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Malignant Mass Detection and Classification in Radiographic Images

This application claims the benefit of U.S. Provisional Application Serial No.
61/343,609, filed on April 30, 2010, U.S. Provisional Application Serial No. 61/343,608, filed on
April 30, 2010, U.S. Provisional Application Serial No. 61/343,552, filed on April 30, 2010,
U.S. Provisional Application Serial No. 61/343,557, filed on April 30, 2010, U.S. Provisional
Application Serial No. 61/395,029, filed on May 5, 2010, U.S. Provisional Application Serial
No. 61/398,571, filed on June 25, 2010, U.S. Provisional Application Serial No. 61/399,094,
filed on July 6, 2010,U.S. Provisional Application Serial No. 61/400,573, filed on July 28, 2010,

all of which applications are hereby incorporated herein by reference.

TECHNICAL FIELD

The present disclosure relates generally to computer-aided detection of malignant mass
signatures in radiographic images, and more particularly to a system for locating masses and

determining mass features that allow malignant masses to be identified.

BACKGROUND

Radiologists use radiographic images such as mammograms to detect and pinpoint
suspicious lesions in a patient as early as possible, e.g., before a disease is readily detectable by
other, intrusive methods. As such, there is real benefit to the radiologist being able to locate,
based on imagery, extremely faint lesions and precursors. Large masses of relatively dense
tissue are one signature of concern. Although some masses can appear quite prominent in a
radiographic image, various factors including occlusion/partial occlusion by other natural
structure, appearance in a structurally “busy” portion of the image, sometimes coupled with

radiologist fatigue, may make some masses hard to detect upon visual inspection.
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Computer-Aided Detection (CAD) algorithms have been developed to assist radiologists
in locating potential lesions in a radiographic image. CAD algorithms operate within a computer
on a digital representation of the mammogram set for a patient. The digital representation can be
the original or processed sensor data, when the mammograms are captured by a digital sensor, or
a scanned version of a traditional film-based mammogram set. An “image,” as used herein, is
assumed to be at least two-dimensional data in a suitable digital representation for presentation to
CAD algorithms, without distinction to the capture mechanism originally used to capture patient
information. The CAD algorithms search the image for objects matching a signature of interest,

and alert the radiologist when a signature of interest is found.

Classification of anomalies may be performed using a probability density function (PDF)
that describes the relative likelihood of observing any given sample value of a random variable.
The integral of a PDF over all possible values is 1; the integral of a PDF over a subset of the
random variable’s range expresses the probability that a drawn sample of a random variable will

fall within that range.

PDFs that can be expressed by a closed-form equation are generally well understood, and
many applications for such PDFs have been developed. On the other hand, the practical
estimation of a PDF for a complex multidimensional random variable, particularly one with an
unknown and possibly irregular distribution in each dimension, and/or long, sparsely populated
tails, has in large part eluded researchers. In the area of pattern and image recognition, for
instance, many researchers have abandoned PDI approaches and concentrated on known
solvable alternatives, such as Neural Networks and linear discriminant functions, due to the

practical difficulties in applying a PDF approach.

.
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BRIEF DESCRIPTION OF THE DRAWINGS

The following is a brief description of the drawings, which illustrate exemplary

embodiments of the present invention and in which:

Figure 1 is a system-level diagram for an anomaly detection system in accordance with

an embodiment;

Figure 2 is a component diagram of a Computer-Aided Detection (CAD) unit in

accordance with an embodiment;

Figure 3 is a component diagram of a detection unit in accordance with an embodiment;

Figure 4 contains a flowchart for an overall mass detection and classification process

according to an embodiment;

Figure 5 illustrates a process for compensating for large-scale intensity gradients in a

mammogram due to variations in tissue thickness near the breast boundary;

Figure 6 contains a flowchart describing further details in a potential mass detection

Process;

Figure 7 depicts an exemplary mass signature as obtained in an iteration of an

embodiment;

Figure 8 illustrates a breast coordinate system used in the embodiments; and

Figures 9a and 9b illustrate a classifier probability unit in accordance with an

embodiment;

Figure 10 illustrates a closed form PDF and a histogram of a sample distribution drawn

from the probability distribution;

Figure 11 shows, conceptually, estimation of a sigma value for a hypothetical one-

dimensional distribution expressed by a set of representation points;
-
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Figure 12 shows application of the Figure 11 sigma value to estimation of the PDF at the

evaluation point; and

Figure 13 is a block diagram of a desktop computing device in accordance with an

embodiment of the present invention.

4-
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DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The making and using of embodiments are discussed in detail below. It should be
appreciated, however, that the present invention provides many applicable inventive concepts
that can be embodied in a wide variety of specific contexts. The specific embodiments discussed
are merely illustrative of specific ways to make and use the invention, and do not limit the scope

of the invention.

For example, embodiments discussed herein are generally described in terms of assisting
medical personnel in the examination of breast x-ray images, such as those that may be obtained
in the course of performing a mammogram. Other embodiments, however, may be used for
other situations, including, for example, detecting anomalies in other tissues such as lung tissue,

any type of image analysis for statistical anomalies, and the like.

Referring now to the drawings, wherein like reference numbers are used herein to
designate like or similar elements throughout the various views, illustrative embodiments of the
present invention are shown and described. The figures are not necessarily drawn to scale, and
in some instances the drawings have been exaggerated and/or simplified in places for illustrative
purposes only. One of ordinary skill in the art will appreciate the many possible applications and
variations of the present invention based on the following illustrative embodiments of the present

invention.

Referring first to Figure 1, a system 100 for assisting in detecting anomalies during, for
example, mammograms, is illustrated in accordance with an embodiment. The system 100
includes an imaging unit 102, a digitizer 104, and a computer aided detection (CAD) unit 106.
The imaging unit 102 captures one or more images, such as x-ray images, of the area of interest,
such as the breast tissue. In the embodiment in which the system 100 is used to assist in

analyzing a mammogram, a series of four x-ray images may be taken while the breast is

-5-
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compressed to spread the breast tissue, thereby aiding in the detection of anomalies. The series
of four x-ray images include a top-down image, referred to as a cranio caudal (CC) image, for
each of the right and left breasts, and an oblique angled image taken from the top of the sternum
angled downwards toward the outside of the body, referred to as the medio lateral oblique

(MLO) image, for each of the right and left breasts.

The one or more images may be embodied on film or digitized. Historically the one or
more images are embodied as x-ray images on film, but current technology allows for x-ray
images to be captured directly as digital images in much the same way as modern digital
cameras. As illustrated in Figure 1, a digitizer 104 allows for digitization of film images into a
digital format. The digital images may be formatted in any suitable format, such as industry

standard Digital Imaging and Communications in Medicine (DICOM) format.

The digitized images, e.g., the digitized film images or images captured directly as digital
images, are provided to a Computer-Aided Detection (CAD) unit 106. As discussed in greater
detail below, the CAD unit 106 processes the one or more images to detect possible locations of
various types of anomalies, such as calcifications, relatively dense regions, distortions, and/or the
like. Once processed, locations of the possible anomalies, and optionally the digitized images,
are provided to an evaluation unit 108 for viewing by a radiologist, the attending doctor, or other
personnel, with or without markings indicating positions of any detected possible anomalies.

The evaluation unit 108 may comprise a display, a workstation, portable device, and/or the like.

Figure 2 illustrates components that may be utilized by the CAD unit 106 (see Figure 1)
in accordance with an embodiment. Generally, the CAD unit 106 includes a segmentation unit
202, one or more detection units 204a-204n, and one or more display pre-processors 206a-206n.
As will be appreciated, an x-ray image, or other image, may include regions other than those

regions of interest. For example, an x-ray image of a breast may include background regions as

6-
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well as other structural regions such as the pectoral muscle. In these situations, it may be
desirable to segment the x-ray image to define a search area, e.g., a bounded region defining the

breast tissue, on which the one or more detection units 204a-204n is to analyze for anomalies.

The one or more detection units 204a-204c analyze the one or more images, or specific
regions as defined by the segmentation unit 202, to detect specific types of features that may
indicate one or more specific types of anomalies in the patient. For example, in an embodiment
for use in examining human breast tissue, the detection units 204a-204n may comprise a
calcification unit, a density (mass) unit, and a distortion unit. As is known in the medical field,
the human body often reacts to cancerous cells by surrounding the cancerous cells with calcium,
creating micro-calcifications. These micro-calcifications may appear as small, bright regions in
the x-ray image. The calcification unit detects and identifies these regions of the breast as

possible micro-calcifications.

It is further known that cancerous regions tend to be denser than surrounding tissue, so a
region appearing as a generally brighter region indicating denser tissue than the surrounding
tissue may indicate a cancerous region. Accordingly, the density unit analyzes the one or more
breast x-ray images to detect relatively dense regions in the one or more images. Because the
random overlap of normal breast tissue may sometimes appear suspicious, in some embodiments
the density unit may correlate different views of an object, e.g., a breast, to determine if the
dense region is present in other corresponding views. If the dense region appears in multiple

views, then there is a higher likelihood that the region is truly malignant.

The distortion unit detects structural defects resulting from cancerous cells effect on the
surrounding tissue. Cancerous cells frequently have the effect of “pulling in” surrounding tissue,

resulting in spiculations that appear as a stretch mark, star pattern, or other linear line patterns.

-
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It should be noted that the above examples of the detection units 204a-204n, e.g., the
calcification unit, the density unit, and the distortion unit, are provided for illustrative purposes
only and that other embodiments may include more or fewer detection units. It should also be
noted that some detection units may interact with other detection units, as indicated by the dotted
line 208. The detection units 204a-204n are discussed in greater detail below with reference to

Figure 3.

The display pre-processors 206a-206n create image data to indicate the location and/or
the type of anomaly. For example, micro-calcifications may be indicated by a line encircling the
area of concern by one type of line (e.g., solid lines), while spiculations (or other type of
anomaly) may be indicated by a line encircling the area of concern by another type of line (e.g.,

dashed lines).

Figure 3 illustrates components of that may be utilized for each of the detection units
204a-204n in accordance with an embodiment. Generally, each of the detection units 204a-204n
may include a detector 302, a feature extractor 304, and a classifier 306. The detector 302
analyzes the image to identify attributes indicative of the type of anomaly that the detection unit
is designed to detect, such as calcifications, and the feature extractor 304 extracts predetermined
features of each detected region. For example, the predetermined features may include the size,

the signal-to-noise ratio, location, and the like.

The classifier 306 examines each extracted feature from the feature extractor 304 and
determines a probability that the extracted feature is an abnormality. Once the probability is
determined, the probability is compared to a threshold to determine whether or not a detected

region is to be reported as a possible area of concern.

A suitable segmentation unit 202 is specified in U.S. Provisional Application Ser. Nos.

61/400,573 and 61/398,571, suitable detection units for use in detecting and classifying
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microcalcifications are specified in U.S. Provisional Application Ser. Nos. 61/343,557 and

61/343,609 and co-filed U.S. Patent Application Ser. No. [Attorney Docket No.

VUC-007], a suitable detection unit for detecting and classifying spiculated malignant masses is
specified in U.S. Provisional Application Ser. No. 61/395,029 and co-filed U.S. Patent

Application Ser. No. [Attorney Docket No. VUC-010], a suitable probability
density function estimator is specified in U.S. Provisional Application Ser. No. 61/343,608 and

co-filed U.S. Patent Application Ser. No. [Attorney Docket No. VUC-008], and

suitable display pre-processors are specified in U.S. Provisional Application Ser. Nos.

61/399,094, all of which are incorporated herein by reference.

The following paragraphs provide greater details regarding a potentially malignant mass
detection unit, such as may be utilized as one or more of the detection units 204a-204n (see
Figure 2) in accordance with an embodiment. In particular, the embodiments described below
seek to detect and classify potentially malignant masses in a radiographic image. Figure 4

contains a flowchart 400 for a detection/classification process according to an embodiment.

At a first step 410, bright areas representing strong edges (typically image artifacts),
bright lines such as skin folds, and large bright areas are removed from the image. Such areas
are readily recognizable by second derivative outliers, with confirmation features such as
linearity, orientation, or a “V” shape in the case of a skin fold, aiding recognition. The system
marks, on a valid pixel image, pixels belonging to these types of signatures as invalid. Once
marked as invalid, such pixels are not used in mass detection to prevent their extremely strong

signatures from masking nearby weak signatures of interest.

An optional step 420 is an intensity-flattening step for the breast tissue area. 'This step

estimates a compensation for the decrease in tissue thickness near the skin line, which results in
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additional image exposure and density near the breast boundary. Figure 5 illustrates details in the

intensity-flattening process.

The skin line is used as a starting point to create a distance-to-boundary map 510 of the
breast tissue. Pixels along the skin line are assigned a zero distance in the map 510, pixels that
are a valid part of the breast and touching the zero-distance pixels are assigned a unit distance,
pixels touching the unit-distance pixels are assigned a two-unit distance, and so forth, with the
process continuing until all valid pixels are assigned a distance (optionally, the process can be
stopped early at some fixed distance beyond which a high confidence exists that imaged

thickness remains constant).

The image intensity is sampled along a large number of lines orthogonal to the skin line,
all along the skin line, as shown in process 520. As intensity samples are collected along each
line, the samples are collected in data structure groups according to the skin line distance written
in map 510. Although the system embodiment does not actually create a scatter plot, scatter plot
530 illustrates, intuitively, a typical distribution of intensity versus boundary distance, D. At any
distance D, individual pixel intensity varies according to the structure crossed in each sample
line, with a general underlying trend representing an “undersignal.” The undersignal represents
the x-ray absorption expected for minimally dense tissue of a thickness found a given distance

from the skin line. It is this undersignal that is estimated and removed.

One approach can define the minimum pixel intensity at each distance D as the
undersignal at that distance. Due to noise, uncertainty in skin line determination, variations
along the breast contour in how quickly the thickness tapers toward the skin line, etc., this
approach can lack robustness (although it may work well with some digital imagery). An
alternate embodiment sorts the samples into ascending order for each D, and weights samples at

distances close to D according to a weighting function 532. The undersignal point is selected at

-10-
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the intensity that is above a given percentage P of the weighted pixels (at D and surrounding

distances), with values of P of about 30% exhibiting good performance.

The calculated undersignal may not monotonically increase with increasing D, even
though the actual undersignal would be expected to increase monotonically. A smoothing step
forces monotonicity upon the undersignal 534, by starting at the largest D modeled and moving
toward 0. At each point D, a smoothed undersignal 536 adopts the same value as undersignal
534, unless undersignal 534 increases. When undersignal 534 increases, smoothed undersignal
536 remains constant until D decreases to a point that undersignal 534 drops to at least the value
of smoothed undersignal 536. At this point, smoothed undersignal 536 will continue to track

undersignal 534 again until the next upwards excursion of undersignal 534.

Once the smoothed undersignal 536 is complete, it is combined with distance-to-
boundary map 510 to create a breast A image 540 that describes an intensity that is to be
subtracted from that image pixel to remove the undersignal. The final, adjusted image 550 is

created by subtracting the breast A image 540 from the input image 202.

Referring again to Figure 4, adjusted image 550 is passed to mass detection, which begins
at step 430. Mass detection attempts to find objects at a selectable number of scales. In one

embodiment, M scales are attempted, from 4 mm to 50 mm, with each scale spaced from its

neighbors by a multiplicative scale factor 4.

At each scale, significantly finer structure than the mass of interest is not desired for
detection. Accordingly, in step 440 the adjusted image 550 is subsampled by an integer factor

related to the scale, and then smoothed with a Gaussian function related to the subsample factor.

Once the subsampled image is smoothed, in step 450 of Figure 4 second derivative (D2)
measurements are taken at two scales, as shown in Figure 6 block 452. The fine scale calculates

second derivatives at three image points spaced at W/8, where W is the scale of interest. The

-11-
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large scale calculates second derivatives at three image points spaced at W/3. The second

derivatives are calculated at multiple orientations.

The finer-scaled D2 measurements are used to build a noise map for the scale. From
among all orientations tested, the minimum absolute D2 measurement is saved in a noise map for

use in SNR (Signal-to-Noise Ratio) measurements.

The larger-scaled D2 measurements are used to define a minimum negative second
derivative (Min ND2) measurement at each pixel. When Min ND?2 is negative at a given pixel,
this signifies that the D2 measurement at all orientations indicated a convex down curvature.
Areas of 8-neighbor connected convex down curvature are joined, with each such area

identifying a raw potential mass location. Each such area is eroded and then dilated.

Of the remaining pixels after erosion and dilation, the Max ND2 value (most convex
down curvature recorded) is taken as a strength measure for the convex down area. The N areas
producing the highest strength measures at the current scale are selected as objects for further

processing.

The object boundaries are refined to remove high frequency corners, and then resampled

at 0.5-pixel increments, such as shown for object 730 in Figure 7.

Strength measurements are made around convex segments of object 730 at the boundary
pixel locations, from the subsampled image 700. Each boundary pixel is compared to the
intensity at several locations along a line 740 orthogonal to the boundary. For locations 720
outside the object, an outer contrast is calculated, and the minimum outer contrast (the
background is expected to have a lower intensity than the object) is saved. For each boundary
pixel, its strength is defined as the minimum of its inner and outer strengths. The SNR of the
object is defined as its minimum boundary strength, divided by the standard deviation of the D2
measurements in boundary region 710.

-12-
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Nine classification features for each object are calculated. The features include search
width index, x position (e.g., nipple distance), y position, SNR, object rank, relative arc length,

dip SNR, global SNR, and other side SNR. Each will be described in turn.

Search width index describes the scale at which the object was detected.

Nipple distance and y position describe the location of the object in the breast, in a novel
breast coordinate system. The novel coordinate system allows mass location to form a
meaningful and classifiable feature, despite the large variation in patient size, breast size, and
breast shape. Typical radiological views for mammography include a mediolateral oblique view
(MLO, shown as view 810 in Figure 8) and a cranio-caudal view (CC, shown as view 820 in
Figure 8). Other, less-common views are also occasionally taken, and can be expressed in

similar coordinate systems.

The MLO view is segmented to find the pectoral line 812 and the skin line 814. The
nipple 816 is defined in the coordinate system as the point on the skin line furthest from the
pectoral line 812, measured orthogonal to the pectoral line. The x-axis of the coordinate system
is the line running from the nipple point 816 to the pectoral line 812, with the value O lying at the
nipple point and the value 100 lying at the pectoral line. The pectoral line may not actually be
visible in the image at the x-axis position, but is assumed to extend as far as needed below the
visible portion to form the coordinate system. Thus the x-coordinate of any point in the breast is
the percentage of the distance from the nipple (front) of the breast to the pectoral line (back) of

the breast.

The y-coordinate in the breast coordinate system is also expressed on a 0 to 100 scale
(points below the x-axis are expressed on a 0 to -100 scale). The scale changes, however, with
x-value, as 100 or -100 is defined, for a given x-coordinate, as the point orthogonal to the x-axis

at the x-value where the skin line is crossed. Since the cross-sectional profile of the breast

13-
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generally expands as one traverses the image from the nipple point to the pectoral line, the scale
units near the pectoral line are significantly larger than the scale units near the nipple point. The
normalized scaling, however, allows statistical frequency of object occurrence as a function of
breast position to be tabulated without regard to breast shape and size discrepancies. Several

exemplary coordinates are shown on MLO view §10.

For CC view 820, the pectoral line is often not visible. The coordinate system for the CC
view assumes that the pectoral line 812 is perpendicular to the view edge, and therefore the
nipple point 816 is the point on skin line 818 that is furthest from the image edge. The
coordinate system also assumes that the pectoral line 812 is located the same absolute distance
from the nipple point as that measured in MLO view 810. Assuming this x-axis definition, a
similar x-axis-to-skin-line y-coordinate system as that used in the MLO view is adopted for the

CC view. Several exemplary coordinates are shown on MLO view 820.
The SNR of the object has been described above.

The object rank is a number between 1 and 9, indicating its relative position among the

objects detected at this scale.
The relative arc length is calculated as y . where w is the scale and / is the boundary
length of the object.

DIP SNR is a weighted percentile of the ND2 values measured at the W/8 scale, divided

by the median noise value for region 710.

Global SNR is defined as the strength of the segment, divided by the standard deviation

of Min ND2, taken over the entire breast.

Other side SNR is measured, using breast coordinates, from the same scale and

approximately the same location in a corresponding mammogram of the opposite breast. Other

_14-
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side SNR provides information to the classifier indicating that the patient may have bilaterally

similar structure at that scale in both breasts, which may tend to indicate a non-malignancy.

During a training phase, the same object detection process and feature calculator are run
on a training set containing a large number of radiographic images, with and without masses
indicative of malignancy. Human-interactive classification, using one or more individuals with
training in interpreting radiological images, indicates malignancy or non-malignancy for each
object found in the training set. Using the training set objects, features, and human-input
classification truthing, a multidimensional probability density function (PDF) data set is

calculated.

Figures 9a and 9b illustrate an example of a classifier 306 that may be used in an
embodiment. Generally, the classifier estimates the probability that an evaluation point belongs
to a particular class by first estimating the PDF value for each of two or more classes and then
combining the different class PDF values into a probability. The combining of PDF values to
estimate a probability can be performed using techniques such as the well-known Bayes’ law.
The classifier could also use the PDF estimates to generate likelihood ratios instead of
probability values. In this embodiment, the classifier 306 includes one or more PDF units 900
providing PDF estimates to a Probability unit 901. Generally, the PDF units 900 determine a
PDF estimate for each possible classification for an object. For example, in an embodiment in
which the classifier 306 is utilized to classify a microcalcification, there may be a PDF unit 900
for each of a malignant microcalcification, a benign microcalcification, a lucent
microcalcification, a vascular microcalcification, a film artifact, and anything else. Greater detail

regarding the PDF unit 900 is provided below.

Referring now to Figure 9b, a classifier probability unit 900 that may be used by the

classifier 306 (see Fligure 3) in accordance with an embodiment is shown, although different

-15-
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classifier probability units may be utilized. A neighborhood definition unit 902 of the PDF
estimator unit 900 functionally defines neighborhood sizes for each representation point or bin of
representation points. In some embodiments a variable neighborhood size may be desirable in
order to allow for a functional description that better fits the actual measured feature data. In this
embodiment, the neighborhood definition unit 902 evaluates training data received, e.g., from a
database, and determines the appropriate neighborhood sizes for the representation points
included in the training data. The neighborhood definition unit 902 provides vector s, (a vector
representing scale parameters for each representation point or bin of representation points for
each feature or dimension) to a neighborhood determination unit 904. In an embodiment, the

neighborhood definition unit 902 is performed off-line and the results, e.g., s,, are stored, such

as being stored in a database, for later access. The vector s, is utilized by the neighborhood

determination unit 904 to determine a scale parameter vector Os - the size of the neighborhood

to be used for the evaluation point x, for each dimension or feature. The scale parameter vector

Os is provided to a weight determination unit 906 to determine weights w;, which specifies how
much weight to allocate to representation points of the training data. Once determined, the

weights w; are provided to a local estimator 908. The local estimator 908 applies the weights w;
to the training data to determine a PDF estimate for the point x4, which may be stored, e.g., in a

database. The following paragraphs provide greater detail.

PDF estimation for real-world multivariable systems with complex and/or sparse long-
tailed distributions has historically been thwarted by several inherent difficulties. First, First, the
well-studied, but highly-constrained, parametric models are often unable to accurately represent
PDFs encountered in real-world applications. Second, if the models used are highly flexible or
nonparametric, (for example, Parzen window based approaches) then the estimated values can be

unreliable due to random sample variation. This is particularly true in the tail regions of a PDF
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where there are few samples. Methods to improve estimator reliability can result in intractable

computation or memory requirements.

Embodiments described herein take a novel approach to PDF estimation. Instead of
estimating and storing a complete PDF, a data set is stored that allows on-the-fly computation of
a PDF estimator function for any specific local region in the PDF. The amount of data required
to store an estimated PDF in this manner can be on the order of n X M | where n is the
dimensionality of the system and M is a number of representation points, ;. Each representation
point represents one or more samples from the actual distribution that is being estimated. For
instance, each sample in a sample set can receive its own representation point, with a unit
weighting. Fach sample can alternately be expressed through a representation point with a
weight less than one. For instance, if two different multi-dimensional measurements are
believed to originate from the same sample, each of the two samples can be given a
representation point with a weight of 0.5. Finally, a representation point can “bin” several
samples that are close in measurement space, by replacing the samples with a single
representation point with a weight equal to the weights of the individual samples. The actual
multidimensional sample value for a binned samples representation point can be the center of the
bin, the mean of the binned samples, the median of the binned sample values in each dimension,

etc.

In addition to the representation points, several other inputs are selected prior to
performing estimation. One input is the evaluation point, xy, at which the PDF is to be estimated.

Another input is a vector §P’ provided by the neighborhood definition unit 902 in an

embodiment, represents a set of scalar parameters that allow computation of a scale parameter

vector, O The scale parameter vector determines which of the representation points will be

used in the estimation, and also can be a parameter for a function that determines the weight to
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be applied to each included point. Another input is the weighting function, g( &;), that will
actually be applied to the representation points used in the estimation. The final input is a

parameterized estimator function, f(x,,6),where @ is a parameter matrix for the function.

Figure 10 shows a generic PDF 1000 for a one-dimensional random variable,
superimposed on a histogram of a sample distribution drawn from the population of samples
1002 of the same random variable. With a large enough number of points, the histogram will
tend towards a quantized version of the shape of PDIF 1000, which may be estimated by a prior
art technique such as a Parzen window. Towards the tails of PDF 1000, such an approach has
difficulty producing a reliable estimate. The small number of samples often present in the tails
means that in the tails, a simple windowed estimate either has high variance, due to the small
number of samples, or fails to account for the true shape of the actual PDF, due to the application

of a large linear window.

In preferred embodiments, the input data includes pre-calculated parameters from which
an appropriate scale parameter can be calculated for any input evaluation point by, for example,
the neighborhood determination unit 904. Generally, the scale parameter will be larger towards
the tails of the distribution, and smaller in more data-rich areas of the representation point space.
Although a separate data structure can be used to store a description of the scale parameter over
all sample space, in one embodiment each representation point stores parameters that can be used

to calculate a scale parameter vector on the fly.

Figure 11 illustrates one embodiment of representation-point scale parameter storage and
usage, where each representation point r; also describes a minimum scale parameter value
omm(f) and a scale parameter slope Gqo(i) for a scale parameter function
0,(x,)= Oy (i) + 0,45 () x, — 7;|. Thus for any evaluation point xo, the scale parameter function

allows calculation of a scale parameter. The scale parameter for use with an evaluation point can
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thus be defined as the minimum scale parameter function value o, (xo), evaluated for all i, which
minimum values o are provided to the weight determination unit 906. In practical applications,
the scale parameter may need only be evaluated for representation points close to the evaluation
point. This can be seen by an inspection of Figure 12, where scale parameter functions o,(x) are
plotted for each evaluation point ( o,(x), for r;, 0,(x), for r, 0,(x), for r3, are labeled). The
value o,(x,) is lower than the scale parameter function values associated with all other
representation points, and is thus selected as the scale parameter for evaluation point xp.
Alternatively, the different scale parameter function values could be combined with

mathematical functions other than “min” (for example, the mean or a particular percentile of the

different values could be used).

With multiple dimensions, a different scale parameter will typically be found for each
dimension, depending on the local sparseness of representation points around x; in that

dimension.

Once the scale parameter for each dimension is found, the scale parameter can next be
used to limit the representation points that will be used to estimate the PDF at the evaluation
point. For instance, a practical rule of thumb based on distance from the evaluation point, such
as a multiple of the scale factor, can be used to exclude representation points that practically
cannot affect the calculation as illustrated in Figure 12, thus saving computation time.
Alternately, all representation points can be evaluated, no matter how far they lie from the

evaluation point.

The scale parameter is also employed to calculate an overall weight for each

representation point using the defined weighting function w, = g(rl. 3 Xgs G(XO )), as illustrated by

the weight determination unit 906 (Figure 9).
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The selected, weighted representation points are used to calculate a parameter matrix, 6,

for the parameterized estimator function f(x,6) calculated by the local estimator 908. In an

embodiment, the parameter matrix is calculated to maximize the function: Z [W,- h(f (rl. , 6?))],

z

where A() is a monotonic function.

For some function selections, when the modeled PDF is nonzero for all points in n-
dimensional space, equations can be used to solve for the parameter matrix. In one such
embodiment, the weight function g() is a Gaussian function, () is a log function, and f{) is a

second-order exponential function:

2.8(5%0,0(x,))

=t
» VTdemot ™
f (x, 0) =(C-e* ™" where x and N is the number of

representation points.

In a multidimensional solution, the above equations are still applied, with the

understanding that the variables and parameters are multidimensional.

The general approach described above can also be applied where the PDF has a zero
value in some parts of n-dimensional space. The approach can also be applied where £, g, or f
are not in a directly solvable form. In such cases, the parameter matrix can be approximated

using numerical methods, such as Newton-Rhapson optimization.

Once the parameter matrix for the estimator function has been found, it is now possible to

evaluate the estimator function at the evaluation point to obtain a PDF value.

A wide variety of applications exist for PDF techniques according to an embodiment.
Some disciplines that can benefit from accurate PDF estimation include pattern recognition,
classification, estimation, computer vision, image processing, and signal processing. The

compact space requirements of the PDF estimation data add practicality for PDF data set
220-
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compact storage, update distribution, the inclusion of additional discriminant variables and/or

classes, etc.

Although several embodiments and alternative implementations have been described,
many other modifications and implementation techniques will be apparent to those skilled in the
art upon reading this disclosure. In a given embodiment, the equation used to solve for the
estimator function parameters can be defined such that its minimization selects the parameter
matrix. The scale parameter for a given evaluation point can be calculated at runtime from the
representation points directly, although good solutions for the scale parameter may be more

costly to calculate without precalculation of per-representation point functions.

Unless indicated otherwise, all functions described herein may be performed in either
hardware or software, or some combination thereof. In a preferred embodiment, however, the
functions are performed by a processor such as a computer or an electronic data processor in
accordance with code such as computer program code, software, and/or integrated circuits that

are coded to perform such functions, unless otherwise indicated.

For example, Figure 13 is a block diagram of a computing system 1300 that may also be
used in accordance with an embodiment. It should be noted, however, that the computing system
1300 discussed herein is provided for illustrative purposes only and that other devices may be
used. The computing system 1300 may comprise, for example, a desktop computer, a
workstation, a laptop computer, a personal digital assistant, a dedicated unit customized for a
particular application, or the like. Accordingly, the components of the computing system 1300
disclosed herein are for illustrative purposes only and other embodiments of the present

invention may include additional or fewer components.

In an embodiment, the computing system 1300 comprises a processing unit 1310

equipped with one or more input devices 1312 (e.g., a mouse, a keyboard, or the like), and one or
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more output devices, such as a display 1314, a printer 1316, or the like. Preferably, the
processing unit 1310 includes a central processing unit (CPU) 1318, memory 1320, a mass
storage device 1322, a video adapter 1324, an I/O interface 1326, and a network interface 1328
connected to a bus 1330. The bus 1330 may be one or more of any type of several bus
architectures including a memory bus or memory controller, a peripheral bus, video bus, or the
like. The CPU 1318 may comprise any type of electronic data processor. For example, the CPU
1318 may comprise a processor (e.g., single core or multi-core) from Intel Corp. or Advanced
Micro Devices, Inc., a Reduced Instruction Set Computer (RISC), an Application-Specific
Integrated Circuit (ASIC), or the like. The memory 1320 may comprise any type of system
memory such as static random access memory (SRAM), dynamic random access memory
(DRAM), synchronous DRAM (SDRAM), read-only memory (ROM), a combination thereof, or
the like. In an embodiment, the memory 1320 may include ROM for use at boot-up, and DRAM
for data storage for use while executing programs. The memory 1320 may include one of more

non-transitory memories.

The mass storage device 1322 may comprise any type of storage device configured to
store data, programs, and other information and to make the data, programs, and other
information accessible via the bus 1328. In an embodiment, the mass storage device 1322 is
configured to store the program to be executed by the CPU 1318. The mass storage device 1322
may comprise, for example, one or more of a hard disk drive, a magnetic disk drive, an optical
disk drive, or the like. The mass storage device 1322 may include one or more non-transitory

memories.

The video adapter 1324 and the I/O interface 1326 provide interfaces to couple external
input and output devices to the processing unit 1310. As illustrated in Figure 13, examples of

input and output devices include the display 1314 coupled to the video adapter 1324 and the
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mouse/keyboard 1312 and the printer 1316 coupled to the I/O interface 1326. Other devices may

be coupled to the processing unit 1310.

The network interface 1328, which may be a wired link and/or a wireless link, allows the
processing unit 1310 to communicate with remote units via the network 1332. In an
embodiment, the processing unit 1310 is coupled to a local-area network or a wide-area network
to provide communications to remote devices, such as other processing units, the Internet,

remote storage facilities, or the like

It should be noted that the computing system 1300 may include other components. For
example, the computing system 1300 may include power supplies, cables, a motherboard,
removable storage media, cases, a network interface, and the like. These other components,
although not shown, are considered part of the computing system 1300. Furthermore, it should
be noted that any one of the components of the computing system 1300 may include multiple
components. For example, the CPU 1318 may comprise multiple processors, the display 1314
may comprise multiple displays, and/or the like. As another example, the computing system

1300 may include multiple computing systems directly coupled and/or networked.

Additionally, one or more of the components may be remotely located. For example, the
display may be remotely located from the processing unit. In this embodiment, display
information, e.g., locations and/or types of abnormalities, may be transmitted via the network

interface to a display unit or a remote processing unit having a display coupled thereto.

Although several embodiments and alternative implementations have been described,
many other modifications and implementation techniques will be apparent to those skilled in the
art upon reading this disclosure. Various parameters and thresholds exist and can be varied for a
given implementation with given data characteristics, with experimentation and ultimate

performance versus computation time tradeoffs necessary to arrive at a desired operating point.
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Although at least one specific method has been described for calculation of each feature type,
many alternate methods and feature definitions exist for calculating similar features with similar
or acceptable performance. Preferred embodiments use a PDF-classification implementation
with the feature set. It is believed that the disclosed feature set can also be advantageous in CAD
systems not using a PDF-classification approach. Likewise, the breast coordinate system

described herein, or variants thereof, are believed to have applicability in other CAD approaches.

A1 b T4

Although the specification may refer to “an”, “one”, “another”, or “some” embodiment(s)
in several locations, this does not necessarily mean that each such reference is to the same

embodiment(s), or that the feature only applies to a single embodiment.
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WHAT IS CLAIMED IS:

1. A method for identifying anomalies in an image comprising pixels, the method
comprising:

subsampling a digital image by a subsample factor related to a first anomaly size scale,
thereby generating a subsampled image;

smoothing the subsampled image to generate a smoothed image;

determining a minimum negative second derivative for each pixel in the smoothed image;

determining each pixel having a convex down curvature based on a negative minimum
negative second derivative value for the respective pixel;

joining each eight-neighbor connected pixels having convex down curvature to identify
each initial anomaly area;

selecting the initial anomaly areas having strongest convex down curvatures based on a
respective maximum negative second derivative for each of the initial anomaly areas;

extracting one or more classification features for each selected anomaly area; and

classifying the selected anomaly areas based on the extracted one or more classification

features.

2. The method of claim 1, wherein the image is a mammogram, the anomalies are
potentially-malignant masses, and the one or more classification features are selected from the
group consisting of: search width index, nipple distance and y position, signal-to-noise ratio
(SNR), object rank, relative arc length, dip SNR, global SNR, other side SNR, and combinations

thereof.

3. The method of claim 1, further comprising repeating the method for a plurality of

different anomaly size scales.
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4. The method of claim 1, further comprising, before subsampling, removing bright areas

from the digital image.

5. The method of claim 4, further comprising, after removing the bright areas and before

subsampling, flattening an intensity of the digital image.

6. The method of claim 1, wherein determining the minimum negative second derivative for
each pixel comprises:

calculating second derivatives at three image points centered at a respective pixel and
linearly spaced at a large scale; and

repeating calculating second derivatives for a plurality of orientations around the

respective pixel.

7. The method of claim 1, further comprising building a noise map of the smoothed image
by:

calculating second derivatives at three image points centered at a respective pixel and
linearly spaced at a fine scale;

repeating calculating second derivatives for a plurality of orientations around the
respective pixel; and

using a minimum absolute second derivative from the plurality of orientations as a noise

map value for the respective pixel.

8. The method of claim 1, further comprising, after joining and before selecting, eroding

and dilating each initial anomaly area.

9. The method of claim 1, further comprising, before extracting, refining a boundary of each

selected initial anomaly area.

YUC-009 -26-



10

15

20

WO 2011/137409 PCT/US2011/034698

10. A system for identifying anomalies in an image comprising pixels, the system
comprising:

an image subsampler subsampling a digital image, generating a subsampled image;

an image smoother smoothing the subsampled image, generating a smoothed image;

a curvature signature detector detecting and joining neighboring convex down curvatures
in the smoothed image, generating anomaly areas;

an anomaly selector selecting the anomaly areas having strongest convex down
curvatures, generating selected anomaly areas;

a feature extractor extracting one or more classification features for each of the selected
anomaly areas; and

a classifier classifying the selected anomaly areas based on one or more thresholds for the

respective extracted one or more classification features.

11. The system of claim 9, wherein the image is a mammogram, the anomalies are
potentially-malignant masses, and the one or more classification features are selected from the
group consisting of: search width index, nipple distance and y position, signal-to-noise ratio
(SNR), object rank, relative arc length, dip SNR, global SNR, other side SNR, and combinations

thereof.

12. The system of claim 9, wherein the image sampler uses a subsample factor related to a

first anomaly size scale.

13. The system of claim 9, wherein the curvature detector determines a minimum negative
second derivative for each pixel in the smoothed image, and detects convex down curvature
based on a negative minimum negative second derivative value for each pixel in the smoothed
image.
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14. The system of claim 9, wherein the anomaly selector determines the strongest convex

down curvatures based on a maximum negative second derivative for each of the anomaly areas.

15. A computer program product for identifying anomalies, the computer program product
having a non-transitory computer-readable medium with a computer program embodied thereon,
the computer program comprising:

computer program code for subsampling a digital image by a subsample factor related to
a first anomaly size scale, thereby generating a subsampled image;

computer program code for smoothing the subsampled image to generate a smoothed
image;

computer program code for determining a minimum negative second derivative for each
pixel in the smoothed image;

computer program code for determining each pixel having a convex down curvature
based on a negative minimum negative second derivative value for the respective pixel;

computer program code for joining each eight-neighbor connected pixels having convex
down curvature to identify each initial anomaly area;

computer program code for selecting the initial anomaly areas having strongest convex
down curvatures based on a respective maximum negative second derivative for each of the
initial anomaly areas;

computer program code for extracting one or more classification features for each
selected anomaly area; and

computer program code for classifying the selected anomaly areas based on the extracted

one or more classification features.

16. The computer program product of claim 1, wherein the image is a mammogram, the

anomalies are potentially-malignant masses, and the one or more classification features are
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selected from the group consisting of: search width index, nipple distance and y position, signal-
to-noise ratio (SNR), object rank, relative arc length, dip SNR, global SNR, other side SNR, and

combinations thereof.

17. The computer program product of claim 1, further comprising computer program code

for repeating the anomaly identification for a plurality of different anomaly size scales.

18. The computer program product of claim 1, further comprising computer program code

for removing bright areas from the digital image prior to subsampling.

19. The computer program product of claim 18, further comprising computer program code

for flattening an intensity of the digital image prior to subsampling.

20. The computer program product of claim 1, wherein the computer program code for
determining the minimum negative second derivative for each pixel comprises:

computer program code for calculating second derivatives at three image points centered
at a respective pixel and linearly spaced at a large scale; and

computer program code for repeating calculating second derivatives for a plurality of

orientations around the respective pixel.
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