Facteurs affectant l'activité de l'enzyme libérant le récepteur du facteur de necrose tumoral

The biological effects of the cytokine TNF are mediated by binding to receptors on the surface of cells. This disclosure describes new proteins and polynucleotides that promote enzymatic cleavage and release of TNF receptors. Also provided are methods for identifying additional compounds that influence TNF receptor shedding. As the active ingredient in a pharmaceutical composition, the products of this invention increase or decrease TNF signal transduction, thereby alleviating the pathology of disease.
(51) International Patent Classification 6:
C07K 14/00

(11) International Publication Number: WO 99/58559

(43) International Publication Date: 18 November 1999 (18.11.99)

(21) International Application Number: PCT/US99/10793

(22) International Filing Date: 14 May 1999 (14.05.99)

(30) Priority Data:
09/081,385 14 May 1998 (14.05.98) US

(72) Inventors; and

(74) Agents: CAMPBELL, Cathryz et al.; Campbell and Flores, Suite 700, 4370 La Jolla Village Drive, San Diego, CA 92122 (US).

(54) Title: FACTORS AFFECTING TUMOR NECROSIS FACTOR RECEPTOR RELEASING ENZYME ACTIVITY

(57) Abstract

The biological effects of the cytokine TNF are mediated by binding to receptors on the surface of cells. This disclosure describes new proteins and polynucleotides that promote enzymatic cleavage and release of TNF receptors. Also provided are method for identifying additional compounds that influence TNF receptor shedding. As the active ingredient in a pharmaceutical composition, the products of this invention increase or decrease TNF signal transduction, thereby alleviating the pathology of disease.

Published

Without international search report and to be republished upon receipt of that report.
FACTORS AFFECTING TUMOR NECROSIS FACTOR RECEPTOR
RELEASING ENZYME ACTIVITY

FIELD OF THE INVENTION

This invention relates generally to the field of signal transduction between cells, via cytokines and their receptors. More specifically, it relates to enzymatic activity that cleaves and releases the receptor for TNF found on the cell surface, and the consequent biological effects. Certain embodiments of this invention are compositions that affect such enzymatic activity, and may be included in medicaments for disease treatment.

BACKGROUND OF THE INVENTION

Cytokines play a central role in the communication between cells. Secretion of a cytokine from one cell in response to a stimulus can trigger an adjacent cell to undergo an appropriate biological response — such as stimulation, differentiation, or apoptosis. It is hypothesized that important biological events can be influenced not only by affecting cytokine release from the first cell, but also by binding to receptors on the second cell, which mediates the subsequent response. The invention described in this patent application provides new compounds for affecting signal transduction from tumor necrosis factor.

The cytokine known as tumor necrosis factor (TNF or TNF-α) is structurally related to lymphotoxin (LT or TNF-β). They have about 40 percent amino acid sequence homology (Old, *Nature* 330:602-603, 1987). These cytokines are released by macrophages, monocytes and natural killer cells and
play a role in inflammatory and immunological events. The two cytokines cause a broad spectrum of effects both in vitro and in vivo, including: (i) vascular thrombosis and tumor necrosis; (ii) inflammation; (iii) activation of macrophages and neutrophils; (iv) leukocytosis; (v) apoptosis; and (vi) shock. TNF has been associated with a variety of disease states including various forms of cancer, arthritis, psoriasis, endotoxic shock, sepsis, autoimmune diseases, infections, obesity, and cachexia. TNF appears to play a role in the three factors contributing to body weight control: intake, expenditure, and storage of energy (Rothwell, *Int. J. Obesity* 17:S98-S101, 1993). In septicemia, increased endotoxin concentrations appear to raise TNF levels (Beutler et al., *Science* 229:869-871, 1985).

Attempts have been made to alter the course of a disease by treating the patient with TNF inhibitors, with varying degrees of success. For example, the TNF inhibitor dexamabinol provided protection against TNF mediated effects following traumatic brain injury (Shohami et al. *J. Neuroimmun.* 72:169-77, 1997). Some improvement in Crohn’s disease was afforded by treatment with anti-TNF antibodies (Neurath et al., *Eur. J. Immun.* 27:1743-50, 1997).

Human TNF and LT mediate their biological activities by binding specifically to two distinct glycoprotein plasma membrane receptors (55 kDa and 75 kDa in size, known as p55 and p75 TNF-R, respectively). The two receptors share 28 percent amino acid sequence homology in their extracellular domains, which are composed of four repeating cysteine-rich regions (Tartaglia and Goeddel, *Immunol. Today* 13:151-153, 1992). However, the receptors lack significant sequence homology in their intracellular domains, and mediate different intracellular responses to receptor activation. In accordance with the different activities of TNF and LT, most human cells express low levels of both TNF receptors: about 2,000 to 10,000 receptors per cell (Brockhaus et al., *Proc. Natl. Acad. Sci. USA* 87:3127-3131, 1990).

Expression of TNF receptors on both lymphoid and non-lymphoid cells can be influenced experimentally by many different agents, such as bacterial lipopolysaccharide (LPS), phorbol myristate acetate (PMA; a protein kinase C
activator), interleukin-1 (IL-1), interferon-gamma (IFN-γ) and IL-2 (Gatanaga et al. Cell Immunol. 138:1-10, 1991; Yui et al. Placenta 15:819-835, 1994). It has been shown that complexes of human TNF bound to its receptor are internalized from the cell membrane, and then the receptor is either degraded or recycled (Armitage, Curr. Opin. Immunol. 6:407-413, 1994). It has been proposed that TNF receptor activity can be modulated using peptides that bind intracellularly to the receptor, or which bind to the ligand binding site, or that affect receptor shedding. See for example patent publications WO 95/31544, WO 95/33051, WO 96/01642, and EP 568 925.

TNF binding proteins (TNF-BP) have been identified at elevated levels in the serum and urine of febrile patients, patients with renal failure, and cancer patients, and even certain healthy individuals. Human brain and ovarian tumors produced high serum levels of TNF-BP. These molecules have been purified, characterized, and cloned (Gatanaga et al., Lymphokine Res. 9:225-229, 1990a; Gatanaga et al., Proc. Natl. Acad. Sci USA 87:8781-8784, 1990b). Human TNF-BP consists of 30 kDa and 40 kDa proteins which are identical to the N-terminal extracellular domains of p55 and p75 TNF receptors, respectively (US Patent No. 5,395,760; EP 418,014). Such proteins have been suggested for use in treating endotoxic shock. Mohler et al. J. Immunol. 151:1548-1561, 1993.

There are several mechanisms possible for the production of secreted proteins resembling membrane bound receptors. One involves translation from alternatively spliced mRNAs lacking transmembrane and cytoplasmic regions. Another involves proteolytic cleavage of the intact membrane receptors, followed by shedding of the cleaved receptor from the cell. The soluble form of p55 and p75 TNF-R do not appear to be generated from mRNA splicing, since only full length receptor mRNA has been detected in human cells in vitro (Gatanaga et al., 1991). Carboxyl-terminal sequencing and mutation studies on human p55 TNF-R indicates that a cleavage site may exist between residues Asn 172 and Val 173 (Gullberg et al. Eur. J. Cell. Biol. 58:307-312, 1992).

There are reports that a specific metalloprotease inhibitor, TNF-α protease inhibitor (TAPI) blocks the shedding of soluble p75 and p55 TNF-R (Crowe et al.

In European patent application EP 657536A1, Wallach et al. suggest that it would be possible to obtain an enzyme that cleaves the 55,000 kDa TNF receptor by finding a mutated form of the receptor that is not cleaved by the enzyme, but still binds to it. The only proposed source for the enzyme is a detergent extract of membranes for cells that appear to have the protease activity. If it were possible to obtain an enzyme according to this scheme, then the enzyme would presumably comprise a membrane spanning region. The patent application does not describe any protease that was actually obtained.

In a previous patent application in the present series (International Patent Publication WO 9820140), methods are described for obtaining an isolated enzyme that cleaves both the p55 and p75 TNF-R from cell surfaces. A convenient source is the culture medium of cells that have been stimulated with phorbol myristate acetate (PMA). The enzyme activity was given the name TRRE (TNF receptor releasing enzyme). In other studies, TRRE was released immediately upon PMA stimulation, indicating that it is presynthesized in an inactive form to be rapidly converted to the active form upon stimulation. Evidence for direct cleavage of TNF-R is that the shedding begins very quickly (~5 min) with maximal shedding within 30 min. TRRE is specific for the TNF-R, and does not cleave IL-1 receptors, CD30, ICAM-1 or CD11b. TRRE activity is enhanced by adding Ca\(^{2+}\) or Zn\(^{2+}\), and inhibited by EDTA and phenantroline.

Given the involvement of TNF in a variety of pathological conditions, it is desirable to obtain a variety of factors that would allow receptor shedding to be
modulated, thereby controlling the signal transduction from TNF at a disease site.

SUMMARY OF THE INVENTION

This disclosure provides new compounds that promote enzymatic cleavage and release of TNF receptors from the cell surface. Nine new DNA clones have been selected after repeat screening in an assay that tests the ability to enhance receptor release. The polynucleotide sequences of this invention and the proteins encoded by them have potential as diagnostic aids, and therapeutic compounds that can be used to adjust TNF signal transduction in a beneficial way.

One embodiment of the invention is an isolated polynucleotide comprising a nucleotide sequence with the following properties: a) the sequence is expressed at the mRNA level in Jurkat T cells; b) when COS-1 cells expressing TNF-receptor are genetically transformed to express the sequence, the cells have increased enzymatic activity for cleaving and releasing the receptor. If a polynucleotide sequence is expressed in Jurkat cells, then it can be found in the Jurkat cell expression library deposited with the ATCC (Accession No. TIB-152). It is recognized that the polynucleotide can be obtained from other cell lines, or produced by recombinant techniques.

Included are polynucleotides in which the nucleotide sequence is contained in any of SEQ. ID NOS:1-10. Also embodied are polynucleotides comprising at least 30 and preferably more consecutive nucleotides in said nucleotide sequence, or at least 50 consecutive nucleotides that are homologous to said sequence at a significant level, preferably at the 90% level or more. Also included antisense and ribozyme polynucleotides that inhibit the expression of a TRRE modulator.

Another embodiment of the invention is isolated polypeptides comprising an amino acid sequence encoded by a polynucleotide of this invention. Non-limiting examples are sequences shown in SEQ. ID NOS: 147-158. Fragments
and fusion proteins are included in this invention, and preferably comprise at least 10 consecutive residues encoded by a polynucleotide of this invention, or at least 15 consecutive amino acids that are homologous at a significant level, preferably at least 80%. Preferred polypeptides promote cleavage and release of TNF receptors from the cell surface, especially COS-1 cells genetically transformed to express TNF receptor. The polypeptides may or may not have a membrane spanning domain, and may optionally be produced by a process that involves secretion from a cell. Included are species homologs with the desired activity, and artificial mutants with additional beneficial properties.

Another embodiment of this invention is an antibody specific for a polypeptide of this invention. Preferred are antibodies that bind a TRRE modulator protein, but not other substances found in human tissue samples in comparable amounts.

Another embodiment of the invention is an assay method of determining altered TRRE activity in a cell or tissue sample, using a polynucleotide or antibody of this invention to detect the presence or absence of the corresponding TRRE modulator. The assay method can optionally be used for the diagnosis or evaluation of a clinical condition relating to abnormal TNF levels or TNF signal transduction.

Another embodiment of the invention is a method for increasing or decreasing signal transduction from a cytokine into a cell (including but not limited to TNF), comprising contacting the cell with a polynucleotide, polypeptide, or antibody of this invention.

A further embodiment of the invention is a method for screening polynucleotides for an ability to modulate TRRE activity. The method involves providing cells that express both TRRE and the TNF-receptor; genetically altering the cells with the polynucleotides to be screened; cloning the cells; and identifying clones with the desired activity.

Yet another embodiment of the invention is a method for screening substances for an ability to affect TRRE activity. This typically involves incubating cells expressing TNF receptor with a TRRE modulator of this...
invention in the presence or absence of the test substance; and measuring the
effect on shedding of the TNF receptor.

The invention provides an isolated polypeptide selected from the
following:

a) a protein with a complete amino acid sequence encoded in any of
SEQ. ID NOs: 1, 5, 6, 8, 9, or 10;
b) a fragment of said protein; and
c) a fusion protein containing the protein or fragment according to a) or b);
wherein the polypeptide causes TNF receptor to be released from cells
expressing the receptor.

The invention further provides a method of causing enzymatic release of
TNF receptor from a cell comprising contacting the cell in vitro with a polypeptide
of the invention.

The invention further provides a method of producing a protein,
comprising expressing in a cell a recombinant polynucleotide having at least one
of the following properties:

a) it comprises a sequence encoding a protein having an amino acid
sequence that is encoded in any one of SEQ. ID NOs: 1, 5, 6, 8, 9, and 10 or
fragment thereof; or

b) it hybridizes at 30°C in 6 x SSC containing 50% formamide to a
polynucleotide having a sequence selected from SEQ. ID NOs: 1, 5, 6, 8, 9,
and 10;
wherein the protein causes increased release of TNF receptor from
human cells in which TNF is expressed.

The invention also provides a method of screening a substance for an
ability to affect TNF receptor releasing activity, comprising:

a) incubating TNF receptor or cells expressing TNF receptor with the
substance and with an isolated polypeptide that causes TNF receptor to be
cleaved in the absence of the substance;

b) measuring any TNF receptor cleaved; and

c) correlating any increase or decrease of the receptor cleaved by the
polypeptide with an ability of the substance to enhance or diminish TNF receptor
releasing activity; wherein the polypeptide has at least one of the following properties:

i) it comprises an amino acid sequence selected from SEQ. ID NOs: 151, 153, and 154;

ii) it comprises a fragment of any one of SEQ. ID NOs: 151, 153, or 154 that causes increased release of TNF receptor from human cells in which TNF receptor is expressed;

iii) it comprises an amino acid sequence encoded in any one of SEQ. ID NOs: 1, 5, 6, 8, 9, or 10; or

iv) it comprises an amino acid sequence that causes increased release of TNF receptor from human cells in which TNF receptor is expressed, and is encoded by a polynucleotide that hybridizes-at 30° C. in 6×SSC containing 50% formamide to a polynucleotide having a sequence selected from SEQ. ID NOs: 1, 5, 6, 8, 9, or 10.

The invention provides a pharmaceutical composition comprising a polypeptide of the invention in a suitable excipient.

The invention also provides a pharmaceutical composition comprising a protein in a pharmaceutically compatible excipient, wherein the protein has at least one of the following properties:

a) it comprises an amino acid sequence encoded in any one of SEQ. ID NOs:1-10; or

b) it comprises an amino acid sequence that is at least 80% identical to a) (or fragment thereof) that causes cleavage of TNF receptor from human cells in which TNF receptor is expressed.

The invention further comprises use of a recombinantly produced biological component comprising:

a) an amino acid sequence encoded in any one of SEQ. ID NOs:1-10;

b) an amino acid sequence that is at least 80% identical to a) (or fragment thereof) that causes cleavage of TNF receptor from human cells in which TNF receptor is expressed; or

c) a polynucleotide sequence encoding either of a) or b);

in the manufacture of a medicament for treating inflammation.
The products of this invention can be used in the preparation of a medicament for treatment of the human or animal body. The medicament contains a clinically effective amount for treatment of a disease such as heart failure, cachexia, inflammation, endotoxic shock, arthritis, multiple sclerosis, sepsis, and cancer. These compositions can be used for administration to a subject suspected of having or being at risk for the disease, optionally in combination with other forms of treatment appropriate for their condition.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic representation of plasmid pCDTR2. This plasmid expresses p75 TNF-R, the ~75 kDa form of the TNF receptor. PCMV stands for cytomegalovirus; BGHpA stands for bovine growth hormone polyadenylation signal.

Figure 2 is a line depicting the levels of p75 TNF-R detected on COS-1 cells genetically altered to express the receptor. Results from the transformed cells, designated C75R (●, upward swooping line) is compared with that from the parental COS-1 cells (■, baseline). The receptor number was calculated by Scatchard analysis (inset).

Figure 3 is a survival graph, showing that TRRE decreases mortality in mice challenged with lipopolysaccharide (LPS) to induce septic peritonitis. (♦) LPS alone; (■) LPS plus control buffer; (●) LPS plus TRRE (2,000 U); (▲) LPS plus TRRE (4,000 U).

Figure 4 is a half-tone reproduction of a bar graph, showing the effect of 9 new clones on TRRE activity on C75R cells (COS-1 cells transfecte to express the TNF-receptor. Each of the 9 clones increases TRRE activity by over 2-fold.

Figure 5 is a survival graph, showing the ability of 4 expressed clones to save mice challenged with LPS. (♦) saline; (■) BSA; (▲) Mey-3 (100 µg); (X) Mey-3 (10 µg); (♦) Mey-5 (10 µg); (●) Mey-8 (10 µg).
DETAILED DESCRIPTION OF THE INVENTION

It has been discovered that certain cells involved in the TNF transduction pathway express enzymatic activity that causes TNF receptors to be shed from the cell surface. Enzymatic activity for cleaving and releasing TNF receptors has been given the designation TRRE. Phorbol myristate acetate induces release of TRRE from cells into the culture medium. An exemplary TRRE protein had been purified from the supernatant of TNF-1 cells (Example 2). The protease bears certain hallmarks of the metalloprotease family, and is released rapidly from the cell upon activation.

In order to elucidate the nature of this protein, functional cloning was performed. Jurkat cells were selected as being a good source of TRRE. The cDNA from a Jurkat library was expressed, and cell supernatant was tested for an ability to release TNF receptors from cell surfaces. Cloning and testing of the expression product was conducted through several cycles, and nine clones were obtained that more than doubled TRRE activity in the assay (Figure 4). At the DNA level, all 9 clones had different sequences.

Protein expression products from the clones have been tested in a lipopolysaccharide animal model for sepsis. Protein from three different clones successfully rescued animals from a lethal dose of LPS (Figure 5). This points to an important role for these molecules in the management of pathological conditions mediated by TNF.
The number of new TRRE promoting clones obtained from the expression library was surprising. The substrate specificity of the TRRE isolated in Example 2 distinguishes the 75 kDa and 55 kDa TNF receptors from other cytokine receptors and cell surface proteins. There was little reason beforehand to suspect that cells might have nine different proteases for the TNF receptor. It is possible that one of the clones encodes the TRRE isolated in Example 2, or a related protein. It is possible that some of the other clones have proteolytic activity to cleave TNF receptors at the same site, or at another site that causes release of the soluble form from the cell. It is a hypothesis of this disclosure that some of the clones may not have proteolytic activity themselves, but play a role in promoting TRRE activity in a secondary fashion.

This possibility is consistent with the observations made, because there is an endogenous level of TRRE activity in the cells used in the assay. The cleavage assay involves monitoring TNF receptor release from C75 cells, which are COS-1 cells genetically altered to express p75 TNF-R. The standard assay is conducted by contacting the transformed cells with a fluid believed to contain TRRE. The level of endogenous TRRE activity is evident from the rate of spontaneous release of the receptor even when no exogenous TRRE is added (about 200 units). Accordingly, accessory proteins that promote TRRE activity would increase the activity measured in the assay. Many mechanisms of promotion are possible, including proteins that activate a zymogen form of TRRE, proteins that free TRRE from other cell surface components, or proteins that stimulate secretion of TRRE from inside the cell. It is not necessary to understand the mechanism in order to use the products of this invention in most of the embodiments described.

It is anticipated that several of the clones will have activity not just for promoting TNF receptor cleavage, but also having an effect on other surface proteins. To the extent that cleavage sequences or accessory proteins are shared between different receptors, certain clones would promote phenotypic change (such as receptor release) for the family of related substrates.
This disclosure provides polypeptides that promote TRRE activity, polynucleotides that encode such polypeptides, and antibodies that bind such peptides. The binding of TNF to its receptor mediates a number of biological effects. Cleavage of the TNF-receptor by TRRE diminishes signal transduction by TRRE. Potentiators of TRRE activity have the same effect. Thus, the products of this invention can be used to modulate signal transduction by cytokines, which is of considerable importance in the management of disease conditions that are affected by cytokine action. The products of this invention can also be used in diagnostic methods, to determine when signal transduction is being inappropriately affected by abnormal TRRE activity. The assay systems described in this disclosure provide a method for screening additional compounds that can influence TRRE activity, and thus the signal transduction from TNF.

Based on the summary of the invention, and guided by the illustrations in the example section, one skilled in the art will readily know what techniques to employ in the practice of the invention. The following detailed description is provided for the additional convenience of the reader.

Definitions and basic techniques

As used in this disclosure, "TRRE activity" refers to the ability of a composition to cleave and release TNF receptors from the surface of cells expressing them. A preferred assay is cleavage from transfected COS-1 cells, as described in Example 1. However, TRRE activity can be measured on any cells that bear TNF receptors of the 55 kDa or 75 kDa size. Other features of the TRRE enzyme obtained from PMA induction of THP-1 cells (exemplified in Example 2) need not be a property of the TRRE activity measured in the assay.

Unit activity of TRRE is defined as 1 pg of soluble p75 TNF-R released from cell surface in a standard assay, after correction for spontaneous release. The measurement of TRRE activity is explained further in Example 1.

A "TRRE modulator" is a compound that has the property of either increasing or decreasing TRRE activity for processing TNF on the surface of
cells. Those that increase TRRE activity may be referred to as TRRE promoters, and those that decrease TRRE activity may be referred to as TRRE inhibitors. TRRE promoters include compounds that have proteolytic activity for TNF-R, and compounds that augment the activity of TNF-R proteases. The nine polynucleotide clones described in Example 5, and their protein products, are exemplary TRRE promoters. Inhibitors of TRRE activity can be obtained using the screening assays described below.

The term “polynucleotide” refers to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof. Polynucleotides may have any three-dimensional structure, and may perform any function, known or unknown. The following are non-limiting examples of polynucleotides: a gene or gene fragment, exons, introns, (mRNA), ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, nucleic acid probes, and primers. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure may be imparted before or after assembly of the polymer. The term polynucleotide refers interchangeably to double-and single-stranded molecules. Unless otherwise specified or required, any embodiment of the invention described herein that is a polynucleotide encompasses both the double-stranded form, and each of two complementary single-stranded forms known or predicted to make up the double-stranded form.

“Hybridization” refers to a reaction in which one or more polynucleotides react to form a complex that is stabilized via hydrogen bonding between the bases of the nucleotide residues. Hybridization reactions can be performed under conditions of different “stringency”. Relevant conditions include temperature, ionic strength, and the presence of additional solutes in the reaction mixture such as formamide. Conditions of increasing stringency are 30°C in 10X SSC (0.15M NaCl, 15 mM citrate buffer); 40°C in 6X SSC; 50°C in 6X SSC 60°C in 6X SSC, or at about 40°C in 0.5X SSC, or at about 30°C in 6X SSC containing 50% formamide. SDS and a source of fragmented DNA (such as salmon sperm) are typically also present during hybridization. Higher

It is understood that purine and pyrimidine nitrogenous bases with similar structures can be functionally equivalent in terms of Watson-Crick base-pairing; and the inter-substitution of like nitrogenous bases, particularly uracil and thymine, or the modification of nitrogenous bases, such as by methylation, does not constitute a material substitution.

The percentage of sequence identity for polynucleotides or polypeptides is calculated by aligning the sequences being compared, and then counting the number of shared residues at each aligned position. No penalty is imposed for the presence of insertions or deletions, but are permitted only where required to accommodate an obviously increased number of amino acid residues in one of the sequences being aligned. When one of the sequences being compared is indicated as being "consecutive", then no gaps are permitted in that sequence during the comparison. The percentage identity is given in terms of residues in the test sequence that are identical to residues in the comparison or reference sequence.

As used herein, "expression" of a polynucleotide refers to the production of an RNA transcript. Subsequent translation into protein or other effector compounds may also occur, but is not required unless specified.

"Genetic alteration" refers to a process wherein a genetic element is introduced into a cell other than by mitosis or meiosis. The element may be heterologous to the cell, or it may be an additional copy or improved version of an element already present in the cell. Genetic alternation may be effected, for example, by transducing a cell with a recombinant plasmid or other polynucleotide through any process known in the art, such as electroporation, calcium phosphate precipitation, or contacting with a polynucleotide-liposome complex. Genetic alteration may also be effected, for example, by transduction or infection with a DNA or RNA virus or viral vector. It is preferable that the
genetic alteration is inheritable by progeny of the cell, but this is not generally required unless specified.

The terms "polypeptide", "peptide" and "protein" are used interchangeably herein to refer to polymers of amino acids of any length. The polymer may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non-amino acids. The terms also encompass an amino acid polymer that has been modified; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation, such as conjugation with a labeling component.

A "fusion polypeptide" is a polypeptide comprising regions in a different position in the sequence than occurs in nature. The regions can normally exist in separate proteins and are brought together in the fusion polypeptide; they can normally exist in the same protein but are placed in a new arrangement in the fusion polypeptide; or they can be synthetically arranged. A "functionally equivalent fragment" of a polypeptide varies from the native sequence by addition, deletion, or substitution of amino acid residues, or any combination thereof, while preserving a functional property of the fragment relevant to the context in which it is being used. Fusion peptides and functionally equivalent fragments are included in the definition of polypeptides used in this disclosure.

It is understood that the folding and the biological function of proteins can accommodate insertions, deletions, and substitutions in the amino acid sequence. Some amino acid substitutions are more easily tolerated. For example, substitution of an amino acid with hydrophobic side chains, aromatic side chains, polar side chains, side chains with a positive or negative charge, or side chains comprising two or fewer carbon atoms, by another amino acid with a side chain of like properties can occur without disturbing the essential identity of the two sequences. Methods for determining homologous regions and scoring the degree of homology are described in Altschul et al. Bull. Math. Bio. 48:603-616, 1986; and Henikoff et al. Proc. Natl. Acad. Sci. USA 89:10915-10919, 1992. Substitutions that preserve the functionality of the polypeptide, or confer a new
and beneficial property (such as enhanced activity, stability, or decreased immunogenicity) are especially preferred.

An "antibody" (interchangeably used in plural form) is an immunoglobulin molecule capable of specific binding to a target, such as a polypeptide, through at least one antigen recognition site, located in the variable region of the immunoglobulin molecule. As used herein, the term encompasses not only intact antibodies, but also antibody equivalents that include at least one antigen combining site of the desired specificity. These include but are not limited to enzymatic or recombinantly produced fragments antibody, fusion proteins, humanized antibodies, single chain variable regions, diabodies, and antibody chains that undergo antigen-induced assembly.

An "isolated" polynucleotide, polypeptide, protein, antibody, or other substance refers to a preparation of the substance devoid of at least some of the other components that may also be present where the substance or a similar substance naturally occurs or is initially obtained from. Thus, for example, an isolated substance may be prepared by using a purification technique to enrich it from a source mixture. Enrichment can be measured on an absolute basis, such as weight per volume of solution, or it can be measured in relation to a second, potentially interfering substance present in the source mixture. Increasing enrichments of the embodiments of this invention are increasingly more preferred. Thus, for example, a 2-fold enrichment is preferred, 10-fold enrichment is more preferred, 100-fold enrichment is more preferred, 1000-fold enrichment is even more preferred. A substance can also be provided in an isolated state by a process of artificial assembly, such as by chemical synthesis or recombinant expression.

A "host cell" is a cell which has been genetically altered, or is capable of being transformed, by administration of an exogenous polynucleotide.

The term "clinical sample" encompasses a variety of sample types obtained from a subject and useful in an in vitro procedure, such as a diagnostic test. The definition encompasses solid tissue samples obtained as a surgical removal, a pathology specimen, or a biopsy specimen, cells obtained from a
clinical subject or their progeny obtained from culture, liquid samples such as blood, serum, plasma, spinal fluid, and urine, and any fractions or extracts of such samples that contain a potential indication of the disease.

Polynucleotides

Polynucleotides of this invention can be prepared by any suitable technique in the art. Using the data provided in this disclosure, sequences of less than ~50 base pairs are conveniently prepared by chemical synthesis, either through a commercial service or by a known synthetic method, such as the triester method or the phosphite method. A preferred method is solid phase synthesis using mononucleoside phosphoramidite coupling units (Hirose et al., Tetra. Lett. 19:2449-2452, 1978; U.S. Patent No. 4,415,732).

For use in antisense therapy, polynucleotides can be prepared by chemistry that produce more stable in pharmaceutical preparations. Non-limiting
examples include thiol-derivatized nucleosides (U.S. Patent 5,578,718), and oligonucleotides with modified backbones (U.S. Patent Nos. 5,541,307 and 5,378,825).

Polynucleotides of this invention can also be obtained by PCR amplification of a template with the desired sequence. Oligonucleotide primers spanning the desired sequence are annealed to the template, elongated by a DNA polymerase, and then melted at higher temperature so that the template and elongated oligonucleotides dissociate. The cycle is repeated until the desired amount of amplified polynucleotide is obtained (U.S. Patent Nos. 4,683,195 and 4,683,202). Suitable templates include the Jurkat T cell library and other human or animal expression libraries that contain TRRE modulator encoding sequences. The Jurkat T cell library is available from the American Type Culture Collection, 10801 University Blvd., Manassas VA 20110, U.S.A. (ATCC #TIB-152). Mutations and other adaptations can be performed during amplification by designing suitable primers, or can be incorporated afterwards by genetic splicing.

Production scale amounts of large polynucleotides are most conveniently obtained by inserting the desired sequence into a suitable cloning vector and reproducing the clone. Techniques for nucleotide cloning are given in Sambrook, Fritsch & Maniatis (supra) and in U.S. Patent No. 5,552,524. Exemplary cloning and expression methods are illustrated in Example 6.

Preferred polynucleotide sequences are 50%, 70%, 80%, 90%, or 100% identical to one of the sequences exemplified in this disclosure; in order if increasing preference. The length of consecutive residues in the identical or homologous sequence compared with the exemplary sequence can be about 15, 30, 50, 75, 100, 200 or 500 residues in order of increasing preference, up to the length of the entire clone. Nucleotide changes that cause a conservative substitution or retain the function of the encoded polypeptide (in terms of hybridization properties or what is encoded) are especially preferred substitutions.
The polynucleotides of this can be used to measure altered TRRE activity in a cell or tissue sample. This involves contacting the sample with the polynucleotide under conditions that permit the polynucleotide to hybridize specifically with nucleic acid that encodes a modulator of TRRE activity, if present in the sample, and determining polynucleotide that has hybridized as a result of step a). Specificity of the test can be provided in one of several ways. One method involves the use of a specific probe — a polynucleotide of this invention with a sequence long enough and of sufficient identity to the sequence being detected, so that it binds the target and not other nucleic acid that might be present in the sample. The probe is typically labeled (either directly or through a secondary reagent) so that it can be subsequently detected. Suitable labels include \(^{32}\text{P} \) and \(^{33}\text{P} \), chemiluminescent and fluorescent reagents. After the hybridization reaction, unreacted probe is washed away so that the amount of hybridized probe can be determined. Signal can be amplified using branched probes (U.S. Patent No. 5,124,246). In another method, the polynucleotide is a primer for a PCR reaction. Specificity is provided by the ability of the paired probes to amplify the sequence of interest. After a suitable number of PCR cycles, the amount of amplification product present correlates with the amount of target sequence originally present in the sample.

Such tests are useful both in research, and in the diagnosis or assessment of a disease condition. For example, TNF activity plays a role in eliminating tumor cells (Example 4), and a cancer may evade the elimination process by activating TRRE activity in the diseased tissue. Hence, under some conditions, high expression of TRRE modulators may correlate with progression of cancer. Diagnostic tests are also of use in monitoring therapy, such as when gene therapy is performed to increase TRRE activity.

Polynucleotides of this invention can also be used for production of polypeptides and the preparation of medicaments, as explained below.
Polypeptides

Short polypeptides of this invention can be prepared by solid-phase chemical synthesis. The principles of solid phase chemical synthesis can be found in Dugas & Penney, Bioorganic Chemistry, Springer-Verlag NY pp 54-92 (1981), and U.S. Patent No. 4,493,795. Automated solid-phase peptide synthesis can be performed using devices such as a PE-Applied Biosystems 430A peptide synthesizer (commercially available from Applied Biosystems, Foster City CA).

Longer polypeptides are conveniently obtained by expression cloning. A polynucleotide encoding the desired polypeptide is operably linked to control elements for transcription and translation, and then transfected into a suitable host cell. Expression may be effected in procaryotes such as E. coli (ATCC Accession No. 31446 or 27325), eukaryotic microorganisms such as the yeast Saccharomyces cerevisiae, or higher eukaryotes, such as insect or mammalian cells. A number of expression systems are described in U.S. Patent No. 5,552,524. Expression cloning is available from such commercial services as Lark Technologies, Houston TX. The production of protein from 4 exemplary clones of this invention in insect cells is illustrated in Example 6. The protein is purified from the producing host cell by standard methods in protein chemistry, such as affinity chromatography and HPLC. Expression products are optionally produced with a sequence tag to facilitate affinity purification, which can subsequently be removed.

Preferred sequences are 40%, 60%, 80%, 90%, or 100% identical to one of the sequences exemplified in this disclosure; in order if increasing preference. The length of the identical or homologous sequence compared with the native human polynucleotide can be about 7, 10, 15, 20, 30, 50 or 100 residues in order of increasing preference, up to the length of the entire encoding region.

Polypeptides can be tested for an ability to modulate TRRE in a TNF-R cleavage assay. The polypeptide is contacted with the receptor (preferably expressed on the surface of a cell, such as a C75 cell), and the ability of the polypeptide to increase or decrease receptor cleavage and release is
determined. Cleavage of TNF-R by exemplary polypeptides of this invention is illustrated in Example 7.

Polypeptides of this invention can be used as immunogens for raising antibody. Large proteins will raise a cocktail of antibodies, while short peptide fragments will raise antibodies against small region of the intact protein. Antibody clones can be mapped for protein binding site by producing short overlapping peptides of about 10 amino acids in length. Overlapping peptides can be prepared on a nylon membrane support by standard F-Moc chemistry, using a SPOTS™ kit from Genosys according to manufacturer's directions.

Polypeptides of this invention can also be used to affect TNF signal transduction, as explained below.

Antibodies

Polyclonal antibodies can be prepared by injecting a vertebrate with a polypeptide of this invention in an immunogenic form. Immunogenicity of a polypeptide can be enhanced by linking to a carrier such as KLH, or combining with an adjuvant, such as Freund's adjuvant. Typically, a priming injection is followed by a booster injection is after about 4 weeks, and antiserum is harvested a week later. Unwanted activity cross-reacting with other antigens, if present, can be removed, for example, by running the preparation over adsorbants made of those antigens attached to a solid phase, and collecting the unbound fraction. If desired, the specific antibody activity can be further purified by a combination of techniques, which may include protein, A chromatography, ammonium sulfate precipitation, ion exchange chromatography, HPLC, and immunoaffinity chromatography using the immunizing polypeptide coupled to a solid support. Antibody fragments and other derivatives can be prepared by standard immunochemical methods, such as subjecting the antibody to cleavage with enzymes such as papain or pepsin.

Production of monoclonal antibodies is described in such standard references as Harrow & Lane (1988), U.S. Patent Nos. 4,491,632, 4,472,500 and 4,444,887, and *Methods in Enzymology* 73B:3 (1981). Briefly, a mammal is
immunized, and antibody-producing cells (usually splenocytes) are harvested. Cells are immortalized by fusion with a non-producing myeloma, transfecting with Epstein Barr Virus, or transforming with oncogenic DNA. The treated cells are cloned and cultured, and the clones are selected that produce antibody of the desired specificity.

The antibodies of this invention are can be used in immunoassays for TRRE modulators. General techniques of immunoassay can be found in "The Immunoassay Handbook", Stockton Press NY, 1994; and "Methods of Immunological Analysis", Weinheim: VCH Verlags gesellschaft mbH, 1993). The antibody is combined with a test sample under conditions where the antibody will bind specifically to any modulator that might be present, but not any other proteins liable to be in the sample. The complex formed can be measured in situ (U.S. Patent Nos. 4,208,479 and 4,708,929), or by physically separating it from unreacted reagents (U.S. Patent No. 3,646,346). Separation assays typically involve labeled TRRE reagent (competition assay), or labeled antibody (sandwich assay) to facilitate detection and quantitation of the complex. Suitable labels are radioisotopes such as \(^{125}\text{I}\), enzymes such as \(\beta\)-galactosidase, and fluorescent labels such as fluorescein. Antibodies of this invention can also be used to detect TRRE modulators in fixed tissue sections by immunohistology. The antibody is contacted with the tissue, unreacted antibody is washed away, and then bound antibody is detected — typically using a labeled anti-immunoglobulin reagent. Immunohistology will show not only whether the modulator is present, but where it is located in the tissue.
Detection of TRRE modulators is of interest for research purposes, and for clinical use. As indicated earlier, high expression of TRRE modulators may correlate with progression of cancer. Diagnostic tests are also of use in monitoring TRRE modulators that are administered in the course of therapy.

Antibodies of this invention can also be used for preparation of medicaments. Antibodies with therapeutic potential include those that affect TRRE activity — either by promoting clearance of a TRRE modulator, or by blocking its physiological action. Antibodies can be screened for desirable activity according to assays described in the next section.

Screening assays

This invention provides a number of screening methods for selecting and developing products that modulate TRRE, and thus affect TNF signal transduction.

One screening method is for polynucleotides that have an ability to modulate TRRE activity. To do this screening, cells are obtained that express both TRRE and the TNF receptor. Suitable cell lines can be constructed from any cell that expresses a level of functional TRRE activity. These cells are identifiable by testing culture supernatant for an ability to release membrane-bound TNF-R. The level of TRRE expression should be moderate, so that an increase in activity can be detected. The cells can then be genetically altered to express either p55 or p75 TNF-R, illustrated in Example 1. Exemplary is the C75R line: COS-1 cells genetically altered to express the 75 kDa form of the TNF-R. Release of TNF-R from the cell can be measured either by testing residual binding of labeled TNF ligand to the cell, or by immunoassay of the supernatant for released receptor (Example 1).

The screening assay is conducted by contacting the cells expressing TRRE and TNF-R with the polynucleotides to be screened. The effect of the polynucleotide on the enzymatic release of TNF-R from the cell is determined, and polynucleotides with desirable activity (either promoting or inhibiting TRRE activity) are selected. In a variation of this method, cells expressing TRRE
activity but not TNF-R (such as untransfected COS-1 cells) are contacted with the test polynucleotide. Then the culture medium is collected, and used to assay for TRRE activity using a second cell expressing TNF-R (such as C75 cells).

This type of screening assay is useful for the selection of polynucleotides from an expression library believed to contain encoding sequences for TRRE modulators. The Jurkat cell expression library (ATCC Accession No. TIB-152) is exemplary. Other cells from which suitable libraries can be constructed are those known to express high levels of TRRE, especially after PMA stimulation, such as THP-1, U-937, HL-60, ME-180, MRC-5, Raji, K-562, and normal human monocytes. The screening involves expressing DNA from the library in the selected cell line being used for screening. Wells with the desired activity are selected, and the DNA is recovered, optionally after replication or cloning of the cells. Repeat cycles of functional screening and selection can lead to identification of new polynucleotide clones that promote or inhibit TRRE activity. This is illustrated below in Example 5. Further experiments can be performed on the selected polynucleotides to determine if it modulates TRRE activity inside the cell, or through the action of a protein product. A long open reading frame suggests a role for a protein product, and examination of the amino acid sequence for a signal peptide and a membrane spanning region can help determine whether the protein is secreted from the cell or expressed in the surface membrane.

This type of screening is also useful for further development of the polynucleotides of this invention. For example, expression constructs can be developed that encode functional peptide fragments, fusion proteins, and other variants. The minimum size of polynucleotide sequence that still encodes TRRE modulation activity can be determined by removing part of the sequence and then using the screening assay to determine whether the activity is still present. Mutated and extended sequences can be tested in the same way.

This type of screening assay is also useful for developing compounds that affect TRRE activity by interfering with mRNA that encode a TRRE modulator. Of particular interest are ribozymes and antisense oligonucleotides. Ribozymes...
are endoribonucleases that catalyze cleavage of RNA at a specific site. They comprise a polynucleotide sequence that is complementary to the cleavage site on the target, and additional sequence that provide the tertiary structure to effect the cleavage. Construction of ribozymes is described in U.S. Patent Nos. 4,987,071 and 5,591,610. Antisense oligonucleotides that bind mRNA comprise a short sequence complementary to the mRNA (typically 8-25 bases in length). Preferred chemistry for constructing antisense oligonucleotides is outlined in an earlier section. Specificity is provided both by the complementary sequence, and by features of the chemical structure. Antisense molecules that inhibit expression of cell surface receptors are described in U.S. Patent Nos. 5,135,917 and 5,789,573. Screening involves contacting the cell expressing TRRE activity and TNF-R with the compound and determining the effect on receptor release. Ribozymes and antisense molecules effective in altering expression of a TRRE promoter would decrease TNF-R release. Ribozymes and antisense molecules effective in altering expression of a TRRE inhibitor would increase TNF-R release.

Another screening method described in this disclosure is for testing the ability of polypeptides to modulate TRRE activity (Example 7). Cells expressing both TNF-R and a moderate level of TRRE activity are contacted with the test polypeptides, and the rate of receptor release is compared with the rate of spontaneous release. An increased rate of release indicates that the polypeptide is a TRRE promoter, while a decreased rate indicates that the polypeptide is a TRRE inhibitor. This assay can be used to test the activity of new polypeptides, and develop variants of polypeptides already known to modulate TRRE. The minimum size of polypeptide sequence that still encodes TRRE modulation activity can be determined by making a smaller fragment of the polypeptide and then using the screening assay to determine whether the activity is still present. Mutated and extended sequences can be tested in the same way.

Another screening method embodied in this invention is a method for screening substances that interfere with the action of a TRRE modulator at the protein level. The method involves incubating cells expressing TNF receptor
(such as C75R cells) with a polypeptide of this invention having TNF promoting activity. There are two options for supplying the TRRE modulator in this assay. In one option, the polypeptide is added to the medium of the cells as a reagent, along with the substance to be tested. In another option, the cells are genetically altered to express the TRRE modulator at a high level, and the assay requires only that the test substance be contacted with the cells. This option allows for high throughput screening of a number of test compounds.

Either way, the rate of receptor release is compared in the presence and absence of the test substance, to identify compounds that enhance or diminish TRRE activity. Parallel experiments should be conducted in which the activity of the substance on receptor shedding is tested in the absence of added polypeptide (using cells that don't express the polypeptide). This will determine whether the activity of the test substance occurs via an effect on the TRRE promoter being added, or through some other mechanism.

This type of screening assay is useful for identifying antibodies that affect the activity of a TRRE modulator. Antibodies are raised against a TRRE modulator as described in the previous section. If the antibody decreases TRRE activity in the screening assay, then it has therapeutic potential to lower TRRE activity in vivo. Screening of monoclonal antibodies using this assay can also help identify binding or catalytic sites in the polypeptide.

This type of screening assay is also useful for high throughput screening of small molecule compounds that have the ability to affect the level of TNF receptors on a cell, by way of its influence on a TRRE modulator. Small molecule compounds that have the desired activity are often preferred for pharmaceutical compositions, because they are often more stable and less expensive to produce.

Medicaments and their use

As described earlier, a utility of certain products embodied in this invention is to affect signal transduction from cytokines (particularly TNF). Products that promote TRRE activity have the effect of decreasing TNF receptors on the
surface of cells, which would decrease signal transduction from TNF. Conversely, products that inhibit TRRE activity prevent cleavage of TNF receptors, increasing signal transduction.

The ability to affect TNF signal transduction is of considerable interest in the management of clinical conditions in which TNF signaling contributes to the pathology of the condition. Such conditions include:

- Heart failure. IL-1β and TNF are believed to be central mediators for perpetuating the inflammatory process, recruiting and activating inflammatory cells. The inflammation depress cardiac function in congestive heart failure, transplant rejection, myocarditis, sepsis, and burn shock.

- Cachexia. The general weight loss and wasting occurring in the course of chronic diseases, such as cancer. TNF is believed to affect appetite, energy expenditure, and metabolic rate.

- Crohn's disease. The inflammatory process mediated by TNF leads to thickening of the intestinal wall, ensuing from lymphedema and lymphocytic infiltration.

- Endotoxic shock. The shock induced by release of endotoxins from gram-negative bacteria, such as E. coli, involves TNF-mediated inflammation.

- Arthritis. TNF promotes expression of nitric oxide synthetase, believed to be involved in disease pathogenesis.

Other conditions of interest are multiple sclerosis, sepsis, inflammation brought on by microbe infection, and diseases that have an autoimmune etiology, such as Type I Diabetes.

Polypeptides of this invention that promote TRRE activity can be administered with the objective of decreasing or normalizing TNF signal transduction. For example, in congestive heart failure or Crohn's disease, the polypeptide is given at regular intervals to lessen the inflammatory sequelae. The treatment is optionally in combination with other agents that affect TNF.
signal transduction (such as antibodies to TNF or receptor antagonists) or that lessen the extent of inflammation in other ways.

Polynucleotides of this invention can also be used to promote TRRE activity by gene therapy. The encoding sequence is operably linked to control elements for transcription and translation in human cells. It is then provided in a form that will promote entry and expression of the encoding sequence in cells at the disease site. Forms suitable for local injection include naked DNA, polynucleotides packaged with cationic lipids, and polynucleotides in the form of viral vectors (such as adenovirus and AAV constructs). Methods of gene therapy known to the practitioner skilled in the art will include those outlined in U.S. Patent Nos. 5,399,346, 5,827,703, and 5,866,696.

The ability to affect TNF signal transduction is also of interest where TNF is thought to play a beneficial role in resolving the disease. In particular, TNF plays a beneficial role in the necrotizing of solid tumors. Accordingly, products of this invention can be administered to cancer patients to inhibit TRRE activity, thereby increasing TNF signal transduction and improve the beneficial effect.

Embodiments of the invention that inhibit TRRE activity include antisense polynucleotides. A method of conferring long-standing inhibitory activity is to administer antisense gene therapy. A genetic construct is designed that will express RNA inside the cell which in turn will decrease the transcription of the target gene (U.S. Patent No. 5,759,829). In humans, a more frequent form of antisense therapy is to administer the effector antisense molecule directly, in the form of a short stable polynucleotide fragment that is complementary to a segment of the target mRNA (U.S Patent Nos. 5,135,917 and 5,789,573) — in this case, the transcript that encodes the TRRE modulator. Another embodiment of the invention that inhibits TRRE are ribozymes, constructed as described in an earlier section. The function of ribozymes in inhibiting mRNA translation is described in U.S. Patent Nos. 4,987,071 and 5,591,610.

Once a product of this invention is found to have suitable TRRE modulation activity in the in vitro assays described in this disclosure, it is preferable to also test its effectiveness in an animal model of a TNF mediated
disease process. Example 3 describes an LPS model for sepsis that can be used to test promoters of TRRE activity. Example 4 describes a tumor necrosis model, in which TRRE inhibitors could be tested for an ability to enhance necrotizing activity. Those skilled in the art will know of other animal models suitable for testing effects on TNF signal transduction or inflammation. Other illustrations are the cardiac ischemia reperfusion models of Weyrich et al. (J. Clin. Invest. 91:2620, 1993) and Garcia-Criado et al. (J. Am. Coll. Surg. 181:327, 1995); the pulmonary ischemia reperfusion model of Steinberg et al. (J. Heart Lung Transplant. 13:306, 1994), the lung inflammation model of International Patent Application WO 9635418; the bacterial peritonitis model of Sharar et al. (J. Immunol. 151:4982, 1993), the colitis model of Meenan et al. (Scand. J. Gastroenterol. 31:786, 1996), and the diabetes model of von Herrath et al. (J. Clin. Invest. 98:1324, 1996). Models for septic shock are described in Mack et al. J. Surg. Res. 69:399, 1997; and Seljelid et al. Scand. J. Immunol. 45:683-7.

For use as an active ingredient in a pharmaceutical preparation, a polypeptide, polynucleotide, or antibody of this invention is generally purified away from other reactive or potentially immunogenic components present in the mixture in which they are prepared. Typically, each active ingredient is provided in at least about 90% homogeneity, and more preferably 95% or 99% homogeneity, as determined by functional assay, chromatography, or SDS polyacrylamide gel electrophoresis. The active ingredient is then compounded into a medicament in accordance with generally accepted procedures for the preparation of pharmaceutical preparations, such as described in Remington's Pharmaceutical Sciences 18th Edition (1990), E.W. Martin ed., Mack Publishing Co., PA. Steps in the compounding of the medicament depend in part on the intended use and mode of administration, and may include sterilizing, mixing with appropriate non-toxic and non-interfering excipients and carriers, dividing into dose units, and enclosing in a delivery device. The medicament will typically be packaged with information about its intended use.
Mode of administration will depend on the nature of the condition being treated. For conditions that are expected to require moderate dosing and that are at well perfused sites (such as cardiac failure), systemic administration is acceptable. For example, the medicament may be formulated for intravenous administration, intramuscular injection, or absorption sublingually or intranasally. Where it is possible to administer the active ingredient locally, this is usually preferred. Local administration will both enhance the concentration of the active ingredient at the disease site, and minimize effects on TNF receptors on other tissues not involved in the disease process. Conditions that lend themselves to administration directly at the disease site include cancer and rheumatoid arthritis. Solid tumors can be injected directly when close to the skin, or when they can be reached by an endoscopic procedure. Active ingredients can also be administered to a tumor site during surgical resection, being implanted in a gelatinous matrix or in a suitable membrane such as Gliadel® (Guilford Sciences). Where direct administration is not possible, the administration may be given through an arteriole leading to the disease site. Alternatively, the pharmaceutical composition may be formulated to enhance accumulation of the active ingredient at the disease site. For example, the active ingredient can be encapsulated in a liposome or other matrix structure that displays an antibody or ligand capable of binding a cell surface protein on the target cell. Suitable targeting agents include antibodies against cancer antigens, ligands for tissue-specific receptors (e.g., serotonin for pulmonary targeting). For compositions that decrease TNF signal transduction, an appropriate targeting molecule may be the TNF ligand, since the target tissue may likely display an unusually high density of the TNF receptor.

Effective amounts of the compositions of the present invention are those that alter TRRE activity by at least about 10%, typically by at least about 25%, more preferably by about 50% or 75%. Where near complete ablation of TRRE activity is desirable, preferred compositions decrease TRRE activity by at least 90%. Where increase of TRRE activity is desirable, preferred compositions increase TRRE activity by at least 2-fold. A minimum effective amount of the
active compound will depend on the disease being treated, which of the TRRE modulators is selected for use, and whether the administration will be systemic or local. For systemic administration, an effective amount of activity will generally be an amount of the TRRE modulator that can cause a change in the enzyme activity by 100 to 50,000 Units — typically about 10,000 Units. The mass amount of protein, nucleic acid, or antibody is chosen accordingly, based on the specific activity of the active compound in Units per gram.

The following examples provided as a further guide to the practitioner, and are not intended to limit the invention in any way.

EXAMPLES

Example 1: Assay system for TRRE activity.

This Example illustrates an assay system that measures TRRE activity on the human TNF-R in its native conformation in the cell surface membrane. Membrane-associated TNF-R was chosen as the substrate, as having microenvironment similar to that of the substrate for TRRE in vivo. Membrane-associated TNF-R also requires more specific activity, which would differentiate less-specific proteases. Cells expressing an elevated level of the p75 form of TNF-R were constructed by cDNA transfection into monkey COS-1 cells which express little TNF-R of either the 75 kDa or 55 kDa size.

The procedure for constructing these cells was as follows: cDNA of human p75 TNF-R was cloned from a λgt10 cDNA library derived from human monocytic U-937 cells (Clontech Laboratories, Palo Alto, CA). The first 300 bp on both 5' and 3' ends of the cloned fragment was sequenced and compared to the reported cDNA sequence of human p75 TNF-R. The cloned sequence was a 2.3 kb fragment covering positions 58-2380 of the reported p75 TNF-R sequence, which encompasses the full length of the p75 TNF-R-coding sequence from positions 90-1475. The 2.3 kb p75 TNF-R cDNA was then subcloned into the multiple cloning site of the pCDNA3 eukaryotic expression vector. The
orientation of the p75 TNF-R cDNA was verified by restriction endonuclease mapping.

Figure 1 illustrates the final 7.7 kb construct, pCDTR2. It carries the neomycin-resistance gene for the selection of transfected cells in G418, and the expression of the p75 TNF-R is driven by the cytomegalovirus promoter. The pCDTR2 was then transfected into monkey kidney COS-1 cells (ATCC CRL-1650) using the calcium phosphate-DNA precipitation method. The selected clone in G418 medium was identified and subcultured. This clone was given the designation C75R.

To determine the level of p75 TNF-R expression on C75R cells, 2 x 10^5 cells/well were plated into a 24-well culture plate and incubated for 12 to 16 hours in 5% CO_2 at 37°C. They were then incubated with 2-30 ng ^125^I human recombinant TNF (radiolabeled using the chloramine T method) in the presence or absence of 100-fold excess of unlabeled human TNF at 4°C for 2 h. After three washes with ice-cold PBS, cells were lysed with 0.1N NaOH and bound radioactivity was determined in a Pharmacia Clinigamma counter (Uppsala, Sweden).

Figure 2 shows the results obtained. C75R had a very high level of specific binding of radiolabeled ^125^I-TNF, while parental COS-1 cells did not. The number of TNF-R expressed on C75R was determined to be 60,000-70,000 receptors per cell by Scatchard analysis (Figure 2, inset). The Kd value calculated was 5.6 x 10^-10 M. This Kd value was in close agreement to the values previously reported for native p75 TNF-R.

TRRE was obtained by PHA stimulation of THP-1 cells (WO 9802140). THP-1 cells (ATCC 45503) growing in logarithmic phase were collected and resuspended to 1x10^6 cells/ml of RPMI-1640 supplemented with 1% FCS and incubated with 10^-6 M PMA for 30 min in 5% CO_2 at 37 °C. The cells were collected and washed once with serum-free medium to remove PMA and resuspended in the same volume of RPMI-1640 with 1% FCS. After 2 hours incubation in 5% CO_2 at 37°C, the cell suspension was collected, centrifuged, and the cell-free supernatant was collected as the source of TRRE.
In order to measure the effect of TRRE on membrane-bound TNF-R in the COS-1 cell constructs, the following experiment was performed. C75R cells were seeded at a density of 2×10^5 cells/well in a 24-well cell culture plate and incubated for 12 to 16 hours at 37°C in 5% CO$_2$. The medium in the wells was aspirated, replaced with fresh medium alone or with TRRE medium, and incubated for 30 min at 37°C. The medium was then replaced with fresh medium containing 30 ng/ml 125I-labeled TNF. After 2 hours at 4°C, the cells were lysed with 0.1 N NaOH and the level of bound radioactivity was measured. The level of specific binding of C75R by 125I-TNF was significantly decreased after incubation with TRRE. The radioactive count was 1,393 cpm on the cells incubated with TRRE compared to 10,567 cpm on the cells not treated with TRRE, a loss of 87% of binding capacity.

In order to determine the size of the p75 TNF-R cleared from C75R by TRRE, the following experiment was performed. 15×10^6 C75R cells were seeded in a 150 mm cell culture plate and incubated at 37°C in 5% CO$_2$ for 12 to 16 hours. TRRE medium was incubated with C75R cells in the 150 mm plate for 30 min and the resulting supernatant was collected and centrifuged. The concentrated sample was applied to 10% acrylamide SDS-PAGE and electrophoretically transferred to a polyvinylidene difluoride membrane (Immobilon). Immunostaining resulted in a single band of 40 kDa, similar to the size found in biological fluids. Thus, transfected COS-1 cells expressed high levels of human p75 TNF-R in a form similar to native TNF-R.

The following assay method was adopted for routine measurement of TRRE activity. C75R cells and COS-1 cells were seeded into 24-well culture plates at a density of 2.5×10^5 cells/ml/well and incubated overnight (for 12 to 16 hours) in 5% CO$_2$ at 37°C. After aspirating the medium in the well, 300 µl of TRRE medium was incubated in each well of both the C75R and COS-1 plates for 30 min in 5% CO$_2$ at 37°C (corresponding to A and C mentioned below, respectively). Simultaneously, C75R cells in 24-well plates were also incubated with 300 µl of fresh medium or buffer. The supernatants were collected,
centrifuged, and then assayed for the concentration of soluble p75 TNF-R by ELISA.

ELISA assay for released TNF-R (WO 98/20140) was performed as follows: Polyclonal antibodies to human p75 TNF-R were generated by immunization of New Zealand white female rabbits (Yamamoto et al. *Cell. Immunol.* 38:403-416, 1978). The IgG fraction of the immunized rabbit serum was purified using a protein G (Pharmacia Fine Chemicals, Uppsala, Sweden) affinity column (Ey et al. (1978) *Immunochemistry* 15:429-436, 1978). The IgG fraction was then labeled with horseradish peroxidase (Sigma Chemical Co., St. Louis, MO) (Tijssen and Kurstok, *Anal. Biochem.* 136:451-457, 1984). In the first step of the assay, 5 μg of unlabeled IgG in 100 μl of 0.05 M carbonate buffer (pH 9.6) was bound to a 96-well ELISA microplate (Corning, Corning, NY) by overnight incubation at 4°C. Individual wells were washed three times with 300 μl of 0.2% Tween-20 in phosphate buffered saline (PBS). The 100 μl of samples and recombinant receptor standards were added to each well and incubated at 37°C for 1 to 2 hours. The wells were then washed in the same manner, 100 μl of horseradish peroxidase-labeled IgG added and incubated for 1 hour at 37°C. The wells were washed once more and the color was developed for 20 minutes (min) at room temperature with the substrates ABTS (Pierce, Rockford, IL) and 30% H₂O₂ (Fisher Scientific, Fair Lawn, NJ). Color development was measured at 405 nm.

When C75R cells were incubated with TRRE medium, soluble p75 TNF-R was released into the supernatant which was measurable by ELISA. The amount of receptors released corresponded to the amount of TRRE added.

There was also a level of spontaneous TNF-R release in C75R cells incubated with just medium alone. It is hypothesized that this is due to an endogenous source of proteolytic enzyme, a homolog of the human TRRE of monkey origin.

The following calculations were performed. A = (amount of soluble p75 TNF-R in a C75R plate treated with the TRRE containing sample); i.e. the total amount of sTNF-R in a C75R plate. B = (amount of soluble p75 TNF-R spontaneously released in a C75R plate treated with only medium or buffer

*Trademark
containing the same reagent as the corresponding samples but without exogenous TRRE); i.e. the spontaneous release of sTNF-R from C75R cells. C = (amount of soluble p75 TNF-R in a COS-1 plate treated with the TRRE sample or the background level of soluble p75 TNF-R released by THP-1.); i.e. the degraded value of transferred (pre-existing) sTNF-R in the TRRE sample during 30 min incubation in a COS-1 plate. This corresponds to the background level of sTNF-R degraded in a C75R plate. The net release of soluble p75 TNF-R produced only by TRRE activity existing in the initial sample is calculated as follows: (Net release of soluble p75 TNF-R only by TRRE) = A - B - C.

Unit activity of TRRE was defined as follows: 1 pg of soluble p75 TNF-R net release (A-B-C) in the course of the assay is one unit (U) of TRRE activity.

Using this assay, the time course of receptor shedding by TRRE was measured in the following experiment. TRRE-medium was incubated with C75R and COS-1 cells for varying lengths of time. The supernatants were then collected and assayed for the level of soluble p75 TNF-R by ELISA and the net TRRE activity was calculated. Detectable levels of soluble receptor were released by TRRE within 5 min and increased up to 30 min. Longer incubation times showed that the level of TRRE remained relatively constant after 30 min, presumably from the depletion of substrates. Therefore, 30 min was determined to be the optimal incubation time.

The induction patterns of TRRE and known MMPs by PMA stimulation are quite different. In order to induce MMPs, monocytic U-937 cells, fibrosarcoma HT-1080 cells, or peritoneal exudate macrophages (PEM) usually have to be stimulated for one to three days with LPS or PMA. On the other hand, as compared with this prolonged induction, TRRE is released very quickly in culture supernatant following 30 min of PMA-stimulation. The hypothesis that TRRE and sTNF-R form a complex in vitro was confirmed by the experiment that 25% TRRE activity was recovered from soluble p75 TNF-R affinity column. This means that free TRRE has the ability to bind to its catalytic product, sTNF-R. The remaining 75% which did not combine to the affinity column may already be
bound to sTNF-R or may not have enough affinity to bind to sTNF-R even though it is in a free form.

Example 2: Characterization of TRRE obtained from THP-1 cells.

TRRE obtained by PHA stimulation of THP-1 cells was partially purified from the culture medium (WO98/20140). First, protein from the medium was concentrated by 100% saturated ammonium sulfate precipitation at 4°C. The precipitate was pelleted by centrifugation at 10,000 x g for 30 min and resuspended in PBS in approximately twice the volume of the pellet. This solution was then dialyzed at 4°C against 10 mM Tris-HCl, 60 mM NaCl, pH 7.0. This sample was loaded on an anion-exchange chromatography, Diethylaminoethyl (DEAE)-Sephadex A-25 column (Pharmacia Biotech) (2.5 x 10 cm) previously equilibrated with 50 mM Tris-HCl, 60 mM NaCl, pH 8.0. TRRE was then eluted with an ionic strength linear gradient of 60 to 250 mM NaCl, 50 mM Tris-HCl, pH 8.0. Each fraction was measured for absorbance at 280 nm and assayed for TRRE activity. The DEAE fraction with the highest specific activity (the highest value of TRRE units/A280) was pooled and used in the characterizations of TRRE described in this example.

In the next experiment, the substrate specificity of the enzyme was elucidated using immunohistochemical techniques. Fluorescein isothiocyanate (FITC)-conjugated anti-CD54, FITC-conjugated goat anti-rabbit and mouse antibodies, mouse monoclonal anti-CD30, anti-CD11b and anti-IL-1R (Serotec, Washington D.C.) were used. Rabbit polyclonal anti-p55 and p75 TNF-R were obtained according to Yamamoto et al. (1978) Cell Immunol. 38:403–416. THP-1 cells were treated for 30 min with 1,000 and/or 5,000 U/ml of TRRE eluted from the DEAE-Sephadex column, and then transferred to 12 x 75 mm polystyrene tubes (Fischer Scientific, Pittsburgh, PA) at 1 x 10^5 cells/100μl/tube. The cells were then pelleted by centrifugation at 350 x g for 5 min at 4°C and stained directly with 10μl FITC-conjugated anti-CD54 (diluted in cold PBS/0.5% sodium aside), indirectly with FITC-conjugated anti-mouse antibody after treatment of
mouse monoclonal anti-CD11b, IL-1R and CD30 and also indirectly with FITC-conjugated anti-rabbit antibody after treatment of rabbit polyclonal anti-p55 and p75 TNF-R.

THP-1 cells stained with each of the antibodies without treatment of TRRE were used as negative controls. The tubes were incubated for 45 min at 4°C, agitated every 15 min, washed twice with PBS/2% FCS, repelleted and then resuspended in 200µl of 1% paraformaldehyde. These labeled THP-1 cells were analyzed using a fluorescence activated cell sorter (FACS) (Becton-Dickinson, San Jose, CA) with a 15 mW argon laser with an excitation of 488 nm. Fluorescent signals were gated on the basis of forward and right angle light scattering to eliminate dead cells and aggregates from analysis. Gated signals \((10^4)\) were detected at 585 BP filter and analyzed using Lysis II software. Values were expressed as percentage of positive cells, which was calculated by dividing mean channel fluorescence intensity (MFI) of stained THP-1 cells treated with TRRE by the MFI of the cells without TRRE treatment (negative control cells).

To test the \textit{in vitro} TNF cytolytic assay by TRRE treatment the L929 cytolytic assay was performed according to the method described by Gatanaga et al. (1990b). Briefly, L929 cells, an adherent murine fibroblast cell line, were plated (70,000 cells/0.1ml/well in a 96-well plate) overnight. Monolayered L929 cells were pretreated for 30 min with 100, 500 or 2,500 U/ml of partially-purified TRRE and then exposed to serial dilutions of recombinant human TNF for 1 hour. After washing the plate with RPMI-1640 with 10% FCS to remove the TRRE and TNF, the cells were incubated for 18 hours in RPMI-1640 with 10% FCS containing 1 µg/ml actinomycin D at 37°C in 5% CO₂. Culture supernatants were then aspirated and 50 µl of 1% crystal violet solution was added to each well. The plates were incubated for 15 min at room temperature. After the plates were washed with tap water and air-dried, the cells stained with crystal violet were lysed by 100 µl per well of 100 mM HCl in methanol. The absorbance at
550 nm was measured using an EAR 400 AT plate reader (SLT-Labinstruments, Salzburg, Austria).

To investigate whether TRRE also truncates the ~55 kDa size of TNF-R, partially-purified TRRE was applied to THP-1 cells which express low levels of both p55 and p75 TNF-R (approximately 1,500 receptors/cell by Scatchard analysis). TRRE eluate from the DEAE-Sephadex column was added to THP-1 cells (5 x 10^6 cells/ml) at a final TRRE concentration of 1,000 U/ml for 30 min. The concentration of soluble p55 and p75 TNF-R in that supernatant was measured by soluble p55 and p75 TNF-R ELISA. TRRE was found to truncate both human p55 and p75 TNF-R on THP-1 cells and released 2,382 and 1,662 pg/ml soluble p55 and p75 TNF-R, respectively.

Therefore, TRRE obtained by PHA stimulation of THP-1 cells is capable of enzymatically cleaving and releasing human p75 TNF-R on C75R cells, and both human p55 and p75 TNF-R on THP-1 cells.

Partial inhibition of TRRE activity was obtained by chelating agents such as 1,10-phenanthroline, EDTA and EGTA (% TRRE activity remaining were 41%, 67% and 73%, respectively, at 2 mM concentration). On the other hand, serine protease inhibitors such as PMSF, AEBSF and 3,4-DCI, and serine and cysteine protease inhibitors such as TLCK and TPCK had no effect on the inhibition of TRRE. TRRE was slightly activated in the presence of Mn^{2+}, Ca^{2+}, Mg^{2+}, and Co^{2+} (% TRRE activities remaining were 157%, 151%, 127%, and 123%, respectively), whereas partial inhibition occurred in the presence of Zn^{2+} and Cu^{2+} (% TRRE activities remaining were 23% and 47%, respectively) (WO 9820140).

TRRE fractions from the most active DEAE fraction (60 mM to 250 mM NaCl) can be purified further. In one method (WO98/20140), the fractions were concentrated to 500 μL with a Centriprep-10 filter (10,000 MW cut-off membrane) (Amicon). This concentrated sample was applied to 6% PAGE under non-denaturing native conditions. The gel was sliced horizontally into 5 mm strips and each was eluted into 1 ml PBS. The eluates were then tested according to the assay (Example 1) for TRRE activity.
Example 3: TRRE activity alleviates septic shock

The following protocol was used to test the effects of TRRE in preventing mortality in a model for septic shock. Mice were injected with lethal or sublethal levels of LPS, and then with a control buffer or TRRE. Samples of peripheral blood were then collected at intervals to establish if TRRE blocked TNF-induced production of other cytokines in the bloodstream. Animals were assessed for the ability of TRRE to block the clinical effects of shock, and then euthanized and tissues examined by histopathological methods.

Details were as follows: adult Balb/c mice, were placed in a restraining device and injected intravenously via the tail vein with a 0.1 ml solution containing 10 ng to 10 mg of LPS in phosphate buffer saline (PBS). These levels of LPS induce mild to lethal levels of shock in this strain of mice. Shock results from changes in vascular permeability, fluid loss, and dehydration, and is often accompanied by symptoms including lethargy, a hunched, stationary position, rumpled fur, cessation of eating, cyanosis, and, in serious cases, death within 12 to 24 hours. Control mice received an injection of PBS. Different amounts (2,000 or 4,000 U) of purified human TRRE were injected IV in a 0.1 ml volume within an hour prior to or after LPS injection. Serum (0.1 ml) was collected with a 27 gauge needle and 1 ml syringe IV from the tail vein at 30, 60 and 90 minutes after LPS injection. This serum was heparinized and stored frozen at −20°C. Samples from multiple experiments were tested by ELISA for the presence of sTNF-R, TNF, IL-8 and IL-6. Animals were monitored over the next 12 hours for the clinical effects of shock. Selected animals were euthanized at periods from 3 to 12 hours after treatment, autopsied and various organs and tissues fixed in formalin, imbedded in paraffin, sectioned and stained by hematoxalin-eosin (H and E). Tissue sections were subjected to histopathologic and immunopathologic examination.

Figure 3 shows the results obtained. (♦) LPS alone; (■) LPS plus control buffer; (●) LPS plus TRRE (2,000 U); (▲) LPS plus TRRE (4,000 U).
Mice injected with LPS alone or LPS and a control buffer died shortly after injection. 50% of the test animals were dead after 8 hours (LPS) or 9 hours (LPS plus control buffer), and 100% of the animals were dead at 15 hours. In contrast, animals treated with TRRE obtained as described in Example 1 did much better. When injections of LPS were accompanied by injections of a 2,000 U of TRRE, death was delayed and death rates were lower. Only 40% of the animals were dead at 24 hours. When 4,000 U of TRRE was injected along with LPS, all of the animals had survived at 24 hours. Thus, TRRE is able to counteract the mortality induced by LPS in test animals.

Example 4: TRRE activity decreases tumor necrotizing activity

The following protocol was followed to test the effects of TRRE on tumor necrosis in test animals in which tumors were produced, and in which TNF was subsequently injected.

On Day 0, cutaneous Meth A tumors were produced on the abdominal wall of fifteen BALB/c mice by intradermal injection of 2 x 10⁶ Meth A tumor cells. On Day 7, the mice were divided into three groups of five mice each and treated as follows:

- Group 1: Injected intravenously with TNF (1 µg/mouse).
- Group 2: Injected intravenously with TNF (1 µg/mouse) and injected intratumorally with TRRE obtained as in Example 1 (400 units/mouse, 6, 12 hours after TNF injection).
- Group 3: Injected intravenously with TNF (1 µg/mouse) and injected intratumorally with control medium (6, 12 hours after TNF injection).

On Day 8, tumor necrosis was measured with the following results: Group 1: 100% of necrosis (5/5); Group 2: 20% (1/5); Group 3: 80% (4/5). Injections of TRRE greatly reduced the ability of TNF to induce necrosis in Meth A tumors in BALB/c mice.
Since adding TRRE activity ablates the beneficial necrotizing activity of TNF, blocking endogenous TRRE activity would promote the beneficial effects of TNF.

Example 5: Nine new polynucleotide clones that affect TRRE activity

A number of cells have been found to express high levels of TRRE activity, especially after PMA stimulation. These include the cell lines designated THP-1, U-937, HL-60, ME-180, MRC-5, Raji, K-562. Jurkat cells have a high TRRE activity (850 TRRE U/mL at 10⁻² PMA). In this experiment, the expression library of the Jurkat T cell (ATCC #TIB-152) was obtained and used to obtain 9 polynucleotide clones that augment TRRE activity.

Selection of expression sequences in the library was done by repeated cycles of transfection into COS-1 cells, followed by assaying of the supernatant as in Example 1 for the presence of activity cleaving and releasing the TNF receptor. Standard techniques were used in the genetic manipulation. Briefly, the DNA of 10⁸ Jurkat cells was extracted using an InVitrogen plasmid extraction kit according to manufacturer's directions. cDNA was inserted in the ZAP Express™/EcoRI vector (cat. no. 938201, Stratagene, La Jolla CA. The library was divided into 48 groups of DNA and transformed into COS-1 cells using the CaCl₂ transfection method. Once the cells were grown out, the TRRE assay was performed, and five positive groups were selected. DNA from each of these five groups was obtained, and transfected into E. coli, with 15 plates per group. DNA was prepared from these cells and then transfected into COS-1 cells once more. The cells were grown out, and TRRE activity was tested again. Two positive groups were selected and transfected into E. coli, yielding 98 colonies. DNA was prepared from 96 of these colonies and transfected into COS-1 cells. The TRRE activity was performed again, and nine clones were found to substantially increase TRRE activity in the assay. These clones were designated 2-8, 2-9, 2-14, 2-15, P2-2, P2-10, P2-13, P2-14, and P2-15.

Figure 4 is a bar graph showing the TRRE activity observed when the 9 clones were tested with C75 cells in the standard assay (Example 1).
These nine clones were then sequenced according to the following procedure:

1. Plasmid DNA was prepared using a modified alkaline lysis procedure.
2. DNA sequencing was performed using DyeDeoxy termination reactions (ABI). Base-specific fluorescent dyes were used as labels.
3. Sequencing reactions were analyzed on 5.75% Long Ranger™ gels by an ABI 373A-S or on 5.0% Long Ranger™ gels by an ABI 377 automated sequencer.
4. Subsequent data analysis was performed using Sequencher™ 3.0 software.

Standard primers T7X, T3X, 40, -48 Reverse, and BK Reverse (BKR) were used in sequencing reactions. For each clone, several additional internal sequencing primers (listed below) were synthesized.

NCBI BLAST (Basic Local Alignment Search Tool) sequence analysis (Altschul et al. (1990) J. Mol. Biol. 215:403-410) was performed to determine if other sequences were significantly similar to these sequences. Both the DNA sequences of the clones and the corresponding ORFs (if any) were compared to sequences available in databases.

The following clones were obtained and sequenced:
TABLE 1: DNA sequences affecting TRRE activity

<table>
<thead>
<tr>
<th>Clone</th>
<th>Sequence Designation</th>
<th>SEQ ID NO:</th>
<th>Approx. Length (bp)</th>
<th>Expression Designation</th>
<th>Related sequences (potential homology)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-9</td>
<td>AIM2</td>
<td>1</td>
<td>4,047</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>2-8</td>
<td>AIM3T3 (partial sequence)</td>
<td>2</td>
<td>739</td>
<td></td>
<td>M. musculus 45S pre-rRNA gene</td>
</tr>
<tr>
<td></td>
<td>AIM3T7 (partial sequence)</td>
<td>3</td>
<td>233</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>2-14</td>
<td>AIM4</td>
<td>4</td>
<td>2,998</td>
<td>Mey3</td>
<td>human arfaptin 2 and others (see below)</td>
</tr>
<tr>
<td>2-15</td>
<td>AIM5</td>
<td>5</td>
<td>4,152</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>P2-2</td>
<td>AIM6</td>
<td>6</td>
<td>3,117</td>
<td>Mey5</td>
<td>—</td>
</tr>
<tr>
<td>P2-10</td>
<td>AIM7</td>
<td>7</td>
<td>3,306</td>
<td>Mey6</td>
<td>Human Insulin-like Growth factor II Receptor</td>
</tr>
<tr>
<td>P1-13</td>
<td>AIM8</td>
<td>8</td>
<td>4,218</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>P2-14</td>
<td>AIM9</td>
<td>9</td>
<td>1,187</td>
<td>Mey8</td>
<td>—</td>
</tr>
<tr>
<td>P2-15</td>
<td>AIM10</td>
<td>10</td>
<td>3,306</td>
<td></td>
<td>E1b-55kDa-associated protein</td>
</tr>
</tbody>
</table>

Clone 2-9 (AIM2): The internal primers used for sequencing are shown in SEQ. ID NOS:11-38. The sequence of AIM2 is presented in SEQ ID NO:1. The complementary strand of the AIM2 sequence is SEQ ID NO:147. The longest open reading frame (ORF) in the AIM2 sequence is 474 AA long and represented in SEQ ID NO:148.

Clone 2-8 (AIM3): Two partial sequences of length 739 and 233 were obtained and designated AIM3T3 and AIM3T7. The internal primers used for sequencing are shown in SEQ. ID NOS:39-46. The sequences of AIM3T3 and...
AIM3T7 are presented in SEQ ID NOs:2 and 3, respectively. The BLAST search revealed that the AIM3T3 sequence may be homologous to the mouse (M. musculus) 28S ribosomal RNA (Hassouna et al. Nucleic Acids Res. 12:3563-3583, 1984) and the M. musculus 45S pre-rRNA genes (Accession No. X82564). The complementary sequence of the AIM3T3 sequence showed 99% similarity over 408 bp beginning with nt 221 of SEQ ID NO:2 to the former and 97% similarity over the same span to the latter.

Clone 2-14 (AIM4). The internal primers used for sequencing are shown in SEQ. ID NOS:14-65. The sequence of AIM4 is presented in SEQ ID NO:4. The complementary strand of the AIM4 sequence is SEQ ID NO:149. The longest ORF in the AIM4 sequence is 236 AA long and represented in SEQ ID NO:150. AIM4 has significant alignments to human sequences arfaptin 2, ADE2H1 mRNA showing homologies to SAICAR synthetase, polypyrimidine tract binding protein (heterogeneous nuclear ribonucleoprotein I) mRNA, several PTB genes for polypyrimidine tract binding proteins, mRNA for por1 protein. Human arfaptin 2 is a putative target protein of ADP-ribosylation factor that interacts with RAC1 by binding directly to it. RAC1 is involved in membrane ruffling. Arfaptin 2 has possible transmembrane segments, potential CK2 phosphorylation sites, PKC phosphorylation site and RGD cell attachment sequence.

Clone P2-2 (AIM6): The internal primers used for sequencing are shown in SEQ. ID NOS:81-93. The sequence of AIM6 is presented in SEQ ID NO:6. The longest ORF in the AIM6 sequence is 1038 AA long and represented in SEQ ID NO:151.

Clone P2-10 (AIM7): The internal primers used for sequencing are shown in SEQ. ID NOS:94-106. The sequence of AIM7 is presented as SEQ ID NO:7.
The longest ORF in the AIM7 sequence is 849 AA long and represented in SEQ ID NO:152. The BLAST search revealed that this clone may be related to the Human Insulin-like Growth Factor II Receptor (Morgan et al. Nature 329:301-307, 1987 or the Human Cation-Independent Mannose 6-Phosphate Receptor mRNA (Oshima et al. J. Biol. Chem. 263:2553-2562, 1988). The AIM7 sequence showed roughly 99% identity to both sequences over 2520 nucleotides beginning with nt 12 of SEQ ID NO:7 and 99% similarity to the latter over the same span.

Clone P2-13 (AIM8): The internal primers used for sequencing are shown in SEQ. ID NOS:107-118. The sequence of AIM8 is presented as SEQ ID NO:8. The longest ORF in the AIM8 sequence is 852 AA long and represented in SEQ ID NO:153.

Clone P2-14 (AIM9): The internal primers used for sequencing are shown in SEQ. ID NOS:119-124. The sequence of AIM9 is presented as SEQ ID NO:9. The longest ORF was about 149 amino acids in length.

Clone P2-15 (AIM10): The internal primers used for sequencing are shown in SEQ. ID NOS:125-146. The sequence of AIM10 is presented as SEQ ID NO:10. The longest ORF in the AIM10 sequence is 693 AA long and represented in SEQ ID NO:154. Sequence 10 on BLASTN search of non-redundant databases at NCBI aligns with Human mRNA for E1b-55kDa-associated protein, locus HSA7509 (Accession AJ007509, NID g3319955).

Clonal DNA may be directly injected into test animals in order to test the ability of these nucleic acids to induce TRRE activity, counteract septic shock and/or affect tumor necrosis, as is described in detail in Examples 3 and 4. Alternatively, proteins or RNA can be generated from the clonal DNA for similar testing.

Example 6: Expression of newly obtained clones

Example 5 describes 9 new clones which enhance TRRE activity in a cell surface assay system. The clones were obtained in the pBK-CMB Phagmid vector.
The following work was done on contract through the commercial laboratory Lark Technologies, Houston, TX. The clones were removed from shuttle vectors and inserted into expression vectors in the following manner. Recombinant plasmid (pBK-CMV containing insert) was digested with appropriate restriction enzyme(s) such as Spe I, Xba I, EcoR I or others, as appropriate. The Baculovirus Transfer Vector (pAcGHLT-A Baculovirus Transfer Vector, PharMingen, San Diego, CA, Cat. No. 21460P) was also cut with appropriate restriction enzyme(s) within or near the multiple cloning site to receive the insert removed from the shuttle vector.

The fragment of interest being subcloned was isolated from the digest using Low-Melting agarose electrophoresis and purified from the gel using a Qiaquick Gel Extraction Kit following Lark SOP MB 020602. If necessary, the receiving vector was treated with alkaline phosphatase according to Lark SOP MB 090201. The fragment was ligated into the chosen site of the vector pAcGHLT-A. The recombinant plasmid was transformed into E. coli XL1 Blue MRF' cells and the transformed bacterial cells were selected on LB agar plates containing ampicillin (100μg/ml). Ampicillin resistant colonies were picked and grown on LB broth containing ampicillin for plasmid preparation.

Plasmid DNA was prepared using Alkaline Minilysate Procedure (Lark SOP MB 010802 and digested with appropriate restriction enzyme(s). Selected subclones were confirmed to be of the correct size. Subclones were digested with other appropriate restriction enzyme(s) to ascertain correct orientation of the insert by confirming presence of fragments of proper size(s). A subclone was grown in 100 ml of LB broth containing ampicillin (100μg/ml) and the plasmid DNA prepared using Qiagen Midi Plasmid Preparation Kit (Lark SOP MB 011001). The DNA concentration was determined by measuring the absorbance at 260 nm and the DNA sample was verified to be originated from correct subclone by restriction digestion.

Thus were produced the expression constructs for Mey3, Mey5, Mey6, Mey8 now with the coding sequence of interest fused to GST gene with polyhistididine tag, protein kinase A site and thrombin cleavage site. The GST
gene and now the fusion protein are under the polyhedrin promotor. PharMingen (San Diego, CA) incorporated the vector with insert into functional baculovirus particles by co-inserting the transfer vector (pAcGHLT) into susceptible insect cell line S along with linearized virus DNA (PharMingen, San Diego, CA, BaculoGold viral DNA, Cat. No. 21100D). The functional virus particles were grown again on the insect cells to generate a high titer stock. Protein production was then done by infecting a large culture of cells in Tini cell. The cells were harvested when the protein yield reached a maximum and before the virus killed the cells. Fusion proteins were collected on a glutatione-agarose column, washed and released with glutathionine.

Proteins collected from the affinity column were quantified by measuring OD_{280} and were assayed on gels using SDS-PAGE and Western blotting with labeled anti-GST (PharMingen, San Diego, CA, mAbGST Cat. No. 21441A) to confirm that all the bands present included the GST portion.

Four of the ten sequences have been cloned, expressed in bacculovirus infected insect cells, and then purified.

<p>| Table 2: Expressed protein from Jurkat library clones |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence in insert</th>
<th>Amount of protein (mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mey3</td>
<td>AIM4</td>
<td>4.7, 5.0</td>
</tr>
<tr>
<td>Mey5</td>
<td>AIM6</td>
<td>1.36, 1.50</td>
</tr>
<tr>
<td>Mey6</td>
<td>AIM7</td>
<td>0.33</td>
</tr>
<tr>
<td>Mey8</td>
<td>AIM9</td>
<td>1.53</td>
</tr>
</tbody>
</table>

Gels indicated the presence of the GST protein in addition to larger proteins that were also positive with the anti-GST antibody in Western analyses. Mey3 repeatedly exhibited the presence of proteins around 32kDa, 56kDa, bands around 60-70kDa and another larger than 70kDa. Mey5 consistently had proteins migrating as approximately 34kDa, 38kDa, 58kDa, around 60-70kDa, and others larger than 70kDa. Mey6 had protein bands around 34kDa, 56kDa,
58kDa, and bands around 60-70kDa. Mey8 had protein bands around 36kDa, 58kDa and bands around 60-70kDa. All of the indicated bands were positive for GST. The bands may represent the desired fusion protein or degradation/cleavage product generated during growth and purification.

Example 7: Assay of expression products for effect on TNF-R cleaving activity

The following method was used to measure TRRE activity of Mey 3, 5, 6 and 8. C75R cells and COS-1 cells were seeded into 24-well culture plates at a density of 2.5 x 10⁶ cells/ml/well and incubated overnight (for 12 to 16 hours) in 5% CO₂ at 37°C. After aspirating the medium in the well, 300μl of 1 μg of Mey 3, 5 and 8 were incubated in each well of both the C75R and COS-1 plates for 30 min in 5% CO₂ at 37°C (corresponding to A and C mentioned below, respectively). Simultaneously, C75R cells in 24-well plates were also incubated with 300μl of fresh medium or buffer (corresponding to B mentioned below). The supernatants were collected, centrifuged, and then assayed for the concentration of soluble p75 TNF-R by ELISA as described in Example 1.

The following results were obtained:

<table>
<thead>
<tr>
<th>TABLE 3: Enzymatic activity of expressed clones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clone No.</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Mey-3</td>
</tr>
<tr>
<td>Mey-5</td>
</tr>
<tr>
<td>Mey-6</td>
</tr>
<tr>
<td>Mey-8</td>
</tr>
</tbody>
</table>
Example 8: Effectiveness of expression products in treating septic shock

The protocol outlined in Example 3 was used to test the effects of the expression products from the new clones in preventing mortality in the septic shock model.

Different amounts of recombinant Mey 3, 5, and 8 (10 – 100 ug/mouse) were injected i.v. in a 0.05 ml volume within an hour prior to or after injection of a lethal dose of LPS. Serum (0.1ml) was collected using a 27 gauge needle and 1 ml syringe from the tail vein at 30, 60 and 90 minutes after LPS injection. This serum was heparinized and stored frozen at -20°C. Samples from multiple experiments were tested by ELISA for the presence of solubilized TNR-R, the TNR ligand, IL-8, and IL-6. Animals were monitored over the next 12 hours for the clinical effects of shock. Selected animals were euthanized from 3 to 12 hours after treatment, autopsied and various organs and tissues fixed in formalin, imbedded in paraffin, sectioned and stained by hematoxalin-eosin (H and E). Tissue sections were subjected to histopathologic and immunopathologic examination.

Figure 5 shows the results obtained. (●) saline; (■) BSA; (△) Mey-3 (100 µg); (X) Mey-3 (10 µg); (*) Mey-5 (10 µg); (○) Mey-8 (10 µg).

Mice injected with LPS alone or LPS, a control buffer or control protein (BSA) died rapidly. All of the animals in this group were dead at 24 hours. In contrast, when injections of LPS were accompanied by injections of a 10 – 100 ug of Mey 3, 5 and 8, death was delayed and death rates were lower. None of the animal were dead at 24 hours that had been treated with Mey 3 and Mey 5. Only 66 % of the animals were dead at 24 hours that had been treated with Mey 8. Thus, Mey 3, 5 and 8 were able to counteract the mortality induced by LPS in test animals.
SEQUENCE LISTING

(i) GENERAL INFORMATION:

(ii) TITLE OF INVENTION: Factors Altering Tumor Necrosis Factor Receptor Releasing Enzyme Activity

(iii) NUMBER OF SEQUENCES: 154

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: Borden Ladner Gervais LLP
(B) STREET: 60 Queen Street
(C) CITY: Ottawa
(D) STATE: Ontario
(E) COUNTRY: CANADA
(F) POSTAL CODE: K1P 5Y7

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Diskette
(B) COMPUTER: IBM Compatible
(C) OPERATING SYSTEM: Windows
(D) SOFTWARE: FastSEQ for Windows Version 2.0b

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER: PCT/US99/10793
(B) FILING DATE: 14-MAY-1999

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 09/081,385
(B) FILING DATE: 14-MAY-1998

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: DAVID CONN
(B) REGISTRATION NUMBER: 3960
(C) REFERENCE/DOCKET NUMBER: PAT 48055W-1

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: (613) 237-5160
(B) TELEFAX: (613) 787-3558

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4047 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xii) SEQUENCE DESCRIPTION: SEQ ID NO:1:

```
AAGCTTTTGG CTTTCTTTC CCAGGGAAAC CCAGGGCCCG AGACCCGCAG TCGGACCAG 60
CAGGGGCTGC GGGCCCAAGA TGCCCTGGCC AGGGCTGGGA GGGCGGCTGG GCCCGGCTCC 120
TCCAGGCTGG GGGGCGCAAG CTCGGGAAAG GCAGCTGGCT CTCGGGAGAT GGGCCGGCAG 180
TGCCGGGCCC CGGGGGCCAG CCGCCCGGCC TCCAGGGCGG TTGAGGCGG GAAGCCGCGC 240
TGCCGGGCCC AGCGCCCTGG GTGGAGCTGC CGCTCCCTCC TGGAGGCGG CAACTAGGTT 300
TGGAGACCAG CGGAGCTACG CGGAGCTCCG CCGCAGGCTCC CGGGGCCGCT CGGAGCCCAG 360
ACCCCGAGAC CGAGCGCCCG GCCTCGCGAG AACCCGCGGC CGCCGCGGGA AAGCGGACC 420
CTCGAGGCTC GGAGGCGCCT TTCGCGCCTT CCGCGCCGAC TCCCGACGAC TGCCGACCAG 480
TGAGTGTGCTG CGGGGAGCAG CAGACCGCGC AGCACCGCGC AGACCGACTC AGTCGCGG 540
GCAGAGCCCA GAGCGGAGCC CGCGCGCGGC GCAGAGGGAG CGGGAGGGGC 600
GCTCCTGGGA GTCAAGGCCC AGGGCTAGAC TTTACGGTTC ATGAGCTAGC CCACTCACCC 660
CAGAGGAGTG AGAGGGCTCT GCTAGCAGAG GGGCCCAGCG TGGAGGAGCC GCGCTACGCC 720
AGGAGGCGGG AGGGAGCCCA GGGCTGGACG TAAAGGCTGC TGAGGAGGCA TCCAGGGTGC 780
AGGAGGAAAG AGGGAAGCTTA GGGGCTGCGC TGGGGAGGCT CGTGGGCGGC CGGAGGCGC 840
CTTTATATTTTG AGACCGAAGTT TGCTCGCGGA GTGCCGGAGT ACCCTAGAAT ACTATATAC 900
ATTTTGACGA GTTTCGCGCC CGCGCGCGAC CGAGAAGTAG GACACCGTACA 960
GAGATTTGGGG TGAGAAGCGG GGAGGAGGAG ATCCGCGGAG GCAGAGGAGA CGGACGAGA 1020
CGCAGGACAG CAGCTCGCCTG TTTGTTGCTT GAGCAGACTG CACGTTGCTT 1080
CTCTTCCAGG AGAAGTAAGG GCGAAGACAG ATCCTATGAG CCAGAAGTGG CAGAGGCTCA 1140
CTGAGGACAG TCGAGGCTCG GAAGCGGAGG GCCGCGCTTC CTTGATAGCG AGAGACGACG 1200
TGGAGATCTC GAATGAGGCA GTATGCGGCA GGGAAAATCT ATCAGGCGGC ACCAGGGGC 1260
CCCCGGTGGC TTTTACGGTC TGGCAAGGTC TCCGCTCAG TCATAGGACCA 1320
CCGGAGACCG CGGTGTGCTG GCACGCTGCA TGGCAGGACG GACACCGCAG 1380
GAGGGTGTAG CTCGCTCGCA CGGGGCGGCC TGGTGCAGAC TTTTGACTTG TCGCTGGAGA 1440
GAGGGATGTA CGGAGGCCAG CAGCTGCAGT CGAGCTGGCT GTGCTGAGCG 1500
GCCGCGCTGG GGTGAGAAGG GGGCTGAGAC AGATTTCTCG CAGTTGCTCG TCTAACCCTG 1560
GGTCTCAGTG CCTAGGAACCG CACTGCGGAC TTAATGAAAT CGAGCTGCGT GACTCTTCTG 1620
CATGGAGGTCT CTCCTTGACG ATGCTGCTGG CGGGCCGGAG ACTGTACGCC ACAAGGGTGC 1680
CCAGGTGGTA CGATGCTTGG CTTGCTGGTC AGTTCGCTTG TGGCTTTGAG 1740
CTGGCGCGCA GGGCGTGGCG TGGAGACACG TGGAGACGCG GACAGCCATT CCCCTGGTTT 1800
GTGCGCGATGT TACATCTCCC TACGGCTTGA CACAGACGG CCAGGCTGAC TTATCCAACT 1860
TCCCTCCTCC TGTTCTGAACT TTACGAGAAT TCTTCCCCCT GGGCTGCAAC GAGCTGCTCA 1920
CAGGGAGACT CAAGTTGAAA GCCCTATTCC TTGGTCTCTCA GAGACGGAG AAACCTATGG 1980
TTACAATTTCC AGGCAAGAGG GCAGAGTTGG TGGAGTTTGA CAATCTTCTG GCTTTCAACT 2040
GAGAAAATCG AGACAGCTTC CGTGGAGACG TGACAGCTGG ACAGCTTGGT CCACAGGAGG 2100
AACAGGACAG TGGAGACGG CCGAGGACTT CCCATGAGT AGGGGAGACA GGGGGCGGCG 2160
AAACCAACAC CACCCCGACC CTAGGGCCAG AGCTACGGAG GAGACGGCGC CCGGGCTGGG 2220
TGACTACATA GTG GCCCGCCG CTCTGCTCGT CTGCCTGGAGC GGCAGTCTGC CCGAGAGAG 2280
CATATGACTG TTACGGTTGG ACCAAGGTGT TTTGACTTTG TTGTGCCTGG TGTTGGGAGG 2340
CAACTGAGAT GTTCTCCCTG AAAAAAGCAG CTTTGGTTGG TGAGAAGATG GGGCTTGTGT 2400
CTTGGTGGCA CAACAGATTG GAAGCATTGA TGGGCGCTAT TATATCTTGT GAGTAAATGG 2460
GTGTTTTTTGT AGTGGTCCTC GGTTAGCGCA CATAAAAGG AAATATCTTT TTGGAGAAGA 2520
TGCTTATGTG TACACAGTTT CTCTGCTGGT CTGCCTGGAG AAGCGTCAAC 2580
GAGAAGACTG TTAATGTAAG TTATAGAGGT CCTGCGAGTG AGAACTACAT ATATCATCAG 2640
TTGCGCGTTG CTACACCTTC TTGTTTTTTG CTTGAGACCA TTTTCTACCC CTTGGGCTCT 2700
TTGGTCTTCTG TTTCTGGAGA TTACGGAGAG TATATCGTGA AAACATTGG TGGAAATAGG 2760
AAGGTAGAGA CTGAGATTGT AGGATTAAGA GGTGCTGGGA GCTCTAGAGA GTTCTTCCC 2820
```
(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 739 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

```
GGATCCCAAG GTCAAAACTCC CCACCTTGCC CTTGCCCCGG AGCCGCGTGC GCAGGGCCCG 60
GCGGGGCGCG GGCGCGTGGG CCCAAGCTTA AGGCACGCAG CCGCGTCCGT CCGCGGCTGG 120
ACCCGGTCAG TGAAAAAAC ATCAAGATG TGATTTTCA CCGCGCGGCC GAGGCGCCGG 180
CCGACCACGC CCGGGGGCCC TCGGGGAGAC ACCTGGGAGG CCGGGGGGCC CTCCTACTTA 240
CCTGGCATCT TTCATCGTCT TTACCGCTGC CAGACTAGAG TCAAGCTCTAG CAGGGCTTCC 300
TTTTCGCCCT GATCCGCGCA AGCCGCGTGG CTGGGCTGTG ATAGTGAGTA 360
GGGACAGTGG GAATCTCCTG CATTCATCTC TGGCGTCTAC TAATTAGAT ACGAGGACAG 420
TGCTATACCT AAGAGATGCT TAGTATCTCC CCCGTTTAC CGCGCGTCGA TGAATTCTT 480
TCATCATGAG ATGGTTGGCC CACGGCGAGA TTCAGAGCAC GTCGAGGCCC 540
TTTGGATGTC TTGTCTTTAA AAAAAAGCTG GAATCTTCTC GGTCGCGAAC AGTTCTAAG 600
CGCTGCTAGG GCGGGCGCG AAGGGGGCC CCGCGGCGA CCGCGGGGCG CCGGGGACC 660
CCGGGGGGGG GACCGGGGCG CGGCCCTGCC GCGCGCGCG CCGCGCGCG 720
CCGAAGAGAA AGGCGGAAA 739
```
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:
CAGAGAGTGTC GCCGCGAGAG GTGGCCCGCGG GTGGCCGAGG CCCCCAGAG TGGGACAGTG 60
GCCCAGCGCC CAGGGCCGCC CGCGGAGGCGG GGGGCGAGCG CAGCCGGCGG 120
CCCGCGCCCG GCCGCCCAGG CGGGCGCCCG GAGGGGAGAG GGAGGAGAGG GAGGGGGG 180
AGAGAGAGAG AGAGAGAGA GCGCGCGCGC CTCCGCGCGC ATGCAAAAG CTT 233

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 2998 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:
GGATCCAAAA AATTACGACG GAGGTATGAG CAGCGTCTGTG CATTGTTGTA CTTGACAGTG 60
AGCTGTGAGA GCTTTGAAA GGTGAATTGC AGGCGTCAAGG AATGTGTTAG 120
AGGTCTAACG TCCCCCGCTG CTTATCCTCG CTCCGTGCCG CGCCGCGCCG 180
TGAGACTGTT TCTTCTTCTG AGGATTCTAG TCTTCTCTGT TCTTCTCTGT 240
AATCTGCTGCA GCACATCGAC GGTCAAGGAA TAAAGGAGCT TAAAGGAGCT 300
ACGCGCTCAT GCCGCCGCTG GCCGCCGCTG GCCGCCGCTG GCCGCCGCTG 360
GCCAGGTTTC CCGACTGAGC CAGTTTTCAC GCCGCTGAGG GGCGCGCTG 420
TTGGGGGAGC TGCTGCTTGT CAGCTCCTTG TGTGTTGAGA ACGTAAGATG 480
CGCTCGCGAG CAGCTCGATG TGTGTTTCTG TTTGAGCTG ACGGAACTG 540
TTGGGGTCAT CAGATGAGGC CGTGTTTGTG CTTTTCACGA TAAGAAGGGA 600
CCAAGGAGCA GCCCGAGGAG GATGCTCTCG CCTTCTCTGT GGTGAGCTG 660
ATGTTGAGTCA CTTTACGAGG TTTTCTCTGT TTTGATCTCTG 720
TCATTCTCTGT TTGTGCTCAGA ACGGAGTTCG CTGCTCTAGA TAAAGGAGCT 780
CAATGAGACA AAGCTCTGTC AGATCCCGCG TTTTGACCAA CGCTTCTACG TGCGAAGATT 840
CGCTCGATCG CACACGAGAC AGGCGCCGGG GGAGCGAGGT GAATCTGGAG 900
GCTAGACTGT CAGTATTGAT TCTGCTGGTA ACGGAAAGGC AAGTATGAGA GTGCTCTGCA 960
GCTGCGCGCG GCACAGCACG CCCACCTCTA CAGCTTCTCT GAGACCCACG ATGCAGCTCG 1020
TGATGCTCTT GCCAGCTGCT GCCAGAGGTG GCCAGAGCTT TGGGAGAACT 1080
TGCAAGAGCA CAGAAACTAC TAGCAAGGAA TGGGAATAAG CTGGTACGG CGCTGAACCT 1140
CTTTGCTCTCT AGCACTAAAG ATGTAAAGAA TTGGAGGAAT TAGAAGAGGG ATGGAGAAGC 1200
GAAGACTGAT GAGGGCGAGA GTGGAAATAA TGATTCTCTC GCAACAAGATT TAGAAGAGAGC 1260
GAGCTCTGAG CCGGGTATG CAGGGACAGG TGGAGCTTCT GAGATGGGGC AGCCACCTTG 1320
CAGGCACAAGT CGGGAAGATG AGGTAGAGCT GGGGGAGAT GTGGCCCATC AGATCAAGTT 1380
CCTGAGAAGA AACAACATCG AAGTGATGCG CAAAGACGCT CTGCTCTTCC CAATACAGCT 1440
GTCCGGCAGT CTCTTCGAGA ACCAAAGAC GCTGGAGAGA ACCCTGAGAC ATGACCACTG 1500
CAAGCTTGGC CTCACAGAGT CTGAGAACCC CTCTCTGCTCA GAGAGAGACT GAGCTGCTCC 1560
CAGCCCAACT TGCTCATGAA GAGAGAATT TGGAAAGGC GGGCAGGGT TGAGGAGATT 1620
GGACATGAGT CAATCTCTGT CACTGTCCCT CTGCTTCTTG GCTGCTTGCG 1680
CTGACACAGC TTGGCCAGAG ATTTGCTATGG TGGAAAGGCG GGGGACAGGC 1740
CTGGCCGTAG TATTCCTTGG GCCAGAGGCC TTTACTCCCA GATCTTCTCC TTCCACCTTC 1800
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Description</th>
<th>Length</th>
<th>Type</th>
<th>Strandness</th>
<th>Topology</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAGCCAACGG</td>
<td>ATGCGTACCTGCTGCACCCT</td>
<td>1860</td>
<td>Nucleic acid</td>
<td>Double</td>
<td>Linear</td>
</tr>
<tr>
<td>GAGATATTGCG</td>
<td>ATCCGGCAACCTTCTG</td>
<td>1920</td>
<td>Double</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>GCCACCTGTTG</td>
<td>GCACCTGTTGCTG ACCACCATGCA</td>
<td>1980</td>
<td>Double</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>CATGGACGATC</td>
<td>ACCAGATGGG ACACGC</td>
<td>2040</td>
<td>Double</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>CTTGACGTAC</td>
<td>ACCAGATGGG ACTCAGTC</td>
<td>2100</td>
<td>Double</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>CTATGTTTTC</td>
<td>ATTCATACCTT TCTGCTGGTCT</td>
<td>2160</td>
<td>Double</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>TCTGGATAC</td>
<td>AACAGGACG TGACCTGTC</td>
<td>2220</td>
<td>Double</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>CTTGCGAGGT</td>
<td>AACATGTTTCT TCTGCTGGTCT</td>
<td>2280</td>
<td>Double</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>TACCATCGG</td>
<td>AACCATGTTTCT TCTGCTGGTCT</td>
<td>2340</td>
<td>Double</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>TACCATCGG</td>
<td>AACCATGTTTCT TCTGCTGGTCT</td>
<td>2400</td>
<td>Double</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>TACCATCGG</td>
<td>AACCATGTTTCT TCTGCTGGTCT</td>
<td>2460</td>
<td>Double</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>TACCATCGG</td>
<td>AACCATGTTTCT TCTGCTGGTCT</td>
<td>2520</td>
<td>Double</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>TACCATCGG</td>
<td>AACCATGTTTCT TCTGCTGGTCT</td>
<td>2580</td>
<td>Double</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>TACCATCGG</td>
<td>AACCATGTTTCT TCTGCTGGTCT</td>
<td>2640</td>
<td>Double</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>TACCATCGG</td>
<td>AACCATGTTTCT TCTGCTGGTCT</td>
<td>2700</td>
<td>Double</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>TACCATCGG</td>
<td>AACCATGTTTCT TCTGCTGGTCT</td>
<td>2760</td>
<td>Double</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>TACCATCGG</td>
<td>AACCATGTTTCT TCTGCTGGTCT</td>
<td>2820</td>
<td>Double</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>TACCATCGG</td>
<td>AACCATGTTTCT TCTGCTGGTCT</td>
<td>2880</td>
<td>Double</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>TACCATCGG</td>
<td>AACCATGTTTCT TCTGCTGGTCT</td>
<td>2940</td>
<td>Double</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>TACCATCGG</td>
<td>AACCATGTTTCT TCTGCTGGTCT</td>
<td>2998</td>
<td>Double</td>
<td>Linear</td>
<td></td>
</tr>
</tbody>
</table>

(i) Sequence Characteristics:
- Length: 4152 base pairs
- Type: Nucleic acid
- Strandness: Double
- Topology: Linear

(ii) Molecule Type: Genomic DNA

(xi) Sequence Description: Seq ID No: 5

AAAGCTGCTG
TGAAGAACCT
AGGATAATGC
CCTCCTCCTA
CCACACCAAA
CCCCGGGCC
60
CTGGCCCCAG
ACATGACGAT
GCTCACAAC
CACAACACA
CACACATACA
CACAAGCCG
120
TGAGCTGGAC
GACAGAACAT
GGTGCTCTG
CAGAACACAA
TTGAAAAT
ATACATTAA
180
TATGTACACC
CGGGGCCCC
ACGTGCCTCT
CCGTCCCCGC
AGCGTGCCA
CAGGAGTC
240
CGAGGGAGGG
GCCGGGCTGT
CAGGACTCTA
GAGTGCAGAG
GGCGAGAAGG
GAAACAGGAC
300
AAGAAGAGGA
GGAGATTGGA
AAGGAGGAGG
AAATGGGGTG
CCAGACTGA
AAATGGAATG
360
AGGGAGGGGG
ATCGATAGAG
AGGACAGGGC
GATGGTCAGG
CTGGAGACG
420
GGGAAAAGCT
TCCCATGAGA
AGGAGAGAGA
AGGGAGGGGG
AGGAGAGGG
GTTTCTCCTCA
480
ATCTACCACCC
CAGGGACCAC
CAGTGGAAGG
GCCATGGCA
GCCCAATTCG
540
CAAGTGTAGC
AAAGGAGGCA
GCTGCAATTG
GAGTTAGAAA
GGGACTGCA
600
CTTTCCCAAC
CAGGCAGCCC
GAGTGCAGGG
GGACTCAGAC
GCCCAAGGG
660
GAGGGATGGG
GGGGCAGGGG
AGGGAGGGG
GGAGCTCAGG
GGGGTGTGGA
720
AAGAAGAAGA
GGCCGGGGGG
AGGGAGGGG
GGAGCTCAGG
GGGGTGTGGA
900
TGGGGAGAAG
GGCCTACCTG
GATGGTCCTC
GCTCCTTCTG
CCCCAACAG
960
CCTGGTCTAC
CAAGGACTGAT
GATTTGTGGT
AGGAGACTCT
GGATGATGTA
1020
GACAAGTC
ATCCACAGAG
AGTCTGGGTT
CCTCGGGGG
ACTGGAGGCC
1080
CGCCGCCGCC
TGAGAGGGGG
GGGTGAAGGG
AATGATGAC
CACCAGGCC
1140
TGCAGCACAG
GAAGCCCAAG
CACACCAAA
TGGAGTGTG
TGCGCTGCTG
1200
AGTTGTTG
GGAGCTGCTG
AGGAGTGTG
CAGCCATCTC
AGGCCGGGGG
1260

-52-
GGTGCAGGAA CTGCTGGGAG CTGAGCAGTG GTGCTGGGTG TGCCACCCCG TCTATGCTGT 1320
GCAAGGACATT GACCTCACCAG ATGAAATCAT TGTTGAGAAT AGCGCCAATTC ATTTCCGAGC 1380
AGGAAAGCCGG GACTACCCAGT TGAGAGAGC AGCTCCTGGT TCGAACTGGG TAACGAGTCT 1440
GCCCTAGGAT CTCTCACATC AGACTGATGC TCTCACCCGC AGCAATTAGT AGGTAGGCAG 1500
ATGTTTGCGT GAGCTCCAGC CCCTGCTGCT CGAAGAGAGT TGTTGCTAGG AGCAAGGTTT 1560
CCGGTCTCGG ATCCAGGTCA TCCCCAACCA GAGAAATTTG ACAGACATCT AGGTTGTGCA 1620
CAAGTCCTATG CGACATGCTG GTGTGCTGCA CTGTGCTGCTT CCAACTCTGG TCTTCTTTTG 1680
CCTCACCCTC TGTGAGAAGT TAGGCTGTTA TTTGAAGATC AGGGAAACAA GGGAGCGCGT 1740
TGGCTGCTTCT AACGTCACCA GCTGGAGGCA CAAATAATGC AGTGGCAGTC ACAGGATCT 1800
GGGGGAGGTC AGGCTGAGAG ACAGCCAGCT AGGCCCTCAG TCCAGGAGTG GAGACGGAGG 1860
ACTCTTCTGC TAAGGACCTG ACGACAGTGG TGGGCGAGC AGGCGGCGGC TCGGCGTGTT 1920
CAAGACCGCG ACAGTCTTAC TAAAGCAGCAG TACGCGAGGC AGTGTGGAGG TTCTCCACAT 1980
CAGTCCCTCT CAGGAGTACG AGGGACTCGG AGGGACTCGG TGAGAGATGC ATGGCTCTTG 2040
CCAGGGCTTC GAATCCCTCA TAGTCCAGGC CCTCTCGACA TGCTAGAGCA CACTGATGGA 2100
CCTCGCAGGT CCTCACGGCG ACCGAGAAGG ACAGCTTGAAG CAGCTCAAGG ATGAGAATG 2160
AGGCTGGTCG AGCAGAGAGG TGCTCTGTTG TGCTGTTTCT ACTGGTTGCT CCGTTTCTCT 2220
TCTCTTTTGT TTCCCTCTCT CTGACAGCGC GACCTACAT CAGGACAGGC TCCCTCTCTG 2280
GGTTGGTCGT ATGGCACTTG AGGGAGTTGG GACGGTAGTG CCGCGGTTAG CTGGGATGAT 2340
AGAGTGGGAC TGGTGGGACG ACATGGGAGC GACGGAGTG TGTTGCTGTA TCTCCGACCTA 2400
CCTGCTCAGG CTTCAAGGGG AACTGACTG CCGCCGACTT CTGGACAGCG GGGTAGAGG 2460
GGAGGCGAAT CGGATCACCCGG GCTAGAAGCG AGAAGCCGAG TCTCCTGTTC CAGTTTCAG 2520
GGACAGGTTT ACAATAGCTGG GTTTCTCTTT CCTCTCTTGC TTCTGGTAGA GTTACCGCAC 2580
GCTCTATGCG GAAGGCGAGG TGGGAGCTGG CACAGGGTGT TCTGCTGCTG GCCAGCCCGA 2640
GCCACTCAGG GCCACCCAGG GGCACCTCGA CGGCTGTTGG GCCATGAAAC TCTGTAAGAT 2700
GGCTCTGCTG CGTGTTGTAG TGCGCGAGGA GCTCGCTGCA GCTTCTGGCA TCTGGGCAGG 2760
GCATTGCGCA CAGATCCTCA TCCCCAGTGG CAGGGCGAAG AGAGTGCGGT CAGCTCGGGT 2820
CTGAGAGATG GTGACGTGGC AGCACTCTTG GGGTCGAGTC AGTCTGCTAC GGTGATCTGG 2880
CCTGGAAGTT CCAGAGTGGT TCATCCAGCG TCTCCAGGCG GATACCAGGG AACAAAGGCCA 2940
AGCTCTCAGC ACTGTCGACTT TGTGGCTACT TCTCTGTTCA TTCTGGCAGC TCTGGTTTTC 3000
AGGTGGCCCT CACCATGACG TTCACCTCGG CATCTCAGAT TTGCGCTTGG TCCCGGTTTCA 3060
CATAGTGCTG CGTGTAACAG TTATAGGCAC TCTCCGCAC TACTGCGAC TCTCTCTGTT 3120
TCTCAGATTG CCTGTACTTG GGGAGAGCTT CACCGTAAT GGCTCTCGGC CGGAGGATGC 3180
GAGACATGCT CGCTCTGCTG GGGGAGCTGG CACCATCATG ACGCTCTCA GCGCTTCCAG 3240
GATCTGACAG CTCTTGCTCT GTGACAGCGG CACGATACAG CACGCTCGCA AACCAGTGCGG 3300
CAAGACTGCTT CACATGCTTG ACAGCCACAT GACAGTGGG CGTTGGGGAG TCTCTGTTG 3360
TGCCCGCTGC GGGGCGCTCG GCAAGCTGAG TGGAAGTCTG TTGCCTTCTT 3420
GGAGCTGCGA GGTGGCGAGG GGGCGCGGG CGGGCAGCGG AGCGGGTTTG CTCGCTCCTCA 3480
GGATGCAAGG CTCGAAGAGC ACCCGAGCG CATGGAGCGG GAGGCGCGAG ATCTCAGCTT 3540
CATAGGCGAG CGGGCATTCC TTGGCAAGG CAAAGAGTTG GGTTGAACTA AGGCCGAGTG 3600
TTCATCGTTT CAGCTGAGCG ATCCTGCTAG TTGCGCTTATG CAGGCGAGTG 3660
CTGTGTTACA GGAGCGAGAC GGGCGAGAG AGGCCAGCG AGGGCGAGGG AAGGCGAGGG 3720
TCAATGATGG CGGCTGGGGC GGGCGGGCAG CGGGCAGCAG AGCGGGTTTG CTCGCGCGAG 3780
CTGGGATTC CACCTCGCGG GAGGAGATCA GCAGGGGAAA ACCAAAATAA AACGCTNATCT 3840
AAATTGGTTA AGGAGGTACC AGTTAGGAC CGGGCCAGGA CGACCGAGTG CTTGGGGAGG 3900
GGGCCTCCTG AGGTCTCAGAG TACCTGCTCTT GCCACCCCTG CCACCTGGTG AGCCAGTTAT 3960
TTTCATAGTC CTTTGTAGTG AACGGTCTGG CTCCTGCTCA TGGCCAGAA CACCTGAAGT 4020
AGGTCTCCTT CTCCACAGTC GTACTTGGCA TCAATCTCCT TGCCAGAGTC TCCCTCAGGG 4080
AGACGAAGGT CCTCTCTGCTG CCTGGCGTGG ATGGTAGTTA CCGATCTCGG 4140
ATCTTGGCGC CC 4152

(2) INFORMATION FOR SEQ ID NO:6:

(A) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3117 base pairs

-53-
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xii) SEQUENCE DESCRIPTION: SEQ ID NO:6:

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Description</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGATGCAAAG</td>
<td>ATTCGGCAAG</td>
<td>60</td>
</tr>
<tr>
<td>AGAACAAAGG</td>
<td>GAAGACGTTC</td>
<td>120</td>
</tr>
<tr>
<td>CTCCCGTCGA</td>
<td>GCCCCCAGG</td>
<td>180</td>
</tr>
<tr>
<td>AGGTGCTCAGG</td>
<td>AGGGGCGTC</td>
<td>240</td>
</tr>
<tr>
<td>TGGCCGTCCTG</td>
<td>CACTTCTCC</td>
<td>300</td>
</tr>
<tr>
<td>AGTGGATGCCC</td>
<td>TCACCTCACG</td>
<td>420</td>
</tr>
<tr>
<td>ATCTCGGAGT</td>
<td>TGGAGGCGGC</td>
<td>480</td>
</tr>
<tr>
<td>GGATTATTAA</td>
<td>ACTTTACTT</td>
<td>540</td>
</tr>
<tr>
<td>CAGCTGACCA</td>
<td>GGCAAAAG</td>
<td>600</td>
</tr>
<tr>
<td>AGGCAGGCCC</td>
<td>CACTTATCTT</td>
<td>720</td>
</tr>
<tr>
<td>TCCCCGCC</td>
<td>CCACCCGAAA</td>
<td>960</td>
</tr>
<tr>
<td>AGTGCAGCTG</td>
<td>TGGAGGCGGC</td>
<td>1020</td>
</tr>
<tr>
<td>ATATCCTG</td>
<td>CCCCACCTT</td>
<td>1140</td>
</tr>
<tr>
<td>GGGCACTGG</td>
<td>TGGAGGCGGC</td>
<td>1200</td>
</tr>
<tr>
<td>TGCCGCTTGG</td>
<td>GGGCCATCC</td>
<td>1260</td>
</tr>
<tr>
<td>CGGCCGACTG</td>
<td>AATGGTGGTC</td>
<td>1320</td>
</tr>
<tr>
<td>CTACGAGGAG</td>
<td>CCAGCAGCG</td>
<td>1380</td>
</tr>
<tr>
<td>CTACGACCA</td>
<td>ACAGCGACG</td>
<td>1390</td>
</tr>
<tr>
<td>GTGAGCTGGA</td>
<td>CCAGACG</td>
<td>1440</td>
</tr>
<tr>
<td>CAGGACGAGG</td>
<td>CAGCAGGAG</td>
<td>1560</td>
</tr>
<tr>
<td>CTCACTTGGT</td>
<td>CAGCAGGAG</td>
<td>1680</td>
</tr>
<tr>
<td>AGAGGAAAGG</td>
<td>TCCCACCTT</td>
<td>1740</td>
</tr>
<tr>
<td>CGCCGATCCC</td>
<td>TGGAGGCGGC</td>
<td>1800</td>
</tr>
<tr>
<td>ATCCTGGCAGG</td>
<td>CCCCACCTT</td>
<td>1860</td>
</tr>
<tr>
<td>TCATGCGCTG</td>
<td>CCCCACCTT</td>
<td>1920</td>
</tr>
<tr>
<td>ACCGGAGCT</td>
<td>CCGGGCTGCG</td>
<td>1980</td>
</tr>
<tr>
<td>AGCTCGCC</td>
<td>TCAGGACG</td>
<td>2040</td>
</tr>
<tr>
<td>TGATTGGG</td>
<td>GCCACCCGA</td>
<td>2100</td>
</tr>
<tr>
<td>GTGACGTG</td>
<td>TGGATG</td>
<td>2160</td>
</tr>
<tr>
<td>AGGACGGAAT</td>
<td>CCCCACCTT</td>
<td>2220</td>
</tr>
<tr>
<td>AATCTTGTG</td>
<td>CCAGACG</td>
<td>2340</td>
</tr>
<tr>
<td>AAGACCATC</td>
<td>GAGGACGCC</td>
<td>2400</td>
</tr>
<tr>
<td>TGCTGCGCC</td>
<td>GAACTCCAG</td>
<td>2460</td>
</tr>
<tr>
<td>TGCTGCGCC</td>
<td>GCACTTTT</td>
<td>2520</td>
</tr>
<tr>
<td>ATGCTGAGT</td>
<td>TCCCACCTT</td>
<td>2580</td>
</tr>
<tr>
<td>ATGTTTCTT</td>
<td>TGCTGCGCC</td>
<td>2640</td>
</tr>
<tr>
<td>ATGTTGATAC</td>
<td>GAGGACG</td>
<td>2700</td>
</tr>
<tr>
<td>CCACGAAGCT</td>
<td>CAGAACG</td>
<td>2820</td>
</tr>
</tbody>
</table>

-54-
AGCCCAAGAG GGAGGTGAAAG GAGCCCAGGAG AGGGAGGGGA GGAGGAGGTG CCAGAGATCC 2880
AAAGAGAAGGGA GGAGCGCGGAA GAGGGGCGAG AGGGCAGCAG GGCGGCGAAG CCAGTCAAGG 2940
CCACGCAAGAC ACTACACGGCC AGTGGACGCG CCGATGACAT CCTCAGCTCTG CCGAGCCAGC 3000
AGTCTAACCGC CTACCGGCTTGG AGGCGTGGG CAGGCGTGGAG AAGCGCAAGG AAGGGGACAG 3060
GGAAGTCAAGG AAGCGCCACTA CTTTTCCTGCA AAAAAAAAAAAA AAAAAACAA AAAAAACCTT 3117

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 3306 base pairs
(B) TYPE: nucleic acid
(C) STRANDINESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GAATTCGGCA CGAGTGTAGT TTGCTGTGGA ACACAGAGGC TGGGACTCCC ATTCAGACAA 60
CGAGCGATAC AGACACAGCT TGCGTCTATAA GGGATCCCAA CAGGTGATTG GTTCTTAATC 120
TTAATCTGCTT AAACAGCTCTT CAAGATGATA AGTCCTTGG ACTGCGGAAG ATTTTTATGT 180
TTAAATCTGCTT GCGCAAGACT CCAGCACTTC GAGCCGATCT GGGAAACCAT CCTCTCTGCT 240
GTGAGCAGA AAAAAACTTTT GAGAGCTCAG AAGATTTGAA GGGCGAGAGC CAGTGGAAAG 300
TTGAGAGAGG CTCCTAGCCT TCCACAGCTC TCTCAGCTAT AAGGGGCAAC 360
CTCTCCTGTA AAGTATCATC TTGCTGTGTTA GAGTGCTTTT TCTCTCCCTTT GATGAGTATG 420
ACTCAGGGCC CCTCAAATTC ATGCATCAAG ATACAGACGT TGGCGAAGGC ATCGGAAACA 480
CTCTCCTGTTG GGGCTTGGTG TGTTTCTTCT TCCAGCTCAG TCAGGCTGCTA 540
CGAGCGCTGG TGGGAAATAG TACAGGCTGA CTGCTCACAG CACAGTGGCC AAACCTTGG 600
CGCTGGCTTG CAGCCCAAGA TAGGGGAAGA AGAGGAATCT TATTTTGTCAT 660
CTCGCTGGTTA AAAAAATTTT TCTATTGTA AAGGCTAAGC CTGATGCTATC 720
GCCATGAGG TGGCTGCGCA TGGTATCTGGA ATGTCTCGCTA 780
TGAGCTGACTG ATGTTGTGAA ATGTGCAAAG GATGCTCCAT CACACAGCATC 840
CTGTTGTAGT TGACAGATAA TCCGGCTCAG CAGGGATTTA GCTTCGCTGA 900
AGCTGTTATG CTGGAGAATT CTGGTAAAGGCT CGGCTGCTTG 960
CTGTGAGTGGG AGAGCCAGAG CTGGCAACTT GGATAGCTGT GAGGCTCGGGC 1020
ACACATGGTG GACGGCTGGG GAAATACATT TTACTTCCGA GGGTCTGAGG AAGGCTTCCT 1080
CAGATCCTCTT CAGGACTGCA GGGTTGCTTC TCTCATAGCA GAAAAAGGGG 1140
AACCGTAGG GATTCCAAA GAGCTGGCCT CTGTACATCT GAGGACATCT TGTGAAATGG 1200
GTTGTTAAAA AATGGAGTCTG ACGGGGAGG AAGGCTACAT TAAATTGTAG CAGGGCTCCAC 1260
CAGACTCTTC CTTCTCATTG GACGGCGCA CCCGGCGGCA ATATTTCTCA AAGGAGACT 1320
CAGATTGTTC ACCATTGTTG GAGTTGGGAA CAGCAGTGTG CCGCCGAGCTT 1380
CTGTGATTATG AGCTCGGGAATA CAGGCGGATG GATGTTGAGG 1440
ACAGTCTGACA CTTGAGAGCC ATGACTCTAG GGGGAGACC GGGAGATCAT CTGAGAAATG 1500
TCTGCAAGTG CTTGCGGCGG CAGGCTGGCA TGAGCGCCGG CCGTCCAGAA GCGGCGGCTG 1560
GTGCTTGGCG CAGGCGACTG AGGCGGAGG CAGCAGCTGGA GAGGGCGGCTA 1620
GAGATGCGAT AATGCTTTGC ATTGCGCATT GAGGATGATT GAGGGCGGCTA 1680
AAACAGCACC ACCATCCCGC TTACCTGGAGC GGGAGAGCA AAGTAGAACG AAAAAAACATG 1740
CTACGAGGG CAGGGCGGAC AGTTGAGAAC GACACCTGGC GAGGAGAGGA 1800
CCATGAAGAG CAGAGGAGAT TGACTGAGGC AGTGGCAACA CCCAGGCCAG AGACATGTCTG 1860
TTTGGATGCTG CTTACTTGGC AATGACAGTG CTGCCAGGAGC ATATGAGCGC 1920
TGCTTTTCTG CAGATCGTCTG GGGAGAAATG AAAACGTCCGG CCGGCGCGTG 1980
TGCTGAGTAG CAGATGAGTG GTCGGAAGAA CCAACAGAGG CCTGAGGTTA GTGCAAGCGG 2040
TCTGCCGGGT GATGGCTAAGA ACGGGGCCCT TTTGTCCCTCT CAAAATCGCA CTGAGAATG 2100
AGAGTGCTGAT CAGTGGCTGG TCAGGGCGGG AAGGCGGGCC AAAAAATAGG CCCATGCTC 2160
(2) INFORMATION FOR SEQ ID NO: 8:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 4218 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xii) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

GAATTCGGCA	CGAGAATGGA	TCAACCTCAA	CACACGCTTA	AAGCTAGACG	AAAGAAGTAA
TACACAGTGT	ATGAGTCTCA	CATGAAATAC	CCGATGTTTA	ATCCCAAGAA	ACAGAGACGA
GATTGCTGGT	TGCCAGGGAC	AAGGGCGGTG	GGAGGAAGAA	ATGGAGATA	ACAGGACTT
ACTTTTGAGG	TGATATGTGG	GTTTCTGTA	TAGATAGAAAG	TGTGTAATGT	AGACCATTT
GGAATTCTA	CCACTTTAGT	GTCATCTAA	AAAGTTAATG	TATGTGAAGT	GCATCTTTA
TAAAAACAAG	GATAAGATTAC	CAACCTCGGA	ACATATCTCT	TCTTCTCTCT	TTAGTGTCAG
GCCGGTGTTA	GAATTCCTAT	CCGGTGTGTG	CACTGCTCCT	AAGAGTGTGA	GAAATCAGGA
CGCACTGTTA	AGAGGGAGGA	TAAACCATGAT	TAAAGTGTGAG	CTGTTTCTAG	TTCTTCTCTT
ACAATTTAC	AGATGGAATAG	TGCCACCATC	TACAGTATGG	AAAAACAGG	GGAAGGAGA
TTTGCGGGAT	AATTTAAGGT	TGCTTGGGTC	TCGTGTTTTT	CAAACTGAGT	TAAAGAAGCA
TATGCTTAGT	CCATGCTGGC	GAAACACTAA	AACAGGAATA	GATGCAAAAT	TATTCATCTT
GATGCTGCTT	CTCAAGGATG	GTCGCTGCAT	TTGGTTGCTT	GTGCAAGATA	CAGATAGGCC
AATCTTTTCC	TGAAGCTTCA	AAGCCCTGAA	CGTGAGGAGG	TGAGCCAGTT	CCGATTTGTT
TAGAACACATC	CTAGTCTAGT	CCAATGCTCG	CTCATATAAT	TAATATCCTA	CCAAATATGG
CTCAATTGTC	CCGTTTGGCA	TCGAGAGGTC	AAGGCCTCCT	TAGGATGAGG	AAACATTGCC
GACCTTGCTC	TGAGGGAGGA	GAGGCTCCCT	TATTAGAGGG	AAACGATCAGG	GAACAAATCT
TCTGCTAAAT	GCCTGGCTCT	CATCAGCTAG	TTGAACAGTG	GGCGCCAGAA	GCAAAGACTC
AACAGCAGCAT	CTCTGCTGCTC	AAGGGCGGGGA	TGGGCGGAG	TGCGGCGGAG	TGGTCTTGAG
GATGGAATGA	ACTGCTTGTGA	AAGGGCGGTT	GTGGTTATGC	AGGAATGCTG	TACAGATGCC
CTAGATTACT	GCAGGGTCG	CATGGACGAG	GGGGCGCTCA	CACACCCCGG	CCGCACCCTC
GACCTGTCAC TCCGACACT GCCATCAGA CAGCAGCTTC GAATTTGATG CCGTGATCTG 1320
CGTTGACTTC GGTCATACCC ACTGGCTATG AGACAGTCTG CAGGATGTTG GGGCTTCTTT 1380
AAAGCAGGAGT CTGACGCTGT AGAGAAGTGC ATGGGTACCA TCAAGTCAAG TGACCACCCTG 1440
GATGAGGGCC TCCCCACCTT CAGCAGGATC AGTCGCGGAT GGCTAGCCGG TCCGATGCTT 1500
GGCAAGTCCT ACTCTGCGCT GTTGCCGAGC CTGGTACGCT CATCTCTACA GAATCCGAGA 1560
AAAGGTACAGT CTCCTGATTT GAGGGTCACT CCGATTGATG TGCAAGGAAG CTTCCGGGA 1620
CAGCTAGCGC AGCTCTGTTG TCTTCTGCCC GACTACTACA TCCGCGAGCC CTAATTTCAG 1680
AAGGCAGGCG AGCTTGAAGG GAGTCAATGA CCGAATCATG TGACCAGGATG TTATAGCAGA 1740
CAGCTGTTTC ACAGCTTACG CGAGTTTAGG GAGACATGGA TCAGTCAAAA GATGGGAGGC 1800
GCCTGGACGC TGAGGCGCGA CAGAGGATGG TGAGGCAGCG TGGACGTCG CTGACCCCGA 1860
TTCAGACGTC CTACATCCGG CGGCGGCTTG CTCTCTCAAC GCCGTTTGGC GCCCACAAAC 1920
CCACCACGTC TGGCAGGGCC CCGCCGCCC AGCGGAGGCG CCGGGGAG 1980
ATCATCAACA CCTTACAGAG GGGTGGCGAG AGTGGGAGCC CTTTCAAGGC CAGAGGCGAG 2040
CCCCGATCTC TGTTGGCAAG GGCGACATCG GCTGAATCAG ACAGCTTGGA TGAGCTTGCA 2100
CCGCTTGCTA TCTTGGAGAA GGCACCCAAG GTGAAATCTA ACAGTGTTG TGACCTTGCA 2160
AGGTGTTAGT GTGATGTTGC ACGTATGACA CCCACACAGA AGTAACTGAG TGACCCCTTG 2220
CAGCTGCTGC GAAAGGGCAAG GGGTGGCCCT GCCGGCCGGG CCAGGACACT CTGTTGACTT 2280
GAGCGGTGCG AGAACGGCGCT GTTACAGTCA CTGAGAAGGG TGTCGATGCT CGGCGACTG 2340
GGAGAGACGC TCGGACTCCT GGCGTACGGC AGGGCAATGG AGCCGCGCAT TCGGACTCGG 2400
GTATCAAGCA GCCCGAGAT TGCTGTTAAC TATGCTCATG TCTCTGAGGA GGCAAATGTC 2460
TTCAGAGGGA ACGACGCGCT GGGTGACGCG GGGATCTGC TGGGCAAGTG GCCAACAGTG 2520
TCCAGACACT GTGAGCGCTT GCGGGAGCGT CGGATCTGC GCCATGGGCG TCCGACAGTG 2580
GAGCCGCGTT GGGAAGGTTG TCGAGACGCT GCGGGGCAAA ATATCCGCAAG 2640
ACCTTGTAAC TGGCCATGGC AGACGGTGAG GAGGAGTGCC GCTGGCGGCC GAGGCTGCTT 2700
GCCCTGTTAG AGCGCGCAAG CCGGCGCGCG CAGGCGATAG CAGTGGTCAC 2760
ATCTACATTG AGGCGGCGGC CGGAGATCTG GGCTTACACC ACACCGCGCG AATCTCACAG 2820
AAGGCAGATTT TGAGCTGCTCC AGCAAGGCGAC GCAGGCTGAG TGGTGGCGAG CTGTTGACAG 2880
ATGATGAGCA AGCTCGGGGA GATTGAGCAC GCCGGCGCAG TCTACACGTT CTGCTGTCGC 2940
ATCTGTTGAC CGCGAGACGC CGCGGCTTTC TGCCAGAGCT GGAAGAGCTT TGAGCTTGCG 3000
CATGAGCATT CGAGGCACTT CAAAGAAATT TGCGGATTCG GGGAGGGAAG CATCAAGGAA 3060
TACACGCAGC AGGCACTGAC TCAAGCCGTC AGATGTCGCA AGGTTGGGCG GACGGGCGAC 3120
GGACCCGCTG CTGAGCTGTC CCGGAGGATG AGTGGAGCAG AGACATGAGA CTTGGCTGGA 3180
GACCCGCGAG AGCACTGCGC GGTAGGAGGC GAGGCTGAGC AGCCCTTGGG CGCCCGAGAC 3240
AAGAATGCTG CTGGGTCAGG TGACGAGTTT CCCAGGAGCG GCACGAGCAG 3300
GTAAGGCTCCA CGCGGCTGGA TGGCCTGGAG GAGGAGAGAT GAGAGGAGAT CTGCTGCGAG 3360
CCACAGGAGG TGGGACACTT GCACAGACGC GCCGAGCCGT CAGTTTTGAG GAGCTGAGCT 3420
GAAGATGCTG CGCTGCTTCTC CGCTGAGATT CGCGACAGC AGAACGCGGC CCCGACATC 3480
TTGCTCTCAA GTTGTCTTCT CGGATCAGCA ATGTGTCAA GGAATCTCAA ATTTCACAAA 3540
GTTTGAGATG TTGGCATTGG TGCGCTTGAG CTGTTGTCCT CTTCTTGACT TGGTTTCTCC 3600
CTACATCACT CCAGGAAGATG TGAGGCTGCT CTTCACTCAG CAGATCTCCG TTTCCGAGCG 3660
CCAGCGGGAT GTGCTGCTGG AGGCCGACAT GCTAGGTTGT AGCGTGGCTG TGCGCTCCAG 3720
GCCCTGTTG GAGAGAAGTT AGGCCTGTGG CCTGCTTGTC TATAGTCAGG AGCAATGCTT 3780
TGGAGACCTA GAAAGAGCGT ACAATTCCTT TGGGTGCAAG ATGGGCTTAG AGTCGTTTCG 3840
CTGAGCTGGG ATCAGGGCCT TCTCCTCTGC CAGTGTCAAAG TCCAGGCGCG AGACTGCTAA 3900
ATGGGAGACA CAGCAGTGGC CAAAGAGATG TCGCGCTTGG AACCGAGGCT CTTCTTCTCT 3960
CTCTAGTCTC TCCAGGTGTT CAGATGAGCG GAGGCTTGGT TGAGAGAGTT TGAGGCTGCT 4020
GGTTCTTACGC TGGTTTGGTT GCTTTGTTTT GAGGGACATT AGAAAGCAGA CGCGAGGACT 4080
TGCTCTGCTC CTGCCACAGC CGGAGCGACT TTCTTGAAGA TCTGTTGAGA TTCTGCGAAGA 4140
GCAGAGCTGC GCCAGGCTGC AGAGGAGGGT GTGACGTTAAG CTTGCTACGC ATAGGCCGGG 4200
TGCGTATTGG AGAGAGCT 4218

(2) INFORMATION FOR SEQ ID NO: 9:

(1) SEQUENCE CHARACTERISTICS:

-57-
(A) LENGTH: 1187 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GAGCTCGCGCC GCCTGCAGGT CAGCACATGT GGAATCCAAG AAATCAGGAC GAGGAAACT 60
CAACGGGTTA CAGGAGGAG CAGCGTGCTT GGTGGGAACG CCCCTCCTG 120
AGGAGCCTCC TTGACGGATG GCAGAAATG TGGATAGCTT GGGGAGGAG 180
CAGTGCCTGGA GGGACTGAC TCTGGCATCT CTTGGGAGGC TGCTGGGATA GACCTGGGCA 240
TCTTCCCAGGA ATCAGATCTA AAGGATGCTG GAGGATGAGT GATAGACTGG GAGGACGATG 300
CTGTTGCTTT GCAGATCACG GTCGCTAGAG CAGAGACCCA GCAGCCAGAG GGTGTTCAGA 360
GGGGCACAGA TGCCCTGCACT CTCGCTTGAAT ACACATGAGC CGGACACTAG TTCCTTCTAG 420
AGGCTACTGA GCTGGAGATG TCTCTGGGCC AGAGGACGAT GAGGTTAGCT GAGGAAAAG 480
ATGCTCTGCAG TCTGAGCCAG ATCCACGGCT GCAGAAGCC ATGACCGAGC 540
AGAAGATGCG TACATTGTGC TCGAGCGTGT AGGATCTGAT TGGGAACTC ATCCAGTCTT 600
AGCTGCAACA CCTGTTTATT ATCTCCTGCC CACCAAGGTA TGTTGAGGCA GTGACTGGAAT 660
TCCTCCAGCA AAGCGTGGAG CATCCCCAGC TGCTGGTTCT GAAAGAAGAG CTGATGGTGCG 720
AGAAGCGCAA GGGAGCCTTG GAGGAGAGCG GCCTGATGGA GCCTAAGCTG GACAGCTTAC 780
TGAGAAGAAC CAGAGAGAGC TGAGAAGATG TTGAAAGCTG CATCCAGGA AGGTACAGCG 840
GGGCGCCCTGT GAACCTCTGA GGACCTCTCT GCTGACTCAG TGCTGGCCCA 900
TCTCTCTCCC AATGGTAGATG GAGGATGGCT CAGGCTGATGGT GCTTGGTCTTC 960
CAAAGACCAA GACGCTGAGC AAGTGAGGAA GCCACAGGA GAAAGCGGCA CACAGAAGATG 1020
ATCTGGCCAC TCTCTACATT ATGCTTGGTTG ATGGTCTGTCA TGGTCTTAC 1080
GGGAAAAAC ACAGATGTAC CTCAGTCTTA GTATACCGCA AAAAGCTTCT CGAGACTACT 1140
TCTGAGCGGG GCAGGGCGCC ATCAGATTTTC CACCGGGTTG GGGTTACC 1187

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 3306 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CCCTCACTAA AGGGAACAAA AGCTGGAGCT CCAGCCGCCTG CAGGTCGACA CTAGTGATGC 60
GAAAGTTGCTG TACCGACAGC TCAGAACATT AATCGTGCCTG ACCGTAAGAC ATTTGGCTCA 120
TCTAGGATATG AGTGCCTTGG TTGCAGCCGA GCAATCGGCA TGAGCCGTTT GAGGACCTG 180
GTGCCTGGATG CTAACTTGGCT ATCCGCAGCG CAGCATGCTG TCCTGGCCGG GCTAGGGCC 240
ATCACCCGCCA CTATATCAGG GATGCAAGTG ATCAGCCAGA GTTGTAGCTG TTGGAGAAGG 300
TTGAGGCTCG CATCTTGGATG GGGCCTGATG CTTCTCCAG CAGAGCAGCC GCCACATTCT 360
ATCAAGATCT CATACCTAGC TCTGCTGTAT GTTCTAGCATG CAGAGCGGAG CAGGCAAATC 420
AGGGGAAAGT GTCGAGTAA GTGATGACCG GGGGAGGACG AAGGACGATG ATGGTCTTCTC 480
TGCTCCGAAGT GAACTCCAGT TGCCGATATC TACTACAGGA ACGGACGTG GAGGACGCCA 540
CCCACCCAGG CTCTAGTGG CAGTGGGAAG CAATGCCGCC ACGACCACAT ATTTGGTGA 600
AAAGAGCTTT GCAGCTATTT TCCACATCTTA AATTCCGGAA AGGACCCAAT CACGGAGAG 660
CTCTGCTGGAT CGATTGAGAC GGCTGGGGCC AGCAAGCTGG GGGAAAGGTC CAGGCGGCCA 720

-58-
GTGGGCCCA GGTAGCAAGG GCGGCTGGCC TGGAGAAAGC CATGCTGGCA TGGAGCGGGA 780
GCTGGACAGT GTTGGCTTGG TTTGCCCTCC GGGCAGCTGG GAGTGTCGCG GGTCCAGGCT 840
GGATTTCGCT AGGGCAACAAT CTCACAGGTT GCCAACCCTG GTTTTAGGCT CCGTGGTGGT 900
TAAATCCCATTA AGGGGGCGTG GAGGGGCAGT AGAGAGGATG GCAGGCACAGT ATGGCCACTC 960
CGTGGTACGAG AGCGATCCCT TGGATTCTTA CAAATTAACT AAGTGTCGCG CCGAGGCGGC 1020
CGGGCGCGCG AGGGCCCAGC CGGGCGCGTT GGGCGCGGTC GGGCGCGGTC 1080
TGTCGGCGGC GTGGCGCGCG TCCTGGCGTC GCCTGGCGTC GGCGCGCGGC 1140
CGCGCGCGCA TGGTGGCGAG CGACCGGCGT CCCCGGCGCC GTGGATCGCC CGCGGCGGCG 1200
GGGGCGCGAG AGCTGGGCGT GGCGGCGGTC ATagTCATGAA TAGTCATGAA 1260
ACGAGCGGCCC CGCGCCGCGG ACAACCCGAA CGCGCCGCGG GTGCGCGCAG 1320
GGACACGCGG CTGGGACAGG CCTCGGCGGT CGCGGCGGTC GTGGAGGAGT 1380
ACATCGGCATG TGAGATAGTC TAGACAAAGG AAAATGCAA AAGCGAGGGG 1440
AGCGCTTAAGA GATGAGGAAG GTACCGAGGG ACCGCGGGAT CGAAATGGCG 1500
AGTTCCGCGA CGTGTACAGA AGTTCGCCAA GGGTGCTGCTA GAGTGTCGAC ATTACACAGC 1560
AGGTGGACCTT CAAATTATC TGGGCGGAGG TTTCAAAAGT GCCACCCGCC GTGCGCGTGT 1620
GGGTGGCAGG GAATCAGCAGG AGCAAGCAGT CAGCTCGGGG CAGACGTGCG 1680
TGACTCTCAT CGACAAACTC GACAGACCTC CAGTGTCTTC CAGTGTCTTC CTAGTTCTCG 1740
CTTCATCTCA GACAGCTGAG GCCTGGATCTA ACCCTGATAT CTTGTTGCTAT ATCCCTCTTTT 1800
TGAGTTCGCTA GCGCTGGCCG CAAGTGGGGG AGCTGGGCGC AGCATCGCGC 1860
CCGCTGGCCGG CGGGCGGGCC AGCGGAGGCG TCAGGAGGCG GCAGGCCGCC 1920
TGAGTTCGCTA GCGCTGGCCG AGCGGAGGCG TCAGGAGGCG GCAGGCCGCC 1980
CCGCTGGCCGG CGGGCGGGCC AGCGGAGGCG TCAGGAGGCG GCAGGCCGCC 2040
TGAGTTCGCTA GCGCTGGCCG AGCGGAGGCG TCAGGAGGCG GCAGGCCGCC 2100
CCGCTGGCCGG CGGGCGGGCC AGCGGAGGCG TCAGGAGGCG GCAGGCCGCC 2160
CTTCATCTCA GACAGCTGAG GCCTGGATCTA ACCCTGATAT CTTGTTGCTAT ATCCCTCTTTT 2220
CTTCATCTCA GACAGCTGAG GCCTGGATCTA ACCCTGATAT CTTGTTGCTAT ATCCCTCTTTT 2280
CCCAGCGCGG CACCATCCTC TCTAGGCTCT TGGGAGCTGC ACCTGCGACC GAGGAGGCC 2340
CTTCATCTCA GACAGCTGAG GCCTGGATCTA ACCCTGATAT CTTGTTGCTAT ATCCCTCTTTT 2400
ACTTGTCTCA TGAGAAGCCA GTTCTGTCAG ATCCCTCTTTT ACCCTGATAT CTTGTTGCTAT 2460
ACGAGAGAGA GGTTGGGCCC AAGCTGGTTG TGGAGGAGG CGAGAGAGA 2520
TGAGTTCGCTA GCGCTGGCCG AGCGGAGGCG TCAGGAGGCG GCAGGCCGCC 2580
GTGGAGAGAGA GGTTGGGCCC AAGCTGGTTG TGGAGGAGG CGAGAGAGA 2640
ACGAGAGAGA GGTTGGGCCC AAGCTGGTTG TGGAGGAGG CGAGAGAGA 2700
CAGGAGAGAGA GGTTGGGCCC AAGCTGGTTG TGGAGGAGG CGAGAGAGA 2760
CCGAGAGAGA GGTTGGGCCC AAGCTGGTTG TGGAGGAGG CGAGAGAGA 2820
ACGAGAGAGA GGTTGGGCCC AAGCTGGTTG TGGAGGAGG CGAGAGAGA 2880
CGTCCAGGAG TGACCCCGAG AAGCAGATCG TGTGACCATC GTGAGGTGAT GAGCAGAGG 2940
ACCCAGACTT TGGAGCCAGC AAGAGAATCA CACAGCGCGG CACAGCGCGG ATGGTCTCCG 3000
GAGTGACCTG TCGCCAGGTG ACTGACAGG GAGGAGGCC TGGAGGAGG CGAGAGAGA 3060
CCAAGCTGCC TCTCCCGCGC TCTAGAAGCT AGAAGCTGCA GACAGCTGCA GACAGCTGCA 3120
TGAGAAGAGG GCAGGACAGAG TGGAGGAGG CGAGAGAGA 3180
AGGAGAGAGA GAAAACAA AAGGACTATC CAGTAGAGCT GAGGAGGAGG CGAGAGAGA 3240
ATGAGGGTTC CACCCCGGAGG GGTACAGAG TAAAGGATTC CAATTGCGCC TATATGAGGT 3300
CTATT

(2) INFORMATION FOR SEQ ID NO: 11:

(1) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

-59-
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

TGGGGGCA GAGTTGGCTG

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GCAGTCCTGG CCTGCGGATG

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GTGACAGGA GAATTTGTC

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

GCCTGGGTC GTAAGGGAC

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

TGGTCGGGTC TTTGTGAGTG
(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

CCTCTTCCGT CTCTCAGTG

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GGATTGCTAG TCTCACAGAC

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

TTAAGGCTGG CTGAAGGAC

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

ACCTTCCCTC CCTGTCACAG

(2) INFORMATION FOR SEQ ID NO:20:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

TGGTCGGGTG TTTGTGAGTG

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

ACACCATTCC AGAAATTCAG

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

AAACTGCAGG TGGCTGAGTC

(2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

GTCCTAATGT TTTCAGGAG

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

AAAACCTATG GTTACAATTG

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

TCCTAGACAT GTTCAAGTG

(2) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

GATAATAATTA GTTCTCCATC

(2) INFORMATION FOR SEQ ID NO:27:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

ATGCCGTGTTC CAGGCTGCAC

(2) INFORMATION FOR SEQ ID NO:28:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

GGACGGCGAC CTCCACCCAC

(2) INFORMATION FOR SEQ ID NO:29:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

GGGCTCCTCC GACGCTGAG

(2) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

AGTCTAGCCC TGGCCTGAC

(2) INFORMATION FOR SEQ ID NO:31:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

GTCACTGGG ACTCCGGCAG

(2) INFORMATION FOR SEQ ID NO:32:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

CAGCTTTCCT TGGGCACATG
(2) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

CACAGCTGTC TCAAGCCCAG

(2) INFORMATION FOR SEQ ID NO:34:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

ACTGTTCCCC CTACATGATG

(2) INFORMATION FOR SEQ ID NO:35:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

ATCATATCCT CTTGCTGTC

(2) INFORMATION FOR SEQ ID NO:36:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

GTTCAGGAG CTTGCTGTCG

-65-
(2) INFORMATION FOR SEQ ID NO:37:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

GTTTGGCAGA CTCATAGTG 20

(2) INFORMATION FOR SEQ ID NO:38:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

TAGCAGGGAG CCATGACCTG 20

(2) INFORMATION FOR SEQ ID NO:39:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

CTTGGCGCCA GAAGCGAG 20

(2) INFORMATION FOR SEQ ID NO:40:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

CCTCTCTCTC TCTCTCTCTC 20

(2) INFORMATION FOR SEQ ID NO:41:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:
TCCCCGCTGA TTCCGCCAAG

(2) INFORMATION FOR SEQ ID NO:42:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:
CTTTTTGAAT TCGGCACGAG

(2) INFORMATION FOR SEQ ID NO:43:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:
CCCCTGGTCC GCACCAGTTC

(2) INFORMATION FOR SEQ ID NO:44:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:
GGAAGGGTC GGGCGGCAG

(2) INFORMATION FOR SEQ ID NO:45:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

AAATCACA T GCGTCAACAC

20

(2) INFORMATION FOR SEQ ID NO:46:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

TAAAGAGTGC ATAGTTACTC

20

(2) INFORMATION FOR SEQ ID NO:47:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

GCTCTGAAG TACTCTCGAG

20

(2) INFORMATION FOR SEQ ID NO:48:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

ACTCTGGCCA TCAGGAGATC

20

(2) INFORMATION FOR SEQ ID NO:49:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

-68-
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:
CAGCGTTGT AGATTTCTG

(2) INFORMATION FOR SEQ ID NO:50:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:
AGTGGCAGGC AGAAGTAATG

(2) INFORMATION FOR SEQ ID NO:51:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:
GGTTGGAGAA CTGGATGTAG

(2) INFORMATION FOR SEQ ID NO:52:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:
CTATTCAGAT GCAACGCCAG

(2) INFORMATION FOR SEQ ID NO:53:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:
CCATGGCACA CAGACAGAC
(2) INFORMATION FOR SEQ ID NO:54:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

GCTACCATGC AGAGACACAG

(2) INFORMATION FOR SEQ ID NO:55:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

CAGGCTGACA AGAAAAATCAG

(2) INFORMATION FOR SEQ ID NO:56:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

GGCACCCATA GAGGAGAGAC

(2) INFORMATION FOR SEQ ID NO:57:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

TGGGTGATGC CTTTGCTGAC

(2) INFORMATION FOR SEQ ID NO:58:

-70-
(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 20 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

AAAACAAGAT CAAGGTGATG

(2) INFORMATION FOR SEQ ID NO:59:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 20 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

TTGCCACAT TGCTATGGTG

(2) INFORMATION FOR SEQ ID NO:60:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 20 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

GACCAAGATC AGAAGTAGAG

(2) INFORMATION FOR SEQ ID NO:61:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 20 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

CCCCTGGGCC AATGATGTTG

(2) INFORMATION FOR SEQ ID NO:62:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 19 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

TCTTCCCACC ATAGCAATG

(2) INFORMATION FOR SEQ ID NO:63:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

TGGTCTTGGT GACCAATGTG

(2) INFORMATION FOR SEQ ID NO:64:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

ACACCTCGGT GACCCCTGTG

(2) INFORMATION FOR SEQ ID NO:65:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

TCTCCAAGTT CGGCACAGTG

(2) INFORMATION FOR SEQ ID NO:66:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

ACATGGGCTG CACTCAGAC

(2) INFORMATION FOR SEQ ID NO:67:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

GATCTCTCTGA ACCTGACAG

(2) INFORMATION FOR SEQ ID NO:68:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

GGAAATGAGG TGGGCGATC

(2) INFORMATION FOR SEQ ID NO:69:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

CTTTGCCTTG GACAAGGATG

(2) INFORMATION FOR SEQ ID NO:70:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:
GCACCTGCCA TTGGGGGTAG

(2) INFORMATION FOR SEQ ID NO:71:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 20 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

GGTGAAGCC ATTAGCGGTG

(2) INFORMATION FOR SEQ ID NO:72:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 20 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

TGCTTCTCTC GTCGCTGCTG

(2) INFORMATION FOR SEQ ID NO:73:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 20 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

GCGGAAACTC TGTTGGCTG

(2) INFORMATION FOR SEQ ID NO:74:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 20 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

AGGATTGCGCT TCCTCCTACTG
(2) INFORMATION FOR SEQ ID NO:75:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

TGTCTGTITC ACCAGGCGAG

(2) INFORMATION FOR SEQ ID NO:76:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

CCAGTGCCCTC TATGCATGTC

(2) INFORMATION FOR SEQ ID NO:77:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

AGGAAGCCCA CGCACCAC

(2) INFORMATION FOR SEQ ID NO:78:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

CCCTTTGTTC CCTGATCTTC

(2) INFORMATION FOR SEQ ID NO:79:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

CGCTCGGGAT CCAGGT CATC

(2) INFORMATION FOR SEQ ID NO:80:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

TGGAGGTTCA GACGCT AGTG

(2) INFORMATION FOR SEQ ID NO:81:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:

TCTTGGAT CTGGCACCTC

(2) INFORMATION FOR SEQ ID NO:82:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:

CCATCAGAGT GAAGGAGGAG

(2) INFORMATION FOR SEQ ID NO:83:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xii) SEQUENCE DESCRIPTION: SEQ ID NO:83:

CCATCTTCCA CTGGTCAGAG

20

(2) INFORMATION FOR SEQ ID NO:84:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xii) SEQUENCE DESCRIPTION: SEQ ID NO:84:

CTCCTTCTCT TGGATCTCTG

20

(2) INFORMATION FOR SEQ ID NO:85:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xii) SEQUENCE DESCRIPTION: SEQ ID NO:85:

TTACTTCAGC ACTGTTAGTC

20

(2) INFORMATION FOR SEQ ID NO:86:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xii) SEQUENCE DESCRIPTION: SEQ ID NO:86:

AGGGAGTAGT CTCAAAGCTC

20

(2) INFORMATION FOR SEQ ID NO:87:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xii) SEQUENCE DESCRIPTION: SEQ ID NO:87:

-77-
TGGTCCACA GTCGCACAG

(2) INFORMATION FOR SEQ ID NO:88:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

CAACTCTGTG ATGGCTCCAG

(2) INFORMATION FOR SEQ ID NO:89:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:

AGCAGGGTTC TGTTCAAGAC

(2) INFORMATION FOR SEQ ID NO:90:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:

CCATTTGGTG CTAGTCTCTC

(2) INFORMATION FOR SEQ ID NO:91:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

CAGCCATGCT GTCCCAGCAG
(2) INFORMATION FOR SEQ ID NO:92:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:

CTGGACCTGA GGTAGCGCTG

(2) INFORMATION FOR SEQ ID NO:93:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:

ATAACCAACC TGAGGCACTG

(2) INFORMATION FOR SEQ ID NO:94:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:

CCTGCAGGTG CACACTAGTG

(2) INFORMATION FOR SEQ ID NO:95:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:

AATGGGAATG AGGAGGACTG

(2) INFORMATION FOR SEQ ID NO:96:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

GCTCTAGAAG TACTCTCGAG

(2) INFORMATION FOR SEQ ID NO:97:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:

ATTGTATGAC AATGCACCAG

(2) INFORMATION FOR SEQ ID NO:98:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:

TCCACAGAGG GCTTCATCAC

(2) INFORMATION FOR SEQ ID NO:99:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:

CCTGACTGSC CTAAGCACCAG

(2) INFORMATION FOR SEQ ID NO:100:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:

AAGCCTCATA ACCACCAGTG

(2) INFORMATION FOR SEQ ID NO:101:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:

TGTCAACGCT GACAAGGTGTG

(2) INFORMATION FOR SEQ ID NO:102:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:

TTGTACACCA GCTGCAGGTG

(2) INFORMATION FOR SEQ ID NO:103:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:

GGGTGTGGTG CAGATGAGTC

(2) INFORMATION FOR SEQ ID NO:104:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:
ATCACACTCT TATAGCTCAG

(2) INFORMATION FOR SEQ ID NO:105:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:
GTGGGAAGCT TTCCTCAGAC

(2) INFORMATION FOR SEQ ID NO:106:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:
TGATGAACAT GGGCCTGGAG

(2) INFORMATION FOR SEQ ID NO:107:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:
CATTGTGGAT GTACTACCAC

(2) INFORMATION FOR SEQ ID NO:108:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:
TGTTTTTGCA AACCTGAGTG
(2) INFORMATION FOR SEQ ID NO:109:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:

ATAGTGCCAC CACTTACGAG

20

(2) INFORMATION FOR SEQ ID NO:110:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:

AATTCGCAA CGTGATGGCG

20

(2) INFORMATION FOR SEQ ID NO:111:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:

CACAAGATGC CTCGTCCTGTG

20

(2) INFORMATION FOR SEQ ID NO:112:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:

AATCCGGACA AGGTACAGTC

20

(2) INFORMATION FOR SEQ ID NO:113:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:

GCACGAGTGG CACAACGGTG

20

(2) INFORMATION FOR SEQ ID NO:114:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:

GCAACGGTG GGTGTCAGTG

20

(2) INFORMATION FOR SEQ ID NO:115:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:

TGTITGAACA GGCTCTGGAC

20

(2) INFORMATION FOR SEQ ID NO:116:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:

CGGCAATGGCA ATGAGGACAC

20

(2) INFORMATION FOR SEQ ID NO:117:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:

AGGACGAGAT GGCACCTCCAG

(2) INFORMATION FOR SEQ ID NO:118:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:

CCCTCTGTCC TCTAGCCCAC

(2) INFORMATION FOR SEQ ID NO:119:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:

TCTTGAGGGG ACTGACTCTG

(2) INFORMATION FOR SEQ ID NO:120:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:

TGAGTGAGGA GGCAGATGTC

(2) INFORMATION FOR SEQ ID NO:121:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:
TGGCTTTGAA GAAAGAGCTG

(2) INFORMATION FOR SEQ ID NO:122:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:
GCAAAAGACC AGGCTGACTG

(2) INFORMATION FOR SEQ ID NO:123:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:
TGCAGCTCCT TGCTTCTTCTC

(2) INFORMATION FOR SEQ ID NO:124:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:
GATTCACGT CCCAAGGCTC

(2) INFORMATION FOR SEQ ID NO:125:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:
ATCTGGATGA GCCGTTGAG
(2) INFORMATION FOR SEQ ID NO:126:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:
GGTCACTCTC CGACGAGGAG

(2) INFORMATION FOR SEQ ID NO:127:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:
GGATCCAAAG TTCGTCTCTG

(2) INFORMATION FOR SEQ ID NO:128:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:
CGCTGTTGTT CTGATCCCTC

(2) INFORMATION FOR SEQ ID NO:129:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:
ATGAAGGTAA ACCCCGGGAG

(2) INFORMATION FOR SEQ ID NO:130:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:
TGGTCTCTGG CTCTGAGCAC

(2) INFORMATION FOR SEQ ID NO:131:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:
GCCTGGAGAA GCCCAGTCTG

(2) INFORMATION FOR SEQ ID NO:132:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:
CACACTCTGG ACCGTGCTG

(2) INFORMATION FOR SEQ ID NO:133:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:
AAAGCTCCGC AGCCGCAGTG

(2) INFORMATION FOR SEQ ID NO:134:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:

TCTTCAGGA AGCTGCGGTC

(2) INFORMATION FOR SEQ ID NO:135:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:

GATGGTGGGG CACGCATGAG

(2) INFORMATION FOR SEQ ID NO:136:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:

GTCACCAGTG GTGCCTGCAG

(2) INFORMATION FOR SEQ ID NO:137:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:

ACCTCACGCT TGCCAACCTG

(2) INFORMATION FOR SEQ ID NO:138:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:
CGCAACAGCG TCTCCCTCTG

(2) INFORMATION FOR SEQ ID NO:139:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:

AGTACCTTCA TAAGTTCTTC

(2) INFORMATION FOR SEQ ID NO:140:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:

TCCGAGACTT CAACCTTCAC

(2) INFORMATION FOR SEQ ID NO:141:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:

AAACATCTTC CCGGTCGGAC

(2) INFORMATION FOR SEQ ID NO:142:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:

GCTGAGCACC TTTACCTCAC
(2) INFORMATION FOR SEQ ID NO:143:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:
GACGTCCGTC CGGGAAGATG 20

(2) INFORMATION FOR SEQ ID NO:144:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:
ACACAGGAGA TGCAGGTCAC 20

(2) INFORMATION FOR SEQ ID NO:145:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:
GAGTCTTCCA TGAAGAACAG 20

(2) INFORMATION FOR SEQ ID NO:146:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:
GCAGTGAGGA AGGTAAGGAG 20

(2) INFORMATION FOR SEQ ID NO:147:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 4047 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA
(ix) FEATURE:

(A) NAME/KEY: Coding Sequence
(B) LOCATION: 378...1799
(D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:147:

```
GGATCCAAAG GACGCCCCCG CCGACAGGAG AATTGCTTCC CGGGCCGCG GCGATGCC
60
CCCGGTAGCT CGGGCCCGGTG CTGGGTGTTT TGTGATGGTT TCTGATGTTGG AGAAGGGAGG
120
GGAGAGGAAA GAAGAGGACAA CGATTTGCTT TCTTGCTGGG TCTCCTGCGCG GCTCTCAGTG
180
TTTCCTGCGAC TGAGGAGGAC GAAGAGGAGC GTATGCGGCC CCCCCTCCCG GCCGGGATTA
240
TAGTCTCTCG CCACAGCGCC CTGGCCCTCC CCGGGCTTTC AGAACGGCGAT TGCCCGAGTG
300
TTTGGAGAAT GAAGAGGAC ATGACGGCTGG ACCTAAGCTA AGGTATTTTTA TAGGCAACAC
360
CATTCCAGAA ATTCAGG ATG AAT GGG GATG ATG CCC CAT GTC CCC ATT ACT
410

Met Asn Gly Asp Met Pro His Val Pro Ile Thr
1  5  10

ACT CTT GGC GGG ATT GCT AGT CTC ACA GAC CTG AAC CAG CTG CCT
458
Thr Leu Ala Gly Ile Ala Ser Leu Thr Asp Leu Leu Asn Gln Leu Pro
15  20  25

CTT CCA TCT CCT TTA CCT GCT ACA ACT ACA AAG AGC CTT CTC TTT AAT
506
Leu Pro Ser Pro Leu Pro Ala Thr Thr Thr Thr Thr Lys Ser Leu Leu Phe Asn
30  35  40

GCA CGA ATA GCA GAA GAG GTG AAC TGC CTT TG GCT GTG AAG GAT GAC
554
Ala Arg Ile Ala Glu Glu Val Asn Cys Leu Leu Ala Cys Arg Asp Asp
45  50  55

AAT TTG GTT TCA CAG CTT GTC CAT AGC CTC AAC CAG GTA TCA ACA GAT
602
Asn Leu Val Ser Glu Leu Val His Ser Leu Asn Gln Val Ser Thr Asp
60  65  70  75

CAC ATA GAG TTG AAA GAT AAC CTT GGC AGT GAT GAC CCA GAA GGT GAC
650
His Ile Glu Leu Lys Asp Asn Leu Gly Ser Asp Asp Pro Glu Gly Asp
80  85  90

ATA CCA GTC TTG CAG GCC GTC CTG GCA AGG AGT CTT AAT GTT TTC
698
Ile Pro Val Leu Leu Glu Ala Val Leu Ala Arg Ser Pro Asn Val Phe
95 100 105

AGG GAG AAA AGC ATG CAG AAC AGA TAT GTA CAA AGT GGA ATG ATG ATG
746
Arg Glu Lys Ser Met Glu Asn Arg Tyr Val Glu Ser Gly Met Met Met
110 115 120

TCT CAG TAT AAA CTT TCT CAG AAT TCC ATG CAC AGT AGT CCT GCA TCT
794
Ser Glu Tyr Lys Leu Ser Glu Asn Ser Met His Ser Ser Pro Ala Ser
125 130 135
```

-92-
TCC AAT TAT CAA CAA ACC ACT ATC TCA CAT AGC CCC TCC AGC CGG TTT
Ser Asn Tyr Gln Gln Thr Thr Ile Ser His Ser Pro Ser Ser Arg Phe
140 145 150 155
GTG CCA CCA CAG ACA AGC TCT GGG AAC AGA TTT ATG CCA CAG CAA AAT
Val Pro Pro Gln Thr Ser Ser Gly Asn Arg Phe Met Pro Gln Gln Asn
160 165 170
AGC CCA GTG CCT AGT CCA TAC GCC CCA CAA AGC CCT GCA GGA TAC ATG
Ser Pro Val Pro Ser Pro Tyr Ala Pro Gln Ser Pro Ala Gly Tyr Met
175 180 185
CCA TAT TCC CAT CCT TCA AGT TAC ACA ACA CAT CCA CAG ATG CAA CAA
Pro Tyr Ser His Pro Ser Ser Tyr Thr Thr His Pro Gln Met Gln Gln
190 195 200
GCA TCG GTA TCA AGT CCC ATT GTT GCA GGT GTG AGA AAC ATA CAT
Ala Ser Val Ser Ser Pro Ile Val Ala Gly Gly Leu Arg Asn Ile His
205 210 215
GAT AAT AAA GTT TCT GGT CCG TTG TCT GGC AAT TCA GCT AAT CAT
Asp Asn Lys Val Ser Gly Pro Leu Ser Gly Asn Ser Ala Asn His
220 225 230 235
GCT GAT AAT CCT AGA CAT GGT TCA AGT GAG GAC TAC CTA CAC ATG GTG
Ala Asp Asn Pro Arg His Gly Ser Ser Glu Asp Tyr Leu His Met Val
240 245 250
CAC AGG CTA AGT AGT GAC GAT GGA GAT TCT TCA ACA ATG AGG AAT GCT
His Arg Leu Ser Ser Asp Asp Gly Asp Ser Ser Thr Met Arg Asn Ala
255 260 265
GCA TCT TTG CCC TTG AGA TCT CCA CAG CCA GTA TGC TCC CCT GCT GGA
Ala Ser Phe Pro Leu Arg Ser Ser Pro Gln Pro Val Cys Ser Pro Ala Gly
270 275 280
AGT GGA ACT CCT AAA GGC TCA AGA CCA CCT TTA ATC CTA CAA CCT
Ser Glu Gly Thr Pro Lys Gly Ser Arg Pro Pro Leu Ile Leu Gln Ser
285 290 295
CAG TCT CTA CCT TGT TCA CCT CGA GAT GTT CCA CCA GAT ATC TTG
Gln Ser Leu Pro Cys Ser Ser Pro Arg Asp Val Pro Pro Asp Ile Leu
300 305 310 315
CTA GTT TCT CCA GAA AGA AAA CAA AAG CAG AAG AAA ATG AAA TTA
Leu Asp Ser Pro Glu Arg Lys Gln Lys Lys Gln Lys Lys Met Lys Leu
320 325 330 335
GGC AAG GAT GAA AAA GAG CAG AGT GAG AAA GCG GCA ATG TAT GAT ATA
Gly Lys Asp Glu Lys Glu Gln Ser Glu Lys Ala Ala Met Tyr Asp Ile
340 345
ATT AGT TCT CCA TCC AAG GAC TCT ACT AAA CTT ACA TTA AGA CTT TCT
Ile Ser Ser Pro Ser Lys Asp Ser Thr Lys Leu Thr Leu Arg Leu Ser
350 355 360

-93-
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Description</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGT GTA AGG TCT TCA GAC ATG GAC CAG CAA GAG GAT ATG ATT TCT GGT</td>
<td>Arg Val Arg Ser Ser Asp Met Asp Gln Gln Glu Asp Met Ile Ser Gly</td>
<td>1514</td>
</tr>
<tr>
<td>GTG GAA AAT AGC AAT GGT TCA GAA AAT GAT ATT CCT TTT AAT GTG CAG</td>
<td>Val Glu Asn Ser Asn Val Ser Glu Asn Asp Ile Pro Phe Asn Val Gln</td>
<td>1562</td>
</tr>
<tr>
<td>TAC CCA GGA CAG ACT TCA AAA ACA CCC ATT ACT CCA CAA GAT ATA AAC</td>
<td>Tyr Pro Gly Gln Thr Ser Lys Thr Pro Ile Thr Pro Gln Asp Ile Asn</td>
<td>1610</td>
</tr>
<tr>
<td>CGC CCA CTA AAT GCT GCT CAA TGT TGG TCG CAG CAA GAA CAA ACA GCA</td>
<td>Arg Pro Leu Asn Ala Ala Gln Cys Leu Ser Gln Gln Glu Gln Thr Ala</td>
<td>1658</td>
</tr>
<tr>
<td>TTC CTT CCA GCA AAT CAA GTG CCT GTT TTA CAA CAG AAC ACT TCA GTT</td>
<td>Phe Leu Pro Ala Asn Glu Val Pro Val Leu Gln Glu Thr Ser Val</td>
<td>1706</td>
</tr>
<tr>
<td>GCT GCA AAA CAA CCC CAG ACC AAT AGT CAC AAA ACC TTG GTG CAG CCT</td>
<td>Ala Ala Lys Gln Pro Gln Thr Asn Ser His Lys Thr Leu Val Gln Pro</td>
<td>1754</td>
</tr>
<tr>
<td>GGA ATA GGC GTC TCA GCA GAG CTG CCC AAG GAC AAG ACC AAAG</td>
<td>Gly Thr Gly Ile Glu Val Ser Ala Glu Leu Pro Lys Asp Lys Thr</td>
<td>1804</td>
</tr>
<tr>
<td>TCCAGCAGGG AACTATGTAG TCACCCCCG AGGGCCAGCT CTCTCGTGG AAGCTCGGCC</td>
<td></td>
<td>1864</td>
</tr>
<tr>
<td>TAGGTTGGGG GTGGTTGTTG GTTCTTGGCG CACTGTCCCC CCTACTAGAT GGCTGCCATC</td>
<td></td>
<td>1924</td>
</tr>
<tr>
<td>CAGTTTGCCCT CTTCTACCTG CTCTTCCCC TTGGAGCCGT TGGAGCCGTT TCACTGCTCC</td>
<td></td>
<td>1984</td>
</tr>
<tr>
<td>CAGGAACTGTG TCTCTGATTT TCTCAGTTGA CAGAGTGGAT TTGAGCCACC TCACTGCACC</td>
<td></td>
<td>2044</td>
</tr>
<tr>
<td>CGCTCTTCTGC CCTGGAGATG TTATCTCTTG TCCTGGAGGA CAAGCTGAG</td>
<td></td>
<td>2104</td>
</tr>
<tr>
<td>GGGTCTTCTG TGGTGAGAC CCAGCTCTCC AAGCTGCTAG AAGCTGCTAG</td>
<td></td>
<td>2164</td>
</tr>
<tr>
<td>CAAGAGAGAG AACATGGAGG GGGATCTGGA TAAACACCTG GCCTTGCTTC GGTGCTCCAG</td>
<td></td>
<td>2224</td>
</tr>
<tr>
<td>CAGGAGAGAT GATGATGGCC CAAAGGACGT GATAGCTAGTG TGCTGGTGCT CACAGCTGCT</td>
<td></td>
<td>2284</td>
</tr>
<tr>
<td>CAAGGGCCAGG CTCCTGGGCC CAGGGCAAGC CCAAGGACTA GGCTCCAGAC CACAGCAAGC</td>
<td></td>
<td>2344</td>
</tr>
<tr>
<td>CAGGCACTAT CAGCTCCACC TGAGGGATCT TGGGAGGCTC GTGTTGGGTG CACAGGCTCC</td>
<td></td>
<td>2404</td>
</tr>
<tr>
<td>CCTCTGTGGG GAGAGACCC ATGGCAGAGG CTCAGCACC CTGATGATGG ATAGGCCCC</td>
<td></td>
<td>2464</td>
</tr>
<tr>
<td>GTGGTGTTG CGAAGGATAG ACCACGGCTG AGAGGGCTGA CGAGGAGAAG CTGCTGGCGT</td>
<td></td>
<td>2524</td>
</tr>
<tr>
<td>GCCCTGCCGC ACCCGTGCG GCCTGCTGC CAGAGGAGC ACCGAGGG TGCCGATGCC</td>
<td></td>
<td>2584</td>
</tr>
<tr>
<td>CGGGAGCCTC CACTCACTC TCTCTCTCCA GAGGGCATGC CACAGGCAAG</td>
<td></td>
<td>2644</td>
</tr>
<tr>
<td>CCTCTGTGAC GAGCTCACGC ATCTTAGAAC ATGGTGGAGT TGCTGTCTGC AACTGCGAG</td>
<td></td>
<td>2704</td>
</tr>
<tr>
<td>TCCGAGCACG TCTCGTGGAA AGGGAAAACA CTGAGAGCCT GCCAAGACGA TCTGAGATGC</td>
<td></td>
<td>2764</td>
</tr>
<tr>
<td>CAGCCCTCAA GGGCACGGG GGGGGGCGC GTGGGCGGTC CATGACCTG CCGCTGGGAT</td>
<td></td>
<td>2824</td>
</tr>
<tr>
<td>ATTCGCCATT TCTCGTAGCT TGGGCGGTCG AAGGGGGTGA GGGGGGCGC</td>
<td></td>
<td>2884</td>
</tr>
<tr>
<td>TGCGGTCTGC TACGCTGCAG GAGAGGACCT TGAGGAGCTC GCCATGTTAGA GGCTGCTGCT</td>
<td></td>
<td>2944</td>
</tr>
<tr>
<td>GCCACACATT TCTCGTGAA AGGGAAAACA CTGAGAGCCT GCCAAGACGA TCTGAGATGC</td>
<td></td>
<td>3004</td>
</tr>
<tr>
<td>GGGCTTAAAAA ATCTGTGGCT TCTCTGGCTC TCTGCTCTGG AATCTGGGGC TCTGGGCTCT</td>
<td></td>
<td>3064</td>
</tr>
<tr>
<td>TCGGGTGGTC TACGCAGCGT CACTGCTGTGCC ATCTGCTCAG TGGCAGTGGC TGGCAGTGGT</td>
<td></td>
<td>3124</td>
</tr>
<tr>
<td>CTCGCCAGGGA AAACCTGGGA AATCTGGGGA TGAGTTCATG GTCTAAGGCTGGC GACACCCGCA</td>
<td></td>
<td>3184</td>
</tr>
<tr>
<td>GCCACATTGGC TCTGCTCAGA AAGGGGGGCG GGGGGGCGC AGGGGGCAGC CACAGCAGAC</td>
<td></td>
<td>3244</td>
</tr>
<tr>
<td>CCTATGCATT CCTGCCCGAT CTTCCGGACT GAGGGGGGTT CTAGCTGCGC TTAGCTGCC</td>
<td></td>
<td>3304</td>
</tr>
<tr>
<td>ACCGTGCTGC CGGGCGCCAC CTCGGTCTCG AGGGGCTCAC TACGGGCGCG CCGGGGCGCG</td>
<td></td>
<td>3364</td>
</tr>
<tr>
<td>CAGAGAGAGA CTCCTGGGGA TGAGGAGCTC GCCAAGACGA TCTGAGATGC</td>
<td></td>
<td>3424</td>
</tr>
</tbody>
</table>
(2) INFORMATION FOR SEQ ID NO:148:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 474 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein
(v) FRAGMENT TYPE: internal

(xii) SEQUENCE DESCRIPTION: SEQ ID NO:148:

Met Asn Gly Asp Met Pro His Val Pro Ile Thr Thr Leu Ala Gly Ile 1 10
 5
Ala Ser Leu Thr Asp Leu Leu Asn Gln Leu Pro Leu Pro Ser Pro Leu 20 30
 25
Pro Ala Thr Thr Thr Lys Ser Leu Leu Phe Asn Ala Arg Ile Ala Glu 35 45
 40
Glu Val Asn Cys Leu Leu Ala Cys Arg Asp Asp Asn Leu Val Ser Gln 50 60
 55
Leu Val His Ser Leu Asn Gln Val Ser Thr Asp His Ile Glu Leu Lys 65 80
 70
Asp Asn Leu Gly Ser Asp Asp Pro Glu Gly Asp Ile Pro Val Leu Leu 85 95
 90
Gln Ala Val Leu Ala Arg Ser Pro Asn Val Phe Arg Glu Lys Ser Met 100 110
 105
Gln Asn Arg Tyr Val Gln Ser Gly Met Met Ser Gln Tyr Lys Leu 115 125
 120
Ser Gln Asn Ser Met His Ser Ser Pro Ala Ser Ser Asn Tyr Gln Gln 130 140
 135

-95-
Thr Thr Ile Ser His Ser Pro Ser Ser Arg Phe Val Pro Pro Gln Thr
145 150 155 160

Ser Ser Gly Asn Arg Phe Met Pro Gln Gln Asn Ser Pro Val Pro Ser
165 170

Pro Tyr Ala Pro Gln Ser Pro Ala Gly Tyr Met Pro Tyr Ser His Pro
180 185 190

Ser Ser Tyr Thr Thr His Pro Gln Met Gln Gln Ala Ser Val Ser Ser
195 200 205

Pro Ile Val Ala Gly Gly Leu Arg Asn Ile His Asp Asn Lys Val Ser
210 215 220

Gly Pro Leu Ser Gly Asn Ser Ala Asn His His Ala Asp Asn Pro Arg
225 230 235 240

His Gly Ser Ser Glu Asp Tyr Leu His Met Val His Arg Leu Ser Ser
245 250 255

Asp Asp Gly Asp Ser Ser Thr Met Arg Asn Ala Ala Ser Phe Pro Leu
260 265 270

Arg Ser Pro Gln Pro Val Cys Ser Pro Ala Gly Ser Glu Gly Thr Pro
275 280 285

Lys Gly Ser Arg Pro Pro Leu Ile Leu Gln Ser Gln Ser Leu Pro Cys
290 295 300

Ser Ser Pro Arg Asp Val Pro Pro Asp Ile Leu Leu Asp Ser Pro Glu
305 310 315 320

Arg Lys Gln Lys Gln Lys Lys Met Lys Leu Gly Lys Asp Glu Lys
325 330 335

Glu Gln Ser Glu Lys Ala Ala Met Tyr Asp Ile Ile Ser Ser Pro Ser
340 345 350

Lys Asp Ser Thr Lys Leu Thr Leu Arg Leu Ser Arg Val Arg Ser Ser
355 360 365

Asp Met Asp Gln Gln Glu Asp Met Ile Ser Gly Val Glu Asn Ser Asn
370 375 380

Val Ser Glu Asn Asp Ile Pro Phe Asn Val Gln Tyr Pro Gly Gln Thr
385 390 395 400

Ser Lys Thr Pro Ile Thr Pro Gln Asp Ile Asn Arg Pro Leu Asn Ala
405 410 415

Ala Gln Cys Leu Ser Gln Gln Glu Gln Thr Ala Phe Leu Pro Ala Asn
420 425 430

-96-
Gln Val Pro Val Leu Gln Gln Asn Thr Ser Val Ala Ala Lys Gln Pro
435 440 445
Gln Thr Asn Ser His Lys Thr Leu Val Gln Pro Gly Thr Gly Ile Glu
450 455 460
Val Ser Ala Glu Leu Pro Lys Asp Lys Thr
465 470

(2) INFORMATION FOR SEQ ID NO:149:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 2998 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA
(ix) FEATURE:

(A) NAME/KEY: Coding Sequence
(B) LOCATION: 26...799
(D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:

AAGCTTTTTG AATTCGCGCA C GAGAT GCT ACA CAG GCT ATA TTT GAA ATA CTG
 Ala Thr Gln Ala Ile Phe Glu Ile Leu
 1 5
GAG AAA TCC TGG TTG CCC CAG AAT TGT ACA CTG GTT GAT ATG AAG ATT
 Glu Lys Ser Trp Leu Pro Gln Asn Cys Thr Leu Val Asp Met Lys Ile
 10 15 20 25
GAA TTT GGT GTT GAT GTA ACC ACC AAA GAA ATT GTT CTT GCT GAT GTT
 Glu Phe Gly Val Asp Val Thr Thr Lys Glu Ile Val Leu Ala Asp Val
 30 35 40
ATT GAC AAT GAT TCC TGG AGA CTC TGG CCA TCA GGA GAT CGA AGC CAA
 Ile Asp Asn Asp Ser Trp Arg Leu Trp Pro Ser Gly Asp Arg Ser Gln
 45 50 55
CAG AAA GAC AAA CAG TCT TAT CGG GAC CTC AAA GAA GTA ACT CCT GAA
 Gln Lys Asp Lys Gln Ser Tyr Arg Asp Leu Lys Glu Val Thr Pro Glu
 60 65 70
GGG CTC CAA ATG GAA AAA AAC TTT GAT GTC GCA GAG AGA GTA
 Gly Leu Gln Met Val Lys Asn Phe Glu Trp Val Ala Glu Arg Val
 75 80 85

-97-
GAG TTG CTT TTG AAA TCA GAA AGT CAG TGC AGG GTT GTA GTG TGG AGT
Glu Leu Leu Leu Lys Ser Glu Ser Glu Ser Gln Cys Arg Val Val Val Leu Met
 90 95 100 105

GCC TCT ACT TCT GAT CTT GGT CAC TGT GAA AAA ATC AAG AAG GCC TGT
Gly Ser Thr Ser Asp Leu Gly His Cys Glu Lys Ile Lys Lys Ala Cys
110 115 120

GGA AAT TTT GCC ATT CCA TGT GAA CTT CGA GTA ACA TCT GCC CAT AAA
Gly Asn Phe Gly Ile Pro Cys Glu Leu Arg Val Thr Ser Ala His Lys
125 120 130 135

GGA CCA GAT GAA ACT CTG AGG ATT AAA GCT GAG TAT GAA GGG GAT GCC
Gly Pro Asp Glu Thr Leu Arg Ile Lys Ala Glu Tyr Glu Gly Asp Gly
140 140 150

ATT CCT ACT GTA TTT GTG GCA GTG GCA GGC AGA AGT AAT GGT TGG GGA
Ile Pro Thr Val Phe Val Ala Val Ala Gly Arg Ser Asn Gly Leu Gly
155 155 160 165

CCA GTG ATG TCT GGG AAC ACT GCA TAT CCA GTC ATC AGC TGT CCT CCC
Pro Val Met Ser Gly Asn Thr Ala Tyr Pro Val Ile Ser Cys Pro Pro
170 170 180 185

CTC ACA CCA GAC TGG GGA GTT CAG GTG TGG TCT TCT CTA GCA CTA
Leu Thr Pro Asp Trp Gly Val Gln Asp Val Trp Ser Ser Leu Arg Leu
190 190 200

CCC AGT GGT CTT GGC TGT TCA ACC GTA CTT TCT CCA GAA GGA TCA GCT
Pro Ser Gly Leu Gly Cys Ser Thr Val Leu Ser Pro Glu Gly Ser Ala
205 205 210 215

CAA TTT GCT GCT CAG ATA TTT GGG TTA AGC AAC CAT TTG GTA TGG AGC
Gln Phe Ala Ala Glu Phe Leu Ser Asn His Leu Val Trp Ser
220 220 230

AAA CTG CGA GCA AGC ATT TTG AAG ACA TGG ATT TCC TTG AAG CAG GCT
Lys Leu Arg Ala Ser Ile Leu Thr Asp Trp Ile Ser Leu Lys Gln Ala
235 240 250

GAC AAG AAA ATC AGA GAA TGT AAT TTA TAAGAAAGAA TGGCATTGAA TTTTTTA
Asp Lys Lys Ile Arg Glu Cys Asn Leu
250 255

GGGGAAAAAC TACAAAAATTC TAAATTTAGCT GAAGGAAAAT CAGCGAGAT GAAAAGGTAA
886
TTTTAAAATTA GAGAACACAA AAAAAATTTA TTTAGATAA AATGGTTGAG GTAGGCTAT
946
TCAGATGCAA GGGGAGCAAA ATGAGTTGCAA ATGGGTTGAT GTCAGCCGTT
1006
TTCTCTCGCA TGGGCGCCGA TAGAGGAAAG ACAAAGTGA TTAGACCCGAA CACCATGAG
1066
CCAGGGAGGT CGGGGAAAGG CTTGAGGAAAC CTTGAGGAAAC CTTGAGGAAAC
1126
GTCAGGGAGC ACACACAGTG GATGAGATTT GATGAGGATG GGTGAGGAGT
1186
AGCCGTTGGG TAGCGATTTG GAAGAAAGA CTTGAGGAAAT AGCCCGCTG TAGGAGGAA
1246
TAGACAGGAG AGCAATTTT GGGCCGTTGCC GCCCTCTTTCC CACCTAGGCA ATGCTGGGCA
1306
AAGCCTGAGC AGCCAGCGC CAGAAAGAA AGCCAGGCAG TGCAAGGAAG
1366
TGACAGACCTG CCAGTTGTTG CACCTGTGTT GCTGTCCTCC CCAAGTCTTTG TCTGATAGC
1426
CAAGTGAGGG TGGGAGACCG TCACCTGCTC TCTGACCGAA GAGTTTTCTG AAGCTGAGCAG
1486
(2) INFORMATION FOR SEQ ID NO:150:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 258 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein
(v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:150:

Ala Thr Gln Ala Ile Phe Glu Ile Leu Glu Lys Ser Trp Leu Pro Gln
 1 5 10 15

Asn Cys Thr Leu Val Asp Met Lys Ile Glu Phe Gly Val Asp Val Thr
 20 25 30

Thr Lys Glu Ile Val Leu Ala Asp Val Ile Asp Asn Asp Ser Trp Arg
 35 40 45

Leu Trp Pro Ser Gly Asp Arg Ser Gln Gln Lys Asp Lys Gln Ser Tyr
 50 55 60

Arg Asp Leu Lys Glu Val Thr Pro Gly Leu Lys Gln Met Val Lys Lys
 65 70 75 80
Asn Phe Glu Trp Val Ala Glu Arg Val Glu Leu Leu Leu Lys Ser Glu
85
Ser Gln Cys Arg Val Val Leu Met Gly Ser Thr Ser Asp Leu Gly
100
105
His Cys Glu Lys Ile Lys Lys Ala Cys Gly Asn Phe Gly Ile Pro Cys
115
120
125
Glu Leu Arg Val Thr Ser Ala His Lys Gly Pro Asp Glu Thr Leu Arg
130
135
140
Ile Lys Ala Glu Tyr Glu Gly Asp Gly Ile Pro Thr Val Phe Val Ala
145
150
155
160
Val Ala Gly Arg Ser Asn Gly Leu Gly Pro Val Met Ser Gly Asn Thr
165
170
175
Ala Tyr Pro Val Ile Ser Cys Pro Pro Leu Thr Pro Asp Trp Gly Val
180
185
190
Gln Asp Val Trp Ser Ser Leu Arg Leu Pro Ser Gly Leu Gly Cys Ser
195
200
205
Thr Val Leu Ser Pro Glu Gly Ser Ala Gln Phe Ala Ala Gln Ile Phe
210
215
220
Gly Leu Ser Asn His Leu Val Trp Ser Lys Leu Arg Ala Ser Ile Leu
225
230
235
240
Asn Thr Trp Ile Ser Leu Lys Gln Ala Asp Lys Lys Ile Arg Glu Cys
245
250
255
Asn Leu

(2) INFORMATION FOR SEQ ID NO:151:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1038 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:
Ile Gln Arg Phe Gly Thr Ser Gly His Ile Met Asn Leu Gln Ala Gln
1 5 10 15
Pro Lys Ala Gln Asn Lys Arg Lys Arg Cys Leu Phe Gly Gly Gln Glu
20 25 30
Pro Ala Pro Lys Glu Gln Pro Pro Pro Leu Gln Pro Pro Gln Gln Ser
35 40 45
Ile Arg Val Lys Glu Glu Gln Tyr Leu Gly His Glu Gly Pro Gly Gly
 50
Ala Val Ser Thr Ser Gln Pro Val Glu Leu Pro Pro Pro Ser Ser Leu
 65
Ala Leu Leu Asn Ser Val Val Tyr Gly Pro Glu Arg Thr Ser Ala Ala
 85
Met Leu Ser Gin Gln Val Ala Ser Val Lys Trp Pro Asn Ser Val Met
 100
Ala Pro Gly Arg Gly Pro Glu Arg Gly Gly Gly Gly Val Ser Asp
 115
Ser Ser Trp Gln Gln Gln Pro Gly Gln Pro Pro Pro His Ser Thr Trp
 130
Asn Cys His Ser Leu Ser Leu Tyr Ser Ala Thr Lys Gly Ser Pro His
 145
Pro Gly Val Gly Val Pro Thr Tyr Tyr Asn His Pro Glu Ala Leu Lys
 165
Arg Glu Lys Ala Gly Gly Pro Gln Leu Asp Arg Tyr Val Arg Pro Met
 180
Met Pro Gln Lys Val Gln Leu Glu Val Gly Arg Pro Gln Ala Pro Leu
 195
Asn Ser Phe His Ala Ala Lys Lys Pro Pro Asn Gln Ser Leu Pro Leu
 210
Gln Pro Phe Gln Leu Ala Phe Gly His Gln Val Asn Arg Gln Val Phe
 225
Arg Gln Gly Pro Pro Pro Pro Asn Pro Val Ala Ala Phe Pro Pro Gln
 245
Lys Gln Gln
 260
Ala Ala Leu Pro Gln Met Pro Leu Phe Glu Asn Phe Tyr Ser Met Pro
 275
Gln Gln Pro Ser Gln Gln Pro Gln Asp Phe Gly Leu Gln Pro Ala Gly
 290
Pro Leu Gly Gln Ser His Leu Ala His His Ser Met Ala Pro Tyr Pro
 305
Phe Pro Pro Asn Pro Asp Met Asn Pro Glu Leu Arg Lys Ala Leu Leu
 325
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gln Asp Ser Ala Pro Gln Pro Ala Leu Pro Gln Val Gln Ile Pro Phe</td>
<td>340</td>
</tr>
<tr>
<td>Pro Arg Arg Ser Arg Arg Leu Ser Lys Glu Gly Ile Leu Pro Pro Ser</td>
<td>355</td>
</tr>
<tr>
<td>Ala Leu Asp Gly Ala Gly Thr Gln Pro Gly Gln Glu Ala Thr Gly Asn</td>
<td>370</td>
</tr>
<tr>
<td>Leu Phe Leu His His Trp Pro Leu Gln Gln Pro Pro Pro Gly Ser Leu</td>
<td>385</td>
</tr>
<tr>
<td>Gly Gln Pro His Pro Gln Ala Leu Gly Phe Pro Leu Glu Leu Arg Glu</td>
<td>405</td>
</tr>
<tr>
<td>Ser Gln Leu Pro Asp Gly Glu Arg Leu Ala Pro Asn Gly Arg Glu</td>
<td>420</td>
</tr>
<tr>
<td>Arg Glu Ala Pro Ala Met Gly Ser Glu Glu Gly Met Arg Ala Val Ser</td>
<td>435</td>
</tr>
<tr>
<td>Thr Gly Asp Cys Gly Gln Val Leu Arg Gly Gly Val Ile Gln Ser Thr</td>
<td>450</td>
</tr>
<tr>
<td>Arg Arg Arg Arg Arg Ala Ser Gln Glu Ala Asn Leu Leu Thr Leu Ala</td>
<td>465</td>
</tr>
<tr>
<td>Gln Lys Ala Val Glu Ala Ser Leu Gln Asn Ala Lys Asp Gly Ser</td>
<td>485</td>
</tr>
<tr>
<td>Gly Ser Glu Glu Lys Arg Lys Ser Val Leu Ala Ser Thr Thr Lys Cys</td>
<td>500</td>
</tr>
<tr>
<td>Gly Val Glu Phe Ser Glu Pro Ser Leu Ala Thr Lys Arg Ala Arg Glu</td>
<td>515</td>
</tr>
<tr>
<td>Asp Ser Gly Met Val Pro Leu Ile Ile Pro Val Ser Val Pro Val Arg</td>
<td>530</td>
</tr>
<tr>
<td>Thr Val Asp Pro Thr Glu Ala Ala Gln Ala Gly Gly Leu Asp Glu Asp</td>
<td>545</td>
</tr>
<tr>
<td>Gly Lys Gly Leu Glu Gln Asn Pro Ala Glu His Lys Pro Ser Val Ile</td>
<td>565</td>
</tr>
<tr>
<td>Val Thr Arg Arg Ser Thr Arg Ile Pro Gly Thr Asp Ala Gln Ala</td>
<td>580</td>
</tr>
<tr>
<td>Gln Ala Glu Asp Met Asn Val Lys Leu Glu Gly Glu Pro Ser Val Arg</td>
<td>595</td>
</tr>
<tr>
<td>Lys Pro Lys Gin Arg Pro Arg Pro Gin Pro Leu Ile Ile Pro Thr Lys</td>
<td>610</td>
</tr>
</tbody>
</table>
Val Glu Val Asp Ile Lys Thr Ser Gln Lys Phe Pro Arg Val Pro Leu
915 920 925
Pro Arg Arg Glu Ser Pro Ser Glu Glu Arg Leu Glu Pro Lys Arg Glu
930 935 940
Val Lys Glu Pro Arg Lys Glu Gly Glu Glu Glu Val Pro Glu Ile Gln
945 950 955 960
Glu Lys Glu Glu Gln Glu Glu Gly Arg Glu Arg Ser Arg Arg Ala Ala
965 970
Ala Val Lys Ala Thr Gln Thr Leu Gln Ala Asn Glu Ser Ala Ser Asp
980 985 990
Ile Leu Ile Leu Arg Ser His Glu Ser Asn Ala Pro Gly Ser Ala Gly
995 1000 1005
Gly Gln Ala Ser Glu Lys Pro Arg Glu Gly Thr Gly Lys Ser Arg Arg
1010 1015
(2) INFORMATION FOR SEQ ID NO:152:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 849 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:152:

Ile Arg His Glu Val Ser Phe Leu Trp Asn Thr Glu Ala Ala Cys Pro
1 5 10 15
Ile Gln Thr Thr Thr Asp Thr Asp Gln Ala Cys Ser Ile Arg Asp Pro
20 25 30
Asn Ser Gly Phe Val Phe Asn Leu Asn Pro Leu Asn Ser Ser Gln Gly
35 40 45
Tyr Asn Val Ser Gly Ile Gly Lys Ile Phe Met Phe Asn Val Cys Gly
50 55 60
Thr Met Pro Val Cys Gly Thr Ile Leu Gly Lys Pro Ala Ser Gly Cys
65 70 75 80
Glu Ala Glu Thr Glu Thr Glu Leu Asn Trp Lys Pro Ala Arg
85 90 95

-104-
<table>
<thead>
<tr>
<th>Residue</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro</td>
<td>Val Gly Ile Glu Lys Ser Leu Gln Leu Ser Thr Glu Gly Phe Ile</td>
</tr>
<tr>
<td>Thr</td>
<td>Leu Thr Tyr Lys Gly Pro Leu Ser Ala Lys Gly Thr Ala Asp Ala</td>
</tr>
<tr>
<td>Phe</td>
<td>Ile Val Arg Phe Val Cys Asn Asp Asp Val Tyr Ser Gly Pro Leu</td>
</tr>
<tr>
<td>Lys</td>
<td>Phe Leu His Gln Asp Ile Asp Ser Gly Gln Gly Ile Arg Asn Thr</td>
</tr>
<tr>
<td>Tyr</td>
<td>Phe Glu Phe Glu Thr Ala Leu Ala Cys Val Pro Ser Pro Val Asp</td>
</tr>
<tr>
<td>Cys</td>
<td>Gln Val Thr Asp Leu Ala Gly Asn Glu Tyr Asp Leu Thr Gly Leu</td>
</tr>
<tr>
<td>Ser</td>
<td>Thr Val Arg Lys Pro Trp Thr Ala Val Asp Thr Ser Val Asp Gly</td>
</tr>
<tr>
<td>Arg</td>
<td>Lys Arg Thr Phe Tyr Leu Ser Val Cys Asn Pro Leu Pro Tyr Ile</td>
</tr>
<tr>
<td>Phe</td>
<td>Gly Cys Gln Gly Ser Ala Val Gly Ser Cys Leu Val Ser Glu Gly</td>
</tr>
<tr>
<td>Asn</td>
<td>Ser Trp Asn Leu Gly Val Val Gln Met Ser Pro Gln Ala Ala Ala</td>
</tr>
<tr>
<td>Asn</td>
<td>Gly Ser Leu Ser Ile Met Tyr Val Asn Gly Asp Lys Cys Gly Asn</td>
</tr>
<tr>
<td>Gln</td>
<td>Arg Phe Ser Thr Arg Ile Thr Phe Glu Cys Ala Gln Ile Ser Gly</td>
</tr>
<tr>
<td>Ser</td>
<td>Pro Ala Phe Gln Leu Gln Asp Gly Cys Glu Tyr Val Phe Ile Trp</td>
</tr>
<tr>
<td>Arg</td>
<td>Thr Val Glu Ala Cys Pro Val Val Arg Val Glu Gly Asp Asn Cys</td>
</tr>
<tr>
<td>Glu</td>
<td>Val Lys Asp Pro Arg His Gly Asn Leu Tyr Asp Leu Lys Pro Leu</td>
</tr>
<tr>
<td>Gly</td>
<td>Leu Asn Asp Thr Ile Val Ser Ala Gly Glu Tyr Thr Tyr Phe</td>
</tr>
<tr>
<td>Arg</td>
<td>Val Cys Gly Lys Leu Ser Ser Asp Val Cys Pro Thr Ser Asp Lys</td>
</tr>
<tr>
<td>Ser</td>
<td>Lys Val Val Ser Ser Cys Gln Glu Lys Arg Glu Pro Gln Gly Phe</td>
</tr>
</tbody>
</table>
His Lys Val Ala Gly Leu Leu Thr Gln Lys Leu Thr Tyr Glu Asn Gly
385 390 395 400
Leu Leu Lys Met Asn Phe Thr Gly Gly Asp Thr Cys His Lys Val Tyr
405 410
Gln Arg Ser Thr Ala Ile Phe Phe Tyr Cys Asp Arg Gly Thr Gln Arg
420 425 430
Pro Val Phe Leu Lys Glu Thr Ser Asp Cys Ser Tyr Leu Phe Glu Trp
435 440 445
Arg Thr Glu Tyr Ala Cys Pro Pro Phe Asp Leu Thr Glu Cys Ser Phe
450 455 460
Lys Asp Gly Ala Gly Asn Ser Phe Asp Leu Ser Ser Leu Ser Arg Tyr
465 470 475 480
Ser Asp Asn Trp Glu Ala Ile Thr Gly Thr Gly Asp Pro Glu His Tyr
485 490 495
Leu Ile Asn Val Cys Lys Ser Leu Ala Pro Gln Ala Gly Thr Glu Pro
500 505 510
Cys Pro Pro Glu Ala Ala Ala Cys Leu Leu Gly Gly Ser Lys Pro Val
515 520 525
Asn Leu Gly Arg Val Arg Asp Gly Pro Gln Trp Arg Asp Gly Ile Ile
530 535 540
Val Leu Lys Tyr Val Asp Gly Asp Leu Cys Pro Asp Gly Ile Arg Lys
545 550 555 560
Lys Ser Thr Thr Ile Arg Phe Thr Cys Ser Glu Ser Gln Val Asn Ser
565 570 575
Arg Pro Met Phe Ile Ser Ala Val Glu Asp Cys Glu Tyr Thr Phe Ala
580 585 590
Trp Pro Thr Ala Thr Ala Cys Pro Met Lys Ser Asn Glu His Asp Asp
595 600 605
Cys Gln Val Thr Asn Pro Ser Thr Gly His Leu Phe Asp Leu Ser Ser
610 615 620
Leu Ser Gly Arg Ala Gly Phe Thr Ala Ala Tyr Ser Glu Lys Gly Leu
625 630 635 640
Val Tyr Met Ser Ile Cys Gly Glu Asn Glu Asn Cys Pro Pro Gly Val
645 650 655
Gly Ala Cys Phe Gly Gln Thr Arg Ile Ser Val Gly Lys Ala Asn Lys
660 665 670
Arg Leu Arg Tyr Val Asp Gln Val Leu Gln Leu Val Tyr Lys Asp Gly
675 680 685

-106-
Ser Pro Cys Pro Ser Lys Ser Gly Leu Ser Tyr Lys Ser Val Ile Ser 690 695 700
Phe Val Cys Arg Pro Glu Ala Gly Pro Thr Asn Arg Pro Met Leu Ile 705 710 715 720
Ser Leu Asp Lys Gln Thr Cys Thr Leu Phe Phe Ser Trp His Thr Pro 725 730 735
Leu Ala Cys Glu Gln Ala Thr Glu Cys Ser Val Arg Asn Gly Ser Ser 740 745 750
Ile Val Asp Leu Ser Pro Leu Ile His Arg Thr Gly Gly Tyr Glu Ala 755 760 765
Tyr Asp Glu Ser Glu Asp Asp Ala Ser Asp Thr Asn Pro Asp Phe Tyr 770 775 780
Ile Asn Ile Cys Glu Pro Leu Asn Pro Met His Gly Val Pro Cys Pro 785 790 795 800
Ala Gly Ala Ala Val Cys Lys Val Pro Ile Asp Gly Pro Pro Ile Asp 805 810 815
Ile Gly Arg Val Ala Gly Pro Pro Ile Leu Asn Pro Ile Ala Asn Glu 820 825 830
Ile Tyr Leu Asn Phe Glu Ser Ser Thr Pro Cys Gln Glu Phe Ser Cys 835 840 845
Lys

(2) INFORMATION FOR SEQ ID NO:153:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 852 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xii) SEQUENCE DESCRIPTION: SEQ ID NO:153:
Met Ala Arg Leu Ser Arg Pro Glu Arg Pro Asp Leu Val Phe Glu Glu
1 5 10 15
Glu Asp Leu Pro Tyr Glu Glu Glu Ile Met Arg Asn Gln Phe Ser Val
20 25 30
Lys Cys Trp Leu His Tyr Ile Glu Phe Lys Gln Gly Ala Pro Lys Pro
35 40 45

-107-
Arg Leu Asn Gln Leu Tyr Glu Arg Ala Leu Lys Leu Leu Pro Cys Ser
 50
Tyr Lys Leu Trp Tyr Arg Tyr Leu Lys Ala Arg Arg Ala Gln Val Lys
 65
 70
His Arg Cys Val Thr Asp Pro Ala Tyr Glu Asp Val Asn Asn Cys His
 85
 90
Glu Arg Ala Phe Val Phe Met His Lys Met Pro Arg Leu Trp Leu Asp
 100
 105
Tyr Cys Glu Phe Leu Met Asp Gln Gly Arg Val Thr His Thr Arg Arg
 115
 120
 125
Thr Phe Asp Arg Ala Leu Arg Ala Leu Pro Ile Thr Glu His Ser Arg
 130
 135
Ile Trp Pro Leu Tyr Leu Arg Phe Leu Arg Ser His Pro Leu Pro Glu
 145
 150
 155
Thr Ala Val Arg Gly Tyr Arg Arg Phe Leu Lys Leu Ser Pro Glu Ser
 165
 170
 175
Ala Glu Glu Tyr Ile Glu Tyr Leu Lys Ser Ser Asp Arg Leu Asp Glu
 180
 185
 190
Ala Ala Glu Arg Leu Ala Thr Val Val Asn Asp Glu Arg Phe Val Ser
 195
 200
 205
Lys Ala Gly Lys Ser Asn Tyr Gln Leu Trp His Glu Leu Cys Asp Leu
 210
 215
 220
Ile Ser Glu Asn Pro Asp Lys Val Gln Ser Leu Asn Val Asp Ala Ile
 225
 230
 235
 240
Ile Arg Gly Glu Leu Thr Arg Phe Thr Asp Gln Leu Gly Lys Leu Trp
 245
 250
 255
Cys Ser Leu Ala Asp Tyr Tyr Ile Arg Ser Gly His Phe Glu Lys Ala
 260
 265
 270
Arg Asp Val Tyr Glu Glu Ala Ile Arg Thr Val Met Thr Val Arg Asp
 275
 280
 285
Phe Thr Gln Val Phe Asp Ser Tyr Ala Glu Phe Glu Glu Ser Met Ile
 290
 295
 300
Ala Ala Lys Met Glu Thr Ala Ser Glu Leu Gly Arg Glu Glu Glu Asp
 305
 310
 315
 320
Asp Val Asp Leu Glu Leu Arg Leu Ala Arg Phe Glu Gln Leu Ile Ser
 325
 330
 335
-108-
Arg Arg Pro Leu Leu Leu Asn Ser Val Leu Leu Arg Gln Asn Pro His
340 345 350

His Val His Glu Trp His Lys Arg Val Ala Leu His Gln Gly Arg Pro
355 360 365

Arg Glu Ile Ile Asn Thr Tyr Thr Glu Ala Val Gln Thr Val Asp Pro
370 375 380

Phe Lys Ala Thr Gly Lys Pro His Thr Leu Trp Val Ala Phe Ala Lys
385 390 395 400

Phe Tyr Glu Asp Asn Gly Gln Leu Asp Asp Ala Arg Val Ile Leu Glu
405 410 415

Lys Ala Thr Lys Val Asn Phe Lys Gln Val Asp Asp Leu Ala Ser Val
420 425 430

Trp Cys Gln Cys Gly Glu Leu Glu Leu Arg His Glu Asn Tyr Asp Glu
435 440 445

 Ala Leu Arg Leu Leu Arg Lys Ala Thr Ala Leu Pro Ala Arg Arg Ala
450 455 460

Glu Tyr Phe Asp Gly Ser Glu Pro Val Gln Asn Arg Val Tyr Lys Ser
465 470 475 480

Leu Lys Val Trp Ser Met Leu Ala Asp Leu Glu Glu Ser Leu Gly Thr
485 490 495

Phe Gln Ser Thr Lys Ala Val Tyr Asp Arg Ile Leu Asp Leu Arg Ile
500 505 510

 Ala Thr Pro Gln Ile Val Ile Asn Tyr Ala Met Phe Leu Glu Glu His
515 520 525

Lys Tyr Phe Glu Glu Ser Phe Lys Ala Tyr Glu Arg Gly Ile Ser Leu
530 535 540

Phe Lys Trp Pro Asn Val Ser Asp Ile Trp Ser Thr Tyr Leu Thr Lys
545 550 555 560

Phe Ile Ala Arg Tyr Gly Gly Arg Lys Leu Glu Arg Ala Arg Asp Leu
565 570 575

Phe Glu Gln Ala Leu Asp Gly Cys Pro Pro Lys Tyr Ala Lys Thr Leu
580 585 590

Tyr Leu Leu Tyr Ala Gln Leu Glu Glu Glu Trp Gly Leu Ala Arg His
595 600 605

Ala Met Ala Val Tyr Glu Arg Ala Thr Arg Ala Val Glu Pro Ala Gln
610 615 620

-109-
Gln Tyr Asp Met Phe Asn Ile Tyr Ile Lys Arg Ala Ala Glu Ile Tyr
625 630 635 640
Gly Val Thr His Thr Arg Gly Ile Tyr Gln Lys Ala Ile Glu Val Leu
645 650 655
Ser Asp Glu His Ala Arg Glu Met Cys Leu Arg Phe Ala Asp Met Glu
660 665 670
Cys Lys Leu Gly Glu Ile Asp Arg Ala Arg Ile Tyr Ser Phe Cys
670 675 680 685
Ser Gln Ile Cys Asp Pro Arg Thr Thr Gly Ala Phe Trp Gln Thr Trp
690 695 700
Lys Asp Phe Glu Val Arg His Gly Asn Glu Asp Thr Ile Lys Glu Met
705 710 715 720
Leu Arg Ile Arg Arg Ser Val Gln Ala Thr Tyr Asn Thr Gln Val Asn
720 725 730 735
Phe Met Ala Ser Gln Met Leu Lys Val Ser Gly Ser Ala Thr Gly Thr
740 745 750
Val Ser Asp Leu Ala Pro Gly Gln Ser Gly Met Asp Asp Met Lys Leu
750 755 760 765
Leu Glu Gln Arg Ala Glu Gln Leu Ala Ala Glu Ala Glu Arg Asp Gln
770 775 780
Pro Leu Arg Ala Gln Ser Lys Ile Leu Phe Val Arg Ser Asp Ala Ser
780 785 790 795 800
Arg Glu Glu Leu Ala Glu Leu Ala Gln Gln Val Asn Pro Glu Glu Ile
800 805 810 815
Gln Leu Gly Glu Asp Glu Asp Glu Asp Glu Met Asp Leu Glu Pro Asn
820 825 830 835 840 845
Glu Val Arg Leu Glu Gln Gln Ser Val Pro Ala Ala Val Phe Gly Ser
845
Leu Lys Glu Asp
850

(2) INFORMATION FOR SEQ ID NO:154:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 693 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:

-110-
<table>
<thead>
<tr>
<th>Met Phe Ser Ala Leu Lys Lys Leu Val Gly Ser Asp Gln Ala Pro Gly</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>Arg Asp Lys Asn Ile Pro Ala Gly Leu Gln Ser Met Asn Gln Ala Leu</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>Gln Arg Arg Phe Ala Lys Gly Val Gln Tyr Asn Met Lys Ile Val Ile</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>Arg Gly Asp Arg Asn Thr Gly Lys Thr Ala Leu Trp His Arg Leu Gln</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>Gly Arg Pro Phe Val Glu Glu Tyr Ile Pro Thr Gln Glu Ile Gln Val</td>
</tr>
<tr>
<td>65</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>75</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>Thr Ser Ile His Trp Ser Tyr Lys Thr Thr Asp Ile Val Lys Val</td>
</tr>
<tr>
<td>85</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>95</td>
</tr>
<tr>
<td>Glu Val Trp Asp Val Val Asp Lys Gly Cys Lys Lys Arg Gly Asp</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>105</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>Gly Leu Lys Met Glu Asp Pro Gln Glu Xaa Glu Ser Glu Met Ala</td>
</tr>
<tr>
<td>115</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>125</td>
</tr>
<tr>
<td>Leu Asp Ala Glu Phe Leu Asp Val Tyr Lys Asn Cys Asn Gly Val Val</td>
</tr>
<tr>
<td>130</td>
</tr>
<tr>
<td>135</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>Met Met Phe Asp Ile Thr Lys Gln Trp Thr Phe Asn Tyr Ile Leu Arg</td>
</tr>
<tr>
<td>145</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>155</td>
</tr>
<tr>
<td>160</td>
</tr>
<tr>
<td>Glu Leu Pro Lys Val Pro Thr His Val Pro Val Cys Val Leu Gly Asn</td>
</tr>
<tr>
<td>165</td>
</tr>
<tr>
<td>170</td>
</tr>
<tr>
<td>175</td>
</tr>
<tr>
<td>Tyr Arg Asp Met Gly Glu His Arg Val Ile Leu Pro Asp Asp Val Arg</td>
</tr>
<tr>
<td>180</td>
</tr>
<tr>
<td>185</td>
</tr>
<tr>
<td>190</td>
</tr>
<tr>
<td>Asp Phe Ile Asp Asn Leu Asp Arg Pro Pro Gly Ser Ser Tyr Phe Arg</td>
</tr>
<tr>
<td>195</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>205</td>
</tr>
<tr>
<td>Tyr Ala Glu Ser Ser Met Lys Asn Ser Phe Gly Leu Lys Tyr Leu His</td>
</tr>
<tr>
<td>210</td>
</tr>
<tr>
<td>215</td>
</tr>
<tr>
<td>220</td>
</tr>
<tr>
<td>Lys Phe Phe Asn Ile Pro Phe Leu Gln Leu Gln Arg Glu Thr Leu Leu</td>
</tr>
<tr>
<td>225</td>
</tr>
<tr>
<td>230</td>
</tr>
<tr>
<td>235</td>
</tr>
<tr>
<td>240</td>
</tr>
<tr>
<td>Arg Gln Leu Glu Thr Asn Gln Leu Asp Met Asp Ala Thr Leu Glu Glu</td>
</tr>
<tr>
<td>245</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>255</td>
</tr>
<tr>
<td>Leu Ser Val Gln Gln Glu Thr Glu Asp Gln Asn Tyr Gly Ile Phe Leu</td>
</tr>
<tr>
<td>260</td>
</tr>
<tr>
<td>265</td>
</tr>
<tr>
<td>270</td>
</tr>
<tr>
<td>Glu Met Met Glu Ala Arg Ser Arg Gly His Ala Ser Pro Leu Ala Ala</td>
</tr>
<tr>
<td>275</td>
</tr>
<tr>
<td>280</td>
</tr>
<tr>
<td>285</td>
</tr>
</tbody>
</table>

-111-
Asn Gly Gln Ser Pro Ser Pro Gly Ser Gln Ser Pro Val Leu Pro Ala
 290 295 300
Pro Ala Val Ser Thr Gly Ser Ser Ser Pro Gly Thr Pro Gln Pro Ala
 305 310 315 320
Pro Gln Leu Pro Leu Asn Ala Ala Pro Pro Ser Ser Val Pro Pro Val
 325 330 335
Pro Pro Ser Glu Ala Leu Pro Pro Pro Ala Cys Pro Ser Ala Pro Ala
 340 345 350
Pro Arg Arg Ser Ile Ile Ser Arg Leu Phe Gly Thr Ser Pro Ala Thr
 355 360 365
Glu Ala Ala Pro Pro Pro Glu Pro Val Pro Ala Ala Gln Gly Pro
 370 375 380
Ala Thr Val Gln Ser Val Glu Asp Phe Val Pro Asp Asp Arg Leu Asp
 385 390 395 400
Arg Ser Phe Leu Glu Asp Thr Thr Pro Ala Arg Asp Glu Lys Lys Val
 405 410 415
Gly Ala Lys Ala Ala Gln Gln Asp Ser Asp Ser Asp Gly Glu Ala Leu
 420 425 430
Gly Gly Asn Pro Met Val Ala Gly Phe Gln Asp Asp Val Asp Leu Glu
 435 440 445
Asp Gln Pro Arg Gly Ser Pro Pro Leu Pro Ala Gly Pro Val Pro Ser
 450 455 460
Gln Asp Ile Thr Leu Ser Ser Glu Glu Glu Ala Glu Val Ala Ala Pro
 465 470 475 480
Thr Lys Gly Pro Ala Pro Ala Pro Gln Gln Cys Ser Glu Pro Glu Thr
 485 490 495
Lys Trp Ser Ser Ile Pro Ala Ser Lys Pro Arg Arg Gly Thr Ala Pro
 500 505 510
Thr Arg Thr Ala Ala Pro Pro Trp Pro Gly Gly Val Ser Val Arg Thr
 515 520 525
Gly Pro Glu Lys Arg Ser Ser Thr Arg Pro Pro Ala Glu Met Glu Pro
 530 535 540
Gly Lys Gly Glu Gln Ala Ser Ser Ser Glu Ser Asp Pro Glu Gly Pro
 545 550 555 560
Ile Ala Ala Gln Met Leu Ser Phe Val Met Asp Asp Pro Asp Phe Glu
 565 570 575
Ser Glu Gly Ser Asp Thr Gln Arg Arg Ala Asp Asp Phe Pro Val Arg
580 585 590
Asp Asp Pro Ser Asp Val Thr Asp Glu Asp Gly Pro Ala Glu Pro
595 600 605
Pro Pro Pro Pro Lys Leu Pro Leu Pro Ala Phe Arg Leu Lys Asn Asp
610 615 620
Ser Asp Leu Phe Gly Leu Gly Leu Glu Glu Ala Gly Pro Lys Glu Ser
625 630 635 640
Ser Glu Glu Gly Lys Glu Gly Lys Thr Pro Ser Lys Glu Lys Lys Lys
645 650 655
Lys Thr Lys Ser Phe Ser Arg Val Leu Leu Glu Arg Pro Arg Ala His
660 665 670
Arg Phe Ser Thr Arg Val Gly Tyr Gln Val Ser Val Pro Asn Ser Pro
675 680 685
Tyr Ser Glu Ser Tyr
690
CLAIMS:

1. An isolated polypeptide comprising:
 a) a protein with the complete amino acid sequence encoded in SEQ. ID NO:9;
 b) a fragment of said protein; or
 c) a fusion protein containing the protein or fragment according to a) or b);
 wherein the polypeptide causes receptors for tumor necrosis factor (TNF) to be released from cells expressing such receptors.

2. The isolated polypeptide of claim 1, which is a protein with the complete amino acid sequence encoded in SEQ. ID NO:9.

3. The isolated polypeptide of claim 1, comprising a fragment encoded within SEQ. ID NO:9, which causes TNF receptor to be cleaved and released from cells expressing said receptor.

4. The isolated polypeptide of claim 3, comprising said fragment fused to another amino acid sequence.

5. The isolated polypeptide of any one of claims 1 to 4, which causes release of a human p55 TNF receptor from cells expressing the receptor.

6. The isolated polypeptide of any one of claims 1 to 5, which causes release of a human p75 TNF receptor from cells expressing the receptor.

7. A method of causing enzymatic release of TNF receptor from a cell, comprising contacting the cell in vitro with the polypeptide according to any one of claims 1 to 6.

8. A method of altering signal transduction from TNF into a cell, comprising contacting the cell in vitro with the polypeptide according to any one of claims 1 to 6.

9. A method of producing a protein, comprising culturing cells that have been transfected with an expression vector containing a recombinant polynucleotide, wherein the recombinant polynucleotide has at least one of the following properties:
a) said recombinant polynucleotide comprises a sequence encoding a protein having an amino acid sequence that is encoded in SEQ. ID NO:9 or fragment thereof; or

b) said recombinant polynucleotide hybridizes at 30°C in 6×SSC containing 50% formamide to a polynucleotide having a sequence of the complement of a sequence of SEQ. ID NO:9;

wherein the protein causes increased release of TNF receptor from human cells in which TNF is expressed.

10. The method of claim 9, wherein the protein causes increased release of a human TNF receptor from COS-1 cells transfected so as to express said receptor at an elevated level.

11. The method of claim 9, wherein the protein causes increased release of TNF receptor from Jurkat T cells.

12. The method of claim 9, 10, or 11, wherein the polynucleotide comprises the sequence of SEQ. ID NO:9 or fragment thereof.

13. A method of screening a substance in vitro for an ability to affect TNF receptor releasing activity, comprising:

a) incubating TNF receptor or cells expressing TNF receptor with the substance and with an isolated polypeptide that causes TNF receptor to be cleaved in the absence of the substance;

b) measuring any TNF receptor cleaved; and

c) correlating any increase or decrease of the receptor cleaved by the polypeptide with an ability of the substance to enhance or diminish TNF receptor releasing activity; wherein the polypeptide causes increased release of TNF receptor from human cells in which the TNF receptor is expressed and has at least one of the following properties:

i) the polypeptide comprises an amino acid sequence encoded in SEQ. ID NO:9; or

ii) the polypeptide is encoded by a polynucleotide that hybridizes at 30°C in 6×SSC containing 50% formamide to a polynucleotide having a sequence of the complement of SEQ. ID NO:9.
14. The screening method of claim 13, wherein the polypeptide comprises the amino acid sequence encoded by the longest open reading frame of SEQ. ID NO:9, or comprises a fragment of said amino acid sequence that causes increased release of TNF receptor from human cells in which TNF receptor is expressed.

15. The screening method of claim 13 or 14, wherein the substance is incubated with p55 TNF receptor in step a).

16. The screening method of claim 13 or 14, wherein the substance is incubated with p75 TNF receptor in step a).

17. The screening method of any one of claims 13 to 16, wherein the measuring of TNF receptor cleaved in step b) comprises measuring binding capacity for TNF on the surface of the treated cell.

18. The screening method of any one of claims 13 to 16, wherein the measuring of TNF receptor cleaved in step b) comprises measuring the concentration of soluble TNF receptor in culture medium from the treated cell.

19. A pharmaceutical composition for treating an inflammatory condition, comprising a protein in a pharmaceutically compatible excipient, wherein the protein causes increased release of TNF receptor from human cells in which TNF is expressed and wherein the protein has at least one of the following properties:
 a) the protein comprises an amino acid sequence encoded in SEQ. ID NO:9; or
 b) the protein comprises an amino acid sequence that is at least 90% identical to a) or to a fragment of a).

20. A pharmaceutical composition for treating an inflammatory condition, comprising the polypeptide of any one of claims 1 to 6 in a suitable excipient.

21. A pharmaceutical composition for treating an inflammatory condition, comprising a protein produced according to any one of claims 9 to 12 in a suitable excipient.

22. The pharmaceutical composition of any one of claims 19 to 21, packaged in a kit with instructions for reducing inflammation.
23. The pharmaceutical composition of any one of claims 19 to 21, packaged in a kit with instructions for treating arthritis.

24. The pharmaceutical composition of any one of claims 19 to 21, packaged in a kit with instructions for treating multiple sclerosis.

25. The pharmaceutical composition of any one of claims 19 to 21, packaged in a kit with instructions for treating sepsis.

26. Use of a recombinantly produced biological component comprising:
 a) a polypeptide comprising:
 i) an amino acid sequence encoded in SEQ. ID NO:9 or portion thereof; or
 ii) an amino acid sequence that is at least 90% identical to i);
 wherein said polypeptide causes cleavage of TNF receptor from human cells in which TNF receptor is expressed; or
 b) a polynucleotide encoding the polypeptide of a);
 in the manufacture of a medicament for treating inflammation.

27. The use according to claim 26, wherein the medicament is for treating sepsis.

28. The use according to claim 26, wherein the medicament is for treating arthritis.

29. The use according to claim 26, wherein the medicament is for treating rheumatoid arthritis.

30. The use according to any one of claims 26 to 29, wherein the biological component comprises or encodes a fragment of the amino acid sequence encoded in SEQ. ID NO:9, which causes cleavage of TNF receptor from human cells in which TNF receptor is expressed.

31. The use according to any one of claims 26 to 29, wherein the biological component comprises or encodes a consecutive sequence that is at least 95% identical to the amino acid sequence encoded in SEQ. ID NO:9, or fragment thereof, which causes cleavage of TNF receptor from human cells in which TNF receptor is expressed.
32. The use according to any one of claims 26 to 31, wherein the medicament causes cleavage of the human p55 TNF receptor.

33. A commercial package comprising the pharmaceutical composition of any one of claims 19 to 21, together with instructions for its use for the treatment of inflammation.

34. A commercial package comprising the pharmaceutical composition of any one of claims 19 to 21, together with instructions for its use for the treatment of arthritis.

35. A commercial package comprising the pharmaceutical composition of any one of claims 19 to 21, together with instructions for its use for the treatment of multiple sclerosis.

36. A commercial package comprising the pharmaceutical composition of any one of claims 19 to 21, together with instructions for its use for the treatment of sepsis.