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"Speaker Recognition Systems”

The present invention relates to systems, methods

and apparatus for performing speaker recognition.

Speaker recognition encompasses the related fields
of speaker verification and speaker identification.
The main objective is to confirm the claimed
identity of a speaker from his/her utterances, known
as verification, or to recognise the speaker from
his/her utterances, known as identification. Both
use a person’s voice as a biometric measure and
assume a unique relationship between the utterance
and the person producing the utterance. This unique
relationship makes both verification and
identification possible. Speaker recognition
technology analyses a test utterance and compares it
to a known template or model for the person being
recognised or verified. The effectiveness of the
system is dependent on the quality of the algorithms

used in the process.
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Speaker recognition systems have many possible
applications. In accordance with a further aspect
of the present invention, speaker recognition
technology may be used to permanently mark an
electronic document with a biometric print for every
person who views or edits the content. This produces
an audit trail identifying all of the users and the
times of access and modification. As the user mark
is biometric it is very difficult for the user to

dispute the authenticity of the mark.

Other biometric measures may provide the basis for
possible recognition systems, such as iris scanning,
finger printing and facial features. These measures
all require additional hardware for recording
whereas speaker recognition can be used with any
voice input such as over a telephone line or using a
standard multi-media personal computer with no
modification. The techniques can be used in
conjunction with other security measures and other
biometrics for increased security. From the point of
view of a user the operation of the system is very

simple.

For example, when an on-line document is requested
the person requiring access will be asked to give a
sample of their speech. This will be a simple prompt
from the client software 'please say this phrase..."
or something similar. The phrase uttered will then
be sent to a database server or to a speech
recognition server, via any data network such as an

intranet, to be associated with the document and
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stored as the key used to activate the document at
that particular time. A permanent record for a
documént can therefore be produced, over time,
providing an audit trail for the document. The
speaker authentication server may maintain a set of
templates (models) for all currently enrolled
persons and a historical record of previously

enrolled persons.

Speaker recognition systems rely on extracting some
unique features from a person's speech. This in
turn depends on the manner in which human speech is
produced using the vocal tract and the nasal tract.
For practical purposes, the vocal tract and nasal
tract can be regarded as two connected pipes, which
can resonate in a manner similar to a musical
instrument. The resonances produced depend on the
diameter and length of the pipes. In the human
speech production mechanism, these diameters and to
some extent the length of the pipe sections can be
modified by the articulators, typically the
positions of the tongue, the jaw, the lips and the
soft palate (velum). These resonances in the
spectrum are called the formant frequencies. There
are normally around four formant frequencies in a

typical voice spectrum.

As with musical instruments, sound will only be
produced when a constriction of the airflow occurs
causing either vibration or turbulence. In human
speech, the major vibrations occur when the

constriction occurs at the glottis (vocal cords).
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When this happens, voiced speech is produced,
typically vowel-like sounds. When the constriction
is in the mouth, caused by the tongue or teeth, a
turbulence is produced, (a hissing type of sound)
and the speech produced is called a fricative,
typified by "s", "sh", "th" etc. From an
engineering point of view, this is similar to a
source signal (the result of the constriction) being
applied to a filter which has the general
characteristics (i.e. the same resonances) of the
vocal tract and the resulting output signal is the
speech sound. True speech is produced by
dynamically varying the positions of the

articulators.

All existing speaker recognition systems perform
similar computational steps. They operate by
creating a template or model for an enrolled
speaker. The model is created by two main steps
applied to a speech sample, namely spectral analysis
and statistical analysis. Subsequent recognition of
an input speech sample is performed by modelling the
input sample (test utterance) in the same way as
during speaker enrolment, and pattern/classification
matching of the input model against a database of
enrolled speakers. Existing systems vary in the
approach taken when performing some or all of these
steps. In conventional (industry standard) systems,
the spectral analysis is either Linear Predictive
Coding (LPC)/Cepstral analysis ("LPCC") or FFT/sub-
banding. This is followed by a statistical analysis

technique, usually a technique called Hidden Markov
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Modelling (HMM), and the classification step is a
combination of a match against the claimed speaker
model and against an "impostor cohort" or "world

model" (i.e. a set of other speaker models) .

To allow efficient processing of speech samples, all
speaker recognition systems use time slices called
frames, where the utterance is split into frames and
each frame is processed in turn. Frames may or may
not be of equal size and may or may not overlap. An
example of a typical time signal representation of a
speech utterance divided into frames is illustrated
in Fig. 1 of the accompanying drawings. A generic
speaker recognition system is shown in block diagram
form in Fig. 2, illustrating a test utterance being
processed, through an input filter 10, a spectral
analysis (LPCC) stage 12 and a statistical analysis
(HMM) stage 14, followed by score normalisation and
speaker classification 16, by thresholding,
employing a database 18 of speaker models (enrolled
speaker data-set), before generating a decision as
to the identity of the speaker (identification) or
the veracity of the speaker's claimed identity

(verification).

Such systems have a number of disadvantages or
limitations. Firstly, conventional spectral
analysis techniques produce a limited and incomplete
feature set and therefore poor modelling. Secondly,
HMM techniques are "black-box" methods, which
combine good performance with relative ease of use,

but at the expense of transparency. The relative
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importance of features extracted by the technique
are not visible to the designer. Thirxdly, the
nature of the HMM models do not allow model-against-
model comparisons to be made effectively.
Accordingly, important structural detail contained
within the enrolled speaker data-set cannot be
analysed and used effectively to improve system
performance. Fourthly, HMM technology uses temporal
information to construct the model and is therefore
vulnerable to mimics, who impersonate others' voices
by temporal variations in pitch etc. Fifthly, the
world model/impostor cohort employed by the system
cannot easily be optimised for the pufpose of

testing an utterance by a claimed speaker.

The performance of a speaker recognition system
relies on the fact that when a true speaker
utterance is tested against a model for that speaker
it will produce a score, which is lower than a score
that is produced when an impostor utterance is
tested against the same model. This allows an
accept/reject threshold to be set. Consecutive
tests by the true speaker will not produce identical
scores. Rather, the scores will form a statistical
distribution. However, the mean of the true speaker
distribution will be considerably lower than the
means of impostor distributions tested against the
same model. This is illustrated in Fig. 3, where 25
scores are plotted for each of eight speakers,
speaker 1 being the true speaker. It can be seen

from Fig. 3 that the scores of some speakers are
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closer to the true speaker than others and can be

problematic.

The present invention relates to improved speaker
recognition methods and systems which provide
improved performance in comparison with conventional
systems. In various aspects, the invention provides
improvements including but not limited to: improved
spectral analysis, transparency in its statistical
analysis, improved modelling, models that can be
compared allowing the data-set structure to be
analysed and used to improve system performance,
improved classification methods and the use of
statistically independent/partially independent

parallel processes to improve system performance.

The invention further embraces computer programs for
implementing the methods and systems of the
invention, data carriers and storage media encoded
with such programs, data processing devices and
systems adapted to implement the methods and
systems, and data processing systems and devices

incorporating the methods and systems.

The various aspects and preferred features of the

invention are defined in the Claims appended hereto.

Embodiments of the invention will now be described,
by way of example only, with reference to the

accompanying drawings, in which:
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1 Fig. 1 is a time signal representation of an example
2 of a speech utterance divided into frames;

3 Fig. 2 is a block diagram of a generic, prior art
4 speaker recognition system;

5 Fig. 3 is a plot of speaker recognition score

6 distributions for a number of speakers tested

7 against one of the speakers, obtained using a

8 conventional speaker recognition system;

9 Fig. 4 is a block diagram illustrating a first

10 embodiment of the present invention;

11 Fig. 5 is a block diagram illustrating a second

12 embodiment of the present invention;

13 Fig. 6 is a block diagram illustrating a third

14 embodiment of the present invention;

15 Fig. 7 is a block diagram illustrating a furtherx
16 embodiment of a speaker recognition system in

17 accordance with the present invention;

18 Fig. 8(a) 1is a time signal representation of an

19 example of a speech utterance divided into frames
20 and Fig. 8(b) shows the corresponding frequency

21 spectrum and smoothed frequency spectrum of one

22 frame thereof;

23 Fig. 9 illustrates the differences between the

24 frequency spectra of two mis-aligned frames;

25 Fig. 10 shows the distribution of accumulated frame
26 scores plotted against their frequency of
27 occurrence;

28 Fig. 11(a) shows the same accumulated score

29 distributions as Fig. 3 for comparison with Fig.
30 11(b), which shows corresponding accumulated score
31 distributions obtained using a speaker recognition

32 system in accordance with the present invention;
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1 Fig. 12 illustrates the results of model against

2 model comparisons as compared with actual test

3 scores, obtained using a system in accordance with
4 the present invention;

5 Fig. 13 illustrates the distribution of speaker

6. models used by a system in accordance with the

7 present invention in a two-dimensional

8 representation of a multi-dimensional dataspace;

9 Fig. 14 illustrates the use of an impostor cohort as
10 used in a system in accordance with the present

11 invention;

12 Fig. 15 is a block diagram illustrating a

13 normalisation process in accordance with one aspect
14 of the present invention;

15 Fig. 16 1is a block diagram illustrating an example
16 of wide area user authentication system in

17 accordance with the present invention;

18 Fig. 17 is a block diagram illustrating the

19 corruption of a speech signal by various noise

20 sources and channel characteristics in the input
21 channel of a speaker recognition system;

22 Figs. 18 and 19 illustrate the effects of noise and
23 channel characteristics on test utterances and

24 enrolment models in a speaker recognition system;
25 and

26 Fig. 20 illustrates a channel normalisation method
27 in accordance with one aspect of the present

28 invention.

29

30 The present invention includes a number of aspects
31 and features which may be combined in a variety of

32 ways in order to provide improved speaker
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recognition (verification and/or identification)
systems. Certain aspects of the invention are
concerned with the manner in which speech samples
are modelled during speaker enrolment and during
subsequent recognition of input speech samples.
Other aspects are concerned with the manner in which
input speech models are classified in order to reach
a decision regarding the identity of the speaker. A
further aspect is concerned with normalising speech
signals input to speaker recognition systems
(channel normalisation). Still further aspects

concern applications of speaker recognition systems.

Referring now to the drawings, Figs. 4 to 6
illustrate the basic architectures used in systems
embodying various aspects of the invention. It will
be understood that the inputs to all of the
embodiments of the invention described herein are
digital signals comprising speech samples which have
previously been digitised by any suitable means (not
shown), and all of the filters and other modules

referred to are digital.

In Fig. 4, a speech sample is input to the system
via a channel normalisation module 200 and a filter
24. Instead of or in addition to this “front-end”
normalisation, channel normalisation may be
performed at a later stage of processing the speech
sample, as shall be discussed further below. The
sample would be divided into a series of frames
prior to being input to the filter 24 or at some

other point prior to feature extraction. In some



WO 02/103680 PCT/GB02/02726

W W I O Ul s W NN P

=
(&)

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

11

embodiments, as discussed further below, a noise
signal 206 may be added to the filtered signal (or
could be added prior to the filter 24). The sample
data are input to a modelling (feature extraction)
module 202, which includes a spectral analysis
module 26 and (at least in the case of speech sample
data being processed for enrolment purposes) a
statistical analysis module 28. The model (feature
set) output from the modelling module 202 comprises
a set of coefficients representing the smoothed
frequency spectrum of the input speech sample.
During enrolment of a speaker, the model is added to
a database of enrolled speakers (not shown). During
recognition of an input speech sample, the model
(feature set) is input to a classification module
110, which compares the model (feature set) with
models selected from the database of enrolled
speakers. On the basis of this comparison, a
decision is reached at 204 so as to identify the
speaker or to verify the claimed identity of the
speaker. The channel normalisation of the input
sample and the addition of the noise signal 206
comprise aspects of the invention, as shall be
described in more detail below, and are preferred
features of all implementations of the invention.

In some embodiments, channel normalisation may be
applied following spectral analysis 26 or during the
classification process, rather than being applied to
the input speech sample prior to processing as shown
in Figs. 4 to 6. Novel aspects of the modelling and

classification processes in accordance with other
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aspects of the invention will also be described in

more detail below.

Other aspects of the invention involve various types
of parallelism in the processing of speech samples

for enrolment and/or recognition.

In Fig. 5, the basic operation of the system is the
same as in Fig. 4, except that the output from the
modelling module 202 is input to multiple, parallel
classification processes 110a, 110b ... 110n, and
the outputs from the multiple classification
processes are combined in order to reach a final
decision, as shall be described in more detail
below. In Fig. 6, the basic operation of the system
is also the same as in Fig. 4, except that the input
sample is processed by multiple, parallel modelling
processes 202a, 202b ... 202n (typically providing
slightly different feature extraction/modelling as
described further below), possibly via multiple
filters 24a, 24b ... 24n (in this case the noise
signal 206 is shown being added to the input signal
upstream of the filters 24a, 24b ... 24n), and the
outputs from the multiple modelling processes are
input to the classification module 110, as shall
also be described in more detail below. These types
of multiple parallel modelling processes are
preferably applied to both enrolment sample data and

test sample data.

Multiple parallel modelling processes may also be

combined with multiple parallel classification
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processes; e.g. the input to each of the parallel
classification processes 110a-n in Fig. 5 could be
the output from multiple parallel modelling

processes as shown in Fig. 6.

Various aspects of the invention will now be
described in more detail by reference to the
modelling, classification and normalisation

processes indicated in Figs. 4 to 6.

MODELLING

The spectral analysis modules 26, 26a-n may apply
similar spectral analysis methods to those used in
conventional speaker recognition systems.
Preferably, the spectral analysis applied by the
modules 26a-n is of a type that, for each frame of
the sample data, extracts a set of feature vectors
(coefficients) representing the smoothed frequency
spectrum of the frame. This preferably comprises
LPC/Cepstral (LPCC) modelling, producing an
increased feature set which models the finer detail
of the spectra, but may include variants such as
delta cepstral or emphasis/de-emphasis of selected
coefficients based on a weighting scheme. Similar
coefficients may alternatively be obtained by other
means such as or Fast Fourier Transform [FFT] or by

use of a filter bank.

The complete sample is represented by a matrix
consisting of one row of coefficients for each frame

of the sample. For the purposes of the preferred
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embodiments of the present invention, these matrices
will each have a size of the order of 1000 (frames)
X 24 (coefficients). In conventional systems, a
single first matrix of this type, representing the
complete original signal, would be subject to

statistical analysis such as HMM.

As will be understood by those skilled in the art,
the LP transform effectively produces a set of
filter coefficients representing the smoothed
frequency spectrum for each frame of the test
utterance. The LP filter coefficients are related
to Z-plane poles. The Cepstral transform has the
effect of compressing the dynamic range of the
smoothed spectrum, de-emphasising the LP poles by
moving them closer to the Z-plane origin (away from
the real frequency axis at z=e’"). The Cepstral
transform uses a log function for this purpose. It
will be understood that other similar or equivalent
techniques could be used in the spectral analysis of
the speech sample in order to obtain a smoothed
frequency spectrum and to de-emphasise the poles
thereof. This de-emphasis produces a set of
coefficients which when transformed back into the
time domain are less dynamic and more well balanced
(the cepstral coefficients are akin to a time signal
or impulse response of the LP filter with de-
emphasised poles). The log function also transforms

multiplicative processes into additive processes.

The model derived from the speech sample may be

regarded as a set of feature vectors based on the
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frequency content of the sample signal. When a
feature vector based on frequency content is
extracted from a signal, the order of the vector is
important. If the order is too low then some
important information may not be modelled. To avoid
this, the order of the feature extractor (e.g. the
number of poles of an LP filter) may be selected to
be greater than the expected order. However, this
in itself causes problems. Poles which match
resonances in the signal give good results, whilst
the other resulting coefficients of the feature
vector will model spurious aspects of the signal.
Accordingly, when this vector is compared with
another model or reference, the distance measure
computed may be unduly influenced by the values of
those coefficients which are modelling spurious
aspects of the signal. The distance measure (score)
which is returned will thus be inaccurate, possibly
giving a poor score for a frame which in reality is

a good match.

In accordance with one aspect of the invention, this
problem can be obviated or mitigated by adding a
noise signal n(t) (206 in Figs. 4 - 6) having known
characteristics to the speech signal s(t) before the
signal is input to the modelling process (i.e. the
input signal = s(t)+n(t)). The same noise signal
would be used during enrolment of speakers and in
subsequent use of the system. The addition of the
known noise signal has the effect of forcing the
"extra" coefficients (above the number actually

required) to model a known function and hence to
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give consistént results which are less problematic
during model/test vector comparison. This is
particularly relevant for suppressing the effect of
noise (channel noise and other noise) during
“silences” in the speech sample data. This problem
may also be addressed as a consequence of the use of

massively overlapping sample frames discussed below.

As previously mentioned, in order to allow efficient
processing of speech samples all speaker recognition
systems use time slices called frames, so that the
utterance is split into a sequence of frames and
each frame is processed in turn. The frames may or
may not be of equal size and they may overlap.
Models generated by speaker recognition systems thus
comprise a plurality of feature sets (vectors
corresponding to sets of coefficients) representing
a plurality of frames. When models are compared in
conventional speaker recognition systems it is
necessary to align corresponding frames of the
respective models. Different utterances of a given
phrase will never be exactly the same length, even
when spoken by the same person. Accordingly, a
difficulty exists in correctly aligning frames for

comparison.

Conventional systems convert the frames into a
spectral or smoothed spectral equivalent as shown in
Figs. 8(a) (showing a time signal divided into
frames) and 8(b) (showing the corresponding
frequency spectrum and smoothed frequency spectrum

of one of the frames of Fig. 8(a)). The systems
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then perform further transformations and analysis
(such as Cepstral transformation, Vector
Quantisation, Hidden Markov Modelling (HMM) and
Dynamic Time Warping (DTW)) to obtain the desired
result. Frame boundaries can be allocated in many
ways, but are usually measured from an arbitrary
starting point estimated to be the starting point of
the useful speech signal. To compensate for this
arbitrary starting point, and also to compensate for
the natural variation in the length of similar
sounds, techniques such as HMM and DTW are used when
comparing two or more utterances such as when
building models or when comparing models with test
utterances. The HMM/DTW compensation is generally
done at a point in the system following spectral
analysis, using whatever coefficient set is used to
represent the content of a frame, and does not refer
to the original time signal. The alignment
precision is thus limited to the size of a frame.

In addition, these techniques assume that the
alignment of a particular frame will be within a
fixed region of an utterance which is within a few
frames of where it is expected to lie. This
introduces a temporal element to the system as the
estimated alignment of the current frame depends on
the alignment of previous frames, and the alignment
of subsequent frames depends on the alignment of the
present frame. 1In practice, this means that a
particular frame, such as a frame which exists 200
ms into an utterance, will in general only be
compared with other frames in the 200 ms region of

the model or of other utterances being used to
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construct a model. This approach derives from
speech recognition methods (e.g. speech-to-text
conversion), where it is used to estimate a phonetic
sequence from a series of frames. The present
applicants believe that this approach is
inappropriate for speaker recognition, for the

following reasons.

A. Most seriously, the conventional approach
provides only crude alignment of frames. The
arbitrary allocation of starting points means that
it will generally not be possible to obtain accurate
alignment of the starting points of two respective
frames, so that even two frames giving a "best
match" may have significantly different spectral

characteristics, as illustrated in Fig. 9.

B. Secondly, the conventional approach relies on
the temporal sequence of the frames and bases
speaker verification on spectral characteristics

derived from temporally adjacent frames.

In accordance with a further aspect of the
invention, the present enrolment modelling process
involves the use of very large frame overlaps, akin
to convolution, to avoid problems arising from frame
alignment between models (discussed at A. above) and
to improve the quality of the model obtained. This
technique is applied during speaker enrolment in
order to obtain a model, preferably based on
repeated utterances of the enrolment phrase. By

massively overlapping the frames, the resulting



WO 02/103680 PCT/GB02/02726

W O I U W N R

W W W NN DN NN NDNDNDNN R R R P R BP R Rl
N P O W O g 0 U W N R O YW LYol S W N R oo

19

model effectively approaches a model of all possible
alignments, with relatively small differences
between adjacent frames, thereby providing good
modelling of patterns. Preferably, the frame overlap
is selected to be at least 80%, more preferably it
is in the range 80% to 90%, and may be as high as

95%.

The frames are transformed into representative
coefficients using the LPCC transformation as
described above, so that each utterance employed in
the reference model generated by the enrolment
process is represented by a matrix (typically having
a size of the order of 1000 frames by 24
coefficients as previously described). There might
typically be ten such matrices representing ten
utterances. A clustering or averaging technique
such as Vector Quantisation (described further
below) is then used to reduce the data to produce
the reference model for the speaker. This model
does not depend on the temporal order of the frames,

addressing the problems described at B. above.

Preferred embodiments of the present invention
combine the massive overlapping of frames described
above with Vector Quantisation or the like as
described below. This provides a mode of operation
which is quite different from conventional HMM/DTW
systems. 1In such conventional systems, all frames
are considered equally valid and are used to derive
a final "score" for thresholding into a yes/no

decision, generally by accumulating scores derived
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by comparing and matching individual frames. The
validity of the scores obtained is limited by the

accuracy of the frame alignments.

In accordance with this aspect of the present
invention, the reference (enrolment) models
represent a large number of possible frame
alignments. Rather than matching individual frames
of a test utterance with individual frames of the
reference models and deriving scores for each
matched pair of frames, this allows all frames of
the test utterance to be compared and scored against
every frame of the reference model, giving a
statistical distribution of the frequency of
occurrence of frame score values. "Good" frame
matches will yield low scores and "poor" frame
matches will yield high scores (or the converse,
depending on the scoring scheme). A test utterance
frame tested against a large number of reference
models will result in a normal distribution as
illustrated in Fig. 10. Most frame scores will lie
close to the mean and within a few standard
deviations therefrom. Because of the massive
overlapping of frames in the reference models, the
score distributions will include "best matches"
between accurately aligned corresponding frames of
the test utterance and reference models. When a
test utterance from a particular speaker is tested
against the reference model for that speaker, the
distribution will thus include a higher incidence of
very low scores. This ultimately results in "true

speaker" scores being consistently low due to some
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parts of the utterance being easily identified as
originating from the true speaker while other parts
less obviously from the true speaker are classified
by being from the general population. Impostor
frame scores will not produce low scores and will be

classified as being from the general population.

That is, in accordance with this aspect of the
invention, the reference models comprise sets of
coefficients derived for a plurality of massively
overlapping frames, and a test utterance is tested
by comparing all of the frames of the test utterance
with all of the frames of the relevant reference
models and analysing the distribution of frame

scores obtained therefrom.

The massive overlapping of frames applied to speech
samples for enrolment purposes may also be applied
to input utterances during subsequent speaker

recognition, but this is not necessary.

The use of massive overlaps in the enrolment sample
data is also beneficial in dealing with problems
arising from noise present in periods of silence in
the sample data. Such problems are particularly
significant for text-independent speaker recognition
systems. The existence of silences may or may not
cause problems for an individual model or verification
attempt, but they will cause deterioration in the
overall system performance. The question is therefore
how do we remove this completely or minimise the

adverse effect. The use of massive frame overlaps in
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the present invention contains an inherent solution.
Consider the equations, which describe averaging the

frame spectra (discussed in more detail below),

=@ = LY, @xsd, o)

It can be seen that the static parts (ss) average to

ss (®) and that individual frames have the spectra

ss,(®)xsd,(w) . Consider however the spectra of two
added frames,

(55, (0) x5d, ()) + (55, (©) x 5, (1) = 55(0) x (sd, () +5d, (@)

we have the steady part multiplied by a new spectra
sd,(@)+sd,(®w) . But since it is to be reduced by
averaging, and it is also dynamic or variable in
nature, the new spectra should behave in exactly the
same way as a randomly extracted frame. The
implication of this is that frames could be randomly
added together with minimal effect on performance.
This observation is not entirely true since we can
have the case of valid speech frames added to
silence frames in which the net result is a valid
speech frame. This in fact results in an improvement
in performance, as we are no longer including

unwanted silences in the modelling.
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If a typical signal with some minor silence problems
has time frames randomly added, the silences would
be eliminated but the signal would appear to have
undergone major corruption. However the present
invention using massively overlapped frames still
functions. Interestingly, the implication of this is
that channel echoes have no effect and can be
ignored. It also underlines the fact that the
preferred operating modes of the present invention
extract the static parts of the spectra to a larger
extent than conventional verifiers (as discussed
further below). The addition of frames in this way
has substantially the same effect as adding coloured
noise to prevent unwanted modelling as discussed

above.

In accordance with another aspect, the invention
uses clustering or averaging techniques such as
Vector Quantisation applied by the modules 28, 28a-n
in a manner that differs from statistical analysis
techniques used in conventional speaker recognition

systems.

Preferably, the system of the present invention uses
a Vector Quantisation (VQ) technique in processing
the enrolment sample data output from the spectral
analysis modules 26, 26a-n. This is a simplified
technique, compared with statistical analysis
techniques such as HMM employed in many prior art
systems, resulting in transparent modelling
providing models in a form which allow model-

against-model comparisons in the subsequent
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classification stage. Also, VQ as deployed in the
present invention does not use temporal information,

making the system resistant to impostors.

The VQ process effectively compresses the LPCC
output data by identifying clusters of data points,
determining average values for each cluster, and
discarding data which do not clearly belong to any
cluster. This results in a set of second matrices
of second coefficients, representing the LPCC data
of the set of first matrices, but of reduced size
(typically, for example, 64 X 24 as compared with
1000 x 24).

The effects of the use of LPCC spectral analysis and
clustering/averaging in the present invention will

now be discussed.

The basic model assumes that spectral magnitude is
useful and that the phase may be disregarded. This
is known to apply to human hearing and if it was not
applied to a verifier the system would exhibit
undesirable phase related problems, such as
sensitivity to the distance of the microphone from
the speaker. Further assume that the spectral

information of a speech sample can be regarded as
consisting of two parts a static part ss(w) and a

dynamic part sd(w) and that the processes are
multiplicative. It is also assumed that the dynamic

part is significantly larger than the static part.

s(o) = ss(®) x sd(w)
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25
1 As, by definition, the static part is fixed it is
2 the more useful as a biometric as it will be related
3 to the static characteristics of the vocal tract.
4 This will relate the measure to some fixed physical
5 characteristic as opposed to sd(w) which is related
6 to the dynamics of the speech.
7
8 The complete extraction of ss(w) would give a
9 biometric which exhibits the properties of a
10 physical biometric, i.e. cannot be changed at will
11 and does not deteriorate over time. Alternatively
12 the exclusive use of sd(w) will give a biometric
13 which exhibits the properties of a behavioral
14 biometric, i.e. can be changed at will and will
15 deteriorate over time. A mixture of the two should
16 exhibit intermediate properties but as sd(w) is much
17 larger than ss(®w) it is more likely that a
18 combination will exhibit the properties of sd(o);
19 i.e. behavioral.
20
21 As with all frequency representations of a signal
22 the assumption is that the time signal exists from
23 -0 to +o which clearly is not physically possible.
24 In practice all spectral estimates of a signal will
25 be made using a window, which exists for a finite
26 period of time. The window can either be rectangular
27 or shaped by a function (such as a Hamming window) .
28
29 The use of a rectangular window amounts to simply
30 taking a section of a signal in the area of interest

31 and assuming that it is zero elsewhere. This
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26
1 technique is common in speech processing in which
2 the sections of signal are called frames; Fig. 1
3 shows a time signal with the frames indicated.
4
5 The frames can be shaped using an alternate window.
6 Interestingly, the major effect of windowing is a
7 spreading of the characteristic of a particular
8 frequency to its neighbours, a kind of spectral
9 averaging. This effect is caused by the main lobe;
10 in addition to this the side lobes produce spectral
11 oscillations, which are periodic in the spectrum.
12 The present system later extracts the all-pole
13 Linear Prediction coefficients, which have the
14 intended effect of spectral smoothing and the extra
15 smoothing, caused by the windowing, is not seen as a
16 major issue. However, the periodic side lobe
17 effects might be troublesome if the window size was
18 inadvertently changed. This however can be avoided

19 by good housekeeping.

20

21 Given that we can divide the time signal into frames
22 the spectral characteristics for frames 1 to N can
23 be represented as

24 s (@) =ss,(0)xsd,(®) ; s,(0)=ss,(®)xsd,(®) ; e . .
25 . . . . o . °

26 s, (@) =ss, (0)xsd, (o) ; . . . .

27  sy(0)=ssy(0)xsdy ()

28

29 But by definition

30 ss(®) =ss, () =ss, (®) =s5,(®) o . o =s5,(0)

31
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On first impressions to extract ss(w) would seem to

be possible using an averaging process,

— 1 1
s(®) —ﬁzsn(m) = E;(Ssn(w) xsd, (0))

where,

If the frames had independent spectral

characteristics (each resulting from random process)

then U(®w) would tend to white noise, i.e. would have

a flat spectrum so that 565 could be extracted by
smoothing the spectrum. This would most likely be
the case if N were very large —>ow . Given the linear
nature of the time domain - frequency domain - time
domain transformations a similar analysis could have

been described in the time domain.

For real world conditions it cannot be assumed that
N would be large in the sense that the frames have
independent spectral characteristics. It is
important to remember that this would require N to
be large under two conditions:

1. During model creation

2. During a verification event
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28
1 Failure to comply during either would potentially
2 cause a system failure (error), however a failure in
3 1 is the more serious as it would remain a potential
4 source of error until updated, whereas a problem in
5 2 is a single instance event.
6
7 If U(w) cannot be guaranteed to converge to white
8 noise, what can be done to cope with the situation?
9 First consider that:
10 1. U(®) will be a variable quantity
11 2. When smoothed across the frequency spectrum it
12 would ideally be flat; i.e. the smoothed
13 version Usm(w)=1
14 3. U(w) is the truncated sum of the speech frames
15 the number of which would ideally tend to
16 infinity.
17
18 Considering the equation
19 Rm—)=ss(m)xI—iI—stn(m)
20 The summation part tending to a flat spectrum is not
21 an ideal performance measure, if we return to the
22 frame based equivalent:
23 5() = 2355, (@) xsd, (@)
n
24 If we take the logarithms of the frames:
25 _IIVZ log((ss, (@)% sd,(®))
26

27 = —%Z[log(ss,, () +log(sd,, ()] = log(ss(w)) + ;L—Z log(sd, ()
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= Iss{w) + Isd(w)
it can be seen that the relationship between the
static and dynamic parts is now additive. Because
the relationship between the time domain and the
frequency domain is linear a transformation from

frequency to time gives:

Iss(w) + Isd(w) — cs(t) + cd(z) = c(7)

In signal processing c(t) is known as the Cepstral

transformation of s(t) as discussed previously.

In general cepstral analysis consists of
time _domain — frequency _ domain — log(spectrum) — time _ domain
The Cepstral transformation has been used in speech

analysis in many forms.

As discussed above, in our current usage we create
the Cepstral coefficients for the frames and extract

the static part,

%zﬂ:cn (1) =§Zﬂ:(csn (1) +cd, (1)) = cs(n) +%§cdn (1)

Ideally the length of the speech signal would be
long enough so that the dynamic part was completely
random and the mean would tend to zero. This would
leave the static part cs(t) as our biometric
measure. However, we have a number of problems to

overcome.

1. How do we handle the imperfect nature of the

sum-to-zero
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2. channel variation
3. endpointing

4. additive noise

Referring to the imperfect nature of the sum-to-
zero, the nature of the Cepstral coefficients are
such that they decay with increasing time and have
the appearance of an impulse response for stable
gystems. This means that the dynamic range of each
coefficient is different and they are in general in

descending order.

It can be shown that the differences between the
average coefficients of a test sample and the frame
coefficient values for the true speaker model and
the frame coefficient values of an impostor model
are not large and a simple summation over all of the
utterance frames to produce a distan;e score will be

difficult to threshold in the conventional manner.

If we consider the two difficult problems associated
with this methodology together rather than
separately the answer to the problem is revealed. To
re-emphasise, the two points of difficulty are,

1. the utterances will never be long enough for
the mean of the dynamic part to converge to
zero

2. the differences between the true speaker and
the impostors will be small and difficult to
threshold.

Consider two speakers with models based upon
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31
1 @=LZC (T)=—1—Z(CS (1) +cd (1))=cs(1:)+—1—ch (1)
N -~ n N - n n N - n
2 so that the models are ml(1t) and m2(t), where,

3 ml(t) =%:%chn (1) =iZ(cs1n (1) +cdl_ (1)) = csl(r) +%ch1n(t)

N4
4
5 =csl(1) + el(1) ; where el(t) is the error
6
7 In vector form the models are
8
[[csl, +el, | [cs2, +e2, |
csl, +el, cs2, +e2,
9 ml = ° and m2= .
@ ®
csl, +el cs2, +e2,
10
11 A test utterance from speaker 1 expressed in the
12 same form will be
13
[ cs1, + Tel, |
csl, + Tel,
14 Tl= .
[ ]
_cslp +’Telp_
15
16 using a simple distance measure true speaker
17 distance is
[cs1, +el, | [ecsl, +Tel, |
csl, +el, csl, + Tel,
18 dl=|ml-TI|= e |- . = el - Tel
[ ] ®
csl, +el, | |esl, +Tel,

19 impostor distance is
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1
[cs2, +e2, | [csl, +Tel, |
cs2, +€2, csl, +Tel,
2 d2=|m2-Ti|= . - . =|cs2 —csl +e2 - Tel|
[ ] L ]
_CS2P-+62pd _csL,+—Telp_
3
4 Assuming that the convergence of the dynamic parts
5 of the models is good (i.e. that the error vectors
6 are small compared to the static vectors) then in
7 general dl<d2. This is simply stating that the
8 models built represent the enrolled speaker (a
9 condition that can easily checked during enrolment
10 using the data available at that time).
11 Interestingly, if el and e2 are small compared to
12 the test signal error Tel the distances become
13 independent of el and e2. The condition under which
14 the test error will be large when compared to the
15 model error is during text-independent test
16 conditions. This shows that if the dynamic
17 components of the enrolment speech samples are
18 minimised in the enrolment models then such models
19 can provide a good basis for text-independent
20 speaker recognition
21
22 The errors el and e2 above are average model
23 construction errors; the actual errors are on a
24 frame by frame basis and will have a distribution
25 about the mean. This distribution could be modelled
26 in a number of ways the simplest being by use of a
27 standard clustering technique such as k-means to

28 model the distribution. The use of k-means
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clustering is also known in other forms as Vector
Quantisation (VQ) and is a major part of the Self
Organising Map (SOM) also known as the Kohonen

Artificial Neural Network.

The system just described where a test utterance is
applied to two models and the closest chosen is a
variant of identification. In the above case if
either speaker 1 or speaker 2, the enrolled
speakers, claim to be themselves and are tested they
will always test as true and so the False Rejection
Rate FRR =0. If an unknown speaker claims to be
either speakerl or speaker2 he will be classified as
one or the other, so there is a 1/2 chance of
success and hence a False Acceptance Rate FAR =50%.
If an equal number of true speaker tests and random
impostor tests were carried out, we can calculate an

overall error rate as (FRR+FAR)/2 = (0+40.5)/2=25%

It is obvious that the number of models (the cohort)
against which the test utterance is tested will have
an effect on the FAR and it will reduce as the
cohort increases. It can be shown that the accuracy
of recognition under these conditions is asymptotic
to 100% with increasing cohort size, since FRR=0,

but as the accuracy is

accuracy=1oo-(FRR+FAR)@=100— FRR + L 100
2 cohort _size ) 2

it is in more general terms asymptotic to 100-FRR.
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It is worth observing at this point that the FRR and
FAR are largely decoupled: the FRR is fixed by the
quality of the model produced and the FAR is fixed
by the cohort size. It is also worth observing that
to halve the error rate we need to double the cohort
size e.g. for 99% accuracy the cohort is 50, for
99.5% accuracy the cohort is 100, for 99.75%
accuracy the cohort is 200. As the cohort increases
the computational load increases and in fact doubles
for each halving of the error rate. As the cohort
increases to very large numbers the decoupling of
the FRR and FAR will break down and the FRR will

begin to increase.

Rather than continually increasing the cohort size
in an attempt to reduce the FAR to a minimum another
approach is needed. The approach, in accordance
with one aspect of the invention, is to use parallel
processes (also discussed elsewhere in the present
description), which exhibit slightly different
impostor characteristics and are thus partially
statistically independent with respect to the
identifier strategy. The idea is to take a core
identifier which exhibits the zero or approximately
zero FRR and which has a FAR that is set by the
cohort size. The front end processing of this core
identifier is then modified slightly to reorder the
distances of the cohort member models from the true
speaker model. This is done while maintaining the
FRR~0 and can be achieved by altering the spectral
shaping filters 24a-24n (see Fig. 7), or by altering
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the transformed coefficients, such as by using

delta-ceps etc.

When an enrolled speaker uses the system the test
signal is applied to all of the processes in
parallel but each process has a FRR~0 and the
speaker will pass. When an unknown impostor uses the
system he will pass each individual process with a
probability of 1/cohort size. However with the
parallel processes we have introduced conditional
probabilities. That is, if an impostor passes
processl what is the likelihood of him passing the
modified process2 as well etc. Although the
probability of an impostor passing all of the
processes is not that of the statistically
independent case of

b no _of _ processes

statistically _independent _ result = process _ pro
it does however reduce with the addition of
processes. It can be shown that for a given process
FAR value, the overall accuracy of the system

increases with the number of processes.

Where multiple parallel processes are used in this
way, the scheme for matching a test sample against a
claimed identity may require a successful match for
each process or may require a predetermined

proportion of successful matches.

The combined use of massive sample frame overlaps
and Vector Quantisation (or equivalent) in building
enrolment models in accordance with the present

invention providesgs particular advantages. The
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massive overlapping is applied at the time of
constructing the models, although it could also be
applied at the time of testing an utterance. The
technique involves using a massive frame overlap,
typically 80-90%, to generate a large possible
number of alignments; the frames generated by the
alignments are then transformed into representative
coefficients using the LPCC transformation to
produce a matrix of coefficients representing all of
the alignments. This avoids conventional problems of
frame alignment. The matrix is typically of the size
no_of frames by LPCC order, for example 1000x24.
This is repeated for all of the utterances used in
constructing the model, typically 10, Giving 10
matrices of 1000x24. Vector Quantisation is then
used to reduce the data to produce a model for the
speaker. This has the effect of averaging the frames
so as to reduce the significance of the dynamic
components of the sampled speech data as discussed
above. The resulting model does not take cognisance
of the frame position in the test utterance and is
hence not temporal in nature. This addresses the

problem of temporal dependency.

The combined use of VQ and massive frame overlapping
produces an operation mode which is different from
conventional systems based upon HMM/DTW. In HMM/DTW
all frames are considered to be equally valid and
are used to form a final score for thresholding into
a yes/no decision. In the present invention every
row (frame) of the test sample data is tested

against every row of the enrolment model data for
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the claimed speaker and the associated impostor
cohort. For each row of the test sample data, a
best match can be found with one row of the
enrolment model, yielding a test score for the test
sample against each of the relevant enrolment
models. The test sample ig matched to the enrolment
model that gives the best score. If the match is
with the claimed identity, the test speaker is
accepted. If the match is with an impostor the test

speaker is rejected.

The present system, then, uses LPCC and VQ modelling
(or similar/equivalent spectral analysis and
clustering techniques), together with massive
overlapping of the sample frames, to produce the
reference models for each enrolled speaker, which
are stored in the database. In use of the system, an
input test utterance is subjected to similar
spectral analysis to obtain an input test model
which can be tested against the enrolled speaker
data-set. Advantageously, this approach can be
applied so as to obtain a very low False Rejection
Rate (FRR), substantially equal to zero. The

significance of this is discussed further below.
Parallel Modelling

As previously discussed, the performance of speaker
recognition systems in accordance with the invention
can be improved by using multiple parallel processes

to generate the model.
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Referring now to Fig. 7 of the drawings, one
preferred embodiment of a speaker recognition system
employing parallel modelling processes in accordance
with one aspect of the invention comprises an input
channel 100 for inputting a signal representing a
speech sample to the system, a channel normalisation
process 200 as described elsewhere, a plurality of
parallel signal processing channels 102a, 102b

102n, a classification module 110 and an output
channel 112. The system further includes an
enrolled speaker data-set 114; i.e. a database of
speech models obtained from speakers enrolled to use
the system. The speech sample data is processed in
parallel by each of the processing channels 102a-n,
the outputs from each of the processing channels is
input to the classification module 110, which
communicates with the database 114 of enrolled
speaker data, and a decision as to the identity of
the source of the test utterance is output via the

output channel 112,

Each of the processing channels 102a-n comprises, in
series, a spectral shaping filter 24a-n, an
(optional) added noise input 206a-n, as described
elsewhere, a spectral analysis module 26a-n and a
statistical analysis module 28a-n. The outputs from
each of the statistical analysis modules 28a-n is

input to the classification module 110.

The spectral shaping filters 24a-n comprise a bank
of filters which together divide the utterance

signal into a plurality of overlapping frequency
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bands, each of which is then processed in parallel
by the subsequent modules 26a-n and 28a-n. The
number of processing channels, and hence the number
of frequency bands, may vary, with more channels
providing more detail in the subsequent analysis of
the input data. Preferably, at least two channels
are employed, more preferably at least four
channels. The filters 24a-n preferably constitute a
low-pass or band-pass or high-pass filter bank. The
bandwidth of the base filter 24a is selected such
that the False Rejection Rate (FRR) resulting from
subsequent analysis of the output from the first
channel 102a is zero or as close as possible to
zero. The subsequent filters 24b-n have
incrementally increasing bandwidths that
incrementally pass more of the signal from the input
channel 100. The FRR for the output from each
channel 102a-n is thus maintained close to zero
whilst the different channel outputs have slightly
different False Acceptance (FA) characteristics.
Analysis of the combined outputs from the channels
102a-n yields a reduced overall FA rate (a claimed
identity is only accepted if the outputs from all of
the channels are accepted) with a FRR close to zero.

The significance of this is discussed further below.

The use of multiple frequency bands improves upon
conventional single-channel spectral analysis,
increasing the size of the feature vectors of

interest in the subsequent statistical analysis.
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It will be understood that different types of
parallel processing may be employed in the modelling
process in order to provide multiple feature sets
modelling different (related or unrelated) aspects
of the input speech sample and/or alternative models
of similar aspects. Banks of filters of other types
in addition to or instead of low pass filters might
be employed. Different types or variants of
spectral and/or statistical analysis techniques
might be used in parallel processing channels.
Parallel statistical analyses may involve applying
different weighting values to sets of feature
coefficients so as to obtain a set of slightly

deviated models.

It will be understood that the architecture
illustrated in Fig. 7 may be used for both obtaining
enrolment models for storing in the database 114 and
for processing test speech samples for testing
against the enrolment models. Each enrolment model
may include data-sets for each of a plurality of
enrolment utterances. For each enrolment utterance,
there will be a matrix of data representing the
output of each of the parallel modelling processes.
Each of these matrices represents the
clustered/averaged spectral feature vectors. Test
sample data is subject to the same parallel spectral
analysis processes, but without
clustering/averaging, so that the test model data
comprises a matrix representing the spectral
analysis data for each of the parallel modelling

processes. When a test model is tested against an
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1 enrolment model, the test matrix representing a

2 particular modelling process is tested against

3 enrolment matrices generated by the same modelling
4 process.

5

6 CLASSIFICATION

7

8 The nature of the reference models obtained by the
9 modelling techniques described above is such that
10 they lend themselves to direct model against model
11 comparisons. This enables the system to employ an
12 identifier strategy in which each enrolment model is
13 associated with an impostor cohort. That is, for
14 the reference model of each enrolled speaker

15 ("subject"), there is an impostor cohort comprising
16 a predetermined number of reference models of other
17 enrolled speakers, specific to that subject and

18 which has a known and predictable relationship to
19 the subject's reference model. These predictable
20 relationships enable the performance of the system
21 to be improved. Fig. 11l(a) shows the results

22  obtained by a conventional speaker recognition

23 system, similar to Fig. 3, comparing scores for an
24 input utterance tested against reference data for
25 eight speakers. Speaker 1 is the true speaker, but
26 the scores for some of the other speakers are
27 sufficiently close to reduce significantly the

28 degree of confidence that the system has identified
29 the correct speaker. Fig. 11(b) shows equivalent
30 results obtained using a system in accordance with
31 the present invention. It can be seen that the

32 results for speaker 1 are much more clearly
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distinguished from the results of all of the other

speakers 2 to 8.

The speaker modelling method employed in the
preferred embodiments of the present invention is
inherently simpler (and, in strict mathematical
terms, cruder) than conventional techniques such as
HMM and possible alternatives such as gaussian
mixture models. However, the present applicants
believe that the conventional use of "tight"
statistical methods is inherently flawed and result
in poor "real world" performance, and that,.
surprisingly, the relatively simpler statistical
methods of the present invention are much more
effective in practice. As previously noted, the
temporal nature of HMM makes it susceptible to
mimics, a problem which is avoided by the present
invention. Further, the models of the present
invention are ideally suited to enable analysis of
the structure of the enrolled speaker data-set by

model against model testing.

The ability to perform model against model
comparisons by using the present speaker models
provides two particular advantages. Firstly, this
provides the ability to identify the most relevant
impostors in the‘enrolled speaker data-set (i.e.
thosé which are close to and uniformly distributed
around a particular model) and to produce an
effective and predictable speaker normalisation
mechanism. VQ modelling involves choosing the size

of the model; i.e. choosing the number of
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coefficients ("centres"). Once this has been done,
the positions of the centres can be moved around
until they give the best fit to all of the enrolment
data vectors. This effectively means allocating a
centre to a cluster of enrolment vectors, so each
centre in the model represents a cluster of

information important to the gpeaker identity.

The model against model tests make it possible to
predict how an enrolled speaker, or claimed
identity, will perform against the database both in
the broad sense and in an area local (in the system
dataspace) to the claimed identity. Fig. 12
illustrates the results of testing reference models
for speakers 2 to 8 against the reference model for
speaker 1. The ellipses show the model against
model results whilst the stars show actual scores
for speaker utterances tested against model 1. It
can be seen that the model against model tests can
be used to predict the actual performance of a
particular speaker against a particular reference
model. The model against model results tend to lie
at the bottom of the actual score distributions and
therefore indicate how well a particular impostor
will perform against model 1. This basic approach
of using model against model tests to predict actual
performance is known as such. As described further
below, this approach may be extended in accordance
with one aspect of the present invention to guard
particular models against impostors using
individually selected, statistically variable

groupings.
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The second advantage derived from model against
model testing is the ability to predict the
performance of a test utterance against some or, if
need be, all of the enrolled speaker models. This
enables a virtually unlimited number of test
patterns to be used to confirm an identity, which is

not possible with conventional systems.

In addition, the model against model test results
may be used to assemble a specific impostor cohort
for use with each reference model. This allows
accurate score normalisation and also allows each
model to be effectively "guarded" against impostors
by using a statistically variable grouping which is
selected for each enrolled speaker. This is
illustrated by Fig. 13. Each reference model can be
regarded as a point in a multi-dimensional
dataspace, so that "distances" between models can be
calculated. Fig. 13 illustrates this idea in two
dimensions for clarity, where each star represents a
model and the two-dimensional distance represents

the distance between models.

It can be seen that the distribution of speaker
models is not uniform, so that a world-model based
normalisation technique will not operate equally
well for all speaker models. It can also be seen
that some speaker models can be relatively close to
one another, which implies that there is potential
for impostors to successfully impersonate enrolled

speakers. For each speaker model, these issues can



WO 02/103680 PCT/GB02/02726

o TG R T I S U S I =

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

45

be resolved by creating a specific cohort of
impostors around the subject model. This simplifies
normalisation and creates a guard against impostors.
This is illustrated in Fig. 14, which shows, in a
similar manner to Fig. 13, a subject model
represented by a circle, members of an impostor
cohort represented by stars, and a score for an
impostor claiming to be the subject, represented by
an "x". The impostor score is sufficiently close to
the subject model to cause recognition problems.
However, because the speaker data-set enables
prediction of how the true subject speaker will
perform against the models of the impostor cohort,
this information can be used to distinguish the
impostor x from the true subject, by testing the
impostor against the models of the cohort members as
well as against the true subject model. That is, it
can be seen that the impostor utterance x is closer
to some of the cohort members than would be expected
for the true subject, and further away from others
than expected. This would indicate an impostor
event and result in the impostor utterance being

rejected as a match for the true subject.

This provides the basis for a two stage recognition
process which firstly rejects impostors who are
clearly not the claimed speaker followed, where
necessary, by a more detailed process applied to
utterances which are close enough to possibly be the

claimed speaker.
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In certain applications of speaker verification
systems, it is important to minimise the possibility
of "false rejections"; i.e. instances in which the
identity claimed by a user is incorrectly rejected
as being false. In accordance with one aspect of
the invention, an "identifier strategy" is employed
which provides very low false rejections, whilst
also providing predictable system performance and
minimising problems associated with the use of
thresholds in accepting or rejecting a claimed

identity.

In accordance with this strategy, the database of
enrolled speakers (the "speaker space") is
partitioned; e.g. so that each speaker enrolled in
the system is assigned to a cohort comprising a
fixed number N of enrolled speakers, as described
above. The speaker classification module of the
system (e.g. the module 110 in the system of Fig. 4)
operates such that the input test utterance is
compared with all of the members of the cohort
associated with the identity claimed by the speaker,
and the test utterance is classified as
corresponding to that member of the cohort which
provides the best match. That is, the test
utterance is always matched to one member of the
cohort, and will never be deemed not to match any
member of the cohort. If the cohort member to which
the utterance is matched corresponds to the claimed
identity, then the claimed identity is accepted as

true. If the utterance is matched to any other
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member of the cohort then the claimed identity is

rejected as false.

The modelling and classification processes can be
tuned such that the proportion of false rejections
is effectively zero (FR = 0%) (as discussed above) ;
i.e. there is substantially zero probability that a
speaker will be wrongly identified as a member of
the cohort other than the claimed identity. This is
facilitated by the use of model against model
comparisons such that a match is not based simply
upon the test utterance being matched against the
single closest model, but also on the basis of its
relationship to other members of the cohort. Where
the cohort is of a fixed size N, the maximum
possible proportion of false acceptances

FA = 100/N % and the total average error rate

= (FA + FR)/2 = 50/N %. If the cohort size N is 20,
the error rate is thus 2.5 %; i.e. an accuracy of
97.5 %. If the cohort size is fixed, the system is
scalable to any size of population while maintaining
a fixed and predictable error rate. That is, the
accuracy of the system is based on the size of the
cohort and is independent of the size of the general
population, making the system scalable to very large
populations. Accuracy can be improved by increasing
the cohort size, as long as the false rejection rate

does not increase significantly.

This strategy does not rely on the use of thresholds
to determine a result, but thresholds could still be

used to reduce false acceptances; i.e. once a test



WO 02/103680 PCT/GB02/02726

W 0 J O U1 B W NN

[}
(@]

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

48

utterance has been matched to the claimed identity
using the foregoing strategy, thresholds could be
applied to determine whether the match is close

enough to be finally accepted.

As indicated above, the selection of an impostor
cohort associated with a particular enrolment model
may involve the use of algorithms so that the
members of the impostor cohort have a particular
relationship with the enrolment model in question.
In principle, this may provide a degree of
optimisation in the classification process.
However, it has been found that a randomly selected
impostor cohort performs equally well for most
practical purposes. The most important point is
that the cohort size should be predetermined in
order to give predictable performance. The impostor
cohort for a particular enrolment model may be
selected at the time of enrolment or at the time of

testing a test utterance.

Parallel Classification

The performance of a speaker recognition system in
accordance with the invention may be improved by the
use of multiple parallel classification processes.
Generally speaking, such processes will be
statistically independent or partially independent.
This approach will provide multiple classification
results which can be combined to derive a final

result, as illustrated in Fig. 5.
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In one example, using the identifier strategy
described above, the same test utterance may be
tested against a number of different cohorts, or
against different enrolment phrases, or combinations
thereof. Where multiple cohorts are employed, each
cohort will give a result with a false rejection
rate of essentially zero (FR = 0 %) and a false
acceptance rate FA = 100/N % as before. The overall
false acceptance rate for n cohorts of equal size
will be

FA = 100*M/N" % and the average error rate

= 50*M/N" %, where M is a coefficient having a value
greater than 1 and representing the effect of the
processes not being entirely statistically
independent. That ig, with 2 cohorts and a cohort
size of 20, the average error rate will be 0.125*M %
as compared with 2.5 % for a single cohort as

described above. Thresholds may also be applied to

further improve accuracy as previously described.

Other types of partially statistically independent
processes may be employed in the modelling process,
the classification process or both as previously
discussed. Besides the examples previously given, a
single utterance may be divided into parts and

processed separately.

NORMALISATION

A further problem encountered with conventional

speaker recognition systems is that system

performance may be affected by differences between
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speech sampling systems used for initial enrolment
and subsequent recognition. Such differences arise
from different transducers (microphones), soundcards
etc. In accordance with a further aspect of the
present invention, these difficulties can be
obviated or mitigated by normalising speech samples
on the basis of a normalisation characteristic which
is obtained and stored for each sampling system (or,
possibly, each type of sampling system) used to
input speech samples to the recognition system.
Alternatively (preferably), the normalisation
characteristic can be estimated "on the fly" when a
speech sample is being input to the system. The
normalisation characteristic(s) can then be applied
to all input speech samples, so that reference
models and test scores are independent of the
characteristics of particular sampling systems.
Alternatively or additionally, in accordance with a
further aspect of the invention a normalisation
process can be applied at the time of testing test

sample data against enrolment sample data.

A normalisation characteristic is effectively a
transfer function of the sampling system and can be
derived, for example, by inputting a known reference
signal to the sampling system, and processing the
sampled reference signal through the speech
recognition system. The resulting output from the
recognition system can then be stored and used to
normalise speech samples subsequently input through
the same sampling system or the same type of

sampling system.
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Alternatively, as illustrated in Fig. 15, a speech
signal S(f) which has been modified by the transfer
function C(f) of an input channel 300 can be
normalised on the fly by inputting the modified
speech signal S(f)*C(f) to an estimating module 302,
which estimates the transfer function C(f) of the
channel 300, and to a normalisation module 304, and
applying the inverse of the estimated transfer
function 1/C(f) to the normalisation module, so that
the output from the normalisation module closely
approximates the input signal S(f). The estimator
module 302 creates a digital filter with the
spectral characteristics of the channel 300 and the
inverse of this filter is used to normalise the
signal. For example, the inverse filter can be
calculated by determining the all-pole filter which
represents the spectral quality of a sample frame.
The filter coefficients are then smoothed over the
frames to remove as much of the signal as possible,
leaving the spectrum of the channel (C(f)). The
estimate of the channel spectrum is then used to
produce the inverse filter 1/C(f). This basic
approach can be enhanced to smooth the positions of
the poles of the filters obtained for the frames,
with intelligent cancellation of the poles to remove
those which are known not to be concerned with the

channel characteristics.

Depending on the nature of the transfer
function/normalisation characteristic, the

normalisation process can be applied to the speech
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sample prior to processing by the speaker
recognition system or to the spectral data or to the

model generated by the system.

A preferred method of channel normalisation, in
accordance with one aspect of the invention, is
applied to the test model data and the relevant
enrolment models at the time of testing the test

sample against the enrolment models.

The overall effect of the channel characteristics on

a speech signal could be described as
S$(w) = ss(®) x sd(o) x cc(w)
where §(w)is the estimate of the speakers

characteristics, cc(w) is the channel characteristic
or changed channel characteristic as appropriate,
and the speech signal is treated as comprising a
static part and a dynamic part as before. Ideally
the unwanted channel characteristic can be estimated
and removed. In practice the removal can be achieved
in the time domain, frequency domain or a

combination. They both achieve the same effect, that
is to estimate cc(®w) and remove it using some form of
inverse filter or spectral division. If cc(w)is the
estimate of the spectrum of the unwanted channel

then we would calculate

3(0) = ss(®) x sd(w) x ce()

ce(o) ce(w)

= s(o)



WO 02/103680 PCT/GB02/02726

o W O N o Uk W

'_l

12
13
14
15
16
17
18
19
20
21

22
23
24

25
26
27
28
29
30

53

If the estimation of the channel characteristic is

cc(m)
ce(m)

good ~1 and our estimate of the speech is

good with the unwanted spectral shaping removed.
This would normally be implemented using a algorithm

based on the FFT.

An alternative implementation is to model the
channel characteristic as a filter, most likely in

the all-pole form,

h(z) =
zN +a, 2V +.a,

This is the most basic form of the ARMA and would
normally be extracted from the time signal directly,

possibly using Linear Prediction.

A similar normalisation could be carried out on the

Cepstral representation.

In the Cepstral domain the speech signal is
represented as

c(t) = cs(t) + cd(7)
and the speech signal modified by the unwanted
channel characteristics is

¢(t) =cs(t) + ed(t) + cc(n)
It can be seen that in this case we have an additive
process rather than a product. But it should also be
remembered that both cs and cc are static and we may

need to remove one cc without removing the other.
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It is important to consider the context in which we
would wish to remove the signal cc and their
different conditions (enrolled model, database

derived cohort, test speaker etc.).

Figure 16 illustrates various sources of corruption
of a speech sample in a speaker recognition system.
The input speech signal s(t) is altered by
environmental background noise, b(t), the recording
device bandwidth, r(t), electrical noise and channel
crosstalk, t(t), and transmission channel bandwidth,
c(t), so that the signal input to the recognition
system is an altered signal v(t). The system is
easier to analyse in the frequency domain and the

signal at the verifier is:

v(®) = ((s(®) + b(w)).r(o) + t(w)).c(w) eql

At the verifier we can define two conditions, when
the person is speaking and when he is not. Resulting
in two equations,

v(®) = ((s(w) + b(w)).r(e) + t{w)).c(w)

and

v(®) =((0 + b(w)).r() + t{w)).c(w)

First consider the simplified problem as it applies
to the systems in accordance with the present
invention; assume that b(t)=t(t)=0

v(®) =s(0).r(m).c(0) = s(v).h(o)
where h( ) is the combined channel spectral

characteristic,

h(o) =r(e).c(w)
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v(®) =s(w).h(o) = ss(w).sd(®).h(w)

The cohort models are selected from the database of
speakers recorded using the same channel (b) and the
true speaker model is recorded using a different
channel (a). The test speaker can either be the true
speaker or an impostor and will be recorded using a
third channel (c¢). Figure 17 shows this
diagrammatically. Fig. 18 shows the same thing
expressed in the alternate form using the Cepstral
coefficients. It should be remembered that the
values of the signal components as represented in
Figs 17 and 18 are averages corresponding to the

summations of sample frame data.

Consider the claimed identity model, which was built

from,
v, (t)=cs,(1)+cd,(t)+h, (1) eq2
and the cohort models which were built from,

v,(t)=cs_(t)+cd (t)+h,(7) eq3

The problem for the verifier is that there are two
different channels used in the identifier and if we

assume the difference between them is
hd(1)=h, () ~ b, (7)
oxr h,(t)=h, (v) + hd(7)

then the claimed identity model referred to the

cohort channel (b) will be
v,(t)=cs,(1) +cd, (v) +h, (1) =cs, (1) + cd,(t) + h, (1) + hd(7)
and v,(t)=(cs,(t) + hd(1)) + cd, (1) + h, (1)
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it can be seen that the mean of the static part of
the claimed identity model has been shifted by the
difference between the channels and will cause an
error if the true speaker is tested using channel-b
if the situation is not corrected. Similar problems
involving false acceptances using channel-a will

also occur.

One method of addressing this problem is to remove
the mean from the claimed identity model, but a
simple removal of the mean would at first glance
produce,

V(1) =cd,(7)
where the static part of the speaker model has also
been removed. However, examining equation 1 (the
system model including additive noise)

v(®) = ((s() + b(w)).r(®) + t(m)).c(w)
if we consider the case during which the speaker
pauses, s{®)=0
then v(0) = (b(®).1(0) + t(®)).c(®)
and v(®) = n(o).c(o)

where n(w) is a noise signal.

In cepstral form this would be

v(t) =n(7) + ¢(t) = sn(t) + dn(t) + c(7)
where as before sn is the static part of the noise
and dn is the result of the summation of the dynamic

part.
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The average of a model constructed from this would
be

sn(t) + c(1)
where sn is any steady state noise such as an

interference tone and ¢ is the channel.

Considering again equationl (the claimed identity
model build conditions)

v,(t)=cs,(t) +cd, (1) +h, (1)
this was the noise free case, adding a steady state
noise gives,

v,(t) =cs,(t) +cd, (1) + h, (1) + sn(7)
If we constructed the speaker pause model for this
case we would get

sn(t) +h, (1)

and using this to remove the mean results in

v,(1) =cs, (1) + cd, (1)
This gives us a model unbiased by the channel. A
similar process could be applied to each model
whereby it has the channel bias removed by its own
silence model. The test speaker could be similarly
treated, i.e. its silence model is used to remove

the channel effects.

The removal (reduction) of the channel
characteristics using the silence model as described
above requires suitable channel noise and perfect
detection of the silence parts of the utterance. As
these cannot be guaranteed they need to be mitigated
(for instance, if the silence includes some speech

we will include some of the claimed identity speaker
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static speech and inadvertently remove it).
Fortunately they can be dealt with in one simple
modification to the process: the cohort models

should all be referred to the same silence model.

That is, if we re-add the silence average of the
claimed identity model to all of the models in the
cohort (including the claimed identity model). This

refers all of the models to the same mean

sn(t)+h,(r) . This normalisation is also applied to the
test model, thereby referring all of the models and
the test utterance to the same reference point. In
effect we choose a reference channel and noise

condition and refer all others to it.

This is illustrated diagrammatically in Fig. 19,
which shows the Cepstral coefficients of the test
utterance together with the claimed identity model
and the cohort models 1 to m being input to the
classifier 110. A “silence model” or “normalisation
model” 400 derived from the claimed identity
enrolment data is used to normalise each of these
before input to the classifier, so that the actual
inputs to the classifier are a normalised test
utterance, normalised claimed identity model and
normalised cohort models. Ideally, the
normalisation model 400 is based on data from
periods of silence in the claimed identity enrolment
sample as discussed above, but it could be derived
from the complete claimed identity enrolment sample.
In practical terms, the normalisation model

comprises a single row of Cepstral coefficients,
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each of which is the mean value of one column (or
selected members of one column) of Cepstral
coefficients from the claimed identity model. These
mean values are used to replace the mean values of
each of the sets of input data. That is, taking the
test utterance as an example, the mean value of each
column of the test utterance Cepstral coefficients
is subtracted from each individual member of that
column and the corresponding mean value from the
normalisation model is added to each individual
member of the column. A similar operation is
applied to the claimed identity model and each of

the cohort models.

It will be understood that the normalisation model
could be derived from the claimed identity model or
from the test utterance or from any of the cohort
models. It is preferable for the model to be
derived from either the claimed identity model or
the test utterance, and it is most preferable for it
to be derived from the claimed identity model. The
normalisation model could be derived from the “raw”
enrolment sample Cepstral coefficients or from final
model after Vector Quantisation. That is, it could
be derived at the time of enrolment and stored along
with the enrolment model or it could be calculated
when needed as part of the verification process.
Generally, it is preferred that a normalisation
model is calculated for each enrolled speaker at the
time of enrolment and stored as part of the enrolled

speaker database.
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These normalisation techniques can be employed with
various types of speaker recognition systems but are
advantageously combined with the speaker recognition

systems of the present invention.

Speaker recognition systems in accordance with the
invention provide improved real world performance
for a number of reasons. Firstly, the modelling
techniques employed significantly improve separation
between true speakers and impostors. This improved
modelling makes the system less sensitive to real
world problems such as changes of sound system
(voice sampling system) and changes of speaker
characteristics (due to, for example, colds etc.).
Secondly, the modelling technique is non-temporal in
nature so that it is less susceptible to temporal
voice changes, thereby providing longer persistence
of speaker models. Thirdly, the use of filter pre-
processing allows the models to be used for variable
bandwidth conditions; e.g. models created using high
fidelity sampling systems such as multimedia PCs
will work with input received via reduced bandwidth

input channels such as telephony systems.

It will be understood that the preferred methods in
accordance with the present invention are inherently
suited for use in text-independent speaker
recognition systems as well as text-dependent

systems.

SYSTEMS
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The invention thus provides the basis for flexible,
reliable and simple voice recognition systems
operating on a local or wide area basis and
employing a variety of communications/input
channels. Fig. 16 illustrates one example of a wide
area system operating over local networks and via
the Internet, to authenticate users of a database
system server 400, connected to a local network 402,
such as an Ethernet network, and, via a router 404,
to the Internet 406. A speaker authentication
system server 408, implementing a speaker
recognition system in accordance with the present
invention, is connected to the local network for the
purpose of authenticating users of the database 400.
Users of the system may obviously be connected
directly to the local network 402. More generally,
users at sites such as 410 and 412 may access the
system via desktop or laptop computers 414, 416
equipped with microphones and connected to other
local networks which are in turn connected to the
Internet 406. Other users such as 418, 420, 422 may
access the system by dial-up modem connections via
the public switched telephone network 424 and

Internet Service Providers 426.

IMPLEMENTATION

The algorithms employed by speaker recognition
systems in accordance with the invention may be
implemented as computer programs using any suitable
programming language such as C or C++, and

executable programs may be in any required form
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including stand alone applications on any
hardware/operating system platform, embedded code in
DSP chips etc. (hardware/firmware implementations),
or be incorporated into operating systems (e.g. as
MS Windows DLLs). User interfaces (for purposes of
both system enrolment and subsequent system access)
may similarly be implemented in a variety of forms,
including Web based client server systems and Web
browser-based interfaces, in which case speech
sampling may be implemented using, for example,

ActiveX/Java components or the like.

Apart from desktop and laptop computers, the system
is applicable to other terminal devices including
palmtop devices, WAP enabled mobile phones etc. via
cabled and/or wireless data/telecommunications

networks.
APPLICATIONS

Speaker recognition systems having the degree of
flexibility and reliability provided by the present
invention have numerous applications. One
particular example, in accordance with a further
aspect of the present invention, is in providing an
audit trail of users accessing and/or modifying
digital information such as documents or database
records. Such transactions can be recorded,
providing information regarding the date/time and
identity of the user, as is well known in the art.
However, conventional systems do not normally verify

or authenticate the identity of the user.
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Speaker recognition, preferably using a speaker
recognition system in accordance with the present
invention, may be used to verify the identity of a
user whenever required; e.g. when opening and/or
editing and/or saving a digital document, database
record or the like. The document or record itself
may be marked with data relating to the speaker
verification procedure, or such data may be recorded
in a separate audit trail, providing a verified
record of access to and modification of the
protected document, record etc. Unauthorised users
identified by the system will be denied access or
prevented from performing actions which are

monitored by the system.

Improvements and modifications may be incorporated
without departing from the scope of the invention as

defined in the appended claims.
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Claims

1. A method of processing speech samples to obtain
a model of a speech sample for use in a speaker
recognition system, comprising:

dividing the speech sample into a plurality of
frames;

for each frame, obtaining a set of feature
vectors representing the smoothed frequency spectrum
of the frame;

applying a clustering algorithm to the feature
vectors of the frames to obtain a reduced data set
representing the original speech sample;

wherein the adjacent frames are overlapped by

at least 80%.

2. The method of claim 1, wherein the adjacent

frames are overlapped by less than 95%.

3. The method of claim 1, wherein the adjacent
frames are overlapped by an amount in the range 80%

to 90%.

4. The method of any preceding claim, wherein the
clustering algorithm comprises a Vector Quantisation

algorithm or a k-means algorithm.

5. The method of any preceding claim, wherein the
set of feature vectors representing the smoothed
frequency spectrum of the frame is obtained by means

of Linear Predictive Coding/Cepstral analysis [LPCC]
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or Fast Fourier Transform [FFT] or by use of a

filter bank.

6. The method of any preceding claim, further
including storing the model of the speech sample and
the identity of the speaker in a database of
enrolment models of speakers enrolled in a speaker

recognition system.

7. The method of claim 6, wherein each enrolment
model comprises a plurality of speech sample models

representing a plurality of different utterances.

8. The method of claim 6 or claim 7, wherein each
enrolment model comprises a plurality of speech
sample models representing the same utterance
modelled using a plurality of parallel modelling

processes.

9. The method of any of claims 6 to 8, furthexr
including associating the model of the speech sample
with a cohort comprising a predetermined number of
other speakers enrolled in the speaker recognition

system.

10. The method of any of claims 6 to 9, including
processing a second speech sample to obtain a test
model of the second speech sample for testing
against said database of enrolment models, wherein
processing said second speech sample comprises:
dividing the second speech sample into a

plurality of frames; and
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for each frame, obtaining a set of feature
vectors representing the smoothed frequency spectrum

of the frame.

11. The method of claim 10, wherein the set of
feature vectors representing the smoothed freguency
spectrum of the frame of the second sample is
obtained by means of Linear Predictive
Coding/Cepstral analysis [LPCC] or Fast Fourier

Transform [FFT] or by use of a filter bank.

12. The method of claim 10 or claim 11, wherein the
test model comprises a plurality of speech sample
models representing the same utterance modelled

using a plurality of parallel modelling processes.

13. The method of any of claims 10 to 12, wherein
the identity of the speaker of the second speech
sample is tested by testing the test model against
the enrolment model for the claimed identity and the

associated cohort as defined in claim 9.

14. A method of speaker recognition in which a
plurality of speakers to be recognised by a speaker
recognition system are enrolled by storing an
enrolment model for each speaker in a database of
enrolled speakers, the enrolment model representing
at least one speech sample from that speaker,
wherein:

each enrolled speaker is associated with a
cohort of a predetermined number of other enrolled

speakers;
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a test speech sample from a speaker claiming to
be one of the enrolled speakers is modelled and
tested, using a classification process, against the
enrolment model of the claimed speaker and the
enrolment models of the associated cohort; and

the classification process always matches the
test model with either the claimed speaker or one of
the associated cohort such that a false acceptance

rate of the system is determined by the cohort size.

15. The method of claim 14, wherein modelling
processes used for modelling the enrolled speaker
speech samples and the test speech sample and/or
classification processes used for testing the test
model against the enrolment models are selected to
provide a false rejection rate substantially equal
to zero, so that an overall error rate of the system
is determined substantially only by the false

acceptance rate.

16. The method of claim 14 or claim 15, wherein the
test model is tested using multiple parallel
classification processes and the test model is
matched with an enrolment model only if at least a
predetermined number of the parallel classification
processes produces a match with that enrolment
model, so as to reduce the false acceptance rate of

the system for a given cohort size.

17. The method of claim 16, wherein the enrolment
models and test model are each obtained using

multiple parallel modelling processes and the
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1 parallel classification processes compare the
2 results of the parallel modelling processes applied
3 to the test speech sample with corresponding results
4 of the parallel modelling processes applied to the
5 enrolment speech samples.
6
7 18. The method of any one of claims 8, 12 or 17,
8 wherein the parallel modelling processes comprise at
9 least one of:
10 different frequency banding applied to the
11 speech samples;
12 different spectral modelling applied to the
13 speech samples; and
14 different clustering applied to the feature
15 vectors representing the speech samples.
16
17 19. The method of claim 16, wherein the parallel
18 classification processes comprise testing the test
19 model against different cohorts of enrolled
20 speakers.
21
22 20. The method of claim 16, wherein the parallel
23 classification processes comprise testing the test
24 model against different utterances represented by
25 the enrolment models.
26
27 21. The method of any of claims 14 to 20, wherein
28 the enrolment models and test model are obtained
29 using the method of any of claims 1 to 13.
30
31 22. A method of normalising speech models in a

32 speaker recognition system of the type in which
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speech samples are input to the system via different
input channels having different channel
characteristics, and wherein a test model
representing a test sample is tested, using a
classification process, against a set of enrolment
models representing speech samples from speakers
enrolled in the system, comprising deriving a
normalisation model from the test speech sample or
from one of the enrolment speech samples and using
the normalisation model to normalise the test model
and the enrolment models against which the test
model is to be tested prior to testing the
normalised test model against the normalised

enrolment models.

23. The method of claim 22, wherein the
normalisation model is derived from the enrolment
speech sample for the identity claimed for the test

speech sample.

24. The method of claim 23, wherein the
normalisation model is derived from the enrolment
model for the identity claimed for the test speech

sample.

25. The method of any of claims 22 to 24, wherein
the speech samples are divided into a plurality of
frames, a set of feature vectors are obtained
representing the smoothed frequency spectrum of each
frame, and the normalisation model is obtained by
calculating the mean values of sets of feature

vectors from at least some of said frames of the



WO 02/103680 PCT/GB02/02726

w W N TR WD P

W W N NN N DD NN DN e R E R R
P O W 0O 9 & U1 b W N H O W O N 0 Uk W NP O

70

speech sample from which the normalisation model is

derived.

26. The method of claim 25, wherein the frames used
for deriving the normalisation model are frames
corresponding to periods of silence in the speech
sample from which the normalisation model is

derived.

27. The method of claim 25 or claim 26, wherein the
test model and enrolment models are normalised by
replacing mean values of the feature vectors of the
test model and the enrolment models with the
corresponding mean values from the normalisation

model.

28. The method of any of claims 22 to 27, wherein
the speech samples are processed using the method of

any of claims 1 to 13.

29. The method of any of claims 14 to 21, wherein
the test model and enrolment models are normalised
prior to classification using the method of any of

claims 22 to 28.

30. The method of any preceding claim, wherein
speech samples are input to a speaker recognition
system via an input channel having a transfer
function which modifies the speech sample data,
comprising estimating the transfer function of said

input channel and normalising the modified speech
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sample data using the inverse of said estimated

transfer function.

31. A speaker recognition system comprising data
processing and storage means adapted to implement

the method of any of claims 1 to 30.

32. A computer program comprising symbolic code for
instructing a computer to execute the method of any

of claims 1 to 30.

33. A data carrier encoded with a computer program
comprising symbolic code for instructing a computer

to execute the method of any of claims 1 to 30.

9

iy
'




PCT/GB02/02726

16

decision

m— el

18

/

WO 02/103680
1/10
1 I | FT T
0 oo V Al
] | 1 | |
Fig. 1
test utt sco're'/
o e ! Filter F—LPCC|—={ HMM S diienid
\ \ \ thresholding
A
10 12 14
Fig. 2 4
id model
PRIOR ART g?;mr;g(s)teer
cohort
1.2 ' — -
i +
1 z '
0.8} S
+ * ‘
score 0] § i i
0.4+ ‘ ;
0.2t
3
oi 1
0253 4 5 6 7 8
Fig. 3 speaker



WO 02/103680 PCT/GB02/02726

2/10
206
202
200 24 [ / 110
e / 204
—»NORM!—»F!LTER’é ~ILPCC[—~ VQ 7CLASS!‘r-<§-0
N\ AN
< S _
28 Fig. 4
200 24| |2 202 110a
| _110b
L L
' 110n
L L
/206
200 243 202a Fig. 5
/ / 9
— Aé > > - \—’Q_‘
AN 204
24b_| 110
e —D~‘ e
[N
g 2020
4L X
\ \202n
Dan Fig. 6



WO 02/103680 PCT/GB02/02726

3/10

102a 24@  [Shaped 206a
\ \ Noise /2sa /283
_ | Spectral & vQ
/0 l er\):ge 1 LPCCr— modeIF
Channel 206b
Lo| normali- | Shaped].—_
sation 24b | Nowe | 26b  28b 110
1028| _/ | e 112
Spectral vQ normalisation
~ shape 2 LPCCI— model{  |and speaker
™ classification
\
114
Y
Enrolled
speaker
: data-set
206a
Shaped |
24n | Noise 26n 28n
102"\ / | [/
| Spectral vQ
. " |shape N| LPCCI— modelL

Fig. 7



WO 02/103680 PCT/GB02/02726

I ' T T
O ey romm - A
| l ’?J 1
Fig. 8a
6
4
magnitude [l
2
0 | I 1 |
0 1000 2000 3000 4000 5000
frequency _
———————————— Frame spectrum Fig. 8b
Smoothed frame spectrum
6 T I T |
4
magnitude
2
0
0 1000 2000 3000 4000 5000

frequency
------------ Frame 1

Frame 2 Fig~ 9




WO 02/103680 PCT/GB02/02726

5/10

Frame
score

Frequency of
occurrence

Fig. 10



PCT/GB02/02726

WO 02/103680

6/10

qLL ‘b4

. 9 G Vv € ¢

=ttt W&

Ao duib

= et

v'0-
€0
¢ 0
10"

1

1

1

10
A
€0
v'0
G0
90

1

- >

-+ &+ Herre

@ kW B

i -t

B

©
o

¢l



WO 02/103680

1.2

0.8}
0.6
047
02]

-0.2
1

PCT/GB02/02726
7/10
i : ; .
: P, 1
o 9 C;’
2 3 4 5 6 7 8
Fig. 12
* « *
¥ X
* X
b 4
X
* X
X



WO 02/103680 PCT/GB02/02726
8/10
300 Input to
normalisation system 302
Speech Signal S(f*C(f) /
S(f) Channel Esti
> c() » Estimate
C(f)
304
v/
Channel Input to SV
~|Normalisation ~S(f)
1/C(f)
Fig. 15
210
216 214 214 212
J / 216 Yz
o>
a—»% o>
Q _i | i——' —= Q j | I
218 206 —
AN
Internet
Sr%r\\//ilc(izgr 1 Internet
Internet J— AN
Sose 206
N
226

222

Fig. 16

208




WO 02/103680

9/10

Speech signal s(t)

Client
recording
device
bandwidth
r(t)

PCT/GB02/02726

Transmission
channel
bandwidth
c(t)

Environmental background Electrical noise and
noise channel crosstalk

b(t) t(t)
Fig. 17

Classifier

Speech signal
at verifier v(t)

Claimed identity
v1((o)=s1(co).ha(0))=ss1(o)).sd1(0)).ha(a))

decision

o

Test utterance

———————

Vy (0)=sy (0).h¢(0)=
SSx ().8dy (0).h¢ (w)

Test cohort
vz(w)=sz(co).hb(w)=ssz(0)).sdgco).hb(m)

Vm_1((0)=5m_ 1(0))hb (0))=SSm_1((o).Sdm_1(0)).h b((l))‘

Vm{®)=s{w).hy (0)=88(®).5dm(w).h pl®)

Fig. 18



WO 02/103680

10/10

Classifier

PCT/GB02/02726

Claimed identity

vy(t)=s,(t)+hy(t)=cs,(t)+cd (1) +hy(x)

decision

>

Test utterance

———————

Vy (1)=8, ()*+he ()=
cs (1) *cdx(x)+he (1)

Test cohort

V{t)=s{1)+hy)=cs(t)+cd(1)+hyc)

Vi AT)=Sm-£7)+hp (1)=Csp (1) +Cd_((t)+hp () A

Vin(T)=S () *+hp (T1)=Csp(t)+Cd (1) +hy (1)

110
/

Flg- 19 Claimed /400
Identity
normalisation
model Normalised
Test utterance Cepstral ¥ test
coefficients | [Replace| utterance
mean
Normalised
¥ claimed ID
Claimed identity model _Replace model
mean
Normalised
Y cohort
Cohort model 1 |, Replace model
mean
Normalised
¥ cohort
Cohort model m ‘Rep|ace model
~| mean -

Fig. 20

classifier




	Abstract
	Bibliographic
	Description
	Claims
	Drawings

