BRANCHED HYDRAZONE LINKERS

Inventors: Dalton King, 114 Wakefield St., Hamden, Conn. 06517; Raymond A. Firestone, 900 Ridgeberry Rd., Ridgefield, Conn. 06877; Pamela Trail, 1419 Silo Rd., Yardley, Pa. 19067

Applied No.: 770,614
Filed: Dec. 19, 1996

Related U.S. Application Data

Provisional application No. 60/09,100 Dec. 22, 1995.

Int. Cl. 6

U.S. Cl.

Field of Search

References Cited

U.S. PATENT DOCUMENTS

WO9113356 9/1991 WIPO.

OTHER PUBLICATIONS

(List continued on next page.)

Primary Examiner—Mary E. Ceperley
Attorney, Agent, or Firm—Thomas R. Savitsky; Joseph M. Sorrentino

ABSTRACT

Branched hydrazone linkers for linking a targeting ligand such as an antibody to a therapeutically active drug. The point of branching is at a polyvalent atom and the number of drugs increases by a factor of two for each generation of branching. A preferred drug is doxorubicin.

13 Claims, 1 Drawing Sheet
OTHER PUBLICATIONS

V. J. Richardson et al., "Doxorubicin Immunoconjugates for Targeting to CEA Expressing Cells in Culture", Tumor Biology, 8 (No. 6), pp. 358–359 (1987).

BR96-DOX Conjugates

IC50 (µM DOX)

Exposure Time (h)

0 10 20 30 40 50

FIG. 1

IgG-DOX Conjugates

IC50 (µM DOX)

Exposure Time (h)

0 10 20 30 40 50

FIG. 2
BRANCHED HYDRAZONE LINKERS

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional application No. 60/009,100 filed Dec. 22, 1995.

BACKGROUND OF THE INVENTION

Bifunctional compounds which link cytotoxic reagents to antibodies (i.e., “linkers”) are known in the art. These compounds have been particularly useful in the formation of immun conjugates directed against tumor associated antigens. Such immun conjugates allow the selective delivery of toxic drugs to tumor cells. (See e.g., Hermentin and Seiler, “Investigations With Monoclonal Antibody Drug Conjugates,” Behring Inst. Mitt. 82:197–215 (1988); Gallego et al., “Preparation of Four Daunomycin-Monoclonal Antibody 791/736 Conjugates With Anti-Tumor Activity,” In Vitro 20(5):477–484 (1984); Arnot et al., “In Vitro and In Vivo Efficacy of Conjugates of Daunomycin With Anti-Tumor Antibodies,” Immunorellevat. Rev. 62:5–27 (1982).

Greenfield et al. have described the formation of acid-sensitive immun conjugates containing the acylhydrazone compound, 3-(2-pyridyl-dithio)propionyl hydrazide conjugated via an acylhydrazone bond to the 13-keo position of an anthracycline molecule, and conjugation of this anthracycline derivative to an antibody molecule (Greenfield et al., European Patent Publication EP 0 328 147, published Aug. 16, 1989, which corresponds to pending U.S. Ser. No. 07/270,509, filed Nov. 16, 1988 and U.S. Ser. No. 07/155,151, filed Feb. 17, 1988, now abandoned). This latter reference also discloses specific thioether-containing linkers and conjugates, including hydrazone thioether containing immun conjugates.

In particular, the in vitro potency of doxorubicin conjugates prepared with the internalizing anticarcinoma MAb BR64 and an acid labile hydrazone bond, was shown to increase as drug/Mab molar ratios increased from 1–8 (Trail et al., 1992; Trail et al., 1995). However, in these studies the increase in drug/Mab molar ratios was based on increasing the number of conjugation sites on the Mab which is self-limiting and has other drawbacks such as reduced antibody binding affinity.

In view of the above, it is clear that one of the problems in prior art immun conjugates is the relatively low ratio of drug to targeting ligand (e.g., immunoglobulin) achievable. It would be highly desirable to have immun conjugates which provide a higher ratio of drug to targeting ligand.

SUMMARY OF THE INVENTION

The present invention provides novel branched hydrazone linkers. The novel linkers are used to prepare novel drug/ linker molecules and biologically active conjugates composed of a targeting ligand, a therapeutically active drug, and a branched linker capable of recognizing a selected target cell population (e.g., tumor cells) via the targeting ligand.

As used herein the term “drug/linker” or “linker/drug” molecule refers to the linker molecule coupled to two or more therapeutically active drug molecules, and the term “conjugate” refers to the drug/linker molecule coupled to the targeting ligand. The linkers are branched so that more than one drug molecule per linker are coupled to the ligand. The number of drugs attached to each linker varies by a factor of 2 for each generation of branching. Thus, the number of drug molecules per molecule of linker can be 2, 4, 8, 16, 32, 64, etc. The factor of branching can be expressed mathematically as 2^n wherein n is a positive integer. Thus, a singly branched linker will have a first generation of branching or 2^1, i.e., contains two drug molecules per linker. A doubly branched linker will have a second generation of branching or 2^2, i.e., contains four drug molecules per linker.

Thus, the present invention is directed to a branched linker for linking a thiol group derived from a targeting ligand to two or more drug moieties which comprises a compound having a terminus containing a thiol acceptor for binding to a thiol group (also called a sulhydryl group) derived from a targeting ligand, at least one point of branching which is a polyvalent atom allowing for a level of branching of 2^n wherein n is a positive integer, and at least two other termini containing acylhydrazone groups capable of forming acylhydrazone bonds with aldehyde or keto groups derived from a drug moiety. It is preferred that n is 1, 2, 3, or 4, more preferably 1, 2 or 3, most preferably 1 or 2. It is also preferred that the polyvalent atom is carbon or nitrogen, and the targeting ligand is an antibody or fragment thereof.
As used in the preceding paragraph, the phrase "thiol group derived from the targeting ligand" means that the thiol group is already present on the targeting ligand or that the targeting ligand is chemically modified to contain a thiol group, which modification optionally includes a thiol spacer group between the targeting ligand and the thiol group. Likewise, the phrase "an aldehyde or keto group derived from a drug moiety" means that the aldehyde or keto group is already present on the drug or the drug is chemically modified to contain an aldehyde or keto group.

Also provided by the invention are intermediates for preparing the linkers, drug/linkers and/or conjugates, and a method for treating or preventing a selected disease state which comprises administering to a patient a conjugate of the invention.

BRIEF DESCRIPTION OF THE DRAWING

Fig. 1—In vitro potency of BR96 straight chains hydrazone and branched hydrazone conjugates following various exposure times as described in Example 62. ■ represents BR96 MCDOXHZN and → represents BR96 MB-Glu-(DOX).

Fig. 2—In vitro potency of IgG straight chain hydrazone and branched hydrazone conjugates following various exposure times as described in Example 62. ■ represents IgG MCDOXHZN and → represents IgG MB-Glu-(DOX).

DETAILED DESCRIPTION OF THE INVENTION

According to the present invention the drug molecules are linked to the targeting ligand via the linker of the invention. The drug is attached to the linker through an acylhydrazone bond. The targeting ligand is attached to the linker through a thioether bond. The thioether bond is created by reaction of a sulfhydryl (thiol) group on the ligand, or on a short "thiol spacer" moiety attached to the ligand, with a thiol acceptor. The thiol acceptor can be a Michael Addition acceptor which becomes, after the reaction, a Michael Addition adduct. In a preferred embodiment, the targeting ligand is attached directly to the linker through a covalent thioether bond without a thiol spacer.

In a preferred embodiment the novel linker molecule of the invention has the formula

wherein
A is a thiol acceptor;
Q is a bridging group;
b is an integer of 0 or 1;
W is a spacer moiety;
m is an integer of 0 or 1;
a is an integer of 2, 3 or 4; and
X is a moiety of the formula —NH—NH₂ or
—or a moiety of the formula

wherein
W, a, b and m are as defined hereinbefore, and
X¹ is a moiety of the formula —NH—NH₂ or
—or a moiety of the formula

wherein
W, a, b and m are as defined hereinbefore, and
X² is a moiety of the formula NH—NH₂ or
—or a moiety of the formula

wherein
W, a, b, and m are as defined hereinbefore, and
X³ is a moiety of the formula —NH—NH₂ or
—or a moiety of the formula

wherein
W, a, b and m are as defined hereinbefore, and
X⁴ is a moiety of the formula —NH—NH₂ or
—or a moiety of the formula

wherein
W, a, b and m are as defined hereinbefore, and
In another preferred embodiment, the novel branched linker of the invention has the formula

\[
A - \left(\frac{\text{O}}{\text{C}} \right)^n \left[\text{N} - \left(\text{CH}_2 \right)_a \right] - \text{T}
\]

wherein

- \(n \) is an integer of 1 to 6,
- \(a \) is an integer of 0 or 1,
- \(j \) is an integer of 2 to 6,
- \(c \) is an integer of 0 or 1,
 provided that when \(a \) is 0, \(c \) must also be 0;
- \(A \) is a thiol acceptor;
- \(T \) is of the formula

\[
\text{N} - \left[\left(\text{CH}_2 \right)_b \left(\text{NH}_2 \right)_b \right] - \text{X}_d
\]

wherein

- \(d \) is an integer of 2 to 6,
- \(m \) is an integer of 1 or 2,
- \(f \) is an integer of 0 or 1,
- \(b \) is an integer of 0 or 1,
- \(g \) is an integer of 1 or 2, and
- \(X \) is a moiety of the formula \(-\text{NH} - \text{NH}_2 \) or

\[
-\text{NHNH} = \text{NHNH}_2.
\]

Preferred branched linkers of formula II are where \(d \) is 2, \(f \) is 0, \(g \) is 1, and/or \(b \) is 0.

Specific preferred compounds of formula II have the following formulae

\[
\text{N} - \left(\text{CH}_2 \right)_a - \text{N} - \left(\text{CH}_2 \right)_d \text{CO} - \text{X}_d
\]

\[
\text{N} - \left(\text{CH}_2 \right)_a - \text{N} - \left(\text{CH}_2 \right)_d \text{CO} - \text{X}_d
\]

wherein

- \(a \) is an integer of 0, 1, 2, or 3,
- \(n \) is an integer of 1 to 6,
- \(m \) is an integer of 0 or 1, and
- \(X^5 \) is an anthracycline antibiotic;
wherein

n is an integer of 1 to 6,
a is an integer of 0, 1, 2, or 3,
m is an integer of 0 or 1,
X is an anthracycline antibiotic;

Preferred novel conjugates prepared from the drug/linker molecules of the invention have the formula

\[
\begin{align*}
\text{G} & \quad \text{H} \\
\text{(CH}_2\text{)}^n & \quad \text{O} \\
\text{N} & \quad \text{CH} \\
\text{N} & \quad \text{NH} = \text{Drug}
\end{align*}
\]

or a moiety of the formula

\[
\begin{align*}
\text{O} & \quad \text{H} \\
\text{(CH}_2\text{)}^n & \quad \text{O} \\
\text{N} & \quad \text{CH} \\
\text{N} & \quad \text{NH} = \text{Drug}
\end{align*}
\]

wherein W, a, b and m are as defined hereinbefore, and X is a moiety of the formula —NH—N—Drug or

\[
\begin{align*}
\text{O} & \quad \text{H} \\
\text{(CH}_2\text{)}^n & \quad \text{O} \\
\text{N} & \quad \text{CH} \\
\text{N} & \quad \text{NH} = \text{Drug}
\end{align*}
\]

wherein W, a, b and m are as defined hereinbefore, and X is a moiety of the formula —NH—N—Drug or

\[
\begin{align*}
\text{O} & \quad \text{H} \\
\text{(CH}_2\text{)}^n & \quad \text{O} \\
\text{N} & \quad \text{CH} \\
\text{N} & \quad \text{NH} = \text{Drug}
\end{align*}
\]
or a moiety of the formula

\[
\text{H} \quad (\text{CH}_{2})_{a} = (\text{NH})_{b} = (\text{W})_{c} = X\]
\[
\text{N} \quad \text{CH} \quad (\text{NH})_{b} = (\text{W})_{c} = X\]
\[
\text{O} \]

wherein

\(W, a, \text{ and } m \) are defined hereinbefore, and

\(X \) is a moiety of the formula \(-\text{NH}=\text{Drug}\), or

\[
\text{N} \quad \text{NHNH} - \text{C} - \text{NH} = \text{Drug}
\]

or a moiety of the formula

\[
\text{H} \quad (\text{CH}_{2})_{a} = (\text{NH})_{b} = (\text{W})_{c} = X\]
\[
\text{N} \quad \text{CH} \quad (\text{NH})_{b} = (\text{W})_{c} = X\]
\[
\text{O} \]

wherein \(W, a, \text{ and } m \) are defined hereinbefore, and

\(X' \) is a moiety of the formula \(-\text{NH}=\text{Drug}\), or

\[
\text{N} \quad \text{NHNH} - \text{C} - \text{NH} = \text{Drug}
\]

Other preferred novel conjugates of the invention have the formula

\[
G = \left[(N = (\text{CH})_{j} = S = A = (\text{CH})_{k} = (\text{C})_{l} = N = (\text{CH})_{m} = T) \right]_{q}
\]

wherein

\(A \) is a thiol adduct,

\(n \) is an integer of 1 to 6,

\(a \) is an integer of 0 or 1,

\(j \) is an integer of 2 to 6,

\(c \) is an integer of 0 or 1,

\(p \) is an integer of 1 to 6,

\(Y \) is 0 or \(\text{NH}_{2} \) or \(\text{Cl}^{-} \),

\(z \) is an integer of 0 or 1,

\(q \) is an integer of 1 to 10,

\(G \) is a targeting ligand, and

\(T \) is of the formula

\[
\text{N} \quad [((\text{CH})_{a} = (\text{NH})_{b} = (\text{C})_{c} = X)]
\]

In one embodiment the drug moiety is an anthracycline antibiotic and the ligand is an antibody.

In a preferred embodiment the anthracycline is bound to the linker through an acylhydrazone bond at the 13-keto position of the anthracycline compound. The targeting ligand, preferably an antibody or fragment thereof, then is bound, through the linker, to the anthracycline compound. In an especially preferred embodiment, this linkage occurs through a reduced disulfide group (i.e., a free sulfhydryl or thiol group \((-\text{SH})\)) on an antibody.

In a most preferred embodiment the anthracycline drug moiety is adriamycin, the thiol acceptor is a Michael Addition acceptor, from which the Michael Addition adduct is derived, especially a makimido-group, and the antibody moiety is a chimeric or humanized antibody.

The conjugates of the invention retain both specificity and therapeutic drug activity for the treatment of a selected target cell population. They may be used in a pharmaceutical composition, such as one comprising a pharmaceutically effective amount of a compound of Formula III or IV associated with a pharmaceutically acceptable carrier, diluent or excipient.

The present invention provides novel branched linker/drug molecules composed of a drug, and a thioether-containing linker having at least two drug molecules which can be joined to a ligand capable of targeting a selected cell population. The drugs are joined to the linker through an acylhydrazone bond. The point of branching is a polypotent atom, preferably a carbon atom or nitrogen atom. In a preferred embodiment, the ligand is joined directly to the linker through a thioether bond. Normally, this bond will be created by reaction of a reactive sulfhydryl \((-\text{SH})\) group on the ligand, or on a spacer moiety (e.g., one derived from the SPDP or iminothiolane chemistry described below), with a thiol acceptor such as a Michael Addition acceptor.

The invention also provides methods for the production of these drug conjugates and pharmaceutical compositions and methods for delivering the conjugates to target cells in which a modification in biological process is desired, such as in the treatment of diseases such as cancer, viral or other pathogenic infections, autoimmune disorders, or other disease states.

The conjugates comprise at least two drug molecules connected by a linker of the invention to a targeting ligand molecule that is reactive with the desired target cell population. The targeting ligand molecule can be an immunore-
active protein such as an antibody, or fragment thereof, a non-immunoreactive protein or peptide ligand such as bombesin or, a binding ligand recognizing a cell associated receptor such as a lectin or steroid molecule.

For a better understanding of the invention, the Drugs, the ligands and various components of the hydrazine linkers will be discussed individually.

The Spacer ("W")

As used herein, the term "spacer" refers to a bifunctional chemical moiety which is capable of covalently linking together two spaced chemical moieties into a stable tripartate molecule. Specifically, the "W" spacer links a keto group to a nitrogen atom. Examples of spacer molecules are described in S. S. Wong, Chemistry of Protein Conjugation and Crosslinking, CRC Press, Florida, (1991); and G. E. Means and R. E. Feeney, Bioconjugate Chemistry, vol. 1, pp.2-12, (1990), the disclosures of which are incorporated herein by reference. Preferred spacers have the formula

\[H \xrightarrow{\text{N-}} (\text{CH}_2)_g \xrightarrow{O} \]

wherein \(g \) is an integer of 1 to 6, preferably 2 to 4, more preferably 2.

The most preferred spacer has the formula

\[\xrightarrow{\text{N-}} (\text{CH}_2)_2 \xrightarrow{O} \]

The Bridging Group ("Q")

The bridging group is a bifunctional chemical moiety which is capable of covalently linking together two spaced chemical moieties into a stable tripartate molecule. Examples of bridging groups are described in S. S. Wong, Chemistry of Protein Conjugation and Crosslinking, CRC Press, Florida, (1991); and G. E. Means and R. E. Feeney, Bioconjugate Chemistry, vol. 1, pp.2-12, (1990), the disclosures of which are incorporated herein by reference. Specifically, the bridging group "Q" covalently links the thiol acceptor to a keto moiety. An example of a bridging group has the formula

\[\xrightarrow{\text{N-}} (\text{CH}_2)_f (\text{CH}_2)_h \xrightarrow{O} \]

wherein
- \(f \) is an integer of 0 to 10,
- \(h \) is an integer of 0 to 10,
- \(g \) is an integer of 0 or 1,
- provided that when \(g \) is 0, then \(f+h \) is 1 to 10,
- \(Z \) is S, O, NH, SO_2, phenyl, naphthyl, a cycloaliphatic hydrocarbon ring containing 3 to 10 carbon atoms, or a heteroaromatic hydrocarbon ring containing 3 to 6 carbon atoms and 1 or 2 heteroatoms selected from O, N, or S.
- Preferred cycloaliphatic moieties include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like. Preferred heteroaromatic moieties include pyridyl, furanyl, pyranyl, pyrimidinyl, pyrazinyl, pyridazinyl, pyrazinyl, 3-oxazinyl, pyrryl, thiazoxy, morpholinyl, and the like.
- In the bridging group it is preferred that when \(g \) is 0, \(f+h \) is an integer of 2 to 6 preferably 2 to 4 and more preferably 2. When \(g \) is 1, it is preferred that \(f \) is 0, 1 or 2, and that \(h \) is 0, 1 or 2.

The Drug

The drug of the drug/linker molecule and conjugates of the present invention are effective for the usual purposes for which the corresponding drugs are effective, and have superior efficacy because of the ability, inherent in the ligand, to transport the drug to the desired cell where it is of particular benefit. Further, because the conjugates of the invention can be used for modifying a given biological response, the drug moiety is not to be construed as limited to classical chemical therapeutic agents.

The preferred drugs for use in the present invention are cytotoxic drugs, particularly those which are used for cancer therapy. Such drugs include, in general, DNA damaging agents, anti-metabolites, natural products and their analogs. Preferred classes of cytotoxic agents include the anthracine family of drugs. Particularly useful members of that class include, for example, daunorubicin, doxorubicin, camptothecin, morpholino doxorubicin, diacetylmorpholino doxorubicin and their analogues.

As noted previously, one skilled in the art may make chemical modifications to the desired compound in order to make reactions of that compound more convenient for purposes of preparing conjugates of the invention.

In the conjugate of Formula II, D is a drug moiety having pendant to the backbone thereof a chemically reactive
A highly preferred group of cytotoxic agents for use as drugs in the present invention include drugs of the following formula:

The Anthracyclines Antibiotics Of Formula (V):

\[
\begin{align*}
\text{wherein} \\
R^1 \text{ is } &-CH_3, -CH_2OH, -CH_2OCH(CH_2)_3CH_3 \quad \text{or} \\
R^1 \text{ is } &-CH_3, -CH_2OH, -CH_2OCH(CH_2)_3CH_3 \quad \text{or}
\end{align*}
\]

TABLE I

<table>
<thead>
<tr>
<th>Compound</th>
<th>R^1</th>
<th>R^2</th>
<th>R^3</th>
<th>R^4</th>
<th>R^5</th>
<th>R^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daunorubicin^a</td>
<td>CH_3</td>
<td>OCH_3</td>
<td>NH_2</td>
<td>OH</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>CH_3OH</td>
<td>OCH_3</td>
<td>NH_2</td>
<td>OH</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Detroxubicin</td>
<td>CH_3OCOCH(OCH_3)_2</td>
<td>OCH_3</td>
<td>NH_2</td>
<td>OH</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Carminomycin</td>
<td>CH_3</td>
<td>OH</td>
<td>NH_2</td>
<td>OH</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Idarubicin</td>
<td>CH_3</td>
<td>H</td>
<td>NH_2</td>
<td>OH</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Epirubicin</td>
<td>CH_3OH</td>
<td>OCH_3</td>
<td>NH_2</td>
<td>H</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>CH_3OH</td>
<td>OCH_3</td>
<td>NH_2</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>THP</td>
<td>CH_3OH</td>
<td>OCH_3</td>
<td>NH_2</td>
<td>OTHP</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AD-32</td>
<td>CH_3OCOCH(CH_2)_3CH_3</td>
<td>OCH_3</td>
<td>NHCOCF_3</td>
<td>OH</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Morpholino-Dox</td>
<td>CH_3OH</td>
<td>OCH_3</td>
<td>OCH_3</td>
<td>OH</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Cyano-morpholino-Dox</td>
<td>CH_3OH</td>
<td>OCH_3</td>
<td>OCH_3</td>
<td>OH</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>DAPDox</td>
<td>CH_3OH</td>
<td>OCH_3</td>
<td>NH(CH_2)_3CH(OAc)_2</td>
<td>OH</td>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>

^a“Daunomycin” is an alternate name for daunorubicin
The “ligand” includes within its scope any molecule that specifically binds or reactively associates or complexes with a receptor or other receptive moiety associated with a given target cell population. This cell reactive molecule, to which the drug reagent is linked via the linker in the conjugate, can be any molecule that binds to, complexes with or reacts with the cell population sought to be therapeutically or otherwise biologically modified and, which possesses a free reactive sulfhydryl (—SH) group or may be modified to contain such a sulfhydryl group. The cell reactive molecule acts to deliver the therapeutically active drug moiety to the particular target cell population with which the ligand reacts. Such molecules include, but are not limited to, large molecular weight proteins such as, for example, antibodies, smaller molecular weight proteins, polypeptides or peptide ligands, and non-peptidyl ligands.

The non-immunoactive protein, polypeptide, or peptide ligands which can be used to form the conjugates of this invention may include, but are not limited to, transferin, epidermal growth factors (“EGF”), bombesin, gastrin, gastrin-releasing peptide, platelet-derived growth factor, IL-2, IL-6, tumor growth factors (“TGF”), such as TGF-α and TGF-β, vaccinia growth factor (“VGF”), insulin and insulin-like growth factors I and II. Non-peptidyl ligands may include, for example, carbohydrates, lectins, and apoprotein from low density lipoprotein.

The immunoactive ligands comprise in antigen-recognizing immunoglobulin (also referred to as “antibody”), or an antigen-recognizing fragment thereof. Particularly preferred immunoglobulins are those immunoglobulins which can recognize a tumor-associated antigen. As used, “immunoglobulin” may refer to any recognized class or subclass of immunoglobulins such as IgG, IgA, IgM, IgD, or IgE. Preferred are those immunoglobulins which fall within the IgG class of immunoglobulins. The immunoglobulin can be derived from any species. Preferably, however, the immunoglobulin is of human, murine, or rabbit origin. Furthermore, the immunoglobulin may be polyclonal or monoclonal, preferably monoclonal.

As noted, one skilled in the art will appreciate that the invention also encompasses the use of antigen recognizing immunoconjugate fragments. Such immunoglobulin fragments may include, for example, the Fab', F(ab')2, Fv, or Fab fragments, or other antigen recognizing immunoglobulin fragments. Such immunoglobulin fragments can be prepared, for example, by proteolytic enzyme digestion, for example, by papain or papain digestion, reductive alklylation, or recombinant techniques. The materials and methods for preparing such immunoglobulin fragments are well-known to those skilled in the art. See generally, Parham, J. Immunology, 131, 2895 (1983); Lamoyi et al., J. Immunoologcal Methods, 56, 235 (1983); Parham, id., 53, 133 (1982); and Matthew et al., id., 50, 239 (1982).

The immunoglobulin can be a “chimeric antibody” as that term is recognized in the art. Also the immunoglobulin may be a “bifunctional” or “hybrid” antibody, that is, an antibody which may have one arm having a specificity for one antigenic site, such as a tumor associated antigen while the other arm recognizes a different target, for example, a hapten which is, or to which is bound, an agent lethal to the antigen-bearing tumor cell. Alternatively, the bifunctional antibody may be one in which each arm has specificity for a different epitope of a tumor associated antigen of the cell to be therapeutically or biologically modified. In any case, the hybrid antibodies have a dual specificity, preferably with one or more binding sites specific for the hapten of choice or more or more binding sites specific for a target antigen, for example, an antigen associated with a tumor, an infectious organism, or other disease state.

Biological bifunctional antibodies are described, for example, in European Patent Publication, EPA 0 105 360, to which those skilled in the art are referred. Such hybrid or bifunctional antibodies may be derived, as noted, either biologically, by cell fusion techniques, or chemically, especially with cross-linking agents or disulfide bridge-forming reagents, and may be comprised of whole antibodies and/or fragments thereof. Methods for obtaining such hybrid antibodies are disclosed, for example, in PCT Application WO83/03679, published Oct. 27, 1983, and published European Application EPA 0 217 577, published Apr. 8, 1987, both of which are incorporated herein by reference. Particularly preferred bifunctional antibodies are those biologically prepared from a “polydoma” or “quadroma” or which are synthetically prepared with cross-linking agents such as bis-(maleimido)-methyl ether (“BMM”), or with other cross-linking agents familiar to those skilled in the art.

In addition the immunoglobulin may be a single chain antibody (“SCA”). These may consist of single chain Fv fragments (“scFv”) in which the variable light (“Vλ”) and variable heavy (“VH”) domains are linked by a peptide bridge or by disulfide bonds. Also, the immunoglobulin may consist of single VH domains (dAbs) which possess antigen-binding activity. See, e.g., G. Winter and C. Milstein, Nature, 349, 295 (1991); R. Gocke, et al., Biochemistry, 29, 1362 (1990); and E. S. Ward et al., Nature, 341, 544 (1989).

Especially preferred for use in the present invention are chimeric monoclonal antibodies, preferably those chimeric antibodies having specificity toward a tumor associated antigen. As used herein, the term “chimeric antibody” refers to a monoclonal antibody comprising a variable region, i.e., binding region, from one source or species and at least a portion of a constant region derived from a difference source of species, usually prepared by recombinant DNA techniques. Chimeric antibodies comprising a murine variable region and a human constant region are especially preferred in certain applications of the invention, particularly human therapy, because such antibodies are readily prepared and may be less immunogenic than purely murine monoclonal antibodies. Such murine/human chimeric antibodies are the product of expressed immunoglobulin genes comprising DNA segments encoding murine immunoglobulin constant regions. Other forms of chimeric antibodies encompassed by the invention are those in which the class or subclass has been modified or changed from that of the original antibody. Such “chimeric” antibodies are also referred to as “class-switched antibodies”. Methods for producing chimeric antibodies involve conventional recombinant DNA and gene transfection techniques now well known in the art. See, e.g., Morrison, S. L., et al., Proc. Nat’l Acad. Sci, 81 6851 (1984).

Encompassed by the term “chimeric antibody” is the concept of “humanized antibody”, that is those antibodies in which the framework or “complementarity determining regions (CDR) have been modified to comprise the CDR of an immunoglobulin of different specificity as compared to that of the parent immunoglobulin. In a preferred embodiment, a murine CDR is grafted into the framework region of a human antibody to prepare the “humanized antibody”. See, e.g., L. Ricchmann et al., Nature 332, 323 (1988); M. S. Neuberger et al., Nature 314, 268 (1985). Particularly preferred CDR’s correspond to those representing sequences recognizing the antigens noted above for the chimeric and bifunctional antibodies. The reader is referred
to the teaching of EPA 0 239 400 (published Sep. 30, 1987), incorporated herein by reference, for its teaching of CDR modified antibodies.

One skilled in the art will recognize that a bifunctional-chimeric antibody can be prepared which would have the benefits of lower immunogenicity of the chimeric or humanized antibody, as well as the flexibility, especially for therapeutic treatment, of the bifunctional antibodies described above. Such bifunctional-chimeric antibodies can be synthesized, for instance, by chemical synthesis using cross-linking agents and/or recombinant methods of the type described above. In any event, the present invention should not be construed as limited in scope by any particular method of production of an antibody whether bifunctional, chimeric, bifunctional-chimeric, humanized, or an antigen-recognizing fragment or derivative thereof.

In addition, the invention encompasses within its scope immunoglobulins (as defined above) or immunoglobulin fragments to which are fused active proteins, for example, an enzyme of the type disclosed in Neuberger, et al., Proc. Nat. Acad. Sci., USA, 83, 1345, 1986. The disclosure of such products is incorporated herein by reference.

As noted, “bifunctional”, “fused”, “chimeric” (including humanized), and “bifunctional-chimeric” (including humanized) antibody constructions also include, within their individual contexts constructions comprising antigen recognizing fragments. As one skilled in the art will recognize, such fragments could be prepared by traditional enzymatic cleavage of intact bifunctional, chimeric, humanized, or chimeric-bifunctional antibodies. If, however, intact antibodies are not susceptible to such cleavage, because of the nature of the construction involved, the noted constructions can be prepared with immunoglobulin fragments used as the starting materials; or, if recombinant techniques are used, the DNA sequences, themselves, can be tailored to encode the desired “fragment” which, when expressed, can be combined in vivo or in vitro, by chemical or biological means, to prepare the final desired intact immunoglobulin “fragment”. It is in this context, therefore, that the term “fragment” is used.

Furthermore, as noted above, the immunoglobulin (antibody), or fragment thereof, used in the present invention may be polyclonal or monoclonal in nature. Monoclonal antibodies are the preferred immunoglobulins, however. The preparation of such polyclonal or monoclonal antibodies is now well known to those skilled in the art who, of course, are fully capable of producing useful immunoglobulins which can be used in the invention. See, e.g., G. Kohler and C. Milstein, Nature 256, 495 (1975). In addition, hybridomas and/or monoclonal antibodies which are produced by such hybridomas and which are useful in the practice of the present invention are publicly available from sources such as the American Type Culture Collection (“ATCC”) 12301 Parklawn Drive, Rockville, Md. 20852 or, commercially, for example, from Boehringer-Mannheim Biochemicals, P.O. Box 50816, Indianapolis, Ind. 46250.

Particularly preferred monoclonal antibodies for use in the present invention are those which recognize tumor associated antigens. Such monoclonal antibodies, are not to be so limited, however, and may include, for example, the following (the disclosures of which are incorporated herein by reference):

<table>
<thead>
<tr>
<th>Antigen Site Recognized</th>
<th>Monoclonal Antibodies</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung Tumors</td>
<td>KS1/4</td>
<td>N. M. Marki et al., Cancer Res. 44:681, 1984.</td>
</tr>
<tr>
<td>Squamous Lung</td>
<td>G1, LuC2a, LuC3a, LuC4a</td>
<td>Kyozumi et al., Cancer Res., 45:2374, 1985.</td>
</tr>
<tr>
<td></td>
<td>NS-3a-22, NS-10, NS-19, NS-33a, NS-52a, 17-1A</td>
<td>Z. Stepewski et al., Cancer Res., 41:2723, 1981.</td>
</tr>
<tr>
<td></td>
<td>NS-3a-22, NS-10, NS-19, NS-33a, NS-52a, 17-1A</td>
<td>Z. Stepewski et al., Cancer Res., 41:2723, 1981.</td>
</tr>
<tr>
<td></td>
<td>MIN 1</td>
<td>J. T. Kemshead in Monoclonal Antibodies and Cancer, loc. cit. p. 49.</td>
</tr>
<tr>
<td>Glioma</td>
<td>BR7, GE2, CG12</td>
<td>N. de Tirro et al., in Monoclonal Antibodies and Cancer, loc. cit. p. 81.</td>
</tr>
<tr>
<td></td>
<td>BR96</td>
<td>D. Colcher et al., in Monoclonal Antibodies and Cancer, loc. cit. p. 121.</td>
</tr>
<tr>
<td></td>
<td>Lewis Y</td>
<td>M. J. Embleton, ibid, p. 181.</td>
</tr>
</tbody>
</table>
In a preferred embodiment, the ligand containing conjugate is derived from chimeric antibody BR96, “ChiBR96”, disclosed in U.S. Ser. No. 07/544,246, filed Jun. 26, 1990, and which is equivalent to PCT Published Application, WO 91/00295, published Jan. 10, 91; the disclosures of which are incorporated herein by reference. ChiBR96 is an internalizing murine/human chimeric antibody and is reactive, ad noted, with the fucosylated Lewis Y antigen expressed by human carcinoma cells such as those derived from breast, lung, colon, and ovarian carcinomas. Modified and/or humanized BR96 antibody can also be used in the present invention; examples of such antibodies are disclosed in U.S. Ser. No. 08/285,936, filed Aug. 4, 1994, and U.S. Ser. No. 08/487,860, filed Jun. 7, 1995; the disclosures of which are incorporated herein by reference. The hybridoma expressing chimeric BR96 and identified as ChiBR96 was deposited on May 23, 1990, under the terms of the Budapest Treaty, with the American Type Culture Collection (“ATCC”), 1080 Parklawn Drive, Rockville, Md. 20852. Samples of this hybridoma are available under the accession number ATCC 10460. ChiBR96 is derived, in part, from its source parent, BR96. The hybridoma expressing BR96 was deposited, on Feb. 21, 1989, at the ATCC, under the terms of the Budapest Treaty and is available under the accession number HB 10056. The desired hybridoma is cultured and the resulting antibodies are isolated from the cell culture supernatant using standard techniques now well known in the art. See, e.g., “Monoclonal Hybridoma Antibodies: Techniques and Applications”, Hurrell (ed.) (CRC Press, 1982).

Thus, as used “immunoglobulin” or “antibody” encompasses within its meaning all of the immunoglobulins/antibody forms or constructions noted above.

The invention demonstrates improved activity relative to linear conjugates. The present invention also encompasses pharmaceutical compositions, combinations and methods for treating diseases such as cancers and other tumors, non-cytocidal viral or other pathogenic infections, and auto-immune diseases. More particularly, the invention includes methods for treating disease in mammals wherein a pharmaceutically effective amount of at least one conjugate of the invention is administered in a pharmaceutically acceptable manner to the host mammal, preferably humans.

Alternative embodiments of the methods of the invention include the administration, either simultaneously or sequentially, of a number of different conjugates, i.e., bearing different drugs or different targeting ligands, for use in methods of combination chemotherapy. For example, an embodiment of this invention may involve the use of a number of conjugates wherein the specificity of the antibody component of the conjugate varies, i.e., a number of conjugates are used, each one having an antibody that binds specifically to a different antigen or to different sites or epitopes on the same antigen present on the cell of interest. The drug component of these conjugates may be the same or may vary. For example, this embodiment may be especially useful in the treatment of certain tumors where the amounts of the various antigens on the surface of a tumor is unknown or the tumor cell population is heterogeneous in antigen expression and one wants to be certain that a sufficient amount of drug is targeted to all of the tumor cells at the tumor site. The use of a number of conjugates bearing different antigenic or epitope specificities for the tumor increases the likelihood of obtaining sufficient drug at the tumor site. Additionally, this embodiment is important for achieving a high degree of specificity for the tumor because the likelihood that normal tissue will possess all of the same tumor-associated antigens is small (see, J. Immunol., 127(1), pp. 157–60 (1981)).

Alternatively, a number of different conjugates can be used, wherein only to drug component of the conjugate varies. For example, a particular antibody can be linked to two or more doxorubicins to form one conjugate and can be linked to two or more daunomycin to form a second conjugate. Both conjugates can then be administered to a host to be treated and will localize, due to the antibody specificity, at the site of the selected cell population sought to be eliminated. Both drugs will then be released at that site. This embodiment may be important where there is some uncertainty as to the drug resistance of a tumor population such as a tumor because this method allows the release of a number of different drugs at the site of or within the target cells. An additional embodiment includes the conjugation of more than one drug to a particular antibody to form a conjugate bearing a variety of different drugs along its surface—all linked to the antibody via acryldrazide bonds. Administration of the conjugate of this embodiment results in the release of a number of different drugs at the site of or within the target cells. Furthermore, a combination of drug-targeting ligand conjugates can be used wherein the drug can be targeted to a cell population carrying a specific antigen as well as a receptor for a specific ligand on its surface. Again, one type of drug or number of different drugs can be used in this combination therapy.

The conjugates of the invention can be administered in the form of pharmaceutical compositions using conventional modes of administration including, but not limited to, intravenous, intraperitoneal, oral, intralymphatic, or administration directly into the site of a selected cell population such as a tumor. Intravenous administration is preferred. In the case of the conjugates, for in vivo treatment, it may be useful to use conjugates comprising the body of the cell such as Fab or F(ab')2 or chimeric or humanized antibodies.

The pharmaceutical compositions of the invention—comprising the conjugates—may be in a variety of dosage forms which include, but are not limited to, solid, semi-solid and liquid dosage forms such as tablets, pills, powders, liquid solutions or suspensions, suppositories, polymeric microcapsules or microvesicles, liposomes, and injectable or infusible solutions. The preferred form depends upon the mode of administration and the therapeutic application.

The pharmaceutical compositions may also include conventional pharmaceutically carriers known in the art such as serum proteins such as human serum albumin, buffer substances such as phosphates, water or salts or electrolytes.

The most effective mode of administration and dosage regimen for the conjugates of this invention depends upon the severity and type of condition and the response to treatment and the judgment of the treating physician. Accordingly, the dosages of the conjugates and any accompanying compounds should be titrated to the individual patient. Nevertheless, an effective dose of the conjugates may be in the range of from about 1 to about 100 mg/m^2 drug or from about 500–5000 mg/m^2 antibody. An effective dose cell the reaction of interest. Than antibodies may be in the range of from about 1 to about 100 mg/m^2 drug or from about 1 to about 100 mg/m^2 ligand.
Preparation of the Molecules of the Invention

The carbon-branched linker is derived from a bis-carboxylic acid, which also contains a protected amine functionality. Through a multi-step process, the carboxylic acid groups are converted to terminal hydrazide groups, whereby the amino group is elaborated to yield a terminal thiol acceptor. Condensation of the multiple hydrazide with a drug containing an aldehyde or ketone group yields a multiple acylhydrazone of the drug.

The nitrogen-branched linker is derived from an oligoamine, differentially protected in such a way that all but one amino group are elaborated to yield terminal N, N-dialkanoylhydrazide groups. The remaining amino group is elaborated to yield a terminal thiol acceptor. Condensation of the multiple hydrazides with a drug containing an aldehyde or ketone group yields a multiple acylhydrazone of the drug.

Conjugation of the linker to the targeting ligand is accomplished by the reaction of free thiol groups of the ligand, generated under controlled atmospheric conditions, with the terminal thiol acceptor of the linker.

Exemplary reaction schemes for preparation of the compounds of the invention are illustrated below. The compound numbers are cross referenced in the Example section hereof.

EXEMPLARY BIS- AND TETRA-DOX HYDRAZONES

<table>
<thead>
<tr>
<th>n</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

SCHEME I. SYNTHESIS OF 2

1. DCC, NHS
2. BOC, NHNH₂

\[
\text{Z-Glu} \rightarrow \text{BOC, NHNH₂} \rightarrow \text{H₂, 10% Pd-C}
\]
SCHEME I. SYNTHESIS OF 2

\[\text{Z-} \beta\text{-Ala} \xrightarrow{1. \text{DCC:NHS}} \text{ZH} \xrightarrow{2. \text{BOC} \rightarrow \text{NHNH}_2} \]

\[\xrightarrow{\text{H}_2 \text{10\% Pd-C}} \]

SCHEME II. SYNTHESIS OF 3

\[\text{Z-} \text{Glu} \xrightarrow{1. \text{DCC:NHS}} \text{Z} \xrightarrow{2. \text{9}} \]

\[\xrightarrow{\text{H}_2 \text{10\% Pd-C}} \]
SCHEME II. SYNTHESIS OF 3

11

12

13

5,824,805
SCHEME III. SYNTHESIS OF 18

Z-Glu 1: DCC: NHS 2:5

H₂ 10% Pd-C

X = O-COCH₃ or O·N·COCH₃

TFA
SCHEME V. SYNTHESIS OF 32

Z-NH₂

NH₂-HCl →

Z-NH

CONHNH₂-BOC

CONHNH₂-BOC

27

H₂N

CONHNH₂-BOC

CONHNH₂-BOC

28

CONHNH₂-BOC

CONHNH₂-BOC

29

CONHNH₂-BOC

CONHNH₂-BOC

30

SCHEME VI. SYNTHESIS OF 38

Z-NH

CONHNH₂-BOC

NH₂

31

Z-NH

CONHNH₂-BOC

NH₂

32

BOC-NHH₂

triphosgene →

BOC

33

NH₂

BOC

34
SCHEME VII. SYNTHESIS OF 46

The abbreviations in the above reaction schemes have the following definitions: Z is carbobenzoxy, DCC is dicyclohexylcarbodiimide, BOC is t-butoxy carbonyl, TFA is trifluoroacetic acid, and DOX is doxorubicin.

The following examples are intended to illustrate the invention but should not be interpreted as a limitation thereon.

EXAMPLE 1

Z-Glutamylid(Boc)hydrazide

(Compound no. 4)

Z-Glutamic acid (42.20 g, 150 mmole) and N-hydroxy succinimide (34.53 g, 300 mmole) were dissolved in 150 ml DMF at 0°C under dry N₂. A 0.5 M solution of dicyclohexylcarbodiimide in methylene chloride (600 ml, 300 mmole) was added dropwise over a 1 hour period with stirring. The reaction was stored at 0°C in the refrigerator for 18 hr. Dicyclohexylurea precipitate (65.48 g, 98%) was filtered, and the filtrate was added directly to solid t-butyldiazobenzoate (39.65 g, 300 mmole). After stirring at room temperature for 48 hr., the reaction was rotary evaporated to an oil, which was redissolved in 300 ml ethyl acetate/200 ml ether. The organic layer was extracted three times with 200 ml 10% citric acid, 3 times with 200 ml saturated aqueous sodium bicarbonate, and once with 100 ml brine. The organic layer was dried over sodium sulfate and rotary evaporated to a foam. Flash chromatography was carried out on silica gel (4 in.” x 18 in.”) with ethyl acetate-hexane 2:1, 12 L. Pure fractions containing product (4) were pooled and concentrated to a foam by rotary evaporation to yield, after drying under high vacuum, 55.24 g (72%).

H-NMR (CDCl₃): δ 1.44 and 1.47 (2s, 18H), 1.9–2.4 (brm, 4H), 4.32 (brm, 1H), 5.06 (dd, 2H), 5.55 (d, 1H), 6.5 (bd, 2H), 7.31 (brm, 5H), 9.6 (s, 1H), and 9.9 (s, 1H). TLC: Rₜ 0.64, CH₃Cl/MeOH (9:1). Mass Spec.: FAB 510 (M+H⁺), 532 (M+Na⁺), 548.1 (M+K⁺); Elemental Analysis for C₁₃H₁₃₂N₂O₄: Theoretical C, 54.21; H, 6.92; N, 13.74. Found C, 53.96; H, 6.91; N, 13.41.

EXAMPLE 2

Z-(D)-Glutamylid(Boc)hydrazide

(Compound no. D-4)

Z-(D)-Glutamic acid (42.20 g, 150 mmole) and N-hydroxy succinimide (34.53 g, 300 mmole) were dissolved in 150 ml DMF at 0°C under dry N₂. A 0.5 M solution of dicyclohexylcarbodiimide in methylene chloride (600 ml, 300 mmole) was added dropwise over a 1 hour period with stirring. The reaction was stored at 0°C in the refrigerator for 18 hr. Dicyclohexylurea precipitate (64.97 g, 97%) was filtered, and the filtrate was added directly to solid t-butyldiazobenzoate (39.65 g, 300 mmole). After stirring at room temperature for 48 hr., the reaction was rotary evaporated to an oil, which was redissolved in 300 ml ethyl acetate/200 ml ether. The organic layer was extracted three times with 200 ml 10% citric acid, 3 times with 200 ml saturated aqueous sodium bicarbonate, and once with 100 ml brine. The organic layer was dried over sodium sulfate and rotary evaporated to a foam. Flash chromatography was carried out on silica gel (4 in.” x 18 in.”) with the following gradient: (1) CH₂Cl₂/2 L, (2) CH₂Cl₂-methanol 25:1, 4 L, and (3) CH₂Cl₂-methanol 9:1, 6 L. Pure fractions containing product (1), which eluted in CH₂Cl₂-methanol 9:1, were pooled and concentrated to a foam by rotary evaporation to yield, after drying under high vacuum, 59.11 g (77%).

H-NMR (CDCl₃): δ 1.44 and 1.47 (2s, 18H), 1.9–2.4 (brm, 4H), 4.32 (brm, 1H), 5.06 (dd, 2H), 5.57 (d, 1H), 6.6 (m, 2H), 7.31 (brm, 5H), 9.6 (s, 1H), and 9.87 (s, 1H). TLC: Rₜ 0.64, CH₃Cl/MeOH (9:1). Mass Spec.: FAB 532 (M+Na⁺), 549 (M+K⁺); Elemental Analysis for C₁₃H₁₃₂N₂O₄: Theoretical C, 54.21; H, 6.92; N, 13.74. Found C, 53.99; H, 6.92; N, 13.50.

EXAMPLE 3

Z-Glutamylid(Boc)hydrazide (Compound no. 5)

Z-Glutamylid(Boc)hydrazide (4) (19.59 g, 38.44 mmole) was hydrogenated along with 2 g 10% Pd—C in 200 ml
5,824,805

37

MeOH at 50 psi for 3 hr. The reaction was filtered through Celite and rotary evaporated. The resulting foam was dried under high vacuum to yield 5 (14.40 g, 100%).

3H-NMR (d4-Methanol): δ 1.42 and 1.45 (2s, 18H), 1.9 (bm, 2H), 2.35 (t, 2H), 3.34 (t, 1H). TLC: Rf 0.34, CH3Cl2/ MeOH (9:1). Mass Spec.: DCl 376 (M+H)+. Elemental Analysis for C12H20N2O4: Theoretical C, 46.87; H, 7.87; N, 18.22. Found C, 46.96; H, 7.74; N, 18.02.

EXAMPLE 4

(D)-Glutamyl(Boc)hydrazide

(Compound no. D-5)

Z-(D)-Glutamyl(Boc)hydrazide (D-4) (23.05 g, 45.2 mmole) was hydrogenated along with 2 g 10% Pd-C in 200 ml MeOH at 50 psi for 4 hr. After filtration through Celite and rotary evaporation, a foam was obtained. Flash chromatography on silica gel (2 in. x 20 in.) was carried out with the following gradient: (1) CH3Cl2-menohlan 25:1, 600 ml; (2) CH3Cl2-menohlan 9:1, 6 L; and (3) CH3Cl2-menohlan 8:2, 4 L. Pure fractions were pooled and rotary evaporated. Drying under high vacuum yielded D-5 (13.51 g, 80%).

3H-NMR (d4-Methanol): δ 1.46 and 1.47 (2s, 18H), 1.94 (bm, 2H), 2.33 (t, 2H), 3.34 (t, 1H). TLC: Rf 0.34, CH3Cl2/ MeOH (9:1). Mass Spec.: FAB 376 (M+H)+, 396 (M+Na)+, 414 (M+K)+. Elemental Analysis for C12H20N2O4: Theoretical C, 46.87; H, 7.87; N, 18.22. Found C, 46.85; H, 7.63; N, 17.98.

EXAMPLE 5

Maleimidopropionylglutamyl(Boc)hydrazide

(Compound no. 6a)

Maleimidopropionic acid (636 mg, 3.76 mmole) and N-hydroxysuccinimide (476 mg, 4.14 mmole) were dissolved in 10 ml DMF at 0°C. A 0.5M solution of DCC in CH3Cl2 (7.6 ml, 3.8 mmole) was added, and the reaction allowed to stand for 20 hr. After filtration of the DCU precipitate, the filtrate was added to 5 (1.27 g, 3.38 mmole) and stirred at room temperature for 2.5 days. Solvents were partially removed by rotary evaporation. The oil was dissolved in 100 ml ethyl acetate, then extracted three times with 100 ml 10% citric acid, three times with 100 ml saturated aqueous sodium bicarbonate, and three times with 100 ml H2O. The organic layer was dried over sodium sulfate and rotary evaporated to a foam. This was purified by flash chromatography on silica gel (2 in. x 11 in.) with CH3Cl2-acetic acid-methanol 95:2:3. Pure fractions were pooled, rotary evaporated, and dried under high vacuum to yield 6a (1.22 g, 69%).

3H-NMR (d4-Methanol): δ 1.46 (s, 18H), 2.01 (m, 4H), 2.33 (t, 2H), 2.51 (t, 2H), 3.76 (t, 2H), 4.34 (t, 1H), 6.80 (s, 2H). TLC: Rf 0.54, CH3Cl2-acetic acid-methanol 90:2:8. Mass Spec.: FAB 549.4 (M+Na)+, 565.3 (M+K)+. Elemental Analysis for C12H20N2O4H2OAc: Theoretical C, 48.29; H, 6.55; N, 13.00. Found C, 48.15; H, 6.48; N, 13.28.

EXAMPLE 6

Maleimidobutyrylglutamyl(Boc)hydrazide

(Compound no. 6b)

Maleimido butyric acid (1.9 g, 10.3 mmole) and N-hydroxysuccinimide (2.7 g, 23.5 mmole) were dissolved in 25 ml DMF at 0°C. A 0.5M solution of DCC in CH3Cl2 (45 ml, 22.5 mmole) was added, and the reaction allowed to stand for 16 hr. After filtration of the DCU precipitate, the filtrate was added to 5 (7.7 g, 20.5 mmole) and the reaction stirred at 4°C for four days. Solvents were removed by rotary evaporation. The oil was dissolved in 100 ml ethyl acetate, then extracted three times with 100 ml 10% citric acid, three times with 100 ml saturated aqueous sodium bicarbonate, and three times with 100 ml H2O. The organic layer was dried over sodium sulfate and rotary evaporated to a foam. This was purified through a plug of silica gel with CH3Cl2-acetic acid-methanol 93:2:5, rotary evaporated, and dried under high vacuum to yield 6b (3.50 g, 63%).

3H-NMR (d4-Methanol): δ 1.36 and 1.37 (2s, 18H), 1.77 (p, 2H), 2.00 (bm, 2H), 2.14 (t, 2H), 2.26 (t, 2H), 2.53 (t, 2H), 4.26 (t, 1H), 6.71 (s, 2H). TLC: Rf 0.58, CH3Cl2-acetic acid-methanol 90:5:5. Mass Spec.: 154 (M+H)+, 563 (M+Na)+, 579 (M+K)+. Elemental Analysis for C5H19NO3: Theoretical C, 49.86; H, 6.82; N, 15.17. Found C, 50.21; H, 6.72; N, 14.79.

EXAMPLE 7

Maleimidobutyril(D)-glutamyl(Boc)hydrazide

(Compound no. 6b)

Maleimido butyric acid (1.832 g, 10.0 mmole) was dissolved with N-Methylmorpholine (1.21 ml, 11.0 mmole) in 60 ml dry THF under N2 at 0°C. Isobutylchloroformate (1.30 ml, 10.0 mmole) was added dropwise, followed 10 minutes later by the addition of (D)-Glutamyl(Boc) hydrazide (D-5) (3.754 g, 10.0 mmole). Stirring was continued for 1 hour at 0°C. The reaction was rotary evaporated to a foam, which was then dissolved in 150 ml EtOAc. The organic layer was washed twice with 100 ml 10% citric acid and twice with 100 ml saturated NaHCO3. The organic layer was concentrated to a foam, which was purified by flash chromatography on silica gel (2 in. x 11 in.) with CH3Cl2-acetic acid-methanol 95:2:3, 2 L followed by CH3Cl2-acetic acid-methanol 93:2:5, 1 L. Pure fractions were pooled and rotary evaporated to a foam. Drying under high vacuum yielded 3 (3.25 g, 60%).

3H-NMR (d4-Methanol): δ 1.45 and 1.46 (2s, 18H), 1.86 (m, 2H), 2.09 (bm, 2H), 2.24 (t, 2H), 2.35 (t, 2H), 3.52 (t, 2H), 4.35 (t, 1H), 6.81 (s, 2H). TLC: Rf 0.51, CH3Cl2-acetic acid-methanol 90:5:5. Mass Spec.: 563 (M+Na)+, 579 (M+K)+. Elemental Analysis for C12H20N2O4: Theoretical C, 49.86; H, 6.82; N, 15.17. Found C, 50.25; H, 6.65; N, 14.80.

EXAMPLE 8

Maleimidocaproylglutamyl(Boc)hydrazide

(Compound no. 6c)

Maleimido caproic acid (4.22 g, 20 mmole) and N-hydroxysuccinimide (2.53 g, 22 mmole) were dissolved in 25 ml DMF at 0°C. A 0.5M solution of DCC in CH3Cl2 (40 ml, 20 mmole) was added, and the reaction allowed to stand for 20 hr. After filtration of the DCU precipitate, the filtrate was added to 5 (7.88 g, 21 mmole) and the reaction stirred at room temperature for 6 hr. Solvents were removed by rotary evaporation. The oil was dissolved in 100 ml ethyl acetate, then extracted three times with 100 ml 10% citric acid, three times with 100 ml...
saturated aqueous sodium bicarbonate, and three times with 100 ml H₂O. The organic layer was dried over sodium sulfate and rotary evaporated to a foam. This was purified by flash chromatography on silica gel (2 in. x 10 in.) with 4 L CH₂Cl₂-trifluoroacetic acid-methanol 97:1.2. Pure fractions were pooled, rotary evaporated, and dried under high vacuum to yield 6.6 g (40%, 30%)

1H-NMR (d₆-Methanol): δ 1.12 (p, 2H), 1.92 and 2.09 (2m, 2H), 2.18 (t, 2H), 2.35 (m, 2H), 3.41 (t, 2H), 4.35 (dd, 1H), 6.72 (s, 2H). TLC: Rₛ 0.30, CH₂Cl₂-trifluoroacetic acid-methanol 93:2.5. Mass Spec: FAB 587 (M+H)+, 591 (M+Na)+, 607 (M+K)+; Elemental Analysis for C₉H₆O₅N₂O₂: Theoretical C, 51.98; H, 7.15; N, 14.55. Found C, 51.79; H, 6.96; N, 14.39.

EXAMPLE 13

Maleimidopropionylglutamylhydrodrazide of Doxorubicin

(Compound no. 2a “MP-Glu(DOX)₂”)

Maleimidopropionylglutamylhydrodrazide ditrifluoroacetate (7a) (600 mg, 1.07 mmole) and DOX.HCl (1.24 g, 2.14 mmole) were dissolved in 600 ml methanol over a period of 3 hours. The reaction was concentrated to 100 ml by rotary evaporation, then dried for 3 days. The reaction was further concentrated to 12 ml and eluted on an LH-20 column (2×100) with methanol. Chromatography was repeated in the same system on mixed fractions. The purified product was rotary evaporated to a red film and dried under high vacuum to yield 1.87 g (776 mg, 50%).

1H-NMR (d₆-Methanol): (selected peaks) δ 1.34 (2d, 6H), 4.07 (2s, 6H), 6.79 (s, 2H), 7.5–8.0 (m, 6H). Mass Spec: FAB 1375.4 (M+H)+; Ionspray 1377.2 MH+. Elemental Analysis for C₁₀H₁₀N₂O₂: Theoretical C, 52.70; H, 5.36; N, 7.45. Found C, 52.57; H, 5.25; N, 7.33.

EXAMPLE 14

Maleimidobutrylglutamylhydrodrazide of Doxorubicin

(Compound no. 2b “MB-Glu(DOX)₂”)

Maleimidobutrylglutamylhydrodrazide ditrifluoroacetate (7b) (1.00 g, 1.76 mmole) and DOX.HCl (2.05 g, 3.53 mmole) were dissolved in 800 ml methanol over a period of 3 hours. The reaction was concentrated to 150 ml by rotary evaporation, then dried for 1.5 days. The reaction was further concentrated to 20 ml and eluted on an LH-20 column (2×120) with methanol. Chromatography was repeated in the same system on mixed fractions. The purified product was rotary evaporated to a red film and dried under high vacuum to yield 2.17 g (1.32 g, 51%).

1H-NMR (d₆-Methanol): (selected peaks) δ 1.33 (2d, 6H), 4.06 (2s, 6H), 6.80 (s, 2H), 7.5–8.0 (m, 6H). Mass Spec: FAB 1392 MH+, 1413.4 (M+Na)+, 1429 (M+K)+; Ionspray 1392.5 (M+H)+, 1414.4 (M+Na)+; Elemental Analysis for C₁₀H₁₂N₂O₃: Theoretical C, 52.38; H, 5.51; N, 7.29. Found C, 52.38; H, 5.58; N, 7.50.

EXAMPLE 15

Maleimidobutrylglutamylhydrodrazide of Doxorubicin

(Compound no. D-2b “MB-D-Glu(DOX)₂”)

Maleimidobutrylglutamylhydrodrazide ditrifluoroacetate (D-7b) (570 mg, 1.00 mmole) and DOX.HCl (1.34 g, 2.30 mmole) were dissolved in 600 ml methanol over a period of 3 hours. The reaction was concentrated to 100 ml
by rotary evaporation, then stirred for 2.5 days. The reaction was further concentrated to 50 ml and eluted on an LH-20 column (2 x 10\(^2\)) with methanol. Chromatography was repeated in the same system on mixed fractions. The purified product was rotary evaporated to a red film and dried under high vacuum to yield 2.2D (420 mg, 48%).

\(^{1}H\)-NMR (d\(_2\)-Methanol) (selected peaks) δ 1.30 (2D, 6H), 4.07 (2x, 6H), 6.80 (s, 2H), 7.5-8.0 (m, 6H). Mass Spec.: FAB 1392.0 M\(^+\), 1414.9 (M+Na\(^+\)), 1429.7 (M+K\(^+\)).

Elemental Analysis for C\(_{55}\)H\(_{54}\)N\(_{22}\)O\(_{12}\): Theoretical C, 52.69; H, 5.48; N, 7.34; Cl, 4.64. Found C, 52.74; H, 5.57; N, 7.47; Cl, 5.28.

EXAMPLE 16

Maleimidocaproylglutamylglycidylidrazone of Doxorubicin

(Compound no. 2c “MCGlu(DOX)2”)

Maleimidocaproylglutamylglycidylidrazone dirifluoroacetate (7c) (288 mg, 0.50 mmole) and DOX.HCl (580 mg, 1.00 mmole) were dissolved in 350 ml methanol over a period of 3 hours. The reaction was concentrated to 50 ml by rotary evaporation, then stirred for 3 days. The reaction was further concentrated to 5 ml and eluted on an LH-20 column (2 x 10\(^2\)) with methanol. The purified product was rotary evaporated to a red film and dried under high vacuum to yield 2c (510 mg, 68%).

\(^{1}H\)-NMR (d\(_2\)-Methanol) (selected peaks) δ 1.34 (2D, 6H), 4.08 (2x, 6H), 6.76 (s, 2H), 7.5-8.0 (m, 6H). Mass Spec.: FAB 1420 M\(^+\), 1442.3 (M+Na\(^+\)). Ionspray 1419.6 (M+H\(^+\)), 1419.5 (M+H\(^+\)). HRMS: calculated 1419.5156; observed 1419.5191.

Elemental Analysis for C\(_{66}\)H\(_{66}\)N\(_{22}\)O\(_{12}\): Theoretical C, 52.98; H, 5.67; N, 7.16. Found C, 52.96; H, 5.39; N, 7.45.

EXAMPLE 17

Z-\(\beta\)-Alanine(BOC)hydrazide (Compound no. 8)

Z-\(\beta\)-Alanine (8.93 g, 40 mmole), t-butyllcarbazate (5.29 g, 40 mmole), and EDCI (8.00 g, 42 mmole) were stirred in 200 ml CH\(_2\)Cl\(_2\) for 1.5 hr. at room temperature. The reaction was extracted three times with 200 ml 0.1M acetic acid, twice with 200 ml saturated aqueous sodium bicarbonate, and once with 200 ml water. The organic layer was dried over sodium sulfate, rotary evaporated, and dried under high vacuum to yield 8 as a foam, 12.42 g (92%).

\(^{1}H\)-NMR (d\(_2\)-DMSO) δ 1.38 (s, 9H), 2.25 (t, 2H), 3.19 (q, 2H), 4.99 (s, 2H), 7.3 (m, 6H), 8.21 (s, 1H), 9.56 (s, 1H).

TLC: R\(_f\) 0.58, CH\(_2\)Cl\(_2\)/MeOH (9:1). Mass Spec.: FAB 338 (M+H\(^+\)), Elemental Analysis for C\(_{22}\)H\(_{22}\)N\(_{22}\)O\(_{12}\): Theoretical C, 56.96; H, 6.87; N, 12.45. Found C, 57.19; H, 7.05; N, 12.57.

EXAMPLE 18

\(\beta\)-Alanyl(BOC)hydrazide (Compound no. 9)

8 (15.25 g, 45.2 mmole) was hydrogenated at 50 psi in 200 ml methanol with 3 g 10% Pd-C for 4 hours. The reaction was filtered through Celite, rotary evaporated, and dried under high vacuum to yield 9 as a homogeneous foam, 9.2 g (100%).

\(^{1}H\)-NMR (d\(_2\)-Methanol) δ 1.40 (s, 9H), 2.32 (t, 2H), 2.88 (t, 2H). Mass Spec.: FAB 204.2 (M+H\(^+\)).

Elemental Analysis for C\(_{15}\)H\(_{22}\)N\(_{22}\)O\(_{12}\): Theoretical C, 45.27; H, 8.55; N, 19.80. Found C, 45.51; H, 8.17; N, 19.49.

EXAMPLE 19

Z-\(\beta\)-Alanylid[\(\beta\)-Alanyl(Boc)hydrazide]

(Compound no. 10)

Z-Glutamylid[\(\beta\)-Alanyl(Boc)hydrazide]

(Compound no. 11)

Z-Glutamylid[\(\beta\)-Alanyl(Boc)hydrazide] (10) (3.52 g, 5.40 mmole) was hydrogenated along with 1 g 10% Pd-C in 75 ml MeOH at 50 psi for 2 hr. The reaction was filtered through Celite and rotary evaporated. The resulting foam was dried under high vacuum to yield 11 (2.77 g, 99%).

\(^{1}H\)-NMR (d\(_2\)-Methanol): δ 1.46 (s, 18H), 1.91 (m, 2H), 2.25 (t, 2H), 2.42 (q, 4H), 3.35 (t, 1H), 3.44 (m, 4H). Mass Spec.: FAB 518 (M+H\(^+\)), 540 (M+Na\(^+\)), 556 (M+K\(^+\)).

Elemental Analysis for C\(_{22}\)H\(_{22}\)N\(_{22}\)O\(_{12}\): Theoretical C, 46.31; H, 7.77; N, 18.00. Found C, 46.34; H, 7.42; N, 17.90.

EXAMPLE 21

Maleimidopropionylglutamylid[\(\beta\)-Alanyl(Boc)

hydrazide] (Compound no. 12a)

Maleimidopropionic acid (0.399 mg, 2.36 mmole) and N-hydroxy succinimide (272 mg, 2.36 mmole) were dissolved in 30 ml CH\(_2\)Cl\(_2\)/3 ml DMF at 0°C. A 0.5M solution of DCC in CH\(_2\)Cl\(_2\) (4.7 ml, 2.36 mmole) was added, and the reaction stirred for 3 hr. at room temperature. After filtration of the DCC precipitate, the filtrate was added to 11 (1.10 g, 2.13 mmole) and the reaction stirred at room temperature for one day. Solvents were removed by rotary evaporation. The oil was purified by flash chromatography on silica gel (2 in. x 10 in.) with 500 ml CH\(_2\)Cl\(_2\), 1 L CH\(_2\)Cl\(_2\)-methanol 95:5, and 2 L CH\(_2\)Cl\(_2\)-methanol 9:1. Pure fractions were pooled, rotary evaporated, and dried under high vacuum to yield 12a as a foam (850 mg, 60%).

\(^{1}H\)-NMR (d\(_2\)-Methanol): δ 1.46 (s, 18H), 1.82 and 2.04 (2H, 2.23 (t, 2H), 2.40 (m, 4H), 2.52 (t, 2H), 3.45 (m, 4H), 3.78 (t, 2H), 4.20 (dd, 1H), 6.81 (s, 2H). TLC: RF 0.22,
Maleimidobutyrylglutamyl[β-Alanyl(Boc)-hydrazide]

(Compound no. 12b)

Maleimidobutyric acid (432 mg, 2.36 mmole) and N-hydroxy succinimide (272 mg, 2.36 mmole) were dissolved in 30 ml CHCl₃/MeOH 9:1. Mass Spec.: FAB 669 (M+H)⁺, 691 (M+Na)⁺, 707 (M+K)⁺. Elemental Analysis for C₂₈H₃₂N₄O₇: Theoretical C, 47.72; H, 6.87; N, 15.90. Found C, 47.70; H, 6.57; N, 15.83.

EXAMPLE 22

Maleimidobutyrylglutamyl[β-Alanyl(Boc)-hydrazide]

(Compound no. 12b)

Maleimidobutyric acid (432 mg, 2.36 mmole) and N-hydroxy succinimide (272 mg, 2.36 mmole) were dissolved in 30 ml CHCl₃/MeOH 9:1. Mass Spec.: FAB 669 (M+H)⁺, 691 (M+Na)⁺, 707 (M+K)⁺. Elemental Analysis for C₂₈H₃₂N₄O₇: Theoretical C, 47.72; H, 6.87; N, 15.90. Found C, 47.70; H, 6.57; N, 15.83.

EXAMPLE 23

Maleimidocaprolylglycyl[β-Alanyl(Boc)-hydrazide]

(Compound no. 12c)

Maleimidocaproic acid (453 mg, 2.14 mmole) and N-methylmorpholine (239 mg, 2.36 mmole) were dissolved in 25 ml dry THF under Ar at -5 °C. Isobutylchloroformate (263 mg, 1.93 mmole) was added. After 5 min, 11 (1.0 g, 1.93 mmole) was added as a THF solution, and the reaction stirred for 3 h with warming to room temperature. Ethyl acetate (150 ml) was added, and then the solution was extracted three times with 75 ml 10% citric acid, three times with 75 ml saturated aqueous sodium bicarbonate, and three times with 75 ml water. The organic layer was dried over sodium sulfate, then passed through a plug of silica gel with CHCl₃/methanol 9:1. The purified product was rotary evaporated, and dried under high vacuum to yield 12c, 800 mg (58%).

EXAMPLE 24

Maleimidopropionylglycyl[β-Alanyl(hydrazide)]

(Compound no. 13a)

Maleimidopropionylglycyl[β-Alanyl(Boc)-hydrazide] (12a) (850 mg, 1.27 mmole) was stirred in 15 ml CHCl₃/trifluoroacetic acid (1:1) under N₂ for 1.5 hr. Solvents were removed by rotary evaporation. Ether was added and co-evaporated three times, then the resulting solid was triturated with ether. The solid was filtered and dried under high vacuum to yield 13a (890 mg, 100%).

EXAMPLE 25

Maleimidobutyrylglutamyl[β-Alanyl(hydrazide)]

(Compound no. 13b)

Maleimidobutyrylglutamyl[β-Alanyl(Boc)-hydrazide] (12b) (800 mg, 1.17 mmole) was stirred in 15 ml CHCl₃/trifluoroacetic acid (1:1) under N₂ for 1.5 hr. Solvents were removed by rotary evaporation. Ether was added and co-evaporated three times, then the resulting solid was triturated with ether. The solid was filtered and dried under high vacuum to yield 13b (840 mg, 100%).

EXAMPLE 26

Maleimidocaprolylglycyl[β-Alanyl(hydrazide)]

(Compound no. 13c)

Maleimidocaprolylglycyl[β-Alanyl(Boc)-hydrazide] (12c) (800 mg, 1.13 mmole) was stirred in 15 ml CHCl₃/trifluoroacetic acid (1:1) under N₂ for 1.5 hr. Solvents were removed by rotary evaporation. Ether was added and co-evaporated three times, then the resulting solid was triturated with ether. The solid was filtered and dried under high vacuum to yield 13c (870 mg, 100%).

EXAMPLE 27

Maleimidopropionylglycyl[β-Alanyl(hydrazide)]

(Compound no. 3a)

Maleimidopropionylglycyl[β-Alanyl(hydrazide)]

d ditrifluoroacetate (13a) (1.0 g, 1.44 mmole) and DOX.HCl (1.68 g, 2.88 mmole) were dissolved in 600 mL methanol over a period of 3 hours. The reaction was concentrated to 100 ml by rotary evaporation, then stirred for 1 day. After further concentration to 10 ml, elution on an LH-20 column (2 x 10 cm) with methanol/DMF (1:1) was carried out. The purified product was concentrated by rotary evaporation and precipitated by the addition of acetonitrile. The red solid was isolated by centrifugation and dried under high vacuum to yield 3a (450 mg, 20%).
Malimidobutrylglutamyl[β-Alanylhydrazone] of Doxorubicin

(Compound no. 3b “MB-Glu-(β-Ala-DOX)”)

Malimidobutrylglutamyl[β-Alanylhydrazide] ditrifluorooacetate (13b) (280 mg, 0.395 mmol) and DOX·HCl (458 mg, 0.790 mmol) were dissolved in 250 ml methanol over a period of 3 hours. The reaction was concentrated to 50 ml by rotary evaporation, then stirred for 2 days. After further concentration to 5 ml, elution on an LH-20 column (1”×15”) with methanol/DMF (1:1) was carried out. The purified product was concentrated by rotary evaporation and precipitated by the addition of acetone. The red solid was isolated by centrifugation and dried under high vacuum to yield 3b (325 mg, 51%).

Malimidodacoproglutamyl[β-Alanylhydrazide] ditrifluorooacetate (13c) (148 mg, 0.20 mmol) and DOX·HCl (232 mg, 0.40 mmol) were dissolved in 150 ml methanol over a period of 3 hours. The reaction was concentrated to 10 ml by rotary evaporation, then stirred for 2 days. After further concentration to 2 ml, elution on an LH-20 column (1”×10”) with methanol/DMF (1:1) was carried out. The purified product was concentrated by rotary evaporation and precipitated by the addition of acetone. The red solid was isolated by centrifugation and dried under high vacuum to yield 3c (162 mg, 50%).

Z-Glutamyl[glutamyl(β-Ala-DOX)]

(Compound no. 15)

Z-Glutamic acid (844 mg, 3.0 mmole) and N-hydroxy succinimide (691 mg, 6.0 mmole) were dissolved in 6 ml DME at 0°C under dry N2. A 0.5M solution of dicyclohexylcarbodiimide in methylene chloride (12.0 ml, 6.0 mmole) was added. The reaction was stirred for 4 hr. Dicyclohexylurea precipitate was filtered, and the filtrate was added to 5 (253 g, 6.0 mmole). After stirring at room temperature for 60 hr, the reaction was rotary evaporated to an oil, which was redissolved in 200 ml ethyl acetate. The organic layer was extracted three times with 125 ml 10% citric acid, 3 times with 125 ml saturated aqueous sodium bicarbonate, and once with 125 ml brine. The organic layer was dried over sodium sulfate and rotary evaporated to a foam. Flash chromatography was carried out on silica gel (2 in×12 in.) with CH3Cl/methanol/acetic acid 93:5:2. Pure fractions containing product (14) were pooled and concentrated to a foam by rotary evaporation to yield, after drying under high vacuum, 2.50 g (77%).

Z-Glutamyl[glutamyl(Boc)hydrazide]

(Compound no. 16a)

The N-hydroxysuccinimide ester of maleimidopropionnic acid (300 mg, 1.13 mmole) was prepared as in the synthesis of 6a, then stirred with glutamyl[glutamyl(Boc)hydrazide] (15) (883 mg, 1.02 mmole) and triethylamine (143 ul, 1.02 mmole) in 25 ml DME at room temperature for 16 hr. Solvent was removed by rotary evaporation, and the residue was purified by flash chromatography on silica gel (1 in×10 in.) with CH3Cl/acetic acid-methanol 93:2.5. Pure fractions were pooled, rotary evaporated, and dried under high vacuum to give 16a (400 mg, 39%).

Maleimidobutyrylglutamyl[glutamyl(Boc)hydrazide]

(Compound no. 16b)

Maleimidobutyric acid (227 mg, 1.24 mmole) was dissolved with N-methylmorpholine (178 ul, 1.61 mmole) in 10 ml dry THF under N2 at 0°C. Isobutylchloroformate (144 ul, 1.11 mmole) was added, followed 5 minutes later by the addition of glutamyl[glutamyl(Boc)hydrazide] (15) (960 mg, 1.11 mmole) as a solution in 15 ml DMF. The reaction was stored at 0°C for 16 hours. The reaction was concentrated by rotary evaporation, then dissolved in 200 ml...
EtOAc. The organic layer was washed three times with 50 ml 10% citric acid, three times with 50 ml saturated NaHCO₃, and three times with 50 ml H₂O. The organic layer was concentrated to a foam, which was purified by flash chromatography on silica gel (1 in. x 12 in.) with CH₂Cl₂-acetic acid-methanol 93:2:5. Pure fractions were pooled and rotary evaporated to a foam. Drying under high vacuum yielded 16b (900 mg, 79%).

1H-NMR (δ, Me-2: 7.2.5): δ 1.46 (s, 3H), overlapping signals 1.86 (t), 2.22 (t), and 1.9-2.4 (m) 16H total, 3.50 (t, 2H), 4.11 (m, 1H), 4.40 (2t, 2H), 6.82 (s, 2H). Mass Spec.: FAB 1049.5 (M+Na)⁺, 1065.4 (M+K)⁺. Elemental Analysis for C₄₃H₃₁N₁₅O₁₅·3H₂O·3HOAc: Theoretical C, 46.33; H, 7.06; N, 13.23. Found C, 46.24; H, 6.52; N, 13.37.

EXAMPLE 34
Maleimiodocaproylglutamyldilglutamyldil(Boc)-hydrazide

(Compound no. 16c)

This compound was synthesized following the procedure used for 16b. Yield of 16c was 330 mg, 54%.

1H-NMR (δ, Me-2: 7.2:5): δ 1.28 (m, 2H), 1.46 (s, 3H), 1.56 (m, 4H), overlapping signals 1.9-2.5 (m) and 2.20 (t) 14H total, 3.48 (t, 2H), 4.10 (m, 1H), 4.40 (2m, 2H), 6.80 (s, 2H). Mass Spec.: FAB 1078.8 (M+Na)⁺, 1093.5 (M+K)⁺. Elemental Analysis for C₄₃H₃₁N₁₅O₁₅·3H₂O·3HOAc: Theoretical C, 47.51; H, 7.19; N, 13.04. Found C, 47.44; H, 6.48; N, 13.14.

EXAMPLE 35
Maleimiodopropionylglutamyldilglutamyldil-hydrazone

(Compound no. 17a)

Maleimiodopropionylglutamyldilglutamyldil(Boc)-hydrazide (16a) (400 mg, 0.395 mmole) was stirred in 15 ml CH₂Cl₂/trifluoroacetic acid (1:1) under N₂ for 1.5 hr. Solvents were removed by rotary evaporation. Ether was added and co-evaporated three times, then the resulting solid was triturated with ether. The solid was filtered and dried under high vacuum to yield 17a (250 mg, 59%). 1H-NMR (δ, Me-2: Methanol) of the crude material verified complete removal of the BOC groups. This was used in the synthesis of 18a without further purification.

EXAMPLE 36
Maleimiodobutrylglutamyldilglutamyldil-hydrazone

(Compound no. 17b)

Maleimiodobutrylglutamyldilglutamyldil(Boc)-hydrazide (16b) (900 mg, 0.877 mmole) was stirred in 15 ml CH₂Cl₂/trifluoroacetic acid (1:1) under N₂ for 1.5 hr. Solvents were removed by rotary evaporation. Ether was added and co-evaporated three times, then the resulting solid was triturated with ether. The solid was filtered and dried under high vacuum to yield 17b (817 mg, 86%) 1H-NMR (δ, Me-2: Methanol): δ overlapping signals 1.7-2.5 (m), 1.80 (t), and 2.17 (m) total 16H, 3.45 (t, 2H), 4.04 (t, 1H), 4.36 (m, 2H), 6.75 (s, 2H). Elemental Analysis for C₄₃H₄₀N₁₅O₁₄·6HOAc·5TFA: Theoretical C, 31.61; H, 3.28; N, 12.29. Found C, 31.76; H, 3.49; N, 12.06.

EXAMPLE 37
Maleimiodocaproylglutamyldilglutamyldil-hydrazone

(Compound no. 17c)

Maleimiodocaproylglutamyldilglutamyldil(Boc)-hydrazide (16c) (330 mg, 0.313 mmole) was stirred in 15 ml CH₂Cl₂/trifluoroacetic acid (1:1) under N₂ for 1.5 hr. Solvents were removed by rotary evaporation. Ether was added and co-evaporated three times, then the resulting solid was triturated with ether. The solid was filtered and dried under high vacuum to yield 17c (350 mg, 100%) 1H-NMR (δ, Me-2: Methanol): δ 1.30 (m, 2H), 1.60 (2t, 4H), overlapping signals 1.9-2.5 (m) and 2.22 (t) total 14H, 3.47 (t, 2H), 4.09 (t, 1H), 4.43 (2t, 2H), 6.80 (s, 2H). Elemental Analysis for C₄₃H₃₁N₁₅O₁₅·6TFA: Theoretical C, 32.99; H, 3.57; N, 12.34. Found C, 32.76; H, 3.73; N, 12.72.

EXAMPLE 38
Maleimiodopropionylglutamyldilglutamyldil-hydrazone of Doxorubicin

(Compound no. 18a)

Maleimiodopropionylglutamyldilglutamyldil-hydrazone (17a) (250 mg, 0.230 mmole) and DOX.HCl (589 mg, 1.01 mmole) were dissolved in 100 ml methanol then concentrated to 25 ml by rotary evaporation and stirred for 2 days. The reaction was further concentrated to 15 ml and eluted on an LH-20 column (1" x 10") with methanol. The purified product was rotary evaporated to a red film and dried under high vacuum to yield 18a (180 mg, 27%).

1H-NMR (δ, Me-2: Methanol): (selected peaks) δ 1.33 (m, 12H), 4.04 and 4.06 (2d, 12H), 7.67 (s, 2H), 7.4-8.0 (m, 12H). Mass Spec.: FAB Ionspray 2713.5 (M+H)⁺. Elemental Analysis for C₃₉H₃₆N₁₅O₁₅·4HOCl·4H₂O: Teoretical C, 48.91; H, 4.76; N, 6.61. Found C, 48.49; H, 5.28; N, 7.06.

EXAMPLE 39
Maleimiodobutrylglutamyldilglutamyldil-hydrazone of Doxorubicin

(Compound no. 18b)

Maleimiodobutrylglutamyldilglutamyldil-hydrazone (17b) (300 mg, 0.273 mmole) and DOX.HCl (697 mg, 1.20 mmole) were dissolved in 100 ml methanol then concentrated to 25 ml by rotary evaporation and stirred for 2 days. The reaction was further concentrated to 15 ml and eluted on an LH-20 column (1" x 10") with methanol. The purified product was rotary evaporated to a red film and dried under high vacuum to yield 18b (500 mg, 64%).

1H-NMR (δ, Me-2: Methanol): (selected peaks) δ 1.36 (m, 12H), 4.04 and 4.10 (2d, 12H), 6.69 (s, 2H), 7.5-8.0 (m, 12H). Mass Spec.: FAB Ionspray 2728 (M+H)⁺. Elemental Analysis for C₃₉H₃₆N₁₅O₁₅·4HOCl·2TFA·4H₂O: Theoretical C, 51.08; H, 5.08; N, 7.06. Found C, 51.02; H, 5.05; N, 7.16.

EXAMPLE 40
Maleimiodocaproylglutamyldilglutamyldil-hydrazone of Doxorubicin

(Compound no. 18c “MC-Glu(DOX)₃”)

Maleimiodocaproylglutamyldilglutamyldil-hydrazone (17c) (233 mg, 0.210 mmole) and DOX.HCl (489 mg, 0.843 mmole) were dissolved in 100 ml methanol then concentrated to 25 ml by rotary evaporation and stirred for 2 days. The reaction was further concentrated to 15 ml and eluted on an LH-20 column (1" x 10") with methanol. The purified product was rotary evaporated to a red film and dried under high vacuum to yield 18c (430 mg, 71%).
Z-NHCH CH—Br (3.16 g, 12.3 mmole) and (BOC-NHCH CH 2—NH (3.72 g, 12.3 mmole) were stirred in 60 ml ACN/40 ml phosphate buffer (0.1M, pH 9) at 55°C for 2 days. After cooling, the reaction was diluted with 200 ml H2O and extracted twice with 200 ml EtO. The organic layers were combined, dried over Na2SO4, and evaporated under vacuum. The oily residue was chromatographed on Merck silica gel 60 (2×11") with (1) CH2Cl2, 2 L, (2) CH2Cl2/MeOH 97.5:2.5, 1.5 L, and (3) CH2Cl2/MeOH 95:5, 2 L. The desired product 19, which elutes in (2)-(3), was pooled, evaporated under vacuum, and dried under high vacuum to yield 1.93 g (33%).

H-NMR (CDCl3): δ 1.37 (s, 18H), 2.47 (m, 6H), 3.15 (m, 6H), 5.07 (s, 2H), 7.28 (m, 5H). 13C-NMR (CDCl3): δ 28.38, 38.55, 39.01, 53.90, 54.27, 65.18, 66.60, 79.29, 126.94, 127.50, 127.96, 128.14, 128.41, 128.47, 136.66, 156.38, 156.78. Mass Spec: FAB 481.2 (MH+) Elemental Analysis for C21H42N3O6: Calculated 359.31, Found 359.30.

Compound no.20
19 (1.92 g, 3.99 mmole) was stirred in 50% TFA/CH2Cl2 (60 ml) for 3 hr. Solvent were removed by rotary evaporation, then repeated evaporation with Et2O. The oily product was triturated with 50 ml Et2O three times, then dried under high vacuum to yield 20 as a foam (2.29 g, 100%).

Compound no.21
BrCH2CONH-BOC (10.12 g, 40.0 mmole) was added in several portions over a 5 minute period to a stirring suspension of 20 (6.22 g, 10.0 mmole) and KHCO3 (8.01 g, 80 mmole) in 100 ml DMF at 0°C. The reaction was then stirred at room temperature for 60 hours. Solvents were removed by rotary evaporation to an oily residue. This was dissolved in 500 ml of Et2O/EtOAc 1:1 and extracted 5 times with 150 ml saturated NaHCO3 solution followed by two times water. The organic layer was dried over Na2SO4 and rotary evaporated to an oil. Further drying under high vacuum yielded 21 (9.67 g, 100%).

H-NMR (d- MeOH): δ 1.45 (s, 36H), 2.69 (m, 10H), 3.23 (t, 2H), 3.37 (s, 8H), 5.06 (s, 2H), 7.33 (m, 5H). 13C-NMR (d4-MeOH): δ 28.64, 53.28, 53.88, 54.56, 58.59, 66.92, 67.54, 81.94, 129.07, 129.51, 138.35, 157.63, 158.89, 173.20. Mass Spec: Ionspray 969.6 (MH+) Elementary Analysis for C28H32N2O10: Calculated 575.5, Found 575.5.

Compound no.22
21 (2.11 g, 2.18 mmole) was hydrogenated at 35 psi in 50 ml MeOH for 2 hours. The reaction was filtered through Celite, rotary evaporated, and dried under high vacuum to yield 22 as a foam (1.65 g, 91%).

H-NMR (d- MeOH): δ 1.46 (s, 36H), 2.71 (m, 12H), 3.34 (s, 8H). 13C-NMR (d- MeOH): δ 28.64, 34.77, 53.11, 53.91, 58.12, 81.90, 157.64, 172.88. Mass Spec: Ionspray 835.5 (MH+). Elemental Analysis for C28H32N2O10: Theoretical: C, 70.50; H, 8.20; N, 18.99. Found C, 47.41; H, 7.88; N, 18.74. FTIR: 3292, 2980, 1720, 1650, 1484, 1368, 1248, 1162, 1048, 1016, 874, 756, 698 cm⁻¹.

Compound no.23
A solution of 22 (1.03 g, 1.23 mmole) and maleic anhydride (121 mg, 1.23 mmole) was stirred in 25 ml CH2Cl2 for 2.5 hours. Solvents were removed by rotary evaporation to yield 23 (1.16 g, 100%).

H-NMR (d- MeOH): δ 1.45 (s, 36H), 3.13 (m, 4H), 3.45 (m and s, 10H), 3.68 (m, 2H), 6.17 (dd, 2H). Mass Spec: Ionspray 936.3 (MH+), 955.5 (M+Na+).

Compound no.24
23 (603 mg, 0.646 mmole) and EDCI (149 mg, 0.775 mmole) were stirred in 25 ml dry CH2Cl2 under N2 for 2.5 hr. at room temperature. The reaction was then extracted three times with 25 ml saturated aqueous NaHCO3 solution, then once with 25 ml water. The organic layer was dried over Na2SO4, rotary evaporated, and dried under high vacuum to yield the isomaleimide intermediate (494 mg, 84%).

H-NMR (CDCl3): δ 1.45 (s, 36H), 2.8 (m, 10H), 3.31 (s, 8H), 3.7 (m, 2H), 6.57 and 7.40 (dd, 2H). This product was stirred with HOBr (35 mg, 0.259 mmole) in 8 ml DMF for 7 hours at room temperature. Solvent was removed by rotary evaporation. The oily residue was dissolved in 60 ml Et2O/EtOAc 1:1 and extracted five times with 25 ml saturated aqueous NaHCO3 solution, then once with 25 ml water. The organic layer was dried over Na2SO4, rotary evaporated, and dried under high vacuum to yield the maleimide product 24 (463 mg, 94%).

H-NMR (CDCl3): δ 1.45 (s, 36H), 2.7 (m, 10H), 3.32 (s, 8H), 3.57 (m, 2H), 6.68 (s, 2H). 13C-NMR (CDCl3): δ 28.16, 81.73, 134.25, 155.5, 170.79. Mass Spec: Electrospray 915.5 (MH+), 937.5 (M+Na+). FTIR: 3300, 2982, 1758, 1708, 1680 (sh), 1498, 1394, 1368, 1248, 1162, 1048, 1016, 72, 696 cm⁻¹.

Compound no.25
24 (214 mg, 0.234 mmole) was stirred with p-toluenesulfonic acid (450 mg, 2.37 mmole) in 25 ml dry
5,824,805

51

CH₂Cl₂ under N₂ for 3 hours. Solvent was removed by rotary evaporation. The residue was triturated four times with 125 ml Et₂O, then dried under high vacuum to yield 25 (378 mg, 94%).

₃H-NMR (d₅-MeOH): δ 2.36 (s, 21H), 3.22 (t, 2H), 3.52 (m, 5H), 3.71 (s, 8H), 3.94 (t, 2H), 6.85 (s, 2H), 7.23 (d, 14H), 7.70 (d, 14H). Mass Spec.: FAB 515.1 (MH⁺).

EXAMPLE 48

Compound no 26

25(100 mg, 58 umole) and Doxorubicin HCl (177 mg, 305 umole) were stirred in 35 ml dry methanol for 24 hour. The reaction was concentrated by rotary evaporation to 4 ml, then purified on Sephadex LH-20 (1"x18") with methanol. Fractions containing pure product were pooled, rotary evaporated, and dried under high vacuum to yield 26 (113 mg, 59%).

₃H-NMR (d₅-MeOH): δ 1.2 (m, 12H), 3.9 (s, 12H), 6.8 (s, 2H), 7.2−8.0 (m) superimposed with 7.2 (d, and 7.7 (d) total 24 H.

EXAMPLE 49

Compound no 27

Mono-Z-ethylenediamine HCl (3.46 g, 15 mmole), BrCH₂CONHNH-BOC (7.59 g, 30 mmole), and K₂CO₃ (5.26 g, 52.5 mmole) were stirred in 60 ml DMF under N₂ at room temperature for 24 hours. The reaction was partitioned between 25 ml Et₂O and 150 ml saturated aqueous NaHCO₃. The Et₂O layer was washed with 100 ml saturated aqueous NaHCO₃. All aqueous layers were extracted with 100 ml Et₂O. The combined Et₂O layers were washed with brine, dried over Na₂SO₄, and rotary evaporated to yield 6.5 g crude product. This material was flash chromatographed on 20 x 20 cm silica gel 60 (Merck) column with (1) CH₂Cl₂/ MeOH 95:5, 2 L, (2) CH₂Cl₂/MeOH 95:5:5, 1 L, and (3) CH₂Cl₂/MeOH 90:10, 2 L. Fractions containing the desired product were pooled, rotary evaporated, and dried under high vacuum to yield 27 as a foam (4.64 g, 57%).

₃H-NMR (CDCl₃): δ 1.36 (s, 18H), 2.70 (2H), 4.44 (s, 4H), 3.72 (m, 2H), 5.01 (s, 2H), 7.25 (m, 5H). C-NMR (CDCl₃): δ 28.08, 38.75, 55.67, 57.19, 66.77, 81.85, 128.02, 128.41, 136.67, 155.95, 158.10, 170.79. Mass Spec.: Ion-spray 539.3 (MH⁺), 561.2 (M+Na⁺), 577.1 (M+K⁺), 585.2 (M+Li⁺). Elemental Analysis for C₁₇H₁₆N₂O₃.5H₂O: Theoretical C, 52.64; H, 7.18; N, 15.35. Found C, 52.53; H, 7.05; N, 15.30. FTIR: 3300, 2980, 1724, 1694, 1528, 1368, 1250, 1106, 880, 754, 698 cm⁻¹.

EXAMPLE 50

Compound no 28

27 was hydrolyzed in 100 ml EtOH along with 2 g 10% Pd—C at 45 psi for 4.5 hours. After filtration of the catalyst through Celite, the solvent was rotary evaporated and dried under high vacuum to yield 28 as a foam (3.06 g, 92%).

₃H-NMR (CDCl₃): δ 1.43 and 1.44 (2s, 18H), 2.80 (t, 2H), 3.23 (d, 4H), 3.39 (m, 2H). (d₅-MeOH): 1.24 and 1.26 (2s, 18H), 2.59 (t, 2H), 3.02 (d, 4H), 3.15 (t, 2H).

Mass Spec.: Ion-spray 405.3 (MH⁺). Elemental Analysis for C₁₃H₁₉N₂O₃.5H₂O: Theoretical C, 64.48; H, 8.04; N, 20.33. Found C, 64.57; H, 8.04; N, 20.37. FTIR: 3328, 2980, 1698, 1672, 1500, 1368, 1300, 1252, 1162, 778, 692 cm⁻¹.

EXAMPLE 51

Compound no. 29

Maleic anhydride (98 mg, 1.0 mmole) and 28 (405 mg, 1.0 mmole) were stirred in 15 ml CH₂Cl₂ for 2 hours at room temperature. The reaction was rotary evaporated, and the crude product triturated with Et₂O. The residue was dried under high vacuum, yielding 29 (400 mg, 80%).

₃H-NMR (CDCl₃): δ 1.47 and 1.48 (2s, 18H), 2.89 (t, 2H), 3.32 (d, 4H), 3.46 (m, 2H), 6.42 (dd, 2H).

EXAMPLE 52

Compound no.30

29 (503 mg, 1.0 mmole) and EDCI (230 mg, 1.2 mmole) are stirred in 25 ml dry CH₂Cl₂ under N₂ for 2.5 hr at room temperature. The reaction is then extracted three times with 25 ml saturated aqueous NaHCO₃ solution, then once with 25 ml water. The organic layer is dried over Na₂SO₄, rotary evaporated, and dried under high vacuum to yield the isomaleimide intermediate. This product is stirred with HOBT (54 mg, 0.40 mmole) in 8 ml DMF for 7 hours at room temperature. Solvent is removed by rotary evaporation. The oily residue is dissolved in 60 ml EtO/EtOAc 1:1 and extracted five times with 25 ml saturated aqueous NaHCO₃ solution, then once with 25 ml water. The organic layer is dried over Na₂SO₄, rotary evaporated, and dried under high vacuum to yield the maleimide product 30 (455 mg, 94%).

EXAMPLE 53

Compound no.31

30 (485 mg, 1.0 mmole) is stirred with p-toluene sulfonic acid (1.90 g, 10 mmole) in 50 ml dry CH₂Cl₂ under N₂ for 3 hours. Solvent is removed by rotary evaporation. The residue is triturated four times with 125 ml CH₂Cl₂, then dried under high vacuum to yield 31 (800 mg, 94%).

EXAMPLE 54

Compound no.32

31 (200 mg, 0.25 mmole) and Doxorubicin HCl (377 mg, 0.65 mmole) are stirred in 25 ml dry methanol for 24 hour. The reaction is concentrated by rotary evaporation to 4 ml, then purified on two equal volumes on Sephadex LH-20 (1"x18") with methanol. Fractions containing pure product are pooled, rotary evaporated, and dried under high vacuum to yield 32 (200 mg, 50%).

EXAMPLE 55

Compound no.33

t-Butyl carbazate (396 mg, 3 mmole) is stirred in 10 ml dry CH₂Cl₂ under N₂, then triethylamine (0.6 g, 6 mmole) is added followed by triphosgene (296 mg, 1 mmole) in a single portion. When the initial reaction subsides, 20 (934 mg, 1.5 mmole) is added in 20 ml CH₂Cl₂ along with additional triethylamine (0.45 g, 4.5 mmole). The mixture is stirred at room temperature for 1.5 hr, diluted with CH₂Cl₂, then partitioned with water (100 ml). The organic layer is dried over Na₂SO₄, and rotary evaporated. Flash chromatography on silica gel 60 yields pure product 33 (684 mg, 50%).

EXAMPLE 56

Compound no.34

33 (650 mg, 0.71 mmole) is hydrogenated in 50 ml EtOH along with 1 g 10% Pd—C at 45 psi for 4.5 hours. After
5,824,805

53

filtration of the catalyst through Celite, the solvent is rotary evaporated and dried under high vacuum to yield 34 as a foam (550 mg, 100%).

EXAMPLE 57

Compound no.35

Maleic anhydride (63 mg, 0.64 mmole) and 34 (500 mg, 0.64 mmole) are stirred in 15 ml CHCl₃ for 2 hours at room temperature. The reaction is rotary evaporated, and the crude product triturated with Et₂O. The residue is dried under high vacuum, yielding 35 (448 mg, 80%).

EXAMPLE 58

Compound no.36

35 (438 mg, 0.5 mmole) and EDCI (115 mg, 0.6 mmole) are stirred in 25 ml dry CH₂Cl₂ under N₂ for 2.5 hr. at room temperature. The reaction is then extracted three times with 25 ml saturated aqueous NaHCO₃ solution, then once with 25 ml water. The organic layer is dried over Na₂SO₄, rotary evaporated, and dried under high vacuum to yield the isomaleimide intermediate.

This product is stirred with HOBT (27 mg, 0.20 mmole) in 8 ml DMF for 7 hours at room temperature. Solvent is removed by rotary evaporation. The oily residue is dissolved in 60 ml Et₂O/EtOAc 1:1 and extracted five times with 25 ml saturated aqueous NaHCO₃ solution, then once with 25 ml water. The organic layer is dried over Na₂SO₄, rotary evaporated, and dried under high vacuum to yield the maleimide product 36 (400 mg, 94%).

EXAMPLE 59

Compound no.37

36 (400 mg, 0.47 mmole) is stirred with p-toluensulfonic acid (694 mg, 4.7 mmole) in 50 ml dry CH₂Cl₂ under N₂ for 3 hours. Solvent is removed by rotary evaporation. The residue is triturated four times with 125 ml Et₂O, then dried under high vacuum to yield 37 (455 mg, 94%).

EXAMPLE 60

Compound no.38

37 (257 mg, 0.25 mmole) and Doxorubicin HCl (377 mg, 0.65 mmole) are stirred in 25 ml dry methanol for 24 hour. The reaction is concentrated by rotary evaporation to 4 ml, then purified in two equal portions on Sephadex LH-20 (1“x18”) with methanol. Fractions containing pure product are pooled, rotary evaporated, and dried under high vacuum to yield 38 (222 mg, 50%).

EXAMPLE 61

Compound no.39

Z-NHCH₂CH₂—Br (3.16 g, 12.3 mmole) and (BOC-NHCH₂CH₂)₂—NH (3.72 g, 12.3 mmole) were stirred in 60 ml ACN/40 ml phosphate buffer (0.1M, pH 9) at 55° C. for 2 days. After cooling, the reaction was diluted with 200 ml H₂O and extracted twice with 200 ml Et₂O. The organic layers were combined, dried over Na₂SO₄, and evaporated under vacuum. The oily residue was chromatographed on Merek silica gel 60 (2“x11”) with (1) CH₂Cl₂, 2 L, (2) CH₂Cl₂/MeOH 97:5:2:5, 1.5 L, and (3) CH₂Cl₂/MeOH 95:5, 2 L. The desired product 102, which elutes in (2)-(3), was pooled, evaporated under vacuum, and dried under high vacuum to yield 1.93 g (33%).

1H-NMR (CDCl₃): δ 1.37 (s, 18H), 2.47 (m, 6H), 3.15 (m, 6H), 5.07 (s, 2H), 7.28 (m, 5H). 13C-NMR (CDCl₃): δ 28.38, 38.55, 39.01, 53.90, 54.27, 65.18, 66.60, 79.29, 126.94, 127.50, 127.96, 128.14, 128.41, 128.47, 136.66, 156.38, 156.78. Mass Spec.: FAB 481.2 (MHI⁺); Elemental Analysis for C₁₂H₁₀N₂O₂: Theoretical C, 59.98; H, 8.39; N, 11.66. Found C, 60.26; H, 8.43; N, 11.60. FTIR: 3336, 2976, 1694, 1524, 1366, 1252, 1170, 736, 698 cm⁻¹.

EXAMPLE 62

Compound no.40

102 (1.92 g, 3.99 mmole) was stirred in 50% TFA/CH₂Cl₂ (60 ml) for 3 hr. Solvents were removed by rotary evaporation, then repeated co-evaporations with Et₂O. The oily product was triturated with 50 ml Et₂O three times, then dried under high vacuum to yield 103 as a foam (2.29 g, 100%).

EXAMPLE 63

Compound no.41

BrCH₂CONHNH-BOC (10.12 g, 40.0 mmole) was added in several portions over a 5 minute period to a stirring suspension of 103 (6.22 g, 10.0 mmole) and KHCO₃ (8.01 g, 80 mmole) in 100 ml DMF at 0° C. The reaction was then stirred at room temperature for 60 hours. Solvents were removed by rotary evaporation to an oily residue. This was dissolved in 500 ml of Et₂O/EtOAc 1:1 and extracted 5 times with 150 ml saturated NaHCO₃ followed by two times with water. The organic layer was dried over Na₂SO₄ and rotary evaporated to an oil. Further drying under high vacuum yielded 104 (9.67 g, 100%).

1H-NMR (d₆-MeOH): δ 1.45 (s, 36H), 2.69 (m, 10H), 3.23 (t, 2H), 3.37 (s, 8H), 5.06 (s, 2H), 7.33 (m, 5H). 13C-NMR (d₆-MeOH): δ 28.64, 53.28, 53.88, 54.56, 58.59, 66.92, 67.54, 81.94, 129.07, 129.51, 138.35, 157.63, 158.89, 173.20. Mass Spec.: Ionspray 969.6 (MHI⁺) Elemental Analysis for C₁₅H₁₂N₂O₄·0.5H₂O: Theoretical C, 51.57; H, 7.52; N, 17.18. Found C, 51.73; H, 7.52; N, 16.84. FTIR: 3296, 2980, 1728, 1696, 1518, 1594, 1394, 1368, 1248, 1162, 1048, 1016, 874, 756, 698 cm⁻¹.

EXAMPLE 64

Compound no.42

104 (2.11 g, 2.18 mmole) was hydrogenated at 35 psi in 50 ml MeOH for 2 hours. The reaction was filtered through Celite, rotary evaporated, and dried under high vacuum to yield 105 as a foam (1.65 g, 91%).

1H-NMR (d₆-MeOH): δ 1.46 (s, 36H), 2.71 (m, 12H), 3.34 (s, 8H). 13C-NMR (d₆-MeOH): δ 28.64, 34.77, 53.11, 53.91, 58.12, 81.90, 157.64, 172.88. Mass Spec.: Ionspray...
Compound no. 44

A solution of 105 (1.03 g, 1.23 mmole) and maleic anhydride (121 mg, 1.23 mmole) was stirred in 25 ml CH₂Cl₂ for 2.5 hours. Solvents were removed by rotary evaporation to yield 106 (1.16 g, 100%). §H-NMR (d⁴-MeOH): δ 1.45 (s, 36H), 3.13 (m, 4H), 3.45 (m and s, 16H), 3.68 (m, 2H), 6.17 (dd, 2H). Mass Spec.: ionspray 939.6 (MH⁺), 955.5 (M+Na⁺).

Example 66

Table 65

Table 56

Conjugate Synthesis

Thiolation:

Method A. On a scale<3 g, (see Willner, D., Trail, P. A., Hofstead, S. J., King, H. D., Lasch, Braslawsky, G. R., Greenfield, R. S., Kaneko, T., Firestone, R. A. (1993) (6-Maleimidocaproyl)-hydrzone of Doxorubicin:A new derivative for the preparation of immunonjugates of Doxorubicin. Bioconjugate Chem., 4, 521.) In typical example, 1.54 g BR96 (180 ml at 53.4 µM, 9.6 µmole) was de-oxygenated by several cycles of alternating vacuum and Ar atmosphere. This was then treated with 34 mM DTT (2.0 ml, 68.0 µmole in Ar-bubbled PBS, pH 7.0) and stirred at 37 °C under Ar for 3 hr. Removal of low molecular weight compounds was accomplished by ultrafiltration against PBS, pH 7.0 in an Amicon stirred cell at 4 °C. A 400 ml Amicon cell was fitted with an Amicon YM30 filter (molecular weight cut-off-30,000), and charged to 40 psi with Ar. Cell eluant was monitored for thiol content with Ellman’s reagent until a baseline reading at 412 nm was obtained. Concentration of protein and thiol groups were determined according to the previously reported method. In this example, 1.47 g reduced BR96 (190 ml at 48.57 µM MAb, 41.7 µM thiol) was obtained, for a yield of 95% and a thiol titer of 8.5 mole thiol groups/mole BR96.

Method B. On a scale>3 g, the same procedure was utilized for the DTT reaction, with the exception that the MAb solutions were de-oxygenated by ultrafiltration in a Filtron Minisette unit. The Membrane was fitted with two Filtron 30K cassettes and was connected to a Watson Marlow 6045 pump with Biopure tubing. The MAb solution was ultracentrifuged at 0 °C under Ar against Ar-bubbled PBS, pH 7.0 (eluant flow rate 100~150 ml/min., 25 psi backpressure), while continually monitoring the thiol content as above. In a typical example, a 6.6 g batch of BR96 (550 ml at 75.3 µM) yielded 6.1 g reduced BR96 (800 ml at 47.6 µM MAb, 398 µM thiol) for a yield of 92% and thiol titer of 8.4 mole thiol groups/mole BR96.

Conjugation:

The following procedure, for the conjugation of BR96 and 2b, is typical of that used for all linkers cited herein (see Riddles, P. W., Blakeley, R. L., Zerner, B., (1979) Ellman’s reagent: 5,5'-Dithiobis(2-nitrobenzoic acid)-A reexamination. Anal. Biochem., 94, 75.) To reduced BR96 from Method A (125 ml, 6.07 µM MAb, 51.5 µmole thiol) was added dropwise at 0 °C under Ar a solution of 2b (93 mg, 67.2 µmole) in 5 ml Ar-bubbled H₂O. After stirring for 30 min., the reaction was filtered through a 0.22 µm sterile filter. Conjugate was purified at 4 °C by percolation (approximately 2 ml/min.) through a 1”x36” Bio-Beads column (initially prepared by swelling and packing in methanol, then equilibrated in H₂O, and finally PBS, pH 7.0). The purified conjugate was filtered again through a 0.22 µm sterile filter to yield 155 ml of BR96 2b (BR96, 39.13 µm; DOX, 589.0 µM; MR, 15.1 mole DOX/mole BR96; yield, 100%). Conjugate was frozen in liquid N₂ and stored at −80 °C.
EXAMPLE 70

Biological Studies
Materials and Methods:

Tumor Cell Lines. L2987 is a human lung line which expresses the BR64 and BR96 antigens. L2987 was obtained from I. Hellstrom (Bristol-Myers Squibb, Seattle, Wash.). In vitro cytotoxicity assays. In vitro cytotoxicity assays were performed as described previously (Trail et al., 1992). Briefly, monolayer cultures of L2987 human carcinoma cells were harvested using trypsin-EDTA (GIBCO, Grand Island, N.Y.), and the cells counted and resuspended to 1x10^6/ml in RPMI-1640 containing 10% heat inactivated fetal calf serum (RPMI-10% FCS). Cells (0.1 ml/well) were added to each well of 36 well microtiter plates and incubated overnight at 37°C in a humidified atmosphere of 5% CO_2_. Media was removed from the plates and serial dilutions of DOX or MAb-DOX conjugates added to the wells. All dilutions were performed in quadruplicate. Cells were exposed to DOX or MAb-DOX conjugates for various times (2 h–48 h as denoted in results) at 37°C in a humidified atmosphere of 5% CO_2_. Plates were then centrifuged (200g, 5 min), the drug or conjugate removed, and the cells washed 3x with RPMI-10% FCS. The cells were cultured in RPMI-10% FCS (37°C, 5% CO_2) for an additional 48 h. At this time the cells were pulsed for 2 h with 1.0 µCi/well of [3H]thymidine (New England Nuclear, Boston, Mass.). The cells were harvested onto glass fiber mats (Skatron Instruments, Inc., Sterling, Va.), dried, and filter bound [3H]thymidine radioactivity determined (β-Plate scintillation counter, Pharmacia LKB Biotechnology, Piscataway, N.J.). Inhibition of [3H]thymidine uptake was determined by comparing the mean cpm for treated samples with that of the mean cpm of the untreated control. In studies designed to evaluate the stability of various linkers, cells were exposed to BR96 or control IgG conjugates for varying periods of time (2–48 h) and the specificity ratio (IC50 IgG-DOX/IC50 BR96-DOX) calculated for the various exposure times. Experimental Animals. Congenitally athymic female mice of Balb/c background (Balb/c nu/nu; Harlan Sprague-Dawley, Indianapolis, Ind.) were used in these studies. Mice were housed in Thoren caging units on sterile bedding with controlled temperature and humidity. Animals received sterile food and water ad libitum. Human Tumor Xenograft Models. The L2987 human tumor line was established as tumor xenografts in athymic mice and maintained by serial passage as described previously (Trail et al., 1992). L2987 tumors were measured in 2 perpendicular directions at weekly or biweekly intervals using calipers. Tumor volume was calculated according to the equation: V = 1/2 x w^2 x l where: V = volume (mm^3), w = measurement of longest axis (mm), and l = measurement of axis perpendicular to l. In general, there were 8–10 mice per control or treatment group. Data are presented as median tumor size for control or treated groups. Antitumor activity is expressed in terms of median log cell kill (LC50) where LCK=T/C(TVDT)/3.3. T=C is defined as the median time (days) for treated tumors to reach 500 mm^3 size minus the median time for control tumors to reach 500 mm^3 and TVDT is the time (days) for control tumors to double in volume (250–500 mm^3). Tumor growth rate reflects a decrease in tumor volume to ≤50% of the initial tumor volume; complete tumor regression refers to a tumor which for a period of time is not palpable; and cure is defined as an established tumor which is not palpable for a period of time ≤10 TVDT’s. Therapy. Treatments were administered by the ip or iv route on various schedules as denoted. DOX was diluted in normal saline and MAb and MAb-DOX conjugates were diluted in PBS. All therapy was administered on a mg/kg basis calculated for each animal and doses were presented as mg/kg injection. Control animals were not treated. Doses of immunconjugate are reported based on the drug (equivalent DOX) and antibody content. The maximum tolerated dose (MTD) for a treatment regimen is defined as the highest dose on a given schedule which resulted in <20% lethality.

Results:

Relationship between drug/MAb molar ratio and in vitro potency of linear and branched DOX hydrazone conjugates

The relationship between conjugate molar ratio and the in vitro potency of DOX/ZN conjugates was reported previously (Trail et al., 1992). In the studies BR64-DOX (disulfide linked) conjugates were prepared with conjugate ratios ranging from 1–8. The in vitro potency of the immunconjugates varied over a 33 fold range (IC50 values of 1–33 µm DOX) and potency was correlated with conjugate molar ratio; conjugates of higher mole ratio were significantly (p<0.05) more potentin vitro on both a DOX and MAb basis than those conjugates prepared at lower mole ratios. However, the number of DOX molecules which can be directly linked to a given MAb without a subsequent reduction in MAb binding affinity is limited. For example, Shih et al., demonstrated a reduction in MAb avidity and antigen-specific potency was as molar ratios of directly linked DOX conjugates exceeded 10 (Shih, L. B., Sharkey, R. M., Primus, F. J. and Goldenber, D. M. (1988). Site-specific linkage of methotrexate to monoclonal antibodies using an intermediate carrier. International Journal of Cancer 41, 8520839; Shih et al., 1991). Therefore, the use of branched linkers which increase the drug/MAb molar ratio by a factor of 2^w (wherein n is a positive integer) without increasing the number of conjugation sites on the MAb molecule was employed. As shown in Table 1, the conjugate molar ratios of the various singly branched conjugates (i.e., 2^w wherein n=1) ranged from 11–16 and that of the doubly branched conjugates (i.e., 2^w wherein n=2) was 24. On an individual lot basis (Table 1), the singly branched DOX/ZN conjugates were 2–20 fold (IC50 values of 0.1–1.0 µm equivalent DOX) and the doubly branched conjugates (IC50 of 0.2 µm) were 10 fold, more potent than the straight chain DOX/ZN conjugate BMS-182248 (2 µm DOX). As used herein “BMS-182248” refers to the straight chain conjugate as disclosed by Trail, P. A., Willner, D., Lasch, S. J., Henderson, A. J., Hofstead, S. J., Casazza, A. M., Firestone R. A., Hellström, K. E. (1993). Cure of xenografted human carcinomas by BR96-Doxorubicin conjugates.
Immuno-conjugates, Science 261,212–215. Thus, increasing the concentration of DOX delivered per BR96 MAb, by increasing the conjugate molar ratio (M.R.) resulted in a significant increase in the in vitro potency of the conjugates. As shown in Table 2, the mean in vitro potency of various single and double branches conjugates was similar (0.2–0.5 μM DOX) and each offered an in vitro potency advantage over that of BMS-182248 on both a DOX and MAB basis.

TABLE 1

<table>
<thead>
<tr>
<th>Conjugate</th>
<th>Example No.</th>
<th>Compound No.</th>
<th>M.R.</th>
<th>IC_{50} (μM DOX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMS-182248</td>
<td>pooled date</td>
<td>6</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>MC-Glu-(β-Ala-DOX)_{2}</td>
<td>29</td>
<td>3c</td>
<td>33878-020</td>
<td>13.9 0.2</td>
</tr>
<tr>
<td>MC-Glu-(DOX)_{4}</td>
<td>40</td>
<td>18c</td>
<td>33878-031</td>
<td>24.0 0.2</td>
</tr>
<tr>
<td>MB-Glu-(DOX)_{2}</td>
<td>14</td>
<td>2b</td>
<td>33119-166a</td>
<td>11.3 0.9</td>
</tr>
<tr>
<td>MB-Glu-(β-Ala-DOX)_{2}</td>
<td>28</td>
<td>3b</td>
<td>33878-066</td>
<td>11.6 0.5</td>
</tr>
<tr>
<td>MP-Glu(DOX)_{2}</td>
<td>13</td>
<td>2a</td>
<td>33878-127</td>
<td>14.5 0.3</td>
</tr>
<tr>
<td>MB-D-Glu(DOX)_{2}</td>
<td>15</td>
<td>D-2b</td>
<td>33119-191</td>
<td>15.3 0.2</td>
</tr>
<tr>
<td>MB-Glu-(β-Ala-DOX)_{2}</td>
<td>27</td>
<td>3a</td>
<td>33878-173</td>
<td>11.7 0.5</td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th>Conjugate</th>
<th>M.R. (range)</th>
<th>IC_{50} (μM DOX) (Mean)</th>
<th>IC_{50} (μM MAB) (Mean)</th>
<th>Specificitiy ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMS-182248</td>
<td>8</td>
<td>2.0 0.25</td>
<td>>5</td>
<td>ND</td>
</tr>
<tr>
<td>MC-Glu-(β-Ala-DOX)_{2}</td>
<td>2c</td>
<td>14</td>
<td>0.2 0.1</td>
<td>ND</td>
</tr>
<tr>
<td>MC-Glu-(DOX)_{4}</td>
<td>24</td>
<td>0.8 0.01</td>
<td>>16</td>
<td>ND</td>
</tr>
<tr>
<td>MB-Glu-(DOX)_{2}</td>
<td>2b</td>
<td>11.8–16.2</td>
<td>0.5 0.04</td>
<td>>16</td>
</tr>
<tr>
<td>MB-Glu-(β-Ala-DOX)_{2}</td>
<td>3b</td>
<td>11.8–12.1</td>
<td>0.4 0.03</td>
<td>>25</td>
</tr>
<tr>
<td>MC-Glu-(DOX)_{6}</td>
<td>2c</td>
<td>11.8–16.1</td>
<td>0.3 0.02</td>
<td>31</td>
</tr>
<tr>
<td>MP-Glu-(DOX)_{2}</td>
<td>2a</td>
<td>14.5–15.6</td>
<td>0.2 0.01</td>
<td>>40</td>
</tr>
<tr>
<td>MB-D-Glu-(DOX)_{2}</td>
<td>D-2b</td>
<td>11.2–15.3</td>
<td>0.2 0.02</td>
<td>35</td>
</tr>
<tr>
<td>MP-Glu-(β-Ala-DOX)_{2}</td>
<td>3a</td>
<td>11.7 0.5</td>
<td>0.4 0.04</td>
<td>>20</td>
</tr>
</tbody>
</table>

*Significance ratio defined as: IC_{50} IgG-DOX/IC_{50} BMS-182248

In vitro stability of Singly branched DOX Conjugates

Among the characteristics desirable for efficacious MAb-drug conjugates are linker chemistries which are extremely stable in the extracellular environment yet liberate drug efficiently upon internalization into antigen-expressing cells. One method for assessing extracellular stability, and in part, intracellular hydrolysis rates is to evaluate antigen-specific cytotoxicity of binding relative to non-binding conjugates over various exposure times. In these types of experiments, extracellular stability will be reflected by the lack of potency of non-binding immunoconjugates. Rapid intracellular hydrolysis following antigen-specific internalization will result in a high level of potency which does not change significantly with increased exposure time. Several experiments have been performed with BR96-DOX conjugates prepared with linear or branched linkers. In the following experiments, L2987 cells were exposed to the various drug conjugates for 2, 8, 24 or 48 h and the IC50 values of both BR96 (binding) and IgG (non-binding) conjugates determined. The results are presented in FIGS. 1 and 2. As shown in FIG. 1, the MDCDOXHNZ (BMS-182248) conjugate was less potent than the branched hydrazone, MB-Glu-DOX_{2}. BMS-182248 conjugate during the first 24 h of exposure. The potency of the MDCDOXHNZ conjugate was increased over time whereas that of the branched DOXHNZ remained essentially unchanged over 48 h of exposure. These data suggest that the intracellular rates of hydrolysis for the branched DOXHNZ conjugate was more rapid than that of the DOXHNZ conjugate.

The characteristic of extracellular stability was evaluated by examining the kinetics of cell killing of non-binding IgG conjugates prepared with the different linker chemistries. As shown in FIG. 2, the potency of both the IgG conjugates prepared as straight chain MDCDOXHNZ and branched chain MB-Glu-(DOX)_{2}, hydrazone conjugates increased with longer exposure times. The increase in potency of non-binding conjugates likely reflects cytotoxicity of DOX itself following release of DOX from the conjugate over time. The potency of both the linear and branched hydrazone conjugates increased in parallel, suggesting that the extracellular stability of these conjugates was quite similar. In summary, the BR96 branched hydrazone conjugates were more potent in vitro at short exposure times than were the MDCDOXZN (BMS-182248) conjugates. However, the extracellular stability of the branched conjugates was not different from that of the straight chain MDCDOXHNZ conjugate. Taken together, these data suggest that the branched hydrazone
offers a potential advantage in the rate of intracellular release of DOX, but does not offer an increase in extracellular stability.

In vivo Biology of branched chain DOX hydrazone conjugates

To evaluate the effect on antitumor activity of increasing the conjugate MR approximately 2 fold, BR96 and IgG conjugates were produced using six different branched linkers and the conjugates evaluated for antigen-specific activity in vivo against L2987 human tumor xenografts.

The structure and substantial purity (in particular lack of unconjugated drug) was established for each conjugate, however, unidentified impurities were present. In particular, a high MW aggregate, which is most likely a dimeric form of the conjugate was present. Therefore, antitumor activities of these branched chain conjugates were compared with that of research grade BMS-182248; (BMS-182248(RG)).

In the tables describing antitumor activity, the optimal dose of BR96-DOX conjugates is defined as the lowest dose administered which produced $\geq 4 \log$ cell kill and $\geq 70\%$ tumor regression. The antitumor activity of IgG-DOX conjugates at the maximum dose tested is included for demonstration of antigen-specific activity.

1. BMS-187852; MB-Glu-(DOX)$_2$

The molar ratio of the BMS-187852 conjugates varied from 13.7-15. As shown in Table 3, 3 lots of BMS-187852 were tested. The optimal dose for both BMS-187852 and BMS-182248 was 2.5 mg/kg DOX. However, because of the doubling of the molar ratio of BMS-187852, the branched conjugate was approximately 2 fold more potent than BMS-182248(RG) on a MAb basis. The antitumor activity of BMS-187852 was antigen-specific.

Table 3

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Lot#</th>
<th>mol Ratio DOX</th>
<th>% Tumor Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR96</td>
<td>33878-060</td>
<td>15</td>
<td>2.5</td>
</tr>
<tr>
<td>IgG</td>
<td>33878-065</td>
<td>18</td>
<td>>10</td>
</tr>
<tr>
<td>BR96</td>
<td>32178-180</td>
<td>13.7</td>
<td>2.5</td>
</tr>
<tr>
<td>IgG</td>
<td>32178-178</td>
<td>15.2</td>
<td>>5</td>
</tr>
<tr>
<td>IgG</td>
<td>34616-169</td>
<td>15.1</td>
<td>2.5</td>
</tr>
<tr>
<td>IgG</td>
<td>34616-178</td>
<td>14.5</td>
<td>>5</td>
</tr>
</tbody>
</table>

2. BMS-187853; MB-Glu-(p-Ala-DOX)$_2$

Two lots of BMS-187853 conjugate (molar ratios approximately 11.5) were evaluated against established L2987 lung tumor xenografts. The antitumor activity of the 2 lots was similar; both produced optimal antigen-specific antitumor activity at doses of approximately 2.0 mg/kg DOX, 45 mg/kg BR96. Overall, these conjugates were similar to BMS-182248(RG) on a DOX and 2 fold more potent on a MAb basis.

Table 4

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Lot#</th>
<th>mol Ratio DOX</th>
<th>% Tumor Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR96</td>
<td>33878-066</td>
<td>11.6</td>
<td>2.5</td>
</tr>
<tr>
<td>IgG</td>
<td>33878-078</td>
<td>16.2</td>
<td>>10</td>
</tr>
<tr>
<td>BR96</td>
<td>32178-158</td>
<td>11.5</td>
<td>2.0</td>
</tr>
<tr>
<td>IgG</td>
<td>32178-162</td>
<td>13.7</td>
<td>>5</td>
</tr>
</tbody>
</table>

3. BMS-188077; MC-Glu-(DOX)$_2$

The DOX/BR96 molar ratio of BMS-188077 conjugates was in the range of 14.6-16.1. As shown in Table 5, antigen-specific antitumor activity was observed for BMS-188077. BMS-188077 was of similar potency as BMS-182248(RG) on a DOX equivalent basis but due to the increase in the molar ratio, approximately 2 fold more potent on a MAb basis.

Table 5

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Lot#</th>
<th>mol Ratio DOX</th>
<th>% Tumor Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR96</td>
<td>33878-064</td>
<td>14.6</td>
<td>2.5</td>
</tr>
<tr>
<td>IgG</td>
<td>33878-054</td>
<td>16.2</td>
<td>>10</td>
</tr>
<tr>
<td>BR96</td>
<td>32178-174</td>
<td>16.1</td>
<td>2.5</td>
</tr>
<tr>
<td>IgG</td>
<td>32178-176</td>
<td>12.2</td>
<td>>5</td>
</tr>
<tr>
<td>BR96</td>
<td>33878-141</td>
<td>15.1</td>
<td>2.5</td>
</tr>
<tr>
<td>IgG</td>
<td>33878-146</td>
<td>15.5</td>
<td>>5.0</td>
</tr>
</tbody>
</table>

4. BMS-189099; MP-Glu-(DOX)$_2$

Three lots of BMS-189099 conjugates were evaluated in parallel with non-binding IgG conjugates (BMS-188078) produced with the same linker chemistry. The mole ratios of the BR96 conjugates were in the range of 14.5-15.5. The antitumor activity of BMS-189099 and non-binding conjugates is presented in Table 6. Antigen-specific antitumor activity was observed in vivo. The BMS-189099 conjugates were of similar potency as BMS-182248(RG) on a DOX basis but approximately 2 fold more potent on a MAb basis.

Table 6

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Lot#</th>
<th>mol Ratio DOX</th>
<th>% Tumor Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR96</td>
<td>33878-120</td>
<td>15.5</td>
<td>2.5</td>
</tr>
<tr>
<td>IgG</td>
<td>33878-118</td>
<td>15.9</td>
<td>>5</td>
</tr>
<tr>
<td>BR96</td>
<td>32178-162</td>
<td>15.35</td>
<td>1.25</td>
</tr>
</tbody>
</table>
5. BMS-189812; MB-[D]-Glu(DOX)2

The molar ratios of the BMS-189812 conjugates were in the range of 11–15 moles DOX/moles BR96. Data for the antitumor activity of BMS-189812 is summarized in Table 7. The optimal dose of BMS-189812 was approximately 2 mg/kg DOX, 50 mg/kg BR96. The potency on a DOX basis was similar to BMS-2284 (RG) and the conjugate was two fold more potent on a MAb basis.

6. BMS-190385; MB-Glu-(β-Ala-DOX)2 conjugates

The BMS-190385 conjugates demonstrated antigen-specific activity in vivo. The antitumor activity of BMS-190385 conjugates is presented in Table 8. As shown two lots of BR96-DOX conjugate are currently being evaluated against established L2987 lung xenografts. Antigen-specific antitumor activity was observed. Although the data is still developing, it appears that the optimal dose of these conjugates is 2 mg/kg DOX, 60 mg/kg BR96. This is similar to that of BMS-2284 on a DOX basis and slightly more potent on a MAb basis.

Summary of branched chain DOXHZN conjugates

The branched chain DOXHZN conjugates evaluated herein typically had molar ratios in the range of 11–15. This is 1.5–1.8 fold higher than the molar ratio typically observed for BMS-182248. all of the conjugates evaluated demonstrated antigen-specific activity both in vitro and in vivo. Among the various branched chain conjugates, there were no significant differences in either in vitro (Table 2) or in vivo (Table 9) potency. When evaluated in vitro, the branched conjugates offered an increase in potency on both a DOX and a MAb basis. This likely reflects the fact that conjugates were assayed using a 2 h exposure and as shown in Fig. 1, the branched conjugates appear to release DOX more rapidly than the straight chain MCDOXHZN conjugate following antigen-specific internalization. The dose of equivalent DOX which produced ≥4 log cell kill and ≥70% tumor regressions was the same for both the branched chain DOXHZN and single chain DOXHZN (BMS-182248) conjugates (Summarized in Table 9). However, because the molar ratio of the branched chain conjugates was increased by 1.5–1.8 fold over that of BMS-182248, these conjugates were approximately 6 fold more potent than BMS-182248 on a MAb basis.
or a moiety of the formula

\[
\begin{align*}
\text{H} & \quad \text{O} \\
\text{N} & \quad \text{C} \\
\text{N} & \quad \text{H} \\
\text{O} & \quad \text{C} \\
\end{align*}
\]

wherein

\(W, a, b, m \) are as defined hereinbefore, and

\(X^1 \) is a moiety of the formula \(-NH-NH_2\) or

\[
\text{O} \\
\text{N} \text{N} \text{H}-\text{NHNHC-NHNH}_2
\]

or a moiety of the formula

\[
\begin{align*}
\text{H} & \quad \text{O} \\
\text{N} & \quad \text{C} \\
\text{N} & \quad \text{H} \\
\text{O} & \quad \text{C} \\
\text{O} & \quad \text{C}
\end{align*}
\]

wherein

\(W, a, b, m \) are as defined hereinbefore, and

\(X^2 \) is a moiety of the formula \(-NH-NH_2\) or

\[
\text{O} \\
\text{N} \text{N} \text{H}-\text{NHNHC-NHNH}_2
\]

or a moiety of the formula

\[
\begin{align*}
\text{H} & \quad \text{O} \\
\text{N} & \quad \text{C} \\
\text{N} & \quad \text{H} \\
\text{O} & \quad \text{C} \\
\end{align*}
\]

wherein

\(W, a, b, m \) are as defined hereinbefore, and

\(X^3 \) is a moiety of the formula \(-NH-NH_2\) or

\[
\text{O} \\
\text{N} \text{N} \text{H}-\text{NHNHC-NHNH}_2
\]

or a moiety of the formula

\[
\begin{align*}
\text{H} & \quad \text{O} \\
\text{N} & \quad \text{C} \\
\text{N} & \quad \text{H} \\
\text{O} & \quad \text{C} \\
\text{O} & \quad \text{C}
\end{align*}
\]

wherein

\(W, a, b, m \) are as defined hereinbefore, and

\(X^4 \) is a moiety of the formula \(-NH-NH_2\) or

\[
\text{O} \\
\text{N} \text{N} \text{H}-\text{NHNHC-NHNH}_2
\]

2. The branched linker of claim 1 wherein \(X = -NH-NH_2 \) or

\[
\text{O} \\
\text{N} \text{N} \text{H}-\text{NHNHC-NHNH}_2
\]

3. The branched linker of claim 1 wherein \(X^1 = -NH-NH_2 \) or

\[
\text{O} \\
\text{N} \text{N} \text{H}-\text{NHNHC-NHNH}_2
\]

4. The branched linker of claim 1 wherein \(A \) is a Michael Addition acceptor.

5. The branched linker of claim 1 wherein \(W \) is of the formula

\[
\text{H} \\
\text{O}
\]

wherein \(g \) is an integer of 1 to 6.

6. The branched linker of claim 1 wherein \(W \) is of the formula

\[
\text{H} \\
\text{O}
\]

wherein \(f \) is an integer of 1 to 10, \(h \) is an integer of 1 to 10, provided that when \(g \) is 0, then \(f+h \) is 1 to 10, \(Z \) is \(S, O, \text{N}, \text{SO}_2 \), phenyl, naphthyl, a cycloaliphatic hydrocarbon ring containing 3 to 10 carbon atoms, or a heteroaromatic hydrocarbon ring containing 3 to 6 carbon atoms and 1 or 2 heteroatoms selected from \(O \), \(N \), or \(S \).

10. The branched linker of claim 9 wherein \(f = 1 \) or 2, \(h \) is 1 or 2, \(Z \) is phenyl, or cyclohexyl.

11. The branched linker of claim 10 wherein \(Z \) is phenyl or cyclohexyl.

12. The branched linker of claim 9 wherein \(g = 0 \) and \(f+h \) is an integer of 1 to 4.

13. The branched linker of claim 9 wherein \(g = 0 \) and \(f+h \) is an integer of 2.