Devices and methods for providing enhanced diversity reception and cosite cancellation are disclosed. According to one aspect, the subject matter described herein includes a device for providing enhanced diversity reception and cosite cancellation. The device includes a transmit chain connected to a circulator further connected to first antenna and to a combiner. The combiner is connected to anti-cosite circuitry and to first detector. The anti-cosite circuitry is further connected to a secondary antenna. The first detector is further connected to a receive chain.
TRANSMIT AN OUTPUT SIGNAL AND/OR RECEIVE AN INBOUND SIGNAL USING A T/R ANTENNA

RECEIVE A FIRST SIGNAL FROM THE T/R ANTENNA

RECEIVE A SECONDARY SIGNAL USING A SECONDARY ANTENNA

MODIFY THE SECONDARY SIGNAL

COMBINE THE FIRST SIGNAL AND THE MODIFIED SECONDARY SIGNAL

PROVIDE THE COMBINED SIGNAL TO THE RECEIVE CHAIN

FIG. 1b
DEVICES AND METHODS FOR DIVERSITY SIGNAL ENHANCEMENT AND COSITE CANCELLATION

PRIORITY CLAIM

[0001] This application claims the benefit of U.S. Provisional Patent Application Ser. Nos. 61/943,171, filed Feb. 21, 2014 and 61/968,128, filed Mar. 20, 2014; the disclosures of which are incorporated herein by reference in their entireties.

TECHNICAL FIELD

[0002] The subject matter described herein relates to receiving wireless signals. More specifically, it relates to improved isolating of inbound signals.

BACKGROUND

[0003] Today, when a cell phone suffers fading with its primary antenna, it switches to a diversity antenna to avoid the spatial null causing weak reception by the primary antenna. This diversity antenna is connected to the receiver via a costly micro-coaxial cable, for which the industry is seeking an alternative solution that improves reception.

[0004] To reduce size and cost, cell phones use the primary antenna to both transmit and receive signals, although this exposes the receive chain to incursion by powerful transmit signals, causing cosite interference that disrupts reception. Anti-cosite devices used to prevent this, e.g. duplexer pairs of off-chip filters, switches and circulators, currently provide insufficient protection, clearly creating a need for an alternative solution. Accordingly, in light of the above, there exists a need for devices and methods for providing enhanced diversity reception and cosite cancellation.

[0005] The demand by cell phone users for higher data transfer rate ("speed") is driving the evolution of wireless standards to include aggregation of multiple carriers at different frequencies, making rejection of self-interference ("blockers") more challenging that can slow or disrupt data transfer. Added to this are the fixed frequency carrier selection filters used today, which comprise off-chip components that are driving the cost and size of cell phone front ends. Replacing off-chip filter banks with active circuits can save cost and space but would create noise and risk distortion caused by insufficient blocker mitigation, making existing active filters an unacceptable alternative to today's filter banks.

[0006] In light of this, we disclose active integrated circuits and methods for wideband tunable carrier aggregation ("CA") filtering wherein channel selection filtering rejects out-of-band frequencies to mitigate blockers and other sources of OOB interference, and circuit noise within the channel or channels to enable enhanced carrier aggregated reception of wireless signals.

SUMMARY

[0007] According to one aspect, the subject matter described herein includes a device for providing enhanced diversity reception and cosite cancellation. The device includes a transmit chain connected to a circulator further connected to a primary antenna and to a combiner, said combiner being connected to adjusting circuitry and to a first detector, said adjusting circuitry being further connected to a secondary antenna, said first detector being further connected to receive chain.

[0008] According to another aspect, the subject matter described herein includes a method for providing enhanced diversity reception and cosite cancellation. The method includes transmitting signals with a first antenna, receiving signals from the first antenna, conducting the received signals to a combiner, detecting a diversity signal with a secondary antenna, adjusting the diversity signal to provide an adjusted diversity signal, providing the adjusted diversity signal to the combiner, and combining the adjusted diversity signal and received signal to provide enhanced receiving of inbound signal.

[0009] The subject matter described herein includes circuits and methods providing tunable isolation of carrier signals, where a carrier signal can be a single frequency signal or a multi-frequency (including CDMA, GSM, multiple aggregated single frequencies and spread spectrum) signal, from self-interference from the transmit signal chain entering the receive signal chain. One embodiment of the device comprises a blocker reduction stage connected to a carrier selection stage, which provide in sequence wideband cancellation of blockers and wideband tunable isolation of a plurality of carrier signals and reduction of circuit noise in isolated carrier signals. Again, each carrier signal that is selected or isolated may include a single frequency or plural frequencies.

[0010] The subject matter described herein can be implemented using software in combination with hardware and/or firmware. For example, the subject matter described herein can be implemented in software executed by a processor. In one exemplary implementation, the subject matter described herein can be implemented using a non-transitory computer readable medium having stored thereon computer executable instructions that when executed by the processor of a computer control the computer to perform steps. Exemplary computer readable media suitable for implementing the subject matter described herein include non-transitory computer-readable media, such as disk memory devices, chip memory devices, programmable logic devices, and application specific integrated circuits. In addition, a computer readable medium that implements the subject matter described herein may be located on a single device or computing platform or may be distributed across multiple devices or computing platforms. Devices embodying the subject matter described herein may be manufactured by any means, such as by semiconductor fabrication or discrete component assembly although other types of manufacturer are also acceptable, and can be manufactured of any material, e.g., CMOS or Gallium Nitride.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Preferred embodiments of the subject matter described herein will now be explained with reference to the accompanying drawings, wherein like reference numerals represent like parts, of which:

[0012] FIG. 1a is a block diagram illustrating an exemplary system for providing enhanced diversity reception and cosite cancellation according to an embodiment of the subject matter described herein;

[0013] FIG. 1b is a flow chart illustrating an exemplary process for providing enhanced diversity reception and cosite cancellation according to an embodiment of the subject matter described herein;

[0014] FIG. 2 is a block diagram of a cosite cancelling carrier aggregating filter according to an embodiment of the subject matter described herein;
In accordance with the subject matter disclosed herein, devices and methods for diversity signal enhancement and co-site cancellation are provided. In one embodiment, a cell phone providing enhanced diversity reception and co-site cancellation is presented.

The following is described in terms of cell phones but is intended to encompass methods and devices for receiving any type of wireless signal. A signal desirably received from another device is defined here as an inbound signal.

As used herein, the term “co-site interference” (or simply, “co-site”) is used as commonly defined, e.g., the existence of self-interference in a received signal created by transmitted signal content entering the received signal path either by over-the-air transmission or by in-device conduction.

As used herein, the term “T/R antenna” is used to describe an antenna used to both transmit and receive wireless signals.

As used herein, the term “diversity antenna” (or simply, “diversity”) is used as commonly defined, e.g., a system of one or more set apart second antenna used to provide a signal for enhanced reception, such as a secondary antenna providing a secondary signal to a wireless receiver.

As used herein, the term “group delay” refers to a measure of the time delay of the amplitude envelopes of the various sinusoidal components of a signal through one or more circuit components. Group delay is a constant time that has an effect on phase that increases with frequency.

As used herein, the term “phase delay” refers to a time period equal to a portion of the wave period at a given frequency.

As used herein, the term “relative delay” is defined as the difference in group delay between signals that are combined.

As used herein, the term “diversity signal” is defined as any signal received by at least one diversity (“secondary”) antenna and, for the purposes of the current disclosure, may include transmit signal (“co-site”) content of any type or may be affected by fading of any type and/or by losses during conduction from diversity antenna to receive chain.

As used herein, the term “tuning” is defined as controllable change of at least one of: center frequency, bandwidth, amplitude, phase and delay.

As used herein, the term “transmit chain” is defined as circuit elements providing transmit signals to an antenna, either directly or via duplexer, circulator, switch, etc. For purposes of this disclosure, circulator is intended to encompass duplexer or any other device that can reduce conducted transmit signals entering the receive chain.

As used herein, the term “receive chain” is used as commonly defined, e.g., the circuit elements through which received signals pass, although for purposes of clarity in the present disclosure it refers primarily to circuit elements following the combiner.

When applied to a range of frequencies, the term “phase shift” is defined as a constant fraction of a wave cycle, i.e. n/360 degrees. When applied to a fixed frequency, the term “phase shift” is equivalent to “phase delay” as commonly defined.

FIG. 1a is a circuit diagram of an exemplary device for providing enhanced diversity reception and/or co-site cancellation according to an embodiment of the subject matter described herein. In the embodiment illustrated in FIG. 1a, device 100 includes a transmit signal chain 120 connected to a circulator 122 which in turn is connected to a T/R antenna 124 and to a combiner 140, which is further connected to adjusting type circuitry 160.

Adjusting circuitry 160 can be used for various purposes, including, but not limited to, reducing co-site interference, performing beam forming, amplifying a conducted diversity signal (and thus obviating the need for lossy conducting coax), or phase shifting the diversity signal. Adjusting circuitry 160 provides co-site cancellation by providing an adjusted signal to combiner 140 in which co-site content is substantially equal in amplitude and anti-phase with respect to co-site content of signals from circulator 122. Adjusting circuitry 160 provides beam steering by providing an adjusted signal to combiner 140 in which inbound signal content is substantially in phase with inbound signal content of signals from circulator 122 to improve signal to noise ratio of the inbound signal by an amount depending on the degree of amplification provided by adjusting circuitry 160. Adjusting circuitry 160 provides diversity signal amplifying by providing an adjusted signal to combiner 140 that has been amplified with or without phase shifting depending on application. The flexible nature of adjusting circuitry 160 allows it to perform a variety of valuable functions as needed to enhance reception of inbound signals and/or provide cancellation of co-site. Thus, in some modes of operation, adjusting circuitry 160 may be referred to as “anti-co-site” circuitry but can provide other functions.

In one embodiment, a delay element 126 is connected between circulator 122 and combiner 140. Delay element 126 may be any type that can modify, e.g. minimize, the relative group delay between signals provided by circulator 122 and adjusting circuitry 160. In one embodiment, device 100 may be a cell phone or a portion of a cell phone. In this embodiment, FIG. 1a illustrates an exemplary anti-co-site anti-fading cell phone configuration. In one embodiment, adjusting circuitry 160 may be further connected to a secondary antenna 170. In one embodiment, combiner 140 may be further connected to a receive chain 180. In other embodiments the transmit chain 120 is connected to the antenna 124 and to the combiner 140 directly, i.e. without a circulator 122.
In one embodiment, device 100 includes a controller 190 of any type that can control at least one phone portion, e.g., adjusting circuitry 160, in response to signals provided by one or more detectors of any type that can detect amplitude or power for at least one frequency of a detected signal.

In the embodiment illustrated in FIG. 1a, for example, device 100 may include at least one of: a first detector 262 connected between combiner 140 and receive chain 180, a second detector 264 connected between circulator 122 and combiner 140, and a third detector 266 connected between adjusting circuitry 160 and combiner 140. In one embodiment, adjusting circuitry 160 may be referred to as anti-cosite type but is intended to encompass any type that can provide alignment in combined signals of at least one content type, which alignment type is at least one of: in-phase, anti-phase and out of phase.

Combiner 140 may be any type that can combine the circulator signal and the adjusting circuitry signal to produce an inbound signal that is at least one of amplified, cosite mitigated and fading mitigated. Combiner 140 may be any type, including, but not limited to, electrical, balun, tunable, or switched, that can combine signals at desired frequencies. In one embodiment, circuitry 160 may include at least one series connected component, including, but not limited to an attenuator 162, a phase shifter 164, or an amplifier 166 between secondary antenna 170 and combiner 140.

Attenuator 162 may be any type that can reduce power of second signal for at least one inbound signal frequency. Attenuator 162 may be any type that can reduce signal power to provide a signal to phaser shifter 164 within its linear operation range, although this is not required.

Phase shifter 164 may be any type that can provide phase shift of at least one type of: fixed, variable, controllable and switchable. Phase shifter 164 may be of continuously adjustable type. Phase shifter 164 is any type that can adjust phase of a signal or of signal content, such as cosite content.

Amplifier 166 may be of any type, such as low noise, variable, tunable and fixed. Amplifier 166 may be any type than can amplitude equalize the phase shifted signal output from phase shifter 164 with respect to a circulator signal at one or more frequencies. Amplifier 166 may be any type that can adjust amplitude of a signal or of signal content, such as cosite content.

In one embodiment, circuitry 160 includes at least one delay element 168 of any type that can provide cosite cancellation at a fixed frequency. Delay type element 168 may be any type providing a fixed phase delay. Delay element 168 can be connected at any location in circuitry 160. In one embodiment, circuitry 160 may include a selector 161 that allows a plurality of switchable delay elements 168 to be switched into or out of circuit 160. Delay elements 168 may be of any type that can provide cosite cancellation and/or inbound signal enhancement at one or more fixed frequencies, such as for a channel aggregating type cell phone.

Secondary antenna 170 may be of any type that can detect a signal containing at least one content type of: inbound and transmitted. In one embodiment, circuitry 160 can comprise a phase compensator of any type that can compensate for changes in phase relationship of cosite contents of received and diversity signals, e.g., due to electromagnetic effect, e.g. delay or distortion induced by a user or nearby object.

Receive chain 180 may include at least one element, such as a filter, down converter, mixer, amplifier, digitizer, demodulator or processor. The filter may be of any type, such as low-pass, band-pass, high-pass or band-stop. The filter may be of any type such as fixed, tunable, null-invert, mixer-first, multi-stage or n-path, among others. The mixer type may be passive, although this is not required. The amplifier may be of any type, e.g. low noise or variable.

In one embodiment, device 100 may be a cell phone that can be operated at one or more fixed frequencies, where circuitry 160 provides a fixed phase delay for each fixed frequency and means of phase aligning of cosite contents of received and diversity signals at each fixed frequency. Circuitry 160 can include one or more fixed delay elements 168, with a switch providing selection of desired delay elements. In one embodiment, more than one fixed delay elements can be selected simultaneously, for example to support channel aggregation type of reception. Fixed delay type circuitry 160 can comprise any amplifying type.

In one embodiment, device 100 may be a cell phone, where anti-cosite circuitry 160 may be of any type that can provide at least one of: a phase shift, a relative delay, or an amplification under control of the controller 190 as a means of at least one of: mitigating fading, amplifying diversity signals, cancelling cosite or controlling cancellation bandwidth. In one embodiment, controller 190 comprises a portion of receive chain 180 or other portion of device 100. In one embodiment, transmit signal chain 120 can comprise a filter or an amplifier of any type, such as tunable type, although this is not required.

FIG. 1b is a flow chart illustrating an exemplary process for providing enhanced diversity reception and cosite cancellation according to an embodiment of the subject matter described herein. In the embodiment illustrated in FIG. 1b, the method includes transmitting an outbound signal and/or receiving an inbound signal using a T/R antenna (block 201), and receiving a first signal from the T/R antenna (block 202). In one embodiment, the first signal may be provided by a circulator that couples a transmit chain to the T/R antenna and that couples the T/R antenna to a receive chain, which chain can include the combiner described herein or other circuit for modifying received signals. The method also includes receiving a secondary signal with a secondary antenna (block 204), modifying the secondary signal (block 206), combining the first signal and the modified secondary signal (block 208), and providing combined signal to a receive chain (block 210), which combined signal is at least one type of: amplified, cosite mitigated, and fading mitigated. In some embodiments, combined signal is further processed, e.g. down converted, conditioned, digitized and/or demodulated.

Modifying secondary signal comprises at least one of: attenuating, phase shifting, and amplifying. Attenuating is conducted to prevent, at one or more frequency of secondary signal, signal compression, saturation, inter-modulation or other distortion by phase shifter. Phase shifting comprises adjusting phase to align signal cosite content substantially anti-phase with respect to cosite content of the circulator signal at the combiner. Phase shifting can be any type such as fixed, variable, switchable or controlled. Amplifying comprises adjusting the amplitude of the phase shifted signal. In one embodiment, amplitude adjusting is conducted so that the amplified, phase shifted signal is more or less amplitude equalized at one or more frequencies with respect to the amplitude of the circulator signal or to the circulator signal cosite content.
Phase shifting is conducted by any means, such as by determining and/or applying phase shift. Phase shifting can be conducted by computing or searching for desirable phase shift. One acceptable means for phase shift calculation is the deterministic method that is described in commonly-assigned U.S. patent application Ser. No. 13/271,420, filed on Oct. 12, 2011, (now U.S. Pat. No. 8,666,347) the disclosure of which is incorporated herein by reference in its entirety. Iterative search, intended to minimize combined signal power and thereby maximize cosite cancellation, can be conducted by any means, such as steepest descent. Null steering can be conducted by any existing method such as adaptive null steering. Deterministic calculation can be conducted using detector signals.

In some embodiments of the method, anti-cosite circuitry is used to amplify and provide secondary signal to combiner. In some embodiments, anti-cosite circuitry provides phase shifting of at least one type of fixed, variable and controlled. In some embodiments, it provides phase shifting and amplifying. In some embodiments, it provides amplifying and/or phase shifting under control of controller.

Phase shifting is conducted to provide combined signals characterized by: anti-phase alignment of cosite contents, in-phase alignment of inbound signal contents and/or out-of-phase alignment of other signal contents, e.g.

Wirelessly propagating RF noise. Anti-phase alignment is provided as means of cancelling cosite through destructive combination of the cosite content with the anti-phase cosite content. In-phase alignment is provided as means of additively enhancing inbound signals, for example, by constructively combining the adjusted diversity signal with the received signal. Providing cancelling and/or enhancing can comprise amplifying one or more of the signals provided to the combiner. Amplifying is used to equalize amplitude of cosite contents or of inbound contents of combined signals, although equalization is not required. In one embodiment, amplifying and/or phase shifting is conducted to increase amplitude of inbound signal content of combined signal.

The method can comprise adjusting relative group delay between signals from circulator and from circuity as means of determining cancellation bandwidth. In one embodiment, relative delay is minimized to maximize cancellation bandwidth.

In one embodiment, combining is conducted for a plurality of frequencies, such as a plurality of fixed channel frequencies used for channel-aggregated transmitting and/or receiving.

In one embodiment, the amplifying of phase shifted signals is as great as possible without adversely affecting linearity of the resulting amplified signal.

Tunable Carrier Aggregating Filters

This description relates to devices and methods of tunable carrier aggregating filters that reduce interference due to blockers, environmental interference and/or circuit noise, which filters may be implemented as integrated circuits or as component assemblies.

The present disclosure is in terms of cell phones, but is intended to encompass any device sending and/or receiving signals at any wavelength, e.g. RF, millimeter or terahertz. In this disclosure, an in-bound signal is intended to encompass any desirable received carrier and the data it transfers. A carrier signal is defined herein as a signal of finite width, e.g. 1, 5, 20 MHz (single frequency, multiple aggregated single frequencies, or spread spectrum) or other width defined by lower limit, center and upper limit frequencies, as well as carrier modulations comprising desirably transferred data defined herein as data signals. Signals at frequencies above or below a carrier are defined as out of carrier (OOC). Relative delay is defined as the difference in group delay of signals to be combined. Although described in terms of receiving, the subject matter described herein can be configured for transmitting multi-carrier signals, e.g. by connecting the below-described carrier aggregating filter stage between digital-to-analog converter and power amplifier.

FIG. 2 illustrates a carrier aggregating cosite-cancelling device 10 wherein previously the described cosite cancelling device 100 is referred to cosite cancelling stage 100. Cosite cancelling stage 100 may further comprise a mixer 182 connected to receive signal chain 180 and to image rejection filter 184. Mixer 182 is any type that can translate combiner output signal from a first frequency to a second frequency, such as from RF to intermediate or base band (BB). Cosite cancelling stage 100 may further comprise an image a rejection filter 184 of any type, e.g. low pass or band-pass, that can isolate a frequency translated carrier c1, c2. Cosite cancelling stage 100 may be of any type that can provide a base band signal comprising one or more carriers c1, c2 substantially free of cosite and/or mirror image content. Carrier signal (CS) stage 200 may in turn be further connected to another stage 300 of any type, such as signal conditioning or digital converting, CS stage 200 and other stage 300 may be connected to and controlled by controller 190 of cosite cancelling stage 100.

CS stage 200 is any type that can tuneably isolate carrier signals c1, c2 from OOC signals. One acceptable type of CS stage 200 comprises a splitter 220 connected to a plurality of carrier signal filters, CSFs. CSF 240. Each CSF 240 may be of any type that can provide at least one of: OOC reduction and circuit noise reduction, for example as described in commonly assigned U.S. Provisional Patent Application Ser. No. 61/719,353 filed on Oct. 26, 2012 and U.S. Patent Application Publication No. 2013/0225099 published on Aug. 29, 2013, the disclosure of each of which is incorporated herein by reference in its entirety.

FIG. 3a illustrates a CS stage 200 which comprises a splitter 220 connected to a plurality of CSFs 240, which are then connected to a combiner 280. CS stage 200 may comprise power detectors (not shown) of any type that can be used to equalize or to calculate phase shift according to the above-referenced application Ser. No. 13/271,420. Splitter 220 may be of any type that can split a signal. CSF 240 may be of any type that can isolate a carrier, e.g. c1 or c2 from OOC signals by OOC cancellation or rejection. Each CSF 240 may be tuneable to more than one carrier, but this is not required. CSFs 240 may have overlapping, contiguous and/or non-continuous tuning ranges. CSFs 240 may provide a combined tuning range greater than, less than or equal to the operating range of carrier-aggregating cosite-cancelling device 10. Each CSF 240 may be of any type that adjusts the pass-band width of its output signals to match carrier width. Combiner 280 is any type that can combine CSF 240 signals to provide an output signal comprising distortion-free, low noise carrier signals c1, c2. Each CSF 240 may comprise any band-pass filtering type that can isolate one or more carrier c1, c2, e.g. by band-stop inversion. Each CSF 240 may comprise direct conversion type that can digitally sample a CS
stage signal and perform digital band-pass filtering. Each CSF 240 may comprise one or more resonant type channel selection filters, which may be switchably connected to combiner 280.

[0064] Thus, CS stage 200 may implement a method of receiving carrier aggregated signals, i.e., signals for which carrier aggregation is implemented. The method may include forming carrier selected signals from the carrier aggregated signals. Forming the carrier selected signals may be performed by passing the carrier aggregated signals through splitter 220 and CSFs 240 resulting in carrier-specific or carrier selected signals. The method may further include combining the carrier selected signals to form an output signal comprising an enhanced carrier aggregated signal. The combining may be implemented by combiner 260.

[0065] FIG. 4a illustrates one of many acceptable configurations of CSF 240 comprising a splitter 242 connected to passive line 244 and to active line 246 which lines are also connected to a combiner 248. CSF 240 may be band-stop inverting type as means of reducing interference, including blockers, distortion and circuit noise at in-carrier frequencies. Splitter 220 may be of any type that can split a signal, e.g., from cosine canceling stage 100, into two copies of equal or unequal power. One example of a splitter providing copies of unequal power is one providing, at one or more frequency, 90% of signal power to passive line 244 and 10% of signal power to active line 246. Passive line 244 may be any conductor capable of providing a finite group delay. In some cases, passive line 244 may additionally comprise a delay element 244a.

[0066] Active line 246 may comprise band-stop filter 246a, phase shifter 246b and mixer 246c. Active line 246 may further comprise an amplifier 246d of any type, such as low noise or variable, which may be connected after or before mixer 246d. Band-stop filter 246a may be constructed of active elements, e.g., op amp type, and/or passive elements. Band-stop filter 246a may be of any type that can provide a signal having a stop-band approximately one-half as wide as carrier, c1, c2, and lower limit approximately equal to 0 Hz, although other lower limits are also acceptable. Phase shifter 246b may be of any type that can provide center frequency anti-phase alignment of the passive line carrier signal and an up-converted (including a mirror image) portion. Mixer 246d may be passive or active type. In some cases, band-stop filter 246a may be any type that can without mixing provide a signal having a stop-band with the same width and center frequency as carrier. Amplifier 246c may be of any type that can equalize amplitude of active line signals to passive line signals, e.g., to support maximum OOC cancellation. One suitable amplifier type is one that can be controlled to match such signals at one or more OOC frequency, e.g. proximate upper and/or lower limit of carrier.

[0067] FIG. 4b illustrates a type of configuration of CS 200 comprising a plurality of CSF 240 having a common passive line 244 which configuration may have a splitter 242a of any type that can provide a plurality of output signals to a plurality of active lines 246 as well as to the common passive line 244. Passive line 244 may be connected to a passive line splitter 242b which is connected in turn a plurality of combiners 248, each of which is connected separately to a component comprised in active line 246, e.g., mixer 246c in some configurations. The combiners 248 are further connected to a combiner of any type that can provide a CS output signal.

[0068] FIG. 4c illustrates another type of active line 2460 that does not requiring frequency translating to match carrier frequency. Active line 2460 may comprise a band-stop filter 2460a, phase shifter 2460b and amplifier 2460d. Band-stop filter 2460 may be of any type that can provide a signal having a band-stop portion centered at carrier center frequency and having a width equivalent to carrier width. Phase shifter 2460b is any type that can phase align, e.g., anti-phase at center frequency, band-stop filtered signal with passive line signal. Amplifier 2460d may be of any type that can equalize the amplitude of the stop-band portion of the band-stop filtered signal to the passive line signal amplitude at one or more carrier frequencies, e.g. center frequency. Frequency shifter 2460c and amplifier 2460b may be interchanged in some embodiments. In some cases, CS 240 may comprise a digital type, e.g., comprising a digital converter and digital band-pass filter of any type that can provide output signals comprising carrier signals.

[0069] FIG. 5a illustrates one method of operation for isolating 1000 carrier signals from blockers, OOC signals and/or noise. Isolating 1000 comprises steps of blocker reduction 1200, OOC and/or noise reduction 1400 and further processing 1600. Blocker reduction 1200 may be conducted by any means such as cancelling or filtering. Reduction of OOC and/or noise 1400 may be conducted by any means such as stop-band inversion filtering. Further processing may comprise frequency translating and image rejection filtering although neither is required. Further processing 1600 may further signal conditioning and/or digitizing.

[0070] FIG. 5b illustrates one method of blocker reduction 1200 which may comprise steps of receiving blocker (Tx1) -burdened in-bound signals Rx1, Rx2 1220, modifying Rx2 1240 while delaying Rx1 1250, followed by anti-phase combining of Rx1 and Rx2 1260. Blocker cancellation 1200 may further include frequency translation 1300, e.g., from RF to intermediate or base band (BB). Blocker cancellation 1200 may further comprise digitizing (not shown) of frequency translated and/or image filtered signal.

[0071] FIG. 6 illustrates OOC/noise reduction 1400 comprising steps of forming a carrier selection filtered type (CSF) signal having a desirable center frequency and width 1420. CSF forming 1420 may be conducted by stop-band inversion, such as by splitting a signal into two copies 1422, providing first copy to a passive line as passive line signal 1424 and providing second copy to active line as active line signal 1426, forming in active line signal having a band-stop portion with desirable center frequency, width and phase 1428, followed by electrically subtracting stop-band signal from passive line signal 1430, e.g. by anti-phase combining, to provide a stop-band inverted type CSF output signal. Stop-band forming 1428 may comprise determining lower and upper frequency limits and filtering the active line signal to form a stop-band determined by those limits. Stop-band signal forming 1428 may comprise frequency translating to form a translated signal having a stop-band, including a mirror image of the stop band portion, centered at carrier center frequency. Stop-band forming 1428 may comprise shifting phase of first signal, before or after frequency translating, to provide anti-phase alignment of translated stop-band portion with phase of a carrier at a carrier center frequency. If carriers, e.g. c1 and c2, are contiguous and phase coherent, c1 and c2 may be considered as a single carrier for purposes of determining
center frequency and width although this is not required, e.g. when c1 and c2 are of substantial different amplitude or phase.

[0072] Null inverting type bandpass filtered (BPF) signal forming may comprise equalizing amplitude of translated active line signal and passive line signal, which may be conducted before or after translating. Forming BPF signal may further comprise an inverted null type as means of providing noise reduction 1600. BPF signal forming may be conducted for a plurality of contiguous and/or non-contiguous carriers with that plurality of formed BPF signals being combined into a multi-carrier isolated output signal.

[0073] Channel or carrier selection filtering 1400 may further comprise digital filtering of digital type output signal from blocker reduction step without requiring further translating, stop-band inverting or further digitizing.

[0074] It will be understood that various details of the subject matter described herein may be changed without departing from the scope of the subject matter described herein. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation.

What is claimed is:
1. A device for providing enhanced diversity reception and/or cosite cancellation, the device comprising:
a first antenna for transmitting and receiving signals;
a circuit for connecting a transmit chain to the first antenna and for connecting the first antenna to a first input of a combiner;
a second antenna for receiving signals;
adjusting circuitry for connecting the second antenna to a second input of the combiner; and
a first detector for detecting an output of the combiner and providing the detected signal to a receive chain.
2. The device of claim 1 wherein the adjusting circuitry operates to reduce cosite interference.
3. The device of claim 1 comprising a phase shifter.
4. The device of claim 3 comprising at least one selectable fixed phase delay elements.
5. The device of claim 4 comprising a selector for selecting one of the at least one fixed phase delay elements.
6. The device of claim 1 wherein the adjusting circuitry comprises an amplifier.
7. The device of claim 1 comprising an attenuator.
8. The device of claim 1 wherein the adjusting circuitry comprises a phase shifter connected to a signal amplifier.
9. The device of claim 1 comprising a controller connected to at least one of: a detector; a phase shifter; an amplifier; and an attenuator.
10. The device of claim 9 comprising at least one of: a second detector between the first antenna and the first input of the combiner; and a third detector between the adjusting circuitry and the second input of the combiner.
11. The device of claim 9 wherein the adjusting circuitry is controllable.
12. The device of claim 1, wherein the device comprises a mobile communication device.
13. The device of claim 12, wherein the mobile communication device comprises a cellular telephone.
14. A method for providing enhanced diversity reception and/or cosite cancellation, the method comprising:
transmitting or receiving signals using a first antenna;
receiving a first signal from the first antenna;
detecting a diversity signal with a second antenna;
adjusting the diversity signal to provide an adjusted diversity signal; and
combining the adjusted diversity signal and the first signal to provide enhanced receiving of the first signal.
15. The method of claim 14 wherein adjusting the diversity signal comprises changing amplitude of the diversity signal.
16. The method of claim 15 wherein amplifying the diversity signal includes equalizing an amplitude of cosite content of the diversity signal to be amplitude equalized with respect to an amplitude of cosite content of the first signal.
17. The method of claim 14 wherein adjusting the diversity signal comprises phase shifting the diversity signal.
18. The method of claim 17 wherein phase shifting the diversity signal includes aligning cosite content of the adjusted diversity signal anti-phase with respect to cosite content of the first signal when the adjusted diversity signal and the first signal are combined.
19. The method of claim 17 comprising attenuating the diversity signal prior to phase shifting the diversity signal.
20. The method of claim 17 wherein the phase shifting is of at least one type of: active, passive, variable, controlled and fixed.
21. The method of claim 14 wherein combining the adjusted diversity signal and the first signal includes providing the first signal to a combiner via a circulator.
22. The method of claim 14 wherein combining the adjusted diversity signal and the first signal includes at least one of: destructive combining of cosite contents of the adjusted diversity signal and the first signal; and constructive combining of the adjusted diversity signal and the first signal.
23. The method of claim 22 wherein the combining is conducted for plurality of frequencies.
24. The method of claim 14 comprising compensating a phase delay of the first signal.
25. A method of receiving carrier aggregated signals comprising:
forming carrier selected signals from inbound carrier aggregated signals, and
combining the carrier selected signals to form an output signal comprising an enhanced carrier aggregated signal.
26. The method of claim 25 wherein forming the carrier selected signals comprises forming and inverting a stop-band containing signal.
27. The method of claim 26 wherein forming the stop-band containing signal comprises forming a signal having a stop-band portion at a first frequency and translating the stop-band signal, including forming a mirror image of the stop-band portion to generate a translated stop-band portion and aligning the translated stop-band portion with respect to a carrier signal.
28. The method of claim 27 wherein aligning the translated stop-band portion with respect to the carrier signal comprises center frequency aligning, phase aligning and/or amplitude equalizing the translated stop-band portion with respect to the carrier signal.
29. The method of claim 25 comprising equalizing amplitude, adjusting phase, and adjusting delay of the carrier selected signals prior to the combining.
30. The method of claim 26 wherein forming the stop-band containing signal comprises forming a signal with a stop-band portion having a center frequency and width equal to that of a carrier signal.
31. The method of claim 25 further comprising performing blocker reduction.

32. The method of claim 31 wherein performing blocker reduction comprises combining signals from a primary receive chain and at least one diversity receive chain.

33. The method of claim 32 wherein at least one frequency of first receive chain signal is amplitude equalized and anti-phase aligned with respect to at least one frequency of second receive chain signal.

34. The method in claim 25 comprising performing tunable receiving.

35. A tunable carrier-aggregating filter device comprising: a carrier selection stage comprising a plurality of tunable carrier selecting filters providing output signals that are combined to form a carrier aggregated output signal.

36. The filter device of claim 35 wherein the carrier selecting filter comprises a band-stop inverting type.

37. The filter device of claim 35 wherein the carrier selection stage comprises an oscillator and a mixer and/or a controller.

38. The filter device of claim 35 wherein the channel selection filter comprises a splitter, a passive line, an active line and a combiner.

39. The filter device of claim 38 wherein the active line comprises a phase shifter and an amplifier.

40. The filter device in claim 35 further comprising a blocker reduction stage prior to the carrier selection stage.

41. The filter device of claim 40 wherein the blocker reduction stage comprises a primary receive chain and a diversity receive chain, each connected to a combiner.

42. The filter device of claim 41 wherein the combiner is connected to a mixer.

43. The filter device of claim 41 wherein the diversity receive chain comprises a phase shifter and amplifier.

44. The filter device of claim 43 wherein the diversity receive chain comprises an attenuator.

45. The filter device of claim 41 wherein the primary receive chain comprises a blocker rejection element and/or a delay element.

46. The filter device of claim 41 wherein the primary receive chain includes a primary antenna and the diversity receive chain includes a diversity antenna.