gccactatcg aggtccggga ggcc <210> SEQ ID NO 152 <211> LENGTH: 218 <212> TYPE: PRT <213 > ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 152 Met Val Ser Phe Thr Leu Leu Leu Thr Val Ile Ala Ala Ala Val Thr Gly Thr His Glu Gly Tyr Phe Tyr Ser Phe Trp Thr Asp Gly Arg Gly 40 Ser Val Asp Phe Asn Pro Gly Pro Arg Gly Ser Tyr Ser Val Thr Trp Asn Asn Val Asn Asn Trp Val Gly Gly Lys Gly Trp Asn Pro Gly Pro Pro Arg Lys Ile Ala Tyr Asn Gly Thr Trp Asn Asn Tyr Asn Val Asn Ser Tyr Leu Ala Leu Tyr Gly Trp Thr Arg Asn Pro Leu Val Glu Tyr Tyr Ile Val Glu Ala Tyr Gly Thr Tyr Asn Pro Ser Ser Gly Thr Ala 120 Arg Leu Gly Thr Ile Glu Asp Asp Gly Gly Val Tyr Asp Ile Tyr Lys Thr Thr Arg Tyr Asn Gln Pro Ser Ile Glu Gly Thr Ser Thr Phe Asp 150 Gln Tyr Trp Ser Val Arg Arg Gln Lys Arg Val Gly Gly Thr Ile Asp Thr Gly Lys His Phe Asp Glu Trp Lys Arg Gln Gly Asn Leu Gln Leu 185 Gly Thr Trp Asn Tyr Met Ile Met Ala Thr Glu Gly Tyr Gln Ser Ser Gly Ser Ala Thr Ile Glu Val Arg Glu Ala 210 <210> SEQ ID NO 153 <211> LENGTH: 218 <212> TYPE: PRT <213 > ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 153 Met Val Ser Phe Thr Leu Leu Leu Thr Val Ile Ala Ala Ala Val Thr Thr Ala Ser Pro Leu Glu Val Val Lys Arg Gly Ile Gln Pro Gly Thr 25

Gly Thr His Glu Gly Tyr Phe Tyr Ser Phe Trp Thr Asp Gly Arg Gly

-continued								
35 40 45								
Ser Val Asp Phe Asn Pro Gly Pro Arg Gly Ser Tyr Ser Val Thr Trp 50 55 60								
Asn Asn Val Asn Asn Trp Val Gly Gly Lys Gly Trp Asn Pro Gly Pro 65 70 75 80								
Pro Arg Lys Ile Ala Tyr Asn Gly Thr Trp Asn Asn Tyr Asn Val Asn 85 90 95								
Ser Tyr Leu Ala Leu Tyr Gly Trp Thr Arg Asn Pro Leu Val Glu Tyr 100 105 110								
Tyr Ile Val Glu Ala Tyr Gly Thr Tyr Asn Pro Ser Ser Gly Thr Ala 115 120 125								
Arg Leu Gly Thr Ile Glu Asp Asp Gly Gly Val Tyr Asp Ile Tyr Lys 130 135 140								
Thr Thr Arg Tyr Asn Gln Pro Ser Ile Glu Gly Thr Ser Thr Phe Asp 145 150 155 160								
Gln Tyr Trp Ser Val Arg Arg Gln Lys Arg Val Gly Gly Thr Ile Asp 165 170 175								
Thr Gly Lys His Phe Asp Glu Trp Lys Arg Gln Gly Asn Leu Gln Leu 180 185 190								
Gly Thr Trp Asn Tyr Met Ile Met Ala Thr Glu Gly Tyr Gln Ser Ser 195 200 205								
Gly Ser Ala Thr Ile Glu Val Arg Glu Ala 210 215								
<210> SEQ ID NO 154 <211> LENGTH: 1155 <212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila								
<400> SEQUENCE: 154								
atgegtaete ttaegttegt getggeagee geeceggtgg etgtgettge ceaateteet	60							
ctgtggggcc agtgcggcgg tcaaggctgg acaggtccca cgacctgcgt ttctggcgca	120							
gtatgccaat tegteaatga etggtactee caatgegtge eeggategag caaceeteet	180							
acgggcacca ccagcagcac cactggaagc accccggctc ctactggcgg cggcggcagc	240							
ggaaccggcc tccacgacaa attcaaggcc aagggcaagc tctacttcgg aaccgagatc	300							
gatcactacc atctcaacaa caatgccttg accaacattg tcaagaaaga ctttggtcaa	360							
gtcactcacg agaacagett gaagtgggat getactgage egageegeaa teaatteaac	420							
tttgccaacg ccgacgcggt tgtcaacttt gcccaggcca acggcaagct catccgcggc	480							
cacaccetee tetggeacte teagetgeeg cagtgggtge agaacateaa egacegeaac	540							
accttgaccc aggtcatcga gaaccacgtc accacccttg tcactcgcta caagggcaag	600							
atcctccact gggacgtcgt taacgagatc tttgccgagg acggctcgct ccgcgacagc	660							
gtetteagee gegteetegg egaggaettt gteggeateg cetteegege egecegegee	720							
gccgatccca acgccaagct ctacatcaac gactacaacc tcgacattgc caactacgcc	780							
aaggtgaccc ggggcatggt cgagaaggtc aacaagtgga tcgcccaggg catcccgatc	840							
gacggcatcg gcacccagtg ccacctggcc gggcccggcg ggtggaacac ggccgccggc	900							
gtccccgacg ccctcaaggc cctcgccgcg gccaacgtca aggagatcgc catcaccgag	960							

ctegacateg ceggegeete egecaaegae taceteaeeg teatgaaege etgeeteeag 1020

gtetecaagt gegteggeat cacegtetgg ggegtetetg acaaggacag etggaggteg	1080
agcagcaacc cgctcctctt cgacagcaac taccagccaa aggcggcata caatgctctg	1140
attaatgcct tgtaa	1155
<210> SEQ ID NO 155 <211> LENGTH: 384 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila	
<400> SEQUENCE: 155	
Met Arg Thr Leu Thr Phe Val Leu Ala Ala Ala Pro Val Ala Val Leu 1 5 10 15	
Ala Gln Ser Pro Leu Trp Gly Gln Cys Gly Gly Gln Gly Trp Thr Gly 20 25 30	
Pro Thr Thr Cys Val Ser Gly Ala Val Cys Gln Phe Val Asn Asp Trp 35 40 45	
Tyr Ser Gln Cys Val Pro Gly Ser Ser Asn Pro Pro Thr Gly Thr Thr 50 55 60	
Ser Ser Thr Thr Gly Ser Thr Pro Ala Pro Thr Gly Gly Gly Ser 65 70 75 80	
Gly Thr Gly Leu His Asp Lys Phe Lys Ala Lys Gly Lys Leu Tyr Phe 85 90 95	
Gly Thr Glu Ile Asp His Tyr His Leu Asn Asn Asn Ala Leu Thr Asn 100 105 110	
Ile Val Lys Lys Asp Phe Gly Gln Val Thr His Glu Asn Ser Leu Lys 115 120 125	
Trp Asp Ala Thr Glu Pro Ser Arg Asn Gln Phe Asn Phe Ala Asn Ala 130 135 140	
Asp Ala Val Val Asn Phe Ala Gln Ala Asn Gly Lys Leu Ile Arg Gly 145 150 155 160	
His Thr Leu Leu Trp His Ser Gln Leu Pro Gln Trp Val Gln Asn Ile 165 170 175	
Asn Asp Arg Asn Thr Leu Thr Gln Val Ile Glu Asn His Val Thr Thr 180 185 190	
Leu Val Thr Arg Tyr Lys Gly Lys Ile Leu His Trp Asp Val Val Asn 195 200 205	
Glu Ile Phe Ala Glu Asp Gly Ser Leu Arg Asp Ser Val Phe Ser Arg 210 215 220	
Val Leu Gly Glu Asp Phe Val Gly Ile Ala Phe Arg Ala Ala Arg Ala 225 230 235 240	
Ala Asp Pro Asn Ala Lys Leu Tyr Ile Asn Asp Tyr Asn Leu Asp Ile 245 250 255	
Ala Asn Tyr Ala Lys Val Thr Arg Gly Met Val Glu Lys Val Asn Lys 260 265 270	
Trp Ile Ala Gln Gly Ile Pro Ile Asp Gly Ile Gly Thr Gln Cys His 275 280 285	
Leu Ala Gly Pro Gly Gly Trp Asn Thr Ala Ala Gly Val Pro Asp Ala 290 295 300	
Leu Lys Ala Leu Ala Ala Asn Val Lys Glu Ile Ala Ile Thr Glu 305 310 315 320	
Leu Asp Ile Ala Gly Ala Ser Ala Asn Asp Tyr Leu Thr Val Met Asn	

												COII	CIII	aeu	
				325					330					335	
Ala	Сув	Leu	Gln 340	Val	Ser	Lys	Сув	Val 345	Gly	Ile	Thr	Val	Trp 350	Gly	Val
Ser	Asp	Lys 355	Asp	Ser	Trp	Arg	Ser 360	Ser	Ser	Asn	Pro	Leu 365	Leu	Phe	Asp
Ser	Asn 370	Tyr	Gln	Pro	Lys	Ala 375	Ala	Tyr	Asn	Ala	Leu 380	Ile	Asn	Ala	Leu
<211 <212	L> LE 2> TY	EQ II ENGTH (PE: RGAN)	H: 36	57											
< 400)> SE	EQUE	ICE :	156											
Gln 1	Ser	Pro	Leu	Trp 5	Gly	Gln	Cys	Gly	Gly 10	Gln	Gly	Trp	Thr	Gly 15	Pro
Thr	Thr	Cys	Val 20	Ser	Gly	Ala	Val	Сув 25	Gln	Phe	Val	Asn	Asp 30	Trp	Tyr
Ser	Gln	Сув 35	Val	Pro	Gly	Ser	Ser 40	Asn	Pro	Pro	Thr	Gly 45	Thr	Thr	Ser
Ser	Thr 50	Thr	Gly	Ser	Thr	Pro 55	Ala	Pro	Thr	Gly	Gly 60	Gly	Gly	Ser	Gly
Thr 65	Gly	Leu	His	Asp	Lys 70	Phe	ГЛа	Ala	Lys	Gly 75	ГЛа	Leu	Tyr	Phe	Gly 80
Thr	Glu	Ile	Asp	His 85	Tyr	His	Leu	Asn	Asn 90	Asn	Ala	Leu	Thr	Asn 95	Ile
Val	Lys	Lys	Asp 100	Phe	Gly	Gln	Val	Thr 105	His	Glu	Asn	Ser	Leu 110	Lys	Trp
Asp	Ala	Thr 115	Glu	Pro	Ser	Arg	Asn 120	Gln	Phe	Asn	Phe	Ala 125	Asn	Ala	Asp
Ala	Val 130	Val	Asn	Phe	Ala	Gln 135	Ala	Asn	Gly	Lys	Leu 140	Ile	Arg	Gly	His
Thr 145	Leu	Leu	Trp	His	Ser 150	Gln	Leu	Pro	Gln	Trp 155	Val	Gln	Asn	Ile	Asn 160
Asp	Arg	Asn	Thr	Leu 165	Thr	Gln	Val	Ile	Glu 170	Asn	His	Val	Thr	Thr 175	Leu
Val	Thr	Arg	Tyr 180	ГÀа	Gly	Lys	Ile	Leu 185	His	Trp	Asp	Val	Val 190	Asn	Glu
Ile	Phe	Ala 195	Glu	Asp	Gly	Ser	Leu 200	Arg	Asp	Ser	Val	Phe 205	Ser	Arg	Val
Leu	Gly 210	Glu	Asp	Phe	Val	Gly 215	Ile	Ala	Phe	Arg	Ala 220	Ala	Arg	Ala	Ala
Asp 225	Pro	Asn	Ala	ГÀа	Leu 230	Tyr	Ile	Asn	Asp	Tyr 235	Asn	Leu	Asp	Ile	Ala 240
Asn	Tyr	Ala	Lys	Val 245	Thr	Arg	Gly	Met	Val 250	Glu	Lys	Val	Asn	Lys 255	Trp
Ile	Ala	Gln	Gly 260	Ile	Pro	Ile	Asp	Gly 265	Ile	Gly	Thr	Gln	Сув 270	His	Leu
Ala	Gly	Pro 275	Gly	Gly	Trp	Asn	Thr 280	Ala	Ala	Gly	Val	Pro 285	Asp	Ala	Leu
rys	Ala 290	Leu	Ala	Ala	Ala	Asn 295	Val	Lys	Glu	Ile	Ala 300	Ile	Thr	Glu	Leu

Asp Ile Ala Gly Ala Ser	Ala Asn Asp Tyr Leu 315	Thr Val Met Asn Ala 320							
Cys Leu Gln Val Ser Lys 325	Cys Val Gly Ile Thr 330	Val Trp Gly Val Ser 335							
Asp Lys Asp Ser Trp Arg 340	Ser Ser Ser Asn Pro 345	Leu Leu Phe Asp Ser 350							
Asn Tyr Gln Pro Lys Ala 355	Ala Tyr Asn Ala Leu 360	Ile Asn Ala Leu 365							
<210> SEQ ID NO 157 <211> LENGTH: 687 <212> TYPE: DNA <213> ORGANISM: Myceliophthora thermophila									
<400> SEQUENCE: 157									
atggtctcgc tcaagtccct c	ctcctcgcc gcggcggcga	cgttgacggc ggtgacggcg	60						
cgcccgttcg actttgacga c	ggcaactcg accgaggcgc	tggccaagcg ccaggtcacg	120						
cccaacgcgc agggctacca c	tegggetae ttetaetegt	ggtggtccga cggcggcggc	180						
caggccacct tcaccctgct c	gagggcagc cactaccagg	tcaactggag gaacacgggc	240						
aactttgtcg gtggcaaggg c	tggaacccg ggtaccggcc	ggaccatcaa ctacggcggc	300						
tegttcaace egageggcaa e	ggctacctg gccgtctacg	getggaegea caaceegetg	360						
atcgagtact acgtggtcga g	tegtaeggg acetaeaace	cgggcagcca ggcccagtac	420						
aagggcagct tccagagcga c	ggcggcacc tacaacatct	acgtctcgac ccgctacaac	480						
gegeeetega tegagggeae e	cgcaccttc cagcagtact	ggtccatccg cacctccaag	540						
cgcgtcggcg gctccgtcac c	atgcagaac cacttcaacg	cctgggccca gcacggcatg	600						
cccctcggct cccacgacta c	cagategte gecacegagg	gctaccagag cagcggctcc	660						
tccgacatct acgtccagac t	cactag		687						
<210> SEQ ID NO 158 <211> LENGTH: 228 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 158									
Met Val Ser Leu Lys Ser 1 5	Leu Leu Leu Ala Ala 10	Ala Ala Thr Leu Thr 15							
Ala Val Thr Ala Arg Pro 20	Phe Asp Phe Asp Asp 25	Gly Asn Ser Thr Glu 30							
Ala Leu Ala Lys Arg Gln 35	Val Thr Pro Asn Ala 40	Gln Gly Tyr His Ser 45							
Gly Tyr Phe Tyr Ser Trp 50	Trp Ser Asp Gly Gly 55	Gly Gln Ala Thr Phe 60							
Thr Leu Leu Glu Gly Ser	His Tyr Gln Val Asn 75	Trp Arg Asn Thr Gly							
Asn Phe Val Gly Gly Lys 85	Gly Trp Asn Pro Gly 90	Thr Gly Arg Thr Ile 95							
Asn Tyr Gly Gly Ser Phe	Asn Pro Ser Gly Asn 105	Gly Tyr Leu Ala Val 110							
Tyr Gly Trp Thr His Asn	Pro Leu Ile Glu Tyr 120	Tyr Val Val Glu Ser 125							

Tyr Gly Thr Tyr Asn Pro Gly Ser Gln Ala Gln Tyr Lys Gly Ser Phe Gln Ser Asp Gly Gly Thr Tyr Asn Ile Tyr Val Ser Thr Arg Tyr Asn Ala Pro Ser Ile Glu Gly Thr Arg Thr Phe Gln Gln Tyr Trp Ser Ile Arg Thr Ser Lys Arg Val Gly Gly Ser Val Thr Met Gln Asn His Phe Asn Ala Trp Ala Gln His Gly Met Pro Leu Gly Ser His Asp Tyr Gln Ile Val Ala Thr Glu Gly Tyr Gln Ser Ser Gly Ser Ser Asp Ile Tyr Val Gln Thr His <210> SEQ ID NO 159 <211> LENGTH: 208 <212> TYPE: PRT <213 > ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 159 Arg Pro Phe Asp Phe Asp Asp Gly Asn Ser Thr Glu Ala Leu Ala Lys Arg Gln Val Thr Pro Asn Ala Gln Gly Tyr His Ser Gly Tyr Phe Tyr Ser Trp Trp Ser Asp Gly Gly Gly Gln Ala Thr Phe Thr Leu Leu Glu 40 Gly Ser His Tyr Gln Val Asn Trp Arg Asn Thr Gly Asn Phe Val Gly Gly Lys Gly Trp Asn Pro Gly Thr Gly Arg Thr Ile Asn Tyr Gly Gly Ser Phe Asn Pro Ser Gly Asn Gly Tyr Leu Ala Val Tyr Gly Trp Thr His Asn Pro Leu Ile Glu Tyr Tyr Val Val Glu Ser Tyr Gly Thr Tyr Asn Pro Gly Ser Gln Ala Gln Tyr Lys Gly Ser Phe Gln Ser Asp Gly Gly Thr Tyr Asn Ile Tyr Val Ser Thr Arg Tyr Asn Ala Pro Ser Ile Glu Gly Thr Arg Thr Phe Gln Gln Tyr Trp Ser Ile Arg Thr Ser Lys Arg Val Gly Gly Ser Val Thr Met Gln Asn His Phe Asn Ala Trp Ala 170 Gln His Gly Met Pro Leu Gly Ser His Asp Tyr Gln Ile Val Ala Thr 185 Glu Gly Tyr Gln Ser Ser Gly Ser Ser Asp Ile Tyr Val Gln Thr His 200 <210> SEQ ID NO 160 <211> LENGTH: 681 <212> TYPE: DNA <213 > ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 160

-continued	
atggttaccc tcactcgcct ggcggtcgcc gcggcggcca tgatctccag cactggcctg	60
gctgccccga cgcccgaagc tggccccgac cttcccgact ttgagctcgg ggtcaacaac	120
ctcgcccgcc gcgcgctgga ctacaaccag aactacagga ccagcggcaa cgtcaactac	180
tegeceaceg acaaeggeta eteggteage ttetecaaeg egggagattt tgtegteggg	240
aagggetgga ggaegggage caccagaaac atcacettet egggategae acagcatace	300
tegggeaceg tgetegtete egtetaegge tggaceegga accegetgat egagtaetae	360
gtgcaggagt acacgtccaa cggggccggc tccgctcagg gcgagaagct gggcacggtc	420
gagagegaeg ggggeaegta egagatetgg eggeaecage aggteaacca geegtegate	480
gagggcacct cgaccttctg gcagtacatc tcgaaccgcg tgtccggcca gcggcccaac	540
ggcggcaccg tcaccctcgc caaccacttc gccgcctggc agaagctcgg cctgaacctg	600
ggccagcacg actaccaggt cctggccacc gagggctggg gcaacgccgg cggcagctcc	660
cagtacaccg tcagcggctg a	681
<210> SEQ ID NO 161 <211> LENGTH: 226 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 161	
Met Val Thr Leu Thr Arg Leu Ala Val Ala Ala Ala Ala Met Ile Ser	
1 5 10 15	
Ser Thr Gly Leu Ala Ala Pro Thr Pro Glu Ala Gly Pro Asp Leu Pro 20 25 30	
Asp Phe Glu Leu Gly Val Asn Asn Leu Ala Arg Arg Ala Leu Asp Tyr 35 40 45	
Asn Gln Asn Tyr Arg Thr Ser Gly Asn Val Asn Tyr Ser Pro Thr Asp 50 55 60	
Asn Gly Tyr Ser Val Ser Phe Ser Asn Ala Gly Asp Phe Val Val Gly 65 70 75 80	
Lys Gly Trp Arg Thr Gly Ala Thr Arg Asn Ile Thr Phe Ser Gly Ser	
85 90 95	
Thr Gln His Thr Ser Gly Thr Val Leu Val Ser Val Tyr Gly Trp Thr 100 105 110	
Arg Asn Pro Leu Ile Glu Tyr Tyr Val Gln Glu Tyr Thr Ser Asn Gly 115 120 125	
Ala Gly Ser Ala Gln Gly Glu Lys Leu Gly Thr Val Glu Ser Asp Gly 130 135 140	
Gly Thr Tyr Glu Ile Trp Arg His Gln Gln Val Asn Gln Pro Ser Ile 145 150 155 160	
Glu Gly Thr Ser Thr Phe Trp Gln Tyr Ile Ser Asn Arg Val Ser Gly 165 170 175	
Gln Arg Pro Asn Gly Gly Thr Val Thr Leu Ala Asn His Phe Ala Ala 180 185 190	
Trp Gln Lys Leu Gly Leu Asn Leu Gly Gln His Asp Tyr Gln Val Leu 195 200 205	

Ala Thr Glu Gly Trp Gly Asn Ala Gly Gly Ser Ser Gln Tyr Thr Val210 $\,$ 215 $\,$ 220 $\,$

Ser Gly 225 <210> SEQ ID NO 162

```
<211> LENGTH: 205
<212> TYPE: PRT
<213> ORGANISM: Myceliophthora thermophila
<400> SEQUENCE: 162
Ala Pro Thr Pro Glu Ala Gly Pro Asp Leu Pro Asp Phe Glu Leu Gly
Val Asn Asn Leu Ala Arg Arg Ala Leu Asp Tyr Asn Gln Asn Tyr Arg
Thr Ser Gly Asn Val Asn Tyr Ser Pro Thr Asp Asn Gly Tyr Ser Val
Ser Phe Ser Asn Ala Gly Asp Phe Val Val Gly Lys Gly Trp Arg Thr
Gly Ala Thr Arg Asn Ile Thr Phe Ser Gly Ser Thr Gln His Thr Ser
Gly Thr Val Leu Val Ser Val Tyr Gly Trp Thr Arg Asn Pro Leu Ile
Glu Tyr Tyr Val Gln Glu Tyr Thr Ser Asn Gly Ala Gly Ser Ala Gln
                             105
Gly Glu Lys Leu Gly Thr Val Glu Ser Asp Gly Gly Thr Tyr Glu Ile
                         120
Trp Arg His Gln Gln Val Asn Gln Pro Ser Ile Glu Gly Thr Ser Thr
Phe Trp Gln Tyr Ile Ser Asn Arg Val Ser Gly Gln Arg Pro Asn Gly
                  150
                          155
Gly Thr Val Thr Leu Ala Asn His Phe Ala Ala Trp Gln Lys Leu Gly
                              170
Leu Asn Leu Gly Gln His Asp Tyr Gln Val Leu Ala Thr Glu Gly Trp
                              185
Gly Asn Ala Gly Gly Ser Ser Gln Tyr Thr Val Ser Gly
<210> SEQ ID NO 163
<211> LENGTH: 1833
<212> TYPE: DNA
<213 > ORGANISM: Myceliophthora thermophila
<400> SEQUENCE: 163
qqqcqqaatt ccaccttcta caaccccatc ttccccqqct tctaccccqa tccqaqctqc
atctacgtgc ccgagcgtga ccacaccttc ttctgtgcct cgtcgagctt caacgccttc
ccgggcatcc cgattcatgc cagcaaggac ctgcagaact ggaagttgat cggccatgtg
                                                                  240
ctgaatcgca aggaacagct tccccggctc gctgagacca accggtcgac cagcggcatc
                                                                  300
tgggcaccca ccctccggtt ccatgacgac accttctggt tggtcaccac actagtggac
                                                                  360
gacgaccggc cgcaggagga cgcttccaga tgggacaata ttatcttcaa ggcaaagaat
                                                                  420
cogtatgato ogaggtootg gtocaaggoo gtocacttoa acttoactgg ctacgacacg
gageetttet gggaegaaga tggaaaggtg tacateaceg gegeecatge ttggeatgtt
                                                                  540
ggcccataca tecagcagge egaagtegat etegacaegg gggccgtegg egagtggege
```

atcatctgga acggaacggg cggcatggct cctgaagggc cgcacatcta ccgcaaagat	660
gggtggtact acttgctggc tgctgaaggg gggaccggca tcgaccatat ggtgaccatg	720
gcccggtcga gaaaaatctc cagtccttac gagtccaacc caaacaaccc cgtgttgacc	780
aacgccaaca cgaccagtta ctttcaaacc gtcgggcatt cagacctgtt ccatgacaga	840
catgggaact ggtgggcagt cgccctctcc acccgctccg gtccagaata tcttcactac	900
cccatgggcc gcgagaccgt catgacagcc gtgagctggc cgaaggacga gtggccaacc	960
ttcaccccca tatctggcaa gatgagcggc tggccgatgc ctccttcgca gaaggacatt	1020
cgcggagtcg gcccctacgt caactccccc gacccggaac acctgacctt cccccgctcg	1080
gegeeeetge eggeeeacet caectactgg egataceega accegteete etacaegeeg	1140
teccegeeeg ggeaceeeaa caeceteege etgaceeegt eccgeetgaa eetgacegee	1200
ctcaacggca actacgcggg ggccgaccag accttcgtct cgcgccggca gcagcacacc	1260
ctcttcacct acagcgtcac gctcgactac gcgccgcgga ccgccgggga ggaggccggc	1320
gtgaccgcct teetgacgca gaaccaccac etegacetgg gegtegteet geteeetege	1380
ggeteegeea eegegeeete getgeeggge etgagtagta gtacaactae tactagtagt	1440
agtagtagtc gtccggacga ggaggaggag cgcgaggcgg gcgaagagga agaagagggc	1500
ggacaagact tgatgatece geatgtgegg tteaggggeg agtegtaegt geeegteeeg	1560
gegeeegteg tgtaceegat acceegggee tggagaggeg ggaagettgt gttagagate	1620
egggettgta attegaetea ettetegtte egtgteggge eggaegggag aeggtetgag	1680
eggaeggtgg teatggagge ttegaaegag geegttaget ggggetttae tggaaegetg	1740
ctgggcatct atgcgaccag taatggtggc aacggaacca cgccggcgta tttttcggat	1800
tggaggtaca caccattgga gcagtttagg gat	1833
<210> SEQ ID NO 164 <211> LENGTH: 611 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila	
<400> SEQUENCE: 164	
Met Phe Phe Ala Ser Leu Leu Cly Leu Leu Ala Cly Val Ser Ala 1 5 10 15	
Ser Pro Gly His Gly Arg Asn Ser Thr Phe Tyr Asn Pro Ile Phe Pro 20 25 30	
Gly Phe Tyr Pro Asp Pro Ser Cys Ile Tyr Val Pro Glu Arg Asp His 35 40 45	
Thr Phe Phe Cys Ala Ser Ser Ser Phe Asn Ala Phe Pro Gly Ile Pro 50 60	
Ile His Ala Ser Lys Asp Leu Gln Asn Trp Lys Leu Ile Gly His Val 65 70 75 80	
Leu Asn Arg Lys Glu Gln Leu Pro Arg Leu Ala Glu Thr Asn Arg Ser 85 90 95	
Thr Ser Gly Ile Trp Ala Pro Thr Leu Arg Phe His Asp Asp Thr Phe 100 105 110	
Trp Leu Val Thr Thr Leu Val Asp Asp Asp Arg Pro Gln Glu Asp Ala	

Ser Arg Trp Asp Asn Ile Ile Phe Lys Ala Lys Asn Pro Tyr Asp Pro 130 135 140

Arg 145	Ser	Trp	Ser	Lys	Ala 150	Val	His	Phe	Asn	Phe 155	Thr	Gly	Tyr	Asp	Thr 160
Glu	Pro	Phe	Trp	Asp 165	Glu	Asp	Gly	Lys	Val 170	Tyr	Ile	Thr	Gly	Ala 175	His
Ala	Trp	His	Val 180	Gly	Pro	Tyr	Ile	Gln 185	Gln	Ala	Glu	Val	Asp 190	Leu	Asp
Thr	Gly	Ala 195	Val	Gly	Glu	Trp	Arg 200	Ile	Ile	Trp	Asn	Gly 205	Thr	Gly	Gly
Met	Ala 210	Pro	Glu	Gly	Pro	His 215	Ile	Tyr	Arg	Lys	Asp 220	Gly	Trp	Tyr	Tyr
Leu 225	Leu	Ala	Ala	Glu	Gly 230	Gly	Thr	Gly	Ile	Asp 235	His	Met	Val	Thr	Met 240
Ala	Arg	Ser	Arg	Lys 245	Ile	Ser	Ser	Pro	Tyr 250	Glu	Ser	Asn	Pro	Asn 255	Asn
Pro	Val	Leu	Thr 260	Asn	Ala	Asn	Thr	Thr 265	Ser	Tyr	Phe	Gln	Thr 270	Val	Gly
His	Ser	Asp 275	Leu	Phe	His	Asp	Arg 280	His	Gly	Asn	Trp	Trp 285	Ala	Val	Ala
Leu	Ser 290	Thr	Arg	Ser	Gly	Pro 295	Glu	Tyr	Leu	His	Tyr 300	Pro	Met	Gly	Arg
Glu 305	Thr	Val	Met	Thr	Ala 310	Val	Ser	Trp	Pro	Lys 315	Asp	Glu	Trp	Pro	Thr 320
Phe	Thr	Pro	Ile	Ser 325	Gly	Lys	Met	Ser	Gly 330	Trp	Pro	Met	Pro	Pro 335	Ser
Gln	Lys	Asp	Ile 340	Arg	Gly	Val	Gly	Pro 345	Tyr	Val	Asn	Ser	Pro 350	Asp	Pro
Glu	His	Leu 355	Thr	Phe	Pro	Arg	Ser 360	Ala	Pro	Leu	Pro	Ala 365	His	Leu	Thr
Tyr	Trp 370	Arg	Tyr	Pro	Asn	Pro 375	Ser	Ser	Tyr	Thr	Pro 380	Ser	Pro	Pro	Gly
His 385	Pro	Asn	Thr	Leu	Arg 390	Leu	Thr	Pro	Ser	Arg 395	Leu	Asn	Leu	Thr	Ala 400
Leu	Asn	Gly	Asn	Tyr 405	Ala	Gly	Ala	Asp	Gln 410	Thr	Phe	Val	Ser	Arg 415	Arg
Gln	Gln	His	Thr 420	Leu	Phe	Thr	Tyr	Ser 425	Val	Thr	Leu	Asp	Tyr 430	Ala	Pro
Arg	Thr	Ala 435	Gly	Glu	Glu	Ala	Gly 440	Val	Thr	Ala	Phe	Leu 445	Thr	Gln	Asn
His	His 450	Leu	Asp	Leu	Gly	Val 455	Val	Leu	Leu	Pro	Arg 460	Gly	Ser	Ala	Thr
Ala 465	Pro	Ser	Leu	Pro	Gly 470	Leu	Ser	Ser	Ser	Thr 475	Thr	Thr	Thr	Ser	Ser 480
Ser	Ser	Ser	Arg	Pro 485	Asp	Glu	Glu	Glu	Glu 490	Arg	Glu	Ala	Gly	Glu 495	Glu
Glu	Glu	Glu	Gly 500	Gly	Gln	Asp	Leu	Met 505	Ile	Pro	His	Val	Arg 510	Phe	Arg
Gly	Glu	Ser 515	Tyr	Val	Pro	Val	Pro 520	Ala	Pro	Val	Val	Tyr 525	Pro	Ile	Pro
Arg	Ala 530	Trp	Arg	Gly	Gly	Lуз 535	Leu	Val	Leu	Glu	Ile 540	Arg	Ala	СЛа	Asn

Ser 545	Thr	His	Phe	Ser	Phe 550	Arg	Val	Gly	Pro	Asp 555	Gly	Arg	Arg	Ser	Glu 560
Arg	Thr	Val	Val	Met 565	Glu	Ala	Ser	Asn	Glu 570	Ala	Val	Ser	Trp	Gly 575	Phe
Thr	Gly	Thr	Leu 580	Leu	Gly	Ile	Tyr	Ala 585	Thr	Ser	Asn	Gly	Gly 590	Asn	Gly
Thr	Thr	Pro 595	Ala	Tyr	Phe	Ser	Asp 600	Trp	Arg	Tyr	Thr	Pro 605	Leu	Glu	Gln
Phe	Arg 610	Asp													
<211	> LI	EQ II ENGTH YPE:	I: 59												
<213	3 > OF	RGANI	SM:	Мус	eliop	phtho	ora t	herr	nophi	ila					
<400)> SI	EQUE	ICE :	165											
Ser 1	Pro	Gly	His	Gly 5	Arg	Asn	Ser	Thr	Phe 10	Tyr	Asn	Pro	Ile	Phe 15	Pro
Gly	Phe	Tyr	Pro 20	Asp	Pro	Ser	CÀa	Ile 25	Tyr	Val	Pro	Glu	Arg 30	Asp	His
Thr	Phe	Phe 35	Cys	Ala	Ser	Ser	Ser 40	Phe	Asn	Ala	Phe	Pro 45	Gly	Ile	Pro
Ile	His 50	Ala	Ser	ГÀа	Asp	Leu 55	Gln	Asn	Trp	Lys	Leu 60	Ile	Gly	His	Val
Leu 65	Asn	Arg	Lys	Glu	Gln 70	Leu	Pro	Arg	Leu	Ala 75	Glu	Thr	Asn	Arg	Ser 80
Thr	Ser	Gly	Ile	Trp 85	Ala	Pro	Thr	Leu	Arg 90	Phe	His	Asp	Asp	Thr 95	Phe
Trp	Leu	Val	Thr 100	Thr	Leu	Val	Asp	Asp 105	Asp	Arg	Pro	Gln	Glu 110	Asp	Ala
Ser	Arg	Trp 115	Asp	Asn	Ile	Ile	Phe 120	Lys	Ala	Lys	Asn	Pro 125	Tyr	Asp	Pro
Arg	Ser 130	Trp	Ser	Lys	Ala	Val 135	His	Phe	Asn	Phe	Thr 140	Gly	Tyr	Asp	Thr
Glu 145	Pro	Phe	Trp	Asp	Glu 150	Asp	Gly	Lys	Val	Tyr 155	Ile	Thr	Gly	Ala	His 160
Ala	Trp	His	Val	Gly 165	Pro	Tyr	Ile	Gln	Gln 170	Ala	Glu	Val	Asp	Leu 175	Asp
Thr	Gly	Ala	Val 180	Gly	Glu	Trp	Arg	Ile 185	Ile	Trp	Asn	Gly	Thr 190	Gly	Gly
Met	Ala	Pro 195	Glu	Gly	Pro	His	Ile 200	Tyr	Arg	Lys	Asp	Gly 205	Trp	Tyr	Tyr
Leu	Leu 210	Ala	Ala	Glu	Gly	Gly 215	Thr	Gly	Ile	Asp	His 220	Met	Val	Thr	Met
Ala 225	Arg	Ser	Arg	Lys	Ile 230	Ser	Ser	Pro	Tyr	Glu 235	Ser	Asn	Pro	Asn	Asn 240
Pro	Val	Leu	Thr	Asn 245	Ala	Asn	Thr	Thr	Ser 250	Tyr	Phe	Gln	Thr	Val 255	Gly
His	Ser	Asp	Leu 260	Phe	His	Asp	Arg	His 265	Gly	Asn	Trp	Trp	Ala 270	Val	Ala
Leu	Ser	Thr 275	Arg	Ser	Gly	Pro	Glu 280	Tyr	Leu	His	Tyr	Pro 285	Met	Gly	Arg

60 120 180

240

Glu	Thr 290	Val	Met	Thr	Ala	Val 295	Ser	Trp	Pro	Lys	Asp 300	Glu	Trp	Pro	Thr
Phe 305	Thr	Pro	Ile	Ser	Gly 310	Lys	Met	Ser	Gly	Trp 315	Pro	Met	Pro	Pro	Ser 320
Gln	Lys	Asp	Ile	Arg 325	Gly	Val	Gly	Pro	Tyr 330	Val	Asn	Ser	Pro	Asp 335	Pro
Glu	His	Leu	Thr 340	Phe	Pro	Arg	Ser	Ala 345	Pro	Leu	Pro	Ala	His 350	Leu	Thr
Tyr	Trp	Arg 355	Tyr	Pro	Asn	Pro	Ser 360	Ser	Tyr	Thr	Pro	Ser 365	Pro	Pro	Gly
His	Pro 370	Asn	Thr	Leu	Arg	Leu 375	Thr	Pro	Ser	Arg	Leu 380	Asn	Leu	Thr	Ala
Leu 385	Asn	Gly	Asn	Tyr	Ala 390	Gly	Ala	Asp	Gln	Thr 395	Phe	Val	Ser	Arg	Arg 400
Gln	Gln	His	Thr	Leu 405	Phe	Thr	Tyr	Ser	Val 410	Thr	Leu	Asp	Tyr	Ala 415	Pro
Arg	Thr	Ala	Gly 420	Glu	Glu	Ala	Gly	Val 425	Thr	Ala	Phe	Leu	Thr 430	Gln	Asn
His	His	Leu 435	Asp	Leu	Gly	Val	Val 440	Leu	Leu	Pro	Arg	Gly 445	Ser	Ala	Thr
Ala	Pro 450	Ser	Leu	Pro	Gly	Leu 455	Ser	Ser	Ser	Thr	Thr 460	Thr	Thr	Ser	Ser
Ser 465	Ser	Ser	Arg	Pro	Asp 470	Glu	Glu	Glu	Glu	Arg 475	Glu	Ala	Gly	Glu	Glu 480
Glu	Glu	Glu	Gly	Gly 485	Gln	Asp	Leu	Met	Ile 490	Pro	His	Val	Arg	Phe 495	Arg
Gly	Glu	Ser	Tyr 500	Val	Pro	Val	Pro	Ala 505	Pro	Val	Val	Tyr	Pro 510	Ile	Pro
Arg	Ala	Trp 515	Arg	Gly	Gly	Lys	Leu 520	Val	Leu	Glu	Ile	Arg 525	Ala	Сув	Asn
Ser	Thr 530	His	Phe	Ser	Phe	Arg 535	Val	Gly	Pro	Asp	Gly 540	Arg	Arg	Ser	Glu
Arg 545	Thr	Val	Val	Met	Glu 550	Ala	Ser	Asn	Glu	Ala 555	Val	Ser	Trp	Gly	Phe 560
Thr	Gly	Thr	Leu	Leu 565	Gly	Ile	Tyr	Ala	Thr 570	Ser	Asn	Gly	Gly	Asn 575	Gly
Thr	Thr	Pro	Ala 580	Tyr	Phe	Ser	Asp	Trp 585	Arg	Tyr	Thr	Pro	Leu 590	Glu	Gln
Phe	Arg	Asp 595													
<211 <212	L> LE 2> TY	EQ II ENGTH (PE: RGAN)	H: 94 DNA	12	eliop	phtho	ora t	herr	nophi	ila					
<400)> SI	EQUE	ICE :	166											
					et et	cgg	eggea	a cto	egeed	ctcg	cgg	gcago	cag g	gctgg	getgee
gcgo	cacco	gg t	ctto	gaco	ga go	ctgat	gegg	g ccg	gacgo	gege	cgct	ggt	geg (ccg	aggeg
gcc	ctgca	agc a	aggto	gacca	aa ct	ttg	gcago	c aac	cccgt	cca	acad	cgaag	gat g	gttca	atctac

gtgcccgaca agctggcccc caacccgccc atcatagtgg ccatccacta ctgcaccggc

accgcccagg cctactactc gggctcccct tacgcccgcc tcgccgacca gaagggcttc	300
atogtoatot accoggagto cocotacago ggcacotgtt gggacgtoto gtogogogo	360
geeetgaeee acaacggegg eggegaeage aactegateg ceaacatggt cacetacace	420
ctcgaaaagt acaatggcga cgccagcaag gtctttgtca ccggctcctc gtccggcgcc	480
atgatgacga acgtgatggc cgccgcgtac ccggaactgt tcgcggcagg aatcgcctac	540
tegggegtge eegeeggetg ettetacage eagteeggag geaceaacge gtggaacage	600
tegtgegeca aegggeagat caactegaeg ceceaggtgt gggeeaagat ggtettegae	660
atgtaccegg aatacgaegg eeegegeece aagatgeaga tetaceaegg eteggeegae	720
ggcacgctca gacccagcaa ctacaacgag accatcaagc agtggtgcgg cgtcttcggc	780
ttegactaca ecegeecega eaceaeceag gecaacteee egeaggeegg etacaecaec	840
tacacctggg gcgagcagca gctcgtcggc atctacgccc agggcgtcgg acacacggtc	900
cccatccgcg gcagcgacga catggccttc tttggcctgt ga	942
040 GEO TO NO 465	
<210> SEQ ID NO 167 <211> LENGTH: 313	
<212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila	
<400> SEQUENCE: 167	
Met Lys Leu Leu Gly Lys Leu Ser Ala Ala Leu Ala Leu Ala Gly Ser	
1 5 10 15	
Arg Leu Ala Ala Ala His Pro Val Phe Asp Glu Leu Met Arg Pro Thr 20 25 30	
Ala Pro Leu Val Arg Pro Arg Ala Ala Leu Gln Gln Val Thr Asn Phe 35 40 45	
Gly Ser Asn Pro Ser Asn Thr Lys Met Phe Ile Tyr Val Pro Asp Lys 50 55 60	
Leu Ala Pro Asn Pro Pro Ile Ile Val Ala Ile His Tyr Cys Thr Gly 65 70 75 80	
Thr Ala Gln Ala Tyr Tyr Ser Gly Ser Pro Tyr Ala Arg Leu Ala Asp 85 90 95	
Gln Lys Gly Phe Ile Val Ile Tyr Pro Glu Ser Pro Tyr Ser Gly Thr 100 105 110	
Cys Trp Asp Val Ser Ser Arg Ala Ala Leu Thr His Asn Gly Gly 115 120 125	
Asp Ser Asn Ser Ile Ala Asn Met Val Thr Tyr Thr Leu Glu Lys Tyr 130 135 140	
Asn Gly Asp Ala Ser Lys Val Phe Val Thr Gly Ser Ser Ser Gly Ala 145 150 155 160	
Met Met Thr Asn Val Met Ala Ala Ala Tyr Pro Glu Leu Phe Ala Ala 165 170 175	
Gly Ile Ala Tyr Ser Gly Val Pro Ala Gly Cys Phe Tyr Ser Gln Ser 180 185 190	
Gly Gly Thr Asn Ala Trp Asn Ser Ser Cys Ala Asn Gly Gln Ile Asn	
195 200 205	
Ser Thr Pro Gln Val Trp Ala Lys Met Val Phe Asp Met Tyr Pro Glu 210 215 220	

Tyr Asp Gly Pro Arg Pro Lys Met Gln Ile Tyr His Gly Ser Ala Asp

225					230					235					240
Gly	Thr	Leu	Arg	Pro 245	Ser	Asn	Tyr	Asn	Glu 250	Thr	Ile	ГÀЗ	Gln	Trp 255	Cya
Gly	Val	Phe	Gly 260	Phe	Asp	Tyr	Thr	Arg 265	Pro	Asp	Thr	Thr	Gln 270	Ala	Asn
Ser	Pro	Gln 275	Ala	Gly	Tyr	Thr	Thr 280	Tyr	Thr	Trp	Gly	Glu 285	Gln	Gln	Leu
Val	Gly 290	Ile	Tyr	Ala	Gln	Gly 295	Val	Gly	His	Thr	Val 300	Pro	Ile	Arg	Gly
Ser 305	Asp	Asp	Met	Ala	Phe 310	Phe	Gly	Leu							
<211 <212	0 > SI L > LI 2 > TY 3 > OF	ENGTI (PE :	H: 29	92	elio₁	phtho	ora t	herr	nophi	ila					
< 400)> SI	EQUEI	ICE:	168											
His 1	Pro	Val	Phe	Asp 5	Glu	Leu	Met	Arg	Pro 10	Thr	Ala	Pro	Leu	Val 15	Arg
Pro	Arg	Ala	Ala 20	Leu	Gln	Gln	Val	Thr 25	Asn	Phe	Gly	Ser	Asn 30	Pro	Ser
Asn	Thr	Lys 35	Met	Phe	Ile	Tyr	Val 40	Pro	Asp	Lys	Leu	Ala 45	Pro	Asn	Pro
Pro	Ile 50	Ile	Val	Ala	Ile	His 55	Tyr	Cys	Thr	Gly	Thr 60	Ala	Gln	Ala	Tyr
Tyr 65	Ser	Gly	Ser	Pro	Tyr 70	Ala	Arg	Leu	Ala	Asp 75	Gln	ГÀа	Gly	Phe	Ile 80
Val	Ile	Tyr	Pro	Glu 85	Ser	Pro	Tyr	Ser	Gly 90	Thr	Сув	Trp	Asp	Val 95	Ser
Ser	Arg	Ala	Ala 100	Leu	Thr	His	Asn	Gly 105	Gly	Gly	Asp	Ser	Asn 110	Ser	Ile
Ala	Asn	Met 115	Val	Thr	Tyr	Thr	Leu 120	Glu	Lys	Tyr	Asn	Gly 125	Asp	Ala	Ser
Lys	Val 130	Phe	Val	Thr	Gly	Ser 135	Ser	Ser	Gly	Ala	Met 140	Met	Thr	Asn	Val
Met 145	Ala	Ala	Ala	Tyr	Pro 150	Glu	Leu	Phe	Ala	Ala 155	Gly	Ile	Ala	Tyr	Ser 160
Gly	Val	Pro	Ala	Gly 165	CAa	Phe	Tyr	Ser	Gln 170	Ser	Gly	Gly	Thr	Asn 175	Ala
Trp	Asn	Ser	Ser 180	Cys	Ala	Asn	Gly	Gln 185	Ile	Asn	Ser	Thr	Pro 190	Gln	Val
Trp	Ala	Lys 195	Met	Val	Phe	Asp	Met 200	Tyr	Pro	Glu	Tyr	Asp 205	Gly	Pro	Arg
Pro	Lys 210	Met	Gln	Ile	Tyr	His 215	Gly	Ser	Ala	Asp	Gly 220	Thr	Leu	Arg	Pro
Ser 225	Asn	Tyr	Asn	Glu	Thr 230	Ile	Lys	Gln	Trp	Cys 235	Gly	Val	Phe	Gly	Phe 240
Asp	Tyr	Thr	Arg	Pro 245	Asp	Thr	Thr	Gln	Ala 250	Asn	Ser	Pro	Gln	Ala 255	Gly
Tyr	Thr	Thr	Tyr 260	Thr	Trp	Gly	Glu	Gln 265	Gln	Leu	Val	Gly	Ile 270	Tyr	Ala

```
Gln Gly Val Gly His Thr Val Pro Ile Arg Gly Ser Asp Asp Met Ala
        275
                            280
Phe Phe Gly Leu
    290
<210> SEQ ID NO 169
<211> LENGTH: 840
<212> TYPE: DNA
<213 > ORGANISM: Myceliophthora thermophila
<400> SEQUENCE: 169
atgatetegg tteetgetet egetetggee ettetggeeg eegteeaggt egtegagtet
qcctcqqctq qctqtqqcaa qqcqcccct tcctcqqqca ccaaqtcqat qacqqtcaac
ggcaagcagc gccagtacat tctccagctg cccaacaact acgacgccaa caaggcccac
                                                                     180
agggtggtga tegggtacca etggegegae ggatecatga aegaegtgge caaeggegge
                                                                     240
ttctacgatc tgcggtcccg ggcgggcgac agcaccatct tcgttgcccc caacggcctc
                                                                     300
aatgccggat gggccaacgt gggcggcgag gacatcacct ttacggacca gatcgtagac
                                                                     360
atgctcaaga acqacctctq cqtqqacqaq acccaqttct ttqctacqqq ctqqaqctat
                                                                     420
ggcggtgcca tgagccatag cgtggcttgt tctcggccag acgtcttcaa ggccgtcgcg
                                                                     480
                                                                     540
qtcatcqccq qqqcccaqct qtccqqctqc qccqqcqqca cqacqcccqt qqcqtaccta
ggcatccacg gagccgccga caacgtcctg cccatcgacc tcggccgcca gctgcgcgac
                                                                     600
aagtggctgc agaccaacgg ctgcaactac cagggcgccc aggaccccgc gccgggccag
                                                                     660
caggeecaca teaagaceae etacagetge teeegegege eegteaeetg gateggeeae
                                                                     720
gggggcggcc acgtccccga ccccacgggc aacaacggcg tcaagtttgc gccccaggag
                                                                     780
acctgggact tetttgatge egeegtegga geggeeggeg egeagageee gatgacataa
                                                                      840
<210> SEQ ID NO 170
<211> LENGTH: 279
<212> TYPE: PRT
<213 > ORGANISM: Myceliophthora thermophila
<400> SEQUENCE: 170
Met Ile Ser Val Pro Ala Leu Ala Leu Ala Leu Leu Ala Ala Val Gln
Val Val Glu Ser Ala Ser Ala Gly Cys Gly Lys Ala Pro Pro Ser Ser
Gly Thr Lys Ser Met Thr Val Asn Gly Lys Gln Arg Gln Tyr Ile Leu
Gln Leu Pro Asn Asn Tyr Asp Ala Asn Lys Ala His Arg Val Val Ile
Gly Tyr His Trp Arg Asp Gly Ser Met Asn Asp Val Ala Asn Gly Gly
Phe Tyr Asp Leu Arg Ser Arg Ala Gly Asp Ser Thr Ile Phe Val Ala
Pro Asn Gly Leu Asn Ala Gly Trp Ala Asn Val Gly Gly Glu Asp Ile
                                105
Thr Phe Thr Asp Gln Ile Val Asp Met Leu Lys Asn Asp Leu Cys Val
                            120
                                                125
Asp Glu Thr Gln Phe Phe Ala Thr Gly Trp Ser Tyr Gly Gly Ala Met
                    135
                                         140
```

Ser His Ser Val Ala Cys Ser Arg Pro Asp Val Phe Lys Ala Val Ala Val Ile Ala Gly Ala Gln Leu Ser Gly Cys Ala Gly Gly Thr Thr Pro $165 \\ 170 \\ 175 \\ 175$ Val Ala Tyr Leu Gly Ile His Gly Ala Ala Asp Asn Val Leu Pro Ile Asp Leu Gly Arg Gln Leu Arg Asp Lys Trp Leu Gln Thr Asn Gly Cys Asn Tyr Gln Gly Ala Gln Asp Pro Ala Pro Gly Gln Gln Ala His Ile Lys Thr Thr Tyr Ser Cys Ser Arg Ala Pro Val Thr Trp Ile Gly His Gly Gly Gly His Val Pro Asp Pro Thr Gly Asn Asn Gly Val Lys Phe 245 250 Ala Pro Gln Glu Thr Trp Asp Phe Phe Asp Ala Ala Val Gly Ala Ala 265 260 Gly Ala Gln Ser Pro Met Thr 275 <210> SEQ ID NO 171 <211> LENGTH: 259 <212> TYPE: PRT <213> ORGANISM: Myceliophthora thermophila <400> SEQUENCE: 171 Ala Ser Ala Gly Cys Gly Lys Ala Pro Pro Ser Ser Gly Thr Lys Ser Met Thr Val Asn Gly Lys Gln Arg Gln Tyr Ile Leu Gln Leu Pro Asn 25 Asn Tyr Asp Ala Asn Lys Ala His Arg Val Val Ile Gly Tyr His Trp Arg Asp Gly Ser Met Asn Asp Val Ala Asn Gly Gly Phe Tyr Asp Leu Arg Ser Arg Ala Gly Asp Ser Thr Ile Phe Val Ala Pro Asn Gly Leu Asn Ala Gly Trp Ala Asn Val Gly Gly Glu Asp Ile Thr Phe Thr Asp Gln Ile Val Asp Met Leu Lys Asn Asp Leu Cys Val Asp Glu Thr Gln Phe Phe Ala Thr Gly Trp Ser Tyr Gly Gly Ala Met Ser His Ser Val Ala Cys Ser Arg Pro Asp Val Phe Lys Ala Val Ala Val Ile Ala Gly Ala Gln Leu Ser Gly Cys Ala Gly Gly Thr Thr Pro Val Ala Tyr Leu 150 Gly Ile His Gly Ala Ala Asp Asn Val Leu Pro Ile Asp Leu Gly Arg 170 Gln Leu Arg Asp Lys Trp Leu Gln Thr Asn Gly Cys Asn Tyr Gln Gly 185 Ala Gln Asp Pro Ala Pro Gly Gln Gln Ala His Ile Lys Thr Thr Tyr Ser Cys Ser Arg Ala Pro Val Thr Trp Ile Gly His Gly Gly His

	210					215					220				
Val 225	Pro	Asp	Pro	Thr	Gly 230	Asn	Asn	Gly	Val	Lys 235	Phe	Ala	Pro	Gln	Glu 240
Thr	Trp	Asp	Phe	Phe 245	Asp	Ala	Ala	Val	Gly 250	Ala	Ala	Gly	Ala	Gln 255	Ser
Pro	Met	Thr													

We claim:

- 1. A non-naturally occurring polynucleotide sequence encoding a glycoside hydrolase 61 (GH61) variant protein that is at least about 90% identical to SEQ ID NO:4.
- 2. A non-naturally occurring polynucleotide sequence of claim 1, wherein said non-naturally occurring polynucleotide encodes a GH61 variant protein, wherein said GH61 variant protein is at least 90% identical to SEQ ID NO:5.
- 3. A recombinant nucleic acid construct comprising the non-naturally occurring polynucleotide sequence of claim 1.
- **4.** The recombinant nucleic acid construct of claim **3**, wherein said non-naturally occurring polynucleotide sequence encoding a glycoside hydrolase (GH61) variant protein is operably linked to a promoter.
- 5. The recombinant nucleic acid construct of claim 3, wherein said construct further encodes at least one enzyme in addition to said GH61 variant protein.
- **6**. The nucleic acid construct of claim **5**, wherein said at least one additional enzyme is selected from wild-type GH61 enzymes, endoglucanases (EG), beta-glucosidases (BGL), Type 1 cellobiohydrolases (CBH1), Type 2 cellobiohydrolases (CBH2), cellulases, hemicellulases, xylanases, xylosidases, amylases, glucoamylases, proteases, esterases, and lipases.

- 7. A host cell comprising the nucleic acid construct of claim 3.
- **8**. The host cell of claim 7, wherein said host cell further produces at least one enzyme selected from wild-type GH61 enzymes, endoglucanases (EG), beta-glucosidases (BGL), Type 1 cellobiohydrolases (CBH1), Type 2 cellobiohydrolases (CBH2), cellulases, hemicellulases, xylanases, xylosidases, amylases, glucoamylases, proteases, esterases, and lipases.
- 9. The host cell of claim 7, wherein said host cell is a yeast or filamentous fungal cell.
- 10. The host cell of claim 9, wherein said host cell is *Myceliophthora thermophila*.
- 11. A method of producing a GH61 variant protein comprising culturing the host cell set forth in claim 7, under conditions such that said host cell produces said GH61 variant proteins.
- 12. The method of claim 11, wherein said host cell further produces at least one additional enzyme selected from wild-type GH61 enzymes, endoglucanases (EG), beta-glucosidases (BGL), Type 1 cellobiohydrolases (CBH1), Type 2 cellobiohydrolases (CBH2), cellulases, hemicellulases, xylanases, xylosidases, amylases, glucoamylases, proteases, esterases, and lipases.

* * * * *