(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2012/145544 A2

26 October 2012 (26.10.2012) WIPOIPCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
G06Q 50/10 (2012.01) kind of national protection available). AE, AG, AL, AM,
21) International Apolication Number- AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(D) International Application Number: @ 121034300 CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
(22) International Filing Date: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
19 April 2012 (19.04.2012) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
- . MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(25) Filing Language: English OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
(26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data:
61/476.976 19 April 2011 (19.04.2011) Us (84) Designated States (unless otherwise indicated, for every
’ kind of regional protection available): ARIPO (BW, GH,
(71) Applicant (for all designated States except US): SEVEN GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
NETWORKS, INC. [US/US]; 2100 Seaport Boulevard, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,
Suite 100, Redwood City, CA 94063 (US). TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU
(72) Inventors; and P T > > d Y al wr wnr
(75) Inventors/Applicants (for US only): LUNA, Michael LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, S, SK,
; . . SM, TR), OAPI (BF, BI, CF, CG, CIL, CM, GA, GN, GQ,
[US/US]; 519 Curie Drive, San Jose, CA 94123 (US). GW ML, MR. NE. SN. TD. TG
BOTT, Ross [US/US]; 152 Poplar Street, Half Moon Bay, -ML, MR, NE, 8N, TD, TG).
CA 94019 (US). Published:

74

Agents: FU, Yenyun et al.; Perkins Coie LLP, P. O. Box
1208, Seattle, WA 98111-1208 (US).

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: DEVICE RESOURCE SHARING FOR NETWORK RESOURCE CONSERVATION

Host Server (1))
100

wo 2012/145544 A2 |[IN I 0000 0 A

(Optional) '

102A
Device X
(Memory, database
entries, database
parameters, location)
102B 102C 102N
Device Y Device Z Device N
{Memory, database (Memory, database .| (Memory, database
entries, database entries, database entries, database
parameters, location) parameters, location) parameters, location)
WiFi Bluetooth,

etc.

FIG. IC

(57) Abstract: Systems and methods for device resource sharing for network resource conservation are disclosed. In one embodi-
ment, the method can include, for example: detecting that multiple devices are attempting to access a same content source over a mo -
bile network. The same content source can then be polled once in a single poll event and the content received in response to the
single poll event of the one same content source is transmitted to one device of the multiple devices. The other devices of the mul-
tiple devices can receive the content from the one device, over a non-cellular connection.

WO 2012/145544 PCT/US2012/034300

DEVICE RESOURCE SHARING FOR NETWORK RESOURCE CONSERVATION

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Patent Application No. 61/476,976
entitled “VIRTUAL MEMORY, SHARED MEMORY MANAGEMENT AND SOCIAL
CACHING BASED ON GEO-LOCATION IN A NETWORKED ENVIRONMENT?”, which

was filed on April 19, 2011, the contents of which are all incorporated by reference herein.

[0002] This application is related to U.S. Patent Application No. entitled “SHARED
RESOURCE AND VIRTUAL RESOURCE MANAGEMENT IN A NETWORKED
ENVIRONMENT” (Attorney Docket No. 76443-8117.US01), filed herewith, the contents of

which are all incorporated by reference herein.

[0003] This application is related to U.S. Patent Application No. entitled “SOCIAL
CACHING FOR DEVICE RESOURCE SHARING AND MANAGEMENT” (Attorney Docket
No. 76443-8118.US01), filed herewith, the contents of which are all incorporated by reference

herein.

BACKGROUND

[0004] Consumers are increasingly turning to mobile devices such as Smart phones and tablets to
access online services whether it’s streaming videos or “over-the-top” Internet services and this
is driving demand for mobile data through the roof. Wireless networks are not designed and are
not ready to handle the resulting traffic load. In addition, mobile apps, whether they are web-
based or installed on the device, still rely on technologies and protocols designed for a “wireline”
Internet and generate an unprecedented level of chattiness and signaling overload when used over

wireless networks

[0005] In addition to the demand on wireless networks, is also the need for additional storage
(e.g., memory, USB or hard disk, etc.). Increasingly more types of devices handle, process,
and/or are used for accessing, capturing, or viewing media content the storage needs for these
devices have exploded and traditional storage mechanisms have not kept up with data needs to
ensure or support the user experience enhancements that should accompany the growth in

computing power and device functionality expansions.

WO 2012/145544 PCT/US2012/034300
[0006] In particular, the constant updates, feeds, multimedia (images, video, pictures, audio, etc.)
sharing of mobile applications and web-based content in today’s social-driven mobile activities
continue to clutter our mobile device storage and mobile network use, regardless of whether there
are more cfficient ways of communicating the update. For example, during popular sporting
events such as the Superbowl, many users are frantically refreshing their mobile web-browsers or
mobile applications to stay current with the present score. However, each time the score is
updated, the same information is individually transmitted to each individual device making the

request, thus inefficiently taking up both network and device resources.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIG. 1A illustrates an example diagram of a system where a host server facilitates
management of traffic, content caching, and/or resource conservation between mobile devices
(e.g., wireless devices), an application server or content provider, or other servers such as an ad
server, promotional content server, or an e-coupon server in a wireless network (or broadband
network) for resource conservation. The host server can further facilitate resource sharing on the

device side to further conserve network resources.

[0008] FIG. 1B illustrates an example diagram of a proxy and cache system distributed
between the host server and device which facilitates network traffic management between a
device, an application server or content provider, or other servers such as an ad server,
promotional content server, or an e-coupon server for resource conservation and content caching.
The proxy system distributed among the host server and the device can further facilitate resource

sharing on the device side to further conserve network resources.

[0009] FIG. 1C depicts an example showing how virtual memory sharing and database
management enables peer-to-peer distribution of information in a network among any type of
electronic devices and among mobile devices such as mobile phones/smart phones or tablet

devices.

[0010] FIG. 1D depicts a table showing an example state profile for a device having location-

based state profiles for resource sharing and pooling with other devices.

[0011] FIGS. 1E-F depict tables showing virtual resource allocation to a given device based on

device state.

[0012] FIG. 2A depicts a block diagram illustrating an example of client-side components

in a distributed proxy and cache system residing on a mobile device (e.g., wireless device) that

2

WO 2012/145544 PCT/US2012/034300

manages traffic in a wireless network (or broadband network) for resource conservation, content
caching, and/or traffic management. The client-side proxy (or local proxy) can further categorize
mobile traffic and/or implement delivery policies based on application behavior, content priority,

user activity, and/or user expectations.

[0013] FIG. 2B depicts a block diagram illustrating a further example of components in the
cache system shown in the example of FIG. 2A which is capable of caching and adapting
caching strategies for mobile application behavior and/or network conditions. Components

capable of detecting long poll requests and managing caching of long polls are also illustrated.

[0014] FIG. 2C depicts a block diagram illustrating additional components in the
application behavior detector and the caching policy manager in the cache system shown in the
example of FIG. 2A which is further capable of detecting cache defeat and perform caching of

content addressed by identifiers intended to defeat cache.

[0015] FIG. 2D depicts a block diagram illustrating examples of additional components in
the local cache shown in the example of FIG. 2A which is further capable of performing mobile
traffic categorization and policy implementation based on application behavior and/or user

activity.

[0016] FIG. 3A depicts a block diagram illustrating an example of server-side components
in a distributed proxy and cache system that manages traffic in a wireless network (or broadband
network) for resource conservation, content caching, and/or traffic management. The server-side
proxy (or proxy server) can further categorize mobile traffic and/or implement delivery policies

based on application behavior, content priority, user activity, and/or user expectations.

[0017] FIG. 3B depicts a block diagram illustrating a further example of components in the
caching policy manager in the cache system shown in the example of FIG. 3A which is capable
of caching and adapting caching strategies for mobile application behavior and/or network
conditions. Components capable of detecting long poll requests and managing caching of long

polls are also illustrated.

[0018] FIG. 3C depicts a block diagram illustrating another example of components in the
proxy system shown in the example of FIG. 3A which is further capable of managing and

detecting cache defeating mechanisms and monitoring content sources.

[0019] FIG. 3D depicts a block diagram illustrating examples of additional components in

proxy server shown in the example of FIG. 3A which is further capable of performing mobile

3

WO 2012/145544 PCT/US2012/034300
traffic categorization and policy implementation based on application behavior and/or traffic

priority.

[0020] FIG. 4A depicts a block diagram illustrating another example of client-side

components in a distributed proxy and cache system, further including a social caching module.

[0021] FIG. 4B depicts a block diagram illustrating additional components in the social

caching module shown in the example of FIG. 4A.

[0022] FIG. 5A depicts a block diagram illustrating an example of server-side components

in a distributed proxy and cache system, further including a social caching module.

[0023] FIG. 5B depicts a block diagram illustrating additional components in the social

caching module shown in the example of FIG. SA.

[0024] FIG. 6A depicts a flow diagram illustrating an example process for distributed
content caching between a mobile device (e.g., any wireless device) and remote proxy and the

distributed management of content caching.

[0025] FIG. 6B depicts a timing diagram showing how data requests from a mobile device
(e.g., any wireless device) to an application server/content provider in a wireless network (or
broadband network) can be coordinated by a distributed proxy system in a manner such that
network and battery resources are conserved through using content caching and monitoring

performed by the distributed proxy system.

[0026] FIG. 7 depicts a table showing examples of different traffic or application category

types which can be used in implementing network access and content delivery policies.

[0027] FIG. 8 depicts a table showing examples of different content category types which

can be used in implementing network access and content delivery policies.

[0028] FIG. 9 depicts an interaction diagram showing how polls having data requests from a
mobile device (e.g., any wireless device)to an application server/content provider over a wireless
network (or broadband network) can be can be cached on the local proxy and managed by the

distributed caching system.

[0029] FIG. 10 depicts an interaction diagram showing how polls for content from an

application server/content provider which employs cache-defeating mechanisms in identifiers

WO 2012/145544 PCT/US2012/034300

(e.g., identifiers intended to defeat caching) over a wireless network (or broadband network) can

be detected and locally cached.

[0030] FIG. 11 depicts a flow chart illustrating an example process for collecting
information about a request and the associated response to identify cacheability and caching the

reésponsc.

[0031] FIG. 12 depicts a flow chart illustrating an example process showing decision flows

to determine whether a response to a request can be cached.

[0032] FIG. 13 depicts a flow chart illustrating an example process for determining

potential for cacheability based on request periodicity and/or response repeatability.

[0033] FIG. 14 depicts a flow chart illustrating an example process for dynamically

adjusting caching parameters for a given request or client.

[0034] FIG. 15 depicts a flow chart illustrating example processes for application and/or
traffic (data) categorization while factoring in user activity and expectations for implementation

of network access and content delivery policies.

[0035] FIG. 16A depicts a flow chart illustrating example processes for handling traffic

which is to be suppressed at least temporarily determined from application/traffic categorization.

[0036] FIG. 16B depicts a flow chart illustrating an example process for selection of a
network configuration for use in sending traffic based on application and/or traffic (data)

categorization.

[0037] FIG. 16C depicts a flow chart illustrating an example process for implementing
network access and content delivery policies based on application and/or traffic (data)

categorization.

[0038] FIG. 17 depicts a flow chart illustrating an example process for network selection

based on mobile user activity or user expectations.

[0039] FIG. 18 depicts a data timing diagram showing an example of detection of periodic

request which may be suitable for caching.

[0040] FIG. 19 depicts a data timing diagram showing an example of detection of change in

request intervals and updating of server polling rate in response thereto.

WO 2012/145544 PCT/US2012/034300
[0041] FIG. 20 depicts a data timing diagram showing an example of serving foreground

requests with cached entries.

[0042] FIG. 21 depicts a data timing diagram showing an example of the possible effect of
cache invalidation that occurs after outdated content has been served once again to a requesting

application.

[0043] FIG. 22 depicts a data timing diagram showing cache management and response

taking into account the time-to-live (TTL) set for cache entries.

[0044] FIG. 23 depicts a flow chart illustrating an example process for device resource

sharing when multiple devices attempt to access a same content source over a mobile network.

[0045] FIG. 24 depicts a flow chart illustrating an example process for device resource
sharing when determined that two mobile devices that are to receive the same content over a

mobile network also meet a criterion further illustrated in the flow charts of FIGS. 25A-B.

[0046] FIG. 26 depicts a flow chart illustrating an example process for using a virtual

memory network for caching in such a manner that device resources are shared.

[0047] FIG. 27 depicts a flow chart illustrating an example process for using a distributed

proxy system to manage caching using a virtual memory network.

[0048] FIG. 28 depicts a flow chart illustrating an example process for a mobile device to

use the physical storage of another device for caching.

[0049] FIG. 29 shows a diagrammatic representation of a machine in the example form of a
computer system within which a set of instructions, for causing the machine to perform any one

or more of the methodologies discussed herein, may be executed.

DETAILED DESCRIPTION

[0050] The following description and drawings are illustrative and are not to be construed as
limiting. Numerous specific details are described to provide a thorough understanding of the
disclosure. However, in certain instances, well-known or conventional details are not described
in order to avoid obscuring the description. References to “one embodiment” or “an
embodiment” in the present disclosure can be, but not necessarily are, references to the same

embodiment and such references mean at least one of the embodiments.

WO 2012/145544 PCT/US2012/034300
[0051] Reference in this specification to “one embodiment” or “an embodiment” means that
a particular feature, structure, or characteristic described in connection with the embodiment is
included in at least one embodiment of the disclosure. The appearances of the phrase “in one
embodiment” in various places in the specification are not necessarily all referring to the same
embodiment, nor are separate or alternative embodiments mutually exclusive of other
embodiments. Moreover, various features are described which may be exhibited by some
embodiments and not by others. Similarly, various requirements are described which may be

requirements for some embodiments but not other embodiments.

[0052] The terms used in this specification generally have their ordinary meanings in the art,
within the context of the disclosure, and in the specific context where each term is used. Certain
terms that are used to describe the disclosure are discussed below, or elsewhere in the
specification, to provide additional guidance to the practitioner regarding the description of the
disclosure. For convenience, certain terms may be highlighted, for example using italics and/or
quotation marks. The use of highlighting has no influence on the scope and meaning of a term;
the scope and meaning of a term is the same, in the same context, whether or not it is highlighted.

It will be appreciated that same thing can be said in more than one way.

[0053] Consequently, alternative language and synonyms may be used for any one or more
of the terms discussed herein, nor is any special significance to be placed upon whether or not a
term is elaborated or discussed herein. Synonyms for certain terms are provided. A recital of
one or more synonyms does not exclude the use of other synonyms. The use of examples
anywhere in this specification, including examples of any terms discussed herein, is illustrative
only, and is not intended to further limit the scope and meaning of the disclosure or of any
exemplified term. Likewise, the disclosure is not limited to various embodiments given in this

specification.

[0054] Without intent to limit the scope of the disclosure, examples of instruments,
apparatus, methods and their related results according to the embodiments of the present
disclosure are given below. Note that titles or subtitles may be used in the examples for
convenience of a reader, which in no way should limit the scope of the disclosure. Unless
otherwise defined, all technical and scientific terms used herein have the same meaning as
commonly understood by one of ordinary skill in the art to which this disclosure pertains. In the

case of conflict, the present document, including definitions, will control.

[0055] Embodiments of the present disclosure include systems and methods of device

resource sharing for network resource conservation.
7

WO 2012/145544 PCT/US2012/034300
[0056] There are multiple factors that contribute to the proliferation of data: the end-user,
mobile devices, wireless devices, mobile applications, and the network. As mobile devices
evolve, so do the various elements associated with them-availability, applications, user behavior,

location thus changing the way the network interacts with the device and the application.

[0057] The disclosed technology provides a comprehensive and end-to-end solution that is
able to address each element for operators and devices manufacturers to support both the shift in
mobile or wireless devices and the surge in data by leveraging the premise that mobile content
has a definable or relevant “freshness” value. The “freshness” of mobile content can be
determined, either with certainty, or with some heuristics having a tolerance within which the
user experience is enhanced, or not negatively impacted, or negatively impacted but is either not

perceptible to the user or within a tolerable threshold level.

[0058] The disclosed innovation transparently determines such “freshness” by monitoring,
analyzing, and applying rules (which may be heuristically determined) the transactions
(requests/responses) between applications (e.g., mobile applications) and the peers
(corresponding server or other clients). Moreover, the technology is further able to effectively
cache content which may be marked by its originating/host server as being “non-cacheable” and
identify some “freshness” value which can then be used in implementing application-specific
caching. In general, the “freshness” value has an approximate minimum value which is typically
determined using the update interval (e.g., interval with which requests are sent) between the

application and its corresponding server/host.

[0059] One embodiment of the disclosed technology includes a system that optimizes
multiple aspects of the connection with wired and wireless networks and devices through a
comprehensive view of device and application activity including: loading, current application
needs on a device, controlling the type of access (push vs. pull or hybrid), location, concentration
of users in a single area, time of day, how often the user interacts with the application, content or
device, and using this information to shape traffic to a cooperative client/server or simultaneously
mobile devices without a cooperative client. Because the disclosed server is not tied to any
specific network provider it has visibility into the network performance across all service
providers. This enables optimizations to be applied to devices regardless of the operator or
service provider, thereby enhancing the user experience and managing network utilization while
roaming. Bandwidth has been considered a major issue in wireless networks today. More and
more research has been done related to the need for additional bandwidth to solve access

problems. Many of the performance enhancing solutions and next generation standards, such as

WO 2012/145544 PCT/US2012/034300
those commonly referred to as 3.5G, LTE, 4G, and WiMAX, are focused on providing increased

bandwidth. Although partially addressed by the standards, a key problem that remains is lack of
bandwidth on the signaling channel more so than the data channel and the standard does not

address battery life very well.

[0060] Embodiments of the disclosed technology includes, for example, alignment of
requests from multiple applications to minimize the need for several polling requests; leverage
specific content types to determine how to proxy/manage a connection/content; and applying
specific heuristics associated with device, user behavioral patterns (how often they interact with

the device/application) and/or network parameters.

[0061] Embodiments of the present technology can further include, moving recurring HTTP
polls performed by various widgets, RSS readers, etc., to remote network node (e.g., Network
Operation Center (NOC)), thus considerably lowering device battery/power consumption, radio
channel signaling and bandwidth usage. Additionally, the offloading can be performed

transparently so that existing applications do not need to be changed.

[0062] In some embodiments, this can be implemented using a local proxy on the mobile
device (e.g., any wireless device) which automatically detects recurring requests for the same
content (RSS feed, Widget data set) that matches a specific rule (e.g., happens every 15 minutes).
The local proxy can automatically cache the content on the mobile device while delegating the
polling to the server (e.g., a proxy server operated as an element of a communications network).
The server can then notify the mobile/client proxy if the content changes, and if content has not
changed (or not changed sufficiently, or in an identified manner or amount) the mobile proxy
provides the latest version in its cache to the user (without need to utilize the radio at all). This
way the mobile or wireless device (e.g., a mobile phone, smart phone, M2M module/MODEM,
or any other wireless devices, etc.) does not need to open (e.g., thus powering on the radio) or use
a data connection if the request is for content that is monitored and that has been not flagged as

new/changed.

[0063] The logic for automatically adding content sources/application servers (e.g.,
including URLs/content) to be monitored can also check for various factors like how often the
content is the same, how often the same request is made (is there a fixed interval/pattern?), which
application is requesting the data, etc. Similar rules to decide between using the cache and
request the data from the original source may also be implemented and executed by the local

proxy and/or server.

WO 2012/145544 PCT/US2012/034300

[0064] For example, when the request comes at an unscheduled/unexpected time (user
initiated check), or after every (n) consecutive times the response has been provided from the
cache, etc., or if the application is running in the background vs. in a more interactive mode of
the foreground. As more and more mobile applications or wireless enabled applications base
their features on resources available in the network, this becomes increasingly important. In
addition, the disclosed technology allows elimination of unnecessary chatter from the network,

benefiting the operators trying to optimize the wireless spectrum usage.

Traffic Categorization and Policy

[0065] In some embodiments, the disclosed proxy system is able to establish policies for
choosing traffic (data, content, messages, updates, etc.) to cache and/or shape. Additionally, by
combining information from observing the application making the network requests, getting
explicit information from the application, or knowing the network destination the application is
reaching, the disclosed technology can determine or infer what category the transmitted traffic

belongs to.

[0066] For example, in one embodiment, mobile or wireless traffic can be categorized as:
(al) interactive traffic or (a2) background traffic. The difference is that in (al) a user is actively
waiting for a response, while in (2) a user is not expecting a response. This categorization can be
used in conjunction with or in lieu of a second type of categorization of traffic: (b1) immediate,

(b2) low priority, (b3) immediate if the requesting application is in the foreground and active.

[0067] For example, a new update, message or email may be in the (b1) category to be
delivered immediately, but it still is (a2) background traffic — a user is not actively waiting for
it. A similar categorization applies to instant messages when they come outside of an active chat
session. During an active chat session a user is expecting a response faster. Such user
expectations are determined or inferred and factored into when optimizing network use and

device resources in performing traffic categorization and policy implementation.

[0068] Some examples of the applications of the described categorization scheme, include
the following: (al) interactive traffic can be categorized as (b1) immediate — but (a2)
background traffic may also be (b2) or (b3). An example of a low priority transfer is email or
message maintenance transaction such as deleting email or other messages or marking email as

read at the mail or application server. Such a transfer can typically occur at the carlier of (a)

10

WO 2012/145544 PCT/US2012/034300
timer exceeding a timeout value (for example, 2 minutes), and (b) data being sent for other

purposes.

[0069] An example of (b3) is IM presence updates, stock ticker updates, weather updates,
status updates, news feeds. When the UI of the application is in the foreground and/or active (for
example, as indicated by the backlight of the device/phone being lit or as determined or inferred
from the status of other sensors), updates can be considered immediate whenever server has
something to push to the device. When the application is not in the foreground or not active,

such updates can be suppressed until the application comes to foreground and is active.

[0070] With some embodiments, networks can be selected or optimized simultaneously for

(al) interactive traffic and (a2) background traffic.

[0071] In some embodiments, as the wireless device or mobile device proxy (separately or
in conjunction with the server proxy) is able to categorize the traffic as (for example) (al)
interactive traffic or (a2) background traffic, it can apply different policies to different types of
traffic. This means that it can internally operate differently for (al) and (a2) traffic (for example,
by allowing interactive traffic to go through to the network in whole or in part, and apply stricter
traffic control to background traffic; or the device side only allows a request to activate the radio

if it has received information from the server that the content at the host has been updated, etc.).

[0072] When the request does require access over the wireless network, the disclosed
technology can request the radio layer to apply different network configurations to different

traffic. Depending on the type of traffic and network this may be achieved by different means:
[0073] (1) Using 3G/4G for (al) and 2G/2.5G for (a2);

[0074] (2) Explicitly specifying network configuration for different data sets (e.g. in terms
of use of FACH (forward access channel) vs. DCH (dedicated channel), or otherwise requesting

lower/more network efficient data rates for background traffic); or

[0075] (3) Utilizing different network access points for different data sets (access points

which would be configured to use network resources differently similar to (1) and (2) above).

[0076] Additionally, 3GPP Fast Dormancy calls for improvements so that applications,
operating systems or the mobile device would have awareness of the traffic type to be more
efficient in the future. Embodiments of the disclosed system, having the knowledge of the traffic

category and being able to utilize Fast Dormancy appropriately may solve the problem identified

11

WO 2012/145544 PCT/US2012/034300
in Fast Dormancy. This way the mobile or broadband network does not need to be configured
with a compromised configuration that adversely impacts both battery consumption and network

signaling resources.

Polling schedule

[0077] Detecting (or determining) a polling schedule allows the proxy server (server-side of
the distributed cache system) to be as close as possible with its polls to the application polls.
Many applications employ scheduled interval polling (e.g., every 4 hours or every 30 seconds, at
another time interval). The client side proxy can detect automatic polls based on time
measurements and create a automatic polling profile for an application. As an example, the local
proxy attempts to detect the time interval between requests and after 2, 3, 4, or more polls,
determines an automatic rate if the time intervals are all within 1 second (or another measure of
relative closeness) of each other. If not, the client may collect data from a greater number of
polling events (e.g., 10-12 polls) and apply a statistical analysis to determine, compute, or
estimate a value for the average interval that is used. The polling profile is delivered to the
server where it is used. If it is a frequent manual request, the locally proxy can substitute it with

a default interval for this application taken from a profile for non-critical applications.

[0078] In some embodiments, the local proxy (e.g., device side proxy) may keep monitoring
the application/client polls and update the polling interval. If it changes by more than 30% (or
another predetermined/dynamic/conditional value) from the current value, it is communicated to
the proxy server (e.g., server-side proxy). This approach can be referred to as the scenario of
“lost interest.” In some instances, the local proxy can recognize requests made outside of this

schedule, consider them “manual,” and treat them accordingly.

Application classes/Modes of caching

[0079] In some embodiments, applications can be organized into three groups or modes of
caching. Each mobile client/application can be categorized to be treated as one of these modes,

or treated using multiple modes, depending on one or more conditions.

[0080] A) Fully cached — local proxy updates (e.g., sends application requests directly over
the network to be serviced by the application server/content host) only when the proxy server
tells the local proxy to update. In this mode, the local proxy can ignore manual requests and the
proxy server uses the detected automatic profile (e.g., sports score applets, Facebook, every 10,

15, 30, or more polls) to poll the application server/content provider.

12

WO 2012/145544 PCT/US2012/034300

[0081] B) Partially cached — the local proxy uses the local or internal cache for automatic
requests (e.g., application automatic refreshes), other scheduled requests but passes through some

manual requests (e.g., email download, Ebay or some Facebook requests); and

[0082] C) Never cached (e.g., real-time stock ticker, sports scores/statuses; however, in
some instances, 15 minutes delayed quotes can be safely placed on 30 seconds schedules — B or

even A).

[0083] The actual application or caching mode classification can be determined based on the
rate of content change and critical character of data. Unclassified applications by default can be

set as class C.

Backlight and active applications

[0084] In some embodiments, the local proxy starts by detecting the device backlight status.
Requests made with the screen light ‘off” can be allowed to use the local cache if a request with
identical signature is registered with the proxy server, which is polling the original host
server/content server(s) to which the requests are directed. If the screen light is ‘on’, further
detection can be made to determine whether it is a background application or for other indicators
that local cache entries can or cannot be used to satisfy the request. When identified, the requests
for which local entries can be used may be processed identically to the screen light off situation.
Foreground requests can use the aforementioned application classification to assess when cached

data is safe to use to process requests.

[0085] FIG. 1A illustrates an example diagram of a system where a host server 100
facilitates management of traffic, content caching, and/or resource conservation between mobile
devices (e.g., wireless devices 150), and an application server or content provider 110, or other
servers such as an ad server 120A, promotional content server 120B, or an e-coupon server 120C
in a wireless network (or broadband network) for resource conservation. The host server can

further facilitate resource sharing on the device side to further conserve network resources.

[0086] The client devices 150 can be any system and/or device, and/or any combination of
devices/systems that is able to establish a connection, including wired, wireless, cellular
connections with another device, a server and/or other systems such as host server 100 and/or
application server/content provider 110. Client devices 150 will typically include a display
and/or other output functionalities to present information and data exchanged between among the

devices 150 and/or the host server 100 and/or application server/content provider 110. The

13

WO 2012/145544 PCT/US2012/034300

application server/content provider 110 can by any server including third party servers or
service/content providers further including advertisement, promotional content, publication, or
electronic coupon servers or services. Similarly, separate advertisement servers 120A,
promotional content servers 120B, and/or e-Coupon servers 120C as application servers or

content providers are illustrated by way of example.

[0087] For example, the client devices 150 can include mobile, hand held or portable
devices, wireless devices, or non-portable devices and can be any of, but not limited to, a server
desktop, a desktop computer, a computer cluster, or portable devices, including a notebook, a
laptop computer, a handheld computer, a palmtop computer, a mobile phone, a cell phone, a
smart phone, a PDA, a Blackberry device, a Palm device, a handheld tablet (e.g., an iPad or any
other tablet), a hand held console, a hand held gaming device or console, any SuperPhone such as
the iPhone, and/or any other portable, mobile, hand held devices, or fixed wireless interface such
as a M2M device, etc. In one embodiment, the client devices 150, host server 100, and
application server 110 are coupled via a network 106 and/or a network 108. In some

embodiments, the devices 150 and host server 100 may be directly connected to one another.

[0088] The input mechanism on client devices 150 can include touch screen keypad
(including single touch, multi-touch, gesture sensing in 2D or 3D, etc.), a physical keypad, a
mouse, a pointer, a track pad, motion detector (e.g., including 1-axis, 2-axis, 3-axis
accelerometer, etc.), a light sensor, capacitance sensor, resistance sensor, temperature sensor,
proximity sensor, a piezoelectric device, device orientation detector (e.g., electronic compass, tilt

sensor, rotation sensor, gyroscope, accelerometer), or a combination of the above.

[0089] Signals received or detected indicating user activity at client devices 150 through one
or more of the above input mechanism, or others, can be used in the disclosed technology in
acquiring context awareness at the client device 150. Context awareness at client devices 150
generally includes, by way of example but not limitation, client device 150 operation or state
acknowledgement, management, user activity/behavior/interaction awareness, detection, sensing,
tracking, trending, and/or application (e.g., mobile applications) type, behavior, activity,

operating state, etc.

[0090] Context awareness in the present disclosure also includes knowledge and detection of
network side contextual data and can include network information such as network capacity,
bandwidth, traffic, type of network/connectivity, and/or any other operational state data.

Network side contextual data can be received from and/or queried from network service

providers (e.g., cell provider 112 and/or Internet service providers) of the network 106 and/or
14

WO 2012/145544 PCT/US2012/034300

network 108 (e.g., by the host server and/or devices 150). In addition to application context
awareness as determined from the client 150 side, the application context awareness may also be
received from or obtained/queried from the respective application/service providers 110 (by the

host 100 and/or client devices 150).

[0091] The host server 100 can use, for example, contextual information obtained for client
devices 150, networks 106/108, applications (e.g., mobile applications), application
server/provider 110, or any combination of the above, to manage the traffic in the system to
satisfy data needs of the client devices 150 (e.g., to satisfy application or any other request
including HTTP request). In one embodiment, the traffic is managed by the host server 100 to
satisfy data requests made in response to explicit or non-explicit user 103 requests and/or
device/application maintenance tasks. The traffic can be managed such that network
consumption, for example, use of the cellular network is conserved for effective and efficient
bandwidth utilization. In addition, the host server 100 can manage and coordinate such traffic in
the system such that use of device 150 side resources (e.g., including but not limited to battery
power consumption, radio use, processor/memory use) are optimized with a general philosophy

for resource conservation while still optimizing performance and user experience.

[0092] For example, in context of battery conservation, the device 150 can observe user
activity (for example, by observing user keystrokes, backlight status, or other signals via one or
more input mechanisms, etc.) and alters device 150 behaviors. The device 150 can also request
the host server 100 to alter the behavior for network resource consumption based on user activity

or behavior.

[0093] In one embodiment, the traffic management for resource conservation is performed
using a distributed system between the host server 100 and client device 150. The distributed
system can include proxy server and cache components on the server side 100 and on the
device/client side , for example, as shown by the server cache 135 on the server 100 side and the

local cache 185 on the client 150 side.

[0094] Functions and techniques disclosed for context aware traffic management for
resource conservation in networks (e.g., network 106 and/or 108) and devices 150, reside in a
distributed proxy and cache system. The proxy and cache system can be distributed between,
and reside on, a given client device 150 in part or in whole and/or host server 100 in part or in
whole. The distributed proxy and cache system are illustrated with further reference to the

example diagram shown in FIG. 1B. Functions and techniques performed by the proxy and

15

WO 2012/145544 PCT/US2012/034300

cache components in the client device 150, the host server 100, and the related components

therein are described, respectively, in detail with further reference to the examples of FIGS. 2-3.

[0095] In one embodiment, client devices 150 communicate with the host server 100 and/or
the application server 110 over network 106, which can be a cellular network and/or a broadband
network. To facilitate overall traffic management between devices 150 and various application
servers/content providers 110 to implement network (bandwidth utilization) and device resource
(e.g., battery consumption), the host server 100 can communicate with the application
server/providers 110 over the network 108, which can include the Internet (e.g., a broadband

network).

[0096] In general, the networks 106 and/or 108, over which the client devices 150, the host
server 100, and/or application server 110 communicate, may be a cellular network, a broadband
network, a telephonic network, an open network, such as the Internet, or a private network, such
as an intranet and/or the extranet, or any combination thereof. For example, the Internet can
provide file transfer, remote log in, email, news, RSS, cloud-based services, instant messaging,
visual voicemail, push mail, VolIP, and other services through any known or convenient protocol,
such as, but is not limited to the TCP/IP protocol, UDP, HTTP, DNS, FTP, UPnP, NSF, ISDN,
PDH, RS-232, SDH, SONET, etc.

[0097] The networks 106 and/or 108 can be any collection of distinct networks operating
wholly or partially in conjunction to provide connectivity to the client devices 150 and the host
server 100 and may appear as one or more networks to the serviced systems and devices. In one
embodiment, communications to and from the client devices 150 can be achieved by, an open
network, such as the Internet, or a private network, broadband network, such as an intranet and/or
the extranet. In one embodiment, communications can be achieved by a secure communications

protocol, such as secure sockets layer (SSL), or transport layer security (TLS).

[0098] In addition, communications can be achieved via one or more networks, such as, but
are not limited to, one or more of WiMax, a Local Area Network (LAN), Wireless Local Area
Network (WLAN), a Personal area network (PAN), a Campus area network (CAN), a
Metropolitan area network (MAN), a Wide area network (WAN), a Wireless wide area network
(WWAN), or any broadband network, and further enabled with technologies such as, by way of
example, Global System for Mobile Communications (GSM), Personal Communications Service
(PCS), Bluetooth, WiFi, Fixed Wireless Data, 2G, 2.5G, 3G, 4G, IMT-Advanced, pre-4G, LTE
Advanced, mobile WiMax, WiMax 2, WirelessMAN-Advanced networks, enhanced data rates

for GSM evolution (EDGE), General packet radio service (GPRS), enhanced GPRS, iBurst,
16

WO 2012/145544 PCT/US2012/034300
UMTS, HSPDA, HSUPA, HSPA, UMTS-TDD, 1xRTT, EV-DO, messaging protocols such as,
TCP/IP, SMS, MMS, extensible messaging and presence protocol (XMPP), real time messaging
protocol (RTMP), instant messaging and presence protocol (IMPP), instant messaging, USSD,

IRC, or any other wireless data networks, broadband networks, or messaging protocols.

[0099] FIG. 1B illustrates an example diagram of a proxy and cache system distributed
between the host server 100 and device 150 which facilitates network traffic management
between the device 150 and an application server or content provider 110, or other servers such
as an ad server 120A, promotional content server 120B, or an e-coupon server 120C for resource
conservation and content caching. The proxy system distributed among the host server 100 and
the device 150 can further facilitate resource sharing on the device side to further conserve

network resources.

[00100] The distributed proxy and cache system can include, for example, the proxy server
125 (e.g., remote proxy) and the server cache, 135 components on the server side. The server-
side proxy 125 and cache 135 can, as illustrated, reside internal to the host server 100. In
addition, the proxy server 125 and cache 135 on the server-side can be partially or wholly
external to the host server 100 and in communication via one or more of the networks 106 and
108. For example, the proxy server 125 may be external to the host server and the server cache
135 may be maintained at the host server 100. Alternatively, the proxy server 125 may be within
the host server 100 while the server cache is external to the host server 100. In addition, cach of
the proxy server 125 and the cache 135 may be partially internal to the host server 100 and
partially external to the host server 100. The application server/content provider 110 can by any
server including third party servers or service/content providers further including advertisement,
promotional content, publication, or electronic coupon servers or services. Similarly, separate
advertisement servers 120A, promotional content servers 120B, and/or e-Coupon servers 120C as

application servers or content providers are illustrated by way of example.

[00101] The distributed system can also, include, in one embodiment, client-side
components, including by way of example but not limitation, a local proxy 175 (e.g., a mobile
client on a mobile device) and/or a local cache 185, which can, as illustrated, reside internal to

the device 150 (e.g., a mobile device).

[00102] In addition, the client-side proxy 175 and local cache 185 can be partially or wholly
external to the device 150 and in communication via one or more of the networks 106 and 108.
For example, the local proxy 175 may be external to the device 150 and the local cache 185 may

be maintained at the device 150. Alternatively, the local proxy 175 may be within the device 150
17

WO 2012/145544 PCT/US2012/034300
while the local cache 185 is external to the device 150. In addition, each of the proxy 175 and

the cache 185 may be partially internal to the host server 100 and partially external to the host

server 100.

[00103] In one embodiment, the distributed system can include an optional caching proxy
server 199. The caching proxy server 199 can be a component which is operated by the
application server/content provider 110, the host server 100, or a network service provider 112,
and or any combination of the above to facilitate network traffic management for network and
device resource conservation. Proxy server 199 can be used, for example, for caching content to
be provided to the device 150, for example, from one or more of, the application server/provider
110, host server 100, and/or a network service provider 112. Content caching can also be
entirely or partially performed by the remote proxy 125 to satisfy application requests or other

data requests at the device 150.

[00104] In context aware traffic management and optimization for resource conservation in a
network (e.g., cellular or other wireless networks), characteristics of user activity/behavior and/or
application behavior at a mobile device (e.g., any wireless device) 150 can be tracked by the
local proxy 175 and communicated, over the network 106 to the proxy server 125 component in
the host server 100, for example, as connection metadata. The proxy server 125 which in turn is
coupled to the application server/provider 110 provides content and data to satisfy requests made

at the device 150.

[00105] In addition, the local proxy 175 can identify and retrieve mobile device properties,
including one or more of, battery level, network that the device is registered on, radio state, or
whether the mobile device is being used (e.g., interacted with by a user). In some instances, the
local proxy 175 can delay, expedite (prefetch), and/or modify data prior to transmission to the
proxy server 125, when appropriate, as will be further detailed with references to the description

associated with the examples of FIGS. 2-3.

[00106] The local database 185 can be included in the local proxy 175 or coupled to the local
proxy 175 and can be queried for a locally stored response to the data request prior to the data
request being forwarded on to the proxy server 125. Locally cached responses can be used by the
local proxy 175 to satisfy certain application requests of the mobile device 150, by retrieving

cached content stored in the cache storage 185, when the cached content is still valid.

[00107] Similarly, the proxy server 125 of the host server 100 can also delay, expedite, or

modify data from the local proxy prior to transmission to the content sources (e.g., the

18

WO 2012/145544 PCT/US2012/034300
application server/content provider 110). In addition, the proxy server 125 uses device properties
and connection metadata to generate rules for satisfying request of applications on the mobile
device 150. The proxy server 125 can gather real time traffic information about requests of
applications for later use in optimizing similar connections with the mobile device 150 or other

mobile devices.

[00108] In general, the local proxy 175 and the proxy server 125 are transparent to the
multiple applications executing on the mobile device. The local proxy 175 is generally
transparent to the operating system or platform of the mobile device and may or may not be
specific to device manufacturers. In some instances, the local proxy 175 is optionally
customizable in part or in whole to be device specific. In some embodiments, the local proxy

175 may be bundled into a wireless model, a firewall, and/or a router.

[00109] In one embodiment, the host server 100 can in some instances, utilize the store and
forward functions of a short message service center (SMSC) 112, such as that provided by the
network service provider, in communicating with the device 150 in achieving network traffic
management. Note that 112 can also utilize any other type of alternative channel including
USSD or other network control mechanisms. As will be further described with reference to the
example of FIG. 3, the host server 100 can forward content or HTTP responses to the SMSC 112
such that it is automatically forwarded to the device 150 if available, and for subsequent

forwarding if the device 150 is not currently available.

[00110] In general, the disclosed distributed proxy and cache system allows optimization of
network usage, for example, by serving requests from the local cache 185, the local proxy 175
reduces the number of requests that need to be satisfied over the network 106. Further, the local
proxy 175 and the proxy server 125 may filter irrelevant data from the communicated data. In
addition, the local proxy 175 and the proxy server 125 can also accumulate low priority data and
send it in batches to avoid the protocol overhead of sending individual data fragments. The local
proxy 175 and the proxy server 125 can also compress or transcode the traffic, reducing the
amount of data sent over the network 106 and/or 108. The signaling traffic in the network 106
and/or 108 can be reduced, as the networks are now used less often and the network traffic can be

synchronized among individual applications.

[00111] With respect to the battery life of the mobile device 150, by serving application or
content requests from the local cache 185, the local proxy 175 can reduce the number of times
the radio module is powered up. The local proxy 175 and the proxy server 125 can work in

conjunction to accumulate low priority data and send it in batches to reduce the number of times
19

WO 2012/145544 PCT/US2012/034300
and/or amount of time when the radio is powered up. The local proxy 175 can synchronize the

network use by performing the batched data transfer for all connections simultancously.

[00112] FIG. 1C depicts an example diagram showing how virtual memory sharing and
database management enables peer-to-peer distribution of information in a network among any
type of electronic devices and among mobile devices 102A-N such as mobile phones/smart

phones or tablet devices.

[00113] Device X 102A can receive, content or updates from an external device (e.g.,
application server/content provider 110, ad servers 120A-C, etc.) such as the host server (e.g.,
host server 100), or a content provider/application server via a cellular network or other network.
The device 102A belongs to an environment where memory or other resources are is shared and
allocated among multiple devices (Device X, Device Y, Device Z, etc.). Based on some
commonality, for example, temporal, geographical, functional, similarities, the information
received by Device 102A may be relevant to one or more of the other Devices 102B, etc, in the

same networked environment of shared resources/ memory/storage.

[00114] The information can then be provided to (push, pull, or a combination thereof) by
Device X, to any of the other Devices which may need the same information. The other devices
(e.g., Device Y, Z, N, etc.) now need not request and receive the same information from a host
server or app server/content provider. Devices can share information in the virtual memory pool
using any communications interface including but not limited to cellular, mobile network, Wifi,
Bluetooth, LAN, USB, Firewire, etc. Commonalities can include location or geo-location since

locations may generally be associated with certain useful parameters.

[00115] Devices located in a kitchen versus a bedroom or a car may need different
parameters and/or information. For example, multiple devices (e.g., a stove, a microwave,
refrigerator, etc.) may have the need for information such as a timer information, ambient
temperature information, stove, time left to cook, etc. Devices located in a vehicle may have a
need for different types of parameters, such as contacts on contact book, maps, GPS data, driver-

specific information, etc.

[00116] Furthermore, devices (e.g., Smart phones or mobile phones 102A-N) with same
operating systems use same types of OS files and may share such information. Similarly, devices
with the same applications installed can share some application program files, and/or user data if
the users are also the same. Similar/same temporal (time of a request, time of a poll, day of

week, time of day, etc.) and/or spatial (e.g., co-location, same/similar geo-location)

20

WO 2012/145544 PCT/US2012/034300
characteristics can result in some shared information and content among mobile devices 102A-N;
such parameters and information sharing can be tracked by proxies on each device or on one or

more devices in a shared resource environment or shared memory environment.

[00117] FIG. 1D depicts a table showing an example state profile 192 for a device (Device

X) having location-based state profiles for resource sharing and pooling with other devices.

[00118] Note that device state profiles, in addition to being location-based, can also be
time-based or include a timing parameter. Device state profiles can also include information
regarding device state (e.g., on, off, background, foreground), current user, applications installed,

applications launched, etc.

[00119] FIGS. 1E-F depict tables showing virtual resource allocation to a given device

(Device X) based on device state.

[00120] Table 194 illustrates virtual memory allocation to Device X including Device X’s
own memory and those of other devices allocated to Device X for each state (state profiles 1-5)
of device X. Table 196 illustrates database allocation to device X for each state (state profile 1-
5) including Device X’s own database and those of other devices (Device 2, 3, 5, 6, and 7)

allocated to Device X

[00121] FIG. 2A depicts a block diagram illustrating an example of client-side components
in a distributed proxy and cache system residing on a mobile device (e.g., wireless device) 250
that manages traffic in a wireless network (or broadband network) for resource conservation,
content caching, and/or traffic management. The client-side proxy (or local proxy 275) can
further categorize mobile traffic and/or implement delivery policies based on application

behavior, content priority, user activity, and/or user expectations.

[00122] The device 250, which can be a portable or mobile device (e.g., any wireless device),
such as a portable phone, generally includes, for example, a network interface 208 an operating
system 204, a context API 206, and mobile applications which may be proxy-unaware 210 or
proxy-aware 220. Note that the device 250 is specifically illustrated in the example of FIG. 2 as
a mobile device, such is not a limitation and that device 250 may be any wireless, broadband,
portable/mobile or non-portable device able to receive, transmit signals to satisfy data requests
over a network including wired or wireless networks (e.g., WiFi, cellular, Bluetooth, LAN,

WAN, etc.).

21

WO 2012/145544 PCT/US2012/034300
[00123] The network interface 208 can be a networking module that enables the device 250

to mediate data in a network with an entity that is external to the host server 250, through any
known and/or convenient communications protocol supported by the host and the external entity.
The network interface 208 can include one or more of a network adaptor card, a wireless network
interface card (e.g., SMS interface, WiFi interface, interfaces for various generations of mobile
communication standards including but not limited to 2G, 3G, 3.5G, 4G, LTE, etc.,), Bluetooth,
or whether or not the connection is via a router, an access point, a wireless router, a switch, a
multilayer switch, a protocol converter, a gateway, a bridge, a bridge router, a hub, a digital

media receiver, and/or a repeater.

[00124] Device 250 can further include, client-side components of the distributed proxy and
cache system which can include, a local proxy 275 (e.g., a mobile client of a mobile device) and
a cache 285. In one embodiment, the local proxy 275 includes a user activity module 215, a
proxy API 225, a request/transaction manager 235, a caching policy manager 245 having an
application protocol module 248, a traffic shaping engine 255, and/or a connection manager 265.
The traffic shaping engine 255 may further include an alignment module 256 and/or a batching
module 257, the connection manager 265 may further include a radio controller 266. The
request/transaction manager 235 can further include an application behavior detector 236 and/or
a prioritization engine 241, the application behavior detector 236 may further include a pattern
detector 237 and/or and application profile generator 239. Additional or less
components/modules/engines can be included in the local proxy 275 and each illustrated

component.

[00125] As used herein, a “module,” “a manager,” a “handler,” a “detector,” an “interface,” a
“controller,” a “normalizer,” a “generator,” an “invalidator,” or an “engine” includes a general
purpose, dedicated or shared processor and, typically, firmware or software modules that are
executed by the processor. Depending upon implementation-specific or other considerations, the
module, manager, handler, detector, interface, controller, normalizer, generator, invalidator, or
engine can be centralized or its functionality distributed. The module, manager, handler,
detector, interface, controller, normalizer, generator, invalidator, or engine can include general or
special purpose hardware, firmware, or software embodied in a computer-readable (storage)

medium for execution by the processor.

[00126] As used herein, a computer-readable medium or computer-readable storage medium
is intended to include all mediums that are statutory (e.g., in the United States, under 35 U.S.C.

§ 101), and to specifically exclude all mediums that are non-statutory in nature to the extent that

22

WO 2012/145544 PCT/US2012/034300
the exclusion is necessary for a claim that includes the computer-readable (storage) medium to be
valid. Known statutory computer-readable mediums include hardware (e.g., registers, random
access memory (RAM), non-volatile (NV) storage, to name a few), but may or may not be

limited to hardware.

[00127] In one embodiment, a portion of the distributed proxy and cache system for network

traffic management resides in or is in communication with device 250, including local proxy 275

(mobile client) and/or cache 285. The local proxy 275 can provide an interface on the device 250
for users to access device applications and services including email, IM, voice mail, visual

voicemail, feeds, Internet, games, productivity tools, or other applications, etc.

[00128] The proxy 275 is generally application independent and can be used by applications
(e.g., both proxy-aware and proxy-unaware applications 210 and 220 and other mobile
applications) to open TCP connections to a remote server (e.g., the server 100 in the examples of
FIGS. 1A-1B and/or server proxy 125/325 shown in the examples of FIG. 1B and FIG. 3A). In
some instances, the local proxy 275 includes a proxy API 225 which can be optionally used to
interface with proxy-aware applications 220 (or applications (e.g., mobile applications) on a

mobile device (e.g., any wireless device)).

[00129] The applications 210 and 220 can generally include any user application, widgets,
software, HTTP-based application, web browsers, video or other multimedia streaming or
downloading application, video games, social network applications, email clients, RSS
management applications, application stores, document management applications, productivity
enhancement applications, etc. The applications can be provided with the device OS, by the
device manufacturer, by the network service provider, downloaded by the user, or provided by

others.

[00130] One embodiment of the local proxy 275 includes or is coupled to a context API 206,
as shown. The context API 206 may be a part of the operating system 204 or device platform or
independent of the operating system 204, as illustrated. The operating system 204 can include
any operating system including but not limited to, any previous, current, and/or future
versions/releases of, Windows Mobile, 10S, Android, Symbian, Palm OS, Brew MP, Java 2
Micro Edition (J2ME), Blackberry, etc.

[00131] The context API 206 may be a plug-in to the operating system 204 or a particular
client/application on the device 250. The context API 206 can detect signals indicative of user or

device activity, for example, sensing motion, gesture, device location, changes in device location,

23

WO 2012/145544 PCT/US2012/034300
device backlight, keystrokes, clicks,, activated touch screen, mouse click or detection of other
pointer devices. The context API 206 can be coupled to input devices or sensors on the device
250 to identify these signals. Such signals can generally include input received in response to
explicit user input at an input device/mechanism at the device 250 and/or collected from ambient
signals/contextual cues detected at or in the vicinity of the device 250 (e.g., light, motion,

piezoelectric, etc.).

[00132] In one embodiment, the user activity module 215 interacts with the context API 206
to identify, determine, infer, detect, compute, predict, and/or anticipate, characteristics of user
activity on the device 250. Various inputs collected by the context API 206 can be aggregated by
the user activity module 215 to generate a profile for characteristics of user activity. Such a
profile can be generated by the user activity module 215 with various temporal characteristics.
For instance, user activity profile can be generated in real-time for a given instant to provide a
view of what the user is doing or not doing at a given time (e.g., defined by a time window, in the
last minute, in the last 30 seconds, etc.), a user activity profile can also be generated for a
‘session’ defined by an application or web page that describes the characteristics of user behavior
with respect to a specific task they are engaged in on the device 250, or for a specific time period

(e.g., for the last 2 hours, for the last 5 hours).

[00133] Additionally, characteristic profiles can be generated by the user activity module 215
to depict a historical trend for user activity and behavior (e.g., 1 week, 1 mo., 2 mo., etc.). Such
historical profiles can also be used to deduce trends of user behavior, for example, access
frequency at different times of day, trends for certain days of the week (weekends or week days),
user activity trends based on location data (e.g., IP address, GPS, or cell tower coordinate data)
or changes in location data (e.g., user activity based on user location, or user activity based on
whether the user is on the go, or traveling outside a home region, etc.) to obtain user activity

characteristics.

[00134] In one embodiment, user activity module 215 can detect and track user activity with
respect to applications, documents, files, windows, icons, and folders on the device 250. For
example, the user activity module 215 can detect when an application or window (e.g., a web
browser or any other type of application) has been exited, closed, minimized, maximized,

opened, moved into the foreground, or into the background, multimedia content playback, etc.

[00135] In one embodiment, characteristics of the user activity on the device 250 can be used
to locally adjust behavior of the device (e.g., mobile device or any wireless device) to optimize

its resource consumption such as battery/power consumption and more generally, consumption of
24

WO 2012/145544 PCT/US2012/034300
other device resources including memory, storage, and processing power. In one embodiment,
the use of a radio on a device can be adjusted based on characteristics of user behavior (e.g., by
the radio controller 266 of the connection manager 265) coupled to the user activity module 215.
For example, the radio controller 266 can turn the radio on or off, based on characteristics of the
user activity on the device 250. In addition, the radio controller 266 can adjust the power mode
of the radio (e.g., to be in a higher power mode or lower power mode) depending on

characteristics of user activity.

[00136] In one embodiment, characteristics of the user activity on device 250 can also be
used to cause another device (e.g., other computers, a mobile device, a wireless device, or a non-
portable device) or server (e.g., host server 100 and 300 in the examples of FIGS. 1A-B and
FIG. 3A) which can communicate (e.g., via a cellular or other network) with the device 250 to
modify its communication frequency with the device 250. The local proxy 275 can use the
characteristics information of user behavior determined by the user activity module 215 to
instruct the remote device as to how to modulate its communication frequency (e.g., decreasing
communication frequency, such as data push frequency if the user is idle, requesting that the
remote device notify the device 250 if new data, changed, data, or data of a certain level of

importance becomes available, etc.).

[00137] In one embodiment, the user activity module 215 can, in response to determining that
user activity characteristics indicate that a user is active after a period of inactivity, request that a
remote device (e.g., server host server 100 and 300 in the examples of FIGS. 1A-B and FIG. 3A)

send the data that was buffered as a result of the previously decreased communication frequency.

[00138] In addition, or in alternative, the local proxy 275 can communicate the characteristics
of user activity at the device 250 to the remote device (e.g., host server 100 and 300 in the
examples of FIGS. 1A-B and FIG. 3A) and the remote device determines how to alter its own
communication frequency with the device 250 for network resource conservation and

conservation of device 250 resources..

[00139] One embodiment of the local proxy 275 further includes a request/transaction
manager 235, which can detect, identify, intercept, process, manage, data requests initiated on the
device 250, for example, by applications 210 and/or 220, and/or directly/indirectly by a user
request. The request/transaction manager 235 can determine how and when to process a given

request or transaction, or a set of requests/transactions, based on transaction characteristics.

25

WO 2012/145544 PCT/US2012/034300

[00140] The request/transaction manager 235 can prioritize requests or transactions made by
applications and/or users at the device 250, for example by the prioritization engine 241.
Importance or priority of requests/transactions can be determined by the request/transaction
manager 235 by applying a rule set, for example, according to time sensitivity of the transaction,
time sensitivity of the content in the transaction, time criticality of the transaction, time criticality
of the data transmitted in the transaction, and/or time criticality or importance of an application

making the request.

[00141] In addition, transaction characteristics can also depend on whether the transaction
was a result of user-interaction or other user-initiated action on the device (e.g., user interaction
with a application (e.g., a mobile application)). In general, a time critical transaction can include
a transaction resulting from a user-initiated data transfer, and can be prioritized as such.
Transaction characteristics can also depend on the amount of data that will be transferred or is
anticipated to be transferred as a result of the requested transaction. For example, the connection
manager 265, can adjust the radio mode (e.g., high power or low power mode via the radio

controller 266) based on the amount of data that will need to be transferred.

[00142] In addition, the radio controller 266/connection manager 265 can adjust the radio
power mode (high or low) based on time criticality/sensitivity of the transaction. The radio
controller 266 can trigger the use of high power radio mode when a time-critical transaction (e.g.,
a transaction resulting from a user-initiated data transfer, an application running in the

foreground, any other event meeting a certain criteria) is initiated or detected.

[00143] In general, the priorities can be set by default, for example, based on device platform,
device manufacturer, operating system, etc. Priorities can alternatively or in additionally be set
by the particular application; for example, the Facebook application (e.g., a mobile application)
can set its own priorities for various transactions (e.g., a status update can be of higher priority
than an add friend request or a poke request, a message send request can be of higher priority
than a message delete request, for example), an email client or IM chat client may have its own
configurations for priority. The prioritization engine 241 may include set of rules for assigning

priority.

[00144] The prioritization engine 241 can also track network provider limitations or
specifications on application or transaction priority in determining an overall priority status for a
request/transaction. Furthermore, priority can in part or in whole be determined by user
preferences, either explicit or implicit. A user, can in general, set priorities at different tiers, such

as, specific priorities for sessions, or types, or applications (e.g., a browsing session, a gaming
26

WO 2012/145544 PCT/US2012/034300

session, versus an IM chat session, the user may set a gaming session to always have higher
priority than an IM chat session, which may have higher priority than web-browsing session). A
user can set application-specific priorities, (e.g., a user may set Facebook-related transactions to
have a higher priority than LinkedIn-related transactions), for specific transaction types (e.g., for
all send message requests across all applications to have higher priority than message delete

requests, for all calendar-related events to have a high priority, etc.), and/or for specific folders.

[00145] The prioritization engine 241 can track and resolve conflicts in priorities set by
different entities. For example, manual settings specified by the user may take precedence over
device OS settings, network provider parameters/limitations (e.g., set in default for a network
service area, geographic locale, set for a specific time of day, or set based on service/fee type)
may limit any user-specified settings and/or application-set priorities. In some instances, a
manual synchronization request received from a user can override some, most, or all priority
settings in that the requested synchronization is performed when requested, regardless of the

individually assigned priority or an overall priority ranking for the requested action.

[00146] Priority can be specified and tracked internally in any known and/or convenient
manner, including but not limited to, a binary representation, a multi-valued representation, a

graded representation and all are considered to be within the scope of the disclosed technology.

Change Priority Change Priority
(initiated on device) (initiated on server)
Send email High Receive email High
Delete email Low Edit email Often not possible to sync
. (Low if possible)
(Un)read email Low
Move message Low New email in deleted items Low
Read more High
Download High Delete an email Low
attachment (Un)Read an email Low
New Calendar event High Move messages Low
Edit/change Calendar event High Any calendar change High
Any contact change High
Add a contact High Wipe/lock device High
Edit a contact High Settings change High
Search contacts High Any folder change High
Change a setting High Connector restart High (if no changes nothing is
sent)
Manual send/receive High

27

WO 2012/145544 PCT/US2012/034300

IM status change Medium Social Network Status Updates ~ Medium

Auction outbid or change High Sever Weather Alerts High

notification

Weather Updates Low News Updates Low
Table I

[00147] Table I above shows, for illustration purposes, some examples of transactions with
examples of assigned priorities in a binary representation scheme. Additional assignments are
possible for additional types of events, requests, transactions, and as previously described,

priority assignments can be made at more or less granular levels, e.g., at the session level or at

the application level, etc.

[00148] As shown by way of example in the above table, in general, lower priority
requests/transactions can include, updating message status as being read, unread, deleting of
messages, deletion of contacts; higher priority requests/transactions, can in some instances
include, status updates, new IM chat message, new email, calendar event
update/cancellation/deletion, an event in a mobile gaming session, or other entertainment related
events, a purchase confirmation through a web purchase or online, request to load additional or
download content, contact book related events, a transaction to change a device setting, location-
aware or location-based events/transactions, or any other events/request/transactions initiated by
a user or where the user is known to be, expected to be, or suspected to be waiting for a response,

etc.

[00149] Inbox pruning events (e.g., email, or any other types of messages), are generally
considered low priority and absent other impending events, generally will not trigger use of the
radio on the device 250. Specifically, pruning events to remove old email or other content can be
‘piggy backed’ with other communications if the radio is not otherwise on, at the time of a
scheduled pruning event. For example, if the user has preferences set to ‘keep messages for 7
days old,” then instead of powering on the device radio to initiate a message delete from the
device 250 the moment that the message has exceeded 7 days old, the message is deleted when
the radio is powered on next. If the radio is already on, then pruning may occur as regularly

scheduled.

[00150] The request/transaction manager 235, can use the priorities for requests (e.g., by the
prioritization engine 241) to manage outgoing traffic from the device 250 for resource

optimization (e.g., to utilize the device radio more efficiently for battery conservation). For
28

WO 2012/145544 PCT/US2012/034300

example, transactions/requests below a certain priority ranking may not trigger use of the radio
on the device 250 if the radio is not already switched on, as controlled by the connection manager
265. In contrast, the radio controller 266 can turn on the radio such a request can be sent when a

request for a transaction is detected to be over a certain priority level.

[00151] In one embodiment, priority assignments (such as that determined by the local proxy
275 or another device/entity) can be used cause a remote device to modify its communication
with the frequency with the mobile device or wireless device. For example, the remote device
can be configured to send notifications to the device 250 when data of higher importance is

available to be sent to the mobile device or wireless device.

[00152] In one embodiment, transaction priority can be used in conjunction with
characteristics of user activity in shaping or managing traffic, for example, by the traffic shaping
engine 255. For example, the traffic shaping engine 255 can, in response to detecting that a user
is dormant or inactive, wait to send low priority transactions from the device 250, for a period of
time. In addition, the traffic shaping engine 255 can allow multiple low priority transactions to
accumulate for batch transferring from the device 250 (e.g., via the batching module 257).In one
embodiment, the priorities can be set, configured, or readjusted by a user. For example, content
depicted in Table I in the same or similar form can be accessible in a user interface on the device

250 and for example, used by the user to adjust or view the priorities.

[00153] The batching module 257 can initiate batch transfer based on certain criteria. For
example, batch transfer (e.g., of multiple occurrences of events, some of which occurred at
different instances in time) may occur after a certain number of low priority events have been
detected, or after an amount of time elapsed after the first of the low priority event was initiated.
In addition, the batching module 257 can initiate batch transfer of the cumulated low priority
events when a higher priority event is initiated or detected at the device 250. Batch transfer can
otherwise be initiated when radio use is triggered for another reason (e.g., to receive data from a
remote device such as host server 100 or 300). In one embodiment, an impending pruning event
(pruning of an inbox), or any other low priority events, can be executed when a batch transfer

occurs.

[00154] In general, the batching capability can be disabled or enabled at the event/transaction
level, application level, or session level, based on any one or combination of the following: user
configuration, device limitations/settings, manufacturer specification, network provider
parameters/limitations, platform-specific limitations/settings, device OS settings, etc. In one

embodiment, batch transfer can be initiated when an application/window/file is closed out,
29

WO 2012/145544 PCT/US2012/034300
exited, or moved into the background; users can optionally be prompted before initiating a batch

transfer; users can also manually trigger batch transfers.

[00155] In one embodiment, the local proxy 275 locally adjusts radio use on the device 250
by caching data in the cache 285. When requests or transactions from the device 250 can be
satisfied by content stored in the cache 285, the radio controller 266 need not activate the radio to
send the request to a remote entity (e.g., the host server 100, 300, as shown in FIG. 1A and FIG.
3A or a content provider/application server such as the server/provider 110 shown in the
examples of FIG. 1A and FIG. 1B). As such, the local proxy 275 can use the local cache 285
and the cache policy manager 245 to locally store data for satisfying data requests to eliminate or
reduce the use of the device radio for conservation of network resources and device battery

consumption.

[00156] In leveraging the local cache, once the request/transaction manager 225 intercepts a
data request by an application on the device 250, the local repository 285 can be queried to
determine if there is any locally stored response, and also determine whether the response is
valid. When a valid response is available in the local cache 285, the response can be provided to
the application on the device 250 without the device 250 needing to access the cellular network

or wireless broadband network.

[00157] If a valid response is not available, the local proxy 275 can query a remote proxy
(e.g., the server proxy 325 of FIG. 3A) to determine whether a remotely stored response is valid.
If so, the remotely stored response (e.g., which may be stored on the server cache 135 or optional
caching server 199 shown in the example of FIG. 1B) can be provided to the mobile device,
possibly without the mobile device 250 needing to access the cellular network, thus relieving

consumption of network resources.

[00158] If a valid cache response is not available, or if cache responses are unavailable for
the intercepted data request, the local proxy 275, for example, the caching policy manager 245,
can send the data request to a remote proxy (e.g., server proxy 325 of FIG. 3A) which forwards
the data request to a content source (e.g., application server/content provider 110 of FIG. 1A)
and a response from the content source can be provided through the remote proxy, as will be
further described in the description associated with the example host server 300 of FIG. 3A. The
cache policy manager 245 can manage or process requests that use a variety of protocols,
including but not limited to HTTP, HTTPS, IMAP, POP, SMTP, XMPP, and/or ActiveSync.

The caching policy manager 245 can locally store responses for data requests in the local

database 285 as cache entries, for subsequent use in satisfying same or similar data requests.
30

WO 2012/145544 PCT/US2012/034300

[00159] The caching policy manager 245 can request that the remote proxy monitor
responses for the data request and the remote proxy can notify the device 250 when an
unexpected response to the data request is detected. In such an event, the cache policy manager
245 can erase or replace the locally stored response(s) on the device 250 when notified of the
unexpected response (e.g., new data, changed data, additional data, etc.) to the data request. In
one embodiment, the caching policy manager 245 is able to detect or identify the protocol used
for a specific request, including but not limited to HTTP, HTTPS, IMAP, POP, SMTP, XMPP,
and/or ActiveSync. In one embodiment, application specific handlers (e.g., via the application
protocol module 246 of the caching policy manager 245) on the local proxy 275 allows for
optimization of any protocol that can be port mapped to a handler in the distributed proxy (e.g.,

port mapped on the proxy server 325 in the example of FIG. 3A).

[00160] In one embodiment, the local proxy 275 notifies the remote proxy such that the
remote proxy can monitor responses received for the data request from the content source for
changed results prior to returning the result to the device 250, for example, when the data request
to the content source has yielded same results to be returned to the mobile device. In general, the
local proxy 275 can simulate application server responses for applications on the device 250,
using locally cached content. This can prevent utilization of the cellular network for transactions
where new/changed data is not available, thus freeing up network resources and preventing

network congestion.

[00161] In one embodiment, the local proxy 275 includes an application behavior detector
236 to track, detect, observe, monitor, applications (e.g., proxy-aware and/or unaware
applications 210 and 220) accessed or installed on the device 250. Application behaviors, or
patterns in detected behaviors (e.g., via the pattern detector 237) of one or more applications
accessed on the device 250 can be used by the local proxy 275 to optimize traffic in a wireless

network needed to satisfy the data needs of these applications.

[00162] For example, based on detected behavior of multiple applications, the traffic shaping
engine 255 can align content requests made by at least some of the applications over the network
(wireless network) (e.g., via the alignment module 256). The alignment module 256 can delay or
expedite some earlier received requests to achieve alignment. When requests are aligned, the
traffic shaping engine 255 can utilize the connection manager to poll over the network to satisfy
application data requests. Content requests for multiple applications can be aligned based on

behavior patterns or rules/settings including, for example, content types requested by the multiple

31

WO 2012/145544 PCT/US2012/034300
applications (audio, video, text, etc.), device (e.g., mobile or wireless device) parameters, and/or

network parameters/traffic conditions, network service provider constraints/specifications, etc.

[00163] In one embodiment, the pattern detector 237 can detect recurrences in application
requests made by the multiple applications, for example, by tracking patterns in application
behavior. A tracked pattern can include, detecting that certain applications, as a background
process, poll an application server regularly, at certain times of day, on certain days of the week,
periodically in a predictable fashion, with a certain frequency, with a certain frequency in
response to a certain type of event, in response to a certain type user query, frequency that
requested content is the same, frequency with which a same request is made, interval between

requests, applications making a request, or any combination of the above, for example.

[00164] Such recurrences can be used by traffic shaping engine 255 to offload polling of
content from a content source (e.g., from an application server/content provider 110 of FIG. 1A)
that would result from the application requests that would be performed at the mobile device or
wireless device 250 to be performed instead, by a proxy server (e.g., proxy server 125 of FIG.
1B or proxy server 325 of FIG. 3A) remote from the device 250. Traffic shaping engine 255 can
decide to offload the polling when the recurrences match a rule. For example, there are multiple
occurrences or requests for the same resource that have exactly the same content, or returned
value, or based on detection of repeatable time periods between requests and responses such as a
resource that is requested at specific times during the day. The offloading of the polling can
decrease the amount of bandwidth consumption needed by the mobile device 250 to establish a
wireless (cellular or other wireless broadband) connection with the content source for repetitive

content polls.

[00165] As aresult of the offloading of the polling, locally cached content stored in the local
cache 285 can be provided to satisfy data requests at the device 250, when content change is not
detected in the polling of the content sources. As such, when data has not changed, application
data needs can be satisfied without needing to enable radio use or occupying cellular bandwidth
in a wireless network. When data has changed and/or new data has been received, the remote
entity to which polling is offloaded, can notify the device 250. The remote entity may be the host
server 300 as shown in the example of FIG. 3A.

[00166] In one embodiment, the local proxy 275 can mitigate the need/use of periodic keep-
alive messages (heartbeat messages) to maintain TCP/IP connections, which can consume

significant amounts of power thus having detrimental impacts on mobile device battery life. The

32

WO 2012/145544 PCT/US2012/034300

connection manager 265 in the local proxy (e.g., the heartbeat manager 267) can detect, identify,

and intercept any or all heartbeat (keep-alive) messages being sent from applications.

[00167] The heartbeat manager 267 can prevent any or all of these heartbeat messages from
being sent over the cellular, or other network, and instead rely on the server component of the
distributed proxy system (e.g., shown in FIG. 1B) to generate the and send the heartbeat
messages to maintain a connection with the backend (e.g., application server/provider 110 in the

example of FIG. 1A).

[00168] The local proxy 275 generally represents any one or a portion of the functions
described for the individual managers, modules, and/or engines. The local proxy 275 and device
250 can include additional or less components; more or less functions can be included, in whole

or in part, without deviating from the novel art of the disclosure.

[00169] FIG. 2B depicts a block diagram illustrating a further example of components in the
cache system shown in the example of FIG. 2A which is capable of caching and adapting

caching strategies for mobile application behavior and/or network conditions.

[00170] In one embodiment, the caching policy manager 245 includes a metadata generator
203, a cache look-up engine 2035, a cache appropriateness decision engine 246, a poll schedule
generator 247, an application protocol module 248, a cache or connect selection engine 249
and/or a local cache invalidator 244. The cache appropriateness decision engine 246 can further
include a timing predictor 246a,a content predictor 246b, a request analyzer 246¢, and/or a
response analyzer 246d, and the cache or connect selection engine 249 includes a response
scheduler 249a. The metadata generator 203 and/or the cache look-up engine 205 are coupled to

the cache 285 (or local cache) for modification or addition to cache entries or querying thereof.

[00171] The cache look-up engine 205 may further include an ID or URI filter 205a, the local
cache invalidator 244 may further include a TTL manager 244a, and the poll schedule generator
247 may further include a schedule update engine 247a and/or a time adjustment engine 247b.
One embodiment of caching policy manager 245 includes an application cache policy repository
243, In one embodiment, the application behavior detector 236 includes a pattern detector 237, a
poll interval detector 238, an application profile generator 239, and/or a priority engine 241. The
poll interval detector 238 may further include a long poll detector 238a having a response/request
tracking engine 238b. The poll interval detector 238 may further include a long poll hunting
detector 238c. The application profile generator 239 can further include a response delay interval

tracker 239a.

33

WO 2012/145544 PCT/US2012/034300
[00172] The pattern detector 237, application profile generator 239, and the priority engine
241 were also described in association with the description of the pattern detector shown in the
example of FIG. 2A. One embodiment further includes an application profile repository 242
which can be used by the local proxy 275 to store information or metadata regarding application

profiles (e.g., behavior, patterns, type of HTTP requests, etc.)

[00173] The cache appropriateness decision engine 246 can detect, assess, or determine
whether content from a content source (e.g., application server/content provider 110 in the
example of FIG. 1B) with which a mobile device 250 interacts and has content that may be
suitable for caching. For example, the decision engine 246 can use information about a request
and/or a response received for the request initiated at the mobile device 250 to determine
cacheability, potential cacheability, or non-cacheability. In some instances, the decision engine
246 can initially verify whether a request is directed to a blacklisted destination or whether the
request itself originates from a blacklisted client or application. If so, additional processing and
analysis may not be performed by the decision engine 246 and the request may be allowed to be
sent over the air to the server to satisfy the request. The black listed destinations or
applications/clients (e.g., mobile applications) can be maintained locally in the local proxy (e.g.,
in the application profile repository 242) or remotely (e.g., in the proxy server 325 or another

entity).

[00174] In one embodiment, the decision engine 246, for example, via the request analyzer
246c¢, collects information about an application or client request generated at the mobile device
250. The request information can include request characteristics information including, for
example, request method. For example, the request method can indicate the type of HTTP
request generated by the mobile application or client. In one embodiment, response to a request
can be identified as cacheable or potentially cacheable if the request method is a GET request or
POST request. Other types of requests (e.g., OPTIONS, HEAD, PUT, DELETE, TRACE, or
CONNECT) may or may not be cached. In general, HTTP requests with uncacheable request

methods will not be cached.

[00175] Request characteristics information can further include information regarding request
size, for example. Responses to requests (e.g., HTTP requests) with body size exceeding a
certain size will not be cached. For example, cacheability can be determined if the information
about the request indicates that a request body size of the request does not exceed a certain size.

In some instances, the maximum cacheable request body size can be set to 8092 bytes. In other

34

WO 2012/145544 PCT/US2012/034300

instances, different values may be used, dependent on network capacity or network operator

specific settings, for example.

[00176] In some instances, content from a given application server/content provider (e.g., the
server/content provider 110 of FIG. 1B) is determined to be suitable for caching based on a set of
criteria, for example, criteria specifying time criticality of the content that is being requested

from the content source. In one embodiment, the local proxy (e.g., the local proxy 175 or 275 of
FIG. 1B and FIG. 2A) applies a sclection criteria to store the content from the host server which
is requested by an application as cached elements in a local cache on the mobile device to satisfy

subsequent requests made by the application.

[00177] The cache appropriateness decision engine 246, further based on detected patterns of
requests sent from the mobile device 250 (e.g., by a mobile application or other types of clients
on the device 250) and/or patterns of received responses, can detect predictability in requests
and/or responses. For example, the request characteristics information collected by the decision
engine 246, (e.g., the request analyzer 246¢) can further include periodicity information between
a request and other requests generated by a same client on the mobile device or other requests

directed to the same host (e.g., with similar or same identifier parameters).

[00178] Periodicity can be detected, by the decision engine 246 or the request analyzer 246c¢,
when the request and the other requests generated by the same client occur at a fixed rate or
nearly fixed rate, or at a dynamic rate with some identifiable or partially or wholly reproducible
changing pattern. If the requests are made with some identifiable pattern (e.g., regular intervals,
intervals having a detectable pattern, or trend (e.g., increasing, decreasing, constant, etc.) the
timing predictor 246a can determine that the requests made by a given application on a device is
predictable and identify it to be potentially appropriate for caching, at least from a timing

standpoint.

[00179] Anidentifiable pattern or trend can generally include any application or client
behavior which may be simulated either locally, for example, on the local proxy 275 on the
mobile device 250 or simulated remotely, for example, by the proxy server 325 on the host 300,

or a combination of local and remote simulation to emulate application behavior.

[00180] In one embodiment, the decision engine 246, for example, via the response analyzer
246d, can collect information about a response to an application or client request generated at the
mobile device 250. The response is typically received from a server or the host of the application

(e.g., mobile application) or client which sent the request at the mobile device 250. In some

35

WO 2012/145544 PCT/US2012/034300
instances, the mobile client or application can be the mobile version of an application (e.g., social
networking, search, travel management, voicemail, contact manager, email) or a web site

accessed via a web browser or via a desktop client.

[00181] For example, response characteristics information can include an indication of
whether transfer encoding or chunked transfer encoding is used in sending the response. In some
instances, responses to HTTP requests with transfer encoding or chunked transfer encoding are
not cached, and therefore are also removed from further analysis. The rationale here is that
chunked responses are usually large and non-optimal for caching, since the processing of these
transactions may likely slow down the overall performance. Therefore, in one embodiment,
cacheability or potential for cacheability can be determined when transfer encoding is not used in

sending the response.

[00182] In addition, the response characteristics information can include an associated status
code of the response which can be identified by the response analyzer 246d. In some instances,
HTTP responses with uncacheable status codes are typically not cached. The response analyzer
246d can extract the status code from the response and determine whether it matches a status
code which is cacheable or uncacheable. Some cacheable status codes include by way of
example: 200-OK, 301-Redirect, 302-Found, 303-See other, 304 - Not Modified, 307Temporary
Redirect, or 500 — Internal server error. Some uncacheable status codes can include, for

example, 403 — Forbidden or 404 — Not found.

[00183] In one embodiment, cacheability or potential for cacheability can be determined if
the information about the response does not indicate an uncacheable status code or indicates a
cacheable status code. If the response analyzer 246d detects an uncacheable status code
associated with a given response, the specific transaction (request/response pair) may be
eliminated from further processing and determined to be uncacheable on a temporary basis, a
semi-permanent, or a permanent basis. If the status code indicates cacheability, the transaction
(e.g., request and/or response pair) may be subject to further processing and analysis to confirm

cacheability, as shown in the example flow charts of FIGS. 9-13.

[00184] Response characteristics information can also include response size information. In
general, responses can be cached locally at the mobile device 250 if the responses do not exceed
a certain size. In some instances, the default maximum cached response size is set to 115 KB. In
other instances, the max cacheable response size may be different and/or dynamically adjusted
based on operating conditions, network conditions, network capacity, user preferences, network

operator requirements, or other application-specific, user specific, and/or device-specific reasons.
36

WO 2012/145544 PCT/US2012/034300
In one embodiment, the response analyzer 246d can identify the size of the response, and
cacheability or potential for cacheability can be determined if a given threshold or max value is

not exceeded by the response size.

[00185] Furthermore, response characteristics information can include response body
information for the response to the request and other response to other requests generated by a
same client on the mobile device, or directed to a same content host or application server. The
response body information for the response and the other responses can be compared, for
example, by the response analyzer 246d, to prevent the caching of dynamic content (or responses
with content that changes frequently and cannot be efficiently served with cache entries, such as
financial data, stock quotes, news feeds, real-time sporting event activities, etc.), such as content

that would no longer be relevant or up-to-date if served from cached entries.

[00186] The cache appropriateness decision engine 246 (e.g., the content predictor 246b) can
definitively identify repeatability or identify indications of repeatability, potential repeatability,
or predictability in responses received from a content source (e.g., the content host/application
server 110 shown in the example of FIGS. 1A-B). Repeatability can be detected by, for
example, tracking at least two responses received from the content source and determines if the
two responses are the same. For example, cacheability can be determined, by the response
analyzer 246d, if the response body information for the response and the other responses sent by
the same mobile client or directed to the same host/server are same or substantially the same.

The two responses may or may not be responses sent in response to consecutive requests. In one
embodiment, hash values of the responses received for requests from a given application are used
to determine repeatability of content (with or without heuristics) for the application in general
and/or for the specific request. Additional same responses may be required for some applications

or under certain circumstances.

[00187] Repeatability in received content need not be 100% ascertained. For example,
responses can be determined to be repeatable if a certain number or a certain percentage of
responses are the same, or similar. The certain number or certain percentage of same/similar
responses can be tracked over a select period of time, set by default or set based on the
application generating the requests (e.g., whether the application is highly dynamic with constant
updates or less dynamic with infrequent updates). Any indicated predictability or repeatability,
or possible repeatability, can be utilized by the distributed system in caching content to be

provided to a requesting application or client on the mobile device 250.

37

WO 2012/145544 PCT/US2012/034300
[00188] In one embodiment, for a long poll type request, the local proxy 175 can begin to
cache responses on a third request when the response delay times for the first two responses are
the same, substantially the same, or detected to be increasing in intervals. In general, the
received responses for the first two responses should be the same, and upon verifying that the
third response received for the third request is the same (e.g., if RO = R1 = R2), the third response
can be locally cached on the mobile device. Less or more same responses may be required to
begin caching, depending on the type of application, type of data, type of content, user

preferences, or carrier/network operator specifications.

[00189] Increasing response delays with same responses for long polls can indicate a hunting
period (e.g., a period in which the application/client on the mobile device is seeking the longest
time between a request and response that a given network will allow, a timing diagram showing
timing characteristics is illustrated in FIG. 8), as detected by the long poll hunting detector 238¢
of the application behavior detector 236.

[00190] An example can be described below using TO, T1, T2, where T indicates the delay
time between when a request is sent and when a response (e.g., the response header) is

detected/received for consecutive requests:

T0 = Response0(t) — RequestO(t) = 180 s. (+/- tolerance)
T1 = Responsel(t) — Request1(t) =240 s. (+/- tolerance)
T2 = Response2(t) — Request2(t) = 500 s. (+/- tolerance)

[00191] In the example timing sequence shown above, TO < T1 < T2, this may indicate a
hunting pattern for a long poll when network timeout has not yet been reached or exceeded.
Furthermore, if the responses RO, R1, and R2 received for the three requests are the same, R2 can
be cached. In this example, R2 is cached during the long poll hunting period without waiting for
the long poll to settle, thus expediting response caching (e.g., this is optional accelerated caching

behavior which can be implemented for all or select applications).

[00192] As such, the local proxy 275 can specify information that can be extracted from the
timing sequence shown above (e.g., polling schedule, polling interval, polling type) to the proxy
server and begin caching and to request the proxy server to begin polling and monitoring the
source (e.g., using any of TO, T1, T2 as polling intervals but typically T2, or the largest detected
interval without timing out, and for which responses from the source is received will be sent to
the proxy server 325 of FIG. 3A for use in polling the content source (e.g., application

server/service provider 310)).
38

WO 2012/145544 PCT/US2012/034300
[00193] However, if the time intervals are detected to be getting shorter, the application (e.g.,
mobile application)/client may still be hunting for a time interval for which a response can be
reliably received from the content source (e.g., application/server server/provider 110 or 310),
and as such caching typically should not begin until the request/response intervals indicate the

same time interval or an increasing time interval, for example, for a long poll type request.

[00194] An example of handling a detected decreasing delay can be described below using
TO, T1, T2, T3, and T4 where T indicates the delay time between when a request is sent and

when a response (¢.g., the response header) is detected/received for consecutive requests:

T0 = Response0(t) — RequestO(t) = 160 s. (+/- tolerance)
T1 = Responsel(t) — Request1(t) =240 s. (+/- tolerance)
T2 = Response2(t) — Request2(t) = 500 s. (+/- tolerance)
T3 = Time out at 700 s. (+/- tolerance)

T4 = Response4(t) — Requestd(t) = 600 (+/- tolerance)

[00195] If a pattern for response delays T1 <T2 < T3 > T4 is detected, as shown in the above
timing sequence (e.g., detected by the long poll hunting detector 238¢ of the application behavior
detector 236), it can be determined that T3 likely exceeded the network time out during a long
poll hunting period. In Request 3, a response likely was not received since the connection was
terminated by the network, application, server, or other reason before a response was sent or
available. On Request 4 (after T4), if a response (e.g., Response 4) is detected or received, the
local proxy 275 can then use the response for caching (if the content repeatability condition is
met). The local proxy can also use T4 as the poll interval in the polling schedule set for the

proxy server to monitor/poll the content source.

[00196] Note that the above description shows that caching can begin while long polls are in
hunting mode in the event of detecting increasing response delays, as long as responses are
received and not timed out for a given request. This can be referred to as the optional accelerated
caching during long poll hunting. Caching can also begin after the hunting mode (e.g., after the
poll requests have settled to a constant or near constant delay value) has completed. Note that
hunting may or may not occur for long polls and when hunting occurs; the proxy 275 can
generally detect this and determine whether to begin to cache during the hunting period

(increasing intervals with same responses) or wait until the hunt settles to a stable value.

39

WO 2012/145544 PCT/US2012/034300
[00197] In one embodiment, the timing predictor 246a of the cache appropriateness decision
engine 246 can track timing of responses received from outgoing requests from an application
(e.g., mobile application) or client to detect any identifiable patterns which can be partially
wholly reproducible, such that locally cached responses can be provided to the requesting client
on the mobile device 250 in a manner that simulates content source (e.g., application
server/content provider 110 or 310) behavior. For example, the manner in which (e.g., from a
timing standpoint) responses or content would be delivered to the requesting application/client on
the device 250. This ensures preservation of user experience when responses to application or
mobile client requests are served from a local and/or remote cache instead of being
retrieved/received directly from the content source (e.g., application, content provider 110 or

310).

[00198] In one embodiment, the decision engine 246 or the timing predictor 246a determines
the timing characteristics a given application (e.g., mobile application) or client from, for
example, the request/response tracking engine 238b and/or the application profile generator 239
(e.g., the response delay interval tracker 239a). Using the timing characteristics, the timing
predictor 246a determines whether the content received in response to the requests are suitable or
are potentially suitable for caching. For example, poll request intervals between two consecutive
requests from a given application can be used to determine whether request intervals are
repeatable (e.g., constant, near constant, increasing with a pattern, decreasing with a pattern, etc.)
and can be predicted and thus reproduced at least some of the times either exactly or

approximated within a tolerance level.

[00199] In some instances, the timing characteristics of a given request type for a specific
application, for multiple requests of an application, or for multiple applications can be stored in
the application profile repository 242. The application profile repository 242 can generally store
any type of information or metadata regarding application request/response characteristics

including timing patterns, timing repeatability, content repeatability, etc.

[00200] The application profile repository 242 can also store metadata indicating the type of
request used by a given application (e.g., long polls, long-held HTTP requests, HTTP streaming,
push, COMET push, etc.) Application profiles indicating request type by applications can be
used when subsequent same/similar requests are detected, or when requests are detected from an
application which has already been categorized. In this manner, timing characteristics for the
given request type or for requests of a specific application which has been tracked and/or

analyzed, need not be reanalyzed.

40

WO 2012/145544 PCT/US2012/034300
[00201] Application profiles can be associated with a time-to-live (e.g., or a default
expiration time). The use of an expiration time for application profiles, or for various aspects of
an application or request’s profile can be used on a case by case basis. The time-to-live or actual
expiration time of application profile entries can be set to a default value or determined
individually, or a combination therecof. Application profiles can also be specific to wireless

networks, physical networks, network operators, or specific carriers.

[00202] One embodiment includes an application blacklist manager 201. The application
blacklist manager 201 can be coupled to the application cache policy repository 243 and can be
partially or wholly internal to local proxy or the caching policy manager 245. Similarly, the
blacklist manager 201 can be partially or wholly internal to local proxy or the application
behavior detector 236. The blacklist manager 201 can aggregate, track, update, manage, adjust,
or dynamically monitor a list of destinations of servers/host that are ‘blacklisted,” or identified as
not cached, on a permanent or temporary basis. The blacklist of destinations, when identified in
a request, can potentially be used to allow the request to be sent over the (cellular) network for
servicing. Additional processing on the request may not be performed since it is detected to be

directed to a blacklisted destination.

[00203] Blacklisted destinations can be identified in the application cache policy repository
243 by address identifiers including specific URIs or patterns of identifiers including URI
patterns. In general, blacklisted destinations can be set by or modified for any reason by any
party including the user (owner/user of mobile device 250), operating system/mobile platform of
device 250, the destination itself, network operator (of cellular network), Internet service
provider, other third parties, or according to a list of destinations for applications known to be
uncacheable/not suited for caching. Some entries in the blacklisted destinations may include
destinations aggregated based on the analysis or processing performed by the local proxy (e.g.,

cache appropriateness decision engine 246).

[00204] For example, applications or mobile clients on the mobile device for which responses
have been identified as non-suitable for caching can be added to the blacklist. Their
corresponding hosts/servers may be added in addition to or in lieu of an identification of the
requesting application/client on the mobile device 250. Some or all of such clients identified by
the proxy system can be added to the blacklist. For example, for all application clients or
applications that are temporarily identified as not being suitable for caching, only those with
certain detected characteristics (based on timing, periodicity, frequency of response content

change, content predictability, size, etc.) can be blacklisted.

41

WO 2012/145544 PCT/US2012/034300
[00205] The blacklisted entries may include a list of requesting applications or requesting
clients on the mobile device (rather than destinations) such that, when a request is detected from
a given application or given client, it may be sent through the network for a response, since

responses for blacklisted clients/applications are in most circumstances not cached.

[00206] A given application profile may also be treated or processed differently (e.g.,
different behavior of the local proxy 275 and the remote proxy 325) depending on the mobile
account associated with a mobile device from which the application is being accessed. For
example, a higher paying account, or a premier account may allow more frequent access of the
wireless network or higher bandwidth allowance thus affecting the caching policies implemented
between the local proxy 275 and proxy server 325 with an emphasis on better performance
compared to conservation of resources. A given application profile may also be treated or
processed differently under different wireless network conditions (e.g., based on congestion or

network outage, etc.).

[00207] Note that cache appropriateness can be determined, tracked, and managed for
multiple clients or applications on the mobile device 250. Cache appropriateness can also be
determined for different requests or request types initiated by a given client or application on the
mobile device 250. The caching policy manager 245, along with the timing predictor 246a
and/or the content predictor 246b which heuristically determines or estimates predictability or
potential predictability, can track, manage and store cacheability information for various
application or various requests for a given application. Cacheability information may also
include conditions (e.g., an application can be cached at certain times of the day, or certain days
of the week, or certain requests of a given application can be cached, or all requests with a given
destination address can be cached) under which caching is appropriate which can be determined
and/or tracked by the cache appropriateness decision engine 246 and stored and/or updated when
appropriate in the application cache policy repository 243 coupled to the cache appropriateness

decision engine 246.

[00208] The information in the application cache policy repository 243 regarding cacheability
of requests, applications, and/or associated conditions can be used later on when same requests
are detected. In this manner, the decision engine 246 and/or the timing and content predictors
246a/b need not track and reanalyze request/response timing and content characteristics to make
an assessment regarding cacheability. In addition, the cacheability information can in some
instances be shared with local proxies of other mobile devices by way of direct communication

or via the host server (e.g., proxy server 325 of host server 300).

42

WO 2012/145544 PCT/US2012/034300
[00209] For example, cacheability information detected by the local proxy 275 on various
mobile devices can be sent to a remote host server or a proxy server 325 on the host server (e.g.,
host server 300 or proxy server 325 shown in the example of FIG. 3A, host 100 and proxy server
125 in the example of FIGS. 1A-B). The remote host or proxy server can then distribute the
information regarding application-specific, request-specific cacheability information and/or any
associated conditions to various mobile devices or their local proxies in a wireless network or
across multiple wireless networks (same service provider or multiple wireless service providers)

for their use.

[00210] In general, the selection criteria for caching can further include, by way of example
but not limitation, the state of the mobile device indicating whether the mobile device is active or
inactive, network conditions, and/or radio coverage statistics. The cache appropriateness
decision engine 246 can in any one or any combination of the criteria, and in any order,

identifying sources for which caching may be suitable.

[00211] Once application servers/content providers having identified or detected content that
is potentially suitable for local caching on the mobile device 250, the cache policy manager 245
can proceed to cache the associated content received from the identified sources by storing
content received from the content source as cache elements in a local cache (e.g., local cache 185

or 285 shown in the examples of FIG. 1B and FIG. 2A, respectively) on the mobile device 250.

[00212] The response can be stored in the cache 285 (e.g., also referred as the local cache) as
a cache entry. In addition to the response to a request, the cached entry can include response
metadata having additional information regarding caching of the response. The metadata may be
generated by the metadata generator 203 and can include, for example, timing data such as the
access time of the cache entry or creation time of the cache entry. Metadata can include
additional information, such as any information suited for use in determining whether the
response stored as the cached entry is used to satisfy the subsequent response. For example,
metadata information can further include, request timing history (e.g., including request time,
request start time, request end time), hash of the request and/or response, time intervals or

changes in time intervals, etc.

[00213] The cache entry is typically stored in the cache 285 in association with a time-to-live
(TTL), which for example may be assigned or determined by the TTL manager 244a of the cache
invalidator 244. The time-to-live of a cache entry is the amount of time the entry is persisted in
the cache 285 regardless of whether the response is still valid or relevant for a given request or

client/application on the mobile device 250. For example, if the time-to-live of a given cache
43

WO 2012/145544 PCT/US2012/034300
entry is set to 12 hours, the cache entry is purged, removed, or otherwise indicated as having
exceeded the time-to-live, even if the response body contained in the cache entry is still current

and applicable for the associated request.

[00214] A default time-to-live can be automatically used for all entries unless otherwise
specified (e.g., by the TTL manager 244a), or each cache entry can be created with its individual
TTL (e.g., determined by the TTL manager 244a based on various dynamic or static criteria).
Note that each entry can have a single time-to-live associated with both the response data and any
associated metadata. In some instances, the associated metadata may have a different time-to-
live (e.g., a longer time-to-live) than the response data. Examples of representations of a data

model of a cache entry are illustrated in FIG. 24 and FIG. 25.

[00215] The content source having content for caching can, in addition or in alternate, be
identified to a proxy server (e.g., proxy server 125 or 325 shown in the examples of FIG. 1B and
FIG. 3A, respectively) remote from and in wireless communication with the mobile device 250
such that the proxy server can monitor the content source (e.g., application server/content
provider 110) for new or changed data. Similarly, the local proxy (e.g., the local proxy 175 or
275 of FIG. 1B and FIG. 2A, respectively) can identify to the proxy server that content received
from a specific application server/content provider is being stored as cached elements in the local

cache 285.

[00216] Once content has been locally cached, the cache policy manager 245, upon receiving
future polling requests to contact the application server/content host (e.g., 110 or 310), can
retrieve the cached elements from the local cache to respond to the polling request made at the
mobile device 250 such that a radio of the mobile device is not activated to service the polling
request. For example, the cache look-up engine 205 can query the cache 285 to identify the
response to be served to a response. The response can be served from the cache in response to
identifying a matching cache entry and also using any metadata stored with the response in the
cache entry. The cache entries can be queried by the cache look-up engine using a URI of the
request or another type of identifier (e.g., via the ID or URI filter 205a). The cache-lookup
engine 205 can further use the metadata (e.g., extract any timing information or other relevant
information) stored with the matching cache entry to determine whether response is still suited

for use in being served to a current request.

[00217] Note that the cache-look-up can be performed by the engine 205 using one or more
of various multiple strategies. In one embodiment, multiple cook-up strategies can be executed

sequentially on each entry store din the cache 285, until at least one strategy identifies a matching
44

WO 2012/145544 PCT/US2012/034300
cache entry. The strategy employed to performing cache look-up can include a strict matching

criteria or a matching criteria which allows for non-matching parameters.

[00218] For example, the look-up engine 205 can perform a strict matching strategy which

searches for an exact match between an identifier (e.g., a URI for a host or resource) referenced
in a present request for which the proxy is attempting to identify a cache entry and an identifier
stored with the cache entries. In the case where identifiers include URIs or URLS, the matching
algorithm for strict matching will search for a cache entry where all the parameters in the URLSs

match. For example:

Example 1.

1. Cache contains entry for http://test.com/products/
2. Request is being made to URI http://test.com/products/

Strict strategy will find a match, since both URIs are same.
Example 2.

1. Cache contains entry for http://test.com/products/?query=all
2. Request is being made to URI http://test.com/products/?query=sub
[00219] Under the strict strategy outlined above, a match will not be found since the URIs

differ in the query parameter.

[00220] In another example strategy, the look-up engine 205 looks for a cache entry with an
identifier that partially matches the identifier references in a present request for which the proxy
is attempting to identify a matching cache entry. For example, the look-up engine 205 may look
for a cache entry with an identifier which differs from the request identifier by a query parameter
value. In utilizing this strategy, the look-up engine 205 can collect information collected for
multiple previous requests (e.g., a list of arbitrary parameters in an identifier) to be later checked
with the detected arbitrary parameter in the current request. For example, in the case where
cache entries are stored with URI or URL identifiers, the look-up engine searches for a cache
entry with a URI differing by a query parameter. If found, the engine 205 can examine the cache
entry for information collected during previous requests (e.g. a list of arbitrary parameters) and
checked whether the arbitrary parameter detected in or extracted from the current URI/URL

belongs to the arbitrary parameters list.

Example 1.

1. Cache contains entry for http://test.com/products/?query=all, where query is marked as
arbitrary.

45

WO 2012/145544 PCT/US2012/034300
2. Request is being made to URI http://text.com/products/?query=sub

Match will be found, since query parameter is marked as arbitrary.
Example 2.

1. Cache contains entry for http://test.com/products/?query=all, where query is marked as
arbitrary.
2. Request is being made to URI http://test.com/products/?query=sub&sort=asc

Match will not be found, since current request contains sort parameter which is not marked as
arbitrary in the cache entry.

[00221] Additional strategies for detecting cache hit may be employed. These strategies can
be implemented singly or in any combination thereof. A cache-hit can be determined when any
one of these strategies determines a match. A cache miss may be indicated when the look-up
engine 205 determines that the requested data cannot be served from the cache 285, for any
reason. For example, a cache miss may be determined when no cache entries are identified for

any or all utilized look-up strategies.

[00222] Cache miss may also be determined when a matching cache entry exists but
determined to be invalid or irrelevant for the current request. For example, the look-up engine
205 may further analyze metadata (e.g., which may include timing data of the cache entry)
associated with the matching cache entry to determine whether it is still suitable for use in

responding to the present request.

[00223] When the look-up engine 205 has identified a cache hit (e.g., an event indicating that
the requested data can be served from the cache), the stored response in the matching cache entry

can be served from the cache to satisfy the request of an application/client.

[00224] By servicing requests using cache entries stored in cache 285, network bandwidth
and other resources need not be used to request/receive poll responses which may have not
changed from a response that has already been received at the mobile device 250. Such servicing
and fulfilling application (e.g., mobile application) requests locally via cache entries in the local
cache 285 allows for more efficient resource and mobile network traffic utilization and
management since the request need not be sent over the wireless network further consuming
bandwidth. In general, the cache 285 can be persisted between power on/off of the mobile device

250, and persisted across application/client refreshes and restarts.

46

WO 2012/145544 PCT/US2012/034300
[00225] For example, the local proxy 275, upon receipt of an outgoing request from its
mobile device 250 or from an application or other type of client on the mobile device 250, can
intercept the request and determine whether a cached response is available in the local cache 285
of the mobile device 250. If so, the outgoing request is responded to by the local proxy 275
using the cached response on the cache of the mobile device. As such, the outgoing request can
be filled or satisfied without a need to send the outgoing request over the wireless network, thus

conserving network resources and battery consumption.

[00226] In one embodiment, the responding to the requesting application/client on the device
250 is timed to correspond to a manner in which the content server would have responded to the
outgoing request over a persistent connection (e.g., over the persistent connection, or long-held
HTTP connection, long poll type connection, that would have been established absent
interception by the local proxy). The timing of the response can be emulated or simulated by the
local proxy 275 to preserve application behavior such that end user experience is not affected, or
minimally affected by serving stored content from the local cache 285 rather than fresh content
received from the intended content source (e.g., content host/application server 110 of FIGS. 1A-
B). The timing can be replicated exactly or estimated within a tolerance parameter, which may
go unnoticed by the user or treated similarly by the application so as to not cause operation

issues.

[00227] For example, the outgoing request can be a request for a persistent connection
intended for the content server (e.g., application server/content provider of examples of FIGS.
1A-1B). In a persistent connection (e.g., long poll, COMET-style push or any other push
simulation in asynchronous HTTP requests, long-held HTTP request, HTTP streaming, or others)
with a content source (server), the connection is held for some time after a request is sent. The
connection can typically be persisted between the mobile device and the server until content is
available at the server to be sent to the mobile device. Thus, there typically can be some delay in
time between when a long poll request is sent and when a response is received from the content
source. If a response is not provided by the content source for a certain amount of time, the
connection may also terminate due to network reasons (e.g., socket closure) if a response is not

sent.

[00228] Thus, to emulate a response from a content server sent over a persistent connection
(e.g., a long poll style connection), the manner of response of the content server can be simulated

by allowing a time interval to elapse before responding to the outgoing request with the cached

47

WO 2012/145544 PCT/US2012/034300
response. The length of the time interval can be determined on a request by request basis or on

an application by application (client by client basis), for example.

[00229] In one embodiment, the time interval is determined based on request characteristics
(e.g., timing characteristics) of an application on the mobile device from which the outgoing
request originates. For example, poll request intervals (e.g., which can be tracked, detected, and
determined by the long poll detector 238a of the poll interval detector 238) can be used to
determine the time interval to wait before responding to a request with a local cache entry and

managed by the response scheduler 249a.

[00230] One embodiment of the cache policy manager 245 includes a poll schedule generator
247 which can generate a polling schedule for one or more applications on the mobile device
250. The polling schedule can specify a polling interval that can be employed by an entity which
is physically distinct and/or separate from the mobile device 250 in monitoring the content source
for one or more applications (such that cached responses can be verified periodically by polling a
host server (host server 110 or 310) to which the request is directed) on behalf of the mobile
device. One example of such an external entity which can monitor the content at the source for
the mobile device 250 is a proxy server (e.g., proxy server 125 or 325 shown in the examples of

FIG. 1B and FIGS. 3A-C).

[00231] The polling schedule (e.g., including a rate/frequency of polling) can be determined,
for example, based on the interval between the polling requests directed to the content source
from the mobile device. The polling schedule or rate of polling may be determined at the mobile
device 250 (by the local proxy). In one embodiment, the poll interval detector 238 of the
application behavior detector 236 can monitor polling requests directed to a content source from
the mobile device 250 in order to determine an interval between the polling requests made from

any or all application (e.g., mobile application).

[00232] For example, the poll interval detector 238 can track requests and responses for
applications or clients on the device 250. In one embodiment, consecutive requests are tracked
prior to detection of an outgoing request initiated from the application (e.g., mobile application)
on the mobile device 250 by the same mobile client or application (e.g., mobile application). The
polling rate can be determined using request information collected for the request for which the
response is cached. In one embodiment, the rate is determined from averages of time intervals
between previous requests generated by the same client which generated the request. For
example, a first interval may be computed between the current request and a previous request,

and a second interval can be computed between the two previous requests. The polling rate can
48

WO 2012/145544 PCT/US2012/034300
be set from the average of the first interval and the second interval and sent to the proxy server in

setting up the caching strategy.

[00233] Alternate intervals may be computed in generating an average; for example, multiple
previous requests in addition to two previous requests may be used, and more than two intervals
may be used in computing an average. In general, in computing intervals, a given request need
not have resulted in a response to be received from the host server/content source in order to use
it for interval computation. In other words, the timing characteristics of a given request may be
used in interval computation, as long as the request has been detected, even if the request failed

in sending, or if the response retrieval failed.

[00234] One embodiment of the poll schedule generator 247 includes a schedule update
engine 247a and/or a time adjustment engine 247b. The schedule update engine 247a can
determine a need to update a rate or polling interval with which a given application
server/content host from a previously set value, based on a detected interval change in the actual
requests generated from a client or application (e.g., mobile application) on the mobile device

250.

[00235] For example, a request for which a monitoring rate was determined may now be sent
from the application (e.g., mobile application) or client at a different request interval. The
scheduled update engine 247a can determine the updated polling interval of the actual requests
and generate a new rate, different from the previously set rate to poll the host at on behalf of the
mobile device 250. The updated polling rate can be communicated to the remote proxy (proxy
server 325) over the cellular network for the remote proxy to monitor the given host. In some
instances, the updated polling rate may be determined at the remote proxy or remote entity which

monitors the host.

[00236] In one embodiment, the time adjustment engine 247b can further optimize the poll
schedule generated to monitor the application server/content source (110 or 310). For example,
the time adjustment engine 247b can optionally specify a time to start polling to the proxy server.
For example, in addition to setting the polling interval at which the proxy server is to monitor the
application, server/content host can also specify the time at which an actual request was

generated at the mobile client/application.

[00237] However, in some cases, due to inherent transmission delay or added network delays
or other types of latencies, the remote proxy server receives the poll setup from the local proxy

with some delay (e.g., a few minutes, or a few seconds). This has the effect of detecting response

49

WO 2012/145544 PCT/US2012/034300

change at the source after a request is generated by the mobile client/application causing the
invalidate of the cached response to occur after it has once again been served to the application
after the response is no longer current or valid. This discrepancy is further illustrated

diagrammatically in the data timing diagram of FIG. 21.

[00238] To resolve this non-optimal result of serving the out-dated content once again before
invalidating it, the time adjustment engine 247b can specify the time (t0) at which polling should
begin in addition to the rate, where the specified initial time t0 can be specified to the proxy
server 325 as a time that is less than the actual time when the request was generated by the
mobile app/client. This way, the server polls the resource slightly before the generation of an
actual request by the mobile client such that any content change can be detected prior to an actual
application request. This prevents invalid or irrelevant out-dated content/response from being

served once again before fresh content is served.

[00239] In one embodiment, an outgoing request from a mobile device 250 is detected to be
for a persistent connection (e.g., a long poll, COMET style push, and long-held (HTTP) request)
based on timing characteristics of prior requests from the same application or client on the
mobile device 250. For example, requests and/or corresponding responses can be tracked by the
request/response tracking engine 238b of the long poll detector 238a of the poll interval detector
238.

[00240] The timing characteristics of the consecutive requests can be determined to set up a
polling schedule for the application or client. The polling schedule can be used to monitor the
content source (content source/application server) for content changes such that cached content
stored on the local cache in the mobile device 250 can be appropriately managed (e.g., updated or
discarded). In one embodiment, the timing characteristics can include, for example, a response

delay time (‘D’) and/or an idle time (‘IT’).

[00241] The response delay time and idle time typical of a long poll are illustrated in the
timing diagram shown below and also described further in detail with references to FIGS. 17A-
B. In one embodiment, the response/request tracking engine 238b can track requests and
responses to determine, compute, and/or estimate, the timing diagrams for applicant or client

requests.

[00242] For example, the response/request tracking engine 238b detects a first request
(Request 0) initiated by a client on the mobile device and a second request (Request 1) initiated

by the client on the mobile device after a response is received at the mobile device responsive to

50

WO 2012/145544 PCT/US2012/034300

the first request. The second request is one that is subsequent to the first request. The

relationship between requests can be seen in the timing diagrams of FIGS. 17A-B.

[00243] In one embodiment, the response/request tracking engine 238b can track requests and
responses to determine, compute, and/or estimate the timing diagrams for applicant or client
requests. The response/request tracking engine 238b can detect a first request initiated by a client
on the mobile device and a second request initiated by the client on the mobile device after a
response is received at the mobile device responsive to the first request. The second request is

one that is subsequent to the first request.

[00244] The response/request tracking engine 238b further determines relative timings
between the first, second requests, and the response received in response to the first request. In
general, the relative timings can be used by the long poll detector 238a to determine whether

requests generated by the application are long poll requests.

[00245] Note that in general, the first and second requests that are used by the
response/request tracking engine 238b in computing the relative timings are selected for use after
a long poll hunting period has settled or in the event when long poll hunting does not occur.
Timing characteristics that are typical of a long poll hunting period is illustrated in the example
of FIG. 8 and can be, for example, detected by the long poll hunting detector 238c. In other
words, the requests tracked by the response/request tracking engine 238b and used for
determining whether a given request is a long poll occurs after the long poll has settled (e.g.,

shown in 810 of FIG. 8 after the hunting mode 805 has completed).

[00246] In one embodiment, the long poll hunting detector 238¢ can identify or detect
hunting mode, by identifying increasing request intervals (e.g., increasing delays). The long poll
hunting detector 238a can also detect hunting mode by detecting increasing request intervals,
followed by a request with no response (e.g., connection timed out), or by detecting increasing
request intervals followed by a decrease in the interval. In addition, the long poll hunting
detector 238c can apply a filter value or a threshold value to request-response time delay value
(e.g., an absolute value) above which the detected delay can be considered to be a long poll
request-response delay. The filter value can be any suitable value characteristic of long polls
and/or network conditions (e.g., 2 s, 5s, 10s, 15 s, 20s., etc.) and can be used as a filter or

threshold value.

[00247] The response delay time ('D') refers to the start time to receive a response after a

request has been sent and the idle refers to time to send a subsequent request after the response

51

WO 2012/145544 PCT/US2012/034300
has been received. In one embodiment, the outgoing request is detected to be for a persistent
connection based on a comparison (e.g., performed by the tracking engine 238b) of the response
delay time relative ('D') or average of ('D’) (e.g., any average over any period of time) to the idle
time ('IT"), for example, by the long poll detector 238a. The number of averages used can be
fixed, dynamically adjusted, or changed over a longer period of time. For example, the requests
initiated by the client are determined to be long poll requests if the response delay time interval is
greater than the idle time interval (D >IT or D>>IT). In one embodiment, the tracking engine
238D of the long poll detector computes, determines, or estimates the response delay time interval
as the amount of time eclapsed between time of the first request and initial detection or full receipt

of the response.

[00248] In one embodiment, a request is detected to be for a persistent connection when the
idle time (‘IT’) is short since persistent connections, established in response to long poll requests
or long poll HTTP requests for example, can also be characterized in detecting immediate or
near-immediate issuance of a subsequent request after receipt of a response to a previous request
(e.g., IT ~0). As such, the idle time (‘IT”) can also be used to detect such immediate or near-
immediate re-request to identify long poll requests. The absolute or relative timings determined
by the tracking engine 238b are used to determine whether the second request is immediately or
near-immediately re-requested after the response to the first request is received. For example, a
request may be categorized as a long poll request if D + RT + IT ~ D + RT since IT is small for
this to hold true. IT may be determined to be small if it is less than a threshold value. Note that
the threshold value could be fixed or calculated over a limited time period (a session, a day, a
month, etc.), or calculated over a longer time period (e.g., several months or the life of the
analysis). For example, for every request, the average IT can be determined, and the threshold
can be determined using this average IT (e.g., the average IT less a certain percentage may be
used as the threshold). This can allow the threshold to automatically adapt over time to network
conditions and changes in server capability, resource availability or server response. A fixed
threshold can take upon any value including by way of example but not limitation (e.g., 1 5. 2 s. 3

S.etc.).

[00249] In one embodiment, the long poll detector 238a can compare the relative timings
(e.g., determined by the tracker engine 238b) to request-response timing characteristics for other
applications to determine whether the requests of the application are long poll requests. For
example, the requests initiated by a client or application can be determined to be long poll

requests if the response delay interval time (‘D’) or the average response delay interval time (e.g.,

52

WO 2012/145544 PCT/US2012/034300
averaged over x number of requests or any number of delay interval times averaged over x

amount of time) is greater than a threshold value.

[00250] The threshold value can be determined using response delay interval times for
requests generated by other clients, for example by the request/response tracking engine 238b
and/or by the application profile generator 239 (e.g., the response delay interval tracker 239a).
The other clients may reside on the same mobile device and the threshold value is determined
locally by components on the mobile device. The threshold value can be determined for all
requests over all resources server over all networks, for example. The threshold value can be set
to a specific constant value (e.g., 30 seconds, for example) to be used for all requests, or any
request which does not have an applicable threshold value (e.g., long poll is detected if D > 30

seconds).

[00251] In some instances, the other clients reside on different mobile devices and the
threshold can be determined by a proxy server (e.g., proxy server 325 of the host 300 shown in
the example of FIGS. 3A-B) which is external to the mobile device and able to communicate
over a wireless network with the multiple different mobile devices, as will be further described

with reference to FIG. 3B.

[00252] In one embodiment, the cache policy manager 245 sends the polling schedule to the
proxy server (e.g., proxy server 125 or 325 shown in the examples of FIG. 1B and FIG. 3A) and
can be used by the proxy server in monitoring the content source, for example, for changed or
new content (updated response different from the cached response associated with a request or
application). A polling schedule sent to the proxy can include multiple timing parameters
including but not limited to interval (time from request 1 to request 2) or a time out interval (time
to wait for response, used in long polls, for example). Referring to the timing diagram of a
request/response timing sequence timing intervals ‘RI°, ‘D’, ‘RT’, and/or ‘IT’, or some statistical
manipulation of the above values (e.g., average, standard deviation, etc.) may all or in part be

sent to the proxy server.

[00253] For example, in the case when the local proxy 275 detects a long poll, the various
timing intervals in a request/response timing sequence (e.g., ‘D’, ‘RT’, and/or ‘IT’) can be sent to
the proxy server 325 for use in polling the content source (e.g., application server/content host
110). The local proxy 275 can also identify to the proxy server 325 that a given application or
request to be monitored is a long poll request (e.g., instructing the proxy server to set a ‘long poll
flag’, for example). In addition, the proxy server uses the various timing intervals to determine

when to send keep-alive indications on behalf of mobile devices.
53

WO 2012/145544 PCT/US2012/034300
[00254] The local cache invalidator 244 of the caching policy manager 245 can invalidate

cache elements in the local cache (e.g., cache 185 or 285) when new or changed data (e.g.,
updated response) is detected from the application server/content source for a given request. The
cached response can be determined to be invalid for the outgoing request based on a notification
received from the proxy server (e.g., proxy 325 or the host server 300). The source which
provides responses to requests of the mobile client can be monitored to determine relevancy of
the cached response stored in the cache of the mobile device 250 for the request. For example,
the cache invalidator 244 can further remove/delete the cached response from the cache of the
mobile device when the cached response is no longer valid for a given request or a given

application.

[00255] In one embodiment, the cached response is removed from the cache after it is
provided once again to an application which generated the outgoing request after determining
that the cached response is no longer valid. The cached response can be provided again without
waiting for the time interval or provided again after waiting for a time interval (e.g., the time
interval determined to be specific to emulate the response delay in a long poll). In one
embodiment, the time interval is the response delay ‘D’ or an average value of the response delay

‘D’ over two or more values.

[00256] The new or changed data can be, for example, detected by the proxy server (e.g.,
proxy server 125 or 325 shown in the examples of FIG. 1B and FIG. 3A). When a cache entry
for a given request/poll has been invalidated, the use of the radio on the mobile device 250 can be
enabled (e.g., by the local proxy 2750r the cache policy manager 245) to satisfy the subsequent

polling requests, as further described with reference to the interaction diagram of FIG. 4B.

[00257] One embodiment of the cache policy manager 245 includes a cache or connect
selection engine 249 which can decide whether to use a locally cached entry to satisfy a
poll/content request generated at the mobile device 250 by an application or widget. For
example, the local proxy 275 or the cache policy manger 245 can intercept a polling request,
made by an application (e.g., mobile application) on the mobile device, to contact the application
server/content provider. The selection engine 249 can determine whether the content received
for the intercepted request has been locally stored as cache elements for deciding whether the
radio of the mobile device needs to be activated to satisfy the request made by the application
(e.g., mobile application) and also determine whether the cached response is still valid for the

outgoing request prior to responding to the outgoing request using the cached response.

54

WO 2012/145544 PCT/US2012/034300

[00258] In one embodiment, the local proxy 275, in response to determining that relevant
cached content exists and is still valid, can retrieve the cached elements from the local cache to
provide a response to the application (e.g., mobile application) which made the polling request
such that a radio of the mobile device is not activated to provide the response to the application
(e.g., mobile application). In general, the local proxy 275 continues to provide the cached
response each time the outgoing request is received until the updated response different from the

cached response is detected.

[00259] When it is determined that the cached response is no longer valid, a new request for a
given request is transmitted over the wireless network for an updated response. The request can
be transmitted to the application server/content provider (e.g., server/host 110) or the proxy
server on the host server (e.g., proxy 325 on the host 300) for a new and updated response. In
one embodiment the cached response can be provided again as a response to the outgoing request
if a new response is not received within the time interval, prior to removal of the cached response

from the cache on the mobile device.

[00260] FIG. 2C depicts a block diagram illustrating another example of components in the
application behavior detector 236 and the caching policy manager 245 in the local proxy 275 on
the client-side of the distributed proxy system shown in the example of FIG. 2A. The illustrated
application behavior detector 236 and the caching policy manager 245 can, for example, enable
the local proxy 275 to detect cache defeat and perform caching of content addressed by

identifiers intended to defeat cache.

[00261] In one embodiment, the caching policy manager 245 includes a cache defeat
resolution engine 221, an identifier formalizer 211, a cache appropriateness decision engine 246,
a poll schedule generator 247, an application protocol module 248, a cache or connect selection
engine 249 having a cache query module 229, and/or a local cache invalidator 244. The cache
defeat resolution engine 221 can further include a pattern extraction module 222 and/or a cache
defeat parameter detector 223. The cache defeat parameter detector 223 can further include a
random parameter detector 224 and/or a time/date parameter detector 226. One embodiment

further includes an application cache policy repository 243 coupled to the decision engine 246.

[00262] In one embodiment, the application behavior detector 236 includes a pattern detector
237, a poll interval detector 238, an application profile generator 239, and/or a priority engine
241. The pattern detector 237 can further include a cache defeat parameter detector 223 having
also, for example, a random parameter detector 233 and/or a time/date parameter detector 234.

One embodiment further includes an application profile repository 242 coupled to the application
55

WO 2012/145544 PCT/US2012/034300
profile generator 239. The application profile generator 239, and the priority engine 241 have
been described in association with the description of the application behavior detector 236 in the

example of FIG. 2A.

[00263] The cache defeat resolution engine 221 can detect, identify, track, manage, and/or
monitor content or content sources (e.g., servers or hosts) which employ identifiers and/or are
addressed by identifiers (¢.g., resource identifiers such as URLs and/or URIs) with one or more
mechanisms that defeat cache or are intended to defeat cache. The cache defeat resolution engine
221 can, for example, detect from a given data request generated by an application or client that
the identifier defeats or potentially defeats cache, where the data request otherwise addresses
content or responses from a host or server (e.g., application server/content host 110 or 310) that

is cacheable.

[00264] In one embodiment, the cache defeat resolution engine 221 detects or identifies cache
defeat mechanisms used by content sources (e.g., application server/content host 110 or 310)
using the identifier of a data request detected at the mobile device 250. The cache defeat
resolution engine 221 can detect or identify a parameter in the identifier which can indicate that
cache defeat mechanism is used. For example, a format, syntax, or pattern of the parameter can
be used to identify cache defeat (e.g., a pattern, format, or syntax as determined or extracted by

the pattern extraction module 222).

[00265] The pattern extraction module 222 can parse an identifier into multiple parameters or
components and perform a matching algorithm on each parameter to identify any of which match
one or more predetermined formats (e.g., a date and/or time format). For example, the results of
the matching or the parsed out parameters from an identifier can be used (e.g., by the cache
defeat parameter detector 223) to identify cache defeating parameters which can include one or

more changing parameters.

[00266] The cache defeat parameter detector 223, in one embodiment can detect random
parameters (e.g., by the random parameter detector 224) and/or time and/or date parameters
which are typically used for cache defeat. The cache defeat parameter detector 223 can detect
random parameters (e.g., as illustrated in parameters 752 shown in FIG. 7) and/or time/dates
using commonly employed formats for these parameters and performing pattern matching

algorithms and tests.

[00267] In addition to detecting patterns, formats, and/or syntaxes, the cache defeat parameter

detector 223 further determines or confirms whether a given parameter is defeating cache and

56

WO 2012/145544 PCT/US2012/034300
whether the addressed content can be cached by the distributed caching system. The cache defeat
parameter detector 223 can detect this by analyzing responses received for the identifiers utilized
by a given data request. In general, a changing parameter in the identifier is identified to indicate
cache defeat when responses corresponding to multiple data requests are the same even when the
multiple data requests uses identifiers with the changing parameter being different for each of the
multiple data requests. For example, the request/response pairs illustrate that the responses
received are the same, even though the resource identifier includes a parameter that changes with

cach request.

[00268] For example, at least two same responses may be required to identify the changing
parameter as indicating cache defeat. In some instances, at least three same responses may be
required. The requirement for the number of same responses needed to determine that a given
parameter with a varying value between requests is cache defeating may be application specific,
context dependent, and/or user dependent/user specified, or a combination of the above. Such a
requirement may also be static or dynamically adjusted by the distributed cache system to meet
certain performance thresholds and/or either explicit/implicit feedback regarding user experience
(e.g., whether the user or application is receiving relevant/fresh content responsive to requests).
More of the same responses may be required to confirm cache defeat, or for the system to treat a
given parameter as intended for cache defeat if an application begins to malfunction due to
response caching and/or if the user expresses dissatisfaction (explicit user feedback) or the

system detects user frustration (implicit user cues).

[00269] The cache appropriateness decision engine 246 can detect, assess, or determine
whether content from a content source (e.g., application server/content provider 110 in the
example of FIG. 1B) with which a mobile device 250 interacts, has content that may be suitable
for caching. In some instances, content from a given application server/content provider (e.g.,
the server/provider 110 of FIG. 1B) is determined to be suitable for caching based on a set of
criteria (for example, criteria specifying time criticality of the content that is being requested
from the content source). In one embodiment, the local proxy (e.g., the local proxy 175 or 275 of
FIG. 1B and FIG. 2A) applies a selection criteria to store the content from the host server which
is requested by an application as cached elements in a local cache on the mobile device to satisfy

subsequent requests made by the application.

[00270] The selection criteria can also include, by way of example, but not limitation, state of
the mobile device indicating whether the mobile device is active or inactive, network conditions,

and/or radio coverage statistics. The cache appropriateness decision engine 246 can any one or

57

WO 2012/145544 PCT/US2012/034300

any combination of the criteria, and in any order, in identifying sources for which caching may

be suitable.

[00271] Once application servers/content providers having identified or detected content that
is potentially suitable for local caching on the mobile device 250, the cache policy manager 245
can proceed to cache the associated content received from the identified sources by storing
content received from the content source as cache elements in a local cache (e.g., local cache 185
or 285 shown in the examples of FIG. 1B and FIG. 2A, respectively) on the mobile device 250.
The content source can also be identified to a proxy server (e.g., proxy server 125 or 325 shown
in the examples of FIG. 1B and FIG. 3A, respectively) remote from and in wireless
communication with the mobile device 250 such that the proxy server can monitor the content
source (e.g., application server/content provider 110) for new or changed data. Similarly, the
local proxy (e.g., the local proxy 175 or 275 of FIG. 1B and FIG. 2A, respectively) can identify
to the proxy server that content received from a specific application server/content provider is

being stored as cached elements in the local cache.

[00272] In one embodiment, cache elements are stored in the local cache 285 as being
associated with a normalized version of an identifier for an identifier employing one or more
parameters intended to defeat cache. The identifier can be normalized by the identifier
normalizer module 211 and the normalization process can include, by way of example, one or
more of: converting the URI scheme and host to lower-case, capitalizing letters in percent-

encoded escape sequences, removing a default port, and removing duplicate slashes.

[00273] In another embodiment, the identifier is normalized by removing the parameter for
cache defeat and/or replacing the parameter with a static value which can be used to address or
be associated with the cached response received responsive to a request utilizing the identifier by
the normalizer 211 or the cache defeat parameter handler 212. For example, the cached elements
stored in the local cache 285 (shown in FIG. 2A) can be identified using the normalized version
of the identifier or a hash value of the normalized version of the identifier. The hash value of an

identifier or of the normalized identifier may be generated by the hash engine 213.

[00274] Once content has been locally cached, the cache policy manager 245 can, upon
receiving future polling requests to contact the content server, retrieve the cached elements from
the local cache to respond to the polling request made at the mobile device 250 such that a radio
of the mobile device is not activated to service the polling request. Such servicing and fulfilling
application (e.g., mobile application) requests locally via local cache entries allow for more

efficient resource and mobile network traffic utilization and management since network
58

WO 2012/145544 PCT/US2012/034300

bandwidth and other resources need not be used to request/receive poll responses which may

have not changed from a response that has already been received at the mobile device 250.

[00275] One embodiment of the cache policy manager 245 includes a poll schedule generator
247 which can generate a polling schedule for one or more applications on the mobile device
250. The polling schedule can specify a polling interval that can be employed by the proxy
server (e.g., proxy server 125 or 325 shown in the examples of FIG. 1B and FIG. 3A) in
monitoring the content source for one or more applications. The polling schedule can be
determined, for example, based on the interval between the polling requests directed to the
content source from the mobile device. In one embodiment, the poll interval detector 238 of the
application behavior detector can monitor polling requests directed to a content source from the
mobile device 250 in order to determine an interval between the polling requests made from any

or all application (e.g., mobile application).

[00276] In one embodiment, the cache policy manager 245 sends the polling schedule is sent
to the proxy server (e.g., proxy server 125 or 325 shown in the examples of FIG. 1B and FIG.
3A) and can be used by the proxy server in monitoring the content source, for example, for
changed or new content. The local cache invalidator 244 of the caching policy manager 245 can
invalidate cache elements in the local cache (e.g., cache 185 or 285) when new or changed data is
detected from the application server/content source for a given request. The new or changed data
can be, for example, detected by the proxy server. When a cache entry for a given request/poll
has been invalidated and/or removed (e.g., deleted from cache) after invalidation, the use of the
radio on the mobile device 250 can be enabled (e.g., by the local proxy or the cache policy
manager 245) to satisfy the subsequent polling requests, as further described with reference to the

interaction diagram of FIG. 4B.

[00277] In another embodiment, the proxy server (e.g., proxy server 125 or 325 shown in the
examples of FIG. 1B and FIG. 3A) uses a modified version of a resource identifier used in a data
request to monitor a given content source (the application server/content host 110 of FIG. 1A
and FIG. 1B to which the data request is addressed) for new or changed data. For example, in
the instance where the content source or identifier is detected to employ cache defeat
mechanisms, a modified (e.g., normalized) identifier can be used instead to poll the content
source. The modified or normalized version of the identifier can be communicated to the proxy
server by the caching policy manager 245, or more specifically the cache defeat parameter

handler 212 of the identifier normalizer 211.

59

WO 2012/145544 PCT/US2012/034300
[00278] The modified identifier used by the proxy server to poll the content source on behalf

of the mobile device/application (e.g., mobile application) may or may not be the same as the
normalized identifier. For example, the normalized identifier may be the original identifier with
the changing cache defeating parameter removed whereas the modified identifier uses a
substitute parameter in place of the parameter that is used to defeat cache (e.g., the changing
parameter replaced with a static value or other predetermined value known to the local proxy
and/or proxy server). The modified parameter can be determined by the local proxy 275 and
communicated to the proxy server. The modified parameter may also be generated by the proxy

server (e.g., by the identifier modifier module 353 shown in the example of FIG. 3C).

[00279] One embodiment of the cache policy manager 245 includes a cache or connect
selection engine 249 which can decide whether to use a locally cached entry to satisfy a
poll/content request generated at the mobile device 250 by an application or widget. For
example, the local proxy 275 or the cache policy manger 245 can intercept a polling request
made by an application (e.g., mobile application) on the mobile device, to contact the application
server/content provider. The selection engine 249 can determine whether the content received
for the intercepted request has been locally stored as cache elements for deciding whether the a
radio of the mobile device needs to be activated to satisfy the request made by the application
(e.g., mobile application). In one embodiment, the local proxy 275, in response to determining
that relevant cached content exists and is still valid, can retrieve the cached elements from the
local cache to provide a response to the application (e.g., mobile application) which made the
polling request such that a radio of the mobile device is not activated to provide the response to

the application (e.g., mobile application).

[00280] In one embodiment, the cached elements stored in the local cache 285 (shown in
FIG. 2A) can be identified using a normalized version of the identifier or a hash value of the
normalized version of the identifier, for example, using the cache query module 229. Cached
elements can be stored with normalized identifiers which have cache defeating parameters
removed or otherwise replaced such that the relevant cached elements can be identified and
retrieved in the future to satisfy other requests employing the same type of cache defeat. For
example, when an identifier utilized in a subsequent request is determined to be utilizing the
same cache defeating parameter, the normalized version of this identifier can be generated and
used to identify a cached response stored in the mobile device cache to satisfy the data request.
The hash value of an identifier or of the normalized identifier may be generated by the hash

engine 213 of the identifier normalizer 211.

60

WO 2012/145544 PCT/US2012/034300
[00281] FIG. 2D depicts a block diagram illustrating examples of additional components in
the local proxy 275 shown in the example of FIG. 2A which is further capable of performing
mobile traffic categorization and policy implementation based on application behavior and/or

user activity.

[00282] In this embodiment of the local proxy 275, the user activity module 215 further
includes one or more of, a user activity tracker 215a, a user activity prediction engine 215b,
and/or a user expectation manager 215¢. The application behavior detect 236 can further include
a prioritization engine 241a, a time criticality detection engine 241b, an application state
categorizer 241c, and/or an application traffic categorizer 241d. The local proxy 275 can further
include a backlight detector 219 and/or a network configuration selection engine 251. The
network configuration selection engine 251 can further include, one or more of, a wireless
generation standard selector 251a, a data rate specifier 251b, an access channel selection engine

251c, and/or an access point selector.

[00283] In one embodiment, the application behavior detector 236 is able to detect,
determined, identify, or infer, the activity state of an application on the mobile device 250 to
which traffic has originated from or is directed to, for example, via the application state
categorizer 241c and/or the traffic categorizer 241d. The activity state can be determined by
whether the application is in a foreground or background state on the mobile device (via the
application state categorizer 241c¢) since the traffic for a foreground application vs. a background

application may be handled differently.

[00284] In one embodiment, the activity state can be determined, detected, identified, or
inferred with a level of certainty of heuristics, based on the backlight status of the mobile device
250 (e.g., by the backlight detector 219) or other software agents or hardware sensors on the
mobile device, including but not limited to, resistive sensors, capacitive sensors, ambient light
sensors, motion sensors, touch sensors, etc. In general, if the backlight is on, the traffic can be
treated as being or determined to be generated from an application that is active or in the
foreground, or the traffic is interactive. In addition, if the backlight is on, the traffic can be
treated as being or determined to be traffic from user interaction or user activity, or traffic

containing data that the user is expecting within some time frame.

[00285] In one embodiment, the activity state is determined based on whether the traffic is
interactive traffic or maintenance traffic. Interactive traffic can include transactions from
responses and requests generated directly from user activity/interaction with an application and

can include content or data that a user is waiting or expecting to receive. Maintenance traffic
61

WO 2012/145544 PCT/US2012/034300
may be used to support the functionality of an application which is not directly detected by a
user. Maintenance traffic can also include actions or transactions that may take place in response

to a user action, but the user is not actively waiting for or expecting a response.

[00286] For example, a mail or message delete action at a mobile device 250 generates a
request to delete the corresponding mail or message at the server, but the user typically is not
waiting for a response. Thus, such a request may be categorized as maintenance traffic, or traffic
having a lower priority (e.g., by the prioritization engine 241a) and/or is not time-critical (e.g., by

the time criticality detection engine 214b).

[00287] Contrastingly, a mail ‘read’ or message ‘read’ request initiated by a user a the mobile
device 250, can be categorized as ‘interactive traffic’ since the user generally is waiting to access
content or data when they request to read a message or mail. Similarly, such a request can be

categorized as having higher priority (e.g., by the prioritization engine 241a) and/or as being time

critical/time sensitive (e.g., by the time criticality detection engine 241b).

[00288] The time criticality detection engine 241b can generally determine, identify, infer the
time sensitivity of data contained in traffic sent from the mobile device 250 or to the mobile
device from a host server (e.g., host 300) or application server (e.g., app server/content source
110). For example, time sensitive data can include, status updates, stock information updates, IM
presence information, email messages or other messages, actions generated from mobile gaming
applications, webpage requests, location updates, etc. Data that is not time sensitive or time
critical, by nature of the content or request, can include requests to delete messages, mark-as-read
or edited actions, application-specific actions such as a add-friend or delete-friend request,
certain types of messages, or other information which does not frequently changing by nature,
etc. In some instances when the data is not time critical, the timing with which to allow the
traffic to pass through is set based on when additional data needs to be sent from the mobile
device 250. For example, traffic shaping engine 255 can align the traffic with one or more
subsequent transactions to be sent together in a single power-on event of the mobile device radio
(e.g., using the alignment module 256 and/or the batching module 257). The alignment module
256 can also align polling requests occurring close in time directed to the same host server, since

these request are likely to be responded to with the same data.

[00289] In the alternate or in combination, the activity state can be determined from
assessing, determining, evaluating, inferring, identifying user activity at the mobile device 250
(e.g., via the user activity module 215). For example, user activity can be directly detected and

tracked using the user activity tracker 215a. The traffic resulting therefrom can then be
62

WO 2012/145544 PCT/US2012/034300
categorized appropriately for subsequent processing to determine the policy for handling.
Furthermore, user activity can be predicted or anticipated by the user activity prediction engine
215b. By predicting user activity or anticipating user activity, the traffic thus occurring after the
prediction can be treated as resulting from user activity and categorized appropriately to

determine the transmission policy.

[00290] In addition, the user activity module 215 can also manage user expectations (e.g., via
the user expectation manager 215¢ and/or in conjunction with the activity tracker 215 and/or the
prediction engine 215b) to ensure that traffic is categorized appropriately such that user
expectations are generally met. For example, a user-initiated action should be analyzed (e.g., by
the expectation manager 215) to determine or infer whether the user would be waiting for a
response. If so, such traffic should be handled under a policy such that the user does not

experience an unpleasant delay in receiving such a response or action.

[00291] In one embodiment, an advanced generation wireless standard network is selected for
use in sending traffic between a mobile device and a host server in the wireless network based on
the activity state of the application on the mobile device for which traffic is originated from or
directed to. An advanced technology standards such as the 3G, 3.5G, 3G+, 4G, or LTE network
can be selected for handling traffic generated as a result of user interaction, user activity, or
traffic containing data that the user is expecting or waiting for. Advanced generation wireless
standard network can also be selected for to transmit data contained in traffic directed to the

mobile device which responds to foreground activities.

[00292] In categorizing traffic and defining a transmission policy for mobile traffic, a
network configuration can be selected for use (e.g., by the network configuration selection engine
251) on the mobile device 250 in sending traffic between the mobile device and a proxy server
(325) and/or an application server (e.g., app server/host 110). The network configuration that is
selected can be determined based on information gathered by the application behavior module
236 regarding application activity state (e.g., background or foreground traffic), application
traffic category (e.g., interactive or maintenance traffic), any priorities of the data/content, time

sensitivity/criticality.

[00293] The network configuration selection engine 2510 can select or specify one or more
of, a generation standard (e.g., via wireless generation standard selector 251a), a data rate (e.g.,
via data rate specifier 251b), an access channel (e.g., access channel selection engine 251¢),

and/or an access point (e.g., via the access point selector 251d), in any combination.

63

WO 2012/145544 PCT/US2012/034300
[00294] For example, a more advanced generation (e.g., 3G, LTE, or 4G or later) can be
selected or specified for traffic when the activity state is in interaction with a user or in a
foreground on the mobile device. Contrastingly, an older generation standard (e.g., 2G, 2.5G, or
3G or older) can be specified for traffic when one or more of the following is detected, the
application is not interacting with the user, the application is running in the background on the
mobile device, or the data contained in the traffic is not time critical, or is otherwise determined

to have lower priority.

[00295] Similarly, a network configuration with a slower data rate can be specified for traffic
when one or more of the following is detected, the application is not interacting with the user, the
application is running in the background on the mobile device, or the data contained in the traffic
is not time critical. The access channel (e.g., Forward access channel or dedicated channel) can

be specified.

[00296] FIG. 3A depicts a block diagram illustrating an example of server-side components
in a distributed proxy and cache system residing on a host server 300 that manages traffic in a
wireless network for resource conservation. The server-side proxy (or proxy server 325) can
further categorize mobile traffic and/or implement delivery policies based on application

behavior, content priority, user activity, and/or user expectations.

[00297] The host server 300 generally includes, for example, a network interface 308 and/or
one or more repositories 312, 314, and 316. Note that server 300 may be any portable/mobile or
non-portable device, server, cluster of computers and/or other types of processing units (e.g., any
number of a machine shown in the example of FIG. 11) able to receive or transmit signals to
satisfy data requests over a network including any wired or wireless networks (e.g., WiFi,

cellular, Bluetooth, etc.).

[00298] The network interface 308 can include networking module(s) or devices(s) that
enable the server 300 to mediate data in a network with an entity that is external to the host
server 300, through any known and/or convenient communications protocol supported by the
host and the external entity. Specifically, the network interface 308 allows the server 300 to
communicate with multiple devices including mobile phone devices 350 and/or one or more

application servers/content providers 310.

[00299] The host server 300 can store information about connections (e.g., network
characteristics, conditions, types of connections, etc.) with devices in the connection metadata

repository 312. Additionally, any information about third party application or content providers

64

WO 2012/145544 PCT/US2012/034300

can also be stored in the repository 312. The host server 300 can store information about devices
(e.g., hardware capability, properties, device settings, device language, network capability,
manufacturer, device model, OS, OS version, etc.) in the device information repository 314.
Additionally, the host server 300 can store information about network providers and the various

network service areas in the network service provider repository 316.

[00300] The communication enabled by network interface 308 allows for simultaneous
connections (e.g., including cellular connections) with devices 350 and/or connections (e.g.,
including wired/wireless, HTTP, Internet connections, LAN, WiFi, etc.) with content
servers/providers 310 to manage the traffic between devices 350 and content providers 310, for
optimizing network resource utilization and/or to conserver power (battery) consumption on the
serviced devices 350. The host server 300 can communicate with mobile devices 350 serviced
by different network service providers and/or in the same/different network service areas. The
host server 300 can operate and is compatible with devices 350 with varying types or levels of
mobile capabilities, including by way of example but not limitation, 1G, 2G, 2G transitional

(2.5G, 2.75G), 3G (IMT-2000), 3G transitional (3.5G, 3.75G, 3.9G), 4G (IMT-advanced), etc.

[00301] In general, the network interface 308 can include one or more of a network adaptor
card, a wireless network interface card (e.g., SMS interface, WiFi interface, interfaces for various
generations of mobile communication standards including but not limited to 1G, 2G, 3G, 3.5G,
4G type networks such as LTE, WiMAX, etc.), Bluetooth, WiFi, or any other network whether or
not connected via a router, an access point, a wireless router, a switch, a multilayer switch, a
protocol converter, a gateway, a bridge, a bridge router, a hub, a digital media receiver, and/or a

repeater.

[00302] The host server 300 can further include server-side components of the distributed
proxy and cache system which can include a proxy server 325 and a server cache 335. In one
embodiment, the proxy server 325 can include an HTTP access engine 345, a caching policy
manager 355, a proxy controller 365, a traffic shaping engine 375, a new data detector 347 and/or

a connection manager 395.

[00303] The HTTP access engine 345 may further include a heartbeat manager 398; the
proxy controller 365 may further include a data invalidator module 368; the traffic shaping
engine 375 may further include a control protocol 376 and a batching module 377. Additional or
less components/modules/engines can be included in the proxy server 325 and each illustrated

component.

65

WO 2012/145544 PCT/US2012/034300
[00304] As used herein, a “module,” a “manager,” a “handler,” a “detector,” an “interface,” a
“controller,” a “normalizer,” a “generator,” an “invalidator,” or an “engine” includes a general
purpose, dedicated or shared processor and, typically, firmware or software modules that are
executed by the processor. Depending upon implementation-specific or other considerations, the
module, manager, handler, detector, interface, controller, normalizer, generator, invalidator, or
engine can be centralized or its functionality distributed. The module, manager, handler,
detector, interface, controller, normalizer, generator, invalidator, or engine can include general or
special purpose hardware, firmware, or software embodied in a computer-readable (storage)
medium for execution by the processor. As used herein, a computer-readable medium or
computer-readable storage medium is intended to include all mediums that are statutory (e.g., in
the United States, under 35 U.S.C. § 101), and to specifically exclude all mediums that are non-
statutory in nature to the extent that the exclusion is necessary for a claim that includes the
computer-readable (storage) medium to be valid. Known statutory computer-readable mediums
include hardware (e.g., registers, random access memory (RAM), non-volatile (NV) storage, to

name a few), but may or may not be limited to hardware.

[00305] In the example of a device (e.g., mobile device 350) making an application or content
request to an application server or content provider 310, the request may be intercepted and
routed to the proxy server 325 which is coupled to the device 350 and the application
server/content provider 310. Specifically, the proxy server is able to communicate with the local
proxy (e.g., proxy 175 and 275 of the examples of FIG. 1 and FIG. 2 respectively) of the mobile
device 350, the local proxy forwards the data request to the proxy server 325 in some instances
for further processing and, if needed, for transmission to the application server/content server 310

for a response to the data request.

[00306] In such a configuration, the host 300, or the proxy server 325 in the host server 300
can utilize intelligent information provided by the local proxy in adjusting its communication
with the device in such a manner that optimizes use of network and device resources. For
example, the proxy server 325 can identify characteristics of user activity on the device 350 to
modify its communication frequency. The characteristics of user activity can be determined by,
for example, the activity/behavior awareness module 366 in the proxy controller 365 via

information collected by the local proxy on the device 350.

[00307] In one embodiment, communication frequency can be controlled by the connection
manager 395 of the proxy server 325, for example, to adjust push frequency of content or updates

to the device 350. For instance, push frequency can be decreased by the connection manager 395

66

WO 2012/145544 PCT/US2012/034300
when characteristics of the user activity indicate that the user is inactive. In one embodiment,
when the characteristics of the user activity indicate that the user is subsequently active after a
period of inactivity, the connection manager 395 can adjust the communication frequency with
the device 350 to send data that was buffered as a result of decreased communication frequency

to the device 350.

[00308] In addition, the proxy server 325 includes priority awareness of various requests,
transactions, sessions, applications, and/or specific events. Such awareness can be determined by
the local proxy on the device 350 and provided to the proxy server 325. The priority awareness
module 367 of the proxy server 325 can generally assess the priority (e.g., including time-
criticality, time-sensitivity, etc.) of various events or applications; additionally, the priority

awareness module 367 can track priorities determined by local proxies of devices 350.

[00309] In one embodiment, through priority awareness, the connection manager 395 can
further modify communication frequency (e.g., use or radio as controlled by the radio controller
396) of the server 300 with the devices 350. For example, the server 300 can notify the device
350, thus requesting use of the radio if it is not already in use when data or updates of an

importance/priority level which meets a criteria becomes available to be sent.

[00310] In one embodiment, the proxy server 325 can detect multiple occurrences of events
(e.g., transactions, content, data received from server/provider 310) and allow the events to
accumulate for batch transfer to device 350. Batch transfer can be cumulated and transfer of
events can be delayed based on priority awareness and/or user activity/application behavior
awareness as tracked by modules 367 and/or 366. For example, batch transfer of multiple events
(of a lower priority) to the device 350 can be initiated by the batching module 377 when an event
of a higher priority (meeting a threshold or criteria) is detected at the server 300. In addition,
batch transfer from the server 300 can be triggered when the server receives data from the device
350, indicating that the device radio is already in use and is thus on. In one embodiment, the
proxy server 325 can order the each messages/packets in a batch for transmission based on
event/transaction priority such that higher priority content can be sent first in case connection is

lost or the battery dies, etc.

[00311] In one embodiment, the server 300 caches data (e.g., as managed by the caching
policy manager 355) such that communication frequency over a network (e.g., cellular network)
with the device 350 can be modified (e.g., decreased). The data can be cached, for example, in
the server cache 335 for subsequent retrieval or batch sending to the device 350 to potentially

decrease the need to turn on the device 350 radio. The server cache 335 can be partially or
67

WO 2012/145544 PCT/US2012/034300
wholly internal to the host server 300, although in the example of FIG. 3A it is shown as being
external to the host 300. In some instances, the server cache 335 may be the same as and/or
integrated in part or in whole with another cache managed by another entity (e.g., the optional
caching proxy server 199 shown in the example of FIG. 1B), such as being managed by an

application server/content provider 310, a network service provider, or another third party.

[00312] In one embodiment, content caching is performed locally on the device 350 with the
assistance of host server 300. For example, proxy server 325 in the host server 300 can query the
application server/provider 310 with requests and monitor changes in responses. When changed
or new responses are detected (e.g., by the new data detector 347), the proxy server 325 can
notify the mobile device 350 such that the local proxy on the device 350 can make the decision to
invalidate (e.g., indicated as out-dated) the relevant cache entries stored as any responses in its
local cache. Alternatively, the data invalidator module 368 can automatically instruct the local
proxy of the device 350 to invalidate certain cached data, based on received responses from the
application server/provider 310. The cached data is marked as invalid, and can get replaced or

deleted when new content is received from the content server 310.

[00313] Note that data change can be detected by the detector 347 in one or more ways. For
example, the server/provider 310 can notify the host server 300 upon a change. The change can
also be detected at the host server 300 in response to a direct poll of the source server/provider
310. In some instances, the proxy server 325 can in addition, pre-load the local cache on the
device 350 with the new/updated data. This can be performed when the host server 300 detects
that the radio on the mobile device is already in use, or when the server 300 has additional

content/data to be sent to the device 350.

[00314] One or more the above mechanisms can be implemented simultaneously or
adjusted/configured based on application (e.g., different policies for different servers/providers
310). In some instances, the source provider/server 310 may notify the host 300 for certain types
of events (e.g., events meeting a priority threshold level). In addition, the provider/server 310

may be configured to notify the host 300 at specific time intervals, regardless of event priority.

[00315] In one embodiment, the proxy server 325 of the host 300 can monitor/track responses
received for the data request from the content source for changed results prior to returning the
result to the mobile device, such monitoring may be suitable when data request to the content
source has yielded same results to be returned to the mobile device, thus preventing
network/power consumption from being used when no new changes are made to a particular

requested. The local proxy of the device 350 can instruct the proxy server 325 to perform such
68

WO 2012/145544 PCT/US2012/034300
monitoring or the proxy server 325 can automatically initiate such a process upon receiving a
certain number of the same responses (e.g., or a number of the same responses in a period of

time) for a particular request.

[00316] In one embodiment, the server 300, through the activity/behavior awareness module
366, is able to identify or detect user activity at a device that is separate from the mobile device
350. For example, the module 366 may detect that a user’s message inbox (e.g., email or types
of inbox) is being accessed. This can indicate that the user is interacting with his/her application

using a device other than the mobile device 350 and may not need frequent updates, if at all.

[00317] The server 300, in this instance, can thus decrease the frequency with which new or
updated content is sent to the mobile device 350, or eliminate all communication for as long as
the user is detected to be using another device for access. Such frequency decrease may be
application specific (e.g., for the application with which the user is interacting with on another
device), or it may be a general frequency decrease (E.g., since the user is detected to be
interacting with one server or one application via another device, he/she could also use it to

access other services.) to the mobile device 350.

[00318] In one embodiment, the host server 300 is able to poll content sources 310 on behalf
of devices 350 to conserve power or battery consumption on devices 350. For example, certain
applications on the mobile device 350 can poll its respective server 310 in a predictable recurring
fashion. Such recurrence or other types of application behaviors can be tracked by the
activity/behavior module 366 in the proxy controller 365. The host server 300 can thus poll
content sources 310 for applications on the mobile device 350 that would otherwise be performed
by the device 350 through a wireless (e.g., including cellular connectivity). The host server can
poll the sources 310 for new or changed data by way of the HTTP access engine 345 to establish
HTTP connection or by way of radio controller 396 to connect to the source 310 over the cellular
network. When new or changed data is detected, the new data detector 347 can notify the device

350 that such data is available and/or provide the new/changed data to the device 350.

[00319] In one embodiment, the connection manager 395 determines that the mobile device
350 is unavailable (e.g., the radio is turned off) and utilizes SMS to transmit content to the device
350, for instance, via the SMSC shown in the example of FIG. 1B. SMS is used to transmit
invalidation messages, batches of invalidation messages, or even content in the case where the
content is small enough to fit into just a few (usually one or two) SMS messages. This avoids the
need to access the radio channel to send overhead information. The host server 300 can use SMS

for certain transactions or responses having a priority level above a threshold or otherwise
69

WO 2012/145544 PCT/US2012/034300
meeting a criteria. The server 300 can also utilize SMS as an out-of-band trigger to maintain or

wake-up an IP connection as an alternative to maintaining an always-on IP connection.

[00320] In one embodiment, the connection manager 395 in the proxy server 325 (e.g., the
heartbeat manager 398) can generate and/or transmit heartbeat messages on behalf of connected
devices 350 to maintain a backend connection with a provider 310 for applications running on

devices 350.

[00321] For example, in the distributed proxy system, local cache on the device 350 can
prevent any or all heartbeat messages needed to maintain TCP/IP connections required for
applications from being sent over the cellular, or other, network and instead rely on the proxy
server 325 on the host server 300 to generate and/or send the heartbeat messages to maintain a
connection with the backend (e.g., application server/provider 110 in the example of FIG. 1A).
The proxy server can generate the keep-alive (heartbeat) messages independent of the operations

of the local proxy on the mobile device.

[00322] The repositories 312, 314, and/or 316 can additionally store software, descriptive
data, images, system information, drivers, and/or any other data item utilized by other
components of the host server 300 and/or any other servers for operation. The repositories may
be managed by a database management system (DBMS), for example, which may be but is not
limited to Oracle, DB2, Microsoft Access, Microsoft SQL Server, PostgreSQL, MySQL,
FileMaker, etc.

[00323] The repositories can be implemented via object-oriented technology and/or via text
files and can be managed by a distributed database management system, an object-oriented
database management system (OODBMYS) (e.g., ConceptBase, FastDB Main Memory Database
Management System, JDOInstruments, ObjectDB, etc.), an object-relational database
management system (ORDBMS) (e.g., Informix, OpenLink Virtuoso, VMDS, etc.), a file system,

and/or any other convenient or known database management package.

[00324] FIG. 3B depicts a block diagram illustrating a further example of components in the
caching policy manager 355 in the cache system shown in the example of FIG. 3A which is
capable of caching and adapting caching strategies for application (e.g., mobile application)

behavior and/or network conditions.

[00325] The caching policy manager 355, in one embodiment, can further include a metadata

generator 303, a cache look-up engine 305, an application protocol module 356, a content source

70

WO 2012/145544 PCT/US2012/034300
monitoring engine 357 having a poll schedule manager 358, a response analyzer 361, and/or an
updated or new content detector 359. In one embodiment, the poll schedule manager 358 further
includes a host timing simulator 358a, a long poll request detector/manager 358b, a schedule
update engine 358c, and/or a time adjustment engine 358d. The metadata generator 303 and/or
the cache look-up engine 305 can be coupled to the cache 335 (or, server cache) for modification

or addition to cache entries or querying thereof.

[00326] In one embodiment, the proxy server (e.g., the proxy server 125 or 325 of the
examples of FIG. 1B and FIG. 3A) can monitor a content source for new or changed data via the
monitoring engine 357. The proxy server, as shown, is an entity external to the mobile device
250 of FIGS. 2A-B. The content source (e.g., application server/content provider 110 of FIG.
1B) can be one that has been identified to the proxy server (e.g., by the local proxy) as having
content that is being locally cached on a mobile device (e.g., mobile device 150 or 250). The
content source can be monitored, for example, by the monitoring engine 357 at a frequency that
is based on polling frequency of the content source at the mobile device. The poll schedule can
be generated, for example, by the local proxy and sent to the proxy server. The poll frequency

can be tracked and/or managed by the poll schedule manager 358.

[00327] For example, the proxy server can poll the host (e.g., content provider/application
server) on behalf of the mobile device and simulate the polling behavior of the client to the host
via the host timing simulator 358a. The polling behavior can be simulated to include
characteristics of a long poll request-response sequences experienced in a persistent connection
with the host (e.g., by the long poll request detector/manager 358b). Note that once a polling
interval/behavior is set, the local proxy 275 on the device-side and/or the proxy server 325 on the
server-side can verify whether application and application server/content host behavior match or
can be represented by this predicted pattern. In general, the local proxy and/or the proxy server
can detect deviations and, when appropriate, re-evaluate and compute, determine, or estimate

another polling interval.

[00328] In one embodiment, the caching policy manager 355 on the server-side of the
distribute proxy can, in conjunction with or independent of the proxy server 275 on the mobile
device, identify or detect long poll requests. For example, the caching policy manager 355 can
determine a threshold value to be used in comparison with a response delay interval time in a
request-response sequence for an application request to identify or detect long poll requests,
possible long poll requests (e.g., requests for a persistent connection with a host with which the

client communicates including, but not limited to, a long-held HTTP request, a persistent

71

WO 2012/145544 PCT/US2012/034300
connection enabling COMET style push, request for HTTP streaming, etc.), or other requests

which can otherwise be treated as a long poll request.

[00329] For example, the threshold value can be determined by the proxy 325 using response
delay interval times for requests generated by clients/applications across mobile devices which
may be serviced by multiple different cellular or wireless networks. Since the proxy 325 resides
on host 300 is able to communicate with multiple mobile devices via multiple networks, the
caching policy manager 355 has access to application/client information at a global level which

can be used in setting threshold values to categorize and detect long polls.

[00330] By tracking response delay interval times across applications across devices over
different or same networks, the caching policy manager 355 can set one or more threshold values
to be used in comparison with response delay interval times for long poll detection. Threshold
values set by the proxy server 325 can be static or dynamic, and can be associated with

conditions and/or a time-to-live (an expiration time/date in relative or absolute terms).

[00331] In addition, the caching policy manager 355 of the proxy 325 can further determine
the threshold value, in whole or in part, based on network delays of a given wireless network,
networks serviced by a given carrier (service provider), or multiple wireless networks. The
proxy 325 can also determine the threshold value for identification of long poll requests based on
delays of one or more application server/content provider (e.g., 110) to which application (e.g.,

mobile application) or mobile client requests are directed.

[00332] The proxy server can detect new or changed data at a monitored content source and
transmits a message to the mobile device notifying it of such a change such that the mobile
device (or the local proxy on the mobile device) can take appropriate action (e.g., to invalidate
the cache elements in the local cache). In some instances, the proxy server (e.g., the caching
policy manager 355) upon detecting new or changed data can also store the new or changed data
in its cache (e.g., the server cache 135 or 335 of the examples of FIG. 1B and FIG. 3A,
respectively). The new/updated data stored in the server cache 335 can be used in some
instances to satisfy content requests at the mobile device; for example, it can be used after the
proxy server has notified the mobile device of the new/changed content and that the locally

cached content has been invalidated.

[00333] The metadata generator 303, similar to the metadata generator 203 shown in the
example of FIG. 2B, can generate metadata for responses cached for requests at the mobile

device 250. The metadata generator 303 can generate metadata for cache entries stored in the

72

WO 2012/145544 PCT/US2012/034300

server cache 335. Similarly, the cache look-up engine 305 can include the same or similar

functions are those described for the cache look-up engine 205 shown in the example of FIG. 2B.

[00334] The response analyzer 361 can perform any or all of the functionalities related to
analyzing responses received for requests generated at the mobile device 250 in the same or
similar fashion to the response analyzer 246d of the local proxy shown in the example of FIG.
2B. Since the proxy server 325 is able to receive responses from the application server/content
source 310 directed to the mobile device 250, the proxy server 325 (e.g., the response analyzer
361) can perform similar response analysis steps to determine cacheability, as described for the
response analyzer of the local proxy. Examples of response analysis procedures are also
described in conjunction with the flow charts shown in the examples of FIGS. 11-13. The
responses can be analyzed in addition to or in licu of the analysis that can be performed at the

local proxy 275 on the mobile device 250.

[00335] Furthermore, the schedule update engine 358c can update the polling interval of a
given application server/content host based on application request interval changes of the
application at the mobile device 250 as described for the schedule update engine in the local
proxy 275. The time adjustment engine 358d can set an initial time at which polls of the
application server/content host is to begin to prevent the serving of out of date content once again
before serving fresh content as described for the schedule update engine in the local proxy 275.
Both the schedule updating and the time adjustment algorithms can be performed in conjunction
with or in lieu of the similar processes performed at the local proxy 275 on the mobile device

250.

[00336] FIG. 3C depicts a block diagram illustrating another example of components in the
caching policy manager 355 in the proxy server 375 on the server-side of the distributed proxy
system shown in the example of FIG. 3A which is capable of managing and detecting cache

defeating mechanisms and monitoring content sources.

[00337] The caching policy manager 355, in one embodiment, can further include a cache
defeating source manager 352, a content source monitoring engine 357 having a poll schedule
manager 358, and/or an updated or new content detector 359. The cache defeating source
manager 352 can further include an identifier modifier module 353 and/or an identifier pattern

tracking module 354.

[00338] In one embodiment, the proxy server (e.g., the proxy server 125 or 325 of the

examples of FIG. 1B and FIG. 3A) can monitor a content source for new or changed data via the

73

WO 2012/145544 PCT/US2012/034300

monitoring engine 357. The content source (e.g., application server/content provider 110 of FIG.
1B or 310 of FIG. 3A) can be one that has been identified to the proxy server (e.g., by the local
proxy) as having content that is being locally cached on a mobile device (e.g., mobile device 150
or 250). The content source 310 can be monitored, for example, by the monitoring engine 357 at
a frequency that is based on polling frequency of the content source at the mobile device. The
poll schedule can be generated, for example, by the local proxy and sent to the proxy server 325.

The poll frequency can be tracked and/or managed by the poll schedule manager 358.

[00339] In one embodiment, the proxy server 325 uses a normalized identifier or modified
identifier in polling the content source 310 to detect new or changed data (responses). The
normalized identifier or modified identifier can also be used by the proxy server 325 in storing
responses on the server cache 335. In general, the normalized or modified identifiers can be used
when cache defeat mechanisms are employed for cacheable content. Cache defeat mechanisms
can be in the form of a changing parameter in an identifier such as a URI or URL and can include

a changing time/data parameter, a randomly varying parameter, or other types parameters.

[00340] The normalized identifier or modified identifier removes or otherwise replaces the
changing parameter for association with subsequent requests and identification of associated
responses and can also be used to poll the content source. In one embodiment, the modified
identifier is generated by the cache defeating source manager 352 (e.g., the identifier modifier
module 353) of the caching policy manager 355 on the proxy server 325 (server-side component
of the distributed proxy system). The modified identifier can utilize a substitute parameter
(which is generally static over a period of time) in place of the changing parameter that is used to

defeat cache.

[00341] The cache defeating source manager 352 optionally includes the identifier pattern
tracking module 354 to track, store, and monitor the various modifications of an identifier or
identifiers that address content for one or more content sources (e.g., application server/content
host 110 or 310) to continuously verify that the modified identifiers and/or normalized identifiers
used by the proxy server 325 to poll the content sources work as predicted or intended (e.g.,
receive the same responses or responses that are otherwise still relevant compared to the original,

unmodified identifier).

[00342] In the event that the pattern tracking module 354 detects a modification or
normalization of an identifier that causes erratic or unpredictable behavior (e.g., unexpected
responses to be sent) on the content source, the tracking module 354 can log the modification and

instruct the cache defeating source manager 352 to generate another modification/normalization,
74

WO 2012/145544 PCT/US2012/034300
or notify the local proxy (e.g., local proxy 275) to generate another modification/normalization
for use in polling the content source. In the alternative or in parallel, the requests from the given
mobile application/client on the mobile device (e.g., mobile device 250) can temporarily be sent
across the network to the content source for direct responses to be provided to the mobile device

and/or until a modification of an identifier which works can be generated.

[00343] In one embodiment, responses are stored as server cache elements in the server cache
when new or changed data is detected for a response that is already stored on a local cache (e.g.,
cache 285) of the mobile device (e.g., mobile device 250). Therefore, the mobile device or local
proxy 275 can connect to the proxy server 325 to retrieve the new or changed data for a response
to a request which was previously cached locally in the local cache 285 (now invalid, out-dated,

or otherwise determined to be irrelevant).

[00344] The proxy server 325 can detect new or changed data at a monitored application
server/content host 310 and transmits a message to the mobile device notifying it of such a
change such that the mobile device (or the local proxy on the mobile device) can take appropriate
action (e.g., to invalidate the cache elements in the local cache). In some instances, the proxy
server (e.g., the caching policy manager 355), upon detecting new or changed data, can also store
the new or changed data in its cache (e.g., the server cache 135 or 335 of the examples of FIG.
1B and FIG. 3A, respectively). The updated/new data stored in the server cache can be used, in
some instances, to satisfy content requests at the mobile device; for example, it can be used after
the proxy server has notified the mobile device of the new/changed content and that the locally

cached content has been invalidated.

[00345] FIG. 3D depicts a block diagram illustrating examples of additional components in
proxy server 325 shown in the example of FIG. 3A which is further capable of performing
mobile traffic categorization and policy implementation based on application behavior and/or

traffic priority.

[00346] In one embodiment of the proxy server 325, the traffic shaping engine 375 is further
coupled to a traffic analyzer 336 for categorizing mobile traffic for policy definition and
implementation for mobile traffic and transactions directed to one or more mobile devices (e.g.,
mobile device 250 of FIGS. 2A-2D) or to an application server/content host (e.g., 110 of FIGS.
1A-1B). In general, the proxy server 325 is remote from the mobile devices and remote from the
host server, as shown in the examples of FIGS. 1A-1B. The proxy server 325 or the host server
300 can monitor the traffic for multiple mobile devices and is capable of categorizing traffic and

devising traffic policies for different mobile devices.
75

WO 2012/145544 PCT/US2012/034300

[00347] In addition, the proxy server 325 or host server 300 can operate with multiple carriers
or network operators and can implement carrier-specific policies relating to categorization of
traffic and implementation of traffic policies for the various categories. For example, the traffic
analyzer 336 of the proxy server 325 or host server 300 can include one or more of, a
prioritization engine 341a, a time criticality detection engine 341D, an application state

categorizer 341c, and/or an application traffic categorizer 341d.

[00348] Each of these engines or modules can track different criterion for what is considered
priority, time critical, background/foreground, or interactive/maintenance based on different
wireless carriers. Different criterion may also exist for different mobile device types (e.g., device
model, manufacturer, operating system, etc.). In some instances, the user of the mobile devices
can adjust the settings or criterion regarding traffic category and the proxy server 325 is able to

track and implement these user adjusted/configured settings.

[00349] In one embodiment, the traffic analyzer 336 is able to detect, determined, identify, or
infer, the activity state of an application on one or more mobile devices (e.g., mobile device 150
or 250) which traffic has originated from or is directed to, for example, via the application state
categorizer 341c and/or the traffic categorizer 341d. The activity state can be determined based
on whether the application is in a foreground or background state on one or more of the mobile
devices (via the application state categorizer 341c¢) since the traffic for a foreground application

vs. a background application may be handled differently to optimize network use.

[00350] In the alternate or in combination, the activity state of an application can be
determined by the wirelessly connected mobile devices (e.g., via the application behavior
detectors in the local proxies) and communicated to the proxy server 325. For example, the
activity state can be determined, detected, identified, or inferred with a level of certainty of
heuristics, based on the backlight status at mobile devices (e.g., by a backlight detector) or other
software agents or hardware sensors on the mobile device, including but not limited to, resistive
sensors, capacitive sensors, ambient light sensors, motion sensors, touch sensors, etc. In general,
if the backlight is on, the traffic can be treated as being or determined to be generated from an
application that is active or in the foreground, or the traffic is interactive. In addition, if the
backlight is on, the traffic can be treated as being or determined to be traffic from user interaction

or user activity, or traffic containing data that the user is expecting within some time frame.

[00351] The activity state can be determined from assessing, determining, evaluating,
inferring, identifying user activity at the mobile device 250 (e.g., via the user activity module

215) and communicated to the proxy server 325. In one embodiment, the activity state is
76

WO 2012/145544 PCT/US2012/034300

determined based on whether the traffic is interactive traffic or maintenance traffic. Interactive
traffic can include transactions from responses and requests generated directly from user
activity/interaction with an application and can include content or data that a user is waiting or
expecting to receive. Maintenance traffic may be used to support the functionality of an
application which is not directly detected by a user. Maintenance traffic can also include actions
or transactions that may take place in response to a user action, but the user is not actively

waiting for or expecting a response.

[00352] The time criticality detection engine 341b can generally determine, identify, infer the
time sensitivity of data contained in traffic sent from the mobile device 250 or to the mobile
device from the host server 300 or proxy server 325, or the application server (e.g., app
server/content source 110). For example, time sensitive data can include, status updates, stock
information updates, IM presence information, email messages or other messages, actions

generated from mobile gaming applications, webpage requests, location updates, etc.

[00353] Data that is not time sensitive or time critical, by nature of the content or request, can
include requests to delete messages, mark-as-read or edited actions, application-specific actions
such as a add-friend or delete-friend request, certain types of messages, or other information
which does not frequently changing by nature, etc. In some instances when the data is not time
critical, the timing with which to allow the traffic to be sent to a mobile device is based on when
there is additional data that needs to the sent to the same mobile device. For example, traffic
shaping engine 375 can align the traffic with one or more subsequent transactions to be sent
together in a single power-on event of the mobile device radio (e.g., using the alignment module
378 and/or the batching module 377). The alignment module 378 can also align polling requests
occurring close in time directed to the same host server, since these request are likely to be

responded to with the same data.

[00354] In general, whether new or changed data is sent from a host server to a mobile device
can be determined based on whether an application on the mobile device to which the new or
changed data is relevant, is running in a foreground (e.g., by the application state categorizer
341c), or the priority or time criticality of the new or changed data. The proxy server 325 can
send the new or changed data to the mobile device if the application is in the foreground on the
mobile device, or if the application is in the foreground and in an active state interacting with a
user on the mobile device, and/or whether a user is waiting for a response that would be provided
in the new or changed data. The proxy server 325 (or traffic shaping engine 375) can send the

new or changed data that is of a high priority or is time critical.

77

WO 2012/145544 PCT/US2012/034300
[00355] Similarly, the proxy server 325 (or the traffic shaping engine 375) can suppressing
the sending of the new or changed data if the application is in the background on the mobile
device. The proxy server 325 can also suppress the sending of the new or changed data if the
user is not waiting for the response provided in the new or changed data; wherein the suppressing
is performed by a proxy server coupled to the host server and able to wirelessly connect to the

mobile device.

[00356] In general, if data, including new or change data is of a low priority or is not time
critical, the proxy server can waiting to transfer the data until after a time period, or until there is

additional data to be sent (e.g. via the alignment module 378 and/or the batching module 377).

[00357] FIG. 4A depicts a block diagram illustrating another example of client-side
components in a distributed proxy and cache system, further including a social caching module
401. FIG. 4B depicts a block diagram illustrating additional components in the social caching
module 401 shown in the example of FIG. 4A.

[00358] In one embodiment, the local proxy 275 of FIG. 4A includes a social information
retriever 405, a geo-location detector 406, a distributed database manager 407, a virtual resources
manager 408, a state detector 811 having a poll requestor 416 and/or a poll synchronizer 418, a
distributed database manager 821, and/or some shared memory components 491, which may
include any portion or all of the physical memory on the device. The proxy 275 can be coupled
to or include a repository storing shared database parameters. Additional or less
components/modules/engines can be included in the local proxy 275 and each illustrated

component.

[00359] In the context of mobile devices such as mobile phones (e.g., devices 102A-N
shown in the example networked environment with shared virtual memory of FIG. 1C), shared
poll states can be created for commonly polled sites/servers or application servers/content
providers by using virtual memory and shared memory management (e.g., managed by the virtual
resources manager 408 and/or the distributed database manager 407). The state detector 415 can
track and/or manage states for certain sites or application servers and synchronize polls for some

or all devices in the shared virtual memory environment (e.g., using the poll synchronizer 418).

[00360] For example, multiple mobile phones or Smart phones co-located in a sports bar
may be polling ESPN.com. By managing virtual memory for these co-located mobile devices,
updated content from ESPN.com can be sent to one of the mobile devices which provides the

updated content to the other devices in the same sports bar (e.g., via Wifi, Bluetooth, etc.). In

78

WO 2012/145544 PCT/US2012/034300
addition, mobile phones (e.g., devices 102A-N of FIG. 1C) may merely share cache based on
storage availability, for example, if one phone has a full cache, subsequent operations can be

offloaded to the cache of another phone.

[00361] Virtual memory management and sharing can be based on explicit or inferred
common interest. Common interest can be inferred, for example, by the social information
retriever 405, based on common social networks and/or temporal and/or spatial location
similarities (e.g., by the geo-location module 406). Information can be shared based on users of
devices having common social networks. For example, two users may have the same or similar
'friends' on Facebook and are hanging out at the same bar, when the mobile phone/device of one
user refreshes or polls for updated content from Facebook, this information can be provided
through a peer-to-peer connection to the mobile device of the other user in the same bar (or any

other users/devices which may find this information relevant).

[00362] This relieves the load off the radio network and off the application server/provider
(e.g., Facebook server), or another intermediate server managing the polls (e.g., the host server
100, 200 or 300). Furthermore, this enables device without radio connection (without cellular
connectivity) to also receive the same updates through non-cellular connections with other
devices in the shared memory network. Such devices may be recipients of content in a co-

located virtual memory network.

[00363] Note that not all devices in a shared virtual memory network require a local virtual
memory manager or database manager of its own. The local device proxies can thus include
fewer components. An example of the included components are shown in FIG. 4B, as including,
by way of example, a social information retriever 405, a geo-location detector 406, a state
detector 415 having a poll requestor 416, a poll synchronizer, and a shared memory component
491. Such devices can receive shared information or other information/content relevant in the
virtual network without necessarily managing resources/state across other devices in the same

network.

[00364] In general, the virtual memory management can be performed by one or more
devices in a virtual memory environment (e.g., any number of devices 102A-N in an
environment shown in FIG. 1C), via the virtual resources manager 408 and/or the distributed
database manager 407 through shared parameters, for example, stored in a shared repository, and
managed using state profiles and resource allocation tables illustrated in FIGS. 1D-1F. In
addition, virtual memory management, allocation, sharing and tracking can additionally or

alternatively be managed by a remote server (e.g., the host server 100, 200, 300 in the examples
79

WO 2012/145544 PCT/US2012/034300
of FIGS. 1-3 respectively. For example, FIG. SA depicts a block diagram illustrating an
example of server-side components in the proxy server 325 in a virtual memory sharing and

database management system.

[00365] FIG. 5A depicts a block diagram illustrating an example of server-side components

in a distributed proxy and cache system, further including a social caching module 501.

[00366] FIG. 5B depicts a block diagram illustrating additional components in the social
caching module 501 shown in the example of FIG. 5A.

[00367] The social caching module 501 on the server-side of the distributed cache system
can include a virtual memory manager 501, a device state manager 511, an application state
manager 521 having a poll synchronizer, a social interest tracker 531, and/or a co-location
detector 541. The virtual memory manager 501 can setup various virtual memory networks (e.g.,
such as those shown in the examples of FIGS. 1C-1F) and individually manage the respective
memory networks based on their commonalities (e.g., location, interest, social profile, network

status/capability, etc.).

[00368] Virtual memory network can automatically be setup by the manager 501 based on
information detected by the social interest tracker 531 and/or the co-location detector 541, which
identifies devices that are suitable to be included into a virtual memory network at a given place
and/or time. The creation of a virtual memory network may also be requested by a given device
(e.g., such as a device in the networks shown in the example of FIG. 1C). The management of
the virtual memory sharing and allocation can reside in the local memory network (networks of
FIG. 1C), or reside on remotely on the remote proxy of 325, or distributed and shared between

the local memory network and the remote proxy.

[00369] The device state manager 511 manages content or application states on devices in
a shared memory network. The application state manager 521 determines whether updated or
new content is available on servers/content providers polled by devices on the various shared
virtual memory networks. The poll synchronizer 522 can detect that multiple devices in a
particular shared virtual memory network are polling one or more of the same content sources,
and synchronize the polls to conserve resources. The result of the polls (e.g., whether it includes
new/updated content, an invalidate command, or an indication that no new content is available)
can be sent to one of the devices in a given shared virtual memory network for distribution by

that device to other devices of interest.

80

WO 2012/145544 PCT/US2012/034300
[00370] FIG. 6A depicts another flow diagram illustrating an example process for distributed

content caching between a mobile device and a proxy server and the distributed management of

content caching.

[00371] As shown in the distributed system interaction diagram in the example of FIG. 4, the
disclosed technology is a distributed caching model with various aspects of caching tasks split
between the client-side/mobile device side (e.g., mobile device 450 in the example of FIG. 4)
and the server side (e.g., server side 470 including the host server 485 and/or the optional caching

proxy 475).

[00372] In general the device-side responsibilities can include deciding whether a response to
a particular request can be and/or should be cached. The device-side of the proxy can make this
decision based on information (e.g., timing characteristics, detected pattern, detected pattern with
heuristics, indication of predictability or repeatability) collected from/during both request and
response and cache it (e.g., storing it in a local cache on the mobile device). The device side can
also notify the server-side in the distributed cache system of the local cache event and notify it

monitor the content source (e.g., application server/content provider 110 of FIGS. 1A-B).

[00373] The device side can further instruct the server side of the distributed proxy to
periodically validate the cache response (e.g., by way of polling, or sending polling requests to
the content source). The device side can further decide whether a response to a particular cache
request should be returned from the local cache (e.g., whether a cache hit is detected). The
decision can be made by the device side (e.g., the local proxy on the device) using information

collected from/during request and/or responses received from the content source.

[00374] In general, the server-side responsibilities can include validating cached responses
for relevancy (e.g., determine whether a cached response is still valid or relevant to its associated
request). The server-side can send the mobile device an invalidation request to notify the device
side when a cached response is detected to be no longer valid or no longer relevant (e.g., the
server invalidates a given content source). The device side then can remove the response from

the local cache.

[00375] The diagram of FIG. 6A illustrates caching logic processes performed for each
detected or intercepted request (e.g., HTTP request) detected at a mobile device (e.g., client-side
of the distributed proxy). In step 602, the client-side of the proxy (e.g., local proxy 275 shown in
FIGS. 2A-B or mobile device 450 of FIG. 4) receives a request (from an application (e.g.,
mobile application) or mobile client). In step 604, URL is normalized and in step 606 the client-

81

WO 2012/145544 PCT/US2012/034300

side checks to determine if the request is cacheable. If the request is determined to be not
cacheable in step 612, the request is sent to the source (application server/content provider) in
step 608 and the response is received 610 and delivered to the requesting application 622, similar

to a request-response sequence without interception by the client side proxy.

[00376] If the request is determined to be cacheable, in step 612, the client-side looks up the
cache to determine whether a cache entry exists for the current request. If so, in step 624, the
client-side can determine whether the entry is valid and if so, the client side can check the request
to see if includes a validator (e.g., a modified header or an entity tag) in step 615. For example,
the concept of validation is eluded to in section 13.3 of RFC 2616 which describes in possible
types of headers (e.g., eTAG, Modified Since, must revlaidate, pragma no cache) and forms a
validating response 632 if so to be delivered to the requesting application in step 622. If the
request does not include a validator as determined by step 615, a response is formed from the
local cache in step 630 and delivered to the requesting application in step 622. This validation

step can be used for content that would otherwise normally be considered un-cacheable.

[00377] If, instead, in step 624, the cache entry is found but determined to be no longer valid
or invalid, the client side of the proxy sends the request 616 to the content source (application
server/content host) and receives a response directly fro the source in step 618. Similarly, if in
step 612, a cache entry was not found during the look up, the request is also sent in step 616.
Once the response is received, the client side checks the response to determine if it is cacheable
in step 626. If so, the response is cached in step 620. The client then sends another poll in step

614 and then delivers the response to the requesting application in step 622.

[00378] FIG. 6B depicts a diagram showing how data requests from a mobile device 450 to
an application server/content provider 495 in a wireless network can be coordinated by a
distributed proxy system 460 in a manner such that network and battery resources are conserved

through using content caching and monitoring performed by the distributed proxy system 460.

[00379] In satisfying application or client requests on a mobile device 450 without the
distributed proxy system 460, the mobile device 450, or the software widget executing on the
device 450, performs a data request 452 (e.g., an HTTP GET, POST, or other request) directly to
the application server 495 and receives a response 404 directly from the server/provider 495. If
the data has been updated, the widget 455 on the mobile device 450 can refreshes itself to reflect
the update and waits for small period of time and initiates another data request to the

server/provider 495.

82

WO 2012/145544 PCT/US2012/034300

[00380] In one embodiment, the requesting client or software widget 455 on the device 450
can utilize the distributed proxy system 460 in handling the data request made to server/provider
495. In general, the distributed proxy system 460 can include a local proxy 465 (which is
typically considered a client-side component of the system 460 and can reside on the mobile
device 450), a caching proxy 475 (considered a server-side component 470 of the system 460 and
can reside on the host server 485 or be wholly or partially external to the host server 485), and a
host server 485. The local proxy 465 can be connected to the caching proxy 475 and host server

485 via any network or combination of networks.

[00381] When the distributed proxy system 460 is used for data/application requests, the
widget 455 can perform the data request 456 via the local proxy 465. The local proxy 465, can
intercept the requests made by device applications, and can identify the connection type of the
request (e.g., an HTTP get request or other types of requests). The local proxy 465 can then
query the local cache for any previous information about the request (e.g., to determine whether a
locally stored response is available and/or still valid). If a locally stored response is not available
or if there is an invalid response stored, the local proxy 465 can update or store information about
the request, the time it was made, and any additional data, in the local cache. The information

can be updated for use in potentially satisfying subsequent requests.

[00382] The local proxy 465 can then send the request to the host server 485 and the host
server 485 can perform the request 456 and returns the results in response 458. The local proxy
465 can store the result and, in addition, information about the result and returns the result to the

requesting widget 455.

[00383] In one embodiment, if the same request has occurred multiple times (within a certain
time period) and it has often yielded same results, the local proxy 465 can notify 460 the server
485 that the request should be monitored (e.g., steps 462 and 464) for result changes prior to

returning a result to the local proxy 465 or requesting widget 455.

[00384] In one embodiment, if a request is marked for monitoring, the local proxy 465 can
now store the results into the local cache. Now, when the data request 466, for which a locally
response is available, is made by the widget 455 and intercepted at the local proxy 465, the local
proxy 465 can return the response 468 from the local cache without needing to establish a

connection communication over the wireless network.

[00385] In addition, the server proxy performs the requests marked for monitoring 470 to

determine whether the response 472 for the given request has changed. In general, the host

83

WO 2012/145544 PCT/US2012/034300

server 485 can perform this monitoring independently of the widget 455 or local proxy 465
operations. Whenever an unexpected response 472 is received for a request, the server 485 can
notify the local proxy 465 that the response has changed (e.g., the invalidate notification in step
474) and that the locally stored response on the client should be erased or replaced with a new

reésponsc.

[00386] In this case, a subsequent data request 476 by the widget 455 from the device 450
results in the data being returned from host server 485 (e.g., via the caching proxy 475), and in
step 478, the request is satisfied from the caching proxy 475. Thus, through utilizing the
distributed proxy system 460, the wireless (cellular) network is intelligently used when the
content/data for the widget or software application 455 on the mobile device 450 has actually
changed. As such, the traffic needed to check for the changes to application data is not
performed over the wireless (cellular) network. This reduces the amount of generated network
traffic and shortens the total time and the number of times the radio module is powered up on the
mobile device 450, thus reducing battery consumption and, in addition, frees up network

bandwidth.

[00387] FIG. 7 depicts a table 700 showing examples of different traffic or application
category types which can be used in implementing network access and content delivery policies.
For example, traffic/application categories can include interactive or background, whether a user
is waiting for the response, foreground/background application, and whether the backlight is on

or off.

[00388] FIG. 8 depicts a table 800 showing examples of different content category types
which can be used in implementing network access and content delivery policies. For example,
content category types can include content of high or low priority, and time critical or non-time

critical content/data.

[00389] FIG. 9 depicts an interaction diagram showing how application (e.g., mobile
application) 955 polls having data requests from a mobile device to an application server/content
provider 995 over a wireless network can be can be cached on the local proxy 965 and managed
by the distributed caching system (including local proxy 965 and the host server 985 (having

server cache 935 or caching proxy server 975)).

[00390] In one example, when the mobile application/widget 955 polls an application
server/provider 932, the poll can locally be intercepted 934 on the mobile device by local proxy
965. The local proxy 965 can detect that the cached content is available for the polled content in

84

WO 2012/145544 PCT/US2012/034300
the request and can thus retrieve a response from the local cache to satisfy the intercepted poll
936 without requiring use of wireless network bandwidth or other wireless network resources.
The mobile application/widget 955 can subsequently receive a response to the poll from a cache

entry 938.

[00391] In another example, the mobile application widget 955 polls the application
server/provider 940. The poll is intercepted 942 by the local proxy 965 and detects that cache
content is unavailable in the local cache and decides to set up the polled source for caching 944.
To satisfy the request, the poll is forwarded to the content source 946. The application
server/provider 995 receives the poll request from the application and provides a response to
satisfy the current request 948. In 950, the application (e.g., mobile application)/widget 955

receives the response from the application server/provider to satisfy the request.

[00392] In conjunction, in order to set up content caching, the local proxy 965 tracks the
polling frequency of the application and can set up a polling schedule to be sent to the host server
952. The local proxy sends the cache set up to the host server 954. The host server 985 can use
the cache set up which includes, for example, an identification of the application server/provider
to be polled and optionally a polling schedule 956. The host server 985 can now poll the
application server/provider 995 to monitor responses to the request 958 on behalf of the mobile
device. The application server receives the poll from the host server and responds 960. The host
server 985 determines that the same response has been received and polls the application server
995 according to the specified polling schedule 962. The application server/content provider 995

receives the poll and responds accordingly 964.

[00393] The host server 985 detects changed or new responses and notifies the local proxy
965. The host server 985 can additional store the changed or new response in the server cache or
caching proxy 968. The local proxy 965 receives notification from the host server 985 that new
or changed data is now available and can invalidate the affected cache entries 970. The next time
the application (e.g., mobile application)/widget 955 generates the same request for the same
server/content provider 972, the local proxy determines that no valid cache entry is available and
instead retrieves a response from the server cache 974, for example, through an HTTP
connection. The host server 985 receives the request for the new response and sends the
response back 976 to the local proxy 965. The request is thus satisfied from the server cache or
caching proxy 978 without the need for the mobile device to utilize its radio or to consume

mobile network bandwidth thus conserving network resources.

85

WO 2012/145544 PCT/US2012/034300
[00394] Alternatively, when the application (e.g., mobile application) generates the same
request in step 980, the local proxy 965, in response to determining that no valid cache entry is
available, forwards the poll to the application server/provider in step 982 over the mobile
network. The application server/provider 995 receives the poll and sends the response back to
the mobile device in step 984 over the mobile network. The request is thus satisfied from the

server/provider using the mobile network in step 986.

[00395] FIG. 10 depicts an interaction diagram showing how application 1055 polls for
content from an application server/content provider 1095 which employs cache-defeating
mechanisms in content identifiers (e.g., identifiers intended to defeat caching) over a wireless

network can still be detected and locally cached.

[00396] In one example, when the application (e.g., mobile application)/widget 1055 polls an
application server/provider in step 1032, the poll can locally be intercepted in step 1034 on the
mobile device by local proxy 1065. In step 1034, the local proxy 1065 on the mobile device may
also determine (with some level of certainty and heuristics) that a cache defeating mechanism is

employed or may be employed by the server provider.

[00397] The local proxy 1065 can detect that the cached content is available for the polled
content in the request and can thus retrieve a response from the local cache to satisfy the
intercepted poll 1036 without requiring use of wireless network bandwidth or other wireless
network resources. The application (e.g., mobile application)/widget 1055 can subsequently
receive a response to the poll from a cache entry in step 1038 (e.g., a locally stored cache entry

on the mobile device).

[00398] In another example, the application (e.g., mobile application) widget 1055 polls the
application server/provider 1095 in step 1040. The poll is intercepted in step 1042 by the local
proxy 1065 which determines that a cache defeat mechanism is employed by the server/provider
1095. The local proxy 1065 also detects that cached content is unavailable in the local cache for
this request and decides to setup the polled content source for caching in step 1044. The local
proxy 1065 can then extract a pattern (e.g., a format or syntax) of an identifier of the request and
track the polling frequency of the application to setup a polling schedule of the host server 1085
in step 1046.

[00399] To satisfy the request, the poll request is forwarded to the content provider 1095 in
step 1048. The application server/provider 1095 receives the poll request from the application

and provides a response to satisfy the current request in step 1050. In step 1052, the application

86

WO 2012/145544 PCT/US2012/034300
(e.g., mobile application)/widget 1055 receives the response from the application server/provider

1095 to satisfy the request.

[00400] In conjunction, in order to setup content caching, the local proxy 1065 caches the
response and stores a normalized version of the identifier (or a hash value of the normalized
identifier) in association with the received response for future identification and retrieval in step
1054. The local proxy sends the cache setup to the host server 1085 in step 1056. The cache
setup includes, for example, the identifier and/or a normalized version of the identifier. In some
instances, a modified identifier, different from the normalized identifier, is sent to the host server

1085.

[00401] The host server 1085 can use the cache setup, which includes, for example, an
identification of the application server/provider to be polled and optionally a polling schedule in
step 1058. The host server 1085 can now poll the application server/provider 1095 to monitor
responses to the request in step 1060 on behalf of the mobile device. The application server 1095
receives the poll from the host server 1085 responds in step 1062. The host server 1085
determines that the same response has been received and polls the application server 1095, for
example, according to the specified polling schedule and using the normalized or modified
identifier in step 1064. The application server/content provider 1095 receives the poll and

responds accordingly in step 1066.

[00402] This time, the host server 1085 detects changed or new responses and notifies the
local proxy 1065 in step 1068. The host server 1085 can additionally store the changed or new
response in the server cache 1035 or caching proxy 1075 in step 1070. The local proxy 1065
receives notification from the host server 1085 that new or changed data is now available and can
invalidate the affected cache entries in step 1072. The next time the application (e.g., mobile
application)/widget generates the same request for the same server/content provider 1095 in step
1074, the local proxy 1065 determines that no valid cache entry is available and instead retrieves
a response from the server cache in step 1076, for example, through an HTTP connection. The
host server 1085 receives the request for the new response and sends the response back to the
local proxy 1065 in step 1078. The request is thus satisfied from the server cache or caching
proxy in step 1080 without the need for the mobile device to utilize its radio or to consume

mobile network bandwidth thus conserving network resources.

[00403] Alternatively, when the application (e.g., mobile application) 1055 generates the
same request, the local proxy 1065, in response to determining that no valid cache entry is

available in step 1084, forwards the poll to the application server provider 1095 in step 1082 over
87

WO 2012/145544 PCT/US2012/034300
the mobile network. The application server/provider 1095 receives the poll and sends the
response back to the mobile device in step 1086 over the mobile network. The request is thus

satisfied from the server/provider using the mobile network 1086 in step 1088.

[00404] FIG. 11 depicts a flow chart illustrating an example process for collecting
information about a request and the associated response to identify cacheability and caching the

reésponsc.

[00405] In process 1102, information about a request and information about the response
received for the request is collected. In processes 1104 and 1106, information about the request
initiated at the mobile device and information about the response received for the request are
used in aggregate or independently to determine cacheability at step 1108. The details of the
steps for using request and response information for assessing cacheability are illustrated at flow

A as further described in the example of FIG. 12.

[00406] In step 1108, if based on flow A it is determined that the response is not cacheable,
then the response is not cached in step 1110, and the flow can optionally restart at 1102 to collect

information about a request or response to again assess cacheability.

[00407] In step 1108, if it is determined from flow A that the response is cacheable, then in
1112 the response can be stored in the cache as a cache entry including metadata having
additional information regarding caching of the response. The cached entry, in addition to the
response, includes metadata having additional information regarding caching of the response.
The metadata can include timing data including, for example, access time of the cache entry or

creation time of the cache entry.

[00408] After the response is stored in the cache, a parallel process can occur to determine
whether the response stored in the cache needs to be updated in process 1120. If so, the response
stored in the cache of the mobile device is invalided or removed from the cache of the mobile
device, in process 1122. For example, relevance or validity of the response can be verified
periodically by polling a host server to which the request is directed on behalf of the mobile
device. The host server can be polled at a rate determined at the mobile device using request
information collected for the request for which the response is cached. The rate is determined
from averages of time intervals between previous requests generated by the same client which

generated the request.

88

WO 2012/145544 PCT/US2012/034300
[00409] The verifying can be performed by an entity that is physically distinct from the
mobile device. In one embodiment, the entity is a proxy server coupled to the mobile device and
able to communicate wirelessly with the mobile device and the proxy server polls a host server to
which the request is directed at the rate determined at the mobile device based on timing intervals

between previous requests generated by the same client which generated the request.

[00410] In process 1114, a subsequent request for the same client or application is detected.
In process 1116, cache look-up in the local cache is performed to identify the cache entry to be
used in responding to the subsequent request. In one embodiment, the metadata is used to
determine whether the response stored as the cached entry is used to satisfy the subsequent
response. In process 1118, the response can be served from the cache to satisfy a subsequent
request. The response can be served in response to identifying a matching cache entry for the

subsequent request determined at least in part using the metadata.

[00411] FIG. 12 depicts a flow chart illustrating an example process for a decision flow to

determine whether a response to a request can be cached.

[00412] Process 1202 determines if the request is directed to a blacklisted destination. If so,
the response is not cached, in step 1285. If a blacklisted destination is detected, or if the request
itself is associated with a blacklisted application, the remainder of the analysis shown in the
figure may not be performed. The process can continue to steps 1204 and 1206 if the request and

its destination are not blacklisted.

[00413] In process 1204, request characteristics information associated with the request is
analyzed. In analyzing the request, in process 1208, the request method is identified and in step
1214, it is determined whether the response can be cached based on the request method. If an
uncacheable request is detected, the request is not cached and the process may terminate at
process 1285. If the request method is determined to be cacheable, or not uncacheable, then the
response can be identified as cacheable or potentially cacheable (e.g., cacheable but subject to the

other tests and analysis shown in the figure) at step 1295.

[00414] In process 1210, the size of the request is determined. In process 1216, it is
determined whether the request size exceeds a cacheable size. If so, the response is not cached
and the analysis may terminate here at process 1285. If the request size does not exceed a
cacheable size in step 1216, then the response can be identified as cacheable or potentially

cacheable (e.g., cacheable but subject to the other tests and analysis shown in the figure) at step

1295.

&9

WO 2012/145544 PCT/US2012/034300
[00415] In step 1212, the periodicity information between the request and other requests

generated by the same client is determined. In step 1218, it is determined whether periodicity has
been identified. If not, the response is not cached and the analysis may terminate here at process
1285. 1If so, then the response can be identified as cacheable or potentially cacheable (e.g.,

cacheable but subject to the other tests and analysis shown in the figure) at step 1295.

[00416] In process 1206, the request characteristics information associated with the response

received for the request is analyzed.

[00417] In process 1220, the status code is identified and determined whether the status code
indicates a cacheable response status code in process 1228. If an uncacheable status code is
detected, the request is not cached and the process may terminate at process 1285. If the
response status code indicates cacheability, or not uncacheable, then the response can be
identified as cacheable or potentially cacheable (e.g., cacheable but subject to the other tests and

analysis shown in the figure) at step 1295.

[00418] In process 1222, the size of the response is determined. In process 1230, it is
determined whether the response size exceeds a cacheable size. If so, the response is not cached
and the analysis may terminate here at process 1285. If the response size does not exceed a
cacheable size in step 1230, then the response can be identified as cacheable or potentially
cacheable (e.g., cacheable but subject to the other tests and analysis shown in the figure) at step

1295.

[00419] In process 1224, the response body is analyzed. In process 1232, it is determined
whether the response contains dynamic content or highly dynamic content. Dynamic content
includes data that changes with a high frequency and/or has a short time to live or short time of
relevance due to the inherence nature of the data (e.g., stock quotes, sports scores of fast pace
sporting events, etc.). If so, the response is not cached and the analysis may terminate here at
process 1285. If not, then the response can be identified as cacheable or potentially cacheable

(e.g., cacheable but subject to the other tests and analysis shown in the figure) at step 1295.

[00420] Process 1226 determines whether transfer encoding or chunked transfer encoding is
used in the response. If so, the response is not cached and the analysis may terminate here at
process 1285. If not, then the response can be identified as cacheable or potentially cacheable

(e.g., cacheable but subject to the other tests and analysis shown in the figure) at step 1295.

90

WO 2012/145544 PCT/US2012/034300
[00421] Not all of the tests described above need to be performed to determined whether a

response is cached. Additional tests not shown may also be performed. Note that any of the tests
1208, 1210, 1212, 1220, 1222, 1224, and 1226 can be performed, singly or in any combination to
determine cacheability. In some instances, all of the above tests are performed. In some
instances, all tests performed (any number of the above tests that are actually performed) need to
confirm cacheability for the response to be determined to be cacheable. In other words, in some
cases, if any one of the above tests indicate non-cacheability, the response is not cached,
regardless of the results of the other tests. In other cases, different criteria can be used to
determine which tests or how many tests need to pass for the system to decide to cache a given

response, based on the combination of request characteristics and response characteristics.

[00422] FIG. 13 depicts a flow chart illustrating an example process for determining

potential for cacheability based on request periodicity and/or response repeatability.

[00423] In process 1302, requests generated by the client are tracked to detect periodicity of
the requests. In process 1306, it is determined whether there are predictable patterns in the
timing of the requests. If so, the response content may be cached in process 1395. If not, in
process 1308 it is determined whether the request intervals fall within a tolerance level. If so, the
response content may be cached in process 1395. If not, the response is not cached in process

1385.

[00424] In process 1304, responses received for requests generated by the client are tracked
to detect repeatability in content of the responses. In process 1310, hash values of response
bodies of the responses received for the client are examined and in process 1312 the status codes
associated with the responses are examined. In process 1314, it is determined whether there is
similarity in the content of at least two of the responses using hash values and/or the status codes.

If so, the response may be cached in process 1395. If not, the response is not cached in 1385.

[00425] FIG. 14 depicts a flow chart illustrating an example process for dynamically

adjusting caching parameters for a given request or client.

[00426] In process 1402, requests generated by a client or directed to a host are tracked at the
mobile device to detect periodicity of the requests. Process 1404 determines if the request
intervals between the two or more requests are the same or approximately the same. In process
1406, it is determined that the request intervals between the two or more requests fall within the

tolerance level.

91

WO 2012/145544 PCT/US2012/034300
[00427] Based on the results of steps 1404 and 1406, the response for the requests for which

periodicity is detected is received in process 1408.

[00428] In process 1412, a response is cached as a cache entry in a cache of the mobile
device. In process 1414, the host is monitored at a rate to verify relevance or validity of the
cache entry, and simultancously, in process 1416, the response can be served from the cache to

satisfy a subsequent request.

[00429] In process 1410, a rate to monitor a host is determined from the request interval,
using, for example, the results of processes 1404 and/or 1406. In process 1420, the rate at which
the given host is monitored is set to verify relevance or validity of the cache entry for the
requests. In process 1422, a change in request intervals for requests generated by the client is
detected. In process 1424, a different rate is computed based on the change in request intervals.
The rate at which the given host is monitored to verify relevance or validity of the cache entry for

the requests is updated in step 1420.

[00430] FIG. 15 depicts a flow chart illustrating example processes for application and/or
traffic (data) categorization while factoring in user activity and expectations for implementation

of network access and content delivery policies.

[00431] In process 1502, a system or server detects that new or changed data is available to
be sent to a mobile device. The data, new, changed, or updated, can include one or more of, IM
presence updates, stock ticker updates, weather updates, mail, text messages, news feeds, friend
feeds, blog entries, articles, documents, any multimedia content (e.g., images, audio,
photographs, video, etc.), or any others that can be sent over HTTP or wireless broadband
networks, either to be consumed by a user or for use in maintaining operation of an end device or

application.

[00432] In process 1504, the application to which the new or changed data is directed is
identified. In process 1506, the application is categorized based on the application. In process
1508, the priority or time criticality of the new or changed data is determined. In process 1510,
the data is categorized. Based on the information determined from the application and/or
priority/time-sensitivity of the relevant data, any or all of a series of evaluations can be
performed to categorize the traffic and/or to formulate a policy for delivery and/or powering on

the mobile device radio.

92

WO 2012/145544 PCT/US2012/034300
[00433] For example, using the identified application information, in process 1512, it is
determined whether the application is in an active state interacting with a user on a mobile
device. In process 1514, it is determined if the application is running in the foreground on the

mobile device.

[00434] If the answer is ‘Yes’ to any number of the test of processes 1512 or 1514, the
system or server can then determine that the new or changed data is to be sent to the mobile
device in step 1526, and sent without delay. Alternatively, the process can continue at flow ‘C’
where the timing, along with other transmission parameters such as network configuration, can
be selected, as further illustrated in the example of FIG. 31. If the answer is ‘No’ to the tests of
1512 or 1514, the other test can be performed in any order. As long as one of the tests 1512 or
1514 is “Yes,” then the system or server having the data can proceed to step 1526 and/or flow

CC"

[00435] If the answer is ‘No’ to the tests 1512 and 1514 based on the application or
application characteristics, then the process can proceed to step 1524, where the sending of the
new or changed data is suppressed, at least on a temporary basis. The process can continue in
flow ‘A’ for example steps for further determining the timing of when to send the data to
optimize network use and/or device power consumption, as further described in the example of

flow chart in FIG. 29.

[00436] Similarly, in process 1516, it is determined whether the application is running in the
background. If so, the process can proceed to step 1524 where the sending of the new or changed
data is suppressed. However, even if the application is in the background state, any of the
remaining tests can be performed. For example, even if an application is in the background state,

new or changed data may still be sent if of a high priority or is time critical.

[00437] Using the priority or time sensitivity information, in process 1518, it is determined
whether the data is of high priority 1518. In process 1520, it is determined whether the data is
time critical. In process 1522, it is determined whether a user is waiting for a response that

would be provided in the available data.

[00438] If the answer is “Yes’ to any number of the test of processes 1518, 1520, or 1522, the
system or server can then determine that the new or changed data is to be sent to the mobile
device in step 1526, and sent without delay. Alternatively, the process can continue at flow ‘C’
where the timing, along with other transmission parameters such as a network configuration, can

be selected, as further illustrated in the example of FIG. 31. If the answer is ‘No’ to any of these

93

WO 2012/145544 PCT/US2012/034300

tests, the other test can be performed in any order. As long as one of the tests 1518, 1520, or
1522 is “Yes,’ then the system or server having the data can proceed to step 1526 and/or flow

CC"

[00439] If the answer is ‘No’ to one or more of the tests 1518, 1520, or 1522, then the process
can proceed to step 1524, where the sending of the new or changed data is suppressed, at least on
a temporary basis. The process can continue in flow ‘A’ for example steps for further
determining the timing of when to send the data to optimize network use and/or device power
consumption. The process can continue to step 1524 with or without the other tests being

performed if one of the tests yields a “No’ response.

[00440] The determined application category in step 1504 can be used in lieu of or in
conjunction with the determined data categories in step 1510. For example, the new or changed
data that is of a high priority or is time critical can be sent at step 1526 even if the application in
the foreground state but not actively interacting with the user on the mobile device or if the

application is not in the foreground, or in the background.

[00441] Similarly, even if the user is not waiting for a response which would be provided in
the new or change data (in step 1522), the data can be sent to the mobile device 1526 if the

application is in the foreground, or if the data is of high priority or contains time critical content.

[00442] In general, the suppression can be performed at the content source (e.g., originating
server/content host of the new or changed data), or at a proxy server. For example, the proxy
server may be remote from the recipient mobile device (e.g., able to wirelessly connect to the
receiving mobile device). The proxy server may also be remote from the originating
server/content host. Specifically, the logic and intelligence in determining whether the data is to
be sent or suppressed can exist on the same server or be the same entity as the originator of the
data to be sent or partially or wholly remote from it (e.g., the proxy is able to communicate with

the content originating server).

[00443] In one embodiment, the waiting to transfer the data is managed by a local proxy on
the mobile device which is able to wirelessly communicate with a recipient server (e.g., the host
server for the mobile application or client). The local proxy on the mobile device can control the
radio use on the mobile device for transfer of the data when the time period has elapsed, or when

additional data to be sent is detected.

94

WO 2012/145544 PCT/US2012/034300
[00444] FIG. 16A depicts a flow chart illustrating example processes for handling traffic

which is to be suppressed at least temporarily determined from application/traffic categorization.

[00445] For example, in process 1602, a time period is elapsed before the new or change data
is transmitted in step 1606. This can be performed if the data is of low priority or is not time
critical, or otherwise determined to be suppressed for sending (e.g., as determined in the flow
chart of FIG. 15). The time period can be set by the application, the user, a third party, and/or
take upon a default value. The time period may also be adapted over time for specific types of
applications or real-time network operating conditions. If the new or changed data to be sent is
originating from a mobile device, the waiting to transfer of the data until a time period has
elapsed can be managed by a local proxy on the mobile device, which can communicate with the
host server. The local proxy can also enable or allow the use radio use on the mobile device for

transfer of the data when the time period has elapsed.

[00446] In some instances, the new or changed data is transmitted in 1606 when there is
additional data to be sent, in process 1604. If the new or changed data to be sent is originating
from a mobile device, the waiting to transfer of the data until there is additional data to be sent,
can be managed by a local proxy on the mobile device, which can communicate with the host
server. The local proxy can also enable or allow the use radio use on the mobile device for
transfer of the data when there is additional data to be sent, such that device resources can be
conserved. Note that the additional data may originate from the same mobile application/client
or a different application/client. The additional data may include content of higher priority or is
time critical. The additional data may also be of same or lower priority. In some instances, a

certain number of non priority, or non time-sensitive events may trigger a send event.

[00447] If the new or changed data to be sent is originating from a server (proxy server or
host server of the content), the waiting to transfer of the data until a time period has elapsed or
waiting for additional data to be sent, can be managed by the proxy server which can wirelessly
communicate with the mobile device. In general, the proxy server waits until additional data is
available for the same mobile device before sending the data together in a single transaction to

minimize the number of power-ons of device battery and to optimize network use.

[00448] FIG. 16B depicts a flow chart illustrating an example process for selection of a
network configuration for use in sending traffic based on application and/or traffic (data)

categorization.

95

WO 2012/145544 PCT/US2012/034300
[00449] In process 1608, an activity state of an application on the mobile device is detected
for which traffic is directed to or originated from is detected. In parallel or in lieu of activity
state, a time criticality of data contained in the traffic to be sent between the mobile device and
the host server can be determined, in process 1610. The activity state can be determined in part
or in while, by whether the application is in a foreground or background state on the mobile
device. The activity state can also be determined by whether a user is interacting with the

application.

[00450] Using activity state and/or data characteristics, when it has determined from that the
data is to be sent to the mobile device in step 1612 of FIG. 15, the process can continue to step

3006 for network configuration selection.

[00451] For example, in process 1614, a generation of wireless standard is selected. The
generation of wireless standard which can be selected includes 2G or 2.5G, 3G, 3.5G, 3G+,
3GPP, LTE, or 4G, or any other future generations. For example, slower or older generation of
wireless standards can be specified for less critical transactions or traffic containing less critical
data. For example, older standards such as 2G, 2.5G, or 3G can be selected for routing traffic
when one or more of the following is detected, the application is not interacting with the user, the
application is running in the background on the mobile device, or the data contained in the traffic
is not time critical. Newer generations such as can be specified for higher priority traffic or
transactions. For example, newer generations such as 3G, LTE, or 4G can be specified for traffic

when the activity state is in interaction with a user or in a foreground on the mobile device.

[00452] In process 1616, the access channel type can be selected. For example, forward
access channel (FACH) or the dedicated channel (DCH) can be specified. In process 1618, a
network configuration is selected based on data rate or data rate capabilities. For example, a
network configuration with a slower data rate can be specified for traffic when one or more of the
following is detected, the application is not interacting with the user, the application is running in

the background on the mobile device, or the data contained in the traffic is not time critical

[00453] In process 1620, a network configuration is selected by specifying access points.
Any or all of the steps 1614, 1616, 1618, and 1620 can be performed or in any combination in

specifying network configurations.

[00454] FIG. 16C depicts a flow chart illustrating an example process for implementing
network access and content delivery policies based on application and/or traffic (data)

categorization.

96

WO 2012/145544 PCT/US2012/034300

[00455] In process 1634, an activity state of an application on a mobile device to which
traffic is originated from or directed to is detected. For example, the activity state can be
determined by whether the application is in a foreground or background state on the mobile
device. The activity state can also be determined by whether a user is expecting data contained

in the traffic directed to the mobile device.

[00456] In process 1636, a time criticality of data contained in the traffic to be sent between
the mobile device and the host server is detected. For example, when the data is not time critical,
the timing with which to allow the traffic to pass through can be set based on when additional
data needs to be sent. Therefore, the traffic can be batched with the other data so as to conserve

network and/or device resources.

[00457] The application state and/or data characteristics can be used for application
categorization and/or data categorization to determine whether the traffic resulting therefrom is to
be sent to the mobile device or suppressed at least on a temporary basis before sending, as

illustrated in the flow chart shown in the example of FIG. 15.

[00458] Continuing at flow C after a determination has been made to send the traffic, the
parameters relating to how and when the traffic is to be sent can be determined. For example, in
process 1638, a timing with which to allow the traffic to pass through, is determined based on the

activity state or the time criticality.

[00459] In process 1640, radio use on the mobile device is controlled based on the timing
with which the traffic is allowed to pass through. For example, for traffic initiated from the
mobile device, a local proxy can residing on the mobile device can control whether the radio is to
be turned on for a transaction, and if so, when it is to be turned on, based on transaction

characteristics determined from application state, or data priority/time-sensitivity.

[00460] In process 1642, a network configuration in the wireless network is selected for use
in passing traffic to and/or from the mobile device. For example, a higher capacity or data rate

network (e.g., 3G, 3G+, 3.5G, LTE, or 4G networks) can be selected for passing through traffic
when the application is active or when the data contained in the traffic is time critical or is

otherwise of a higher priority/importance.

[00461] FIG. 17 depicts a flow chart illustrating an example process for network selection

based on mobile user activity or user expectations.

97

WO 2012/145544 PCT/US2012/034300
[00462] In process 1702, the backlight status of a mobile device is detected. The backlight

status can be used to determine or infer information regarding user activity and/or user
expectations. For example, in process 1704, user interaction with an application on a mobile
device is detected and/or in process 1706, it is determined that a user is expecting data contained

in traffic directed to the mobile device, if the backlight is on.

[00463] The user interaction 1704 and/or user expectation 1706 can be determined or inferred
via other direct or indirect cues. For example, device motion sensor, ambient light, data activity,
detection of radio activity and patterns, call processing, etc. can be used alone or in combination

to make an assessment regarding user activity, interaction, or expectations.

[00464] In process 1708, an activity state of an application on the mobile device for which
traffic is originated from or directed to, is determined. In one embodiment, the activity state of
the application is determined by user interaction with the application on the mobile device and/or

by whether a user is expecting data contained in the traffic directed to the mobile device.

[00465] In process 1710, 3G, 4G, or LTE network is selected for use in sending traffic
between a mobile device and a host server in the wireless network. Other network configurations
or technologies can be selected as well, including but not limited to 2.5G GSM/GPRS networks,
EDGE/EGPRS, 3.5G, 3G+, turbo 3G, HSDPA, etc. For example, a higher bandwidth or higher
capacity network can be selected when user interaction is detected with an application requesting
to access the network. Similarly, if it can be determined or inferred with some certainty that the
user may be expecting data contained in traffic requesting network access, a higher capacity or

higher data rate network may be selected as well.

[00466] The activity state can also be determined by whether data contained in the traffic
directed to the mobile device responds to foreground activities in the application. For
applications which are in the foreground, a higher capacity (e.g., 3.5G, 4G, or LTE) network may

be selected for use in carrying out the transaction.

[00467] The activity state can be determined via device parameters such as the backlight
status of the mobile device or any other software or hardware based device sensors including but
not limited to, resistive sensors, capacitive sensors, light detectors, motion sensors, proximity
sensors, touch screen sensors, etc. The network configuration which is selected for use can be
further based on a time criticality and/or priority of data contained in the traffic to be sent

between the mobile device and the host server.

98

WO 2012/145544 PCT/US2012/034300
[00468] FIG. 18 depicts a data timing diagram 1800 showing an example of detection of

periodic request which may be suitable for caching.

[00469] In the example shown, a first request from a client/application on a mobile device is
detected at time 1:00 (t1). At this time, a cache entry may be created in step 1802. At time 2:00
(t2), the second request is detected from the same client/application, and the cache entry that was
created can now be updated with the detected interval of 1 hour between time t2 and t1 at step
1804. The third request from the same client is now detected at time t3 = 3:00, and it can now be
determined that a periodic request is detected in step 1806. The local proxy can now cache the
response and send a start poll request specifying the interval (e.g., 1 hour in this case) to the

proxy server.

[00470] The timing diagram further illustrates the timing window between 2:54 and 3:06,
which indicates the boundaries of a window within which periodicity would be determined if the
third request is received within this time frame 1810. The timing window 1808 between 2:54
and 3:06 corresponds to 20% of the previous interval and is the example tolerance shown. Other
tolerances may be used, and can be determined dynamically or on a case by case (application by

application) basis.

[00471] FIG. 19 depicts a data timing diagram 1900 showing an example of detection of

change in request intervals and updating of server polling rate in response thereto.

[00472] Atstep 1902, the proxy determines that a periodic request is detected, the local proxy
caches the response and sets the polling request to the proxy server, and the interval is set to 1
hour at the 3rd request, for example. At time t4=3:55, the request is detected 55 minutes later,
rather than 1 hour. The interval of 55 minutes still fits in to the window 1904 given a tolerance
of 20%. However, at step 1906, the 5th request is received at time t5 = 4:50, which no longer fits
within the tolerance window set determined from the interval between the 1st and second, and
second and third requests of 1 hour. The local proxy now retrieves the resource or response from
the proxy server, and refreshes the local cache (e.g., cache entry not used to serve the 5th
request). The local proxy also resends a start poll request to the proxy server with an updated
interval (e.g., 55 minutes in the example) and the window defined by the tolerance, set by

example to 20%, now becomes 11 minutes, rather than 12 minutes.

[00473] Note that in general, the local proxy notifies the proxy server with an updated polling
interval when an interval changes is detected and/or when a new rate has been determined. This

is performed, however, typically only for background application requests or

99

WO 2012/145544 PCT/US2012/034300

automatic/programmatic refreshes (e.g., requests with no user interaction involved). In general,
if the user is interacting with the application in the foreground and causing out of period requests
to be detected, the rate of polling or polling interval specified to the proxy server is typically not
update, as illustrated in FIG. 20. FIG. 20 depicts a data timing diagram 2000 showing an

example of serving foreground requests with cached entries.

[00474] For example, between the times of t = 3:00 and 3:30, the local proxy detects 1st and
2nd foreground requests at t = 3:10 and t = 3:20. These foreground requests are outside of the
periodicity detected for background application or automatic application requests. The response
data retrieved for the foreground request can be cached and updated, however, the request

interval for foreground requests are not sent to the server in process 2008.

[00475] As shown, the next periodic request detected from the application (e.g., a background
request, programmatic/automatic refresh) at t=4:00, the response is served from the cache, as is

the request at t=5:00.

[00476] FIG. 21 depicts a data timing diagram 2100 showing an example of a non-optimal
effect of cache invalidation occurring after outdated content has been served once again to a

requesting application.

[00477] Since the interval of proxy server polls is set to approximately the same interval at
which the application (e.g., mobile application) is sending requests, it is likely the case that the
proxy server typically detects changed content (e.g., at t=5:02) after the cached entry (now
outdated) has already been served for a request (e.g., to the Sth request at t=5:00). In the example
shown, the resource updates or changes at t=4:20 and the previous server poll which occurs att =
4:02 was not able to capture this change until the next poll at 5:02 and sends a cache invalidation
to the local proxy at 2110. Therefore, the local cache does not invalidate the cache at some time
after the 5th request at time t=5:00 has already been served with the old content. The fresh
content is now not provided to the requesting application until the 6th request at t = 6:00, 1

period later at process 2106.

[00478] To optimize caching performance and to resolve this issue, the local proxy can adjust
time setup by specifying an initial time of request, in addition to the polling interval to the proxy
server. The initial time of request here is set to some time before (e.g., a few minutes) the
request actually occurred such that the proxy server polls occur slightly before actual future
application requests. This way, the proxy can pick up any changes in responses in time to be

served to the subsequent application request.

100

WO 2012/145544 PCT/US2012/034300
[00479] FIG. 22 depicts a data timing diagram 2200 showing cache management and

response taking into account the time-to-live (TTL) set for cache entries.

[00480] In one embodiment, cached response data in the local cache specifies the amount of

time cache entries can be stored in the local cache until it is deleted or removed.

[00481] The time when a response data in a given cache entry is to be removed can be
determined using the formula: <response data_cache time> + <TTL>, as shown at t = 3:00, the
response data is automatically removed after the TTL has elapsed due to the caching at step 2212
(e.g., in this example, 24 hours after the caching at step 2212). In general the time to live (TTL)
applies to the entire cache entry (e.g., including both the response data and any metadata, which
includes information regarding periodicity and information used to compute periodicity). In one
embodiment, the cached response data TTL is set to 24 hours by default or some other value
(e.g., 6 hours, 12 hours, 48 hours, etc.). The TTL may also be dynamically adjustable or
reconfigured by the admin/user and/or different on a case-by-case, device, application, network

provider, network conditions, operator, and/or user-specific basis.

[00482] FIG. 23 depicts a flow chart illustrating an example process for device resource

sharing when multiple devices attempt to access a same content source over a mobile network.

[00483] In process 2302, polls from multiple devices are detected. In general, the polls may
be received from mobile devices using a cellular or mobile network although other networks may
be used. Some of the multiple devices can include mobile devices and non-mobile devices. In
process 2304, it is determined that the polls from the multiple devices attempt to access a same
content source over a mobile network. For example, some of the mobile devices may be
accessing same websites (e.g., www.cnn.com, www.espn.com, etc.) via a browser or other
applications. Some of the mobile device may have the same applications installed (e.g.,
Facebook for Android, Facebook for iPhone, Yelp mobile application), the same games installed,

and these same applications are in use by the user or otherwise in operation and accessing data.

[00484] When the same content source being polled is detected, in process 2306, the content
source is polled in a single poll event. This is performed in lieu of the multiple devices each
polling same content source on its own, resulting in multiple polls over a network to the same
source, which may potentially result in the same response being sent to each of the multiple
devices, a process which requires more network resources. Rather, in one embodiment, the same
content source can be polled by the one device of the multiple devices. In process 2308, the

content response to the single poll event is received.

101

WO 2012/145544 PCT/US2012/034300
[00485] In process 2310, the content received in response to the single poll event of the one
same content source, is transmitted to one device of the multiple devices. In process 2312, the
other devices of the multiple devices can receive the content from the one device, for example,
over a non-cellular connection, such as a local area network (e.g., Wifi, near field wireless
communication, Bluetooth, etc.). In general, the other devices receive the content over a wireless

network though not necessarily.

[00486] Once the content or response has been provided to satisfy the current poll or request,
in process 2314, the content is stored in a local cache of the one device. The content can be
cached to satisfy future polls/requests of the one device on which the content is cached, or to
satisfy polls/requests of other devices. The content/response can be cached unconditionally or
the content/response can be cached in response to determining cacheability, as described in the
example processes of FIGS. 11-13. The cache and its ‘freshness’ can be managed, for example,
as described with further reference to the processes illustrated in the example flows of FIGS. 9-

10 and FIGS. 14-22.

[00487] In process 2316, the local cache of the one device is accessed by other devices
through a virtual cache pooled from local caches of each of the multiple devices. The virtual
cache can, for instance, be accessed by the devices through a local wireless network or in some
instances, a local wired network. By caching in a virtual cache accessible to multiple devices,
same content need not take up storage or other physical resources on multiple devices. In this
manner, the same content is cached once, or at one location in a virtual cache pool and other
devices which request the same content or poll the same source which would be satisfied by the
cached response, can simply access the virtual cache pool such that the request can be satisfied.
This is advantageous in conserving both network resources and physical resources on mobile

devices.

[00488] In one embodiment, the same content source is polled by a proxy server able to
communicate with the one device. The remote proxy server is able to poll the content source on
behalf of each of the multiple devices and further receive the content in response to the poll.
Once the response is received, the proxy server can transmit the content to the multiple devices.
The proxy server can also transmit the content to one of the multiple devices, and the remaining
devices can access or receive the content through shared resources (e.g., via virtual memory

network access, as further described in the process shown in the example of FIG. 26).

102

WO 2012/145544 PCT/US2012/034300

[00489] FIG. 24 depicts a flow chart illustrating an example process for device resource
sharing when determined that two mobile devices that are to receive the same content over a

mobile network also meet a criterion further illustrated in the flow charts of FIGS. 25A-B.

[00490] In process 2402, two mobile devices are detected to receive same content over a
mobile network. In process 2404, it is also detected that the two mobile devices also meet a
criteria. Examples of criteria are further illustrated in Flow A and Flow B shown in the examples
of FIGS. 25A-B and can include, by way of example but not limitation, a temporal criterion, a
spatial (e.g., geographical, location-based) criterion, and/or social criterion. When the criteria are
met, based on Flow A and/or Flow B, in process 2406, the content is sent to a first device of the

two mobile devices.

[00491] Temporal criteria can relate to timing or a timing parameter when sites are accessed
on a device, when applications are being used, or launched or otherwise in operation. For
example, the temporal criteria can be met when the two devices are accessing a same content
source or application server near at a same time or near a same time or when the two devices

have a same mobile application in operation at a same time or near a same time.

[00492] In process 2408, the content is received at one mobile device in response to a single
poll event of a content source or application server hosting the same content. The content source
or the application server can be polled by the one mobile device. The content source or the

application server can be, instead, polled by a proxy server remote from the one mobile device.

[00493] In process 2410, subsequent poll requests from the two mobile devices to the content
source or the application server are synchronized. In addition, in process 2412, the content from
the first device is transmitted to the second device via, for example, a peer-to-peer connection. In
one embodiment, the content is received at the one mobile device via a cellular connection and
the content is received at another one of the two mobile devices from the one mobile device via a

non-cellular connection

[00494] The criteria is detected via flow A and/or B of FIG. 25A and FIG. 25B. At Flow A,
in process 2502, it is detected that the two mobile devices can communicate via near field
wireless communication (e.g., RFID), Wifi or Bluetooth. In process 2504, it is detected that the
two mobile devices are serviced by a same cellular tower. In process 2506, it is detected that the
two mobile devices are connected to or have access to a same Wifi network. If one or more of
the above conditions are met, it can be determined that the two mobile devices are co-located

(e.g., spatial criteria).

103

WO 2012/145544 PCT/US2012/034300
[00495] At flow B, in process 2510, it is determined that users of the two devices share

common interest. In process 2512, it is determined that user of the two devices share common
friends in a social network accessed via the two mobile devices. In process 2512, it is
determined that the two devices have a same mobile application installed. In process 2514, it is
determined that, the two devices have a same mobile application and both are running in the
foreground. In process 2516, it is determined that the two devices have a same mobile
application and both are running in the background. If one or more of the situations are detected,

it can be determined that a criterion for device resource sharing has been met.

[00496] FIG. 26 depicts a flow chart illustrating an example process for using a virtual
memory network for caching in such a manner that device resources are shared and such that

wireless network resources can be conserved.

[00497] In process 2602, physical resources of multiple mobile devices are identified. In
process 2604, the virtual memory network is created from the physical resources. In one
embodiment, the multiple mobile devices from which the virtual memory network is created
share commonalities. The commonalities can include, for example, one or more of, a common
physical location, having common users, having common network operators, and having
common cellular network operators. The commonalities can also include one or more of,

common interests in the users of the multiple devices.

[00498] In one embodiment, the physical resources can be identified and the virtual resources
(e.g., memory, storage, cache, database, etc.) network created, by one of the multiple mobile
devices (e.g., a local proxy on a mobile device). In some embodiments, this is performed in part
or in whole by another server distinct from the mobile device such as a proxy server which can
communication with any one or all of the multiple mobile devices. In general, the physical
resources include, for example, non-volatile storage on the multiple mobile devices including
hard disk storage or flash memory. In general, the mobile devices are co-located or location in
proximity to one another such that memory or other resources in the virtual memory or other
virtual resource network is accessible by each device over a network (e.g., wireless network such

as Wifi, Bluetooth, near field communications network, home network, office network, etc.)

[00499] In addition, a state table and resource mapping tables (e.g., such as those shown in
the examples of FIGS. 1D-1F) can also be created to track memory mapping to various devices
and to track resource use/mapping, and further with respect to device state (e.g., location). A
state table can also be generated and maintained to determine and track the state of a given

device based on location, timing, social parameters, etc.
104

WO 2012/145544 PCT/US2012/034300

[00500] In process 2606, content for one mobile device of the multiple mobile devices is
stored in a portion of the virtual memory network. In process 2614, one mobile device accesses
the content stored in the virtual memory network through a local network. In addition, in process
2616, other mobile devices can also access the content stored in the virtual memory network
through a local network (e.g., wired or wireless). As such, content that is used or accessed by
multiple devices sharing a common virtual memory network is stored once rather than multiple

times on all of the devices that have requested it.

[00501] If the response/content is cacheable, for example, determined as described in the
processes in the examples flows of FIGS. 9-10, in process 2608, the response is further cached in
the virtual memory network. Thus, in process 2610, subsequent requests directed to the common
application server from any of the multiple mobile devices are satisfied using the cached
response in the virtual memory network. Caching in a shared resource environment not only
conserves network resources (e.g., devices need not send requests or polls over a cellular or
mobile network or other networks to if the previously received response is still valid), but also
physical resources (e.g., memory, hard disk, volatile, non-volatile memory, USB, flash, SD card,
etc.) on the device since if multiple devices can access each other’s storage, the same content

does not need to be repetitively stored on each of the devices to which it is relevant.

[00502] For example, if two users accessing Facebook, Linkedin, Twitter or other social
networks on their devices share same friends or have overlapping connections, any status update,
feed, content uploaded by the shared connections which would otherwise be sent to each device
to their respective friends, now can be send once and stored on the virtual resource/memory
network. The other devices can access these common updates via accessing the shared virtual

resource network.

[00503] In process 2612, the response is removed from the cache in the virtual memory
network when the response is no longer valid. Further description of how the cache validity is
managed is described, for example, with reference to the description for flows shown in FIGS.

14-22.

[00504] FIG. 27 depicts a flow chart illustrating an example process for using a distributed

proxy system to manage caching using a virtual memory network.

[00505] In process 2702, polls are detected from the multiple mobile devices in the virtual
memory network. In process 2704, it is determined that the polls are directed towards a common

application server. In process 2706, the polls directed towards the common application server are

105

WO 2012/145544 PCT/US2012/034300
synchronized, for example, if the polls occur within a time frame meeting a criterion (e.g.,
occurring at or around the same time, within milliseconds of one another, within 10’s of ms. of
one another, within seconds, 10’s of seconds, of one another, within minutes of one another, or

within hours of one another, etc.).

[00506] In process 2708, a single polling event is sent to the common application server. The
single polling event can be sent by one of the multiple mobile devices and/or single polling event
is sent by a remote proxy server in wireless communication with at least one of the multiple
mobile devices. In process 2710, a response received in response to the single polling event is
stored in the virtual memory network for access by the multiple devices. The content for the one

mobile device can be received over an IP connection or a mobile/cellular network.

[00507] In process 2712, a local proxy on the mobile device notifies the remote proxy of the
cache event. In process 2714, the common application server is monitored by a remote proxy
wirelessly coupled to a mobile device of the multiple mobile devices, to detect when the response
is no longer valid. In process 2716, the remote proxy notifies the local proxy on the mobile
device when the response is no longer valid In process 2718, the response is removed from the

cache in the virtual memory network when the response is no longer valid.

[00508] FIG. 28 depicts a flow chart illustrating an example process for a mobile device to

use the physical storage of another device for caching.
[00509] In process 2802, a request to a content source is detected at a mobile device.

[00510] In process 2804, a response or content to be cached, is received over a cellular or IP

network, at the mobile device.

[00511] If, in process 2806, a need for storage or lack of available storage is detected at the
mobile device; and/or, in process 2808, commonalities are detected between the mobile device
and the other device, then if so, in process 2810, the physical storage of the other device is
wirelessly accessed via a wireless network. The physical storage can generally include one or

more of, memory, disk storage, SD card storage, or flash storage.

[00512] In process 2812, the response or content for the mobile device is cached on the
physical storage of the other device. One embodiment further includes determining cacheability
of the response or the content by analyzing prior responses received for a request, based on one

or more processes illustrated in the examples of FIGS. 9-10.

106

WO 2012/145544 PCT/US2012/034300
[00513] In process 2814, subsequent requests at the mobile device which would be satisfied
by the content or the response that was cached are detected. In process 2816, the physical
storage of the other device is accessed via the wireless network. In process 2818, the cache is

accessed to satisfy the request.

[00514] FIG. 29 shows a diagrammatic representation of a machine in the example form of a
computer system within which a set of instructions, for causing the machine to perform any one

or more of the methodologies discussed herein, may be executed.

[00515] In alternative embodiments, the machine operates as a standalone device or may be
connected (e.g., networked) to other machines. In a networked deployment, the machine may
operate in the capacity of a server or a client machine in a client-server network environment, or

as a peer machine in a peer-to-peer (or distributed) network environment.

[00516] The machine may be a server computer, a client computer, a personal computer (PC),
a user device, a tablet PC, a laptop computer, a set-top box (STB), a personal digital assistant
(PDA), a cellular telephone, an iPhone, an iPad, a Blackberry, a processor, a telephone, a web
appliance, a network router, switch or bridge, a console, a hand-held console, a (hand-held)
gaming device, a music player, any portable, mobile, hand-held device, or any machine capable
of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that

machine.

[00517] While the machine-readable medium or machine-readable storage medium is shown
in an exemplary embodiment to be a single medium, the term “machine-readable medium” and
“machine-readable storage medium” should be taken to include a single medium or multiple
media (e.g., a centralized or distributed database and/or associated caches and servers) that store
the one or more sets of instructions. The term “machine-readable medium” and “machine-
readable storage medium” shall also be taken to include any medium that is capable of storing,
encoding or carrying a set of instructions for execution by the machine and that cause the
machine to perform any one or more of the methodologies of the presently disclosed technique

and innovation.

[00518] In general, the routines executed to implement the embodiments of the disclosure
may be implemented as part of an operating system or a specific application, component,

program, object, module or sequence of instructions referred to as “computer programs.” The
computer programs typically comprise one or more instructions set at various times in various

memory and storage devices in a computer that, when read and executed by one or more

107

WO 2012/145544 PCT/US2012/034300
processing units or processors in a computer, cause the computer to perform operations to

execute elements involving the various aspects of the disclosure.

[00519] Moreover, while embodiments have been described in the context of fully
functioning computers and computer systems, those skilled in the art will appreciate that the
various embodiments are capable of being distributed as a program product in a variety of forms,
and that the disclosure applies equally regardless of the particular type of machine or computer-

readable media used to actually effect the distribution.

[00520] Further examples of machine-readable storage media, machine-readable media, or
computer-readable (storage) media include but are not limited to recordable type media such as
volatile and non-volatile memory devices, floppy and other removable disks, hard disk drives,
optical disks (e.g., Compact Disk Read-Only Memory (CD ROMS), Digital Versatile Disks,
(DVDs), etc.), among others, and transmission type media such as digital and analog

communication links.

[00521] Unless the context clearly requires otherwise, throughout the description and the

2% ¢

claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive
sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including,
but not limited to.” As used herein, the terms “connected,” “coupled,” or any variant thereof,
means any connection or coupling, either direct or indirect, between two or more elements; the
coupling of connection between the elements can be physical, logical, or a combination thereof.

2% ¢

Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in
this application, shall refer to this application as a whole and not to any particular portions of this
application. Where the context permits, words in the above Detailed Description using the
singular or plural number may also include the plural or singular number respectively. The word
“or,” in reference to a list of two or more items, covers all of the following interpretations of the

word: any of the items in the list, all of the items in the list, and any combination of the items in

the list.

[00522] The above detailed description of embodiments of the disclosure is not intended to be
exhaustive or to limit the teachings to the precise form disclosed above. While specific
embodiments of, and examples for, the disclosure are described above for illustrative purposes,
various equivalent modifications are possible within the scope of the disclosure, as those skilled
in the relevant art will recognize. For example, while processes or blocks are presented in a
given order, alternative embodiments may perform routines having steps, or employ systems

having blocks, in a different order, and some processes or blocks may be deleted, moved, added,
108

WO 2012/145544 PCT/US2012/034300
subdivided, combined, and/or modified to provide alternative or sub-combinations. Each of
these processes or blocks may be implemented in a variety of different ways. Also, while
processes or blocks are at times shown as being performed in series, these processes or blocks
may instead be performed in parallel, or may be performed at different times. Further any
specific numbers noted herein are only examples: alternative implementations may employ

differing values or ranges.

[00523] The teachings of the disclosure provided herein can be applied to other systems, not
necessarily the system described above. The elements and acts of the various embodiments

described above can be combined to provide further embodiments.

[00524] Any patents and applications and other references noted above, including any that
may be listed in accompanying filing papers, are incorporated herein by reference. Aspects of
the disclosure can be modified, if necessary, to employ the systems, functions, and concepts of

the various references described above to provide yet further embodiments of the disclosure.

[00525] These and other changes can be made to the disclosure in light of the above Detailed
Description. While the above description describes certain embodiments of the disclosure, and
describes the best mode contemplated, no matter how detailed the above appears in text, the
teachings can be practiced in many ways. Details of the system may vary considerably in its
implementation details, while still being encompassed by the subject matter disclosed herein. As
noted above, particular terminology used when describing certain features or aspects of the
disclosure should not be taken to imply that the terminology is being redefined herein to be
restricted to any specific characteristics, features, or aspects of the disclosure with which that
terminology is associated. In general, the terms used in the following claims should not be
construed to limit the disclosure to the specific embodiments disclosed in the specification,
unless the above Detailed Description section explicitly defines such terms. Accordingly, the
actual scope of the disclosure encompasses not only the disclosed embodiments, but also all

equivalent ways of practicing or implementing the disclosure under the claims.

[00526] While certain aspects of the disclosure are presented below in certain claim forms,
the inventors contemplate the various aspects of the disclosure in any number of claim forms.
For example, while only one aspect of the disclosure is recited as a means-plus-function claim
under 35 U.S.C. § 112, 96, other aspects may likewise be embodied as a means-plus-function
claim, or in other forms, such as being embodied in a computer-readable medium. (Any claims

intended to be treated under 35 U.S.C. § 112, 96 will begin with the words “means for.”)

109

WO 2012/145544 PCT/US2012/034300
Accordingly, the applicant reserves the right to add additional claims after filing the application

to pursue such additional claim forms for other aspects of the disclosure.

110

WO 2012/145544 PCT/US2012/034300
Claims

What is claimed is:

1. A method for network resource conservation through device resource sharing, the
method, comprising:
detecting that multiple devices are attempting to access a same content source
over a mobile network;
wherein, the same content source is polled once in a single poll event;
transmitting content received in response to the single poll event of the one same

content source, to one device of the multiple devices.

2. The method of claim 1, wherein, the same content source is polled by the one device of

the multiple devices.

3. The method of claim 1, wherein, the same content source is polled by a proxy server able
to communicate with the one device; wherein, the proxy server receives the content in

response to the poll and transmits the content to the multiple devices.

4, The method of claim 1, wherein, other devices of the multiple devices receive the content

from the one device, over a non-cellular connection.

5. The method of claim 1, wherein, the multiple devices are co-located; wherein, the content
is stored in local cache of the one device, and is accessible to the other devices of the

multiple devices through a virtual cache pooled from local caches of the multiple devices.

6. A method for resource network resource conservation, the method, comprising:
detecting that two mobile devices to receive same content over a mobile network
meet a criteria;
wherein, the content is received at one mobile device of the two mobile devices in
response to a single poll event of a content source or application server hosting the same

content that is to be received by both of the two mobile devices.

7. The method of claim 6, further comprising, synchronizing subsequent poll requests from
the two mobile devices to the content source or the application server

111

10.

11.

12.

13.

14.

15.

16.

17.

18.

WO 2012/145544 PCT/US2012/034300

The method of claim 6, wherein, the content is received at the one mobile device via a
cellular connection; wherein, the content is received at another one of the two mobile

devices from the one mobile device via a non-cellular connection.

The method of claim 6, wherein, the content source or the application server is polled by

the one mobile device.

The method of claim 6, wherein, the content source or the application server is polled by

a proxy server remote from the one mobile device.

The method of claim 6, wherein, the criteria includes a temporal criterion.

The method of claim 11, wherein, the temporal criteria is met when the two devices are
accessing a same content source or application server near at a same time or near a same

time.

The method of claim 11, wherein, the temporal criteria is met when the two devices have

a same mobile application in operation at a same time or near a same time.

The method of claim 6, wherein, the criteria includes a spatial criterion.

The method of claim 6, wherein, the criteria includes a social criterion.

A method for resource sharing among mobile devices, the method, comprising:
sending the content to a first device of the two mobile devices, such that a second

device of the two mobile devices receives the content from the first device.

The method of claim 16, wherein, the content is sent to the first device, in response to
detecting that two mobile devices to receive same content over a mobile network are co-

located.

The method of claim 16, wherein, co-location includes a condition where the two mobile
devices are serviced by a same cellular tower.

112

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

WO 2012/145544 PCT/US2012/034300

The method of claim 16, wherein, co-location includes a condition where the two mobile

devices can communicate via near field wireless communication.

The method of claim 16, wherein, co-location includes a condition where the two mobile

devices are connected to or have access to a same Wifi network.

The method of claim 16, wherein, the content is transmitted from the first device to the

second device via a peer-to-peer connection.

The method of claim 16, wherein, the content is transmitted from the first device to the

second device via Bluetooth or near field wireless connection.

The method of claim 16, wherein, the content is sent to the first device, in response to

determining that users of the two devices share common interest.

The method of claim 16, wherein, the content is sent to the first device, in response to
determining that users of the two devices share common friends in a social network

accessed via the two mobile devices.

The method of claim 16, wherein, the content is sent to the first device, in response to

determining that the two devices have a same mobile application installed.

The method of claim 16, wherein, the content is sent to the first device, in response to
determining that the two devices have a same mobile application and both are running in

the foreground.

The method of claim 16, wherein, the content is sent to the first device, in response to
determining that the two devices have a same mobile application and both are running in

the background.

A system for resource sharing among mobile devices, the system, comprising;:
means for, sending the content to a first device of the two mobile devices, such

that a second device of the two mobile devices receives the content from the first device;
wherein the two mobile devices are serviced by a same cellular tower

113

WO 2012/145544 PCT/US2012/034300

29. The system of claim 28, wherein, the content is transmitted from the first device to the

second device via a non-cellular connection.

30. The system of claim 28, wherein, the content is transmitted from the first device to the

second device via near field wireless connection.

114

PCT/US2012/034300

WO 2012/145544

1/43

VI ‘OIAd

(s)ienieg (s)ionteg
i JuejLOY) (s)1enieg py
uodno)-s o
oONT\ m_omr.\ <ONT\
ayoen
JEVNELS
R | so
Gel
G8l PIIINEIN]
ayoen
[eoo]
/
SEVNETS
/ 1SOH
aoepaU| /
Jesn

v0l
49"

\I\

00l

SBJIAISS
Jayjo ‘syiomjsu [e100s

Jauesul ‘sjeyod

Buibessa|p
Jayjo .w_\/__\/_ .w_\/_w

[lew3 [euosisd
[lew3 sjelodion

suodno) oluoJjo8|3

jusjuod |euoiowold
JuswasIUBAPY

lapinoid jusjuod
.\. Janiag uonedlddy
oLl

WO 2012/145544

2/43

App Server/

199

|

I Optional Caching
: Proxy Server
|

Content Provider

I—110

Network
108

PCT/US2012/034300

I120A

Ad Server(s)

f 120B
Promotional
Content
Server(s)
_f 120C
e-Coupon
Server(s)

Host Server

Proxy Server
125

Server Cache
135

I100

Network

106

Local
Proxy
175

FIG. 1B

N

Short Message
Service Center
12

PCT/US2012/034300

WO 2012/145544

3/43

Ncol

(uoneoo) ‘sieysweled
aseqejep ‘soujus
aseqelep ‘Alows|y)
N 821A8(Qg

‘)8
‘yloojenig

II "OIA

A

(uoneoo) ‘sieysweled
aseqejep ‘solus
aseqelep ‘Alows|y)
Z 92I1A8(]

I4IM

A

0col

A

(uoneoo) ‘sieysweled
aseqejep ‘solus
aseqelep ‘Alows|y)
X 821A8(

veol

(uoneoo) ‘sieysweled
aseqejep ‘solus
aseqelep ‘Alows|y)
A 92IA8(g

gc0l

(feuondo)

001
(1)) sonieg)SOH

WO 2012/145544

PCT/US2012/034300

4/43

Device X State Profile 192

State Profile 1

Location 1-Living room

State Profile 2

Location 2-Home office

State Profile 3

Location 3-Office in Palo Alto

State Profile 4

Starbucks on Main St.

State Profile 5

Location 5-San Francisco Intl. Airport

State Profile 6

Location 6-Office in San Francisco

FIG. 1D

WO 2012/145544 PCT/US2012/034300

5/43

Device X Virtual Memory System 194

State Profile 1 Device x (Memory location a-b)
Device 2 (Memory location a-e)

State Profile 2 Device x (Memory location e-g)

Device 2 (Memory location f-h)
Device 3 (Memory location c-r)

State Profile 3 Device x (Memory location e-g)
Device 5 (Memory location f-h)

State Profile 4 Device x (Memory location c-e)
Device 6 (Memory location a-c)
Device 7 (Memory location a-w)

FIG. IE

Device X Virtual Database System 196

State Profile 1 Device x (Database location a-d; Parameter set A)
Device 2 (Database location a-e; Parameter set A)

State Profile 2 Device x (Database location a-g; Parameter set E)

Device 2 (Database location a-h; Parameter set B)
Device 3 (Database location e-r; Parameter set A)

State Profile 3 Device x (Database location c-g; Parameter set A)
Device 5 (Database location f-h; Parameter set C)

State Profile 4 Device x (Database location c-e; Parameter set B)
Device 6 (Database location d-k; Parameter set D)
Device 7 (Database location t-n; Parameter set B)

FIG. IF

PCT/US2012/034300

WO 2012/145544

6/43

Ve ‘OIA

¥0¢
wolsAg
Bunesad

902
IdV X38juo)

d/1 Jenjied

/1 14IM

d/1 SWNS

0C ©oelalu| JJomisN

GIZ eInpolN AYAIDY Jasn

574
sulbu uoneznuoud

BE¢ Jojessusn
a[ljoid uopeslddy

P4
lojoe)a ulened

9¢z Jojosla(Joiaeysg uoleolddy

gee
JabBeuely uonoesuel | asenbay

Z9¢
JabBeuepy jesquesH

99¢
Jajjosjuod olpey

0¢ Jabeuely uoiosuuo)

1G¢
s|npoy Buiyoreg

9¢c
SINPON JuswubIy

GGz euibug Buideys oiyel |

8¥c
3|Npo [020]01d uonedlddy

GZ¢ Idv Axoid Tyz Jebeuep Aaljod Bulyoed
Gl¢c — — ——
Axoid [eo0] 0cc 0lc G8¢
uoljeolddy uoneolddy ayoe)n

9|IqOJ\ 81emy-Axold

8|Iqoy 8iemeun-Axold

\I\

0G¢ &dlAasQ allIqoiN

PCT/US2012/034300

WO 2012/145544

7143

qac¢ ‘OIAd

T2 euibug uoneziuoud

ve

08¢¢
Jojoslag Bununy Jjod BuoT

Aojsoday
8|ljoid

B6EC
Jayoel] [ealsju] Aejeg esuodsay

uonesi|ddy

Te Jojelsusn) a|joid uoneslddy

qsee
aulbug Bupjoel] ssuodsayisanbay

7S¢ Jojoslag wened

B8EC 10109)9(] Jlod Buo

8E€¢ 10J0918(leAlsiu] Jlod

9¢eC

Jo)09)8(JoIneyag uonedlddy

[Se] 74
JazAleuy ssuodsay

74
Ja|npayog ssuodsay

B2 oeuibug

uoIoB|8S 108UU0YD JO BYoED

09%¢
JazAleuy 1senbay

qa9v¢
JojoIpald Jusjuo)

e ¢
Jojolpald Buiwi |

9%z oulbug uoisioag ssausjendoliddy syoe)

(574
Aojsoday

Aoljod ayoen

uoneslddy

102
Jabeuep

Isipoelg

BG0C

J8)Id ITdn 1o al

S0C

eypz Jobeue LL

sulbug dn-yoo1 syoen

8¥c d/¥z suibuz | [e/pyg suibu3
8|Npo swisnlpy sjepdn
[020}0.d SwL| sInpayos
uoneoliddy 7¥Z J0JeIsusD) ||NPsydS ||od 5

¥Z Joyepljeau] syoeo) [eo0T

T0¢ Jojelsusn) ejepels|y

Se Jebeuepy Aoljod Buiyoen

g8c
ayoen

PCT/US2012/034300

WO 2012/145544

8/43

I¢ OIA

X7 8¢cC
auibug uonezijuoud 1019818 [eABYU] Jlod
€T [35H4 434
Jojosja JojoslaQ 8|NpPon
=57 Aioysoday] Jajoweled Jsjaweled uoloelIxg
oloId 554 ajeq/awiL wopuey uisped
uoneonddy Jojelausn) 9|ijold uoneolddy i
QCc 10108)9(] Joineyag uoleolddy
T
I
TYZ Molsoday
i 0 | | B | | | ofEon
- ljeolddy Js)aweled ayeq/owl| Js)sweled wopuey UOIOBIXT
3|NPon === uisljed
K1onp oUoen €Zc lojoa)e(Jejpweled jesjeq ayoed
Tee sulbug uonnjosay Jesjaq ayoen
67 174
auiBu3 uonos|eg aulbu3g uaisioag
Josuu0) Jo syoed ssausjeudoiddy syoe)
%4 21T Js|pueH
Jsjaweled
suibu3 yseH Jesjaq ayoen
8ve Ive e —
8|NPOI\ [020}0id Jojessusn) JojepljeAu| e
uoneoiddy a|npayos JIod ayoe”) [es0 J8Z||ewION Jolijusp|
[$574

JaBeuey Aoljod Buiyoen

PCT/US2012/034300

WO 2012/145544

9/43

ac OlIA

oujel L oljel L
soueBUB)UIEN aAljoBIB)U|

Pive Jezuobejes oel] uoneolddy

qlyc
auibug

uolpeleqg
Ayeonuo swil

612

Joyosye(ybipioeg

4 qGle
JaBeuep auibug EGle

Jayoel]
uoneloadxg uoIdIPSId
88N Aoy Jasn Aoy Jasn

TTZ aInpoN AnAnoy Jasn

punoibyoeg punolifbaio4 N 74
— auibug
uolnjezyjloud
Sl Jozuobaje) sjels uoneolddy
QCZ 10109)8(] Joiaeyag uoneolddy
pPlGe olGe
Jojos[es aulbug uonos|eg

Jul0d SS90y

[sUUBYD SSB00Y

ql6c
Jaljloadg s1ey ejeq

ELGC
10108|9G piepue)s
uonelauss) SSaalIp

picr4 9Gc
s|npojy Buiyoreg s|npoy Juswubiy

GGZ suibug buideys oujel

TGZ »ulbug uonos|eg uonelnbiuo) YIomsN

PCT/US2012/034300

WO 2012/145544

10/43

Ve OIA

86€
Jabeuep

JeaqyesH

16€ 96€
Js|josuo) Jsjjo)uoD
1M1 US| olpey

6¢ Jobeuepy uolposuuo)

9c¢g
3INPON
[000)0Id
uoneslddy

GGe Jobeuepy
Aoljod Buiyoen

91¢
Aojisoday

Japinold
90IAISS YIOMIBN

T TN

213
Aioysoday

uoneuwlou| 821A8(

LIE a|npo Loﬁ BAU| BlE \\}
sinpopy Buiyores INPON JOJepIEAU| EJEeQ N~
— Z9€ sInpoiN V€ 10399318Q
9/¢ ssaualemy Ajuold eleq MaN \\%}
[000}01d [0J3U0D) Kiopsodey
90¢€ S|Npo|\ ssaudsiemy L eje Em. JUBIU0Y
S7E suibug Jolneyeg/Ainioy GE auibu3 PEIOI
Gl¢ sul 5990V dLLH pue uonosuuU0D)
Buideys oiyes | GO Js|j0)u0) Axoid |
Gce
JanIsg Axold
d/1 Jenied 4/114IM _ 4/ SNS _
80E sooeUSslU| YIOMISN
T
00¢
JaAIag 1SOH |
0L€ 00¢ce d0ct Y0zZE
Japlnold 8aIAIeg (s)ienteg (s)Hemnisg JusuoD (s)1ons
JiaA1eg uoneolddy uodnon-3 [euonjowold S PV

gee
ayoen

Janleg

PCT/US2012/034300

WO 2012/145544

11/43

qg¢ OIAd

p8GE

19¢€
JazAleuy ssuodsey

auibug jusunsnlpy swij

08G¢e
sulbug s1epdn s|Npsyos

(453
Jojosja(Jusjuo)
MaN Jo pajepdn

qgctc Jobeuepy
H10j08)8(1senbay |[od Buo

9G¢
3|NpoN [090101d uonediddy

BQGE

Jorejnwig Buiwi] 1soH

GO¢E
suIbug dn-yoo syoed

[3
JabBeuep s|npayos |lod

15¢
auibug Bulojiuoly 821N0S JUSIUOY

€0¢€
lojessusn) ejepels|y

Gcg
JaBeuey Aoljod Buiyoen

gee
ayoe) JanIeg

PCT/US2012/034300

WO 2012/145544

12/43

J& OIA

6GE 9G¢
Jojosja Jusjuo)) 3|NPon
Mo Jo pajepdn [020]01d uonediddy

8GE 213 (3493
Jabeuep a|npoy Bujoes] a|npo
8|NPsYoS ||od uisped Jsyiuspl JBUIPOIA JBliIusp]
I8¢

auibug Buuojuop
92JN0S JUBU0D

413

JaBeuepy soinog Bunesjaq sayoen

GGe
Jebeuepy Aoljod Buiyoen

PCT/US2012/034300

WO 2012/145544

13/43

as did

oujel L
soueUSB)UIEN

oljel L
aAljoBIB)U|

qiye
— suibug uonosiag

PI¥E Jszuobsied oyjel|

Ayjeonuo swil

punoibyoeg

punolifbaio4

elLye
— auibug

3I7E Joziobeen sjelg uoneolddy

uoneziLold

OC¢ JozAjeuy oljel |

1€

s|npojy Buiyoreg

8¢
s|NpoJ Juswubiy

GJE eulbuz Buideys oujes]

PCT/US2012/034300

WO 2012/145544

14/43

Vi ‘OIAd

¥0¢
wolsAg
Bunesad

902
IdV X38juo)

d/1 Jenjied

/1 14IM

d/1 SWNS

0C ©oelalu| JJomisN

10%

s|npoly Buiyoe) [ernog

GIZ eInpolN AYAIDY Jasn

574
sulbu uoneznuoud

BE¢ Jojessusn
a[ljoid uopeslddy

P4
lojoe)a ulened

9¢z Jojosla(Joiaeysg uoleolddy

gee
JabBeuely uonoesuel | asenbay

Z9¢
JabBeuepy jesquesH

99¢
Jajjosjuod olpey

0¢ Jabeuely uoiosuuo)

1G¢
s|npoy Buiyoreg

9¢c
SINPON JuswubIy

GGz euibug Buideys oiyel |

8¥c
3|Npo [020]01d uonedlddy

GZ¢ Idv Axoid Tyz Jebeuep Aaljod Bulyoed
Gl¢c — — ——
Axoid [eo0] 0cc 0lc G8¢
uoljeolddy uoneolddy ayoe)n

9|IqOJ\ 81emy-Axold

8|Iqoy 8iemeun-Axold

\I\

0G¢ &dlAasQ allIqoiN

PCT/US2012/034300

WO 2012/145544

15/43

a7y ‘OIAd

167
Aowsw paleys

307 Jebeuew

$82IN0Sal [enMIA

707 Jebeuew

(1572
J8ZIUoIYDUAS |jod

157
Joisanbau [j0d

aseqejep painguisiq

90%

(157
loys)ep a)eIg

10108)8p UOIEDOJ-085)

GOV Jonsual

uonewJoul [e1osg

TOF ainpojy Buiyoe) [e1oos

Ve OIA

PCT/US2012/034300

16/43

91¢
Aojisoday
— — _— 9G¢ Jlapinoid
B%%cmm_\/_ Lm__%mmwoo Lm__wmmwoo SINPON S0IMBS YI0MIBN
JeaquesH | |14imaaulayl olpey |09030.d S
uonjeolddy 10G
S[NPO
GBE Jabeuey uonosuuo) GGe Jobeuepy Buiyoe) [eroos
T T
Aoljod Buiyoen =TT
Aioysoday
_ _ uoljewlou| ao1asQ
\\}

77 89¢€ ~
LLE s|npoyy Jojepljeau] eleq

s|npojy Buiyoreg

— Z9€ ®Inpon — - \\%]
9.¢ ssaualemy Ajold 7€ J0)0819(TG
[090]01d [03U0D ejeqg MaN auibug Aoysoday
90¢ 9|NpPOJN SSouslemy Bunyoed | E]JEPEISIA JUBJUOD
TIT suibug loineyag/Ainoy SHE suIbu uopeoyjddy PUE UOI}O8ULOD

Buideys oiyel | TOF Jojjonuo)) Axoid SS90V d11H LT
N~ (53
\I\ ayoen

Gee BEVNETS
Janieg Axold

3/l feInijed /1 14 || 4/l SWS _

0C ooelSIU| JJOMIBN

WO 2012/145544

\i\

0o€
Janles JsoH

0l€ 00¢s d0¢s Y0z%
JapInoId 82IAIeS (s)isnieg (s)JoA18G JUBIUOYD)

jienieg uopeonddy [| uodnoo-3 [euonowold (shienies py

PCT/US2012/034300

WO 2012/145544

17/43

938G
siojoweled

paleys

qas OIAd

b4
JaziuoiyouAs Jjod

T2G Jebeuew

1S

aje]s uoneolddy

Tig
Jabeuew

aje)s 90IAe(

10J08)8p UoNEeI0|F0D

1€8

Jayoel] Jsala)ul [e100S

T0G Jobeuew

Aowsw [enuIp

T0G eInpoly Buiyoe) [eroos

PCT/US2012/034300

WO 2012/145544

18/43

V9 ‘OIA
» osuodsal Jonleq €

y

asuodsal

ayoed woly
asuodsal wio

asuodsal ayoen [lod 1s8nbay asuodsal aAI90aYy

Bunepijea wio4

0€9 019

8|geayoed
asuodsal 308y

asuodsal aAI90aYy }senbal pusg

s|gesyoeo

os|e} 1senbai yosaynH

}senbal pusg

919 [punoyiou]

JlojepljeA sUlejuoo

1senbail yosyD pifea Anus 3osy)

ayoeo dnyooT T4N 8zijewlioN

8¢9

1senbal aAle0ay

c09

PCT/US2012/034300

WO 2012/145544

19/43

q9 ‘OIA

!

¥8¥|Axoi1d gapn Buiyoen w

i
.

Dl paljsiies waj_uwﬁ_ "

9/ asuodsay pabuey)

1% e1eq JoNUo

99¥ ssuodssy sweg
v9v Ejeq Jojuon <

UOIJEeDIHIJON 8jepljeAu|

¢/l ayoe) |edo w

A
y o

1 7A%

Z8Y 1senbay
elje psaixold

»

D14 paljsiies ”_wwj_uwﬁ_

89¥ }senbay
ele psaixold

Z9¥ 1senbay
eleq JOJIUOIN

h 4

8G{ asuodsay

ejeq psaixold

h 4

9G¥ Isenbay
ejeq psaixold

¥G¥ asuodsay ejeq

h 4

261 1senbay eleq
G6¥ Jopinoid — GI Axoud 5oV GG 196pIM
Jusjuon/isaieg ddy 8 J9MSS JSOH Buiyoen Axoid [e007] U9310g sWOoH
N\ J N\ J
Y Y
0Ly 0Sv
opIS-1oAIag 22IA8(9|IqoN
g J
Y
09v

wajlsAg

Axold painquisia

WO 2012/145544 PCT/US2012/034300

20/43

Traffic Category/Application Category 700
Interactive traffic Background traffic
User waiting for response User not waiting for response
Application in foreground Application in background
Backlight on Backlight off
FIG. 7

Content Category 800

High priority Low priority

Time critical Non-time critical

FIG. 8

PCT/US2012/034300

WO 2012/145544

21/43

6 ‘OIA

986 Japinoidiianies
uoneoldde sy} woJ) paysies jsanbay

7396 osuodsau
ay) spuss pue wol [od seAaleoey

296 Japiaoid
Jiontas uoneoldde sy 0} |jod By} spJemio) pue
alge|ieAe s| AJjue aUoeDd pljeA ou Jey) saulslaq

86 Jopiaoid Jusyuooyieales uoneoljdde sjjod

876 Axoud Buiyoeo
10 8YDBD JOAISS BY) WOJ) payshes 1sanbay

976 Axoid [eoo| o 0} asuodsal
8y} sSpuas pue asuodsal mau ay} Jo} }senbal sanleooy

V16
BUOBD JaAISS 8U)) Lo} 8sUodsal sy} saasL)al pue
a|qe|ieAe sI Aius syoeo pijeA ou jey) saulwlsiag

76 Jopiaoid Jusiuooyieales uoneoijdde sjjod

076 soelus ayoed JUeAS|al SalepleAUl ‘a|de|leA.
sI ejep pabueyo o MaU 1By} UOBOIIOU SBAIS0SY

396 Axoid Buyoeo sy} Jo
aUoed JaAIaS 8y} Ul palo)s asuodsal mau Jo pabueys

996 Axoud
[e20| 8U} saljou ‘asuodsal mau Jo pabueyd sjosjeq

¥96 asuodsal sy} spuss pue
JaAJ8s }soy wody [jod saAleday

Z96 a|npayos Buyjjod syy uo
paseq uoneoidde sy} s||nd ‘paalesal ssuodsal sweg

096 asuodsal sy} spuss pue
JaAJ8s }soy wody [jod saAleday

§G6 1senbal ay) 0) asuodsal
By} Jojiuow 0} Jeplroidiiaalas uoneolddy sy s|jod

9G6 o|npayos Buyjjod
e pue pajjod aq 0} Jepiroid/ianies uoneoldde ayy
Jo uonesynuapl ue Buipnoul dnjas ayoed By} SaAle0ayY

F56 Joniss 1soy sy 0} dnjes ayoeo sy} spuss

ZG6 Janlas 1soy oy} Joy ajnpayos Buljjod e dn sjes
pue uoneoldde sy} jo Aousnba.ly Buijjod syoel]

056 Jopiaolidyiaales uoneoidde ayy wouy
1senbal oy} Ajsnes 0} asuodsal sy} saAledey

BF6 1senbau
1UB.1IND 8y} Ajsnies o) asuodsal
e sopirod pue uoneoldde
ay) wouj 1senbal [jod 8y} SeAls0ay

16 201n0s aU} 0} papiemio) ysanbail jjod

¥¥6 buiyoeo
Joy @ounos pejjod ey dnjes o) sepioap pue
a|ge|leABUN S| JUBIUOD BYIEBD Jeyj) sjos)ep AXold

276 peydadiayul jjod

0F6 Jepiaoidyiaales uoneoijdde sjjod

BCH Aus ayoeo
e wolj jod 8y} 0} esuodsal e sanle00y

9¢6 |lod ey Ajsies 0} asuodsal e
S9ABLIBJ SNY) PUE pljeA S| pue jusiuoo pajjod sy
0} 8|ge|leAR S| JUSJUOD BUOED Jey} S1oejep Axold

€6 peydaciayul jjod

€6 Jopiroid/ienles uoneoldde sjjod

G66 19PIAOId JUBJUOD)
J[1oA19S uonesddy

G716 Axoud Buiyosed 10 ST oyoen IoAIaS
G86 19A19S JSOH

§96 Axoud [e20]

GG6 JobBpip/uonesyddy ajiqoy

PCT/US2012/034300

WO 2012/145544

22/43

01 ‘OIA

8801 Joplroidiientas
uoneoldde sy} woJ) paysies 1sanbay

9801 esuodsal sy}
spuss pue wo.j [jod seAleoay

7301 Jopiaoidiianias uonesidde ayy 0} |jod a8y splemio)
pue a|ge|ieae s Aus ayoed plieA OU Jey} saulllsla(g

Z80r Jepiaoid
JUBlU0Y/IeAIBs uoneoldde sjjod

0801 Axoud Buiyoes Jo syoed
JBAISS BU) WOl palsles }senbey

8701 Axoud |eoo| ayy 0} asuodsald
ay) spuas pue asuodsas mau ay) 1o} }sanba. seAle0ey

9701 8Yoe JaAlas aU) Woly ssuodsal auf) seasLal
pue s|ge|ieae sI Aus 8yoeod pljeA ou Jey) saullleg

¥Z0T Jepiroid
JuUBlU0o/IeAIBs uoneoldde sjjod

ZZOT SoLius ayoeo JUBAS|a. SBlepljeAUl ‘B|ge[ieAB
sI ejep pabueyo o MaU 1By} UOBOIIOU SBAIS0SY

0Z07 Axoud Buiyoeo sy}
10 BYOED JOAISS 8} Ul palo}s asuodsal mau Jo pabueyn

8901 Axoud
|eo0| 8y} sayou ‘esuodsal mau Jo pabueyo sjoseq

9901 esuodsal sy} spuss pue
JoAIas 1soy Lol} [jod saAle0ey

7907 eInpayos buijjod syy
uo paseq uonesidde ay} s||nd ‘peAledal esuodsal sulesg

Z901 esuodsal sy} spuss pue
JoAIas 1soy Lol} [jod saAle0ey

0901 1senbal sy} 0) esuodsa.
ay} Joyuow o) Japiroidiieales uoneolddy au) sjjod

8G01 8Inpayos
puljjod e pue pajjod aq 0} Japiroidiianles uoneoldde sy}
Jo uoneoynuapl ue Buipnioul dnjas ayoed By} SaAIedaY

9601
Jounuspl 8} JO UOISISA PaZI[EWIoU & J0 Jaluspl sy}
Buipnjoul ‘JsAles 1soy ay) 0} dnjas 8yoeo 8y} spusg

FSOT [eAslIal pue UOREOIIIUSPI 8Inyny Jo}
asuodsa. paAlsoal BU) UM UONBIOOSSE Ul Jaluspl 8y}
O UOISIBA PaZI[ewlou e a10}s pue asuodsal sl syoed

2SO0t Jepiaoid
Jientas uoneoldde ayy wouy 1sanbal
ay) Ajsnes o) asuodsal ay) San0aY

0G01 1senbau
Jua.LInD 8y} Ajsnes 0} asuodsal
e sopirod pue uoneoidde ayy
wiod} 1senbal [jod 8y} soAleday

8ROl ©04n0s 8y} 0} papJemio} issnbal |jod

O¥01 Jenes 3soy 8y Jo} ajnpayos Buljjod e
dn s)es pue uoneoidde sy} jo Aousnbauy Buljjod syoen
pue }senba. au) JO Jaunuapl ue Jo uisled e sjoesx3

70T Buiyoeo Joj sainos pajjod syy dnyes 0} sepiosp
pue s|ge|ieABUN S| JUSIUOD BOED JBlj) S}0818p AX0ld

Z¥0t Jepiaoud
Jienlas sy} Ag paiojdwe si wsiueyoswl Bunesiep
ayoed e jey) sauiwelep Axold pue pajdeolsiul |jod

OFO0l Jepiroidiieales uoneoijdde sjjod

8c0l Ahus ayoeo
e wouy} jod 8y} 0} osuodsal & saAle0y

9e0l llod sy Ajshes
0] 9suodsal B aA8L}8] 0] $BPIDBP pue JUsiu0d pajjod
8} 10} 8|ge|IeA. SI JUSIUOD 8YoBD ey s1081ep AXold

70t Jepiaoud
Jienlas sy} Ag patojdwe si wsiueyoswl Bunesiep
ayoed e jey) sauiwelep Axold pue pajdeolsiul |jod

ZE0l Jepiraoidiieales uoneolidde sjjod

G601 19plroid Jusjuod
[MaAeg uoneslddy

G201 Axoud Buiyoen uo TEOJ 2yoed IoAIaS
G801} J9AI9S JSOH

G901 Axoid |ed0

GGo1
Jobpip/uoneaiddy ajiqoy

WO 2012/145544

PCT/US2012/034300

23/43

1102

Collect information about a request and information about the
response received for the request <

y

Use information about the
request initiated at the mobile
device 1104

Use information about the
response received for the
request 1106

1110

Response not cached

1112

Store the response in the cache as a cache
entry including metadata having additional
information regarding caching of the response

h 4

Detect a subsequent request
1114

h 4

Perform cache look-up in the local
cache to identify the cache entry to
be used in responding to the
subsequent request 1116

h 4

Serve the response from the cache
to satisfy the subsequent request
1118

Does the
fesponse stored in the
cache needs to be
updated?
1120

Yes

Invalidate the response stored
in the cache of the mobile
device or remove the response
from the cache
1122

FIG. 11

PCT/US2012/034300

WO 2012/145544

24/43

cl

OIA

Ssecl

payoro aq Ueod esuodsay

ON
ON

8y} ul pasn
Buipoous
Jajsuely

S|

A

A

Gé8cl
A payoeo jou asuodsay
A A
cecl °N
£Iusjuod
olWeUAp
ulejuoo mmm_w
s|qeayoed ON
sop \ B Pasoxe azis
asuodsal sy} T
s90(8¢cl
SaA $olqesyoe)
veel
Apoq Z22] esuodsal 0cct
asuodsal oy} Jo ez1s apoo sniels
azhjeuy ay) suILLsIeQ oy} Ayusp
Y A A
90c1 Isenbai ay) Joj paalaoal so
asuodsa. ay} Y)Im pajeIooSSE UONBULIOMUI SONiSIIajorIBYD asuodsal azAjeuy A

c0cl

oneunsap paysioe|

SOA

ON

¢ paynusp!
Ayoipolied

8lcl

SOA

ON

9lcl
£9zls

a|qeayoeo

e po9IXe 9ZIS

SOA

ON

vIeh
¢alqeayoey

clcl 0lch
Jual|o awes ayy Aq pajelssuab jsenbal oy
s}sanbal Jayjo pue jsenbal - 80¢1
oy} Usamjaq UoleULIoI 0 8z1s 3y} poylawl 1senba.
Ajoipouiad sulwlsleq suluwlisieg ayy Ajuapj
A A A
¥0cl
}sanbal sy} yym pajeIoOSSE UONBWIOLUI SOlISII@)oBIRYD Jsanbal azhjeuy
A

ON B 0} pajoallp Jsenbal

ay3 s|

ON

PCT/US2012/034300

WO 2012/145544

25/43

&1 °OIA

¢ sesuodsal s}
0 OM]]SE3)| e JO JuUsjuod
ay} ul Ajuejiwis aiay} si Jo
awes ay} sasuodsa

y

GeEl

Gael

payoeo jou ssuodsay

payoeD ag Ueod JUSJU0D ssuodsay

A

A

clel
sesuodsal

a1 YlIM pajeloosse
$8p02 sNje)s sulwex]

oLel
sasuodsal

8y Jo salpoq ssuodsal
10 senjeA ysey sulwexy

A

A

v0El

sesuodsal 8y} Jo Jusjuoo ul AJjgelesds)
10818p 0] JUBI[D BY) Ag pelelsush
s)senbal 10} paAledsl sesuodsal yoel |

/T

SOA

80¢L
LIDAD|
20uels|0] e ulylim |jel
S|leAlajul }senba)
od

¢sisenbal ayj JO
Buiwn syy ul susened
s|gelolpaid alay

coel

sisenbal ayj Jo Ayoipouad
108)18p 0} Jusl 8y} Ag pajelausb sjsenbal yoel]

WO 2012/145544

26/43

Track requests generated by a client or

directed to a host at the mobile device
to detect periodicity of the requests

PCT/US2012/034300

Monitor the host at a rate
to verify relevance or

>

rate at which the
given host is

validity of the cache entry
1414

A 4 y
Serve the response from the cache
to satisfy a subsequent request

1416

monitored to verify
relevance or validity

1402
y y
. Determine that the request Determine that the request
intervals between the two or more .
intervals between the two or more
requests are the same or e
. requests fall within a tolerance level
approximately the same 1406
1404 E—
y y
Receive the response received for . .
. e Determine a rate to monitor a host,
the requests for which periodicity is .
< > from the request intervals
detected 1410
1408 —
y
Cache a response as a cache entry A 4 _
in a cache of the mobile device Detect change in request
1412 intervals for requests
generated by the client
’ Set or update the

1422

y
Compute a different rate
based on the change in

of the cache entry [~
1420

FIG. 14

request intervals

1424

PCT/US2012/034300

WO 2012/145544

27/43

ST °OIA

¥261 eyep pebueyo Jo mau 8y} Jo Buipuss ey sseiddng

O¢Gl ©0IA8p 3jiqow 8y) 0] elep UQ@CM:O 10 mau 8y} pusg

A

W

W

W

ON

SOA

ccsl
éeyep ayy
ul papiaoad
8q pjnoMm jeLy
asuodsal e o}
Buiiem Jasn

SOA

ON

0csl
¢|BdNld swi
ejep sy}
S|

ON

SOA

8ISt
¢Aoud
ybiy eyep
8y} s|

9lsl
épunoibyoeq
ay} ul Buiuunu
uonesldde
a8} s

SOA

ON

ylsl
£201Aap
8|lqow 8y}
uo punoubaloy
ay) ul Buiuuny
uonesldde

ON

SOA

clsl
¢,801A8p

sliqowl a3
uo Jash e yym
Buioelsiul eye)s
aAIoE Ue Ul
uonesldde

elep pabueyo 1o mau sy Jo AYjeonLo awi Jo Ajloud suluueieq

OoN ON ON
y A y A y A
oLsl
ejep ay) azuobaje)
A
80S1

A

pejoallp i ejep pabueyo o mau sy} yolym o} uonieoldde ue Ajjusp)

ON ON
y A y A
90S1
uoneoldde ayy azuobayen
A
¥0Sl

A

Z0Gl ©0lA8p 9]iqow e 0} Juas ag 0} a|ge|ieAe eyep pabueyo Jo mau josle(

WO 2012/145544 PCT/US2012/034300

28/43
Wait until for a time period to Wait until there is additional
elapse 1602 data to be sent 1604
A 4 A 4

Transmit the new or changed data 1606

FIG. 164

PCT/US2012/034300

WO 2012/145544

29/43

qa91 ‘OId

0291 sjulod sseooe 8l9l
BuiApoads Agq uoneinbijuoo a]el ejep Ag uoneinbijuoo
}Jomiau e 108]9S }Jomiau e 108]9S
Y Y

— 0c91
A_N.Wmv (HOV4)
lpuULBLD |suueyo
pejealpaq SSa0lde
plemio
A A
gr9r edhy

[sUUBYD SSB0E. JO 108[8S

A

c9l vcol
1917 o€
A A
9291 44
311 96°¢/9¢
A A

Y191 plepuels
$S8[alIM JO uonelsush 1088

A

}JOMIBU SSB[BIIM BU) Ul JOAISS JSOY B pue 82IAsp SIqow & Usamlaq olel) Buipuss ul asn Joj uoijeinbijuod ylomjsu e 108[8S

clol

0191
JaAISS 1SOY 8Y) puE 82IASP S]IqoW 8Y) Usamiad Juss aq
0) Dljjel) 8y Ul pauUIEluOD elep Jo AJIjedilio swWi) e sulwis}eq

woJ} payeulBlio Jo o) pajoslip si dljel) YoIym Jo) 82IASp
sllgow ay) uo uonesiidde ue Jo sjels AJIANOE UE J08)8(]

8091

PCT/US2012/034300

WO 2012/145544

30/43

91 ‘OIA

ol
82IASD B|Igow 8y}
woJ} pue 0y olel) Buissed ul
8SN 10J }IOM)BU SSB[BIIM BU) Ul
uonenBiuoo YIoMmlau e 109|9S

091
ybnouyj ssed

0} pamolle si oljel) 8y} Yolym
yum Buiwi sy) uo peseq solAsp
8|lqow 8y} UOo asn olpel [0JjuoD

A

A

8¢9l
Alleonuo swi sy Jo s)els
‘yBnoiy) ssed 0] dlel) sY) Mojje 0)

AlAIIOE BY) UO paseq
yolym ypum Buruy e suiwisyag

9¢9l
JaAJas 1SOY 8Y) pue 82IAsp Sligow 8y}

Usamjaq Juss aq 0] Jljjel] sy Ul psulejuoo
ejep Jo AJljednuo swi e suiwlisleq

2D
woJ} pajeulblo Jo 0) pajoslip
si ollJed] Yolym Joj 80IAsp a]iqow 8y} Uo
uoneolidde ue Jo sjels AjAoe ue 10818(

WO 2012/145544

31/43

Start

PCT/US2012/034300

Detect backlight status
of the mobile device
1702

Determine whether
a user is expecting
data contained in the
traffic directed to the
mobile device
1706

y

Detect user interaction
with an application on
a mobile device
1704

h 4

h 4

Determine an activity state of an application on the mobile
device for which traffic is originated from or directed to

1708

Select whether 3G, 4G or LTE network is used
in sending traffic between a mobile device and
a host server in the wireless network

1710

FIG. 17

PCT/US2012/034300

WO 2012/145544

32/43

00:¥0

oL8l

—

90:€0 pue G20
usamjaq pauaddey
} @sed ul olpouad
paJapIsSuod uasq aney
os|e p|nom }senbay

8081

—

81 OIA

[eAtsjul Jnoy |

Joeseauruiw gL ‘el
‘leAalajul snoiaald sy
10 %0¢ S! SMOPUIM

oy |
00:€0 — 00:
A

oy |

008l

c0 00:¢0 —00:10

A

00:00

Jsenbai &
00:€0

Janlas Axoud sy} 0} paijioads (unoy |
-6 9) [eassul yum 3senbai Buljjod pels
spuss pue asuodsal sayoed Axoid
[e00| ‘pajoslep sI }senbal olpolad

Jsenbai 2
00:¢0

e

[easaul yum pajepdn
Buiaq si Aijus ayoe)

\l\

9081

\I\

¥081

Jsenbai |
00:10

e

pajesalo Bulag
sI Aljus syoen

\I\

co8l

PCT/US2012/034300

WO 2012/145544

33/43

61 OIA

so)nuUIW GG s9)NuUIW GG mnoy |
0G-¥0 — GG:€0 GG.€0—00:€0 00:€0 — 00:20
00:60 A ~ A N 00:10
}senbal e }sanbal oV }senbal ouC
0S-%0 GG-€0 00:20
Jsenbal ¢
‘'ssjnuIW || 0} Z| Wolj 00:€0
sobueyo azIs MOPUIAA “(SBlnuIW GG
0] 10s mou “6-9) [eassyul pajepdn MOpUIM 8y]

yum 1senbal Buijjod peys Buipussal Ojul s)ij |I}s [eAldju] Jonies Axoid o) (1noy | o “6'3)

pue syoeo Bulysaijel Janiss Axoud \l\ 188 [EAJBIUI UM Js8Nbai Bulljod pels

woJ} sonosal Buinaiiay siowhue Y061 spuss pue asuodsai sayoed Axoud

MOPUIM Y} OJUI JI} JOU SSOP [eAIBIU| [e00] ‘pa10819p 1s9Nbal POy

9061 2061 0061

PCT/US2012/034300

WO 2012/145544

34/43

0C OIA

0€-€0 00-€0
~N
7
~N ~ 7
~ ~ }senbal 9:.6598 oul }senbal 959@98 b P 7 /
~ s 00:€0
~N ~ I 7
N “JaAIas oy} 7
~ 0] Juss JOU S| [eAJB)UI Y 7
N ~ maN “pajepdn job |Im s
~ ejep asuodsal payosen o Anoy L
~ ~00:€0—00:20
00:90 > N Z Al 00°10
: N 7 ~N :
_
G:€0 |
}senbal e }sanbal oV 1senbal oul
00:G0 00:v0 00-¢0
Jsenbai ¢
00-€0
®YIED Wol) |yoed Wol) /

paAlas asuodsay

\|\

900¢

paAlas asuodsay

JanIes 0] (Jnoy | o “68)
\I\ 198 [eAssiul yum jsenbal Buijjod 0002

002 .\ WE)s spuss pue asuodsal sayoed
2002 U0 ‘pajos)ep 1senbal olpoliad

PCT/US2012/034300

WO 2012/145544

35/43

0012 I 'DIH

oy |

oy |

¢0:G0 — ¢0:¥0 ¢0:v0 — 20:€0

A

A

00:20 e

g ~N 00:¢0

Axoid [eoo| 0)
uonepljeAul syoeo
Spuss IoAIeS

\l\ ¢0:60

otLic

00:20

abueyo s)os)ep ‘eoinosal sjjod JoAleg

sebueyo ou ‘eoinosal sjjod JsAleg

OVl) >
}senbal |jod seAlaDal JoAIBS

c0:€0

saBueyd s0Inosey / H 801¢

0210 Jnoy | 01 18S |eAlaju|
q 00-20

A -

uonepIjeAu syoe)
¥0:G0

Jsenbai 9
00:90
}sanbal e
00:G0

Jaje| pouad | paisAlep
MOU JUSBJU0D ysal-

r— paJsAlep Usaq aAey
90lc vorm\\. PINOM Ju8jU0D ysal 4

Jsenbai ¢
00-:€0

1senbai /

00-¥0 Janles 0] 1sanbal Buljjod
Jels spuss pue asuodsal sayoeo
JusIo ‘pajos)ep }senbal olpoliad

\I\

cole

PCT/US2012/034300

WO 2012/145544

36/43

[Ax44

—~

JanIes 0] (Jnoy | o “68)

cc OIA

OLece

\,\

18S [eAlalul YyIm 1senbail Buljjod
Jels spuss pue ssuodsal ssyoeo
U0 ‘pa1os)ep 1senbal olpoliad

[eAlslul Ylm
palepdn Buisq
s1 Ajus syoen

80cc

\l\

pajesalo bulaqg
sI Aljus syoen

00:%0 00:00
~ — - ,
~-—_ \
~ e~ Jsenbai 2 \
Hmm:_u.m: mé T~ - 00:20 \
00:€0 =~ - jsenbel | \
00:50 /II// 00:10 \oo:00
0L0c/LL/0E ///// 0L0g/LL/6C
_
_
l
panowal sjeb jsenbal |
eep ww.:mw%mm 00:10
}senbal G
Jsenbas 8z oo”moe
00:%0
/ ayoed wolj
d
JanIes 0] (Jnoy | o “68) 9022 POAISS 8sUOdSeY
8s [eAJsjul yum i1ssnbai Buljjod —_—
18S [eAISIUl Ylim)] H —~ 052z

JE)S spuss pue ssuodsal sayoed
U0 ‘pajos)ep 1senbal olpoliad

00ce

v0ce

(sinoy tz 03 “6'9)
19S 1| Biep asuodsay

WO 2012/145544

37/43

PCT/US2012/034300

Detect polls from multiple devices 2302

A

y

Determine that the polls from the multiple devices attempt to
access a same content source over a mobile network 2304

A

y

Poll the content source in a single poll event 2306

A

y

Receive the content response to the single poll event 2308

y

h 4

Transmit the content
received in response to the
single poll event of the one

same content source, to one
device of the multiple devices
2310

y

The other devices of the
multiple devices receive the
content from the one device,

over a non-cellular
connection
2312

Store the content in a local
cache of the one device
2314

The local cache of the one
device is accessed by other
devices through a virtual
cache pooled from local
caches of each of the
multiple devices
2316

FIG. 23

WO 2012/145544 PCT/US2012/034300

38/43

Detect that two mobile devices are to receive same content
over a mobile network 2402

Detect that the two mobile devices also meet a criteria
2404

h 4

Send the content to a first device of the two mobile devices
2406

h 4

Receive the content at one mobile device in response to a
single poll event of a content source or application server
hosting the same content 2408

y

Synchronize subsequent poll Transmit the content from the
requests from the two mobile first device to the second
devices to the content source device via a peer-to-peer
or the application server connection
2410 2412

FIG. 24

WO 2012/145544

39/43

PCT/US2012/034300

y

h 4

The two mobile devices
can communicate via
near field wireless
communication

The two mobile
devices are serviced
by a same cellular

h 4

The two mobile
devices are connected
to or have access to a

tower same Wifi network
2502 2504 2506
y Y
Detect that two mobile devices are co-located
2508
B
A Y Y y y
Determine Determine that Determine that Determine Fhat Determine that the
that users of users of the two the two devices .
. the two two devices have a
the two devices share . have a same .
. . . devices have a . same mobile
devices common friends in . mobile .
. same mobile S application and
share a social network o application and o
. application . both are running in
common accessed via the ; both are running
: ; : installed ; the background
interest two mobile devices 2514 in the foreground 2518
2510 2512 = 2516 =
A Y y y y
Criteria met
2520

FIG. 25B

WO 2012/145544

40/43

PCT/US2012/034300

Identify physical resources of multiple mobile devices 2602

h 4

Create the virtual memory network from the physical resources 2604

h 4

Store content for one mobile device of the multiple mobile devices in a portion of the virtual

memory network 2606

y

h 4

y

Cache the response in the
virtual memory network
2608

y

Satisfy subsequent requests
directed to the common
application server from any
of the multiple mobile
devices using the cached
response in the virtual
memory network
2610

The one mobile device
accesses the content stored

in the virtual memory network

through a local network
2614

Other mobile devices
access the content stored
in the virtual memory
network through a local
network 2616

y

Remove the response from
the cache in the virtual
memory network when the
response is no longer valid
2612

FIG. 26

WO 2012/145544 PCT/US2012/034300

41/43

Detect polls from the multiple mobile devices in the virtual
memory network 2702

h 4

Determine that the polls are directed towards a common
application server 2704

h 4

Synchronize the polls directed towards the common application
server 2706

h 4

Send a single polling event to the common application server
2708

h 4

Store a response received in response to the single polling
event, in the virtual memory network for access by the multiple
devices 2710

A local proxy on the mobile device notifies the remote proxy of
the cache event 2712

Monitor the common application server, by a remote proxy
wirelessly coupled to a mobile device of the multiple mobile
devices, to detect when the response is no longer valid 2714

h 4

The remote proxy notifies the local proxy on the mobile device
when the response is no longer valid 2716

h 4

Remove the response from the cache in the virtual memory
network when the response is no longer valid 2718

FIG. 27

WO 2012/145544 PCT/US2012/034300

42/43

Detect, at a mobile device, a request to a content source
2802

h 4

Receive over a cellular or IP network, at the mobile device, a
response or content to be cached 2804

y \ 4
Detect a need for storage or Detect commonalities
lack of available storage at between the mobile device
the mobile device and the other device
2806 2808
y \ 4

Wirelessly access the physical storage of the other device via a
wireless network 2810

h 4

Cache the response or content for the mobile device on the
physical storage of the other device 2812

h 4

Detect subsequent requests at the mobile device which would
be satisfied by the content or the response that was cached
2814

Access the physical storage of the other device via the wireless
network 2816

Access the cache to satisfy the request 2818

FIG. 28

WO 2012/145544 PCT/US2012/034300

43/43

2900

Processor

Video Display
Instructions

Alpha-numeric Input Device

Main Memory

Cursor Control Device

Bus

Instructions

Drive Unit

Machine-readable
(Storage) Medium

Non-volatile Memory

Instructions

Network Interface Device

Signal Generation Device

v

FIG. 29

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - description
	Page 92 - description
	Page 93 - description
	Page 94 - description
	Page 95 - description
	Page 96 - description
	Page 97 - description
	Page 98 - description
	Page 99 - description
	Page 100 - description
	Page 101 - description
	Page 102 - description
	Page 103 - description
	Page 104 - description
	Page 105 - description
	Page 106 - description
	Page 107 - description
	Page 108 - description
	Page 109 - description
	Page 110 - description
	Page 111 - description
	Page 112 - claims
	Page 113 - claims
	Page 114 - claims
	Page 115 - claims
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - drawings
	Page 121 - drawings
	Page 122 - drawings
	Page 123 - drawings
	Page 124 - drawings
	Page 125 - drawings
	Page 126 - drawings
	Page 127 - drawings
	Page 128 - drawings
	Page 129 - drawings
	Page 130 - drawings
	Page 131 - drawings
	Page 132 - drawings
	Page 133 - drawings
	Page 134 - drawings
	Page 135 - drawings
	Page 136 - drawings
	Page 137 - drawings
	Page 138 - drawings
	Page 139 - drawings
	Page 140 - drawings
	Page 141 - drawings
	Page 142 - drawings
	Page 143 - drawings
	Page 144 - drawings
	Page 145 - drawings
	Page 146 - drawings
	Page 147 - drawings
	Page 148 - drawings
	Page 149 - drawings
	Page 150 - drawings
	Page 151 - drawings
	Page 152 - drawings
	Page 153 - drawings
	Page 154 - drawings
	Page 155 - drawings
	Page 156 - drawings
	Page 157 - drawings
	Page 158 - drawings

