(54) Title: METHOD FOR TRANSMITTING MESSAGES RELATED TO A BROADCAST OR MULTICAST SERVICE IN A CELLULAR COMMUNICATIONS SYSTEM

(57) Abstract: A method of providing a point-to-multipoint multicast service in a communications system, wherein said multicast service provides for the transmission of data from a network element to a plurality of mobile terminals, said method comprising the steps of: transmitting a first and a second message from a network element to said plurality of terminals, wherein said first message includes a plurality of configurations for transmitting said data to the plurality of terminals, and wherein said second message includes a pointer to one of said configurations to be used for a particular multicast service, transmitting data for said particular multicast service using said one configuration.
METHOD FOR TRANSMITTING MESSAGES RELATED TO A
BROADCAST OR MULTICAST SERVICE IN A CELLULAR
COMMUNICATIONS SYSTEM

BACKGROUND OF THE INVENTION

Field of the Invention

This invention relates to a broadcast or multicast service in a telecommunications system. More explicitly, but not exclusively, the invention relates to the realisation of a Multicast Broadcast services in a radio access network (RAN) such as in the Universal Mobile Telecommunications Service (UMTS) radio access network. UMTS concerns a third generation radio network using wideband code division multiple access (W-CDMA) technology.

Description of the Related Art

A cellular communications system includes mobile user equipment (UEs), a radio access network (RAN) and one or more core networks (CNs), as illustrated in Figure 1 for the UMTS case. A detailed overview over the architecture of a cellular telecommunications system of the third generation may be found in the 3GPP specification "UTRAN Overall Description" 3GPP TS25.401 and related specifications. Communication between the UEs and the UTRAN is provided via the Uu interface (Uu), whereas the communication between the UTRAN and the core networks is done via the Iu interface (Iu).

A radio access network includes base stations and radio network controllers or base station controllers (RNC/ BSC). The base stations handle the actual communication across the radio interface, covering a specific geographical area also referred to as a cell. The radio network controllers control the base stations connected to it, but in addition perform other functionality like for example the allocation of radio resources and the control of local mobility. An RNC connects to one or more core networks via the Iu interface, to a number of base stations (node B’s for the case of UTRAN) via the Iub interface and possibly to one or more other RNCs via the Iur interface. The core network includes a serving GPRS (General Packet Radio Service) support node (SGSN) and a broadcast/multicast - service centre (BM-SC). The BM-SC controls the distribution of the data to be transmitted via the MBMS service.

Communications Networks of the third generation (3G) such as the UMTS network provide Multimedia Broadcast Multicast Services (MBMS). MBMS is a
point-to-multipoint service in which multimedia data such as audio, images or video data is transmitted from a single source entity to multiple recipients by using an unidirectional bearer service. The MBMS bearer service offers both a broadcast mode and a multicast mode. In the broadcast mode, the data are broadcasted to all users. In contrast, a user needs to subscribe to a particular MBMS service or a group of MBMS services with a service provider in order to receive multicast services. The operator may then announce the service or use a service discovery mechanism to inform users about the range of MBMS services available. If the user is interested in a particular MBMS service, the user joins the service, i.e. the user activates the MBMS multicast service. In this way the user becomes a member of a particular multicast group and indicates to the network that he or she wants to receive the MBMS data of a particular MBMS service.

Transmitting the same data to multiple recipients allows network resources to be shared. In this way the MBMS architecture is designed to enable an efficient usage of radio-network and core-network resources.

In order to initiate a MBMS session, the CN sends a session start command to the RNC. The Session Start command is used to indicate that the core network is ready to send data relating to a particular MBMS service. The Session Start command triggers the establishment of a bearer resource for MBMS data transfer. It is noted that the Session Start occurs independently of activation of the service by the user. This means that a user may activate a particular service either before or after a Session Start.

After receiving the Session Start command, the RNC sends MBMS notifications to the UE in order to inform the UEs about forthcoming or even ongoing MBMS multicast data transfers. The RNC manages the use of the radio resources and decides whether the MBMS data will be transmitted using point to multipoint or point-to-point transfer mode on the radio interface. If there are sufficient UEs in a cell, the point-to-multipoint transfer mode is most efficient. If however the number of users in a cell is low, the point-to-point transfer mode may be most efficient. To decide which transfer mode to use, the RNC may perform a counting operation. Subsequently multimedia data relating to a particular MBMS service are transmitted from the CN via the RNC to the UEs during the data transfer phase.

When the BM-SC determines that there will be no more data to send, the CN sends a Session Stop command to the RNC and the bearer resources are released.

If a user is no longer interested in a particular MBMS service, the user deactivates the service. Accordingly, the user leaves the multicast group if he or she does no longer wants to receive Multicast mode data of a specific MBMS bearer service.
It is noted that the phase subscription, joining and leaving are performed individually per user. The other phases, such as the notification and the data transfer, are performed for a particular service, i.e. for all users interested in the related service.

As of 3GPP RAN2 meeting number 39 (17-21 November 2003), the situation regarding how MBMS will be handled on the Uu interface has again become clearer. The current status of MBMS realisation in RAN2 is described in the 3GPP specification "Introduction of Multimedia Broadcast Multicast Service (MBMS) in the Radio Access Network (RAN)" TS 25.346. v2.4.0.

SUMMARY OF THE INVENTION

It is an object of the present invention to improve the way broadcast or multicast services are handled.

According to one aspect of the present invention, there is provided a method of transmitting messages related to a broadcast or multicast service from a network element to a plurality of mobile terminals in a cellular communications system, the method comprising:

sending first and second notification messages to a plurality of said terminals, whereby said first and second notification messages are timed using a first and second cycle, respectively, and whereby the length of said first cycle is different to the length of said second cycle.

In this way a more flexible system is provided by introducing a second cycle. Preferably, the first notification messages are used to notify mobile terminals in certain states that they are to receive information relating to a multicast service.

In this way the first notification message may be used to indicate a change concerning one or more broadcast or multicast services and may be used to wake up the mobile terminal from a low power consumption state.

Preferably, the length of the first cycle is longer than the length of the second cycle. In this way the cycle length of the first cycle helps in reducing the power consumption in these certain states.

Preferably, UEs that have discovered that the first notification message includes a service they are interested in, wake up and start reading the second notification message according to the second cycle.

In this way, the shorter cycle, which allows more frequent updating of information in the second notification message, may be used only for the UEs interested in a particular broadcast or multicast service; the power consumption of other UEs is not affected.
One particular use of the second notification message is to provide updated information used to count UEs. During the counting procedure, at every instance the second notification message is transmitted, the message may include a new, higher probability factor. The functionality of this factor is such that UEs draw a random number and if the number is below the received probability factor, they respond to the counting request.

Before the counting procedure, the network (UTRAN) is unaware of the exact number of UEs in a cell. The network starts the counting procedure with a low probability factor. Then, it slowly increases the probability factor, depending on the number of responses received, until it has either received sufficient responses to decide to use the point-to-multipoint transfer mode on the radio interface or until it has increased the probability factor to 1.

In this way the UTRAN can limit the number of UEs responding.

As stated above, the length of the second cycle is preferably shorter than the length for the first cycle.

In this way the overall time required to set up a multicast service can be reduced. Particularly, the delay introduced by the counting procedure can be reduced and the information sent in the notification messages can be updated or changed in a shorter time period. This is particularly useful when, for example, the response probability factor for the counting procedure needs to be updated during session start handling.

By using shorter intervals for the second notification messages more notification messages can be sent during a given time period. In case that the notification messages are used for the counting procedure, this helps to distribute the load. As on average a certain number of counting steps is required, the counting operation can be made faster by using a shorter cycle for the second notification messages. The use of several MCCH notification occasions also has the benefit that the first response action from UEs start earlier compared to prior art MBMS service where only a single MCCH notification occasion per UE DRX cycle is provided.

According to another aspect of the present invention, there is provided a method of transmitting messages relating to a multicast service, whereby the multicast service provides for the transmission of data from a network element to a plurality of terminals in a cellular communications system, the method comprising the steps of: transmitting first messages according to a first cycle, wherein said first messages trigger terminals interested in a particular multicast service to listen to a multicast channel, transmitting second messages on said multicast channel according to a second cycle, wherein said second cycle is different than said first cycle.

According to another aspect of the present invention, there is provided a method of signalling messages related to a point-to-multipoint broadcast or multicast service
to a plurality of mobile terminals in a communications system, the method comprising: sending a first message including service specific information; and sending a second message including information related to the radio resource configuration, wherein said second message is used for more than one different broadcast and/or multicast service.

According to another aspect of the present invention, there is provided a method of providing a multicast service for transmitting data from a network element to a plurality of terminals in a cellular communications system, wherein said cellular communications system uses a first model for mapping first services other than the multicast service and a second model for mapping said multicast service, wherein said first and said second model are substantially the same.

Preferably, in said model said multicast service is mapped onto one radio access bearer.

Preferably, in said second model said radio access bearer is mapped onto one or more radio bearers.

Preferably, in said second model said one or more radio bearers are mapped onto one or more transport channels.

Preferably, in said second model said one or more transport channels are mapped onto one or more physical channels.

According to another aspect of the present invention, there is provided a method of providing a point-to-multipoint multicast service in a communications system, wherein said multicast service provides for the transmission of data from a network element to a plurality of mobile terminals, said method comprising the steps of: transmitting a first and a second message from a network element to said plurality of terminals, wherein said first message includes a plurality of configurations for transmitting said data to the plurality of terminals, and wherein said second message includes for a multicast service provided using a p-t-m transfer radio bearer a set of pointer to said configurations to be used for a particular multicast service, transmitting data for said particular multicast service using said configurations.

In this way the signalling of radio messages relating to the set-up of radio resources for a broadcast or multicast message can be made much more efficient.

For example, by transmitting the first message more frequently than the second message, the second message may be re-used for more than one different broadcast or multicast services.

According to another aspect of the present invention, there is provided a method of signalling messages related to a point-to-multipoint broadcast or multicast service to a plurality of mobile terminals in a communications system, the method comprising: sending a first message including service specific information; and
sending a second message including information related to the radio resource configuration wherein said second message does not include service specific information.

In this way the configurations included in the radio configuration message can be used by more than one different broadcast and/or multicast service.

In this way duplication of configuration information used for more than one service can be avoided. Such a message structure also avoids duplication of the service specific information, such as the (often lengthy) identities of the multicast and/or broadcast services; according to the proposed message organisation this information only needs to be included in the service information message.

The use of two separate messages as described above makes it possible to transmit one message more frequently than the other, which may be beneficial in certain scenarios.

According to another aspect of the present invention, there is provided a method of signalling messages relates to a point-to-multipoint broadcast or multicast service to a plurality of mobile terminals in a communications system, the method comprising: sending a message including service specific information and information related to the radio resource configuration.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention will now be described, by example only, with reference to the accompanying figures, whereby

Figs. 1 and 2 are schematic outlines of a mobile communications network, in which the present invention can be incorporated,

Fig. 3 is a schematic illustration of a messaging timeline of a MBMS session according to the prior art;

Fig. 4 is a schematic illustration of a messaging timeline of a MBMS session according to one embodiment of the present invention; and

Fig. 5 is a schematic illustration of mapping MBMS services according to one embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

An embodiment of the present invention will now be described in detail with reference to the accompanying drawings. In the following description, a detailed description of known functions and configurations incorporated herein has been omitted for conciseness.
Figure 2 illustrates the architecture of a radio access network. The RAN comprises base stations 2, such as the so-called Node B’s for the UTRAN, and radio network controllers 4 (RNC), also referred to as base station controllers (BSC). The base stations 2 handle the actual communication across the radio interface, covering a specific geographical area also referred to as a cell. The RNCs 4 control the base stations 2 connected to it, and also include other functionality for tasks such as the allocation of radio resources, i.e. the local mobility. An RNC 4 is connected to one or more core networks 8 via the Iu interface 12, to a number of base stations 2 via the Iub interface 10 and possibly to one or more other RNCs 4 via the Iur interface 14.

In a UMTS network, the Radio Resource Control (RRC) protocol is used across the radio interface, i.e. between the UE and UTRAN. These protocol end points interact by exchanging protocol parameters, by sending messages comprising of one or more information elements.

In order to set up a MBMS session, the RNC receives a respective request from the CN. This MBMS Session Start Request contains a MBMS Service Identification, specifies the MBMS Bearer Service Type and MBMS Session Attributes such as the MBMS Service Area Information or Quality of Service parameters. After the RNC receives the MBMS Session Start Request, it notifies the UEs which are interested in and have activated the particular MBMS service.

The MBMS Session Start Request contains all information necessary to set up an MBMS Radio Access Bearer (RAB). Upon reception of the Session Start message, the RNC executes an MBMS data bearer set up over the Iu interface, and subsequently informs the sending CN of the outcome of the set up in a MBMS Session Start response message.

For a particular MBMS service, data is then transferred via an MBMS RAB between the network and the UE.

In order to set up the connections between the RNC and the UE, the existing transport channel mechanism of the Forward Access Channel (FACH) over Iub is used in case of a point-to-multipoint (ptm) MBMS transmission. A ptm connection is established if the number of counted MBMS users in a cell exceeds a certain operator-defined threshold. Otherwise, a point-to-point (ptp) connection is established over the DTCH as defined for other dedicated services.

The CN sends the MBMS Session Stop command in a similar way to the RNC, and the RNC then notifies the interested and activated UEs of the end of the MBMS session. When the RNC receives an MBMS Session Stop Request, it releases the associated MBMS RAB resource.

Referring now to Figure 3, the sequence of main events that take place during a MBMS session is described. More details may be found in the 3GPP specification TS
25.346. The session is started when a SESSION START message 101 is received by
the UTRAN over Iu, and terminated when the SESSION STOP message is received
over Iu.

After the SESSION START message 101, the UTRAN sends out MBMS
notification indicators (NI's) 103 in order to wake-up UE's in RRC_Idle, CELL_PCH,
URA_PCH and CELL_FACH states. The MBMS notification indicators 103 are sent
on the MBMS notification Indicator channel (MICH). UE's only need to wake-up and
look for the MBMS NI's at their normal paging occasions, i.e. the paging occasion for
the normal UE DRX cycle used for conventional (R99) paging. As a result, the
MBMS notification indicators 103 sent by the network have to be repeated
continuously during one or more UE DRX cycles.

If a UE detects that an MBMS NI 103 is set for an MBMS service in which it is
interested, the UE listens to the MBMS point-to-multipoint Control Channel (MCCH).
It has been agreed that transmissions on MCCH will be scheduled, although this is not
specifically described in the 3GPP specification 25.346. Thus, all UEs receiving the
MBMS NIs 103 during a certain specified period will all listen to the MCCH at one
specific instance, in this document referred to as the MCCH notification occasion. The
specified period is typically the largest UE DRX cycle. It is assumed that the MCCH
notification occasion configuration is broadcast on BCCH or MCCH.

The message sent every DRX cycle at the MCCH notification occasion is the
MBMS NOTIFICATION message 105. This message 105 will at session start
typically first trigger a counting procedure by indicating that a certain percentage, the
so-called "counting probability", of UEs interested in the session being started should
respond by establishing an RRC connection. It is noted that the MBMS Notification
message has not yet been described in 3GPP specification 25.346.

After the UE receives the MBMS notification message 105a, it sends a request
113 to establish an RRC connection to the core network to allow for the counting
process. The request 113 includes a Service identification (ID), which identifies the
MBMS service the UE is interested in. As a response, the CN identifies the MBMS
service the UE is interested in and sends a MBMS Linking Request Message 115 over
the Iu interface.

As soon as the UEs receive an "interesting" MBMS NI 103, the UE shall listen
to the MCCH at the MCCH notification occasions. An "interesting" MBMS NI in this
respect means that the NI relates to any of the MBMS services the UE has joined.
After the first MBMS Notification message 105a has been sent, the one or more
subsequent MBMS Notification messages105b may contain different counting
probabilities. In this way the UTRAN determines whether the MBMS service should
be provided by point-to-point or point-to-multipoint (ptp/ptm). By having higher
counting probability at subsequent counting cycles, the UTRAN is able to obtain a gradual idea about how many UEs in the cell are interested in a specific MBMS service, and can then decide whether the MBMS service shall be provided ptp or ptm.

When the UTRAN has taken the ptp/ptm decision, the counting process will be stopped. In case ptp is selected, the interested UE’s will receive a RADIO BEARER SETUP message. Figure 3 illustrates the case that the service is provide by ptm. In this case the UTRAN configures the MBMS point-to-multipoint Traffic Channel (MTCH) and updates the MCCH by sending the MBMS SERVICE INFORMATION message 107 and MBMS RADIO BEARER INFORMATION message 109. The two messages include the service identification and radio bearer information for the MBMS service.

After the UE has read the MBMS SERVICE INFORMATION messages 107 and MBMS RADIO BEARER INFORMATION messages 109, it is able to read the MBMS data transmissions 111 on the corresponding MTCH.

When transmission of the MBMS session is finalised and the SESSION STOP message 117 is received over Iu, the UE will be informed about the session stop by a RADIO BEARER RELEASE message in case of ptp or a SESSION STOP notification 121 for ptm transmission. In order to ensure that all UEs detect the SESSION STOP notification, the UTRAN send again MBMS NIs 119, such that the interested UE listens to the MCCH.

Usage of MCCH notification occasion interval

As can be seen from the schematic illustration of Figure 3, the above described solution provides for one MCCH notification message at every MCCH notification occasion, with a fixed period between MCCH notification occasions equal to the (largest) UE DRX cycle. This appears as a simple and natural solution, as all UEs which are receiving the MBMS NI in one DRX cycle are also reading the same MCCH message.

However this approach has the disadvantage that the total time period the MBMS NI have to be sent for a particular MBMS session are relatively long.

As an example, it is assumed that the error rate for transmitting the MBMS NI is 1 %, and that the intervals between the MCCH notification occasions are equal to the UE DRX cycle of 1.28 seconds. Moreover, it is assumed that the UTRAN requires three cycles with different counting probabilities to decide whether the MBMS session is to be transmitted in the ptp or in the ptm mode.

Due to the MBMS NI error rate, the MBMS NI’s have to be set at least during two different DRX cycles when the ptm decision is taken. Thus in total at session start, we will have to set the corresponding MBMS NI’s during 5 UE DRX cycles.
(3+2): more than 7 seconds of continuous MBMS NI’s. If we include the two DRX cycles we will need to inform all UE’s of the Session termination, in total the MBMS PI’s will be set for more than 10 seconds per session.

It is therefore advantageous to provide a MCCH notification occasion interval different to the longest UE DRX period. If a MCCH notification occasion interval is used which is shorter than the longest UE DRX cycle, the total time required to set up a MBMS session can be reduced.

First Embodiment

According to a first embodiment, this can be achieved by providing additional MCCH notification occasions. The network signals an MCCH notification occasion schedule to the UE. For signalling the schedule the BCCH may for example be used. In addition, it is specified that instead of listening only to one MCCH notification occasion, the UE shall listen to all scheduled MCCH notification occasions starting from the moment it detects the MBMS NI and up to the next dedicated paging occasion. In this way an MCCH notification occasion interval of less than the normal DRX cycle can be achieved.

It is now referred to Figure 4, which illustrates the messaging for an MBMS session having an MCCH notification occasion interval of half of the normal DRX cycle. The same reference numerals as in Figure 3 are used for corresponding messages.

It can be seen that the second MCCH notification message 105b follows the first message 105a after a half UE DRX cycle. Therefore, the duration of the MBMS notifications CRX cycle is half of the longest UE DRX cycle. In this way the delay introduced by the counting procedure, i.e. from the session start message 101 to the MBMS notification 105c, indicating that the session is broadcast over ptn, is only two cycles rather than three cycles in the prior art MBMS session as outlined in Figure 3.

However, in practice there is a limit to how much the period between 2 MBMS Notification messages can be decreased as the counting process itself takes a certain time. After the UE received the MBMS notification start messages 105a and 105b, it needs to send an RRC connection request 113. After a certain time period the UE receives the MBMS UE linking request message 115 over the Iu. Therefore, in practice the MBMS notification cycle needs to be at least as long as the time period between the messages 113 and 115. As an example, assume that it takes 200ms in between a UE sending an RRC CONNECTION REQUEST 113 and receiving the MBMS UE LINKING REQUEST message 115. In that case, the period in between two consecutive MBMS NOTIFICATION messages needs to be at least 200ms.
Configuration of MBMS SERVICE INFORMATION message and MBMS RADIO BEARER INFORMATION message

As described above with reference to Figure 3, MBMS service information is transmitted from the RNC to the UEs in two messages. The two messages are used to inform the UEs of all MBMS services available in one cell and to send the UEs radio bearer information relating to the MTCH. These two messages are the MBMS SERVICE INFORMATION message 107 and the MBMS RADIO BEARER INFORMATION message 109.

According to the 3GPP specification TS 25.346, MBMS SERVICE INFORMATION message is transmitted periodically to support the mobility in the MBMS service. The MBMS SERVICE INFORMATION message contains MBMS service IDs and pmr indication. The MBMS service IDs indicate the MBMS services which are being served in the cell or the MBMS services which can be served if the UE requests it. Pmr indication indicates that the MBMS service is on pmr in the cell, thus it informs the UE of the need of reception of the MBMS RADIO BEARER INFORMATION message. More information may be included in the MBMS SERVICE INFORMATION message.

MBMS RADIO BEARER INFORMATION includes MBMS Service ID, logical channel, transport channel and physical channel information for an MBMS service. More information may be included in MBMS RADIO BEARER INFORMATION.

It is noted that the 3GPP specification TS 25.346 specifies that both messages, i.e. the MBMS radio bearer information as well as the MBMS radio bearer information message include the service IDs, although the information in the specification relating to the content and structure of these messages is sparse.

However, it is important to set up the content and structure of the messages relating to the MBMS information in an efficient way. Particularly, the distribution of the information between the two messages is crucial in order to avoid duplication of information. For example, duplication of the service IDs or other information in the two messages may result in a waste of radio resources.
Second Embodiment

In the following it is described how the content and structure of the two MBMS information messages may be set up. A particular way of splitting the MBMS information into the MBMS service information and MBMS radio bearer information message is proposed and a way to avoid duplication or even multiplication of sending radio bearer information is described.

According to this embodiment, all service specific information appears only in a first message, referred to as the MBMS SERVICE AVAILABILITY message in the following, while the details of the radio resource configuration is included in a second message, i.e. the MBMS RADIO BEARER INFORMATION message.

It is noted that the existing model for mapping services and resources on to the radio interface as described in the 3GPP specifications is re-used for MBMS as much as possible.

Referring now to Figure 5, an example is given to illustrate the principle of mapping MBMS services and resources in the same manner on the radio interface as other services.

The structure of Figure 5 includes three different radio access bearers 201 to 203, five radio bearers 211 to 215, four different transport channels 221 to 224 and two different physical channels 231 and 232.

The mapping structure used for the MBMS service is the following: One MBMS service maps onto a single RAB, which maps to one or more RBs, i.e. the use of RAB sub-flows is not excluded. Each RB corresponds to an MTCH logical channel. One or more of these logical channels may be mapped onto a FACH transport channel, and one or more of these transport channels are mapped onto a physical channel.

Thus, each of the three RABs 201 to 203 corresponds to one MBMS service. Of these three RABs, one RAB (RAB 201) maps to the three RBs 211, 212 and 213, whereas the other two RABs 202 and 203 each correspond to RB 214 and 215, respectively.

RB 211, 212 and 215 then map onto the transport channel (TrCh) 221, 222 and 224, respectively, whereas both RBs 213 and 214 corresponds to transport channel 223.

Moreover, the transport channels 221, 222 and 223 all correspond to physical channel (PhCh) 231, whereas transport channel 224 maps onto physical channel 232.

Thus Figure 5 illustrates that, for example, a physical channel can carry multiple transport channels, and that a transport channel can carry multiple RBs.

The transport channel is indicated within the RB mapping information. Since the transport channel identity is unique within the scope of a physical channel both the
transport channel identity and the Secondary Common Control Physical Channel (S-CCPCH) identity need to be included in the RB mapping info.

Several MBMS services can use the same radio bearer configuration. The same applies for the transport channel configuration. To provide efficient signalling support for this, the MBMS RADIO BEARER INFORMATION contains a number of pre-defined radio bearer and transport channel configurations. For each service, the MBMS SERVICE AVAILABILITY message then includes a pointer to one of the radio bearer configurations, and one of the transport channel configurations and one of the physical channels listed in the MBMS RADIO BEARER INFORMATION message. As can be seen from Figure 3 and 4, both the MBMS service availability message as well as the MBMS radio bearer information message are transmitted via the MCCH channel.

In this way an efficient way of signaling the information required to set up an MBMS p-t-m radio bearer can be achieved by two different aspects.

Firstly, duplication of the service identities is avoided, as the MBMS RADIO BEARER INFORMATION message does not contain the service IDs, but the MBMS Service Availability Message. Thus the amount of data to be transmitted on the MCCH can be considerably reduced. As an example, consider that there are 16 active MBMS sessions in parallel, and assume a service identity of 32 bit and a UE DRX cycle of 640ms. By applying the above described approach of splitting the MBMS service information, the transmission rate on the MCCH can be reduced by almost 1 kbps.

Secondly, if several MBMS services share the same radio bearer and transport channel configuration further gains are achieved when several MBMS services use the same predefined radio bearer, transport channel and physical channel configurations. Instead of repeating the entire configuration for each service, the configuration elements are included once in the Radio Bearer Information message. and for each service a pointer to one of these pre-defined configurations is included in the Service Availability message. In this way the signaling of information relating to the set-up of MBMS messages can be made much more efficiently.

Below, example message layouts are shown for an MBMS service availability message (Table 1) and for an MBMS Radio Bearer Information message (Table 2) according to one embodiment of the present invention.

Referring now to Table 1, the content and structure of the MBMS service availability message is described. It is noted that the symbol "->" indicates a hierarchical structure.

The first column of tables 1 and 2 specifies the Information element or group name of the information included in the two messages. Column 2 indicates whether
the information is mandatory (Mandatory Present - MP) or optional (Optionally Present - OP), or whether this has not been agreed (For Further Studies - FFS). The third column indicates the size of the list, whereas the forth column indicates a rough estimate of the total size of the information element (in bits). In the fifth column additional information or comments regarding the size estimate for the different elements are provided.

The first information element of the MBMS service availability message in row 1 of Table 1 includes the message type, which indicates the type of the message and whether the message includes in addition any extension bits. The next element is the service list, listing all provided MBMS services. Up to 32 MBMS services are simultaneously available in a cell message. The list includes the MBMS service identities (IDs) as listed in row 3, and two further fields indicating whether a Packet Mobility Management (PMM) connection is required and the choice of transfer modes (rows 4 and 5). Rows 5 and 6 gives the choice of transfer modes as either ptp or ptm.

Row 7 includes the RAB information, which is required to set up the ptt radio bearer and is provided for the MBMS services using this transfer mode.

Row 8 indicates the list of required radio bearer information. The list includes the RB identity and the RB mapping information as listed in rows 9 and 10. Those two fields include the pointers to the RB information provided in the MBMS radio bearer information message. The RB identity identifies a RB configuration included in the MBMS radio bearer information message. Up to 32 RBs can be identifies in a cell. The RB mapping information includes a pointer to the logical channel, to the transport channel and to the SCCPCH, i.e. the RB mapping information includes the identities of the logical channel, the transport channel and the SCCPCH.

The last row indicates the estimated total message size for one particular case. In this case the number of ptp and ptm connections is assumed to by 8 and the number of radio bearers used in assumed to be 1. In this case the total message size can be estimated to be 771 according to the following calculation:

\[11 + (34 \times N_{\text{ptp}}) + (34 + (3 + N_{\text{rb}} \times 24) \times N_{\text{ptm}}) = 771 \] for \(N_{\text{ptp}} = N_{\text{ptm}} = 8 \) and \(N_{\text{rb}} = 1 \)

In a typical set-up each MBMS service maps onto a single RB while the different services are all mapped onto the same FACH, MAC/ logical channel multiplexing is applied. In this case, each logical channel identifier value, used within the MAC header, identifies a specific MBMS service.

Referring now to Table 2, the content and structure of the MBMS radio bearer message is described.

Again, the first element is the message type (row 1). After this, the message includes a list of predefined the point-to-multipoint RB information configurations,
transport channel configurations and physical channel configurations (rows 2, 7 and 15).

The RB information includes the RB identifies, Packet Data Convergence Protocol (PDCP) information, Forward Error Correction (FEC) information and Radio Link Control (RLC) information (rows 3 to 6). For the following, it is assumed that the message size required for the RB identity is 7 bits, for the FEC information 20 bits, for the PDCP information 49 bits (for a single algorithm such as the Robust Header Compression (ROHC) and a single profile), and that the size for the RLC information using UM/TM segmentation is 5 bits, the total size for the RB information list is given by 7 + 81 * N_rb, whereby N_rb denotes the number of radio bearers listed in the message.

The SCCPCH list includes the SCCPCH identity (row 8), the Transport Format Combination Set (TFCS) (row 9), a list of the FACH (rows 10 to 13) and a PICH information (row 14). The list of FACH includes the transport channel identities, the Transport Format Set (TFS) and the Common Traffic Channel (CTCH) indicators. Using the estimates provided in the last column, the total size for the SCCPCH list is given by 144 bits for a single SCCPCH. Every additional SCCPCH adds another 140 bits. It is noted that even though it has not yet been decided whether the fields including PDCP and FEC is mandatory, corresponding parameters have been included in the size estimate.

The physical channel configuration is provided in the Secondary CCPCH information of row 15. The estimated size of the Secondary CCPCH information list is 14 to 26 bits, including secondary scrambling code and timing offsets.

From the above it can be seen that for a typical MBMS configurations (assume 16 active MBMS services mapped on one RB, FACH and sCCPCH) both message have a comparable size.
MBMS SERVICE AVAILABILITY

<table>
<thead>
<tr>
<th>Information element/Group name</th>
<th>Need</th>
<th>Value</th>
<th>Size</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message type</td>
<td>MP</td>
<td></td>
<td>5</td>
<td>Overhead of message type, extension bit</td>
</tr>
<tr>
<td>Service list</td>
<td>OP</td>
<td>maxMBMSservPerPage</td>
<td>6</td>
<td>Upto 32 MBMS services simultaneously available in a cell message</td>
</tr>
<tr>
<td>>Service ID</td>
<td>MP</td>
<td></td>
<td>32</td>
<td>MBMS service identity eg. TMGI</td>
</tr>
<tr>
<td>>PMM connection required</td>
<td>MP</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>>CHOICE Transfer mode</td>
<td>MP</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>>>PTP</td>
<td></td>
<td></td>
<td>0</td>
<td>(no data)</td>
</tr>
<tr>
<td>>>PTM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>>>RAB information to setup</td>
<td>MP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>>>>RB information to setup</td>
<td>MP</td>
<td>maxRBperRAB</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>>>>>>RB identity</td>
<td>MP</td>
<td></td>
<td>5</td>
<td>Identifies a RB configuration included in the MBMS RADIO BEARER INFORMATION message. Upto 32 RBs can be identified in a cell</td>
</tr>
<tr>
<td>>>>>>RB mapping info</td>
<td>MP</td>
<td></td>
<td>19</td>
<td>Including the logical channel identity, as well as the transport channel identity and an S-CCPCH identity (requires a modified version of the existing data)</td>
</tr>
<tr>
<td>Total message size</td>
<td>771</td>
<td>$11 + (34 \times Ntp)+ (34 + (3 + Nrb \times 24) \times Nptm)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>-----</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>771 for the reference case (Ntp=Nptm=8 and Nr=1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1

<table>
<thead>
<tr>
<th>Information element/ Group name</th>
<th>Need</th>
<th>Value</th>
<th>Size</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message type</td>
<td>MP</td>
<td></td>
<td>5</td>
<td>Overhead of message type, extension bit</td>
</tr>
<tr>
<td>PTM RB info list</td>
<td>MP</td>
<td>maxMBMS-RBperCell</td>
<td>7</td>
<td>$7+ (81 \times Nrb)$</td>
</tr>
<tr>
<td>>RB identity</td>
<td>MP</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>>PDCP info</td>
<td>FF S</td>
<td></td>
<td>49</td>
<td>Single algorithm (ROHC), single profile</td>
</tr>
<tr>
<td>>FEC info</td>
<td>FFS</td>
<td></td>
<td>20</td>
<td>Just a wild guess</td>
</tr>
<tr>
<td>>RLC info</td>
<td>MP</td>
<td></td>
<td>5</td>
<td>UM/ TM, segmentation</td>
</tr>
<tr>
<td>SCCPCH list</td>
<td>MP</td>
<td>maxSCCPCH</td>
<td>4</td>
<td>$4 + ((80 + 60 \times Nfach) \times Nscpch)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>144 for a single S-CCPCH. Every S-CCPCH adds 140</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(if the same assumptions apply)</td>
</tr>
<tr>
<td>>SCCPCH identity</td>
<td>MP</td>
<td></td>
<td>4</td>
<td>maxSCCPCH equals 16</td>
</tr>
<tr>
<td>>TFCS</td>
<td>MP</td>
<td></td>
<td>50</td>
<td>Just the 6 TFs</td>
</tr>
<tr>
<td>>FACH list</td>
<td>MP</td>
<td>maxFACHPCH</td>
<td>3</td>
<td>63 for a single FACH with 6 TFs. Each additional FACH may add 60+ (depending on TFS and TFCS impact)</td>
</tr>
<tr>
<td>>>Transport channel identity</td>
<td>MP</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Information element/ Group name</td>
<td>Nedd</td>
<td>Value</td>
<td>Size</td>
<td>Comment</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>>>TFS</td>
<td>MP</td>
<td></td>
<td>54</td>
<td>(0x320, 1x320, 2x320, 4x320, 8x320, 16x320) @ 80 ms TTI</td>
</tr>
<tr>
<td>>>CTCH indicator</td>
<td>MP</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>>PICH info</td>
<td>OP</td>
<td></td>
<td>1</td>
<td>Absent; N/A for S-CCPCH carrying MTCH</td>
</tr>
<tr>
<td>>Secondary CCPCH info</td>
<td>MP</td>
<td></td>
<td>26</td>
<td>14 upto 26 (secondary scrambling code & timing offset included)</td>
</tr>
<tr>
<td>➔ Total message size</td>
<td></td>
<td></td>
<td>808</td>
<td>16 + (81 * Nrb) + ((84 + 60 * Nfach) * Nscppch) 804 assuming Nrb=8 (each PTM service having a separate RB configuration), single S-CCPCH, single FACH and TF/ TFCS as indicated</td>
</tr>
</tbody>
</table>

Table 2

Third Embodiment

Alternatively to the embodiment described above, avoiding of information duplication can also achieved by providing only a single MBMS information message instead of having an MBMS service information message and a separate MBMS radio bearer information message. Therefore, according to this embodiments all MBMS information contained in the two messages described above are combined in a single MBMS information message by using a simple concatenation of the two separate messages indicated above.

However, the approach of having two separate messages as described above has the additional advantage that one of the two messages can be transmitted more frequently than the other.

Apart from the MBMS session start, the MBMS SA and RB message are also used for handling the mobility of UEs while receiving MBMS services. If a UE in an
RRC-IDLE state moves into a new cell, the UE has to find out if and how an MBMS service is supported in a cell. If the service is supported by ptm transmission in the new cell, the UE will only have to read the MBMS SA and MBMS RB messages. Subsequently, the UE can receive the MTCH channel.

If, on the other hand, the service is supported by ptp transmission in the new cell, the UE will have to establish an RRC Connection, go to the PMM_CONNECTED state and wait for the RB SETUP for the RB of the MBMS service. It is apparent that this procedure is relatively slow.

However, the UE only needs to receive the MBMS SA message and not the MBMS RB information to detect that an MBMS service is supported by ptp. Therefore, the service interruption for a UE moving into the new cell can be significantly reduced by scheduling the MBMS SA message more frequently than the MBMS RB message.

Thus, by having two separate messages rather than one combined message, the MBMS SA message frequency can be increased without the need of increasing the frequency of the MBMS RB message. In this way an additional load due to inclusion of RB information in one message can be avoided while increasing the frequency of the MBMS SA message.

Whilst the above described embodiments have been described in the context of UMTS, it is appreciated that the present invention can also be applied to other similar. For UMTS, it is expected to be applicable to all releases.

Whilst in the above described embodiments it has been described that the MBMS RB information message is transmitted on the MCCH, it is appreciated that alternatively some of the information indicated in the MBMS RB INFORMATION message could be transported on the BCCH instead. For example, if the MCCH is multiplexed with MTCH’s, then in order to be able to find the MCCH, the sCCPCH information for the sCCPCH carrying the MCCH can be provided on the BCCH. In this case the MBMS RB INFORMATION message may just include a reference to the corresponding sCCPCH configuration when indicating the mapping of an MTCH. However, it is advantageous that this multiplexing option is only used when the transport channel and physical channel configuration is relatively static, otherwise the BCCH will need to be updated to frequently.

It is noted that throughout this document the term “message” is used to include both indicators and messages, i.e. a message may either include only a single indication, or may include a message comprising different information elements.

It is to be understood that the embodiments described above are preferred embodiments only. Namely, various features may be omitted, modified or substituted
by equivalents without departing from the scope of the present invention, which is defined in the accompanying claims.
WHAT IS CLAIMED IS:

1. A method of transmitting messages related to a broadcast or multicast service from a network element to a plurality of mobile terminals in a cellular communications system, the method comprising:
 sending first and second notification messages to a plurality of said terminals, whereby said first and second notification messages are timed using a first and second cycle, respectively, and whereby the length of said first cycle is different to the length of said second cycle.

2. A method according to claim 1, whereby said first notification messages are used to notify mobile terminals in certain states that they are to receive information relating to a multicast service.

3. A method according to claim 1, wherein said first notification messages are used to notify mobile terminals to listen to a multicast control channel.

4. A method according to claim 1, wherein said first cycle is the longest discontinuous reception cycle.

5. A method according to claim 1, wherein the second cycle is shorter than the first cycle.

6. A method according to claim 2, wherein said certain states include one or more of the following states: RRC_Idle mode, CELL_PCH, CELL-FACH and URA_PCH mode.

7. A method according to claim 1, wherein the first messages trigger the mobile terminals to receive the second messages.

8. A method according to claim 1, wherein the second messages are transmitted on the MBMS Control Channel (MCCH).

9. A method according to claim 1, wherein the network element signals a schedule for said second messages to the plurality of mobile terminals.

10. A method according to claim 1, wherein the network element transmits said second messages according to said schedule.
11. A method according to claim 1, wherein said first messages are MBMS notification indicators.

12. A method according to claim 1, wherein said second messages are MBMS notification messages.

13. A method according to claim 1, wherein the plurality of terminals listen to scheduled notification occasions after detecting said first messages relating to a particular multicast service.

14. A method according to claim 1, wherein more than one of said second messages are transmitted within the cycle of said first messages.

15. A method of transmitting messages relating to a multicast service, whereby the multicast service provides for the transmission of data from a network element to a plurality of terminals in a cellular communications system, the method comprising the steps of:
 transmitting first messages according to a first cycle, wherein said first messages trigger terminals interested in a particular multicast service to listen to a multicast channel,
 transmitting second messages on said multicast channel according to a second cycle, wherein said second cycle is different than said first cycle.

16. A method of providing a multicast service for transmitting data from a network element to a plurality of terminals in a cellular communications system, wherein said cellular communications system uses a first model for mapping first services other than the multicast service and a second model for mapping said multicast service, wherein said first and said second model are substantially the same.

17. A method according to claim 16, wherein in said second model said multicast service is mapped onto one radio access bearer.

18. A method according to claim 17, wherein in said second model said radio access bearer is mapped onto one or more radio bearers.

19. A method according to claim 18, wherein in said second model said one or more radio bearers are mapped onto one or more transport channels.
20. A method according to claim 19, wherein in said second model said one or more transport channels are mapped onto one or more physical channels.

21. A method of providing a point-to-multipoint multicast service in a communications system, wherein said multicast service provides for the transmission of data from a network element to a plurality of mobile terminals, said method comprising the steps of:

transmitting a first and a second message from a network element to said plurality of terminals,

wherein said first message includes a plurality of configurations for transmitting said data to the plurality of terminals, and

wherein said second message includes for a multicast service provided using a p-t-m transfer radio bearer a set of pointer to said configurations to be used for a particular multicast service,

transmitting data for said particular multicast service using said configurations.

22. A method according to claim 21, wherein each of said plurality of configurations includes a radio bearer configuration, a transport channel configuration and a physical channel configuration.

23. A method according to claim 21, wherein said first message is transmitted on a multicast control channel.

24. A method according to claim 21, wherein said second message is transmitted on a multicast control channel.

25. A method according to claim 21, wherein the frequency of transmitting said first message is different to the frequency of transmitting said second message.

26. A method according to claim 21, wherein said first message is the MBMS service availability message.

27. A method according to claim 21, wherein said second message is the MBMS radio bearer information message.

RECTIFIED SHEET (RULE 91)
28. A method of signalling messages related to a point-to-multipoint broadcast or multicast service to a plurality of mobile terminals in a communications system, the method comprising:
 sending a first message including service specific information; and
 sending a second message including information related to the radio resource configuration, wherein said second message does not include service specific information.

29. A method of signalling messages related to a point-to-multipoint broadcast or multicast service to a plurality of mobile terminals in a communications system, the method comprising:
 sending a first message including service specific information; and
 sending a second message including information related to the radio resource configuration, wherein said second message is used for more than one different broadcast and/or multicast service.

30. A method according to claim 29, wherein said second message includes a list of possible radio bearer configurations, a list of possible transport channel configurations, and/or a list of possible physical channels.

31. A method according to claim 30, wherein said first message includes a pointer to one of said radio bearer configurations, to one of said transport channel configurations and/or to one of said physical channels.

32. A method according to claim 28, wherein said first message is transmitted more frequently than said second message.

33. A method of signalling messages relates to a point-to-multipoint broadcast or multicast service to a plurality of mobile terminals in a communications system, the method comprising:
 sending a message including service specific information and information related to the radio resource configuration.

34. A method according to any of claims 1 to 33, wherein said broadcast or multicast service is a multimedia broadcast multicast service (MBMS).

35. A method according to any of claims 1 to 33, wherein said broadcast or multicast service is according to the UMTS standard.

RECTIFIED SHEET (RULE 91)
36. A cellular communications system comprising network portions and a plurality of terminals, wherein said system is adapted to implement the method according to any of claims 1 to 33.
A. CLASSIFICATION OF SUBJECT MATTER

IPC7 H04B 7/26

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7 H04B, H04L, H04Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

KR : IPC as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

KIPASS, DELPHION, ESPACENET & Keywords : multicast, notification, message, cycle, radio, bearer, configuration and similar terms

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Date of the actual completion of the international search

18 APRIL 2005 (18.04.2005)

Date of mailing of the international search report

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
920 Dunsan-dong, Seo-gu, Daejeon 302-701, Republic of Korea

Authorized officer

SHIN, Jun Ho

Telephone No. 82-42-481-8129
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. □ Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. □ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. Claims 1-15 relate to notification messages comprising MBMS notification indicators and MBMS notification messages.

2. Claims 16-20 relate to mapping method of a multicast service.

3. Claims 21-32 relate to a method of signalling messages comprising service specific information and information related to radio resource configuration.

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☒ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invoice payment of any additional fee.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest □ The additional search fees were accompanied by the applicant's protest.

□ No protest accompanied the payment of additional search fees.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU 2630002 A</td>
<td>18-06-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 601058440 D1</td>
<td>28-10-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1340402 A1</td>
<td>03-09-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1340402 B1</td>
<td>22-09-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6697951 B2</td>
<td>24-02-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002077097 A1</td>
<td>20-06-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0247417 A1</td>
<td>13-06-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1276335 A2</td>
<td>15-01-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1276335 A3</td>
<td>07-05-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1457165 A</td>
<td>19-11-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004165197 A</td>
<td>10-06-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 2003085195 A</td>
<td>07-11-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004008657 A1</td>
<td>15-01-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004223513 A1</td>
<td>11-11-2004</td>
</tr>
</tbody>
</table>