

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2009206672 B2

(54) Title
Delivery systems and methods of implantation for prosthetic heart valves

(51) International Patent Classification(s)
A61F 2/24 (2006.01)

(21) Application No: **2009206672** (22) Date of Filing: **2009.01.23**

(87) WIPO No: **WO09/094189**

(30) Priority Data

(31) Number **61/062,207** (32) Date **2008.01.24** (33) Country **US**

(43) Publication Date: **2009.07.30**
(44) Accepted Journal Date: **2014.06.12**

(71) Applicant(s)
Medtronic, Inc.

(72) Inventor(s)
Bloom, Eliot;Tabor, Charles;Majkrzak, Carolyn C.;Ryan, Timothy R.;Laske, Timothy G.

(74) Agent / Attorney
FB Rice, Level 23 44 Market Street, Sydney, NSW, 2000

(56) Related Art
US 2006/0235509
US 6126685
EP 1440673
US 2003/0233140
US 2005/0143809

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
30 July 2009 (30.07.2009)

PCT

(10) International Publication Number
WO 2009/094189 A1

(51) International Patent Classification:
A61F 2/24 (2006.01)

Minnesota 55126 (US). LASKE, Timothy G. [US/US];
464 Carol Lane, Shoreview, Minnesota 55126 (US).
MAJKRZAK, Carolyn C. [US/US]; 45 Via Almeria, San
Clemente, California 92673 (US).

(21) International Application Number:

PCT/US2009/000446

(74) Agent: HAKAMAKI, Michael, A.; Kagan Binder, PLLC,
Suite 200, Maple Island Building, 221 Main Street North,
Stillwater, Minnesota 55082 (US).

(22) International Filing Date: 23 January 2009 (23.01.2009)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/062,207 24 January 2008 (24.01.2008) US

(71) Applicant (for all designated States except US):
MEDTRONIC, INC. [US/US]; 710 Medtronic Parkway,
Minneapolis, Minnesota 55432 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BLOOM, Eliot
[US/US]; 601 Putney Hill Road, Hopkinton, New Hampshire 03229 (US). RYAN, Timothy R. [US/US]; 6100 McKinley Circle, Shorewood, Minnesota 55331 (US). TABOR, Charles [US/US]; 4034 Crystal Circle, Shoreview,

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

[Continued on next page]

(54) Title: DELIVERY SYSTEMS AND METHODS OF IMPLANTATION FOR PROSTHETIC HEART VALVES

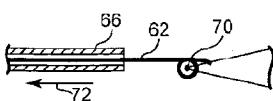


Fig. 14

(57) Abstract: A delivery system for delivering a stented prosthetic heart valve to a lumen of a patient, the delivery system including a tubular body having a proximal end and a distal end, and a plurality of wires (62) extending from the distal end of the tubular body, wherein each of the wires has a distal end that is coiled for engagement with a stent of a stented prosthetic heart valve. A method of deploying an implantable stented device using such a delivery system is also provided, which includes the steps of providing an implantable stented device comprising at least one stent engagement component (70), engaging a coiled distal end of at least one of the plurality of wires (62) with one of the stent engagement components, positioning the implantable stented device at an implantation location, and axially moving at least one of the plurality of wires relative to the tubular body to disengage the coiled distal end of the wire from the stent engagement component with which it is engaged.

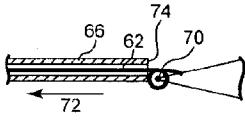


Fig. 15

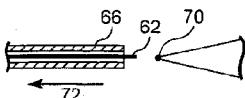


Fig. 16

WO 2009/094189 A1

WO 2009/094189 A1

ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— *with international search report*

DELIVERY SYSTEMS AND METHODS OF IMPLANTATION FOR PROSTHETIC HEART VALVES

5 CROSS-REFERENCE TO RELATED APPLICATION

[0001] The present application claims priority to U.S. Provisional Application No. 61/062,207, filed January 24, 2008, and titled "Delivery Systems and Methods of Implantation for Prosthetic Heart Valves", the entire contents of which is incorporated herein by reference in its entirety.

10

TECHNICAL FIELD

[0002] The present invention relates to prosthetic heart valves. More particularly, it relates to devices, methods, and delivery systems for percutaneously implanting prosthetic heart valves.

15

BACKGROUND

[0003] Diseased or otherwise deficient heart valves can be repaired or replaced using a variety of different types of heart valve surgeries. Typical heart valve surgeries involve an open-heart surgical procedure that is conducted under general anesthesia, during which the heart is stopped while blood flow is controlled by a heart-lung bypass machine. This type of valve surgery is highly invasive and exposes the patient to a number of potentially serious risks, such as infection, stroke, renal failure, and adverse effects associated with use of the heart-lung machine, for example.

[0004] Recently, there has been increasing interest in minimally invasive and percutaneous replacement of cardiac valves. Such surgical techniques involve making a very small opening in the skin of the patient into which a valve assembly is inserted in the body and delivered to the heart via a delivery device similar to a catheter. This technique is often preferable to more invasive forms of surgery, such as the open-heart surgical procedure described above. In the context of pulmonary valve replacement, U.S. Patent Application Publication Nos. 2003/0199971 A1 and 2003/0199963 A1, both

filed by Tower, et al., describe a valved segment of bovine jugular vein, mounted within an expandable stent, for use as a replacement pulmonary valve. The replacement valve is mounted on a balloon catheter and delivered percutaneously via the vascular system to the location of the failed pulmonary 5 valve and expanded by the balloon to compress the valve leaflets against the right ventricular outflow tract, anchoring and sealing the replacement valve. As described in the articles: "Percutaneous Insertion of the Pulmonary Valve", Bonhoeffer, et al., Journal of the American College of Cardiology 2002; 39: 1664 – 1669 and "Transcatheter Replacement of a Bovine Valve in 10 Pulmonary Position", Bonhoeffer, et al., Circulation 2000; 102: 813 – 816, the replacement pulmonary valve may be implanted to replace native pulmonary valves or prosthetic pulmonary valves located in valved conduits.

[0005] Various types and configurations of prosthetic heart valves are used in percutaneous valve procedures to replace diseased natural human 15 heart valves. The actual shape and configuration of any particular prosthetic heart valve is dependent to some extent upon the valve being replaced (i.e., mitral valve, tricuspid valve, aortic valve, or pulmonary valve). In general, the prosthetic heart valve designs attempt to replicate the function of the valve being replaced and thus will include valve leaflet-like structures used 20 with either bioprostheses or mechanical heart valve prostheses. In other words, the replacement valves may include a valved vein segment that is mounted in some manner within an expandable stent to make a stented valve. In order to prepare such a valve for percutaneous implantation, the stented 25 valve can be initially provided in an expanded or uncrimped condition, then crimped or compressed around the balloon portion of a catheter until it is as close to the diameter of the catheter as possible.

[0006] Other percutaneously delivered prosthetic heart valves have been suggested having a generally similar configuration, such as by Bonhoeffer, P. et al., "Transcatheter Implantation of a Bovine Valve in Pulmonary Position." 30 Circulation, 2002; 102:813-816, and by Cribier, A. et al. "Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis." Circulation, 2002; 106:3006-3008, the disclosures of which are

incorporated herein by reference. These techniques rely at least partially upon a frictional type of engagement between the expanded support structure and the native tissue to maintain a position of the delivered prosthesis, although the stents can also become at least partially embedded in the 5 surrounding tissue in response to the radial force provided by the stent and balloons that are sometimes used to expand the stent. Thus, with these transcatheter techniques, conventional sewing of the prosthetic heart valve to the patient's native tissue is not necessary. Similarly, in an article by Bonhoeffer, P. et al. titled "Percutaneous Insertion of the Pulmonary Valve." J 10 Am Coll Cardiol, 2002; 39:1664-1669, the disclosure of which is incorporated herein by reference, percutaneous delivery of a biological valve is described. The valve is sutured to an expandable stent within a previously implanted valved or non-valved conduit, or a previously implanted valve. Again, radial expansion of the secondary valve stent is used for placing and 15 maintaining the replacement valve.

[0007] Some delivery systems used for percutaneous delivery of heart valves have had associated issues with the heart valves sticking or otherwise not consistently releasing from the delivery system for deployment into the desired location in the patient. In these cases, the delivery system can be 20 further manipulated, which may cause the valve to become dislodged from the desired implantation location or cause other trauma to the patient. In rare cases, the heart valve cannot be released from the delivery system, which can then require emergency surgery to intervene. Such surgery can expose the patient to significant risk and trauma.

[0008] Although there have been advances in percutaneous valve 25 replacement techniques and devices, there is a continued desire to provide different designs of cardiac valves that can be implanted in a minimally invasive and percutaneous manner. There is also a continued desire to be able to reposition and/or retract the valves once they have been deployed or 30 partially deployed in order to ensure optimal placement of the valves within the patient. In particular, it would be advantageous to provide a valve and corresponding delivery system that allow for full or partial repositionability

and/or retractability of the valve once it is positioned in the patient. In addition, it would be advantageous to provide a delivery system that can consistently release a heart valve without inducing the application of force to the stented valve that can dislodge the valve from the desired implantation location. Finally, the complexity and widely varying

5 geometries associated with transcatheter valved stents and the complex anatomies that they are designed to accommodate present a need to be able to sequentially release specific regions or portions of the transcatheter valved stent. This enables specific advantages to position the devices more accurately and/or deploy specific features for anchoring, sealing, or docking of the devices. Additionally, the ability to sequence the release of
10 various regions of different radial force and/or geometry is important in improving deliverability of transcatheter valve devices.

15 [0008A] Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present disclosure as it existed before the priority date of each claim of this application.

SUMMARY

20 [0008B] Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.

25 [0009] Replacement heart valves that can be used with delivery systems of the invention each include a stent within which a valve structure can be attached. The stents used with delivery systems and methods of the invention include a wide variety of structures and features that can be used alone or in combination with other stent features. In particular, these stents provide a number of different docking and/or anchoring structures that are conducive to percutaneous delivery thereof. Many of the stent structures are thus compressible to a relatively small diameter for percutaneous delivery to the heart of the
30 patient, and then are expandable either via removal of external compressive forces (e.g., self-expanding stents), or through application of an outward radial force (e.g., balloon expandable stents). The devices delivered by the delivery systems described herein can be used to deliver stents, valved stents, or other interventional devices such as ASD (atrial septal defect) closure devices, VSD (ventricular septal defect) closure devices, or PFO

(patent foramen ovale) occluders.

[00010] Methods for insertion of the replacement heart valves of the invention include delivery systems that can maintain the stent structures in their compressed state during their insertion and allow or cause the stent structures to expand once they are in their

5 desired location. In particular, the methods of implanting a stent can include the use of delivery systems or a valved stent having a plurality of wires with coiled or pigtail ends attached to features of the stent frame. The coiled wire ends can be straightened or uncoiled to release the stent to which they are attached. The coiled or pigtail wire end configuration allows for positive, consistent release of the stent from the delivery system without the associated complications that can be caused by incomplete release and/or sticking that can occur with other delivery systems. In addition, the release of a stent 10 from a delivery system having coiled wire ends does not require the direct application of force to the stented valve that can dislodge the valve from the desired implantation location.

15 **[00011]** Delivery systems and methods of the invention can include features that allow the stents to be retrieved for removal or relocation thereof after they have been deployed or partially deployed from the stent delivery systems. The methods may include implantation of the stent structures using either an antegrade or retrograde approach. Further, in many of the delivery approaches of the invention, the stent structure is 20 rotatable in vivo to allow the stent structure to be positioned in a desired orientation.

25 **[00012]** Delivery systems and methods of the invention provide for sequential release of portions of the heart valve. That is, the delivery system has actuation capabilities for disengaging from one or more structural features of a heart valve in a first step, then disengaging from additional structural features of that heart valve in one or more sequential steps. In this way, the deployment of the heart valve can be performed relatively gradually, which can provide the clinician with the opportunity to reposition or relocate the heart valve before it is completely released from the delivery system.

30 **[00012A]** In one aspect, the present invention provides a delivery system for delivering an implantable stented device to a lumen of a patient, the delivery system comprising:
a tubular body having a proximal end and a distal end; and
a plurality of wires extending from the distal end of the tubular body, wherein each of the wires comprises a distal end that is coiled for engagement with a stent of the

implantable stented device, and wherein each coil comprises at least one complete winding of wire and an overlap portion adjacent to a distal end of the coil; and

wherein the coil of at least one of the wires has a different number of windings of wire than the coils of at least one of the other wires of the plurality of wires.

5 [00012B] In another aspect, the present invention provides a cartridge for use with a delivery system for delivering a stented prosthetic heart valve to a lumen of a patient, the cartridge comprising a cylindrical body portion and a plurality of wires extending from a distal end of the cylindrical body, wherein each of the plurality of wires comprises a distal end that is coiled for engagement with a stent of a stented prosthetic valve, and wherein the cartridge is engageable with a distal end of a delivery system.

10 [00012C] In yet another aspect, the present invention provides a delivery system for delivering an implantable stented device to a lumen of a patient, or a cartridge for use with a delivery system for delivering a stented prosthetic heart valve to a lumen of a patient, substantially as hereinbefore described with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[00013] The present invention will be further explained with reference to the appended Figures, wherein like structure is referred to by like numerals throughout the several views, and wherein:

[00014] Figure 1 is a perspective view of one embodiment of a delivery system of the invention;

[00015] Figure 2 is a perspective view of a proximal end of the delivery system illustrated in Figure 1;

5 [00016] Figure 3 is a perspective view of a cartridge having plural wires with coiled ends as the wires are being attached to a stent frame;

[00017] Figure 4 is an enlarged side view of the cartridge of Figure 3 attached to the crowns at one end of a stent;

[00018] Figure 5 is a side view of the cartridge and attached stent of Figure 10 4 in proximity to a portion of a delivery system to which they will be attached;

[00019] Figure 6 is a side view of a delivery system of the invention with an attached stent;

15 [00020] Figure 7 is an enlarged perspective view of the coiled or pigtail ends of wires of a delivery system attached to a stent;

[00021] Figures 8-10 are side views illustrating various stages of a stent being deployed from a delivery system of the invention;

[00022] Figure 11 is a side view of a portion of a delivery system having wires of different lengths with coiled or pigtail ends;

20 [00023] Figure 12 is a side view of a portion of another delivery system having wires with ends that are coiled to form different numbers of loops;

[00024] Figure 13 is a side view of a portion of another delivery system of the invention;

25 [00025] Figures 14-16 are sequential cross-sectional side views of a stent crown in various stages of being deployed from the pigtail end of a delivery system of the type illustrated in Figure 13;

[00026] Figure 17 is a schematic front view of another embodiment of a delivery system of the invention;

[00027] Figure 18 is an enlarged front view of a portion of the delivery 30 system of Figure 17, showing plural coiled wires attached to crowns of a stent;

[00028] Figure 19 is an enlarged front view of the same portion of the delivery system shown in Figure 18, further showing some of the coiled wires detached from the crowns;

[00029] Figure 20 is a schematic front view of the delivery system of 5 Figure 17, with the stent detached from all of the coiled wires of the delivery system;

[00030] Figure 21 is an enlarged front view of a portion of the delivery system of Figure 20;

[00031] Figure 22 is a perspective view of one of the wires of a pigtail 10 delivery system of the invention;

[00032] Figure 23 is a side view of a stent crown positioned relative to an embodiment of a delivery system;

[00033] Figure 24 is a side view of a stent crown positioned relative to another embodiment of a delivery system; and

15 [00034] Figure 25 is a perspective view of a sequential wire release configuration of a stent delivery system.

DETAILED DESCRIPTION

[00035] As referred to herein, the prosthetic heart valves used in 20 accordance with the various devices and methods of heart valve delivery may include a wide variety of different configurations, such as a prosthetic heart valve having tissue leaflets or a synthetic heart valve having polymeric, metallic, or tissue-engineered leaflets, and can be specifically configured for replacing any heart valve. That is, while much of the description herein refers 25 to replacement of aortic valves, the prosthetic heart valves of the invention can also generally be used for replacement of native mitral, pulmonic, or tricuspid valves, for use as a venous valve, or to replace a failed bioprosthetic, such as in the area of an aortic valve or mitral valve, for example.

30 [00036] Each of the valves used with the delivery devices and methods described herein can include leaflets attached within an interior area of a stent; however, such leaflets are not shown in many of the illustrated

embodiments for clarity purposes. In general, the stents used with the delivery systems and methods described herein include a support structure comprising a number of strut or wire portions arranged relative to each other to provide a desired compressibility and strength to the heart valve.

5 However, other stent structures can also be configured for use with delivery systems and methods of the invention, including stents that consist of foil or metal frames or inflatable lumens that can be filled with a hardenable material or agent, such as that proposed in U.S. Patent No. 5,554,185 (Block), for example. Although a number of different configurations of stents can be
10 used, in general terms, the stents described herein are generally tubular or cylindrical support structures, although the diameter and shape can vary along the length of the stent, and leaflets can be secured to the support structure to provide a valved stent. The leaflets can be formed from a variety of materials, such as autologous tissue, xenograph material, or synthetics as are
15 known in the art. The leaflets may be provided as a homogenous, biological valve structure, such as a porcine, bovine, or equine valve. Alternatively, the leaflets can be provided independent of one another (e.g., bovine or equine pericardial leaflets) and subsequently assembled to the support structure of the stent. In another alternative, the stent and leaflets can be fabricated at the
20 same time, such as may be accomplished using high strength nano-manufactured NiTi films of the type produced by Advanced Bio Prosthetic Surfaces Ltd. (ABPS) of San Antonio, Texas, for example. The support structures are generally configured to accommodate three leaflets; however, the prosthetic heart valves described herein can incorporate more or less than
25 three leaflets.

[00037] In more general terms, the combination of a support structure with one or more leaflets can assume a variety of other configurations that differ from those shown and described, including any known prosthetic heart valve design. In certain embodiments of the invention, the support structure with
30 leaflets can be any known expandable prosthetic heart valve configuration, whether balloon expandable, self-expanding, or unfurling (as described, for example, in U.S. Patent Nos. 3,671,979; 4,056,854; 4,994,077; 5,332,402;

5,370,685; 5,397,351; 5,554,185; 5,855,601; and 6,168,614; U.S. Patent Application Publication No. 2004/0034411; Bonhoeffer P., et al., "Percutaneous Insertion of the Pulmonary Valve", *Pediatric Cardiology*, 2002; 39:1664-1669; Anderson H R, et al., "Transluminal Implantation of Artificial Heart Valves", *EUR Heart J.*, 1992; 13:704-708; Anderson, J. R., et al., "Transluminal Catheter Implantation of New Expandable Artificial Cardiac Valve", *EUR Heart J.*, 1990, 11: (Suppl) 224a; Hilbert S. L., "Evaluation of Implanted Polyurethane Trileaflet Cardiac Valve Prosthesis", *J Thorac Cardiovascular Surgery*, 1989; 94:419-29; Block P C, "Clinical and Hemodynamic Follow-Up After Percutaneous Aortic Valvuloplasty in the Elderly", *The American Journal of Cardiology*, Vol. 62, Oct. 1, 1998; Boudjemline, Y., "Steps Toward Percutaneous Aortic Valve Replacement", *Circulation*, 2002; 105:775-558; Bonhoeffer, P., "Transcatheter Implantation of a Bovine Valve in Pulmonary Position, a Lamb Study", *Circulation*, 2000; 102:813-816; Boudjemline, Y., "Percutaneous Implantation of a Valve in the Descending Aorta In Lambs", *EUR Heart J*, 2002; 23:1045-1049; Kulkinski, D., "Future Horizons in Surgical Aortic Valve Replacement: Lessons Learned During the Early Stages of Developing a Transluminal Implantation Technique", *ASAIO J*, 2004; 50:364-68; the teachings of which are all incorporated herein by reference).

[00038] Optional orientation and positioning of the stents of the invention may be accomplished either by self-orientation of the stents (such as by interference between features of the stent and a previously implanted stent or valve structure) or by manual orientation of the stent to align its features with anatomical or previous bioprosthetic features, such as can be accomplished using fluoroscopic visualization techniques, for example. For example, when aligning the stents of the invention with native anatomical structures, they should be aligned so as to not block the coronary arteries, and native mitral or tricuspid valves should be aligned relative to the anterior leaflet and/or the trigones/commissures.

[00039] The support structures of the stents can be wires formed from a shape memory material such as a nickel titanium alloy (e.g., Nitinol). With

shape memory material, the support structure is self-expandable from a contracted state to an expanded state, such as by the application of heat, energy, and the like, or by the removal of external forces (e.g., compressive forces). This support structure can also be repeatedly compressed and re-
5 expanded without damaging the structure of the stent. In addition, the support structure of such an embodiment may be laser cut from a single piece of material or may be assembled from a number of different components. For these types of stent structures, one example of a delivery system that can be used includes a catheter with a retractable sheath that covers the stent until it
10 is to be deployed, at which point the sheath can be retracted to allow the stent to expand.

[00040] The stents can alternatively be a series of wires or wire segments arranged so that they are capable of transitioning from a collapsed state to an expanded state with the application or removal of external and/or internal forces. These individual wires comprising the support structure can be formed of a metal or other material. Further, the wires are arranged in such a way that the stent can be folded or compressed to a contracted state in which its internal diameter is considerably smaller than its internal diameter when the structure is in an expanded state. In its collapsed state, such a support
15 structure with an attached valve can be mounted over a delivery device, such as a balloon catheter, for example. The support structure is configured so that it can be changed to its expanded state when desired, such as by the expansion of a balloon catheter or removal of external forces that are provided by a sheath, for example. The delivery systems used for such a stent
20 can be provided with degrees of rotational and axial orientation capabilities in order to properly position the new stent at its desired location.

[00041] Referring now to the Figures, wherein the components are labeled with like numerals throughout the several Figures, and initially to Figures 1-10, one embodiment of a stent delivery system is illustrated. This system can
25 include a cartridge for initial attachment of a stent and/or stent device to the stent base device and subsequent attachment to the delivery system, thereby providing quick and simple attachment of a stent to a delivery system by an

operator. In one embodiment, the attachment mechanism is a dovetail type of connection, which includes a mating feature on both a cartridge and a delivery system that allows the stent to be preloaded to the cartridge and easily attached by the clinician to the delivery system. Other connection means are also contemplated, such as snap-fit connections, threaded connections, clips, pins, magnets, and/or the like. Alternatively, the pigtail delivery system may include more permanently attached components that do not use features of a cartridge-based system.

5 [00042] One delivery system of the invention can further include a series 10 of wires for connecting the stented valve to the delivery system. In one embodiment, each of the wires can be formed at its distal end into a coiled or “pigtail” configuration. The coiled end of each wire can be secured to a feature of a stent, such as a stent crown, when the wire end is coiled. Straightening the wire can then release the stent feature to which it was 15 secured, as is described below in further detail.

10 [00043] One exemplary embodiment of a wire 20 having a coiled distal end 82 and a proximal end 84 is illustrated in Figure 22. The wire can be bent at approximately a 90 degree angle between the distal end 82 and proximal end 84, or it can be bent at an angle other than 90 degrees, or it can 20 be a straight wire portion with no bend or curves. As shown, the distal end 82 of the wire 20 is shaped to create approximately 1-1/2 coils or loops; however, the wire 20 may include more or less coils or loops than shown. The wires can be made of a wide variety of materials, such as high tensile strength spring wire material or NiTi, for example. Alternatively, the wire 25 can be somewhat malleable such that it does not necessarily return to the original coil shape once any stented valve features have been released from the wire.

15 [00044] The size and exact configuration of the pigtail end portion of each wire can be chosen or designed so that the forces required to retract and 30 deploy the stent are within a desirable range. The pigtail portion of the wire should be strong enough to prevent inadvertent release from the delivery system during stent positioning, resheathing, repositioning, and/or the like. In

addition, the pigtail portion of the wire should be sufficiently flexible that it does not require excessive force to straighten it during implant device deployment. In one exemplary embodiment, the wire 20 is approximately 0.010 inches in diameter, thereby requiring approximately 7 pounds of pull

5 force to uncoil the distal end 82 of the wire 20. However, different materials and different sized wires can be used for the pigtail wires that provide different delivery system properties.

[00045] The proximal end 84 of each of the wires 20 is fixed to a hub or base portion that is located on a center lumen of the cartridge or delivery system. The wire 20 can be secured to the hub or base portion using various mechanical methods and/or adhesives. In one embodiment, the coiled or pigtail portions at the distal end 82 are initially coiled around the wires of one end of a stent and then are fully or partially straightened to deploy the stented valve. The wire can be made of spring materials or shape memory materials

10 that may be cured or "set" via a heat treating process so that the coiled wire end can be retracted, clocked, redeployed, disengaged, or the like without the use of additional tools or the management of removed parts. In particular, the wires that have a pigtail portion at their distal ends are retracted relative to one or more tubes in which they are enclosed until the pigtail portions are

15 adjacent to one end of one of the tubes. That is, the wires are pulled relative to the tube(s), the tube(s) are pushed forward relative to the wires, or both the wires and the tubes are moved relative to each other. The diameter of the coil circle or loop can be relatively large in size as compared to the diameter of the tube opening into which they are being pulled so that the coils will contact

20 and interfere with the end of the tube when they are pulled toward it. The wires are then pulled further back into the tube, thereby straightening the pigtail portions until they are released from the stent wires they had been encircling. In one embodiment, interference between the larger area or

25 volume of the pigtail portions and the inner area of the tube forces the pigtail portions to uncoil or straighten as they are pulled into the tube. Alternatively, the coiled diameter of the loops can be relatively small in size as compared to the diameter of the tubes into which they are being pulled (see Figure 13, for

example), so that the stent crown will instead contact and interfere with the end of the tubes when they are pulled toward it. This will inhibit the stent movement so that additional pulling force on the wires will cause the coiled wire end to uncoil.

5 [00046] In particular, Figure 1 illustrates one exemplary delivery system 10 for a pigtail type of system that generally includes a proximal end 12 and a distal end 14. Figure 2 shows an enlarged view of the proximal end 12 of the delivery system 10 of Figure 1, which includes a first knob 30 and a second knob 32 for use in controlling the delivery and deployment of a stent at the 10 generally distal end 14, as will be described in further detail below. A delivery system for percutaneous stent and valve delivery can comprise a relatively long delivery system that can be maneuvered through a patient's vasculature until a desired anatomical location is reached. In any case, the delivery system can include features that allow it to deliver a stent to a 15 desired location in a patient's body.

[00047] A cartridge 16 is illustrated in Figure 3 adjacent to a stent 18 to which it will be attached. The stent 18 is then illustrated in Figure 4 as attached to the cartridge 16 via the coiled or pigtail ends of the wires 20. That is, the cartridge 16 includes a post 19 having a series of wires 20 extending 20 from one end and a dovetail attachment portion 22 at the opposite end. Each of the wires 20 includes a generally straight portion that is connected to the post 19 at its proximal end 84 and further includes a "pigtail" or curled portion at its distal end 82. Each wire 20 is made of a shape-memory type of material (e.g., Nitinol) such that it can be straightened by applying an external 25 force when in the proximity of a stent to which it will be attached and return generally to its curled configuration when the straightening force is removed. Alternatively, a wire can be used that is permanently deformed when sufficient force has been applied to it to release the stented valve from the delivery system.

30 [00048] In order to load a stent onto the wires 20 of cartridge 16, the curled end of each wire 20 can be straightened or partially straightened and placed adjacent to one of the crowns or "V" ends of the stent. The force on each

wire 20 can then be removed or reduced so that the distal end of the wire coils back toward its pigtail configuration, thereby wrapping around and capturing one crown of the stent 18, as is shown in Figure 4. Alternatively, a malleable type of wire material can be used, wherein the coil can be formed by

5 wrapping the wire around the stent crown during the stent loading process. If a different stent construction is used, the coiled wires can instead engage with some other feature of that type of stent. The cartridge is preferably provided with the same number of wires having pigtail or coiled wire ends as the number of crowns provided on the corresponding stent, although the cartridge

10 can be provided with more or less wires having coiled ends. It is also contemplated that a single crown of a stent may have more than one pigtail wire attached to it. After the wires 20 of the cartridge 16 are attached to the stent 18, as is illustrated in Figure 4, the cartridge and stent combination can then be attached to the delivery system 10.

15 [00049] The use of a cartridge with the delivery systems of the invention can provide advantages to the stent loading process. For example, a cartridge and stent can be provided to the clinician with the stent pre-attached to the cartridge so that the clinician does not need to perform the stent attachment step prior to surgery. In addition, the cartridge concept simplifies the 20 attachment of the valve to the delivery system, improves the reliability and consistency of the attachment, and eliminates the chance that the valve will mistakenly be attached backwards onto the delivery system.

[00050] The exemplary stent 18, one end of which is shown in the Figures, is made of a series of wires that are compressible and expandable through the 25 application and removal of external forces, and may include a series of Nitinol wires that are approximately 0.011-0.015 inches in diameter, for example. That is, the stent 18 may be considered to be a self-expanding stent. However, the stent to which the pigtail wire portions of the invention are attached can have a number of different configurations and can be made of a 30 wide variety of different materials. In order to be used with the delivery systems of the invention, however, the stent is preferably designed with at least one point or feature to which a coiled wire end can be attached. That is,

while an open-ended type of stent crown is shown, other stent end configurations can alternatively be used, such as eyelets, loops, or other openings.

[00051] Figure 5 illustrates one end of the delivery system 10 as having a dovetail portion 24 that can mate or attach to a corresponding dovetail attachment portion 22 of the cartridge 16 by positioning the two pieces so that they become engaged with each other. This particular dovetail arrangement is exemplary and it is understood that a different mechanical arrangement of cooperating elements on two portions of a delivery system can instead be used, where the stent structure is attached to one of the pieces of the delivery system, which in turn is mechanically attachable to another piece of the delivery system. It is further contemplated that the wires with pigtail ends are not part of a cartridge-based system, but that the wires are instead attached directly to a delivery system that does not include a cartridge.

[00052] As shown in Figures 6 and 7, after the cartridge 16 is attached to the delivery system 10, the cartridge 16 and its attached stent 18 are then retracted into a hollow tube or lumen 26 of the delivery system by moving or pulling the cartridge 16 toward the proximal end of the delivery device. This movement is continued until the crowns of the stent 18 are adjacent to the end of the lumen 26. It is noted that the lumen 26 may be an outer sheath of the system or that it may be an inner lumen such that another sheath or tube can be positioned on the outside of it. Due to the compressible nature of the stent 18, continued movement of the cartridge 16 toward the proximal end of the delivery device will pull the wires 20 toward a central lumen 28 of the delivery system, thereby also pulling the wires of the stent 18 toward the central lumen 28. The cartridge 16 can then continue to be moved toward the proximal end of the device until the stent 18 is completely enclosed within the lumen 26, as is illustrated in Figure 1. One exemplary procedure that can be used for such a retraction of the stent 18 into the lumen 26 is to turn the knob 32 (see Figure 2) in a first direction (e.g., clockwise) until the knob is fully forward. The knob 30 can then be pulled while turning the knob 32 in a

second direction that is opposite the first direction (e.g., counter clockwise) until the stent is retracted into the delivery system.

[00053] Figures 8-10 illustrate the deployment of the stent 18 via a delivery system, which would be initiated once the stent 18 is generally located in its desired anatomic position within a lumen (e.g. heart valve area) of the patient. In particular, Figure 8 shows the proximal end of a delivery system as the lumen 26 is being moved away from a distal tip 29 of the delivery system, thereby exposing the free end of the stent 18 (i.e., the end of stent 18 that is not attached to the coiled wires 20). In this way, the compressive forces that were provided by enclosing the stent 18 within the lumen 26 are removed and the stent 18 can expand toward its original, expanded condition. Figure 9 illustrates the next step in the process, where the lumen 26 is moved even further from the distal tip 28 of the system, thereby allowing the entire length of the stent 18 to be released from the interior portion of lumen 26 for expansion thereof.

[00054] In order to release or deploy the stent 18 from the delivery system 10, the wires 20 are then pulled via an actuating mechanism of the delivery system back toward the proximal end of the device until the coiled or pigtail portions are immediately adjacent to the end of the lumen 26, as illustrated in Figure 10. Next, the cartridge 16 with extending wires 20, along with the lumen 26 to which they are attached, are pulled further toward the proximal end of the device until the coiled ends of the wires 20 contact and interfere with the end of the lumen 26, which thereby forces the wires 20 to uncoil or straighten at their distal ends. Once the wires 20 are sufficiently straightened or uncoiled, the wires 20 become disengaged from the stent 18, thereby causing the stent 18 to be in its released position within the patient. One exemplary sequence of steps that can be used for such a final deployment of the stent 18 relative to the lumen 26 with this delivery system is to turn knob 32 (see Figure 2) in a first direction (e.g., clockwise) until the stent is exposed or deployed beyond the lumen 26. Knob 30 can then be retracted, thereby fully releasing the stent 18 from the delivery system.

[00055] It is noted that in the above procedure, the stent can be retracted back into the lumen 26 at any point in the process prior to the time that the wires 20 are disengaged from the stent 18, such as for repositioning of the stent if it is determined that the stent is not optimally positioned relative to the patient's anatomy. In this case, the steps described above can be repeated until the desired positioning of the stent is achieved.

[00056] In a delivery system that uses the dovetail connection described above or another configuration that allows the stent to be connected to coiled wires of a cartridge, a cartridge can alternatively be pre-attached to a valved stent, packaged together within a gluteraldehyde solution, and provided in this pre-assembled manner to a clinician. In this way, the clinician can simply remove the assembly at the time of the implantation procedure and attach it to the delivery system, which can reduce the amount of time the valved stent needs to be manipulated immediately prior to the time of implantation.

[00057] With this system described above, full or partial blood flow through the valve can advantageously be maintained during the period when the stented valve is being deployed into the patient but is not yet released from its delivery system. This feature can help to prevent complications that may occur when blood flow is stopped or blocked during valve implantation with some other known delivery systems. This also eliminates or reduces the need for additional procedural steps, such as rapid pacing, circulatory assist, and/or other procedures. In addition, it is possible for the clinician to thereby evaluate the opening and closing of leaflets, examine for any paravalvular leakage and evaluate coronary flow and proper positioning of the valve within the target anatomy before final release of the stented valve.

[00058] The system and process described above can include simultaneous or generally simultaneous straightening of the wires so that they all uncoil or straighten at their distal ends to disengage from the stent in a single step. However, it is contemplated that the wires can be straightened in a serial manner, where individual wires, pairs of wires, or other combinations of wires are selectively straightened in some predetermined order to sequentially

deploy portions of the stent. This can be accomplished either by the structure of the delivery device and/or the structure of the stent and/or through the operation of the delivery system being used.

[00059] One exemplary actuating mechanism that can be used with the 5 delivery system can engage all or some of the wires to allow for sequential release of the various stent crowns. This serial release of crowns can be advantageous in that it allows for a high level of control of the diametric deflection (e.g., expansion) of the proximal end of the stented valve. Also, release of high radial force stents sequentially can minimize injury and 10 trauma to the anatomy. Having control of the diametric expansion of all or a portion of the stent can minimize the possibility for device migration, tissue injury and/or embolic events during device deployment. In addition, the serial or sequential release of crowns can require less force for any one wire or set of wires as compared to the amount of force that is required to release 15 all of the wires at the same time. Additionally, regions of the stent such as fixation anchors, petals, and the like could be released in a desired sequent to optimize the positioning and consistency of deployment. Finally, release of specific regions of the stent at different axial zones or regions of varying geometry (inflow flares, bulbous regions, and the like) and/or varying radial 20 force can enable more accurate and stable positioning and device release.

[00060] Figure 25 illustrates one embodiment of a portion of a sequential 25 wire release configuration of a stent delivery system, which includes a first disk 200 and a second disk 202 spaced from disk 200 generally along the same longitudinal axis. Disk 200 includes a surface 204 from which three wires 206 extend. Disk 202 includes a surface 208 from which three wires 210 extend and three apertures 212 through which the wires 206 of disk 200 can extend. The number of wires and apertures of each disk can be more or less than three, as desired. It is further understood that more than two disks may be provided, with one or more wires being attached to each of the disks. 30 All of the wires 206, 210 terminate at their distal ends with a coiled portion that can include any of the coiled wire properties discussed herein. Each of the wires in the sets of wires 206, 210 can have the same length or a different

length so that the coiled ends are at the same or a different distance from the surface 208 of disk 202. This wire release configuration further includes activation members that are shown schematically as wires 214, 216, where wires 214 extend through a center aperture 218 of disk 200 and attach to the 5 disk 202 and wires 216 are attached to the disk 200. The wires 214, 216 can be independently activated to axially move the disks 200 and 202 with their attached wires 210, 206, respectively. The activation wires 214, 216 are intended to be representative activation means, where other activation means can instead be used to provide independent axial movement of the disks 200, 10 202.

[00061] In another embodiment, multiple wires can be released from a stent in a sequence that includes radially releasing stent wires as individual wires, wire pairs, or groups of wires around the periphery of the stent. For example, stent wires on opposite sides of the circumference can be released as 15 a pair, and then the sequence can continue in a clockwise or counterclockwise direction until all of the wires are released from the stent. This can be performed on wires in the same axial plane. It is further advantageous, in accordance with the invention, to sequentially release the wires from the stent among various axial planes. This can be valuable for stents that have varying 20 radial force in planes. In this situation, the delivery systems can include coiled wired ends, for example. Finally, delivery systems of the invention can also be used to release other specific stent features and elements other than or in addition to stent crowns and loops, such as unfurling skirts, dock interface elements, sealing features, barbs, hooks, and the like.

[00062] Figure 11 illustrates one exemplary embodiment of an end portion 25 of a delivery system that includes another embodiment of a lumen 40 from which the distal ends of multiple wires 42 extend. As shown, the distal end of each of the wires 42 has the same number of coils or loops; however, the distance between each of these coils and an end 44 of the lumen 40 is different. Thus, when the wires 42 are attached to a stent and pulled toward 30 an end 44 of the lumen 40, the shortest wire 42 will contact the lumen 40 first. Enough interference is preferably created between the wire 42 and the

lumen 40 so that as this shortest wire 42 is pulled into the lumen 40, it is straightened and ultimately released from the stent feature to which it is attached. The wires 42 will continue to be moved further toward the end 44 of lumen 40 until the next longest wire 42 contacts the lumen, which also will 5 be uncoiled or straightened to release it from the stent. This process will be repeated until all of the wires 42 are released from the stent and the stent is fully deployed. Although only three wires 42 are shown in this figure, a different number of wires can instead be provided, and preferably the number of wires provided matches the number of crowns on the stent that is being 10 delivered by the delivery system. In addition, all of the wires can have different lengths and/or numbers of windings at their distal ends, or at least one of the wires can be configured identically to at least one other wire of that delivery system. For example, the delivery system can include identical pairs of wires such that each wire pair releases from a stent simultaneously during 15 the stent deployment process.

[00063] Figure 12 illustrates another exemplary embodiment of an end portion of a delivery system that is similar to that of Figure 11 in that it includes a lumen 50 from which the distal ends of multiple wires 52 extend. Again, the wires 52 are not all configured identically to each other. As shown 20 in this figure, the distal ends of each of the wires 52 has a different number of windings at its coiled end so that when the wires 52 are attached to a stent and pulled toward an end 54 of the lumen 50, the coiled portions of all or most of the wires 52 will contact the end 54 at generally the same time. Continued movement of the wires 52 into the lumen 50 will cause the coiled ends to 25 simultaneously begin straightening or uncoiling; however, the wires 52 with the least number of windings will be completely or almost completely straightened first, thereby releasing these wires from the stent feature to which they were attached. The movement of the wires 52 continues until the wires with the next greater number of windings uncoil and release from the 30 stent and all of the wires 52 are released from the stent so that the stent is fully released. As with the embodiment of Figure 11, this embodiment provides for a sequential rather than simultaneous release of stent features

(e.g., stent crowns). It is noted that more or less than three wires 52 can be used in the system and that all of the wires 52 can be different from each other or that some of the wires 52 can be configured identically (e.g., in wire pairs that release simultaneously).

5 [00064] A distal end of another exemplary embodiment of a delivery system of the invention is illustrated in Figures 13-16. This delivery system provides a structure for attachment of a stent or stented valve that allows for full diametric expansion and assessment of the stent or stented valve prior to its release from the delivery system. In this way, the hemodynamic 10 performance, stability, and effect on adjacent anatomical structures (e.g., coronaries, bundle branch, mitral valve interference, etc.) can be assessed and if found to be inadequate or inaccurate, the stent can be recaptured and repositioned before final release of the stent from the delivery system. Alternatively, the entire stent can be removed from a patient before it is 15 released from the delivery system if any undesirable results are obtained during the process of deploying the stent.

[00065] Referring more particularly to Figure 13, an end portion of a delivery system is shown, which generally includes a lumen 60 having an end 64 from which the distal ends of multiple wires 62 extend. This lumen 60 20 may be the outer sheath of the delivery system. Each of the wires 62 is partially enclosed within a tube 66, and a coiled end of each of the wires 62 extends beyond a distal end 68 of each of the tubes 66. Each wire 62 is longitudinally moveable or slideable relative to its respective tube 66. The tubes 66 are preferably sized so that when the wires 62 are pulled toward the 25 lumen 60, the coiled ends of the wires 62 will contact and interfere with the ends 68 of the tubes 66. Continued movement of the wires 62 will then cause the wires 62 to straighten until they are released from the stent. These steps are illustrated with a single tube 66 in Figures 14-16, which show an extending coiled wire 62 that is attached to (see Figures 14 and 15) then 30 detached from (see Figure 16) a crown 70 of a stent that includes multiple crowns (not shown). In Figure 14, the wire 62 is coiled around crown 70 of a stent, and then the wire 62 is moved in a direction 72 relative to the tube 66

until the coiled wire portion contacts an end 74 of the tube 66(see Figure 15). This will cause interference between the coiled portion of wire 62 and the end 74 of the tube 66. Continued movement of the wire 62 in direction 72 will cause the coiled end of the wire 66 to unfurl. This movement of the wire 62 in direction 72 will be continued until the wire 62 is straightened sufficiently to be released from the crown 70, as shown in Figure 16.

5 [00066] The tubes 66 are preferably relatively incompressible to allow sufficient tension in the coiled portion of the wires 62 for the wires to straighten when pulled toward the lumen. In other words, the 10 incompressibility of the tubes under tension can simulate flexible columns that resist buckling when the coiled wire ends are pulled against them. In an alternative embodiment of the system of Figure 13, the wires 62 can have different lengths and/or different numbers of windings in their coils (such as in Figures 11 and 12, for example), to provide for sequential release of the 15 wires. In yet another alternative embodiment, the tubes 66 can have different lengths, thereby providing different sizes of gaps between the end of the tubes 66 and the coiled portion of the wires 62.

15 [00067] Another alternative stent wire release embodiment is illustrated in Figure 23 with an end portion of a tube 150 in which a coiled end 152 of a 20 wire 154 is positioned. Coiled end 152 is attached to a stent crown 156 and is at least partially enclosed or contained within the tube 150. In order to detach the wire 154 from the stent crown 156, a retraction force is applied to wire 154 until the stent crown 156 contacts an end 158 of the tube 150, which will 25 limit further movement of the stent. Continued application of force to wire 154 will cause the coiled end 152 to unfurl, thereby releasing the coiled end 152 from the stent crown 156. Figure 24 illustrates a similar wire release embodiment to that illustrated in Figure 23, but with an additional tube 160 positioned within tube 150. To release the coiled wire end from the stent 30 crown, the wire can be unfurled by interference between an end 162 of tube 160 and the coiled wire end and/or can be unfurled by movement of the wire relative to the tube 150, as described relative to Figure 23. It is noted that the wire coils in these and other embodiments of the invention can include a

complete or partial coil with multiple windings or a partial winding, depending on the desired release properties.

[00068] Figures 17-21 illustrate an exemplary delivery system 100 that can be used to provide sequential release of wires that have their coiled ends engaged with a stent 120, where the wires all have generally the same configuration (i.e., length, number of coils, and the like). Delivery system 100 includes a lumen 102 having an end 104 from which the distal ends of multiple wires 106 extend. Each of the wires 106 is partially enclosed within a tube 108. A coiled end 112 of each of the wires 106 extends beyond a distal end 110 of each of the tubes 108. Each wire 106 is longitudinally moveable or slideable relative to its respective tube 108. The tubes 108 are preferably sized so that when the wires 106 are pulled toward the lumen 102 (or when the tubes 108 are moved relative to the wires 106), the coiled ends 112 of the wires 106 will contact the distal ends 110 of the tubes 108. Continued movement of the wires 106 relative to the tubes 108 will then cause the coiled ends 112 of the wires 106 to straighten, thereby facilitating release of the stent 120 from the delivery system 100.

[00069] Delivery system 100 further includes a handle 130 from which the lumen 102 extends. The handle 130 includes control aspects for deployment of the stent 120. In particular, handle 130 includes a proximal control knob 132, an intermediate control knob 134, and a distal control knob 136. These control knobs are provided for controlling the delivery and deployment of the stent 120. In one exemplary embodiment of the invention, these knobs are spring-loaded such that they need to be pressed toward the handle in order to move them along a path to a new location. The handle 130 can also be provided with a series of detents that define the specific locations where the knobs can be located. The delivery system 100 may also include additional knobs, levers, or the like that can be used to control the movement of the individual wires 106 or groups of wires.

[00070] In order to load a cartridge system to which a stent 120 is attached onto the delivery system 100, the control knobs 132, 134, 136 are moved into a position that can be referred to as the “loading position”. Specific detents or

other markings can be provided on the delivery system to indicate the correct position for the knobs. The cartridge can then be attached to the delivery system using a dovetail connection or some other type of secure attachment mechanism. The proximal knob 132 can then be moved to a “prepare to 5 sheath position”, while the distal knob 136 is moved to the “sheath position”. In this way, the sheath will be moved to a position in which the stent is protected by the sheath. The delivery system can then be inserted into the patient in its desired position that facilitates deployment of the stent. Moving the proximal knob 132 into the “proximal end open position” and the distal 10 knob 136 to the “load position” can then deploy the stent 120. In order to discharge the stent 120, a switch on the delivery system (not shown) or some other control mechanism can be moved into an “open position”, the distal knob 136 can be moved to the “discharge position”, and the proximal knob 132 can be moved to its “discharge position”. The intermediate knob 134 can 15 be manipulated at the same time as the other knobs in order to facilitate the loading, sheathing, deployment, and discharge procedures.

[00071] The delivery system 100 further comprises a dual-control procedure and mechanism to sequentially pull the wires 106 into the tubes 108 to disconnect them from the crowns of the stent 120. In this 20 embodiment, a first group of wires 106 can first be removed from the stent 120, and then a second group of wires 106 can be removed from the stent 120 to thereby release the stent 120 from the delivery system 100. Thus, separate mechanisms are provided within the handle 130 to allow a first group of wires 106 to be pulled into the tubes 108 by manipulating one of the control knobs, 25 and then to allow a second group of wires 106 to be pulled into the tubes 108 by manipulating a different control knob. Each of the groups of wires 106 may include half of the wires, or there may be a different percentage of wires 106 in each of the groups. The division of wires into groups may further include having every other wire be included in one group and the alternating 30 wires are included in a second group, although the wires may be grouped in a different pattern. It is further contemplated that additional mechanisms can be

provided so that the wires are divided into more than two groups that are controlled by separate mechanisms for sequential wire release.

[00072] Figures 17 and 18 illustrate the step in which the wires 106 are each attached at their distal end 112 to a crown of stent 120. Figure 19 5 illustrates the step in which some of the wires 106 have been pulled into their respective tubes 108, thereby straightening the distal end of the wires and detaching them from the stent 120. However, the remainder of the wires 106 remains attached to the crowns of the stent 120. Figures 20 and 21 illustrate the step when the remaining wires 106 have been pulled into their respective 10 tubes 108, thereby straightening the distal end of the wires and detaching them from the stent 120. In this way, the release of the stent 120 from the delivery system 100 is more gradual than when all of the wires are detached from the stent at the same time. The components of the delivery system can alternatively comprise different components than shown to accomplish the 15 serial wire release shown more generally in Figures 18, 19, and 21.

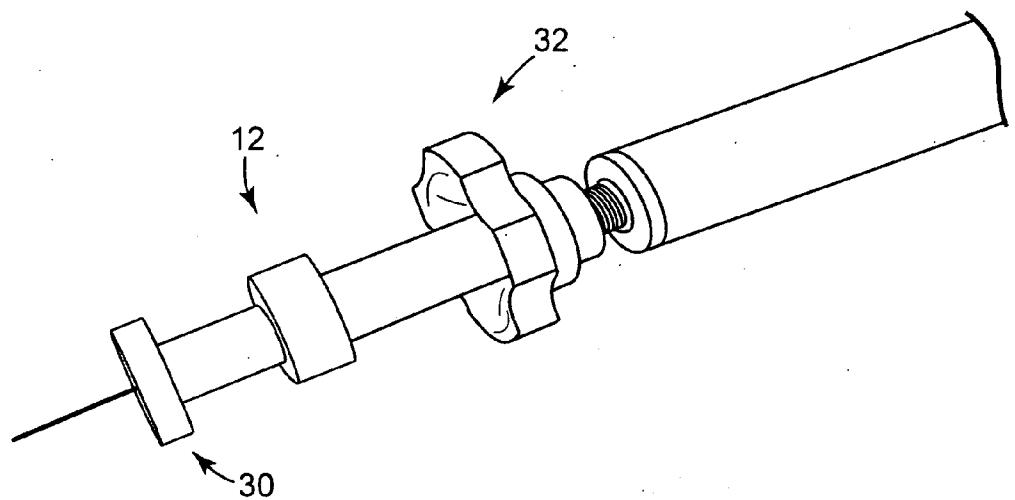
[00073] The delivery systems of the invention can be used for both apical and transfemoral procedures, for example, and may have the ability to be able to clock the stent, as desired. The delivery systems may further include a removable outer sheath that can accommodate stents of different sizes. 20 **[00074]** The process of pulling the wires toward the lumen in many of the described embodiments of the invention can be accomplished in a number of ways, such as by rotating the device over coarse threads or pushing a button to slide it to pull the wires toward the lumen. That is, a number of different mechanisms can be used to accomplish this movement of the wires relative to 25 the delivery system. Further, it is noted that while the coiled wire ends described herein are generally shown to be engaging with the end crowns of a stent, the coiled wire ends can instead engage with intermediate stent crowns or other stent features. In addition, although the coiled wire ends are illustrated herein as interfacing with stent crowns that are uniformly provided 30 at the ends of a cylindrical stent, the coiled wire designs described can also accommodate delivery of valved stents that have non-uniform axial or longitudinal stent crowns of stent feature attachment geometries.

[00075] The delivery systems of the invention, having a stent attached via coiled wire ends, can be delivered through a percutaneous opening (not shown) in the patient. The implantation location can be located by inserting a guide wire into the patient, which guide wire extends from a distal end of the 5 delivery system. The delivery system is then advanced distally along the guide wire until the stent is positioned relative to the implantation location. In an alternative embodiment, the stent is delivered to an implantation location via a minimally invasive surgical incision (i.e., non-percutaneously). In another alternative embodiment, the stent is delivered via open heart/chest 10 surgery. In one embodiment of the invention, the stent can include a radiopaque, echogenic, or MRI visible material to facilitate visual confirmation of proper placement of the stent. Alternatively, other known surgical visual aids can be incorporated into the stent. The techniques described relative to placement of the stent within the heart can be used both 15 to monitor and correct the placement of the stent in a longitudinal direction relative to the length of the anatomical structure in which it is positioned.

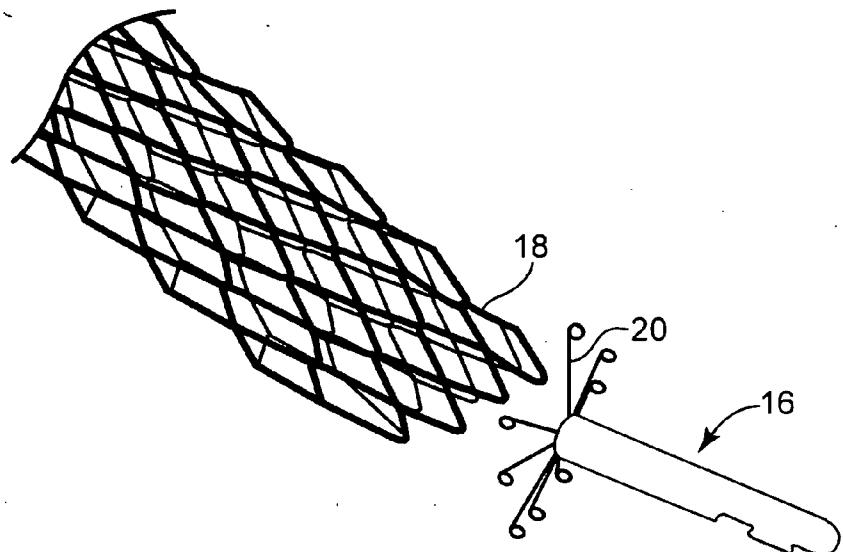
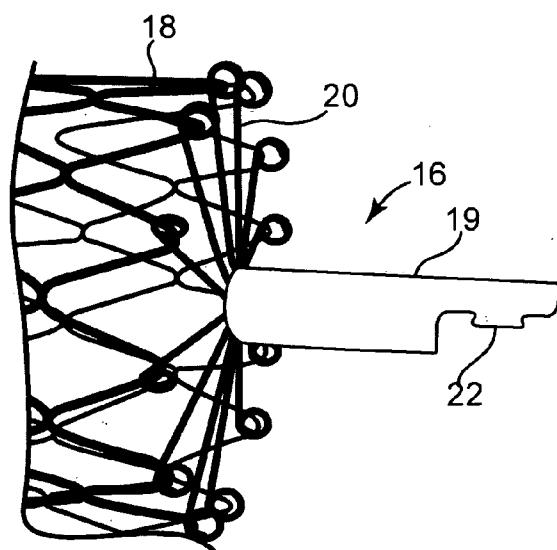
[00076] One or more markers on the valve, along with a corresponding imaging system (e.g., echo, MRI, etc.) can be used with the various 20 repositionable delivery systems described herein in order to verify the proper placement of the valve prior to releasing it from the delivery system. A number of factors can be considered, alone or in combination, to verify that the valve is properly placed in an implantation site, where some exemplary 25 factors are as follows: (1) lack of paravalvular leakage around the replacement valve, which can be advantageously examined while blood is flowing through the valve since these delivery systems allow for flow through 30 and around the valve; (2) optimal rotational orientation of the replacement valve relative to the coronary arteries; (3) the presence of coronary flow with the replacement valve in place; (4) correct longitudinal alignment of the replacement valve annulus with respect to the native patient anatomy; (5) verification that the position of the sinus region of the replacement valve does not interfere with native coronary flow; (6) verification that the sealing skirt is aligned with anatomical features to minimize paravalvular leakage; (7)

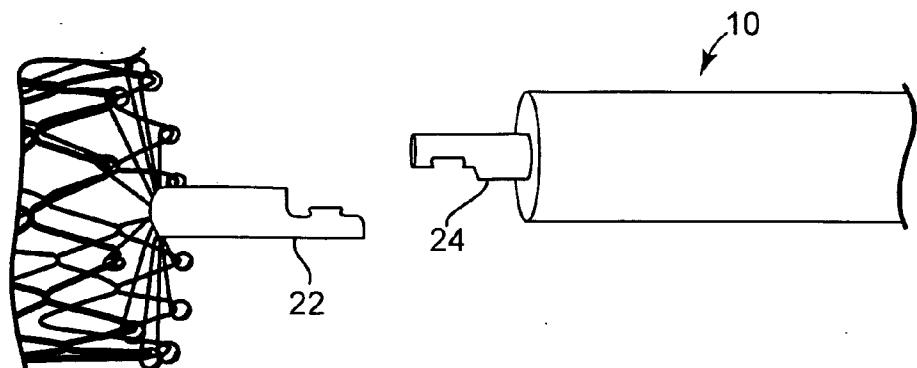
verification that the replacement valve does not induce arrhythmias prior to final release; and (8) verification that the replacement valve does not interfere with function of an adjacent valve, such as the mitral valve.

The present invention has now been described with reference to several embodiments thereof. The entire disclosure of any patent or patent application identified herein is hereby incorporated by reference. The foregoing detailed description and examples have been given for clarity of understanding only. No unnecessary limitations are to be understood therefrom. It will be apparent to those skilled in the art that many changes can be made in the embodiments described without departing from the scope of the invention. Thus, the scope of the present invention should not be limited to the structures described herein, but only by the structures described by the language of the claims and the equivalents of those structures.

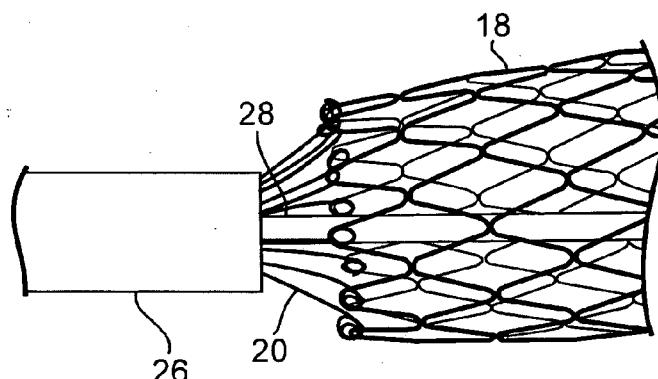

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A delivery system for delivering an implantable stented device to a lumen of a patient, the delivery system comprising:
 - 5 a tubular body having a proximal end and a distal end; and a plurality of wires extending from the distal end of the tubular body, wherein each of the wires comprises a distal end that is coiled for engagement with a stent of the implantable stented device, and wherein each coil comprises at least one complete winding of wire and an overlap portion adjacent to a distal end of the coil; and
 - 10 wherein the coil of at least one of the wires has a different number of windings of wire than the coils of at least one of the other wires of the plurality of wires.
2. The delivery system of claim 1, further comprising a central post that extends through at least a portion of the tubular body, wherein a proximal end of each of the 15 wires is attached to the central post.
3. The delivery system of claim 2, wherein the central post is linearly moveable generally along a longitudinal axis of the tubular body.
- 20 4. The delivery system of claim 3, wherein the central post comprises a first portion that extends from the proximal end of the delivery system toward the distal end of the delivery system, and a second portion that is removably attached to the first portion, wherein the second portion comprises the plurality of wires.
- 25 5. The delivery system of any one of the preceding claims, wherein each of the plurality of wires has the same length.
6. The delivery system of any one of claims 1 to 4, wherein at least one of the plurality of wires has a different length than the other wires of the plurality of wires.
- 30 7. The delivery system of any one of the preceding claims, wherein the distal end of each of the plurality of wires has the same number of windings.
8. The delivery system of claim 7, wherein an overall length of at least one of the 35 wires is different from an overall length of the other wires of the plurality of wires.



9. The delivery system of any one of the preceding claims, wherein at least one of the plurality of wires is formed from a shape memory material.
10. The delivery system of any one of claims 1 to 8, wherein at least one of the 5 plurality of wires is formed from a high tensile spring material.
11. The delivery system of any one of claims 1 to 8, wherein at least one of the plurality of wires is formed from a malleable material.
- 10 12. The delivery system of any one of the preceding claims, further comprising a plurality of sleeves, wherein each of the wires is at least partially positioned within one of the sleeves, and wherein the wires are axially moveable relative to the sleeves in which they are positioned.
- 15 13. The delivery system of claim 12, wherein at least one of the sleeves has a different length than at least one of the other sleeves.
14. The delivery system of claim 12 or 13, wherein an outer diameter of the coiled distal end of each wire is larger than an opening in the sleeve in which it is positioned 20 so that the distal end of each wire cannot be moved axially into its respective sleeve when in its coiled configuration.
15. The delivery system of claim 15, wherein the distal end of each wire can be moved axially into its respective sleeve when in its uncoiled configuration.
- 25 16. The delivery system of any one of the preceding claims, wherein the coiled distal end of the wires can be at least temporarily deformed for engagement and disengagement with a stent crown of a stented heart valve.
- 30 17. The delivery system of any one of the preceding claims, further comprising a sheath positioned at least partially around the tubular body, wherein the tubular body and sheath are moveable relative to each other from a first position where the coiled ends of the wires extend beyond a distal end of the sheath to a second position where the coiled ends of at least one of the wires are in contact with the distal end of the 35 sheath.


18. A cartridge for use with a delivery system for delivering a stented prosthetic heart valve to a lumen of a patient, the cartridge comprising a cylindrical body portion and a plurality of wires extending from a distal end of the cylindrical body, wherein
 - 5 each of the plurality of wires comprises a distal end that is coiled for engagement with a stent of a stented prosthetic valve, wherein each coil comprises at least one complete winding of wire and an overlap portion adjacent to a distal end of the coil; and
 - 10 wherein the coil of at least one of the wires has a different number of windings than the coils of at least one of the other wires of the plurality of wires and wherein the cartridge is engageable with a distal end of a delivery system.
19. A delivery system for delivering an implantable stented device to a lumen of a patient, or a cartridge for use with a delivery system for delivering a stented prosthetic heart valve to a lumen of a patient, substantially as hereinbefore described with
 - 15 reference to the accompanying drawings.

1/9


Fig. 1**Fig. 2**

2/9

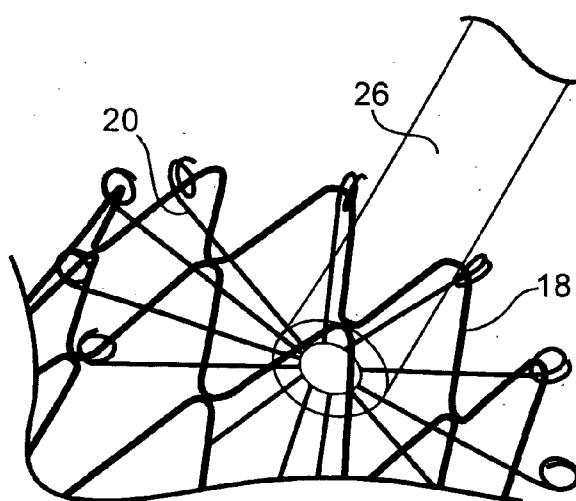

Fig. 3**Fig. 4**

Fig. 5

Fig. 6

Fig. 7

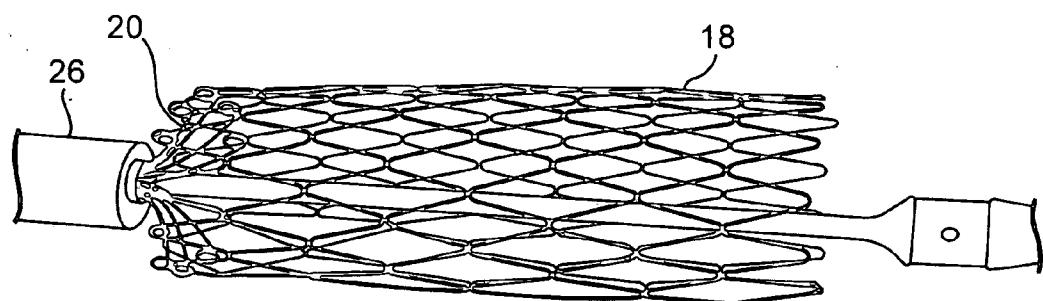


Fig. 8

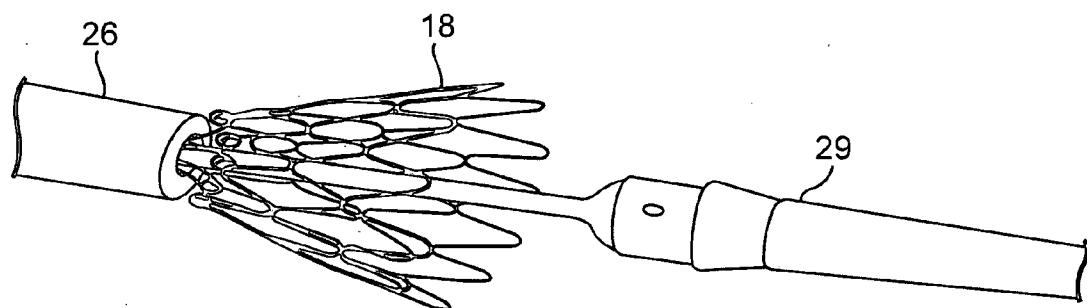
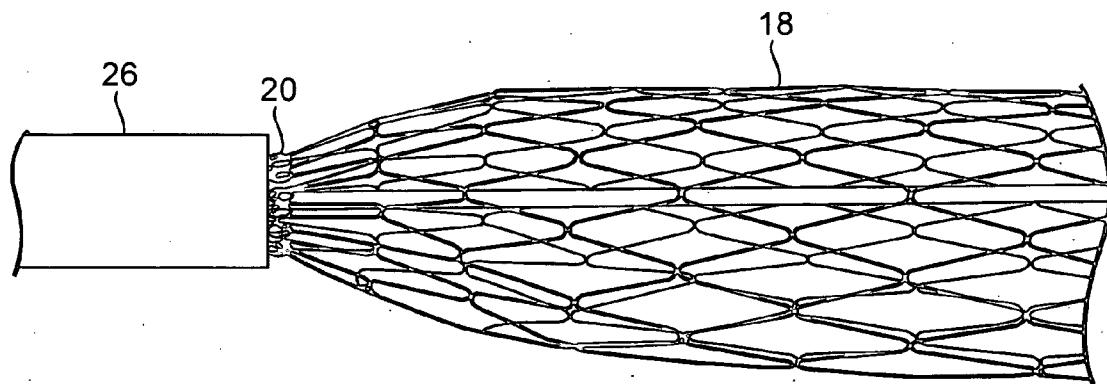
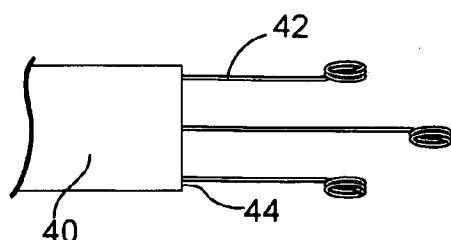
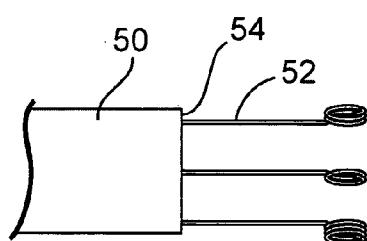


Fig. 9

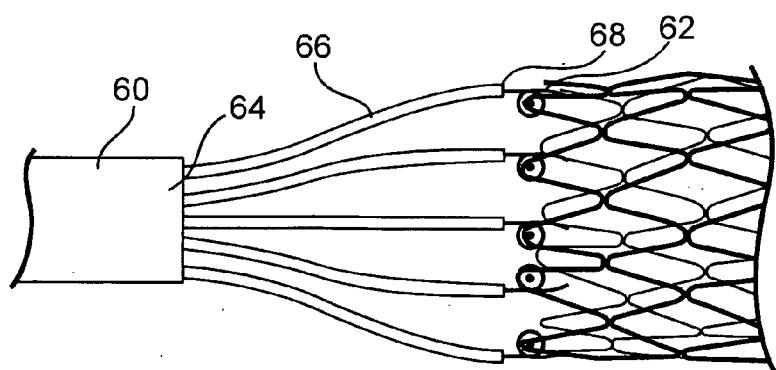
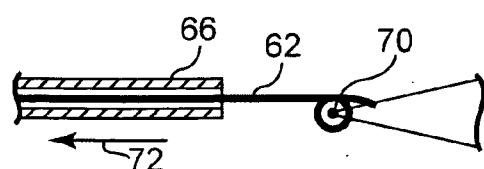
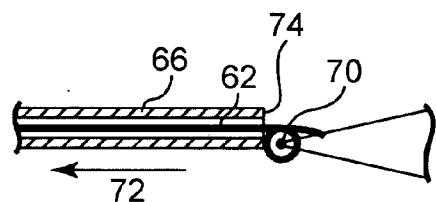
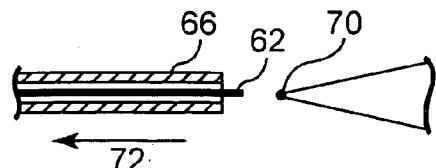
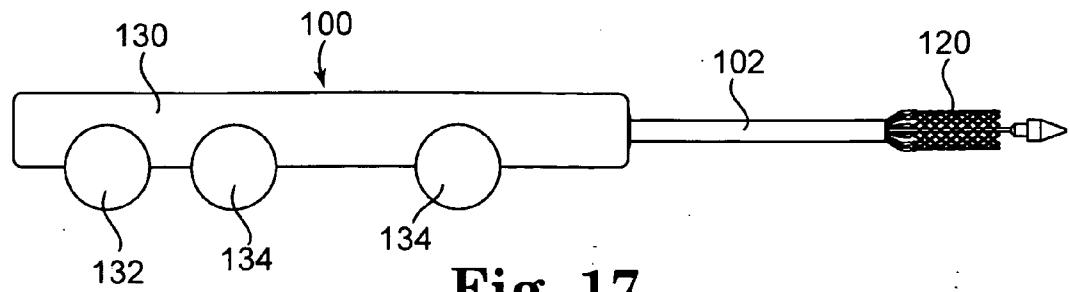
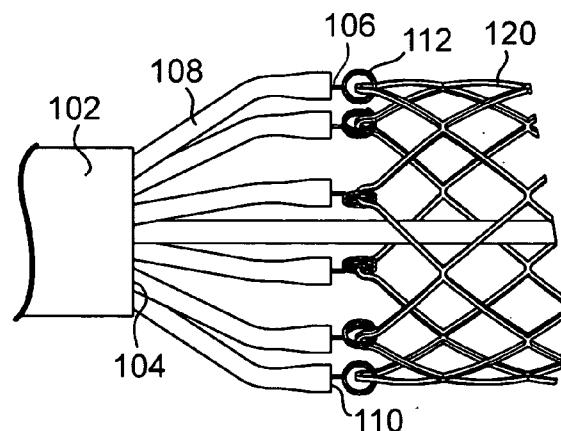

Fig. 10

Fig. 11


Fig. 12


Fig. 13

6/9

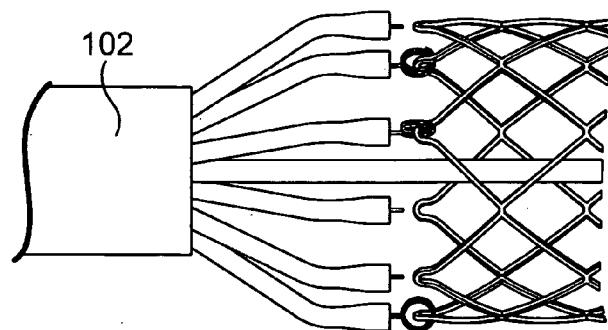

Fig. 14**Fig. 15****Fig. 16**

Fig. 17

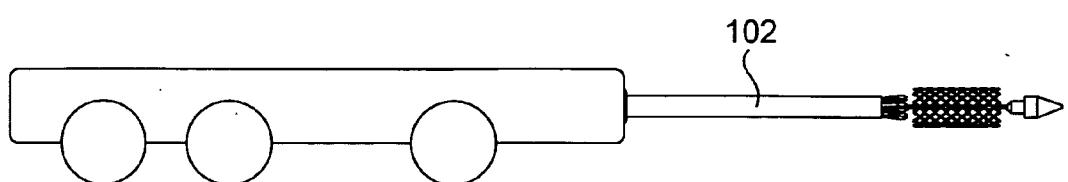
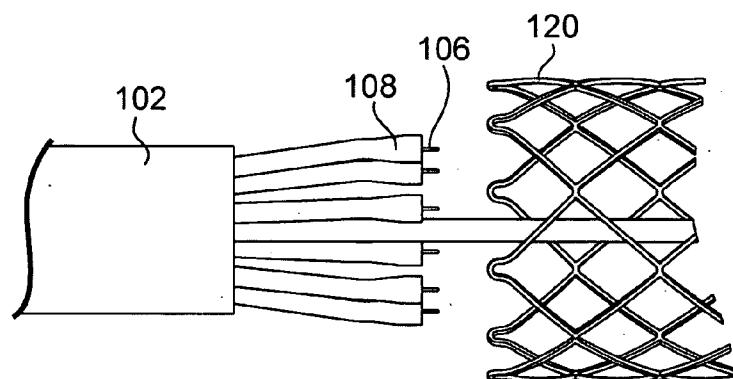



Fig. 18

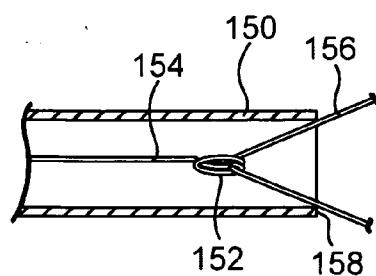
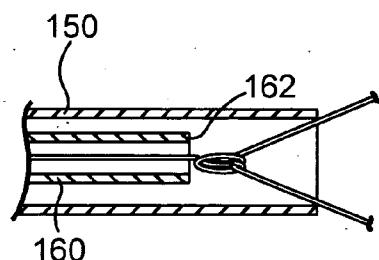
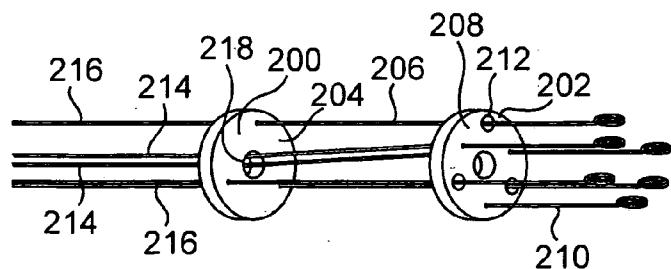




Fig. 19

8/9

Fig. 20**Fig. 21****Fig. 22**

9/9

Fig. 23**Fig. 24****Fig. 25**