ELECTRICALLY OPERATED BASSINET ROCKING DEVICE

FIG. 1.

FIG. 2.
The present invention relates to a bassinet supporting means, and means for automatically rocking said bassinet.

One of the principal objects of the invention is to provide a bassinet with novel means for supporting the same, and automatic means for continuously rocking the bassinet until the child located within the same is asleep.

A further object is to provide a construction of the type wherein the entire bassinet supporting means is demountable, which permits the same to be transported from place to place in knock-down position, i.e., from factory to warehouse or store, or while being transported in an automotive vehicle.

A further object of the invention is to provide means for adjusting the rocking moment of the bassinet.

An additional object is to provide a simplified construction for automatically rocking a bassinet and to do so in a longitudinal direction in such manner as to soothe and put to sleep a child supported by the bassinet.

Other objects will appear hereinafter throughout the specification.

In the drawings:

Figure 1 is a perspective view of the bassinet and its supporting means, and means for rocking the same.

Figure 2 is a front perspective view with a bassinet partly broken away.

Figure 3 is a top plan view of the motor and drive mechanism with the motor casing shown in section; and

Figure 4 is a side elevational view of the pitman, partly broken away, and the means for adjustably attaching its spring thereto.

Referring to the drawings, the letter "A" indicates a bassinet of conventional construction for holding an infant. The bassinet is supported adjacent its ends by a plurality of contractile springs 10, 12, 14 and 16. A plurality of hooks 18 or other fastening means form the lower and upper ends of the springs, and these hooks, as shown in detail in Figure 2, are attached to screws 20 having eyes 22 which are engaged by the lower hooks 18. The upper hooks 18 are adapted to engage the eyes of screws 20. Each of these screws is fastened by threads or otherwise to the upper ends of the inclined posts 24, 26, 28 and 30.

It will be understood, therefore, that the four corners of the bassinet A are resiliently supported by the springs 10, 12, 14 and 16, and that the bassinet may be oscillated in a direction longitudinally of the same. The means for causing such oscillation will be presently explained.

The lower ends of the posts 24, 26, 28 and 30 are removably supported at inclined sockets 32 of the longitudinal frame pieces 34 and 35. These frame pieces are prevented from movement relative to each other by the transverse frame pieces 36 and 38.

Extending longitudinally of the bassinet so as to bridge the frame pieces 36 and 38 is a platform or support 40. It will be understood that the platform is fastened by suitable means, not shown, to the transverse frame pieces.

A further important feature of the invention, in addition to its simplicity and ruggedness, is a means for adjusting the amplitude of rocking movement of the bassinet. This may be readily accomplished by disengaging the spring 68 from its fastening member 70. The device may be reassembled by merely connecting the motor to each other by replacing the posts on their frame pieces, and connecting the hooks forming the ends of springs 10, 12, 14, 16 and 66 to the eyes of the several fastening members.

It will be appreciated that conventional reduction gearing may be mounted on either shaft 50 or 54, or it may take the place of shaft coupling 52. A slowly rotating motor of about 60 r.p.m. would not require any reduction gearing.

It will be further understood that any suitable well-known time-controlled switch may be connected to the cord 78 or to the motor itself, whereby the switch will be disconnected within a definite amount of time. When the motor is disconnected the oscillation of the bassinet will, of course, cease, it being assumed that the time is so set that the child will be asleep at the time the motor is shut off.

The above description and drawings disclose a single embodiment of the invention, and specific language has been used in describing the several figures. It will, nevertheless, be understood that no limitations of the scope of the invention are thereby contemplated, and that various alterations and modifications may be made such as would occur to one skilled in the art to which the invention relates.

1. A bassinet rocking device comprising a horizontally disposed elongated frame and a bassinet supported above said frame, said frame comprising a pair of spaced side members and a pair of spaced end members connecting said side members, an outwardly and upwardly inclined socket adjacent each end of each side member, a post
mounted in each of said sockets, said basinet having elongated sides, and ends, said posts being in spaced relationship with said sides only when to permit unobstructed rocking movements of said basinet in a direction parallel to said sides, means to resiliently support said basinet in normally spaced relationship to said posts, said means comprising elongated springs each attached at its upper end adjacent the upper end of one of said posts and at its lower end adjacent the bottom of said basinet, each spring extending obliquely from a vertical line downwardly and inwardly from one of said posts to a side of said basinet adjacent the bottom of the same, an electric motor mounted on said frame, a drive shaft operatively connected to and actuated by said motor, said drive shaft having eccentric means at its outer end, a pitman extending longitudinally of said basinet and pivotally connected at one end to said eccentric means, means for connecting the other end of said pitman to one of said ends of said basinet, whereby when said pitman is operated by said motor and eccentric means the basinet will be moved to and fro in a direction longitudinally of the frame, said means for connecting the end of said pitman to said basinet comprising a series of apertures in said pitman, a coil spring connected at one of its ends to an end of said basinet substantially midway between a pair of basinet supporting springs and the other end of said spring adjustably inserted in one of said apertures whereby the power from said motor is applied longitudinally of the frame and basinet through the resilient coils of said last-named spring to said basinet to thereby cushion the reversible movements of the basinet, said apertures permitting the position of said coil spring on said pitman to be varied.

References Cited in the file of this patent

UNITED STATES PATENTS

462,178 Thomas Oct. 27, 1891
564,678 Woodward July 28, 1896
597,168 Millard Jan. 11, 1898
598,473 Coffman Feb. 1, 1898
674,682 Kersey May 21, 1901
910,888 Wilson Jan. 26, 1909
1,261,400 Johnson Apr. 2, 1918
1,347,451 File July 20, 1920
1,357,878 Lark Nov. 2, 1920
1,420,134 Nisle June 20, 1922
1,420,582 Shea June 20, 1922
1,476,146 Cappabianca Dec. 4, 1923
1,508,500 Bingen Sept. 16, 1924
1,893,084 Januszewski Jan. 3, 1933
1,992,127 Marlowe Feb. 19, 1935
2,380,355 Worley July 10, 1945
2,366,983 Coltrane Sept. 4, 1951

FOREIGN PATENTS

8,113 Great Britain of 1912