用于 OLED 显示驱动装置的自动限流方法

本发明提供一种用于 OLED 显示驱动装置的自动限流方法，包括步骤：A. 开始并输入一原始帧图像；B. 统计帧图像的平均亮度；C. 根据平均亮度查找一平均亮度—帧峰值亮度比表，获得对应的一帧峰值亮度比；D. 从帧图像中取一个像素并计算像素内差；E. 设置一个或多个补偿节点，获取其对应的补偿值并且插值计算像素内差对应的一像素峰值亮度比；F. 根据像素峰值亮度比与输入像素获得映射后的输出像素；G. 判断输出像素是否为最终像素？若是，则执行下下一步骤；若否，则返回上述步骤 D；H. 结束并输出帧图像。本发明能够根据显示内容自动调整显示亮度，降低显示驱动装置的功耗，具有调节方式简单、图像质量保持较好等优点。
1. 一种用于 OLED 显示驱动装置的自动限流方法, 包括步骤:
 A. 开始并输入一原始帧图像；
 B. 统计所述帧图像的平均亮度（AL）；
 C. 根据所述平均亮度（AL）查找一平均亮度-帧峰值亮度比表, 获得对应的一帧峰值亮度比（FPBR）；
 D. 从所述帧图像中取一个像素并计算像素内差（S）；
 E. 设置一个或多个补偿节点（A,B），获取其对应的补偿值（offset I, offset II）并且插值计算所述像素内差（S）对应的一像素峰值亮度比（PPBR）；
 F. 根据所述像素峰值亮度比（PPBR）与输入像素（Op）获得映射后的输出像素（Np）；
 G. 判断所述输出像素（Np）是否为最终像素？若是，则执行下步骤H；若否，则返回上述步骤D；
 H. 结束并输出所述帧图像。

2. 根据权利要求1所述的自动限流方法，其特征在于，所述像素的亮度（Y）与其RGB值存在如下换算关系:
 \[Y = 0.257 \times R + 0.564 \times G + 0.098 \times B + 16\]
 所述平均亮度（AL）的计算公式为:
 \[
 AL = \frac{1}{M \times N} \sum_{i=1}^{M} \sum_{j=1}^{N} Y_{ij}
 \]
 其中，AL 为所述平均亮度，M、N 为大于1的自然数，M×N 为图像分辨率尺寸。

3. 根据权利要求2所述的自动限流方法，其特征在于，所述像素内差（S）的计算公式为:
 \[S = \text{Max}(R, G, B) - \text{Min}(R, G, B)\]
 其中，S 为所述像素内差，Max(R, G, B) 和 Min(R, G, B) 分别对应 R、G、B 三元素的最大值和最小值。

4. 根据权利要求3所述的自动限流方法，其特征在于，在上述步骤E中，设置一预设值（TPBR），在所述像素峰值亮度比（PPBR）与所述预设值（TPBR）之间建立如下的一个下降的线性关系, 依据此线性关系计算得到所述像素峰值亮度比（PPBR）:
 \[TPBR = \begin{cases} TPBR & TPBR > FPBR \\ FPBR & TPBR \leq FPBR \end{cases}\]
 其中，TPBR 为所述预设值, PPBR 为所述像素峰值亮度比。

5. 根据权利要求4所述的自动限流方法，其特征在于，所述输出像素（Np）的计算公式为:
 \[Np = Op \times PPBR\]
 其中，Np 为映射后的所述输出像素，Op 为所述输入像素。

6. 根据权利要求5所述的自动限流方法，其特征在于，所述输出像素（Np）和所述输入像素（Op）均在 [0, 255] 范围内。
用于 OLED 显示驱动装置的自动限流方法

技术领域
[0001] 本发明涉及图像处理以及显示驱动技术领域，具体来说，本发明涉及一种用于 OLED 显示驱动装置的自动限流方法 (ACL)。

背景技术
[0002] 有机发光二极管显示器 (OLED) 相对于液晶显示器 (LCD) 具有自发光、超轻薄、响应速度快、宽视角、高对比度及柔性显示等优点，故被称为下一代显示技术。当前，智能手机领域发展方向不断趋向于大尺寸显示。如何延长待机时间，降低显示功耗已成为低功耗研究领域广泛关注的话题。一些发展比较成熟，适用于 LCD 的低功耗显示技术如内自适应亮度控制 (CABC)、环境自适应亮度控制 (LABC) 已不适用于 OLED。因此，可用于 OLED 的低功耗显示技术的研究显得十分必要。
[0003] 作为电流驱动器件，OLED 显示亮度与驱动电流成正比，增大电流固然可以提高亮度，但同时带来能耗和降低器件寿命的问题。而且 OLED 发光效率比 LCD 高，过高亮度反而会降低观看舒适度，所以内容图像在被送入 OLED 显示器前，普遍会经过降低亮度处理。
[0004] 降低亮度常用指降低图像的平均亮度。通常采用两种方式：线性像素映射或者 gamma 像素映射。线性像素映射方式主要指对图像的所有像素施加一个统一的压缩比例，通常在 0 到 1 之间，如图 1 所示。采用这种方式虽然能够有效降低图像的平均亮度，但同时也可能导致图像对比度下降。为了改善图像质量，gamma 像素映射方式采用非线性映射保证图像对比度，如图 2 所示。但是，采用这种方式容易影响显示器的 gamma 校正，同时调节复杂，而且效果有限。

发明内容
[0005] 本发明所要解决的技术问题是对用于 OLED 显示驱动装置的自动限流方法，能够根据显示内容自动调整显示亮度，降低显示驱动装置的功耗。
[0006] 为解决上述技术问题，发明提供一种用于 OLED 显示驱动装置的自动限流方法，包括步骤：
[0007] A. 开始并输入一原始帧图像；
[0008] B. 统计所述帧图像的平均亮度；
[0009] C. 根据所述平均亮度查找一平均亮度 - 帧峰值亮度比表，获得对应的一帧峰值亮度比；
[0010] D. 从所述帧图像中取一个像素并计算像素内差；
[0011] E. 设置一个或多个补偿节点，获取其对应的补偿值并且插值计算所述像素内差对应的一像素峰值亮度比；
[0012] F. 根据所述像素峰值亮度比与输入像素获得映射后的输出像素；
[0013] G. 判断所述输出像素是否为最终像素？若是，则执行下步骤 H；若否，则返回上述步骤 D；
[0014] H. 结束并输出所述帧图像。

[0015] 可选地，一个像素的亮度与其 RGB 值存在如下换算关系：

\[Y = 0.257 \times R + 0.564 \times G + 0.098 \times B + 16 \]

[0016] 所述平均亮度的计算公式为：

\[AL = \frac{\sum_{i=1}^{M} \sum_{j=1}^{N} Y_{ij}}{M \times N} \]

[0017] 其中，AL 为所述平均亮度，M、N 为大于 1 的自然数，M×N 为图像分辨率尺寸。

[0018] 可选地，所述像素内差的计算公式为：

\[S = \max(R, G, B) - \min(R, G, B) \]

[0019] 其中，S 为所述像素内差，\(\max(R, G, B) \) 和 \(\min(R, G, B) \) 分别对应 R、G、B 三元素的最大值和最小值。

[0020] 可选地，在上述步骤 E 中，设置多项设值，在所述像素峰值亮度比与所述预设值之间建立如下一个下降的线性关系，依此线性关系计算得到所述像素峰值亮度比：

\[TPBR = \begin{cases} \frac{TPBR}{FPBR} & TPBR > FPBR \\ FPBR & TPBR \leq FPBR \end{cases} \]

[0021] 其中，TPBR 为所述预设值，PPBR 为所述像素峰值亮度比。

[0022] 可选地，所述输出像素的计算公式为：

\[Np = 0p * PPBR \]

[0023] 其中，Np 为映射后的所述输出像素，0p 为所述输入像素。

[0024] 可选地，所述输出像素和所述输入像素均在 [0, 255] 范围内。

[0025] 与现有技术相比，本发明具有以下优点：

[0026] 相较于原有的降低显示驱动装置功耗的方法，本发明能够根据显示内容自动调整显示亮度，从而降低显示驱动装置的功耗，具有调节方式简单、图像质量保持较好等优点。

附图说明

[0028] 本发明的上述的以及其他的特征、性质和优势将通过下面结合附图和实施例的描述而变得更加明显，其中：

[0029] 图 1 为现有技术中的一种线性像素映射方式压缩图像的输出亮度的曲线示意图；

[0030] 图 2 为现有技术中的一种 gamma 像素映射方式压缩图像的输出亮度的曲线示意图；

[0031] 图 3 为本发明一个实施例的用于 OLED 显示驱动装置的自动限流方法的流程图；

[0032] 图 4 为本发明一个实施例的用于 OLED 显示驱动装置的自动限流方法中的一帧图像的平均亮度与帧峰值亮度比的对应曲线图；

[0033] 图 5 为本发明一个实施例的用于 OLED 显示驱动装置的自动限流方法中的一帧图像的像素内差与像素峰值亮度比的对应曲线图。

具体实施方式

[0034] 下面结合具体实施例和附图对本发明作进一步说明，在以下的描述中阐述了更多
的细节以便于充分理解本发明，但是本发明显然能够以多种不同于此描述的其它方式来实
施。本领域技术人员可以在不违背本发明内涵的情况下根据实际应用情况作类似推广、演
绎，因此不应以此具体实施例的内容限制本发明的保护范围。
[0039] 本发明提出的自动限流技术 (ACL) 是一种通过分析图像内容，自动调整显示亮度，达到节能目标的技术。
[0040] OLED 显示器无需使用背光技术，降低显示功耗主要依靠降低显示图像的亮度。当前显示系统广泛采用调节 gamma 的方式实现像素映射，但是，该种方法调节复杂，效果有限。为了有效节能的同时保持较好的显示效果，本发明中提出一种 ACL 技术对像素进行调节。
[0041] ACL 是一种通过改变图像像素值从而限制 OLED 显示面板电流消耗的技术。ACL 的宗旨是把亮度范围划分成若干个区间，按照高亮图降低亮度多、低亮图降低亮度少的方式，首先针对不同的输入图像，按图像亮度选取不同的帧峰值亮度比。然后循序计算每个像素的像素内差，利用内差系数和帧峰值亮度比，查找计算每个像素的像素峰值亮度比。最终对输入的像素进行映射操作后完成输出。相对于现有的方法，本发明则具有调节简单，图像质量保持较好等优点。
[0042] 下面对本发明的方法进行详细解释：
[0043] 图 3 为本发明一个实施例的用于 OLED 显示驱动装置的自动限流方法的流程图。需要注意的是，这个以及后续其他的附图均仅作为示例，不应该以此作为对本发明实际要求的保护范围构成限制。如图 3 所示，用于 OLED 显示驱动装置的该自动限流方法主要包括：
[0044] 执行步骤 S301，开始并输入一原始帧图像。
[0045] 执行步骤 S302，统计帧图像的平均亮度 AL。
[0046] 在本步骤中，数字图像以像素为单位，一个像素的亮度 Y 与其 RGB 值存在如下换算关系：
[0047] \[Y = 0.257 \times R + 0.564 \times G + 0.098 \times B + 16 \]
[0048] 若以帧为单位，统计一帧的平均亮度 AL 的计算公式为：
[0049] \[AL = \frac{\sum_{i=1}^{M} \sum_{j=1}^{N} Y_{ij}}{M \times N} \]
[0050] 其中，AL 为平均亮度，M、N 为大于 1 的自然数，M×N 为图像分辨率尺寸。
[0051] 执行步骤 S303，根据平均亮度 AL 查找一平均亮度—帧峰值亮度比表，获得对应的—帧峰值亮度比 FPBR。
[0052] 由步骤 S302 中计算得到的平均亮度 AL 需要经过查找平均亮度—帧峰值亮度比表，来查找对应的帧峰值亮度比 FPBR，例如下表所示（仅作为示例）。

<table>
<thead>
<tr>
<th>平均亮度</th>
<th>帧峰值亮度比</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>0.97</td>
</tr>
<tr>
<td>20%</td>
<td>0.91</td>
</tr>
</tbody>
</table>
30% 0.88
40% 0.83
50% 0.78
60% 0.72
70% 0.70
80% 0.68
90% 0.63
100% 0.60

其中，本实施例的自动限流方法将图像亮度从暗至亮划分为 10 个区间。如果将这 10 个区间置于坐标系中，用横轴表示平均亮度 AL，纵轴表示幅峰值亮度比 FPBR，则平均亮度 AL 与幅峰值亮度比 FPBR 的对应关系如图 4 所示。

执行步骤 S304，从帧图像中找出一个像素并计算像素内差 S。

在本步骤中，像素内差 S 的计算公式为：

\[S = \text{Max}(R, G, B) - \text{Min}(R, G, B) \]

其中，S 为像素内差，Max(R, G, B) 和 Min(R, G, B) 分别对应 R, G, B 三元素的最大值和最小值。

本实施例的自动限流方法能在有效降低图像亮度的同时，保持图像良好的对比度。对比度 C 泛指一幅图像内最亮处与最暗处的亮度比。对于某一个像素而言：

\[C = \frac{\text{Max}(R, G, B)}{\text{Min}(R, G, B)} \]

存在推论如下，反之亦然：

\[C \approx 1 \iff \text{Max}(R, G, B) = \text{Min}(R, G, B) \iff S \approx 0 \]

像素内差 S 接近于 0，说明该像素所含色彩信息较少，且处于由黑到白的灰度带上。当像素内差 S 接近于 0 时，让像素峰值亮度比 PPBR 值接近于 1，说明自动限流方法尽量保持了原始像素信息。对于一副图像来说，白色和黑色部分保持不变，即保证了图像的对比度不变，改变的只是含有颜色信息的部分。

如果以像素内差 S 为横轴，以像素峰值亮度比 PPBR 为纵轴，建立坐标系，则像素内差 S 与像素峰值亮度比 PPBR 的对应关系如图 5 所示。同时满足如下条件设 TPBR，则可以在帧峰值亮度比 FPBR 与预设值 TPBR 之间建立如下的一个下降的线性关系，依据该线性关系可以计算得到像素峰值亮度比 PPBR：

\[TPBR = \begin{cases} \text{TPBR} & \text{TPBR} > \text{FPBR} \\ \text{FPBR} & \text{TPBR} \leq \text{FPBR} \end{cases} \]

其中，TPBR 为预设值，PPBR 为像素峰值亮度比。
该预设值 TPBR 默认可设置为 1.0，此时图像处理前后的对比度保持不变。若 TPBR = FPBR，则本实施例的自动限流方法转变为线性求像映射。图 5 中显然可见，当像素内差 S 接近于 0 时，像素峰值亮度比 PPBR 值接近于预设值 TPBR，此时为了保护对比度，对原始像素处理不多；当像素内差 S 接近于 1 时，像素峰值亮度比 PPBR 值接近于阈峰值亮度比 FPBR，此时像素包含色彩信息较多，应当降低亮度，节省功耗。

执行步骤 S305，设置一个或多个补偿节点 A、B，获取对应的补偿值 offset I、offset II 并且插值计算像素内差 S 对应的一像素峰值亮度比 PPBR。

如图 5 所示，其中还预置了三个补偿节点 A 和 B，目的是满足调节的灵活多变。若确定补偿节点 A 点的像素内差为 SA，补偿节点 B 点的像素内差为 SB，对 A、B 两点进行补偿的前提是补偿后 A 点的像素峰值亮度比 PPBR 不能高于预设值 TPBR，B 点的像素峰值亮度比 PPBR 不得低于阈峰值亮度比 FPBR，同时 A 点能且仅能向上补偿，B 点能且仅能向下补偿。假设 A 点的补偿值为 offset I，B 点的补偿值为 offset II，则依据三角关系很容易算出补偿后每个像素的像素峰值亮度比 PPBR 值。

执行步骤 S306，根据像素峰值亮度比 PPBR 与输入像素 Op 获得映射后的输出像素 Np。

在本步骤中，只要将步骤 S305 中计算得出的像素峰值亮度比 PPBR 与输入像素 Op 进行乘操作即可得到映射后新的输出像素，即：

\[Np = 0p \times PPBR \]

Np 为映射后的输出像素，Op 为输入像素，均在 [0, 255] 范围内，PPBR 为像素峰值亮度值。

执行步骤 S307，判断输出像素 Np 是否为最终像素？若是，则执行下一步骤 S308；若否，则返回上述步骤 S304。

执行步骤 S308，结束并输出帧图像。

综上所述，相较于原有的降低显示驱动装置功耗的方法，本发明能够根据显示内容自动调整显示亮度，从而降低显示驱动装置的功耗，具有调节方式简单、图像质量保持较好等优点。

本发明虽然以较佳实施例公开如下，但其并不是用来限定本发明，任何本领域技术人员在不脱离本发明的精神和范围内，都可以做出可能的变动和修改。因此，凡是未脱离本发明技术方案的内容，依据本发明的技术实质对以上实施例所作的任何修改、等同变化及修饰，均落入本发明权利要求所界定的保护范围之内。
图3

开始并输入一原始帧图像 → S301

统计帧图像的平均亮度 → S302

根据平均亮度查表，获得一帧峰值亮度比 → S303

从帧图像中取出一个像素并计算像素内差 → S304

设置补偿节点，获取补偿值并插值计算一像素峰值亮度比 → S305

根据像素峰值亮度比与输入像素获得映射后的输出像素 → S306

输出像素是否为最终像素？

是 → 结束并输出帧图像 → S308

否 → 继续执行流程