A flux generator (80) for a rotary actuator motor with an integrated magnetic latch (74) is disclosed. A magnetically permeable return plate housing provides a magnetic flux return path for the magnetic field generated by a magnet (54). The magnetically permeable return plate housing forms a first air gap for receiving a coil coupled to the actuator for positioning read/write heads over a disk platter of the disk drive, and forms a second air gap (72) for receiving a latch tab coupled to the actuator.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GB</td>
<td>United Kingdom</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IT</td>
<td>Italy</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>JP</td>
<td>Japan</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SK</td>
<td>Slovak Republic</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LU</td>
<td>Luxembourg</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LV</td>
<td>Latvia</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>MC</td>
<td>Monaco</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>MG</td>
<td>Madagascar</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>ML</td>
<td>Mali</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MN</td>
<td>Mongolia</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td></td>
<td></td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
</tbody>
</table>
FLUX GENERATOR FOR A ROTARY ACTUATOR MOTOR
WITH AN INTEGRATED ACTUATOR LATCH FOR A DISK DRIVE

FIELD OF THE INVENTION:

The present invention pertains to the field of computer system disk drives. More particularly, this invention relates to a methods and apparatus for generating magnetic flux for a rotary actuator motor and actuator latch in a disk drive.

BACKGROUND OF THE INVENTION:

A recent trend in the computer industry is the development of smaller form factors for portable computers. Recently developed form factors include laptop computers, as well as notebook computers and palmtop computers. As portable computers continue toward smaller form factors, the need for smaller, lighter weight, and less expensive component parts for disk drives increases.

Accordingly, disk drive manufacturers require smaller, lighter, and less expensive rotary actuator motors. A typical disk drive employs a rotary actuator motor to move an actuator for positioning the read/write heads over the disk media. Magnetic flux for the rotary actuator motor is typically generated by a magnetic circuit comprising a return plate and a pair of magnets. The return plate is usually comprised of a top plate, a bottom plate, and several standoffs. The standoffs hold the top and bottom plates apart at a fixed distance to form an air gap for receiving an actuator coil. Typically, a pair of magnets are bonded to the inner walls of the top and bottom plates.
The top and bottom plates as well as the standoffs are constructed of a magnetic permeable material such as steel. The top and bottom plates along with the standoffs form a flux return path for the magnetic field generated by the magnets. The magnetic flux density within the air gap between the magnets causes movement of the actuator when an electric current flows in the actuator coil.

However, such prior art return plate designs require fabrication of up to five parts merely to form the flux return path for the rotary actuator motor. Also, such prior art designs require extra manufacturing steps to assemble the return plate. The extra steps to fabricate the return plate component parts, along with the extra assembly steps required to assemble the return plate increases the cost of the disk drive. Also, the extra fabrication and assembly steps increases the likelihood of manufacturing errors. Moreover, the manufacturing tolerances of each component part of the return plate compound for the assembled return plate and result in increased manufacturing errors.

Further, prior art return plate designs require an extra assembly step to align a magnetic latch to the latch tab which is attached to the actuator. The extra assembly step increases the cost of the disk drive and increases the likelihood of manufacturing errors.
SUMMARY AND OBJECTS OF THE INVENTION

One object of the present invention is to provide a flux generator for a rotary actuator motor that reduces fabrication and assembly steps in disk drive manufacturing.

Another object of the present invention is to provide a low form factor light weight flux generator for a rotary actuator motor.

Another object of the present invention is to provide a magnetic latch integrated into the return plate for a rotary actuator motor in order to eliminate extra assembly steps for aligning the return plate and actuator with a magnetic latch.

These and other objects of the invention are provided by a method and an apparatus for generating flux for a rotary actuator motor in a disk drive. A magnetically permeable return plate housing forms a first air gap for receiving a coil coupled to the actuator for positioning read/write heads over a disk platter of the disk drive, and forms a second air gap for receiving a latch tab coupled to the actuator.

A magnet is coupled to an inner wall of the first air gap. The magnet generates a magnetic flux from a north pole of the magnet, through the first air gap, through the return plate housing, and to a south pole of the magnet. A pair of junctions are formed in the return plate housing. The junctions are for coupling
to a pair of pins extending from a base plate of the disk drive. The return plate housing comprises a single stamped steel plate folded to form the air gap.

Other objects, features and advantages of the present invention will be apparent from the accompanying drawings, and from the detailed description that follows below.
BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and not limitation in the figures of the accompanying drawings in which like references indicate similar elements, and in which:

Figure 1 shows a top view of components disposed within a disk drive, including a disk platter, a spin motor, an actuator, and a rotary actuator motor;

Figure 2 is a top view of the flux generator, and shows a magnet bonded to an inner surface of the upper portion of the return plate;

Figure 3 is a bottom view of the flux generator showing the magnetic latch, the latch magnets, and the latch air gap;

Figure 4 is a left side view of the flux generator, and shows an air gap for receiving the actuator coil;

Figure 5 is a right side view of the return plate showing the air gap for receiving the actuator coil.
DETAILED DESCRIPTION

Figure 1 shows a top view of the major components of a disk drive 10. The major components of the disk drive 10 are housed within a base plate 24. A disk platter 12 is coupled to a spin motor 14. The spin motor 14 causes the disk platter 12 to rotate.

An actuator bearing 20 is coupled to the base plate 24. An actuator 18 is coupled to rotate about the actuator bearing 20 in order to position a set of read/write heads 34 over the surface of the disk platter 12. A rotary actuator motor magnet 54 is shown positioned above an actuator coil 30 coupled to the actuator 18.

The actuator 18 rotates about the actuator bearing 20 under control of a rotary actuator motor comprising the magnet 54, the actuator coil 30, and a return plate 50. The actuator 18 controls the positioning of the read/write heads 34 located at the tip of the actuator 18.

A U-shaped magnetic latch 74 is formed in the return plate 50. A pair of latch magnets 70 and 71 are coupled to inner surfaces of the U-shaped magnetic latch 74 to form a latch air gap 72. The latch air gap 72 is formed between the north pole of the latch magnet 70 and the south pole of the latch magnet 71. The magnetic latch 74 captures a latch tab 76 coupled to the actuator 18. The latch tab 76 is constructed of magnetically permeable material. The latch tab 76 completes a magnetic circuit for the flux generated by the magnetic latch 74 to
hold the read/write head 34 over a landing area of the disk 12.

Figures 2 - 5 illustrate a flux generator 80 for the rotary actuator motor of the disk drive 10. The flux generator 80 comprises the return plate 50 and the magnet 54. The return plate 50 provides a magnetic flux return path for the magnetic field generated by the magnet 54. The design of the return plate 50 incorporates an upper return plate 56 and a lower return plate 58 into one stamped piece of steel formed into a U-shape for receiving the actuator coil 30.

Figure 2 is a top view of the flux generator 80, and shows the magnet 54 bonded to an inner surface of the upper return plate 56 of the return plate 50. Also shown are a pair of junctions 60 and 62 formed onto the return plate 50. The junctions 60 and 62 couple to a pair of pins 26 and 28 extending from the base plate 24. **Figure 3** is a bottom view of the flux generator 80, and shows the magnetic latch 74 and the latch magnets 70 and 71, as well as the latch air gap 72. **Figure 4** is a left side view of the flux generator 80, and shows an air gap 52 for receiving the actuator coil 30. **Figure 5** is a right side view of the return plate 50, and shows the air gap 52 for receiving the actuator coil 30. Also shown is the magnetic latch 74.

For one embodiment, the return plate 50 is formed from a flat piece of steel 34/1000 inches thick. The return plate 50 is stamped and formed through a series of 90 degree bends. The return plate 50 has tolerances of 2/1000 inches from inner wall to inner wall. The return plate 50 is formed on a progressive die from one flat piece of steel actuated on a long bed 4-slide machine. The 4-slide
machine enables both horizontal and vertical actuation while forming the return plate 50.

In the foregoing specification, the invention has been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
CLAIMS

What is claimed is:

1. An apparatus for generating flux for a rotary actuator motor in a disk drive, comprising:
 magnetically permeable return plate housing forming an air gap for receiving a coil coupled to an actuator, the actuator for positioning a set of read/write heads over a disk platter of the disk drive;
 magnet coupled to an inner wall of the air gap, the magnet generating a magnetic flux from a north pole of the magnet, through the air gap, through the return plate housing, and to a south pole of the magnet.

2. The apparatus of claim 1, wherein a pair of junctions are formed in the return plate housing, the junctions for coupling to a pair of pins extending from a base plate of the disk drive.

3. The apparatus of claim 1, wherein the return plate housing comprises a single stamped steel plate folded to form the air gap.

4. An apparatus for generating flux for a rotary actuator motor and for latching an actuator in a disk drive, comprising:
 magnetically permeable return plate housing forming a first air gap for receiving a coil coupled to the actuator, and forming a second air gap for receiving a latch tab coupled to the actuator;
first magnet coupled to an inner wall of the first air gap, the first magnet generating a first magnetic flux from a north pole of the first magnet, through the first air gap, through the return plate housing, and to a south pole of the first magnet; means for generating a second magnetic flux for capturing the latch tab, the means for generating a second magnetic flux disposed within the second air gap.

5. The apparatus of claim 4, wherein a pair of junctions are formed in the return plate housing, the junctions for coupling to a pair of pins extending from a base plate of the disk drive.

6. The apparatus of claim 4, wherein the return plate housing comprises a single stamped steel plate folded to form the first and second air gaps.

7. The apparatus of claim 4, wherein the means for generating a second magnetic flux comprises a pair of horizontally opposing magnets disposed within the second air gap.

8. The apparatus of claim 7, wherein the horizontally opposing magnets comprise:
 first magnet having a north pole and a south pole;
 second magnet having a north pole and a south pole, the south pole of the second magnet facing the north pole of the first magnet, such that the second air gap is formed between the first magnet and the second magnet.
9. A method for generating flux for a rotary actuator motor in a disk drive, comprising the steps of:

forming an air gap from a magnetically permeable housing, the air gap for receiving a coil coupled to an actuator for positioning read/write heads over a disk platter of the disk drive;

coupling a magnet to an inner wall of the air gap, the magnet generating a magnetic flux from a north pole of the magnet, through the air gap, through the return plate housing, and to a south pole of the magnet.

10. The method of claim 9, further comprising the step of forming a pair of junctions in the magnetically permeable housing, the junctions for coupling to a pair of pins extending from a base plate of the disk drive.

11. The method of claim 10, wherein the magnetically permeable housing is formed from a single stamped steel plate folded to form the air gap.

12. A method for generating flux for a rotary actuator motor and for latching an actuator in a disk drive, comprising the steps of:

forming a first air gap in a magnetically permeable return plate housing for receiving a coil coupled to the actuator, and forming a second air gap in the magnetically permeable return plate housing for receiving a latch tab coupled to the actuator;

coupling a first magnet to an inner wall of the first air gap, the first magnet generating a first magnetic flux from a north pole of the first magnet, through the
first air gap, through the return plate housing, and to a south pole of the first magnet;

coupling a means for generating a second magnetic flux for capturing the latch tab inside the second air gap.

13. The method of claim 12, further comprising the steps of forming a pair of junctions in the return plate housing, the junctions for coupling to a pair of pins extending from a base plate of the disk drive.

14. The method of claim 12, wherein the return plate housing is formed from a single stamped steel plate folded to form the first and second air gaps.

15. The method of claim 12, wherein the step of coupling a means for generating a second magnetic flux comprises the step of coupling a pair of horizontally opposing magnets within the second air gap.

16. The method of claim 15, wherein the horizontally opposing magnets comprise:

first magnet having a north pole and a south pole;

second magnet having a north pole and a south pole, the south pole of the second magnet facing the north pole of the first magnet, such that the second air gap is formed between the first magnet and the second magnet.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
- IPC(S): G11B 5/54, 21/22
- US CL: 360/105

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
- Minimum documentation searched (classification system followed by classification symbols)
 - U.S.: 360/105, 106, 77.03, 77.08, 902

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
- Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO, A, 90/05359 (CONNOR PERIPHERALS, INC.) 17 May 1990, Figures 3-5, page 9, line 36 - page 10, line 16</td>
<td>1, 2, 4, 5, 7-10, 12, 13, 15, 16</td>
</tr>
<tr>
<td>Y</td>
<td>US, A, 5,193,037 (PACE) 09 March 1993, Figure 5B, col. 2, lines 28-37</td>
<td>3, 6, 11, 14</td>
</tr>
<tr>
<td>Y, P</td>
<td>US, A, 5,025,335 (STEFANSKY) 18 June 1991, Figure 4, col. 7, lines 22-26</td>
<td>1-16</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4,775,908 (YCAS) 04 October 1988</td>
<td>1-16</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

- Special categories of cited documents:
 - "A" - document defining the general state of the art which is not considered to be part of particular relevance
 - "E" - earlier document published on or after the international filing date
 - "L" - document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" - document referring to an oral disclosure, use, exhibition or other means
 - "P" - document published prior to the international filing date but later than the priority date claimed

- Inter document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

- Document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

- Document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

- Document member of the same patent family

Date of the actual completion of the international search: 09 November 1993

Date of mailing of the international search report: 12 NOV 1993

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. NOT APPLICABLE

Authorized officer
S. LEVY
Telephone No. (703) 308-1295

Form PCT/ISA/210 (second sheet) (July 1992)
B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

APS

search terms: (disk or disc)(w)drive, (voice coil) or (rotary actuator), return plate, stamp?(p)plate, flux return