发明名称

空气调节器及空气调节器的控制方法

摘要

本发明提供一种空气调节器及空气调节器的控制方法，该空气调节器具有室内机和与该室内机连接的室外机。上述室内机具有：电源输入部，其接受外部电源的输入；异常电压检测部，其与上述电源输入部相连接，并检测通过上述电源输入部是否供给异常电压；控制部，其从上述异常电压检测部接收信号；上述室外机具有：压缩机，其用于对冷媒进行压缩；在上述异常电压检测部检测到异常电压时，上述控制部切断对上述压缩机的电源供给。
1. 一种空调调节器，其特征在于，
 具有室内机和与该室内机连接的室外机，
 上述室内机具有：
 电源输入部，其接受外部电源的输入，
 异常电压检测部，其与上述电源输入部相连接，并检测通过上述电源输入部是否供给
 异常电压，
 控制部，其从上述异常电压检测部接收信号；
 上述室外机具有：
 压缩机，其用于对冷媒进行压缩；
 在上述异常电压检测部检测到异常电压时，上述控制部切断上述压缩机的电源供
 给。

2. 根据权利要求1所述的空调调节器，其特征在于，
 上述异常电压检测部具有：
 电源变压器，对从上述电源输入部输入的交流电压进行减压，
 整流部及平滑部，将通过上述电源变压器减压过的交流电压转换成直流电压，
 电压分配部，对上述平滑部所输出的电压进行分压，
 噪声滤波器，从上述电压分配部所输出的电压中消除噪声并施加到上述控制部。

3. 根据权利要求1所述的空调调节器，其特征在于，
 上述室内机还具有报警部和/或显示部，上述报警部和/或显示部用于报警；上述异常
 电压检测部检测到异常电压或因供给异常电压而停止驱动压缩机。

4. 根据权利要求3所述的空调调节器，其特征在于，
 上述报警部和/或显示部包括音频信号输出单元、文字信号输出单元以及光信号输出
 单元中的至少一个。

5. 根据权利要求1所述的空调调节器，其特征在于，
 上述异常电压包括超出能够稳定地驱动上述压缩机的容许电压范围的低电压以及高
 电压。

6. 一种空调调节器的控制方法，其特征在于，
 包括：
 输入室内机运转指令从而使驱动压缩机的步骤，
 异常电压检测部检测到异常电压从而使停止驱动压缩机的步骤，
 解除异常电压供给状态从而使重新启动上述压缩机的步骤；
 若供给上述异常电压的状态维持设定时间T1，则停止驱动上述压缩机。

7. 根据权利要求6所述的空调调节器的控制方法，其特征在于，
 上述设定时间T1为1秒。

8. 根据权利要求6所述的空调调节器的控制方法，其特征在于，
 上述异常电压检测部所检测的电压包括：
 对上述压缩机的电源供给被切断的低电压(Va)以及高压(Vd)，
 下限临界电压(Vb)，其比上述低电压(Va)高，而且是用于稳定地驱动上述压缩机最低
 电压，
上限临界电压 (Vc)，其比上述高电压 (Vd) 低，而且是用于稳定地驱动上述压缩机的最
高电压；
上述异常电压包括上述低电压 (Va) 以下的电压和上述高电压 (Vd) 以上的电压。
9. 根据权利要求 8 所述的空气调节器的控制方法，其特征在于，
从停止驱动上述压缩机的时刻起经过设定时间 T2，才重新驱动上述压缩机。
10. 根据权利要求 9 所述的空气调节器的控制方法，其特征在于，
在从经过了上述设定时间 T2 的时刻起经过另一设定时间 T3 的期间，维持供给相当于
上述下限临界电压 (Vb) 和上限临界电压 (Vc) 之间的容许电压，才重新驱动上述压缩
机。
11. 根据权利要求 9 所述的空气调节器的控制方法，其特征在于，
上述设定时间 T1 ～设定时间 T3，可以根据上述室内机和室外机的设置位置来增减。
12. 一种空气调节器的控制方法，其特征在于，包括：
输入室内机运转指令从而驱动压缩机的步骤，
异常电压检测部检测异常电压的步骤，
上述异常电压维持设定时间 T1 从而初次停止驱动上述压缩机的步骤，
从初次停止驱动压缩机的时刻起经过设定时间 T2 的步骤，
从经过了上述设定时间 T2 的时刻起经过设定时间 T3 的期间，维持供给能够稳定地驱
动上述压缩机的稳定范围内的电压，以重新驱动压缩机的步骤。
13. 根据权利要求 12 所述的空气调节器的控制方法，其特征在于，
在因供给异常电压而再次发生上述压缩机的驱动停止的时刻以后，即使未经过上述设
定时间 T2，只要在设定时间 T3 内维持供给上述稳定范围内的电压，则也重新驱动上述压缩
机。
14. 根据权利要求 12 所述的空气调节器的控制方法，其特征在于，
上述设定时间 T1 ～设定时间 T3，可以根据上述室内机和室外机的设置位置来增减。
15. 根据权利要求 12 所述的空气调节器的控制方法，其特征在于，
上述异常电压检测部所检测的电压包括：
对上述压缩机的电源供给被切断的低电压 (Va) 以及高压 (Vd)，
下限临界电压 (Vb)，其比上述低电压 (Va) 高，而且是用于稳定地驱动上述压缩机的最
低电压，
上限临界电压 (Vc)，其比上述高电压 (Vd) 低，而且是用于稳定地驱动上述压缩机的最
高电压；
上述异常电压包括上述低电压 (Va) 以下的电压和上述高电压 (Vd) 以上的电压。
16. 根据权利要求 6 或 12 所述的空气调节器的控制方法，其特征在于，
在检测到异常电压时和 / 或上述压缩机的驱动停止时，通过报警部来输出报警信号。
17. 根据权利要求 16 所述的空气调节器的控制方法，其特征在于，
上述报警信号包括用于报警压缩机的驱动的显示灯周期性地闪烁的光闪烁信号。
18. 根据权利要求 17 所述的空气调节器的控制方法，其特征在于，
与上述光闪烁信号一起输出包括报警音的音频信号和 / 或报警文字。
空气调节器及空气调节器的控制方法

技术领域
[0001] 本发明涉及空气调节器（Air conditioning apparatus）及空气调节器的控制方法。

背景技术
[0002] 空气调节器是一种为了使室内环境更加舒适而向室内送入冷暖空气以调节室内温度的设备。一般，空气调节器包括由热交换器构成并在室内设置的室内机以及由压缩机和热交换器等构成并向室内机供给冷媒的室外机。
[0003] 这样的空气调节器一般分开控制由热交换器构成的室内机和由压缩机以及热交换器等构成的室外机。即，压缩机和热交换器安装在机壳（cabinet）内从而形成室外机单元，上述室外机单元设置于室外侧。
[0004] 如上所述，空气调节器对所输入的电源进行转换以使包括压缩机的各结构工作，但是当输入电源不稳定而不能提供一定范围的额定电压时，会发生空气调节器误动作的问题。
[0005] 尤其，在如中东、非洲地区那样电压波动（voltage fluctuation）严重的地区或使用自家发电机的地区，会瞬间发生电压降（voltage dropping）现象，使压缩机那样的部件受损的情况较多。
[0006] 另外，虽然空气调节器具有针对输入电源基本切断过电压等的保护电路，但是有可能会供给使上述保护电路受损的过电压，因此需要另设电源切断设备。而且，在因所供给的电压低而无法供给具有一定大小的电压的情况下，也有可能导致部件受损。
[0007] 另外，现有的过电压切断单元作为另设的外部设备而连接在室内机的外部，在异常电压被供给时切断向室内机和室外机供给的电源本身，因此连风扇也停止工作，故有可能会发生室外机内部瞬间过热的现象。

发明内容
[0008] 本发明要解决的课题
[0009] 本发明的目的在于提供一种空气调节器及其工作方法，实时地检测向空气调节器供给的输入电源从而检测是否供给了过电压或低电压那样的异常电压，在供给了异常电压时迅速切断电源，从而防止因供给异常电压而引起的空气调节器的误动作以及压缩机的损坏。
[0010] 另外，本发明的目的在于，不仅选择性地切断异常电压供给时的电源供给，而且控制压缩机的驱动，由此防止因电源切断引起的其他电气部件的损坏。
[0011] 要解决课题的手段
[0012] 为了实现如上所述的目的，本发明实施例的空气调节器的特征在于，具有室内机和与该室内机连接的室外机，上述室内机具有；电源输入部，其接受外部电源的输入；异常电压检测部，其与上述电源输入部相连接，并检测通过上述电源输入部是否供给异常电压；
控制部，其从上述异常电压检测部接收信号；上述室外机具有：压缩机，其用于对冷媒进行压缩；在上述异常电压检测部检测到异常电压时，上述控制部切断对上述压缩机的电源供给。

[0013] 另外，本发明实施例的空气调节器的控制方法的特征在于，包括：输入室内机运转指令从而驱动压缩机的步骤；异常电压检测部检测到异常电压从而停止驱动压缩机的步骤；解除异常电压供电状态从而重新驱动上述压缩机的步骤；若供给上述异常电压的状态维持设定时间 T1，则停止驱动上述压缩机。

[0014] 另一方面，本发明实施例的空气调节器的控制方法的特征在于，包括：输入室内机运转指令从而驱动压缩机的步骤；异常电压检测部检测异常电压的步骤；上述异常电压维持设定时间 T1 从而初次停止驱动上述压缩机的步骤；从初次停止驱动压缩机的时刻起经过设定时间 T2 的步骤；从经过了上述设定时间 T2 的时刻起经过设定时间 T3 的期间，维持供给能够稳定地驱动上述压缩机的稳定范围内的电压，以重新驱动压缩机的步骤。

[0015] 发明的效果

[0016] 具有如上所述的结构的本发明实施例的空气调节器以及空气调节器的控制方法具有如下效果。

[0017] 第一，检测异常电压并根据其结果能够切断电源供给的电源切断单元内置于空气调节器中，尤其内置于室内机的电气部中，从而具有不需要设置另外的电源切断设备的优点。

[0018] 第二，为了应对不稳定的输入电源，具有用于检测输入电源的异常的单元，从而针对不稳定的输入电源检测异常电压，由此能够使空气调节器在更稳定的状态下工作。

[0019] 第三，与供给了异常电压时切断空气调节器整体的电源供给从而停止工作的现有的控制结构不同地，具有如下优点：不仅切断对压缩机的电源供给，而且根据异常电压检测部所检测出的结果来控制是否停止压缩机以及是否重新驱动。

[0020] 第四，在供给了异常电压时，仅停止驱动压缩机，而使室外机风扇继续工作，因此具有能够抑制压缩机以及冷凝器的瞬间的过热的效果。

[0021] 第五，能够期待具有针对异常电压的双重稳定设备的效果，具有防止空气调节器的误动作以及损坏而提高产品的可靠性效果。

附图说明

[0022] 图 1 是本发明实施例的空气调节器的立体图。

[0023] 图 2 是示出了本发明实施例的空气调节器的内部结构的底图。

[0024] 图 3 是示出了本发明实施例的异常电压检测部的结构的电路图。

[0025] 图 4 是示出了本发明第一实施例的空气调节器的控制方法的流程图。

[0026] 图 5 是示出了利用本发明第一实施例的控制方法基于输入电压值来控制压缩机驱动的状况的图表。

[0027] 图 6 是示出了本发明第二实施例的空气调节器的控制方法的流程图。

[0028] 图 7 是示出了利用本发明第二实施例的控制方法基于输入电压值来控制压缩机驱动的状况图表。

[0029] 图 8 是示出了本发明实施例的供给异常电压时的报知方法的流程图。
具体实施方式

[0030] 下面，参照附图详细说明本发明实施例的空气调节器及控制方法。

[0031] 图 1 是本发明实施例的空气调节器的立体图，图 2 是示出了本发明实施例的空气
调节器的内部构造的框图。

[0032] 参照图 1 和图 2，本发明实施例的空气调节器大体上由室内机 (10) 和室外机 (20)
构成。

[0033] 详细地说，上述室内机 (10) 具有用于向室内供给暖风或冷风的内热交换器 (未
图示) 以及室内风扇 (15)，由设置于排出口的叶片 (vane) 或百叶窗 (louver) 来控制排出
的空气的方向。另外，在上述室内机 (10) 的前表面上具有控制面板。该控制面板具有显示
部 (16)，用于输入工作指令的输入部 (18) 以及控制部 (11)，从而能够确认室内机 (10) 和
/或室外机的运转状态，而且能够输入工作指令。

[0034] 另外，上述室外机 (20) 具有用于压缩冷媒的压缩机 (21)，与压缩机 (21) 的出口一
侧连接的室外热交换器 (未图示) 以及使空气强制流动以使室外热交换器和外部空气进行
热交换的室外风扇 (22)。

[0035] 另外，上述室内机 (10) 包括：控制部 (11)，其用于控制上述室内风扇 (15) 和设置
于室外机 (20) 上的电气部件的动作；电源输入部 (12)，其用于向屋内供给的工业交流电
压供给到空气调节器；电源切断部 (13)，其用于检测是否利用上述电源输入部 (12) 供给异
常电压而切断对上述压缩机 (21) 的驱动部件的电源供给；驱动部 (14)，其用于接受
通过上述电源输入部 (12) 供给的电源供给来驱动室内风扇 (15) 等；报警部 (17)，其用于在
上述电源切断部 (13) 供给了异常电压时或因供给异常电压而发生了压缩机停转的状况时
进行报警；显示部 (16)，其用于显示室内机 (10) 和 /或室外机 (20) 的工作状态；输入部
(18)，其用于输入工作指令；上述室内风扇 (15)，驱动部 (14)，其用于控制上述室外机 (20)
所具有的压缩机 (21) 以及室外风扇 (22) 的驱动。上述输入部 (18)，显示部 (16) 以及上述
报警部 (17) 可以形成为与控制面板相同的模块形态。

[0036] 详细地说，上述电源切断部 (13) 具有：异常电压检测部 (131)，其用于判断是否通
过上述电源输入部 (12) 输入了异常电压；切换单元 (132)，其用于根据上述异常电压检测
部 (131) 的判断结果，选择性地断开对上述压缩机 (21) 的电源供给。如图所示，上述电
源切断部 (13) 采用内置于室内机 (10) 内部的结构，具有不需要另外的电源切断设备的特征。

[0037] 详细地说，上述异常电压检测部 (131) 通过利用电源变压器 (power transformer)
的 RMS (Root-Mean-Square；均方根值) 电压检测方法，从所输入的交流电源检测异常电压。
另外，虽然未示出，但是在上述异常电压检测部 (131) 中内置有电源变压器，对利用上述电
源变压器来升压 / 减压的电压进行整流的整流电路，对通过上述整流部的电压进行平滑处
理的平滑电路。另外，上述电源变压器发挥将通过电源输入部 (12) 输入的高电压的交流电
源转换成低电压的交流电源的功能。上述整流电路和平滑电路是发挥将输入交流电源转换
成直流电源的功能的普通电路，省略对此的具体说明。

[0038] 下面，利用流程图和电压图表详细说明在具有如上述的结构的空气调节器结构中
供给了异常电压时对上述压缩机 (21) 的驱动进行控制的方法。

[0039] 图 3 是示出了本发明实施例的异常电压检测部的结构的电路图。
参照图 3，本发明一实施例的异常电压检测部 (131) 一体形成在安装于室内机 (10) 的内部的控制基板上。即，该异常电压检测部 (131) 采用内置于室内机内部的结构，而不是另设的外部设备。

详细地说，所述异常电压检测部 (131) 通过利用电源变压器的 RMS 电压检测，从输入电源检测异常电压。即，所检测的异常电压是流入屋内的交流电压值。

上述异常电压检测部 (131) 具有：对所输入的交流电压进行减压的电源变压器 (131a)。将利用上述电源变压器 (131a) 来减压过的交流电压转换成直流电压的整流部 (131b) 以及平滑部 (131c)。对从交流转换成直流的电压进行分配的电压分配部 (131d)、噪声滤波器 (131e)。

详细地说，上述电源变压器 (131a) 与电源输入部 (12) 相连接，对电源输入部 (12) 输入的高电压的交流电源进行减压而形成低电压的交流电源。

上述整流部 (131b) 由多个二极管构成，其对低电压的交流电源进行全波整流。全波整流的电源在上述平滑部 (131c) 变得平滑。此时，在整流部 (131b) 与平滑部 (131c) 之间连接二极管 (D6) 和电容器 (C1)。

上述电压分配部 (131d) 由多个电阻构成，其根据多个电阻的电阻比来分配平滑的电源的电压。上述电压分配部 (131d) 经由位于第一电阻 (R1) 和第二电阻 (R2) 之间的二极管 (D16)，与基准电压相连接。例如，上述电压分配部 (131d) 能够使施加到控制部 (11) 的电压达到 5V 以下。上述电压分配部 (131d) 由分流电阻 (Shunt Resistor) 构成。可以使用第一电阻 (R1) 约为 10k 欧姆，第二电阻 (R2) 的大致约为 2k 欧姆这样的电阻值相差 5 倍左右的电阻，以使电源分配变得容易。例如，在输入电压为 AC350V 时，能够设计为向控制部 (11) 施加 DC4.8V。分配的电源通过上述噪声滤波器 (131e) 而施加到上述控制部 (11)。上述噪声滤波器 (131e) 的一端与上述电压分配部 (131d) 的第一电阻 (R1)、第二电阻 (R2) 和二极管 (D16) 相连接，另一端与上述控制部 (11) 一侧相连接。

上述噪声滤波器 (131e) 由第三电阻 (R3) 和电容器 (C5) 的 RC 滤波器构成，其消除输入到上述控制部 (11) 的电压中的噪声，从而能够减少因噪声引起的电压检测误差。

控制部 (11) 对从异常电压检测部 (131) 输入的电压信号的 RMS 电压值进行判断，从而判断输入电源是否异常，并根据此判断电源输入部 (12) 的电源。

这样的异常电压检测部 (131) 容易以电路实现，而且由于是绝缘型设计，所以不会因浪涌 (Surge) 噪声而被烧坏，因此容易检测电源的异常，能够防止控制部 (11) 因浪涌噪声而被损坏。

上述异常电压检测部 (131) 利用电源输入部 (12) 的输入电压，将预定大小的电压信号施加到控制部 (11)。然后，控制部 (11) 判断是否为异常电压，从而选择性地切断电源供给。

具体地说，根据上述噪声滤波器 (131e) 的出口端设定的直流电压值，将输入到上述电源输入部 (12) 的交流电压值作为一列表 (look-up table) 并存储在存储部 (19) 中。例如，若在噪声滤波器 (131e) 的出口端设定的直流电压为 4.8V，则表格化为所输入的交流电压即 RMS 电压相当于 350V。因此，能够根据上述噪声滤波器 (131e) 的出口端检测的直流电压值来预测所输入的交流电压值，并判断预测的交流电压值是否在异常电压范围内。

图 4 是示出了本发明第一实施例的空气调节器的控制方法的流程图，图 5 是示出
了利用本发明的实施例的控制方法基于输入电压值来控制压缩机驱动的状况的图表。

【0052】参照图4，在运转初期以输入额定电压作为前提，当用户通过上述输入部(18)输入室内机的运转条件时，从上述控制部(11)向上述驱动部(14)传输压缩机驱动指令，其结果，开始上述压缩机(21)的驱动(S11)。

【0053】详细地说，从开始上述压缩机(21)的驱动的瞬间起，上述异常电压检测部(131)实时地检测是否有异常电压的输入(S12)。这里，通过上述电源输入部(12)来输入的电压有定义为异常电压的低电压(Va)和高电压(Vd)。定义为稳定状态的临界电压的下限临界电压(Vb)和上限临界电压(Vc)。

【0054】更详细地说，上述输入电压具有Va < Vb < Vc < Vd的关系。另外，将上述低电压(Va)和下限临界电压(Vb)之间的区间定义为下端滞后区间(bottom hysteresis area)(C)，将上述上限临界电压(Vc)和高电压(Vd)之间的区间定义为上端滞后区间(upper hysteresis area)(B)。另外，将上述上端临界电压(Vb)和上限临界电压(Vc)之间的区间定义为能够稳定地驱动上述压缩机(21)的稳定区间(A)，可以定义为容许电压区间。另外，上述低电压(Va)和高电压是用于切断电压供给的切断电压(tripping voltage)，分别可以为182V和281V。另外，上述上限临界电压(Vc)可以是270V，下限临界电压(Vb)可以是190V。另外，如上述，上述输入电压(Va ~ Vd)是根据在异常电压检测部的出口端检测的直流电压值来预测的交流电压(RMS电压)。

【0055】另外，在输入电压值位于上述滞后区间(B, C)的情况下，压缩机(21)的运转条件不变。换句话说，在压缩机(21)已被驱动的状态下，当输入电压值在上述滞后区间(B, C)时，压缩机(21)的驱动并不停止。相反地，在压缩机(21)已停止的状态下，当上述输入电压值在上述滞后区间(B, C)时，并不驱动压缩机(21)。如后所述，用于在压缩机停止的状态下使其开始运转的延时时间从达到上述上限临界电压(Vc)和下限临界电压(Vb)的瞬间起计算。

【0056】另一方面，若上述异常电压检测部(131)未检测到异常电压，则继续维持压缩机驱动状态(S13)，若检测到异常电压，则判断从检测到的瞬间起是否维持设定时间(T1) (S14)。另外，若未经过设定时间(T1)，则不进入异常电压供给状态，而继续维持之前的状态。即，维持压缩机驱动状态(S13)。另外，若维持设定时间(T1)，停止驱动压缩机(S15)。这里，上述设定时间(T1)可以是1秒。

【0057】为了重新驱动，从压缩机停止驱动的瞬间起需要经过至少设定时间(T2)。

【0058】详细地说，上述控制部(11)判断从压缩机停止驱动的瞬间起是否经过了设定时间(T2)(S16)，若未经过，则使压缩机继续维持停止状态(S17)，若已经过，则判断输入电压是否达到稳定区间内的电压。这里，上述设定时间(T2)可以是3分钟。

【0059】然后，判断是否在设定时间(T3)内维持以稳定区间内的输入电压进行供给(S18)，若没有维持设定时间(T3)，则使压缩机维持停止状态(S19)。相反地，若判断为经过了设定时间(T3)，则只限于未发出空气调节器停止指令的情况下即只限于未断开电源的情况(20)下恢复到压缩机重新驱动的步骤。这里，上述设定时间(T3)可以是30秒。

【0060】另一方面，上述设定时间(T3)是可变的，从而确保控制算法的可靠性。这是因为，根据设置空气调节器的地区或国家，所供给的电压的稳定性可能有差异。因此，在电压供给不稳定的地区，将上述设定时间(T3)值设定为较大，在电压供给稳定的地区，可以将其设
定为较小。

[0061] 据图 5 的图表，发生了如下状况 (a)，在从压缩机停止驱动的时刻起经过设定时间（T2）之前，输入电压在稳定区间维持了设定时间（T3）。但是，由于在压缩机停止后未经过相当于用于重新驱动的延迟时间的设定时间（T2），因此忽视。这是因为，在压缩机（21）停止的状态下重新驱动压缩机（21），必须在经过预定的时间（T2）后施加电源，这样才能防止压缩机受损。因此，在压缩机（21）停止的时刻以后，以必须经过上述设定时间（T2）作为前提条件，从而能够防止压缩机受损。

[0062] 图 6 是示出了本发明第二实施例的空气调节器的控制方法的流程图，图 7 是示出了利用本发明第二实施例的控制方法基于输入电压值来控制压缩机驱动的状况的图表。

[0063] 参照图 6，本实施例的特征在于，在压缩机第一次停止驱动的时刻，为了压缩机的稳定必须经过延迟时间（T2），并在稳定区间必须经过设定时间（T3）。才使压缩机重新驱动，之后压缩机停止时，只要满足在稳定区间经过设定时间（T3）的条件，便使压缩机重新驱动。

[0064] 详细地说，当空气调节器运转指令被输入时，首先将用于对压缩机的停止次数进行计数的累积变量（n）设为 0（S21），并开始驱动压缩机（S22）。与上述第一实施例同样地，在本实施例中也在运转初期以输入稳定区间的交流电压为前提。

[0065] 然后，上述控制部（11）判断是否通过电源输入部（12）供给了异常电压（S23），根据其结果，维持压缩机的运转（S24）或进入用于判断异常电压的追随步骤。即，若检测到异常电压，则判断是否在设定时间（T1）内维持供给异常电压（S25），从而维持压缩机的运转或停止压缩机驱动（S26）。

[0066] 另一方面，若满足停止压缩机驱动的条件并停止了压缩机驱动，则使上述累积变量（n）的值增加 1（S27）。然后，判断累积变量（n）的值是否为 1（S28）。换句话说，判断是否第一次停止驱动压缩机。然后，若判断为第一次停止驱动压缩机（n = 1），则判断从压缩机停止时刻起是否经过了设定时间（T2）（S29）。另外，若未经过设定时间（T2），则维持压缩机的停止状态（S30），若经过了设定时间（T2），则判断是否在设定时间（T3）内供给了稳定区间的电压（S31）。

[0067] 详细地说，若在设定时间（T3）内维持供给稳定电压，则判断是否有空气调节器运转停止指令即将中断指令的输入。若没有运转停止指令的输入，则重新驱动压缩机。相反地，若未经过设定时间（T3），则继续维持压缩机驱动停止状态（S32）。

[0068] 可以将本实施例的设定时间（T1～T3）设定为与第一实施例相同的设定时间。另外，应注意的是，不仅在第一实施例，在第二实施例中，上述设定时间（T1～T3）意味着从起算时刻起连续计算的时间，而不是间断的维持的时间的合计。例如，在上述设定时间（T3）为 35 秒时，为了压缩机的稳定，经过延迟时间（T2）后在稳定区间将输入电压连续供给 30 秒，才视为满足压缩机重新驱动条件。即使在稳定区间维持 10 秒后输入电压再次增加或减少而移动到异常电压区间的状况发生 4 次，也不视为上述设定时间（T3）经过了 30 秒以上。

[0069] 当压缩机重新驱动时，重新执行异常电压检测过程，在因异常电压的输入而压缩机第二次停止的瞬间，上述累积变量（n）变为 2。而且，在压缩机再次停止的瞬间起压缩机的重新驱动条件发生变化。即，不判断是否满足用于确保压缩机稳定后延迟时间（T2），而仅对输入稳定电压的时间是否经过设定时间（T3）的条件进行判断，从而决定是否重新驱动。
压缩机。另外，与第一实施例同样地，可以分为多个区间来判断上述设定时间 (T3)。

[0070] 　如图 7 的图所图所示，本实施例的特征在于，仅在压缩机第一次停止的时刻将设定时间 (T2) 的经过作为基本条件，之后，只要满足设定区间的设定时间 (T3)，就重新驱动压缩机。

[0071] 　另一方面，当供给异常电压而停止压缩机驱动时，可以利用上述室内机 (10) 所具有的报警部 (17) 向用户报警异常电压的供给。

[0072] 　图 8 是示出了本发明实施例的异常电压供给时的报警方法的流程图。

[0073] 　参照图 8，上述报警部 (17) 可以是输出音频信号的单元或具有用于发出闪烁光的报警灯的单元。另外，上述报警灯可以是 LED 光源。而且，可以以文字或动画等方式向上述显示部 (16) 输出报警信号。

[0074] 　下面，以报警单元为发出光的显示灯的情况为例进行说明。

[0075] 　首先，向空调器供给电源从而开始驱动压缩机 (S31)。然后，检测在空调器的运转过程中是否输入异常电压 (S32)，若检测到异常电压，则使显示灯以一定的时间间隔闪烁 (S33)。然后，与此同时停止压缩机驱动 (S35)。这里，停止压缩机驱动的动作和使显示灯闪烁的动作可以同时进行，也可以一前一后进行这两个动作。

[0076] 　相反地，在未检测出异常电压的期间，可以使显示灯输出特定颜色的光，例如持续输出绿色或蓝色的光 (S34)。另外，在供给了异常电压时，也可以在使显示灯闪烁的同时输出报警音或报警文字。
图 3
图 7

图 8