Office de la Propriete Canadian CA 2427288 A1 2003/12/28

Intellectuelle Intellectual Property
du Canada Office (21) 2 427 288
v organisime An agency of 12 DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada
CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2003/04/30 (51) CL.Int.”/Int.CI.” GOBF 9/44
(41) Mise a la disp. pub./Open to Public Insp.: 2003/12/28 (71) Demandeur/Applicant:
(30) Priorité/Priority: 2002/06/28 (10/187,012) US MICROSOFT CORPORATION, US

(72) Inventeurs/Inventors:
BOGDAN, JEFFREY L., US;
FINOCCHIO, MARK J., US;
KRAMER, NICHOLAS M., US

(74) Agent: SMART & BIGGAR

54) Titre : SYSTEME ET METHODE POUR ASSOCIER DES PROPRIETES A DES OBJETS
54) Title: SYSTEM AND METHOD FOR ASSOCIATING PROPERTIES WITH OBJECTS

100
(1 08 [COMPUTING DEVICE

EE * | REMOVABLE | |

B SYSTEM MEMORY | 5 STORAGE | N\
= ———— 104 ? E

| 102 | 109
BN ROM/RAM r . | NON-REMOVABLE | |

B OPERATING | N\ [AR STORAGE | N

j SYSTEM 105 - 110
: l PROCESSING UNIT | ! i

; 1 INPUT DEVICE(S) ‘\;\
MODULES 06 7 112
R i - | OUTPUT DEVICE(S) \

i | FPROGRAM —\\ : l114
N AATA 107 | COMMUNICATION |
I M— | CONNECTION(S) | N

i' D — | 4.’.’./’_>. I116

Mo oam o oo oo oh A b as e e e e e e e B e e e e e e A b e s e e vl M ol M s e e vl M A ohd ML e e e e e vl AR B I s e e e ey e e ke s A e e e e e B e e e e el wl AR M M e s oA T W i 9 MRy e e ver vy P A B e ke A PR TR S B B S k' AR R AR W WY [=D & == --*W—-'—"'——"—-"’"’

| OTHER
COMPUTING

DEVICES

(57) Abrége/Abstract:

Described Is a mechanism for allowing new functionality for an object to be expressed as a property that is not built into the class
from which the object derives. More specifically, the mechanism associates properties In one class with another class. A
computer-readable medium, that includes an object having a property in a first set of properties, further includes a data structure.
The data structure includes definitions for each of a second set of properties and includes at least one static method. The static
method Is associated with one property out of the second set of properties and includes a first parameter. The first parameter
uniquely identifies the one property. The static method Is operative to associate the one property with the object without

specifying an explicit reference to the one property in the object. The property Is registered during run-time In order to receive the
unique identifier.

SRR VNEEEN
R 5. sas ALy
O
A

W .
‘ l an a dH http.:vvopic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC
OPIC - CIPO 191

10

CA 02427288 2003-04-30

Abstract

Described 1s a mechanism for allowing new functionality for an
object to be expressed as a property that is not built info the class from which the
object derives. More specifically, the mechanism associates properties in one class
with another class. A computer-readable medium, that includes an object having a
property in a first set of properties, further includes a data structure. The data
structure includes definitions for each of a second set of properties and includes at
least one static method. The static method is associated with one property out of the
second set of properties and includes a first parameter. The first parameter uniquely
1dentifies the one property. The static method is operative to associate the one
property with the object without specifying an explicit reference to the one property
1n the object. The property 1s registered during run-time in order to receive the

unique identifier.

10

15

20

25

30

CA 02427288 2003-04-30

SYSTEM AND METHOD FOR ASSOCIATING
PROPERTIES WITH OBJECTS

Field of the Invention
The present invention relates generally to software applications, and,
more particularly, to mechanisms for managing properties of objects within a

software application.

Background of the Invention

Most programming models today support the concept of classes.
These classes are typically structured in a hierarchical tree having branches that
represent different classes in the class hierarchy. When two branches are at different
levels, the lower branch represents a child class. The child class inherits information
from the class associated with the upper branch (i.e., the parent class). When two
branches are at the same level, the classes are referred to as sibling classes. For the
purposes of the following discussion, when referring to a child class in relation to a
parent class, the terms, lower class and upper class, may be used to refer to the child
class and the parent class, respectively. The uppermost branch in the hierarchy
represents a base class 1n the hierarchical class tree. Typically, information in each
class includes properties, methods, and events. The properties describe
characteristics associated with the class. For example, a button class may have
properties such as width, background color, font type, visible, and pressed. When
one of these classes 1s instantiated, an object of that class is created. Each property
in the object has an associated value, which can be queried and set during run-time
operation. The value that is queried or set may be expected to conform to a specific
data type if the syntax 1s strongly typed. Having syntax that is strongly typed is
desirable because errors can be detected within a software application before run-
time operation.

Once the class hierarchy is in place, adding new functionality to
objects within the class hierarchy presents a problem. In one programming model,
the new functionality is forced into the base class. When this is done, the base class
becomes very large (e.g., one hundred methods, fifty properties, and twenty events),
which results in an almost unmanageable object hierarchy. One undesirable

outcome of this programming model is that the number of properties, methods, and
1

10

15

20

25

30

CA 02427288 2003-04-30

events within the base class becomes overwhelming for developers to fully
understand before implementing desired features into objects they create. Yet
another undesirable outcome of this programming model is that the memory
requirements become enormous due to the fact that values for the properties are
stored locally. Because the values are stored locally, applications created with this
programming model do not scale well.

This programming model also causes other problems for third party
developers. Third party developers who wish to add new functionality must add a
child class at the bottom of the hierarchy. Because the new child class is at the
bottom of the hierarchy, the new functionality is not available to other classes within
the hierarchy. Therefore, third party developers may need to add the new
functionality to several child classes. As one can imagine, this results in code
duplication, which impacts the maintainability of the object hierarchy. For the
above reasons, this programming model is not very desirable.

Until the present invention, a programming model that allowed new
functionality to be provided to a class within an existing class hierarchy without the

above shortcomings has eluded those skilled in the art.

Summary of the Invention

The present invention provides a mechanism that allows new
functionality to be provided to a class without having the new functionality become
a permanent part of the class. In addition, the present invention allows the new
functionality to be expressed as a property that is not built into the class. In general,
the present invention provides a mechanism for associating properties in one class
with another class. This association is easily modifiable so that other sets of
properties may be associated with the class.

In one embodiment, a computer-readable medium that includes an
object having a property in a first set of properties, further includes a data structure.
The data structure includes definitions for each of a second set of properties and

includes at least one static method. The static method is associated with one
property out of the second set of properties and includes a first parameter. The first

parameter uniquely identifies the one property. The static method is operative to

10

15

20

25

30

CA 02427288 2003-04-30

associate the one property with the object without specifying an explicit reference to
the one property in the object.

In one aspect of the invention, the static method supports a strongly
typed syntax.

In another aspect of the invention, the static method includes
retrieving a value for the object without having the value stored locally on the
object. The value may be retrieved from several stages, such as a parent object or a
property sheet.

One advantage of the present invention is that the dividing of
properties into one or more subsets allows each subset of properties to be more
easily maintained. Another advantage of the present invention is that the object
hierarchy 1s more extensible and allows developers to add functionality to the object
hierarchy that impacts the base class and all lower classes.

Another advantage of the present invention is that managing storage
for the properties in the objects becomes more efficient and convenient.

Yet another advantage of the present invention 1s that the
programming model operates within a programmatic or a markup environment. In
addition, the programming model operates in strongly typed programming
languages, such as C++ and C#. In addition, the programming model supports
property sheets, change notifications and value iheritance.

Another advantage of the present invention is that independent
libraries can coexist because name conflicts are less likely because the name of the
attached class effeétively becomes part of the property name. Therefore, if two
different developers each create an attached property having a property named

"color", the two attached properties will not conflict.

Brief Description of the Drawings
FIGURE 1 1illustrates an exemplary computing device that may be

used 1n one exemplary embodiment of the present invention.

FIGURE 2 1s an exemplary display that may be created with the
computing device of FIGURE 1.

10

15

20

25

30

CA 02427288 2003-04-30

FIGURE 3 1s a graphical representation of a programming model that
allows properties from one class to be attached to another class in accordance with
the present mvention.

FIGURE 4 1llustrates several exemplary syntaxes for implementing
the programming model shown in FIGURE 3.

FIGURE 5 15 a logical flow diagram 1llustrating a process for setting
a value in accordance with the present invention.

FIGURE 6 1s a logical flow diagram 1llustrating a process for

retrieving a value 1n accordance with the present invention.

Detailed Description of the Preferred Embodiment

Briefly stated, the present invention provides a programming model
that allows new functionality to be provided to a class without having the new
functionality become a permanent part of the class. In addition, the present
invention allows the new functionality to be expressed as a property that is not built
into the class. In general, the present invention provides a mechanism for.
associating properties in one class with another class. As will become'apparent after
readin g the detailed description below, the programming model of the present
invention provides dynamic properties to objects without building the properties into
the object.

With reference to FIGURE 1, one exemplary system for
implementing the invention includes a computing device, such as computing device
100. In a very basic configuration, computing device 100 typically includes at least
one processing unit 102 and system memory 104. Depending on the exact
configuration and type of computing device, system memory 104 may be volatile
(such as RAM), non-volatile (such as ROM, flash memory, etc.) or some
combination of the two. System memory 104 typically includes an operating system
105, one or more program modules 106, and may include program data 107.
Examples of program modules 106 include Visual Studio IntelliSense from
Microsoft Corporation of Redmond, WA, and other software programming
environments, which utilize object libraries. In addition, program modules 106
include software applications created using a software-programming environment.

When these software applications execute on processing unit 102, a property engine

4

10

15

20

25

30

CA 02427288 2003-04-30

processes the software application in accordance with the programming model of the
present invention. The property engine may be part of operating system 105 or may
be another program module 106. This basic configuration of computing device 100
1s 1llustrated in FIGURE 1 by those components within dashed line 108.

Computing device 100 may have additional features or functionality.
For example, computing device 100 may also include additional data storage devices
(removable and/or non-removable) such as, for exampie, magnetic disks, Optic.al
disks, or tape. Such additional storage is illustrated in FIGURE 1 by removable
storage 109 and non-removable storage 110. Computer storage media may include
volatile and nonvolatile, removable and non-removable media implemented in any
method or technology for storage of information, such as computer readable
instructions, data structures, program modules, or other data. System memory 104,
removable storage 109 and non-removable storage 110 are all examples of computer
storage media. Computer storage media includes, but is not limited to, RAM, ROM,
EEPROM, tlash memory or other memory technology, CD-ROM, digital versatile
disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other medium which can be
used to store the desired information and which can be accessed by computing
device 100. Any such computer storage media may be part of device 100.
Computing device 100 may also have input device(s) 112 such as keyboard, mouse,
pen, voice input device, touch input device, etc. Output device(s) 114 such as a
display, speakers, printer, etc. may also be included. These devices are well know in
the art and need not be discussed at length here.

Computing device 100 may also contain communication connections
116 that allow the device to communicate with other computing devices 118, such as
over a network. Communication connections 116 is one example of communication
media. Communication media may typically be embodied by computer readable
instructions, data structures, program modules, or other data in a modulated data
signal, such as a carrier wave or other transport mechanism, and includes any
information delivery media. The term “modulated data signal” means a si gnal that
has one or more of its characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limitation, communication

media includes wired media such as a wired network or direct-wired connection, and

5

10

15

20

25

30

CA 02427288 2003-04-30

wireless media such as acoustic, RF, infrared and other wireless media. The term
computer readable media as used herein mcludes both storage media and
communication media.

FIGURE 2 1s an exemplary display that may be created by an
application within the programming environment in FIGURE 1. While the
programming model of the present invention may be used in various environments,
by way of non-limiting example, FIGURE 2 illustrates the use of the programming
model within a user-interface environment. Thus, 1n this example, one of the
applications in FIGURE 1 creates display 200 shown in FIGURE 2. The display
200 includes a dialog box 202. The dialog box 202 may include any number of
other controls (1.e., objects). In this example, the dialog box 202 includes a list box
204, an edit box 206, and a container object 208 having two button objects (e.g., an
OK button 210 and a CANCEL button 212). As will be discussed in further detail
later 1n conjunction with FIGURE 3, using conventional programming techniques,
each of these objects (e.g., 202 - 212) 1s a child object derived from a base object
(e.g., an element class). In addition, in accordance with one embodiment of the
present invention, each child object may also be derived from a node class. As will
be described later, this node class provides the "attaching” feature for the attached
properties.,

While the appearance of display 200 may appear similar to displays
created using prior programming models, the mechanism for creating the display
200 1s quute different. In prior programming models, the software code
implementing diSplﬁay 200 would have had both the behavior of the object and the
appearance of the object incorporated within each object itself or in one of the parent
objects. However, as will be described in detail below, in accordance with the '
present invention, separate classes provide the actions and the appearance for objects
202 - 212 without resorting to an explicit reference between the two classes.

This allows developers to modify either the action portion or the
appearance portion without modifying the entire object. Thus, in this user-interface
example, each object is factored into two parts. One part relates to the action (i.e.,
behavior) associated with the object, and, the other part relates to the appearance

(1.e., rendering) of the object. Because the rendering is separated from the behavior

10

15

20

25

30

CA 02427288 2003-04-30

of the object, the appearance of the object may be easily modified to change the way
the object appears.

While the above user-interface example convemently factors the
properties for the objects into a behavior group and an appearance group, the
inventors have determined that properties of many objects in various environments
can be conveniently divided into two or more relevant groups. Then, in accordance
with the present invention, these relevant groups can be "implicitly” associated with
each other to fully implement the object. This "implicit" association provides
several advantages over prior programming models. One of the advantages is that
third party developers can conveniently modify the relevant group that pertains to
their application while keeping the other groups untouched. This greatly simplifies
the amount of information that the developer needs to know in order to change the
functionality of the object. In addition, the object hierarchy becomes more
manageable. Another advantage is that storage is reduced because each object does
not necessarily maintain a local value with a current state. Rather, as will be
described in detail in conjunction with FIGURE 6, the state may be retrieved from
various sources when needed.

FIGURE 3 1s a graphical representation of a programming model 300
that provides a mechanism for "implicitly” associating relevant groups of properties
from one class with another class in accordance with the present invention. Similar
to other programming models, the present invention supports a base class 302. The
base class 302 includes a first set of properties 304 associated with base class 302.
In addition, base class 302 includes a set of methods 306 and a set of events 308.

However, in accordance with the present invention, the base class 1s derived from a
node class 301. The node class 301 provides a SetValue() method 307 and a
GetValue() method 309.

A second set of properties 324 1s included within an attached class
322. The attached class 322 also includes at least two static methods associated with
each of the second set of properties 324 (e.g., SetFont() 326 and GetFont() 330).
These static methods may be thought of as global methods that are accessible to
objects that have registered the property associated with the static method. The
developer supplying the attached class 322 is responsible for writing the code for

each of these static methods 326 and 330. The code will include a call to one of the

7

10

15

20

235

30

CA 02427288 2003-04-30

methods provided by the node class 301. For example, an application calling
SetFont() 326 for a specific identifier PropertylD and a given font Value, will
ultimately execute the call to SetValue() 307 in the node class 301. The parameters
that SetFont() 326 passes to the call to SetValue() 307 will include the specific
identifier PropertyID and the given font Value that were provided in the SetFont()
326 call. An exemplary SetFont() function may appear as follows:

SetFont(PropertylD,white)
{ PropertylD->SetValue(PropertyID,white);

g

One skilled 1n the art will appreciate that the attached class, thus,
provides strong typing for any attached property. While the present invention
supports the application calling the SetValue() 307 directly, this circumvents the
advantage of providing strong typing during compile time. As mentioned earlier,
strong typing allows errors to be detected before run-time operation. In another
embodiment, the attached class 322 provides an additional static method (e.g.,
GetFontID() 328) for each of the attached properties 324. This additional static
method 1s operative to test whether the requested attached prOperty has been
registered. Thus, this additional static method 328 is used to insure that the
application has properly registered the attached property before attempting to
perform the set and get static methods on the attached property. For example, if
GetFontID() 328 detects that the Color attached property has not been registered,
GetFontID() may give an error, may automatically register the Color attached

property for the requesting object, or the like.

The following is an exemplary embodiment for providing the delayed

registration:

class FontProvider

{ public static Font GetFont(Node n)
{ return n.GetValue(GetFontID()); }

pﬁblic static void SetFont(Node n, Font newFont)

8

10

15

20

25

30

CA 02427288 2003-04-30

{ n.SetValue(GetFontID(), newFont); }

public static DynamicProperty GetFontlD()
{ // Delay register Font property if necessary
1f (FontID == null)
{ FontID = RegisterProperty("Font", typeof(Font), "Anal", ...);

)
;

private static DynamicProperty FontID = null;
;

Similar to other programming models, the present invention supports
child classes (not shown) of base class 302. For simplicity, FIGURE 3 does not
graphically illustrate any child classes of base class 302 or any other attached
classes, and, therefore, does not illustrate child classes being associated with another
attached class. However, one skilled 1n the art, after reading the following
description, will be able to easily design an application that has child classes
referencing other attached classes. In general, any class may be a "provider" of
attached properties, as long as the class provides the necessary static methods for the
attached properties.

The attached class 322 allows third party developers the ability to
dynamically add properties and functionality to their applications without modifying
the base class 302. Similar to modifying properties within base class 302, the added
properties (e.g., second set of properties 324) affect objects within an entire
hierarchical object tree 390. The attached class 322 is not instantiated during the
execution of the application. Therefore, for each object instantiated from base class
302, the same attached class (attached class 322) may provide the second set of
properties 324 to each of these objects.

During run-time of the application, a base object 312 becomes
instantiated. In addition, one or more child objects (e.g., child objects 340 - 350)

become instantiated. The instantiation of the objects in object tree 390 may be

through programmatic control (e.g., C#), through markup language (e.g., XML), or

9

10

15

20

25

30

CA 02427288 2003-04-30

through other means. When the object tree 390 1s created through programmatic
control, a compiler typically identifies whether the mstructions implementing the
attached class 322 has any errors, such as illegal name or data type. As discussed
above, the attached class 322 provides strong typing. Therefore, errors may be
caught before run-time. In addition, software development tools may detect errors
during development of the application. When object tree 390 1s created through
markup language, a parser interprets markup statements. In general, a name of a tag
in the markup language is the name for the corresponding class.

Each of these child objects 340 - 350 may include one or more child
properties (e.g., child property 341) within child object (e.g., child object 340).
Values for child properties may be stored in the associated child object. However,
in accordance with the present invention, the child objects do not necessarily have
local storage for storing a value. In addition, each of these child objects 340 - 350
may include one or more attached properties (e.g., attached property 352 represented
within dashed box) associated with the child object. As will be described in detail in
conjunction with FIGURE 6, attached property 352 may obtain its value from local

storage associated with child object 350, may obtain its value through inheritance

(e.g., base object 312), through a property sheet (not shown), through programmatic

methods (e.g., static method 330 in conjunction with method 309), and through other
means in accordance with the present invention. While these values for the attached
properties are associated with the child object, the storage for these values is not
typically part of the child object.

Again, FIGURE 3 1llustrates the programming model in a user-
interface environment. Thus, one will note that the properties within base object 312
and child objects 340 -350 relate to the behavior of the objects. Base object 312
represents a dialog object, child object 340 represents a button object, child object
350 represents an edit box, and child object 342 represents a selector object having
two child objects 346 and 348, representing a list box and a tree, respectively. Each
of these child objects 340 - 350 includes one or more child properties (e.g., child
property 341), such as a pressed property for button object and expanded property

for tree object.

In contrast, the properties within attached class 322 relate to the

appearance for the object. For example, the second set of properties may include a

10

10

15

20

25

30

CA 02427288 2003-04-30

property and default value for font type, color, and the like. This programming
model is configured to set a property at run-time on the child objects. To that extent,
the attached property (e.g., attached property 352) in each of the child objects is
configured to receive the value from the attached class.

FIGURE 4 1llustrates several exemplary syntaxes for various
operating environments in which the programming model shown in FIGURE 3 may
be implemented. The use of the term "Provider" within each of the exemplary
syntaxes denotes that the static methods described in the syntaxes are associated
with an attached class having a name of "Provider". Thus, because each of these
syntaxes allows the attached class to be named, properties that are named identically
within two different attached classes will not conflict with each other. This allows
developers to develop attached property Classes without having to be wary of
potential naming conflicts.

Now turning to the exemplary syntaxes, if the programming
environment 1s a programmatic language, such as Visual Basic or C#, pseudo code
may appear as shown in programmatic syntax 401. Programmatic syntax 401
includes a class identifier 402 that identifies the class as containing an attached
property. Programmatic syntax 401 further includes a method identifier 404, a
parameter list having a first identifier 406 for specifying a name for a property and a
second 1dentifier 408 for specifying a value associated with the property specified in
the first identifier 406. The parameter list is enclosed within parenthesis and a
period separates the class identifier 402 and method identifier 404. Referring to the
attached class 322 shown in FIGURE 3, for attached property "FONT", the

programmatic syntax 401 is as follows:
Attached Class.SetFont(PropertyID, value).

Interestingly, this syntax appears to look similar to syntaxes in
previous programming models. However, the syntax is not identical and
programmatic syntax 401 is different than prior syntaxes. For example, in
programmatic syntax 401, method identifier 404 identifies a static method on a
Provider class (i.e., attached class 322 in FIGURE 3). In prior programming

models, method identifier would have identified an instance method on a Provider

11

10

15

20

25

30

CA 02427288 2003-04-30

instance. Because the present invention utilizes the Provider class (i.e., the Attached
Class 322 in FIGURE 3), the programming model can support extender properties in
markup and property sheets because the lifetime of the Provider instance does not
need to be tracked. Another feature of programmatic syntax 401 is that the syntax is
strongly typed. As mentioned earlier, a strongly typed syntax enables good tool
support because potential errors, such as misspelled names, incorrect data types, and
the like, can be detected at compile time rather than at run-time.

In addition, for programming environments such as Visual Basic, C#
or the like, the programming model also allows a loosely typed syntax (i.e.,
programmatic syntax 411). Programmatic syntax 411 includes an object identifier
412 1dentifying a target object, a method identifier 414 identifying a static method
within an attached property class, a parameter list including an attached property
identifier and a value 419. The attached property identifier includes a class
1dentifier 416 and a property identifier 418 that identifies the attached property
within the associated attached class.

In another embodiment, the programming model may be
implemented using markup language syntax, such as markup syntax 421. Markup
syntax 421 includes a tag 422, an attached property having a provider designator 424
and a property identifier 426, and a value 428. In one embodiment, the tag 422 is
the name of the target object (e.g., button object 340 in FIGURE 3). Typically,
markup syntax 421 begins and ends with an open and close symbol, "<" and ">",
respectively. Again, a parser performs processing to locate where the attached
properties exist because the attached properties are not directly on the class.

In yet another embodiment, the programming model may be
implemented using extensible Markup Language (XML) with style sheets, such as
style sheet syntax 431 shown in FIGURE 4. For this embodiment, the style sheet
syntax 431 includes a "tag" attribute 432. The tag attribute 432 corresponds to the

class that is requesting processing. One illustrative example for attached properties
in XML is as follows:

<Button xmlns:ap="expandoNameSpace" Pressed="false"

ap:Expandos.String="string"/>

12

10

15

20

25

30

CA 02427288 2003-04-30

When an application implementing attached properties in accordance
with the present invention executes, the application instantiates the objects in the
object tree. Then, the application, in conjunction with the property engine, handles
the run-time operations, which includes retrieving and setting values for the objects.
FIGURES 5 and 6 illustrate processing performed by the application, in conjunction
with the property engine.

However, betore either the SetValue() process or the GetValue()
process, shown 1n FIGURES 5 and 6, may be performed, the attached property that
is specified within either of these two processes must be registered. As mentioned
above, one embodiment may perform a check to determine whether the property has
been registered. This check (e.g., GetFontID() 328) may be performed within any of
the static methods that correspond to the attached property (i.c., SetFont() 326 and
GetFont() 330). Because this check must be preformed each time any of the static
methods are called, this embodiment incurs a performance penalty. Those skilled in
the art will appreciated that other embodiments that optimize the registration of the
property may be implemented Wifhout departing from the present invention, such as
requiring the application to perform the registration.

The registration of the attached property returns a unique PropertyID
for the attached property. One illustrative call for registering a property may be in
the form as follows:

BarDP = RegisterProperty("Bar",0 ,typeof(string),typeof(Button),0x3);.

In this embodiment, the BarDP variable will then contain the unique identifier for the

attached property. This unique identifier is then used in the SetValue() and the
GetValue() function calls. In one embodiment, the RegisterProperty is called,
directly or indirectly, from the owner's static constructor. The owner refers to the
class that attaches the attached property. Once the attached property is registered,
any instance that matches the target type for the attached property may "imphicitly"

attach the property by calling the Get and Set static methods associated with the
attached property.

As shown above in the exemplary call for registering a property,
"Bar" designates a name for the attached property. The property engine typically

does not use this name. However, a parser uses this name to determine whether a

13

10

15

20

23

30

CA 02427288 2003-04-30

property with the same name as already been registered to the owner. The target
type is Button. For attached properties, the owner and the target will not be the
same. The default value 1s "0". As will be described in detail in conjunction with
FIGURE 6, the property engine determines where to retrieve a value for the attached
property. Therefore, the registerProperty call includes behavior bits that identify
stages 1n which a value for the property is searched, such as inheritance, property
sheets. In the above exemplary call, the behavior bits "0x3" indicates that a local
value, a property sheet, and mheritance are searched in order to determine the value
for the attached property. Thus, in one embodiment, the interpretation of these
behavior bits may be coded within the GetValue() static method. Alternatively, the
determination of these stages may be provided by an expression that models
relationships between properties in a formal manner.

In one embodiment, the code for an attached class may take the form

shown 1n Table 1.

class BarProvider: Object {
public static DynamicProperty BarDP = RegisterProperty(
"Bar", O, typeoi(string), typeof(Button));

public static string GetBar(Button button) {
return (string) button.GetValue(BarDP); }

public static void SetBar(Button button, string value) {
button.SetVélue(BarDP, value); }

Table 1.

In the above code, the attached property named "Bar" is defined
within attached class "BarProvider". The attached property name "Bar" is defined
with a data type as string and can only be attached to Button objects. The static
methods are strongly typed and allow access to the property and setting the property.

Once the attached property has been registered, the SetValue() and
GetValue() functions may be performed. FIGURE S is a logical flow diagram

14

10

15

20

25

30

CA 02427288 2003-04-30

illustrating a process for setting a value in accordance with the present invention.
Processing begins at block 501, where the set function has been initiated to change a
value associated with some property. In general, the SetValue process 500 will store
the value locally for a property of interest (hereinafter referred to as the interested
property). Processing continues at decision block S02.

At decision block S02, a determination 1s made whether local storage
exists for the interested property. Because the present invention does not
automatically have storage for each property for each instance of an object, if the
interested property has not previously had a value stored for it, storage is allocated
(block 504). Once storage has been allocated, processing continues to block 506, as
it would have if it had detected local storage at decision block 502.

At block 506, the value 1s copied into the storage associated with the
interested property. Once the interested property has changed states, notifications
are sent of the change 1n state (block 508). In one embodiment, this notification may
Involve setting a dirty bit to indicate to dependent properties that their state may not
be valid anymore. Alternatively, the notification may involve reporting to each

dependent that a source has changed as described in the above-mentioned patent

‘application. Processing continues at decision block 510.

At decision block 510, a determination is made whether a value was
stored in the cache for the interested property. If there is not a value in the cache for
this interested property, the process ends. However, if there is a value in the cache,
the cache 1s cleared (block 512) because -this value 1s no longer valid. The process
then end. '

FIGURE 6 1s a logical flow diagram illustrating a process for
retrieving a value in accordance with the present invention. Processing begins at
block 601, where the query has been initiated. Processing continues at block 602.

At block 602, the application indicates that one of the properties of
interest (hereinafter, referred to as interested property) needs updating. Typically,
this may occur when an object is querying properties for their current state. The
process 600 determines a value for the property by checking various stages. These
stages are defined when the property is registered. Decision blocks 606-610
represent exemplary stages, but other stages may be added without departing from

the present invention. Processing continues at decision block 604.

15

10

15

20

25

30

CA 02427288 2003-04-30

At decision block 604, the process checks the cache to determine
whether the interested property has been previously cached. Typically, interested
properties are cached in order to optimize retrieval. If the property has been
previously cached, the process continues at block 612, where the value is retrieved
from the cache. Alternatively, the process continues at decision block 606. At
decision block 606, a determination is made whether the value for the interested
property 1s local. The value will be local if a SetValue() has been performed to set a
value locally for the property, as described in FIGURE 5. If the value is local, the
process continues at block 612, where the value is retrieved from local storage. If
the value 1s not local, the process continues at decision block 608.

At decision block 608, a determination i1s made whether the value for
the interested property is available in a property sheet. When a base class has an
associated property sheet, the property sheet specifies how each of the children of
the base class will be rendered once instantiated. If the interesting property is
available in a property sheet, processing continues at block 612, where the value is
retricved from the property sheet. However, if the value is not in the property sheet,
processing continues at decision block 610.

At decision block 61 0, a determination is inade whether the value for
the interested property may be obtained through inheritance (i.e., an inherited value).
Inherited values are derived from a parent object of the child object. If one of the
parent objects has the interesting property, processing proceeds to block 612, where
the value is retrieved from the parent object. However, if the value is not inherited,
a default value from the attached class associated with the attached property 1s
retrieved (block 614). Processing continues at block 616.

At block 616, the application calculates a weight metric based on the
stage at which the value was received. The weight metric is stored and is used to
make educated decisions on which interested properties to cache in order to optimize
future retrievals. Processing then ends.

In addition, to the SetValue and GetValue processes described above,
the programming model of the present invention provides enhanced functions, such
as group queries or group notification. Thus, as described, the present invention
provides a programming model that provides a dependency-based property system,

which supports complex relationships between properties through the use of

16

10

CA 02427288 2003-04-30

attached classes. Applications built using this programming model scale very well
because the property management technique does not require excessive local, per-
Instance based storage. Instead, the programming model promotes reuse of property
values, such as through the use of property sheets and inheritance at the base class
level. As described above, the present invention provides a property management
mechanism whereby objects in the object hierarchy store property values through
attaching.

The above specification, examples and data provide a complete
description of the manufacture and use of the composition of the invention. Since
many embodiments of the invention can be made without departing from the spirit

and scope of the invention, the invention resides in the claims hereinafter appended.

17

10

15

20

25

CA 02427288 2003-04-30

WE CLAIM:

1. A computer-readable medium including an object having a property
in a first set of properties, the computer-readable medium further comprising:

a data structure including definitions for each of a second set of
properties and including at least one static method associated with one property out
of the second set of properties, the at least one static method having a first parameter
that uniquely identifies the one property, the static method being operative to

associate the one property with the object without specifying an explicit reference to

the one property in the object.

2. The computer-readable medium of Claim 1, wherein the static

method supports a strongly typed syntax.

3. The computer-readable medium of Claim 1, wherein the static
method being operative to associate the one property with the object includes
retrieving a value for the object without having the value stored locally on the

object.

4, The computer-readable medium of Claim 3, wherein retrieving the
value comprises determining which one of a plurality of stages holds the value

associated with the one property.

3. The computer-readable medium of Claim 4, wherein one stage

includes a parent object of the object.

0. The computer-readable medium of Claim 4, wherein one stage

includes a property sheet.

7. The computer-readable medium of Claim 1, wherein the static
method further includes a second parameter, the second parameter corresponding to
a given value for the one property, and wherein the static method being operative to

assoclate the one property with the object comprises setting the given value in a

local storage for the object.

18

10

15

20

25

CA 02427288 2003-04-30

8. The computer-readable medium of Claim 1, wherein the first set of

properties corresponds to behaviors of the object, and the second set of properties

corresponds to an appearance of the object.

9. A computer-readable medium having computer-executable
components, comprising: ‘
a base class including a plurality of properties; and
an attached class including a plurality of attached properties, each of
the attached properties capable of being associated with an instance of an object
derived from the base class, the attached class further including a static method for

assoclating one of the plurality of attached properties with the instance of the object.

10. The computer-readable medium of Claim 9, wherein the object
derived from the base class inherits at least one method from a node class, the one
method being called by the static method when associating the one attached property

with the instance of the object.

11. The computer-readable medium of Claim 10, wherein the static
method and the one method each include a first parameter for passing a unique
1dentifier for the one attached property that is being associated with the instance of

the object.

12. The computer-readable medium of Claim 11, wherein the unique

identifier is available after registering the one attached property at run-time.

13. The computer-readable medium of Claim 10, wherein the one method

supports a loosely typed syntax.

14. The computer-readable medium of Claim 9, wherein the static

method supports a strongly typed syntax.

15. The computer-readable medium of Claim 9, wherein associating the

one attached property comprises retrieving a value for the object from a parent

object of the object.

19

10

15

20

25

CA 02427288 2003-04-30

16. The computer-readable medium of Claim 9, wherein associating the

one attached property comprises retrieving a value for the object from a property

sheet.

17. A computer system that uses objects, comprising:
a first object derived from a first class, the first object including a
first set of properties;
a second class providing a second set of properties to the first object,
the second class including a static method operative to attach one of the second set
of properties to the first object in response to an operation associated with the first

object.

18. The computer system of Claim 17, wherein the static method
includes a first parameter for uniquely identifying which one property out of the

second set of properties the operation is requesting.

19. The computer system of Claim 18, wherein the one property is

registered before the first parameter can uniquely identify the one property.

20. A computer-implemented method for setting a state for a property,
comprising:
declaring a first object having a first set of properties ;
registering one or more dynamic properties that are associated with
the first object, the dynamic properties providing a second set of properties to the
first object, wherein storage for the second set of properties is not within the first

object.

21. The computer-implemented method of Claim 20, wherein registering
the one or more dynamic properties includes assigning a unique identifier to each of

the one or more dynamic properties.

22. The computer-implemented method of Claim 21, further comprising

calling a static method having a first parameter, the first parameter referring to the

unique identifier.

20

10

15

20

25

CA 02427288 2003-04-30

23. The computer-implemented method of Claim 22, wherein the static

method is strongly typed.

24. The computer-implemented method of Claim 20, wherein the first
object has one or more associated child objects, each child object thereby being

associated with the second set of properties.

25. A computer-readable medium having at least one computer

executable instruction, comprising:
an instruction means associating an attached property with an

instance of an object derived from another class through a static method in an

attached property class.

26. The computer-readable medium of Claim 25, wherein the instruction

means supports a strongly typed syntax for a programmatic language.

27. The computer-readable medium of Claim 25, wherein the instruction

means supports loosely-type syntax for a programming language.

28. The computer-readable medium of Claim 25, wherein the instruction

means comprises a statement in a markup document.

29. The computer-readable medium of Claim 235, wherein the instruction

means comprises a statement in a property sheet.

30. A computer-readable medium having at least one computer-encoded
instruction, the instruction comprising:
a class identifier identifying an attached property class;
a method 1dentifier identifying a method in the attached property
class for affecting an attached property associated with a target object;
a parameter list, comprising:

a property 1dentifier identifying the attached property.

21

10

15

20

CA 02427288 2003-04-30

31. A computer-readable medium having at least one computer-encoded

instruction, the instruction comprising;:

an object 1dentifier identifying a target object;

a method 1dentifier identifying a method 1n an attached property class
for affecting an attached property associated with the target object;

a parameter list, comprising:

an attached property 1dentifier including a class 1dentifier

identifying the attached property class and a property identifier identifying a name
for the attached property within the attached property class.

32. A computer-readable medium having at least one computer-encoded
instruction, the instruction comprising:
a tag representing a target object;
an attached property 1dentifier having a provider designator
identifying an attached property class and a property identifier identifying a name
for the attached property within the attached property class.

33, A computer-readable medium having at least one computer-encoded
instruction, the instruction comprising: '

a XML schema for defining a target object, an attached property
class, and an attached property within the attached property class, in such a manner
that the attached property becomes associated with the target object without an
explicit reference to the attached property in the target object.

Srart & Biggar
Ottawa, Canada
Patent Agents

22

CA 02427288 2003-04-30

100
(1 08 f COMPUTING DEVICE

| | , | REMOVABLE i

. SYSTEM MEMORY Moa 5 STORAGE \\
. i * 109
| RAM 102 | |

] ‘ROM{ - K . | NON-REMOVABLE | |

B OPERATING 4 AR STORAGE | 1\
; SYSTEM 105 | — Mo
a - PROCESSING UNIT | | ;

; — 4 | i | INPUT DEVICE(S) [~

] MODULES - | i

| 1 B 106 : | ;
N - o | OUTPUT DEVICE(S) i ;

ii - Pi?GRAM | | ' % - - _§114
Cor] - : {
b UATA 107 - ' | COMMUNICATION | |

) S | CONNECTION(S) | !
S-S L

118 |
I <=
OTHER
COMPUTING

! M g DEVICES
rig. 1

2/6
/-—-*-"—' 200
/ 202
r —
T N OK ,_/rA 210
;!()Zl b e e e e e o3 E
| LISTBOX CANCEL 1
s EDIT
206 | |
|

CA 02427288 2003-04-30

Fig. 2

340
341

301

CA 02427288 2003-04-30

3/6

ur e
"v‘*—“".-- ----h--U-w“..
o ™ - -
adai gl T

PROPERTY SET 2 |
FONT = "ARIEL"
COLOR = "BLACK"

- -
- -
pad PO

' SE%COLgﬁ(iD,VgLUE) GETCOLOR(...H

317

314

UTTON

312

“...| SETFONT(ID,VALUE) | GETFONT(...)]
“~.._\ | GETFONTID(...

-
-
o

e R) -r
~~.“*’- - F’-‘.‘
W W v Wy o

330

326

328

NODE OBJECT

BASE OBJECT

PROPERTY SET 1

18

 AAAnA s g

l METHODS | | EVEI}ITSJ
SETVALUE() | GETVALUE()

PRESSED

342

346

347

LISTBOX
SELECTED l

SELECTOR

EDIT
MULTI-LINE

ProAs m ame v W MR MR T R RS A A mu AR W WY e ey am e VD MA AR PR R . W W W WA W

 REE
EXPANDED

349 348

CA 02427288 2003-04-30

4/6

400

—y 402 404

401 PROVIDER. SETSOMEPROPERTY(ELEMENT, VALUE)

412 44 416 418 419
S
411 ,/':\); ELEMENT.SETVALUE(PROVIDER.SOMEPROPERTY,VALUE) _)
422 424 426 428

424 —T1—— <ELEMENT PROVIDER.SOMEPROPERTY="VALUE">

I

432 434 436 438

431 /E-a’ ELEMENT [PROVIDER.SOMEPROP1="VALUE1"]
{ PROVIDER.SOMEPROPERTY2="VALUE2"}

I R E v

440 442 444

Fig. 4

CA 02427288 2003-04-30

506

508

YES |

CopPY VALUE TO
STORAGE

SeND NOTIFICATION
OrF CHANGE

ALLOCATE
STORAGE

504

512

CA 02427288 2003-04-30

6/6
| 600 \
601 ' N\
- GET VALUE PROCESS . BEGIN)

602

EXECUTE
OPERATION
| ASSOCIATED WITH |
' ATTACHED
- PROPERTY

e e ey

608

614

4

e

GET DEFAULT | NO
VALUE '

UPDATE CACHE,
USING WEIGHT
HERUISTIC

=N Fig. 6

— A S . . il W W W S - W W W —_——

Y b e i — S -

=

160

. (_ COWPUTING DEVICE
T ~ | REMOVABLE | |
N SYSTEM MEMORY - doa 5 STORAGE ‘\\
i 102 | 109
L ROM/RAM / . | NON-REMOVABLE | |
OPERATING \ 4) STORAGE _\;\
E SYSTEM 105 E) 110
i PROCESSING UNIT | §
g .1 INPUT DEVICE(S)
g PROGRAM N 5 i
§ MODULES - < 112
a I - | OUTPUT DEVICE(S) M~
n ~ .= z
g bl 1107 ' | CoMMuNICATION | |
e | CONNECTION(S) | !

"HS\
\/7
OTHER
COMPUTING

DEVICES

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - abstract drawing

