20147025509 A2 NI 000 1 1010 PO O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/025509 A2

13 February 2014 (13.02.2014) WIPOIPCT
(51) International Patent Classification: (74) Agents: SCHELLER, James C. et al.; Blakely, Sokoloff,
GO6F 8/448 (2006.01) Taylor & Zafman LLP, 1279 Oakmead Parkway,
S le, California 94085 (US).
(21) International Application Number: unnyvate, Latiomia (Us)
PCT/US2013/051116 (81) Designated States (unless otherwise indicated, for every
. . kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY.
18 July 2013 (18.07.2013) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
Lo . HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
61/681,530 9 August 2012 (09.08.2012) Us OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,
13/593,404 23 August 2012 (23.08.2012) Us SD, SE, SG, SK, SL, SM, ST, 8V, 8Y, TH, TJ, TM, TN,
13/593.,411 23 August 2012 (23.08.2012) Us IR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
13/593,417 23 August 2012 (23.08.2012) US (84) Designated States (unless otherwise indicated, for every
13/593.422 23 August 2012 (23.08.2012) us kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: APPLE INC. [US/US]; 1 Infinite Loop, Cu- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
pertino, California 95014 (US). UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(72) Imventors: PIZLO, Filip J.; 1 Intinite Loop, Mail Stop 41- EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
INS, Cupertino, California 95014 (US). BAR- MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
RACLOUGH, Gavin; | Intinite Loop, Mail Stop 41-1NS, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
Cupertino, California 95014 (US). GAREN, Geoffrey; 1 KM, ML, MR, NE, SN, TD, TG).
Intinite Loop, Mail Stop 41-1NS, Cupertino, California Published
ublished:

95014 (US). HAHNENBERG, Mark; 1 Infinite Loop,
Mail Stop 41-1NS, Cupertino, California 95014 (US).

with declaration under Article 17(2)(a); without abstract;
title not checked by the International Searching Authority

o (54) Title: VALUE PROFILING FOR CODE OPTIMIZATION
(57) Abstract:

WO 2014/025509 PCT/US2013/051116

VALUE PROFILING FOR CODE OPTIMIZATION

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is related to, and claims the benefits of U.S. Provisional
Patent Application No. 61/681,530, filed 08/09/2012, entitled “DYNAMIC CODE
OPTIMIZATION”, by Filip Pizlo et al., which is hereby incorporated by reference herein

in its entirety.

FIELD OF INVENTION

[0002] The present invention relates generally to optimized runtime compilation.

More particularly, this invention relates to value profiling for optimizing dynamic

language based code.

BACKGROUND

[0003] Dynamic languages that lack type annotations of any kind are increasingly

popular. For example, JavaScript has become the lingua franca of the World Wide Web,
while Ruby, Python, Perl, and PHP have become standard languages for server-side
infrastructure. However, runtime of dynamic language based code may require
significant overhead to execute.

[0004] For example, lack of type information may prohibit optimal compilation to
avoid dynamic type conversion for a variable. Runtime profiling has been adopted to
provide additional type information to improve execution performance. Typical runtime
profiling, however, relies on recording types of values encountered and requires
complicated data structures and extensive profiling operations. As a result, effectiveness
of the compilation is adversely affected for overall performance improvement.

[0005] Further, when current runtime values encountered no longer match the
previous profiling results, optimally compiled code based on the previous profiling results
may cost more processing cycles to execute than a corresponding non-optimally compiled
code. Such discrepancies between current runtime values and previous profiling results
can severely tax execution performance.

[0006] Furthermore, dynamically typed code may be linked with an external
library already compiled from non-dynamically typed language based source code. An
interface layer is usually created in the dynamically typed code to allow the external

library to access data owned by the dynamically typed based code. As a result, runtime

WO 2014/025509 PCT/US2013/051116

performance may be degraded with the overhead incurred by data loading/updating
through the interface layer.

[0007] Therefore, existing runtime compilation and execution for dynamically
typed code tends to introduce performance cost which may be unnecessary, wasteful and

avoidable.

SUMMARY OF THE DESCRIPTION
[0008] Value profiling can allow type inference for untyped programs with

minimal overheads to recompile the untyped programs for dynamic and adaptive
performance improvements. The value profiling may include one extra store per function
argument and one extra store per load from heap operation.

[0009] In one embodiment, a compiled code of a source code may be executed
with value profiling. The code may include an access to an untyped variable. During the
execution, runtime values of the untyped variable may be randomly inspected. A value
profile may be established to predict one or more expected types of future runtime values
for the untyped variable. The compiled code may be recompiled according to the value
profile to optimize the access of the untyped variable for the future runtime values.

[0010] In anther embodiment, an executable code compiled from a source code
may include an untyped variable in a dynamic programming language. The executable
code can have profile instructions associated with a storage location for the untyped
variable. The executable code may be executed for accesses to runtime values of the
untyped variable. Each value may be stored in the storage location via the profile
instructions. The runtime values of the untyped variable may be recorded sporadically
from the storage location. The executable code may be optimized based on the recorded
runtime values for the untyped variable.

[0011] An executable code can be continuously optimized by tracking probability
of success rate of speculatively optimized instructions in the executable code during
runtime. The speculatively optimized instructions or optimizing code may be replaced or
invalidated if found to be of low success rate according to the tracking. Runtime
information regarding failures of the optimizing code may be recorded or gathered to
provide additional optimization information for re compilation of the executable code.
Profile information may be accumulated from previous iterations of compilation to
identify optimization opportunities. Continued compilation can ensure a high success rate

(e.g. 90%) of speculative optimized code. Recompilation schedule may be dynamically

WO 2014/025509 PCT/US2013/051116

adjusted to aggressively apply optimizing code with high success rate (e.g. >= 90%).
[0012] In one embodiment, a code can be executed to access an untyped variable.
The code can be compiled in a speculatively optimized manner from a source code
according to a type prediction of runtime values of the untyped variable. Failures of the
type prediction during the execution can be dynamically tracked. Each failure may be
associated a runtime value with a type outside of the type prediction. The type prediction
may be adjusted according to the failures tracked for future runtime values of the untyped
variable. The source code can be recompiled for execution to optimize the access to the
untyped variable for the future runtime values according to the adjusted type prediction.
[0013] In another embodiment, a type prediction of runtime values of an untyped
variable can be provided via an execution of a baseline code block compiled without
optimization for an access to the untyped variable in a source code. Failures of the type
prediction can be tracked via an execution of an optimized code block speculatively
optimized for the access according to the type prediction. The tracking can indicate how
successful the type prediction is. The source code can be recompiled if the failures
indicate a failure rate exceeding a threshold. The recompiled code can include the
baseline code block for the access without the optimized code block.

[0014] In another embodiment, a runtime history for a sequence of executions or
cycles of execution can be collected dynamically. Each cycle of execution may perform a
data processing task specified in a source code based on a code compiled from the source
code. The runtime history can include a number of invocations of the data processing
task for each execution. A setting can be dynamically configured for each execution to
specify a condition to initiate next execution in the sequence. The source code can be
recompiled for the next execution if the runtime history matches the condition. The
recompiled code may be optimized based on the runtime history. In one embodiment,
the number of invocations of the data processing tasks for each execution may increase
following the sequence.

[0015] Recompilation of an executable code can be invoked once invalidity of a
prediction for code optimization is identified based on runtime data and function blocks
specified in the code without waiting for infrequent profiling analysis to recognize
repeated failure of the prediction. The executable code may include instructions
optimized (e.g. optimizing code) based on the prediction. A function block when
executed (e.g. via a function call) with source types of runtime values may cause structure

transitions to transition or generate destination types of runtime values. In one

WO 2014/025509 PCT/US2013/051116

embodiment, a garbage collector can have access to runtime data and the function blocks
to determine whether a prediction is not longer valid (e.g. for current and future runtime
data). Possible types of runtime values (e.g. object structures) can be transitively inferred
or derived based on the current runtime data and structure transitions corresponding to the
function blocks in the code for determining the validity of a prediction.

[0016] In one embodiment, a code compiled from a source code can be executed
to access an untyped variable. An optimized access code may be compiled in the code
with speculative optimization via a type prediction of runtime values of the untyped
variable. Invalidity of the type prediction may be dynamically detected for future runtime
values of the untyped variable. The code may be updated with an access code compiled
for the access without the speculative optimization based on the invalidity detection. The
updated code can be executed for the access to the untyped variable without executing the
optimized access code.

[0017] In another embodiment, a code compiled from a source code specifying at
least one function may be executed to call the function with an untyped input variable.
The code may include a first function code optimally compiled for the function based on
a type prediction for future runtime values of the untyped input variable. Invalidity of the
type prediction for the future runtime values of the untyped variable may be dynamically
detected. On detection of the invalidity, the code may be dynamically updated with a
second function code compiled for the function. The updated code may be executed
without executing the first function code for the future runtime values of the untyped
input variable.

[0018] Objects allocated in a memory heap may be moved from one heap address
to another heap address to reduce fragmentation and maximize heap allocation
performance without incurring costs for accurately tracking which pointers point to the
objects being moved. In one embodiment, the memory heap may be partitioned or split in
two or more partitions, for example, with a moving heap partition and a non-moving heap
partition to allow performing quick-release to reclaim back previously allocated memory
space. Quick release based on a partitioned heap may not require large memory space
overhead, such as additional memory space about the size of the previously allocated
memory space. Each copied or moved object in the moving heap partition may be
uniquely referenced by one allocated structure (or cell) in the non-moving heap partition
to allow immediate reclaiming (or freeing) memory space associated with the old copy of

the moved object after a new copy for the moved object is created (or allocated).

WO 2014/025509 PCT/US2013/051116

[0019] In one embodiment, a stack used in executing a code via a heap of memory
may be scanned for references to the heap. The heap may be allocated with fixed sized
slots and varied sized slots. Each varied sized slot may be referenced by at most one of
the fixed sized slots. Which slots are live may be identified based on the references in the
stack. A fixed slot referenced by the references in the stack can be live. A fixed or varied
slot referenced by a live fixed or varied slot can also be live. Varied sized slots
referenced by the references in the stack may be identified as pinned. The heap may be
de-fragmented to reclaim fixed sized slots which are not live without moving live fixed
sized slots and to reclaim varied sized slots which are neither live nor pinned by moving
live varied slots.

[0020] In another embodiment, a plurality of first structures and a plurality of
second structure may be maintained separately in a first portion and a second portion of a
heap in a memory to execute a code based on the heap. Each second structure can be
referenced by at most one of the first structure. At least one of the first structures may
represent an object created via the execution of the code. The object may have a dynamic
property associated with at least one of the second structures. The code may be linked
with a particular code capable of referencing the dynamic property of the object without
referencing the first structure representing the object. Non-moving garbage collection
operations may be performed on the first portion of the heap to identify which of the first
structures are available for future allocation from the first portion of the heap without
moving the identified first structures. Moving garbage collection operations may be
performed on the second portion of the heap to identify which of the second structures are
movable within the second portion of the heap for future allocation from the second
portion of the heap. The non-moving garbage collection operations and the moving
garbage collection operations may be performed substantially in parallel coordinated with
each other. A particular one of the second structures may not movable if the particular
second structure is referenced by the particular code. The identified movable second
structures may be moved within the second portion of the heap for future allocation from
the second portion of the heap.

[0021] Other features of the present invention will be apparent from the

accompanying drawings and from the detailed description that follows.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] The present invention is illustrated by way of example and not limitation

WO 2014/025509 PCT/US2013/051116

in the figures of the accompanying drawings, in which like references indicate similar
elements and in which:

[0023] Figure 1 is a network diagram illustrating an exemplary runtime
optimization for source code retrieved from networked devices;

[0024] Figure 2 is a block diagram illustrating one embodiment of a system for
runtime optimization for dynamic programming languages;

[0025] Figure 3 is a flow diagram illustrating one embodiment of a process to
profile runtime values;

[0026] Figure 4 is a flow diagram illustrating one embodiment of a process to
sporadically record runtime values for code optimization;

[0027] Figure 5 illustrates exemplary profile instructions associated with storage
locations according to one embodiment described herein;

[0028] Figure 6 is a flow diagram illustrating one embodiment of a process to
track failures of type predictions used in an optimized code for recompilation;

[0029] Figure 7 is a flow diagram illustrating one embodiment of a process to
dynamically recompile code optimized based on runtime history;

[0030] Figure § is a flow diagram illustrating one embodiment of a process to
detect invalidity of type prediction to update an optimized code;

[0031] Figure 9 is a flow diagram illustrating one embodiment of a process to
detect invalidity of type prediction to update an optimized function code;

[0032] Figure 10 illustrates one example of runtime data and optimized code for
identifying validity of a type prediction based on structure transitions in the runtime data
according to one embodiment described herein;

[0033] Figure 11 is a flow diagram illustrating one embodiment of a process for
performing moving and non-moving garbage collections concurrently on separate
portions of a heap;

[0034] Figure 12 is a flow diagram illustrating one embodiment of a process to
scan a stack to identify live memory slots and pinned memory slots to reclaim memory
slots which are not live and not pinned by moving the live memory slots without moving
the pinned memory slots;

[0035] Figure 13 illustrates one example of split partitions in a heap for executing
a code according to one embodiment described herein;

[0036] Figure 14 illustrates one example of a data processing system such as a

computer system, which may be used in conjunction with the embodiments described

WO 2014/025509 PCT/US2013/051116

herein.
DETAILED DESCRIPTION
[0037] In the following description, numerous specific details are set forth to

provide thorough explanation of embodiments of the present invention. It will be
apparent, however, to one skilled in the art, that embodiments of the present invention
may be practiced without these specific details. In other instances, well-known
components, structures, and techniques have not been shown in detail in order not to
obscure the understanding of this description.

[0038] Reference in the specification to “one embodiment” or “an embodiment”
means that a particular feature, structure, or characteristic described in connection with
the embodiment can be included in at least one embodiment of the invention. The
appearances of the phrase “in one embodiment” in various places in the specification do
not necessarily all refer to the same embodiment.

[0039] The processes depicted in the figures that follow, are performed by
processing logic that comprises hardware (e.g., circuitry, dedicated logic, etc.), software
(such as is run on a general-purpose computer system or a dedicated machine), or a
combination of both. Although the processes are described below in terms of some
sequential operations, it should be appreciated that some of the operations described may
be performed in different order. Moreover, some operations may be performed in parallel
rather than sequentially.

[0040] Figure 1 is a network diagram illustrating an exemplary runtime
optimization for source code retrieved from networked devices. In one embodiment,
network system 100 may include one or more server applications, such as server
application 101, hosted in one or more server devices to provide content available for
client application 105 running in a client device. For example, server application 101 may
be a web server and client application 105 may be a web browser. Server 101 and client
105 may communicate with each other via network 103 based on, for example, internet
protocols such as HTTP (Hypertext Transport Protocol) or other applicable protocols.
[0041] In one embodiment, content retrieved from server 101 may include web
pages based on hypertext languages, such as HTML (Hypertext Markup Language) or
other markup language, embedded or linked (e.g. hyperlinked) with sources in a dynamic
programming language, such as JavaScript. Client 105 may dynamically download or

fetch the linked sources for execution. In one embodiment, client 105 may dynamically

WO 2014/025509 PCT/US2013/051116

and/or continuously compile the downloaded sources to optimize code during runtime to
improve execution performance.

[0042] Figure 2 is a block diagram illustrating one embodiment of a system for
runtime optimization for dynamic programming languages. In one embodiment, system
200 may include operating environment 201, such as an operating system hosting client
application 105 of Figure 1. Operating environment 201 may include optimized
compilation module 205 dynamically and/or continuously compiling source code 203 into
dynamically optimized executable code 225.

[0043] Source code 203 may comprise programs in a dynamic programming
language, such as JavaScript. In one embodiment, source code 203 may be retrieved
from a remote device, such as server 101 of Figure 1, by a browser application running in
operating environment 201. Compilation module 205 may be controlled by the browser
application to perform browsing operations.

[0044] For example, compilation module 205 may insert profiling code in
executable code 225 to collect runtime values into corresponding value buckets (or
dedicated storage locations) allocated, for example, in runtime data 217. Profiling code
may include value bucket code to update the runtime values to the corresponding value
buckets when executed via execution module 219. Value buckets may be accessible by
profile management module 209.

[0045] Code execution module 219 based on executable code 225 and profile
management module 209 may belong to separate processes in operating environment 201.
Optionally or additionally, profiling code may include, for example, function counters
counting number of times a function in source code 203 has been called or executed.
[0046] In some embodiments, profile management module 209 may include value
profile data 211 storing profiles of values established for untyped variables. For example,
profile management module 209 can sample or collect (e.g. infrequently) current (or last)
runtime values from value buckets of runtime data 217 into value profile data 211. Profile
management module 209 and execution module 219 may run asynchronously in operating
environment 201.

[0047] Profile management module 209 may include analysis module 213 to
perform in-depth analysis on runtime variables (e.g. of executable code 225) using value
profile data 211 and/or runtime data 217. Analysis module 213 may be activated, for
example, periodically and/or in response to triggering events. Compilation module 205

may send triggering events to analyze value profiles for untyped variables via analysis

WO 2014/025509 PCT/US2013/051116

module 213. For example, a triggering event for analysis module 213 may be based on an
execution duration of executable code 225 (e.g. since last time analysis 213 was
activated). In some embodiments, analysis module 213 run infrequently without causing
performance impacts on execution module 219 or system 200.

[0048] In some embodiments, executable code 225 can include optimized code
based on a type prediction for a function or an untyped variable. Additionally or
optionally, executable code 225 may include failure handling code executed when the
type prediction fails. The type prediction can fail, for example, if it is not consistent with
current runtime values encountered in execution module 219. As a result, for example,
execution module 219 may send requests (or triggers) to analysis module 213 for
performing failure analysis.

[0049] Continued runtime optimization control module 215 can monitor execution
status, including, for example, runtime data 217, value profile data 211, and/or system
runtime status 207, to dynamically activate compilation module 205 to allow optimizing
executable code 225 multiple times (e.g. iteratively or continuously) during runtime
executing executable code 225. System runtime status 207 may include overall system
wide resource or environmental information related to execution of execution module 219
in system 200, such as total physical memory size, currently available memory size, or
other applicable parameters.

[0050] In one embodiment, control module 215 can determine whether certain
conditions are satisfied to re-compile optimized executable code 225 according to the
execution status. For example, control module 215 may detect that excessive number of
failures of a type prediction in an optimized code (e.g. compared with number of function
calls) have occurred to trigger re-compilation. Executable code 225 can be further
updated or optimized using failure information gathered or analyzed via profile
management module 209.

[0051] In certain embodiments, source code 203 may be based on dynamic
programming language requiring garbage collector module 221 to manage runtime
memory, such as runtime data 217 for execution module 219. Garbage collector module
221 may callback to compilation module 205 to determine whether a type prediction may
fail for future runtime values. If the type prediction is expected to fail, the optimized
code associated with the type prediction may be invalidated in executable code 225. For
example, validity prediction module 223 may query garbage collector module 221

whether predicted types of values are possible in the future based on existing types of

WO 2014/025509 PCT/US2013/051116

current runtime values in runtime data 217 and possible types created or transitioned via
functions in executable code 225.

[0052] Garbage collector module 221 may provide information as early warnings
for validity prediction module 223 to identify which type predictions used in optimized
executable code 225 are likely to fail. As a result, compilation module 205 may
preemptively re-compile or update executable code 225 without waiting for detection of
actual failures of optimized code via control module 215. Validity prediction module 221
may allow removing optimized code associated with type predictions identified as no
longer valid before occurrences of actual failures when executing the optimized code.
[0053] In one embodiment, executable code 225 may be linked to invoke library
227 which may be based on non-dynamically typed language such as C++, C or other
applicable programming language. Library 227 may include its own memory
management module to manage memory allocated in runtime data 217. In certain
embodiments, runtime data 217 may include multiple portions of memory heap (e.g. split
heap) to allow library 217 to directly access dynamic or varied sized property data created
via execution module 219. Garbage collection module 221 may perform coordinated
moving and non-moving garbage collection operations separately different portions of the
split heap in runtime data 217. Unused memory allocations may be reclaimed while
maintaining the efficiency of direct accessing of dynamic properties of untyped variables
from library 227 (e.g. without creating interface objects managed by garbage collector
221 between execution module 219 and library 227).

Value Profiling for Code Optimization

[0054] In one embodiment, types of runtime values for variables in a program or
executable code (e.g. based on dynamically typed programming languages) are identified
and profiled (e.g. analyzed, summarized, etc.) during runtime while the program is
running. Based on the identified types through past execution history, future types of
runtime values may be predicted to update or recompile the program to replace portions
of the program or code taking advantage of the type predictions.

[0055] For example, a JavaScript object allocated during runtime of a JavaScript
executable code may represent a value for a JavaScript variable (e.g. dynamically typed).
A JavaScript variable may contain a reference to an allocated object. Alternatively, a
JavaScript variable may contain a value in-place, such as number, true, false, null, and
undefined. Numbers may be represented as Int32 or Double, or any IntX for any other

value of X bits. The JavaScript object may be a plain JavaScript object which can

10

WO 2014/025509 PCT/US2013/051116

correspond to a function, an array of other JavaScript objects, a string, a typed array of
Int8 (8 bit integer), Int16 (16 bit integer), Int32 (32 bit integer), Int64 (64 bit integer),
unsigned integers of any of the previous sizes, Float32 (32 bit floating point number),
Float64 (64 bit floating point number), dynamically created types or other applicable
types. Without a prior knowledge of a scope of different types of runtime values to be
encountered for an untyped variable, comprehensive type handlers may be required to
cover large number of possible types of runtime values. Comprehensive type handlers
may include baseline instructions with a large number of load and branch instructions
requiring expensive processing cycles to execute.
[0056] In one embodiment, an optimized compiler can update a previously
compiled code (e.g. an original executable code compiled from a source code without
using runtime information) based on runtime profiles established when executing the
previously compiled code. The runtime profiles may be dynamically collected and
analyzed (e.g. infrequently and asynchronously to the execution of the previously
compiled code) to uncover optimization opportunities, such as type predictions of future
runtime values for untyped variables.
[0057] A type prediction for a variable may be employed, for example, to reduce
the number of handlers covering a reduced scope of possible types of future runtime
values expected to be encountered for an untyped variable in an updated compiled code.
A dynamic compiler may optimize (or re-compile) a previously compiled code based on
identified opportunities (e.g. type predictions) from execution profiling.
[0058] In one embodiment, type knowledge obtained via type predictions may be
cascaded down to subsequent operations on a variable. For example, considering a
source code for a function (e.g. in a dynamically typed language) :
function foo (a, b) {
var X = a + b; //statement #1
vary =a—b; // statement #2
return x * y; // statement #3
}
Given the profiled type knowledge the both input variables a, b are integers and results
produced via function foo are also integer, the compiled code for function foo may be
emitted to specialize on integers as (e.g. in pseudo code format):
if (ais not integer)

fall back

11

WO 2014/025509 PCT/US2013/051116

if (b is not integer)
fall back
x = int_add(a, b) and fall back if result is not integer
y = int_subtract(a, b) and fall back if result is not integer
return int_add(x, y)
The compiled code may be specialized for integers in such a way that statement #3 may
only be executed if a and b were both integers, and if the previous statements #1 and #2
also produce integers. Optimized execution of the specialized compiled code while
supporting full generality of, for example, JavaScript language may be possible with
actual profiled evidence on integers for performing function foo (e.g. for both input
variables and output results) and availability of a fall-back path (e.g. baseline instructions)
for runtime values which are not consistent with the profiled evident (e.g. not integers).
[0059] The specialized compiled code for function foo may avoid repeating
integer checking for both statement #1 and statement #2, such as in a first compiled code
for function foo based on assumption that variables tend to contain integers without value
profiling:
/I statement #1
If(a is integer)
If (b is integer)
x = int_add(a, b)
else
x = generic_add(a, b)
else
x = generic_add(a, b)
/I statement #2
If(a is integer)
If (b is integer)
y = int_subtract(a, b)
else
y = generic_subtract(a, b)
else
/I statement #3
If(x is integer)

If(y is integer)

12

WO 2014/025509 PCT/US2013/051116

return int_multiply(x,y)
else
return generic_multiply(x,y)
else
return generic_multiply(x, y)
In the first compiled code for function foo, statement #2 must again check if a, b are
integers even though statement #1 performed the check as well, as statement #1 may
complete even if one of a, b was not an integer.
[0060] Further, the specialized compiled code for function foo may avoid
checking the types of x, y in statement #3 even when the block of code for statement #1
and #2 produces a dynamic result (despite doing type checks), such as in a second
compiled code for function foo to hoist the code for conditionals of statement #1 and
statement #2 together without value profiling:
// statement #1 and #2
If(a is integer)
If (b is integer)
x = int_add(a, b)
y = int_subtract(a, b)
else
x = generic_add(a, b)

y = generic_subtract(a, b)

else
x = generic_add(a, b)
y = generic_subtract(a, b)
/[statement #3
If(x is integer)
If(y is integer)
return int_multiply(x,y)
else
return generic_multiply(x,y)
else

return generic_multiply(x, y)

13

WO 2014/025509 PCT/US2013/051116

In the second compiled code for function foo, generic_add's may either return integers, or
they may return doubles, or strings, or objects. The generic_subtracts, in JavaScript, may
return either integers or doubles. Worse, even the int_add and int_subtract may produce
doubles, instead of ints, because of overflow (for example 230 + 2730 produces 2”31,
which is just outside of the signed Int32 domain).

[0061] In one embodiment, executable code compiled based on value profiling
may be optimized not to re-perform checks that have already been performed and to
reduce the number of handlers covering the scope of types in a particular use of a runtime
variable. Evidence gathered via the value profiling may indicate the set of types the
executable code is specialized for. Furthermore, the executable code may include a
fall-back path (e.g. two or multiple compilers) dynamically re-compiled or re-optimized if
inaccuracy of the set of types specialized for is detected.

[0062] In one embodiment, a memory location may be allocated as a bucket to
store a runtime value (e.g. current runtime value) for a variable (e.g. a parameter or
argument for a function call) in an executable code. For example, the bucket may be
allocated in a memory heap for executing the executable code.

[0063] A dynamic compiler may insert profiling code to an executable code to
update a bucket with a copy of a runtime value, for example, assigned to a corresponding
variable. In one embodiment, each untyped variable may correspond to a separate bucket
allocated. A bucket may store a value (or the latest value) for a variable without
specifying a type or other information about the value to minimize required storage space.
For example, the storage cost associated with buckets allocated for a function in an
executable code may be proportional to the number of arguments of the function. Further,
the bucket can be updated by overwriting a previous runtime value with the current
runtime value with little performance impact. A runtime value stored in a bucket for a
variable may be overwritten with a newly updated runtime value for the variable before
the runtime value is sampled or collected from the bucket.

[0064] In one embodiment, profile buckets for an executable code may be
scanned or sampled periodically (or on demand with occurrences of triggering events) to
derive a limited number of possible types of runtime values associated with
corresponding variables in the executable. For example, new types (e.g. int, double) of a
variable may be derived by unifying a previously derived type (e.g. int) with the type (e.g.
double) of current runtime value collected from a corresponding bucket for the variable.

[0065] Sampling or collection of runtime values from profile buckets for an

14

WO 2014/025509 PCT/US2013/051116

executable code may be performed sporadically, sparsely and/or stochastically in an
asynchronous manner to the execution of the executable code. For example, the
executable code may include a loop of calls to a function with an argument (e.g. an
untyped variable). Each loop may be associated with a separate runtime value stored in a
common bucket for the argument. The executable code may include function counters
(e.g. inserted by the compiler) counting the calls to the function during runtime.
Collection of runtime values from a profile bucket for an argument of a function may be
triggered at unpredictable, fuzzy or probabilistic intervals of the counts of the function
counter. As a result, possibility of resonance between the sampling and the call to the
function (e.g. repetitively sampling the same type of runtime values) may be minimized
with the introduction of fuzziness in triggering the sampling from the profile buckets.
[0066] In certain embodiments, analysis of collected runtime values for executing
a code may be performed (e.g. to synthesis a type prediction) infrequently and
asynchronously to the execution of the code. Infrequent analysis can allow in-depth
traverse on current runtime data without adding significant performance (or resource)
cost. For example, a collected runtime value may be a pointer an object associated with
any type of value (e.g. integer, double, etc.) or even a function. The type of the object
pointed to by the pointer may be identified via a traversal. Alternatively or additionally,
the analysis may be performed to determine a value range for the runtime value collected.
Thus, traversing the runtime data following the pointer may be necessary to identify
required information about actual runtime value pointed to by the pointer. Optionally,
type information may be embedded within the pointer itself (i.e. the runtime value
collected), such as a bit pattern obtained through an inexpensive arithmetic operation (e.g.
subtraction).

[0067] In some embodiment, whether to optimize or re-compile a previously
compiled code during runtime may be based on a result of an analysis of collected profile
data for the execution of the previously compiled code. For example, the analysis may
indicate whether enough profile data has been collected for different parts of the code, in
other words, whether profile data is full for different execution paths or code paths of the
code.

[0068] Confidence of the prediction may be accessed to determine when to
perform the recompilation. For example, confidence for a prediction of a type of future
runtime values for a variable may be based on different runtime statuses, such as the

number of observations of runtime values assigned to the variable in the past execution,

15

WO 2014/025509 PCT/US2013/051116

duration of the past execution, a rate of success of the prediction using the profile
establish during the past execution, and/or other applicable metrics or measurements.
[0069] Figure 3 is a flow diagram illustrating one embodiment of a process to
profile runtime values. Exemplary process 300 may be performed by a processing logic
that may include hardware, software or a combination of both. For example, process 300
may be performed by some components of system 200 of Figure 2. At block 301, the
processing logic of process 300 may execute a compiled code of a source code including
an access (e.g. reading or writing) of an untyped variable. The execution may include
performing reading or writing dynamically typed value from or to the untyped variable
for the access. The compiled code may be based on a source code in a dynamic
programming language, such as JavaScript.

[0070] In one embodiment, the compiled code may include baseline instructions
to allow different types of values or runtime values to be dynamically assigned to a
variable. Each runtime value may belong to one of multiple types supported in a
programming language. Without a scope limiting possible types of runtime values for the
variable during runtime, the baseline instructions may be executed for accessing the
variable regardless which type of runtime value the variable is associated with.

[0071] In some embodiments, the compiled code may include one or more profile
instructions associated with a storage location allocated as a profile bucket for an untyped
variable. The processing logic of process 300 can execute the profile instructions to store
or update a runtime value in the storage location. The processing logic of process 300
can execute the profile instructions when the baseline instructions are executed. If a
separate runtime value has previously been stored in the storage location, the processing
logic of process 300 can overwrite the previously stored runtime value with the latest
runtime value associated with the variable.

[0072] At block 303, the processing logic of process 300 may, during runtime,
randomly inspect a profile bucket for runtime values of the untyped variable in an
executable code to establish a value profile for the variable. The value profile may
include expected types of future runtime values for the variable. The processing logic of
process 300 may sample runtime values from the profile bucket at different times
asynchronously to the execution of the executable code. In some embodiments, the
different times when the profile bucket are sampled (or inspected, read, etc.) may
correspond to a random sequence without resonance with runtime values assigned to the

variable during the execution of the executable code.

16

WO 2014/025509 PCT/US2013/051116

[0073] The processing logic of process 300 may analyze sampled runtime values
dynamically and infrequently for optimization opportunities. For example, the processing
logic of process 300 may inspect runtime state associated with execution of a code to
identify which types of value the sampled runtime values belong to. The runtime state
can include object structures allocated for the execution. A sampled runtime value may
refer to object structures in the runtime state. The processing logic of process 300 may
determine a correspondence between the sampled runtime value and a reference to the
object structures. The processing logic of process 300 may traverse the object structures
(e.g. via links between the structures) in the runtime state to identify a type associated
with the sampled runtime value.

[0074] In one embodiment, the processing logic of process 300 can match a
sampled runtime value with a bit pattern representing a type of runtime value to
determine whether the sampled runtime value belongs to the type corresponding to the bit
pattern. Optionally or additionally, the processing logic of process 300 can compare the
sampled runtime value with a reference to a function code to determine whether the
sampled runtime value corresponds to a function reference.

[0075] The processing logic of process 300 may identify multiple types of
runtime values from sampled runtime values for a variable. Each identified type may be
associated with a number indicating how many of the sampled runtime values belong to
the identified type (e.g. occurrence number). The processing logic of process 300 may
select a subset of the identified types as expected types for future runtime for the variable.
For example, the expected types (or a type prediction or value profile) may correspond to
a number of most commonly encountered types sorted according to the occurrence
numbers associated with the identified types based on the sampled runtime values.

[0076] In some embodiments, a value profile may be associated with a level of
confidence indicating, for example, how likely a future runtime value may belong to
expected types associated with the value profile. For example, an access to a variable
may be associated with a function block in a code. A level of confidence on a value
profile for the variable may depend on a number of calls to the function block when
executing the code. The processing logic of process 300 may recompile a source code
using a value profile if the level of confidence exceeds a trigger level.

[0077] The processing logic of process 300 may perform recompilation to
optimize a previously compiled code during a garbage collection operation when

executing the previously compiled code. Alternatively, the processing logic of process

17

WO 2014/025509 PCT/US2013/051116

300 may perform the recompilation when the execution of the previously compiled code
is idle (e.g. waiting for occurrence of certain external or execution events).

[0078] At block 303, the processing logic of process 300 may execute a
recompiled code of a source code to optimize access of an untyped variable for future
runtime values expected based on a value profile or a type prediction. The recompiled
code can include one or more optimized instructions for the access of the untyped
variable. The optimized instructions may perform a compare or check operations to
determine if a runtime value belongs to one of the expected types.

[0079] Figure 4 is a flow diagram illustrating one embodiment of a process to
sporadically record runtime values for code optimization. Exemplary process 400 may be
performed by a processing logic that may include hardware, software or a combination of
both. For example, process 400 may be performed by some components of system 200 of
Figure 2. At block 401, the processing logic of process 400 may compile an executable
code from a source code including an untyped variable based on a dynamic programming
language, such as JavaScript. The executable code may include profile instructions
associated with a storage location for the untyped variable.

[0080] At block 403, the processing logic of process 400 can execute the
executable code for multiple accesses to runtime values of the untyped variable. Each
runtime value may be stored to the storage location via the profile instructions. The
processing logic of process 400 can record the runtime values of the untyped variable
sporadically from the storage location. At block 407, the processing logic of process 400
can optimize the executable code based on the recorded runtime values for the untyped
variable.

[0081] Figure 5 illustrates exemplary profile instructions associated with storage
locations according to one embodiment described herein. For example, example 500 may
illustrate code compiled via compilation module 205 of Figure 2. Code 501 may
represent a function call with multiple untyped arguments or parameters. Compiled
instructions for the function called may include base line instructions for different
possible types the function parameters. Code 503 may illustrate compiled code inserted
with profile instructions to store actual runtime values of the function parameters to
corresponding profile buckets whenever the function is called during runtime. Similarly,
code 505 may specify an access (e.g. a load from heap operation) to property f of an
untyped variable o. Code 507 may illustrate profile instructions inserted for storing

runtime values accessed for the untyped variable.

18

WO 2014/025509 PCT/US2013/051116

Failure Profiling for Continued Code Optimization

[0082] An executable code with profiling instructions may be re-compiled
multiple times for continued optimization based on dynamically updated profile
information via the profiling instructions during runtime. Analysis of the profile
information may identify or detect opportunities for continued code optimization.
Optimization opportunities may include a type prediction for an untyped variable, failure
detection of an existing optimizing code (e.g. in an optimized code), or other applicable
information indicating possible performance improvements to update the current
executable code.

[0083] If optimization opportunities are identified, in one embodiment, a
previously compiled code may be recompiled or optimized based on the identified
opportunities, for example, when a garbage collector or other system management
routines are performed. Alternatively or optionally, trigger conditions based on the
identified opportunities may dynamically cause re-compilation of the previously
compiled code. A dynamic compiler can manage trigger conditions to determine whether
to re-compile the previously compiled code based on runtime profiling.

[0084] In one embodiment, trigger conditions for continued re-compilation of a
code including a function may include the number of times the function has been
executed (or called), a usage rate of a memory heap allocated for the execution of the
code, failure rate of an existing optimized code, or other applicable estimations or
measures on whether current execution performance can be improved based on runtime
data.

[0085] Trigger conditions may be configured via runtime settings based on
amount of execution, memory usage rate, amount of profiling, or other applicable runtime
measurements. For example, an execution counter may be maintained to track number of
times a function has been executed (or called) during a period of time or cumulatively to
indicate an amount of execution for a code including the function.

[0086] In one embodiment, runtime data for executing a code may include an
analysis counter and an optimization counter. The analysis counter may indicate when
(or an interval) to perform an analysis on profile data obtained or collected from the
execution to identify optimization opportunities. For example, an analysis counter may
be initialized to an initial value (e.g. 1000 or -1000) and counting down (or up) by certain
amount (e.g. 1) each time a function is executed to trigger the analysis when the analysis

counter counts to a certain target value (e.g. 0). An optimization counter may indicate

19

WO 2014/025509 PCT/US2013/051116

when to perform code re-compilation to further optimize the code dynamically based on
identified optimization opportunities. The optimization counter may be initialized or
reset (e.g. as 10000) and count up or down to target values according to, €.g. how many
times a function has been called, in a manner similar to the analysis counter. The
optimization counter and the analysis counter may be initialized with different values to
perform analysis and optimization operations with different schedules.

[0087] In one embodiment, analysis and/or optimization counters may be
dynamically initialized with different values to control when to trigger next analysis
and/or optimization operations adapted according to execution runtime. Trigger settings
may include a memory usage threshold for determining when to perform next analysis
and/or optimization operations. For example, memory usage threshold may indicate a
usage level (e.g. Y2 full, 3 full etc..). An optimization counter may be initialized for a
next round of operation (e.g. optimization) with an initial value (e.g. count) which is
inversely proportional to the memory usage threshold, if the current memory usage level
exceeds the memory usage threshold. For example, if the memory usage threshold
indicates Y2 of full memory usage and the current memory usage exceeds the memory
usage threshold, the initial count previously initialized for the optimization counter may
be doubled as the initial count for the next round of optimization. In some embodiments,
an optimization may not be performed if some conditions in runtime data, such as the
current memory usage rate greater than the memory usage threshold, are not satisfied, for
example, due to lack of sampled runtime values.

[0088] Use of trigger settings, such as memory usage threshold, based on runtime
settings, may allow additional flexibility in dynamically determining when to trigger
optimization operations. For example, higher memory usage rate may indicate larger size
of an executable code having more execution paths and requiring more in-depth profiling
analysis before performing next optimization operation. In certain embodiments, trigger
settings may include random variables to introduce fuzziness to identify broader
optimization opportunities.

[0089] In one embodiment, an optimized code based on an optimization
assumption for an untyped variable (e.g. a parameter of a function call) may include
guarding instructions to detect failure of the optimization assumption. For example, an
optimization assumption may correspond to a type prediction that can fail if a runtime
value encountered does not match the type prediction (e.g. having a type outside of the

limited number of types predicted or expected). The guarding instructions may include

20

WO 2014/025509 PCT/US2013/051116

exit paths to jump back to non-optimized code (or baseline code) which may be capable
of comprehensively handle all different possible types of runtime values encountered.
[0090] Exit paths in an optimized code may include profiling instructions (e.g.
active exits) to collect runtime values which cause failures of optimization assumptions in
the optimized code. For example, exit paths (e.g. associated with type checking
instructions) may include value profile (or value bucket) instructions to record runtime
values for the failures. Value profiles in exit paths (e.g. failure profiles or exit profiles)
may allow in-depth analysis of the failures, such as probability of a certain type (e.g.
integer) of runtime values causing the failures, which type checks fail, why these type
checks fail, or other applicable information, etc. Both original profiles (e.g. via normal
execution of optimizing code) and exit profiles may be cumulatively saved overtime for
analysis.

[0091] Failure profiling in addition to regular or normal profiling (e.g. via normal
execution of optimizing code) can speed up identifying and replacing optimizing code
which does not benefit execution performance. In some embodiments, execution of
optimizing code with type check instructions which fail most of the time may be more
expensive then executing baseline code or original code corresponding to the
non-optimized instructions.

[0092] In one embodiment, analysis of failure profiles may identify a rate of
failure for an optimized code to determine when to trigger re-compilation operations.
Trigger settings can include a failure rate threshold. For example, continued optimization
(or re-compilation) may be invoked when the rate of failure exceeds a failure rate
threshold. Existing optimized code (or optimized portion of code currently executed)
may be invalided and with a new function via the continued optimization.

[0093] In some embodiment, invocation of re-compilation based on failures
profiled may by dynamically adjusted or adapted. For example, a failure rate threshold
may be doubled for next round of re-compilation to allow collecting more profile data,
partly because the failure may be caused by insufficient profiling. As a result, execution
of recompiled code can transition smoothly to base line code from failed optimizing code
if no heuristics or speculations are identified.

[0094] Occurrence of failures with profiling in continuous (or iterative)
recompilation may enable collection of large amount of information. Based on the
collected profiling information, runtime behavior of an optimized code may be identified

to adaptively update or re-compile the code according to an analysis result of the

21

WO 2014/025509 PCT/US2013/051116

collected information. The analysis may be based on a speculation (or heuristics,
optimization assumption) used to optimized the code. The analysis result may uncover,
for example, how often the speculation succeeds, how often the speculation fails,
different reasons for the success, different reasons for the failures, etc. Accordingly,
behavior of the code may be observed over time for continuous recompilation or
optimization to correct previous optimizations which are determined to be no longer
applicable.

[0095] Figure 6 is a flow diagram illustrating one embodiment of a process to
track failures of type predictions used in an optimized code for recompilation. Exemplary
process 600 may be performed by a processing logic that may include hardware, software
or a combination of both. For example, process 600 may be performed by some
components of system 200 of Figure 2. At block 601, the processing logic of process 600
may execute a code compiled from a source code. In one embodiment, the source code
can specify a data processing task including the access to the untyped variable. The
executable code may be speculatively optimized according to a type prediction of runtime
values of the untyped variable. The type prediction can represent a limited collection of
types among possible types of runtime values.

[0096] The processing logic of process 600 can profile a data processing task
performed by a compiled code via one or more executions of the compiled code. Each
execution may be based on a separately compiled code from a common source code. A
profile database associated with the data processing task may be maintained based on the
profiling. For example, the profile database can include statistics on types of runtime
values assigned to or associated with a variable. An updated type prediction for future
runtime values may be identified based on the statistics. The profile database may be
analyzed to update the statistics according to a dynamic schedule specifying when to
perform next re-compilation (e.g. after certain number of function calls or according to
other applicable execution duration measures) for continued optimization.

[0097] In some embodiments, a compiled code may include profiling instructions
to store each runtime value for an untyped variable in a preconfigured storage location,
for example, in a heap memory allocated for executing the compiled code. Type
information may be extracted or analyzed from runtime values collected from the
preconfigured storage location into a profile database in a random and infrequent manner.
[0098] In one embodiment, a code to access an untyped variable can include

baseline instructions and optimized instructions for the access of the variable. The

22

WO 2014/025509 PCT/US2013/051116

baseline instructions can allow the code to comprehensively handle all possible types of
runtime values. The optimized instructions may correspond to speculative optimizing
code for efficiently accessing runtime values belonging to a subset of possible types. The
code may include jump instructions to cause the baseline instructions to be executed if the
optimized instructions cannot be completely executed, for example, to access a runtime
value with a type outside of the type prediction.

[0099] At block 603, the processing logic of process 600 can dynamically track
failures of a type prediction embedded in a code during runtime executing the code. For
example, each failure may be caused by or associated with an encountered runtime value
of a type outside of the type prediction. To track a failure of a type prediction to access a
variable in a code, the type of a runtime value in a runtime state for executing the code
may be identified. A profile database may be updated with the failure including the type
identified. In some embodiments, the tracking may be based on executing jump
instructions to the base line instructions when failures (e.g. type checking failures) occur
when executing optimizing instructions based on the type prediction.

[00100] The processing logic of process 600 can monitor a runtime status for
rounds of execution of a continuously compiled code. The runtime status can indicate a
progress of each round of execution. The processing logic of process 600 can configure a
runtime setting to specify a dynamic schedule for analyzing (e.g. when to analyze) a
profile database based on the progress (e.g. failure rate or success rate for executing an
optimizing code) for the executions.

[00101] In one embodiment, a runtime status can include a counter counting how
many times a data processing task (e.g. a function call) has been invoked, a measure of
memory usage indicating amount of memory used (e.g. out of a heap memory allocated
for executing a code), or other applicable indicators for a progress of each round of
execution (or execution iteration) of a continuous compiled code. A dynamic schedule
can determine when to perform next re-compilation or profile analysis based on, for
example, number of invocations of a data processing task indicated in the runtime status.
For example, recompilation may occur less frequently than the profile analysis according
to the dynamic schedule. The dynamic schedule may be updated to prolong value
profiling for the execution if the runtime status indicates that the profile database does not
include enough data. In one embodiment, next profile analysis may be scheduled after
more invocations of the data processing task as the memory usage increases.

[00102] In one embodiment, a runtime setting for executing continuously

23

WO 2014/025509 PCT/US2013/051116

re-compiled code compiled from a source code may include a fullness threshold
indicating percentage of certain variables in the source code have been accessed and
profiled during past execution cycles of the code. A runtime status for the code may
indicate how many of the variables have been accessed and/or how many times each
variable has been accessed. A profile database may not include enough data for
re-compilation of the code if a percentage of the variables which have been assessed does
not exceed the fullness threshold.

[00103] At block 605, the processing logic of process 600 may adjust a type
prediction according to failures tracked for accessing an untyped variable. The adjusted
or adapted type prediction is expected to better match types of future runtime values for
the variable. If the adjusted type prediction indicates any type of runtime value is
possible in the future for the untyped variable, the access to the variable in the code may
be re-compiled with the baseline instructions without additional optimized instructions.
[00104] An adjusted type prediction may represent a separate collection of possible
types of future runtime values. A recompiled code for accessing a variable may include
separate optimized instructions to perform the access for the separate collection of
possible types of runtime values for the variable.

[00105] In some embodiments, a failure rate for a type prediction may be
determined based on a runtime status and profiled data collected in a profile data base to
update the type prediction. The processing logic of process 600 may re-compile an
executable code if the failure rate exceeds a failure threshold. A runtime setting may
dynamically specify the failure threshold. At block 607, the processing logic of process
600 may execute the recompiled code to optimize the access to the variable for future
runtime values according to the adjusted type prediction.

[00106] Figure 7 is a flow diagram illustrating one embodiment of a process to
dynamically recompile code optimized based on runtime history. Exemplary process 700
may be performed by a processing logic that may include hardware, software or a
combination of both. For example, process 700 may be performed by some components
of system 200 of Figure 2. At block 701, the processing logic of process 700 can collect a
runtime history for a sequence of executions. Each execution may include performing a
data processing task specified in a source code based on a code compiled from the source
code. In one embodiment, each execution may be followed by a next one of the
executions in the sequence or in turn. The runtime history can include multiple

invocations of the data processing task.

24

WO 2014/025509 PCT/US2013/051116

[00107] At block 703, the processing logic of process 700 can dynamically
configure a setting for each execution of a code. The setting may specify conditions to
initiate the next execution from current execution based on information or data profiled or
collected from the runtime history. For example, the settings may include a threshold for
failure rate of a speculative optimizing code.

[00108] When the runtime history is profiled to match a configured setting, at
block 705, the processing logic of process 700 can recompile a previously compiled code
for the next execution. The compiled code may be optimized based on the runtime
history. In some embodiment, number of invocations of the data processing tasks in each
execution may increase following the sequence of executions. As a result, code
optimization may be dynamically adjusted as more and more profiled data becomes
available for more accurate predictions in the adjusted code optimization.

Runtime State Based Code Re-optimization

[00109] In one embodiment, a garbage collector can apply simple type transition
rules on runtime data of an executable code to determine whether to remove or invalidate
an optimizing code in the executable code. These rules may provide a degree of certainty
whether speculative assumption on runtime values underlying the optimizing code may
no longer hold for future runtime values based on current state of the runtime data. A
state of runtime data may include runtime values that are live (e.g. reference by another
live runtime value). Optimization opportunities may be identified during, for example,
garbage collection operations or other applicable routine resource management operations
for the execution of the code without a need to wait for next optimization schedule for
continuous re-compilation. A runtime value that is not live may be reclaimed back via a
garbage collection operation.

[00110] For example, optimization opportunities for continued optimization on an
executable code may be identified based on value profiling associated with dynamic
scheduled analysis tasks and early warning mechanisms associated with regularly
performed resource maintenance routines (e.g. garbage collection). A profile analysis
may infrequently and randomly identify optimization opportunities based on certain
patterns across a history of profiled data. A resource maintenance routine can detect
immediate optimization opportunities with almost complete access to current runtime
data, such as heap, stack, function code, runtime structures, etc.

[00111] A runtime value or an object structure allocated in runtime data (e.g. a

memory heap) may include a list (e.g. ordered list or array) of fields or slots as a type

25

WO 2014/025509 PCT/US2013/051116

pointing (or mapped) to associated properties. Executing a function call or other
applicable code block for a runtime value of a first type may result in a runtime value of a
second type. For example, a runtime value of type {a,b} (e.g. as a parameter or argument
to a function call) may be dynamically transitioned to a runtime value of type {a,b,c}. A
separate runtime value of type {a,b,c} may be dynamically created. The garbage collector
may be capable of identifying existing collection of types from runtime values allocated
in current runtime data for executing a code. Further, the garbage collector may infer or
derive additional possible types of future runtime values which may be created or
transitioned through execution of function calls in the code.

[00112] In one embodiment, a garbage collector for runtime data associated with
executing a code may be activated asynchronous to the execution of the code. For
example, the garbage collector may be performed periodically or in response to certain
statuses detected out of the runtime data, such as memory usage rate.

[00113] A garbage collector may determine a priori whether an optimizing code
compiled or inserted in the code may provide execution overhead without actually
improving execution performance. For example, the garbage collector may determine
that a prediction or constraint for the optimizing code may not be valid according to
current runtime data. The prediction may correspond to a limited number of types of
runtime values expected to be encountered (e.g. as a parameter or argument) for a
function call. The garbage collector can determine that no existing live runtime value or
live object structure allocated in current runtime data belong to the limited number of
runtime values or satisfy the prediction. A pointer, which is live in the current runtime
data, pointing to a runtime value may indicate the runtime value pointed to is also live
and in existence.

[00114] Optionally or additionally, the garbage collector can infer possible new
types of future runtime values which may result from execution of a code based on
current runtime data. A portion of the code (e.g. a certain function or a code block) may
be live if the portion belongs to a future execution path based on the current runtime data.
For example, an existing runtime value may include a pointer pointing to the function
code. The garbage collector may determine whether a function code included in the code
is live or not.

[00115] In one embodiment, an optimizing code optimized in a code based on a
prediction can be invalided or removed if the prediction is no longer valid. For example,

the prediction may not be valid if no existing runtime values of current runtime data of

26

WO 2014/025509 PCT/US2013/051116

the code belongs to the prediction and no new types of future runtime values which can
be generated belong to the prediction. The future runtime values may be generated based
on the current runtime data and live function codes of the code. The garbage collector
can cause a re-compilation to optimize the code dynamically without waiting for a
discovery of invalidity of the optimizing code (e.g. after repeated failures), for example,
via profiling analysis.

[00116] A garbage collector may be performed to solve a Boolean constraint
system including type transition rules transitively applied to current runtime data for
executing a code. A function code of the code may correspond to a set of rules, each rule
specifying transition or creation of one type of runtime values to another type of runtime
values. For example, a rule or transition rule may specify a transition from a source type
to a destination type {X}-->{X,f}, X indicate a possible type of runtime values. When
this rule is applied, existence of a source type of runtime values, for example, {a,b} may
imply existence of a destination type of runtime values {a,b,f}.

[00117] An optimizing code based on a type prediction may be valid for executing
a code including the optimizing code if current runtime data of the code includes a
runtime value satisfying the type prediction or if there is an execution path including
calling one or more functions in the code to transition or create a new runtime value
satisfying the type prediction based on the current runtime data. Based on the constraint
system with type transition rules, a garbage collector may check which structures (or
runtime values) in existence in the current runtime state and/or which functions (or live
function) of the code to transition the existing runtime values to cause the optimizing
code to execute successfully in the future.

[00118] In some embodiments, a garbage collector may include a callback hook to
a dynamic compiler. The garbage collector, when activated, can call back to the dynamic
compiler through the callback hook to determine whether an optimizing code is valid
based on type or structure transitions over current runtime data. The garbage collector
may include a knowledge base to answer queries from the dynamic compiler on existence
of different types of runtime values or pointers to functions (e.g. live functions) in the
code for the structure transition analysis.

[00119] Figure § is a flow diagram illustrating one embodiment of a process to
detect invalidity of type prediction to update an optimized code. Exemplary process 800
may be performed by a processing logic that may include hardware, software or a

combination of both. For example, process 800 may be performed by some components

27

WO 2014/025509 PCT/US2013/051116

of system 200 of Figure 2. At block 801, the processing logic of process 800 may
execute a code compiled from a source code including an access to an untyped variable
(or a dynamically typed value associated with the untyped variable). The access may be
compiled with speculative optimization as an optimized access code in the code via a type
prediction of runtime values of the untyped variable. A type prediction can specify
expected types of runtime values for a variable, such as a function parameter. The
runtime values may be dynamically allocated in a memory heap for executing the code.
[00120] At block 803, the processing logic of process 800 can dynamically detect
invalidity of a type prediction used in an optimizing code currently being executed.
Future runtime values for an untyped variable accessed in the optimizing code may not
belong to the types associated with the type prediction. Existing types of current runtime
values can be identified from current runtime data. The type prediction may be valid if
one or more of the identified type belong to the type prediction. A non-optimized access
code (e.g. baseline code or instructions) for an untyped variable may be compiled based
on a collection of each possible type of runtime values for an untyped variable. Expected
types of a type prediction may correspond to a subset of the collection of each possible
type.

[00121] In one embodiment, a source code can specify one or more functions. Each
function can be associated with dynamically typed variables including input variables
(e.g. parameters). Execution of the function (e.g. via a function call) can result in updates
of the variables. For example, new types of runtime values may be generated as
destination or target types of runtime values from source types of runtime values for input
variables. A function can represent a structure transition from a source collection of types
to a target collection of types. Each target type can correspond to one of updated
variables in the function based on input variables having the source types of runtime
values.

[00122] In some embodiments, the processing logic of process 800 can identify a
sequence of functions in a code for detecting whether a type prediction is valid. For
example, the processing logic of process 800 may transitively transition types of the
existing runtime values (e.g. live runtime values) to a resulting collection of types of
runtime values via structure transitions in order corresponding to the sequence of
functions. A type prediction may be valid if at least one of the resulting collection of
types belongs to the expected types associated with the type prediction. The processing

logic of process 800 can determine whether the sequence of functions can be identified

28

WO 2014/025509 PCT/US2013/051116

for possible structure transitions to answer a query about validity of a type prediction.
[00123] For example, a sequence of functions can include a first function and a
second function next to the first function according to the sequence. The first and second
functions can correspond to a first and second structure transitions respectively. A first
collection of types may be transitively transitioned to a second collection of types via the
first structure transition and then the second structure transition following the order in the
sequence. The first collection of types may be transitioned to an intermediate collection
of types via the first structure transition. Subsequently, the intermediate collection of
types may be transitioned to the second collection of types via the second structure
transition.

[00124] The processing logic of process 800 may detect invalidity of a type
prediction with expected types if no existing runtime values (e.g. which are live) are of
the expected type and no sequence of functions (e.g. live functions) are identified to
transitively transition types of existing runtime values to at least one of the expected
types. The processing logic of process 800 may initiate detection of invalidity of a type
prediction via garbage collection operations performed to maintain, for example, a heap
allocated for a corresponding executable code.

[00125] In one embodiment, the processing logic of process 800 may determine
whether a function is invokable or live for identifying a sequence of functions for validity
of a type prediction. A function may be invokable if an existing runtime value includes a
pointer pointing to the function. Alternatively, a function may be invokable if an
invokable function specifies a call to the function. An existing runtime value may
correspond to a runtime object having data structures including pointers. For example,
the pointers may include a function pointer referencing a live or invokable function. A
function may be live or invokable if the function is referenced by a live runtime value
(e.g. via a pointer). Each one of a sequence of functions identified for validity of a type
prediction may be invokable.

[00126] At block 805, the processing logic of process 800 can update a previously
compiled code speculatively optimized using an invalid type prediction for accessing a
variable. The updated code can include an access code without the speculative
optimization. In one embodiment, the processing logic of process 800 may profile
execution of the compiled executable code to collect one or more types of values assigned
to the untyped variable during runtime. The invalid type prediction may be based on

previously collected values which are of different types from recently encountered values.

29

WO 2014/025509 PCT/US2013/051116

[00127] In one embodiment, the access of the untyped variable may be specified in
a function of a source code corresponding to the executable code. The function may have
input variables (or arguments) including the untyped variable. The executable code may
include an optimally compiled function code for the access to the untyped variable
optimized based on the type prediction. The updated code may include a non-optimized
compiled function code for the function. The optimally compiled function code may be
removed from the updated code.

[00128] The processing logic of process 800 can recompile the executable code
dynamically during runtime to remove the optimally compiled function code to update the
executable code. At block 807, the processing logic of process 800 can execute the
updated code without executing the optimized access code for the future runtime values
of the variable. In some embodiments, the executable code may be recompiled to replace
the optimally compiled function code with an updated optimally compiled function code.
The updated optimally compiled code may be based on an updated type prediction
corresponding to currently collected types of runtime values via value profiling for future
runtime values.

[00129] Figure 9 is a flow diagram illustrating one embodiment of a process to
detect invalidity of type prediction to update an optimized function code. Exemplary
process 900 may be performed by a processing logic that may include hardware, software
or a combination of both. For example, process 900 may be performed by some
components of system 200 of Figure 2. At block 901, the processing logic of process 900
may execute a code compiled from a source code specifying at least one function having
untyped input variables. The code can include a first function code optimally compiled
for the function based on a type prediction for future runtime values of the untyped input
variables.

[00130] In one embodiment, execution of the code may be based on a memory
heap allocated (e.g. specifically for the code) with objects corresponding to existing
runtime values. Garbage collection operations may be performed to dynamically maintain
the memory heap, for example, to reclaim memory allocations no longer needed for the
execution of the code, such as runtime values which are not live.

[00131] At block 903, the processing logic of process 900 can detect dynamically
invalidity of the type prediction for the future runtime values of the untyped variable. For
example, garbage collection operations can include callbacks to initiate the detection of

validity or invalidity of the type prediction. The processing logic of process 900 can

30

WO 2014/025509 PCT/US2013/051116

determine whether types of future runtime values overlap with expected types associated
with the type prediction. The type prediction may be invalid if the types of the future
runtime values do not overlap with the expected types. The types of future runtime
values may include the types of existing runtime values identified from a memory heap
for the code.

[00132] At block 905, the processing logic of process 900 can update the code with
a second function code compiled for the function. The second function code can be
compiled without the speculative optimization. The processing logic of process 900 can
execute the updated code without executing the first function code for the future runtime
values of the untyped input variables at block 907.

[00133] Figure 10 illustrates one example of runtime data and optimized code for
identifying validity of a type prediction based on structure transitions in the runtime data
according to one embodiment described herein. Example 1000 may include runtime data
1001 corresponding to a snapshot of current runtime data for executing optimized code
1005. Runtime data 1001 may include object (or runtime value) 1003 of type {a,b}.
Function code 1009 may include optimizing code 1011 based on a type prediction of a
limited number of expected types of runtime values, for example, ({f}, {a,f}, {b,a,f}).
Runtime data 1001 may not include any runtime value or object structure allocated with
type {f}, {a,f} nor {b,a,f}. Code 1005 may include live function F1 1007. For example, a
function pointer of runtime data 1001 may point to function F1 1007.

[00134] In one embodiment, source types 1013 including type {a,b} may be
identified from existing runtime values of runtime data 1001. Application of transition
rules or structure transition 1015 based on, for example, function F1 1007 may derive
destination types 1017. In one embodiment, function F1 1007 may generate a possible
future runtime value of type {a,b,f} (e.g. destination type) from a source type {a,b} of
existing object 1003. A transition rule may be applied transitively to a future object of a
destination type to generate another future object of another destination type.

Split Heap Garbage Collection

[00135] Dynamically typed objects may be allocated as cells associated with
properties in a memory heap allocated for executing a code (e.g. in a process) based on
dynamically typed languages such as JavaScript. The code may be linked with a separate
code (e.g. in the same process) based on non-dynamically based languages, such as C or
C++. The memory heap may be partitioned or split into multiple parts, each part

associated with a separate garbage collection mechanism. For example, a dynamically

31

WO 2014/025509 PCT/US2013/051116

typed object may be stored with its cell in one part of the heap and its properties in a
separate part of the heap to allow the separate code to directly access the properties
without the overhead of an extra handle object (or extra layer of indirection) created to
interface with the separate code.

[00136] In one embodiment, object allocated by a JavaScript (or other applicable
dynamically typed language) code may point to a property structure which is dynamically
updated for the object during runtime. The JavaScript code may be linked with a C (or
other applicable non-dynamically typed language) code implementing a function. The
function (e.g. C function or C++ function) may be called with a pointer to the property
structure of the JavaScript object directly from the JavaScript code. Conversely, the
function can call JavaScript functions in the JavaScript code.

[00137] Memory management operations, such as garbage collection operations,
may be performed for maintaining a memory heap to execute the JavaScript code linked
with, for example, a C code. Dynamic properties of the JavaScript objects may be
allocated in one partition of the heap. For example, an unused (or not live) object may be
reclaimed back to the heap regardless whether corresponding properties of the unused
object is currently referenced by a function in the C code or not.

[00138] In one embodiment, moving and non-moving garbage collection
operations may be performed on separate partitions of a heap in a cooperative manner in
parallel for moving (or copying) live (or currently used) memory space around in the heap
to reclaim unused memory space with minimum memory space overhead, for example,
less than two folds of memory space of the heap. The moving garbage collector may
move or copy allocated memory slots around in the heap to defragment memory
allocation (e.g. removing holes which are available memory segments between
unavailable or used memory slots). The non-moving garbage collector can collect and
maintain pointers indicating which memory slots are currently available.

[00139] In one embodiment, moving garbage collector may move objects or
allocated memory slots which are currently in use or live out of the way to make room in
a memory space (e.g. heap) to satisfy future allocation. Overhead incurred in the moving
garbage collector may include maintaining or updating reference pointers from other
objects to the moved (or copied) object. Total overhead to reclaim back unused memory
allocation may be reduced by half via moving objects around. Memory slots allocated for
dynamic properties of, for example, JavaScript objects referenced by a C or C++ function,

may be pinned from being moved by a moving garbage collector. The moving garbage

32

WO 2014/025509 PCT/US2013/051116

collector can perform memory management operations based on an assumption that an
allocated object may be referenced (e.g. pointed to by a pointer) by at most one pointer
(e.g. an owner of the object) to allow immediate release of an old version (or allocated
space) of the object after the object has been copied.

[00140] A non-moving garbage collector may scan allocation holes (e.g. adjacent
between two allocated memory slots) which are not used (or not live) and linked them
together for future allocation. The non-moving garbage collector may allocate memory
space with a number of pre-specified sizes. In one embodiment the non-moving garbage
collector can maintain a free list indicating (e.g. via pointers) free space available for
allocation.

[00141] Garbage collection operations may be invoked when attempts to allocate
memory (e.g. in response to allocation requests from code execution) fail. In one
embodiment, memory allocation schemes for a heap may be based on two data structures
representing a mark space and a copy space respectively to partition the heap. Separate
policies may be applied to collect or reclaim available memory allocations for each
partition.

[00142] In one embodiment, mark space may include multiple lists of memory
blocks, such as a fixed sized 64K or other applicable size memory block. Each list may be
associated with allocating memory slots of a certain sizes, such as 32 bytes, 64 bytes, ...
or other applicable size. Lists of free cells (or available memory slots) may be maintained
to efficiently designate selected free cells for allocation requests. If failures occur to
allocate requested memory slots (e.g. on receiving memory allocation requests), a
decision may be made to invoke garbage collection operations.

[00143] Whether to perform garbage collection operations may be determined
based on memory usage indicators, for example, indicating amount of memory used or
ratio of memory used (e.g. relative to the size of mark space). Garbage collection
operations may be invoked if the amount of memory used exceeds the target usage
budget. The target usage budget may be dynamically configured to, for example, a
double of the size of total live objects, to control memory allocation performance.
[00144] In one embodiment, copy space may include one list (e.g. linked list) of
memory blocks for allocating memory slots of varying sizes. Variable sized objects may
be allocated in the copy space faster than in the mark space. For example, each memory
block in the copy space may be identical in size (e.g. 64K bytes). A separate list of

oversized memory blocks may be maintained for allocating arbitrarily large size memory

33

WO 2014/025509 PCT/US2013/051116

slots.

[00145] In some embodiment, a salvage thread may control when to release freed
memory space or request additional memory space to/from an operating system based on
a recycling policy without a need to immediately returning the freed memory space back
to the operation system. A memory block may include meta data. For example, the meta
data may include a next pointer (or next offset) pointing to a start address of available
memory. Optionally or additionally, the meta data may include a counter counting
number of memory slots allocated in the corresponding memory block. Garbage
collection operations may be performed to copy or move memory slots for compaction or
defragmentation.

[00146] Figure 11 is a flow diagram illustrating one embodiment of a process for
performing moving and non-moving garbage collections concurrently on separate
portions of a heap. Exemplary process 1100 may be performed by a processing logic that
may include hardware, software or a combination of both. For example, process 1100
may be performed by some components of system 200 of Figure 2. At block 1101, the
processing logic of process 1100 can maintain first structures and second structures in
separate portions of a heap in a memory to execute a code based on the heap. For
example, the heap may be partitioned in a first portion and a second portion, the first
portion including the first structure and the second portion including the second
structures. Each second structure may be referenced by at most one of the first structures.
One the first structures may represent an object created during runtime executing the code
corresponding to the heap. The object can have a dynamic property associated with one
of the second structures.

[00147] In one embodiment, the code may be compiled from a source code in a
dynamically typed language, such as the JavaScript language. The object may be
dynamically typed having a cell representing a handle to the object. The cell can
correspond to one first structure having a reference to a second structure. The code may
be linked with a particular code capable of referencing the dynamic property of the object
without referencing the first structure representing the object. The particular code may
belong to a library (e.g. static or dynamic) linked with the code. For example, the
particular code may be compiled from a particular source code having programming
interfaces (e.g. application programming interfaces to allocate/free memory space) to
manage memory usage in the heap. Memory space allocated in the heap via the particular

code may be de-allocated (or reclaimed) via the particular code. The dynamically typed

34

WO 2014/025509 PCT/US2013/051116

programming languages may not support memory management interfaces and require a
separate memory management routine, such as a garbage collector, for executing
executable code based on the dynamically typed programming language.

[00148] In one embodiment, the first portion of the heap can include first memory
blocks. Each first memory block may be associated with a slot size for allocating one or
more fixed sized slots (or memory slot) of the slot size. The first structures may be
allocated in the first memory blocks associated with a (e.g. pre-specified) number of first
slot sizes. The first structure representing the object may be allocated in one first memory
block associated with one first slot size in response to receiving a request to allocate a
memory slot of a size in the first portion of the heap. The first slot size may be
determined to best match the size among the number of first slot sizes based on the size
requested.

[00149] At block 1103, the processing logic of process 1100 may perform
non-moving garbage collection operations on the first portion of the heap to identify
which of the first structures are available for future allocation from the first portion of the
heap without moving or copying the identified first structures. The processing logic of
process 1100 may determine whether there is free memory space or slots available in
response to a request for allocating a fixed sized memory slot (e.g. in the first portion of
the heap) or a varied sized memory slot (e.g. in the second portion of the heap). The
processing logic of process 1100 may perform memory management operations including
the non-moving garbage collection operations if free memory slot of a requested size in
the second memory blocks is not available.

[00150] In one embodiment, a stack may be allocated in the heap for executing the
code. For example, the stack may include a call stack to call a library function linked via
the particular code. The stack may include a list of pointers or values including first
references to the first portion of the heap and second references to the second portion of
the heap. The processing logic of process 1100 may scan the stack to identify the first
and second references.

[00151] In some embodiments, the processing logic of process 1100 can identify or
determine which first structures in the first portion of the heap are live (or live first
structures) for performing the non-moving garbage collection operations. A live structure
(e.g. a live first structure in the first portion of the heap or a live second structure in the
second portion of the heap) may indicate that one or more memory slots allocated for the

structure are currently not available (or in use) for executing the code. For example, a

35

WO 2014/025509 PCT/US2013/051116

particular first structure is live if the particular first structure is referenced (or pointed to)
in the first references of the stack or if the particular structure is referenced by another
live first structure.

[00152] The processing logic of process 1100 can identify live first structures
based on first references of the stack. For example, the first structures in the first portion
of the heap may be related via a hierarchical relationship (e.g. an object hierarchy or class
inheritance hierarchy in the JavaScript language or other object oriented languages)
established via the execution of the code. A parent first structure of the hierarchical
relationship can have one or more offspring or child first structures. If the parent first
structure is identified as live, each of the offspring first structures may be identified as
live.

[00153] At block 1105, the processing logic of process 1100 can perform moving
garbage collection operations on the second portion of the heap in a coordinated manner
with the non-moving garbage collection operations. For example, the second portion of
the heap may be compacted or de-fragmented via the moving garbage collection
operations to identify which of the second structures are movable within the second
portion of the heap for future memory allocation of the second portion of the heap. The
non-moving garbage collection operations and the moving garbage collection operations
are performed iteratively substantially in parallel.

[00154] In one embodiment, a second structure in the second portion of the heap
for an object allocated by the code (e.g. a JavaScript code) in the first portion of the heap
may not be movable (e.g. copied to another address) if the second structure is referenced
by the particular code (e.g. a C++ library) linked with the code. The particular code may
reference the second structure in via the stack without referencing the object in the first
portion of the heap. The second portion of the heap can include second memory blocks to
allocate varied sized slots or memory slots. The second structure may be allocated in a
varied sized slot in the second memory blocks.

[00155] In one embodiment, the second references identified from the stack may
correspond to varied sized slots in the second memory blocks in the second portion of the
heap. The processing logic of process 1100 can perform memory collection operations for
the moving garbage collection operations. The collection operations may be performed to
identify which portions of the second memory blocks are not movable or pinned. For
example, the pinned portion (or non-movable portion) of the second memory blocks may

include the varied sized slots of the second memory blocks corresponding to the second

36

WO 2014/025509 PCT/US2013/051116

references of the stack.

[00156] The processing logic of process 1100 can identify which of the second
structures are live (or currently not available for allocation) in the second portion of the
heap. A live second structure may be referenced by a live first structure or by another
live second structure. A live second structure may be movable if the live second structure
does not belong to the pinned portion of the second memory blocks.

[00157] In one embodiment, the second portion of the heap can include a first
memory space which is fragmented and a second memory space which is available for
allocation. The second memory blocks including the movable second structures may be
allocated in the first memory space. The processing logic of process 1100 may copy the
identified movable second structures to the second memory space to de-fragment or
compact the second portion of the heap. Memory space in the first memory space which
does not belong to the pinned portion of the second memory blocks may be reclaimed via
the moving garbage collection operations.

[00158] In one embodiment, a second memory block in the second portion of the
heap may include meta data such as a counter dynamically counting or storing second a
number of second structures allocated in the memory block. The counter may be counted
up (e.g. by one or another fixed amount) when a memory slot is allocated in the second
memory block for a new second structure. Conversely, the counter may be counted down
(e.g. by one or another fixed amount) when an existing memory slot corresponding to an
existing second structure is copied or moved out of the second memory block. In one
embodiment, the second memory block may be released (or freed) substantially when the
counter counts down to zero (or another pre-specified value).

[00159] Figure 12 is a flow diagram illustrating one embodiment of a process to
scan a stack to identify live memory slots and pinned memory slots to reclaim memory
slots which are not live and not pinned by moving the live memory slots without moving
the pinned memory slots. Exemplary process 1200 may be performed by a processing
logic that may include hardware, software or a combination of both. For example,
process 1200 may be performed by some components of system 200 of Figure 2. At
block 1201, the processing logic of process 1200 can scan a stack used in executing a
code compiled from a dynamic programming language based source code. The stack may
include an ordered collection of references to a heap allocated for the execution of the
code. The processing logic of process 1200 may determine whether a value stored in the

stack is a pointer to an address in the heap conservatively, for example, based on

37

WO 2014/025509 PCT/US2013/051116

heuristics related to possible range of memory addresses, bit patterns of the value and/or
other applicable indicators.

[00160] In one embodiment, the heap may be partitioned into first memory blocks
and second memory blocks. The first memory block may be allocated with fixed sized
slots or memory slots. The second memory blocks may be allocated with varied sized
slots. A varied sized slot may be referenced by at most one fixed sized slot which may
include a pointer pointing to a memory address within the varied sized slot.

Objects may be instantiated or created in the slots during runtime executing the code. A
hierarchical relationship may be established among at least two of the fixed sized slots
corresponding to an object hierarchy specified in the code. For example, an object
hierarchy for JavaScript language may indicate a class inheritance among cells, objects,
layout objects, arrays, strings etc.

[00161] At block 1203, the processing logic of process 1200 can identify which of
the fixed sized slots are live (or live fixed sized slots). For example, each fixed sized slot
referenced by the references in the stack can be identified as live. Each fixed sized slot
referenced (e.g. via a pointer or based on a hierarchical relationship) by a live fixed sized
slot can also be identified as live. The processing logic of process 1200 may identify
which of the varied sized slots are live at block 1205. Each varied sized slot referenced
by a live fixed size slot can be identified as live.

[00162] A varied sized slot may be live if it is referenced by a live fixed sized slot.
A fixed sized slot referenced by a live fixed sized slot may also be live. Live fixed sized
slots can include each fixed sized slot referenced in the stack (e.g. via one of the first
references). In some embodiments, a parent fixed sized slot refers child fixed sized slots
according to a hierarchical relationship. A child slot may be live if its corresponding
parent slot is live.

[00163] The processing logic of process 1200 can identify live memory slots
according to a traversal of reachable memory slots from the stack via pointers and/or the
hierarchical relationship. For example, the stack may indicate a known set of live objects
allocated in live memory slots. Each object may be transitively visited to mark for
reachability (or being live), for example, following the hierarchical relationship or other
pointers associated with object.

[00164] In one embodiment, an object may correspond to a fixed sized slot
referencing a varied sized slot allocated with dynamic properties of the object. A live

object may be associated with private memory space for the second memory blocks. The

38

WO 2014/025509 PCT/US2013/051116

processing logic of process 1200 may copy the dynamic properties in the varied sized slot
to the associated private memory when visiting the object in the fixed sized slot to reduce
number of traverses required among the objects in the heap to manage the memory
blocks.

[00165] A list of objects, e.g. related as a directed graph via references among the
objects and private memory space may be maintained for traversal. The graph may be
rooted with objects referenced directly by the stack. The processing logic of process
1200 can visit or traverse the list of objects and identify which visited objects as live or
reachable following the graph. Dynamic properties (e.g. allocated in the secondary
memory blocks) of an object may be copied to private memory space as the object is
encountered during the traversal. The dynamic properties in the varied sized slot may be
copied or moved to make room (or memory space) to compact the second memory
blocks.

[00166] In one embodiment, a varied sized slot may belong to a memory block
having a header with meta data including a counter counting the number of slots
allocated. As the dynamic properties are copied, the counter may be decremented. The
memory block may be released substantially immediately when the counter indicates that
objects in allocated slots in the memory block have been copied or moved.

[00167] The processing logic of process 1200 can coordinate collections of
memory slots in the first and second memory blocks concurrently (e.g. interleaved) in one
traversal pass through the graph of objects. Objects to be marked (or visited) may be
scheduled via a global queue to limit the depth of traversal path required in traversing the
graph, for example, to avoid traversal stack overflow.

[00168] At block 1207, the processing logic of process 1200 can identify pinned
portion of the second memory blocks according to the references of the stack. For
example, each varied sized slot referenced by the references of the stack can belong to the
pinned portion of the second memory blocks. In one embodiment, a second memory
block including a second slot referenced by a reference in the stack may belong to the
pinned portions of the second memory blocks. Contents in memory slots within a pinned
memory block (e.g. belonging to the pinned portions) may not be copied or moved for
memory collection, e.g. during traversal of the object graph. For example, the stack can
include a reference to a dynamic property of a JavaScript based object to allow a C++ or
C function (e.g. in a linked library) to directly access the dynamic property of the
JavaScript based object.

39

WO 2014/025509 PCT/US2013/051116

[00169] At block 1209, the processing logic of process 1200 can copy or move the
live varied sized slots that are not pinned (or in the pinned portion of the second memory
blocks) to make room for future allocation. At block 1211, the processing logic of
process 1200 can defragment the first memory blocks to reclaim the fixed sized slots
which are not live without moving the fixed sized slots, €.g. via non-moving garbage
collection operations. The processing logic of process 1200 can defragment the second
memory blocks to reclaim the varied sized slots which have not been copied and not in
the pinned portion of the second memory blocks, e.g. via moving garbage collection
operations, at block 1213.

[00170] In one embodiment, the code (e.g. a JavaScript code) may be linked with a
particular code having a function (e.g. a C function). A call to the function from the code
may be associated with a particular one of the references of the stack. For example, the
particular reference can correspond to a runtime value for an argument for the function. In
one embodiment, the particular reference may refer to a particular one of the varied sized
slots which is referenced by a particular one of the fixed sized slots. The processing logic
of process 1200 can identify the particular varied sized slot as pinned to allow the
function to access the particular varied sized slot directly without using the fixed sized
slots in the heap.

[00171] Figure 13 illustrates one example of split partitions in a heap for executing
a code according to one embodiment described herein. For example, heap 1301 may be
part of runtime data 217 of Figure 2. In one embodiment, heap 1301 may be allocated for
executing code 1319 compiled from a dynamically typed language (e.g. JavaScript) based
code. Code 1319 may not include instructions to perform memory management
operations (e.g. to collect or reclaim unused memory space) on heap 1301. Code 1319
may be linked with code 1321 based on, for example, a non-dynamically typed
programming language, such as C, C++in a library. Code 1321 may include memory
management instructions to explicitly allocate/free memory space used in heap 1301.
[00172] Heap 1301 may include mark space 1303 and copy space 1305 as two
partitions. Mark space 1303 may be allocated with runtime objects, such as object cells
1307, 1311, created (e.g. implicitly) as a result of executing code 1319. An object cell
may be allocated in a fixed sized memory slot. In one embodiment, an object cell may
include meta data and/or pointers, for example, to indicate relationships with other object
cells, to point to associated dynamic properties, to represent a number of references to the

object cell and/or other applicable data properties. For example, meta data 1309 of object

40

WO 2014/025509 PCT/US2013/051116

cell 1307 may include pointers 1323 pointing to object property store 1313 storing
dynamic properties for object cell 1307.

[00173] In one embodiment, object property store 1313 may be allocated in copy
space 1305 in a varied sized memory slot. Size of object property store 1313 may vary
dynamically. Pointer 1323 may be a single reference to object property store 1313. No
other objects except object cell 1307 may reference object property store 1313. Code
1321 may include a pointer pointing directly to object property store 1313 to allow code
1321 to process data stored within object property store 1313 directly without a need for a
handle object cell as an intermediate layer to access the data in object property store 1313.
[00174] Figure 14 shows one example of a data processing system, such as a
computer system, which may be used with one embodiment the present invention. For
example, the system 1400 may be implemented as a part of the system shown in Figures
1. Note that while Figure 14 illustrates various components of a computer system, it is not
intended to represent any particular architecture or manner of interconnecting the
components as such details are not germane to the present invention. It will also be
appreciated that network computers and other data processing systems which have fewer
components or perhaps more components may also be used with the present invention.
[00175] As shown in Figure 14, the computer system 1400, which is a form of a
data processing system, includes a bus 1403 which is coupled to a microprocessor(s) 1405
and a ROM (Read Only Memory) 1407 and volatile RAM 1409 and a non-volatile
memory 1411. The microprocessor 1405 may retrieve the instructions from the memories
1407, 1409, 1411 and execute the instructions to perform operations described above. The
bus 1403 interconnects these various components together and also interconnects these
components 1405, 1407, 1409, and 1411 to a display controller and display device 1413
and to peripheral devices such as input/output (I/O) devices which may be mice,
keyboards, modems, network interfaces, printers and other devices which are well known
in the art. Typically, the input/output devices 1415 are coupled to the system through
input/output controllers 1417. The volatile RAM (Random Access Memory) 1409 is
typically implemented as dynamic RAM (DRAM) which requires power continually in
order to refresh or maintain the data in the memory.

[00176] The mass storage 1411 is typically a magnetic hard drive or a magnetic
optical drive or an optical drive or a DVD RAM or a flash memory or other types of
memory systems which maintain data (e.g. large amounts of data) even after power is

removed from the system. Typically, the mass storage 1411 will also be a random access

41

WO 2014/025509 PCT/US2013/051116

memory although this is not required. While Figure 14 shows that the mass storage 1411
is a local device coupled directly to the rest of the components in the data processing
system, it will be appreciated that the present invention may utilize a non-volatile
memory which is remote from the system, such as a network storage device which is
coupled to the data processing system through a network interface such as a modem or
Ethernet interface or wireless networking interface. The bus 1403 may include one or
more buses connected to each other through various bridges, controllers and/or adapters
as is well known in the art.

[00177] Portions of what was described above may be implemented with logic
circuitry such as a dedicated logic circuit or with a microcontroller or other form of
processing core that executes program code instructions. Thus processes taught by the
discussion above may be performed with program code such as machine-executable
instructions that cause a machine that executes these instructions to perform certain
functions. In this context, a “machine” may be a machine that converts intermediate form
(or “abstract”) instructions into processor specific instructions (e.g., an abstract execution
environment such as a “virtual machine” (e.g., a Java Virtual Machine), an interpreter, a
Common Language Runtime, a high-level language virtual machine, etc.), and/or,
electronic circuitry disposed on a semiconductor chip (e.g., “logic circuitry” implemented
with transistors) designed to execute instructions such as a general-purpose processor
and/or a special-purpose processor. Processes taught by the discussion above may also be
performed by (in the alternative to a machine or in combination with a machine)
electronic circuitry designed to perform the processes (or a portion thereof) without the
execution of program code.

[00178] An article of manufacture may be used to store program code. An article
of manufacture that stores program code may be embodied as, but is not limited to, one or
more memories (e.g., one or more flash memories, random access memories (static,
dynamic, non-transitory or other)), optical disks, CD-ROMs, DVD ROMs, EPROMs,
EEPROMs, magnetic or optical cards or other type of machine-readable media suitable
for storing electronic instructions. Program code may also be downloaded from a remote
computer (e.g., a server) to a requesting computer (e.g., a client) by way of data signals
embodied in a propagation medium (e.g., via a communication link (e.g., a network
connection)).

[00179] The preceding detailed descriptions are presented in terms of algorithms

and symbolic representations of operations on data bits within a computer memory.

42

WO 2014/025509 PCT/US2013/051116

These algorithmic descriptions and representations are the tools used by those skilled in
the data processing arts to most effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent
sequence of operations leading to a desired result. The operations are those requiring
physical manipulations of physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals capable of being stored,
transferred, combined, compared, and otherwise manipulated. It has proven convenient at
times, principally for reasons of common usage, to refer to these signals as bits, values,
elements, symbols, characters, terms, numbers, or the like.

[00180] It should be kept in mind, however, that all of these and similar terms are
to be associated with the appropriate physical quantities and are merely convenient labels
applied to these quantities. Unless specifically stated otherwise as apparent from the
above discussion, it is appreciated that throughout the description, discussions utilizing
terms such as "processing” or "computing" or "calculating” or "determining" or
"displaying" or the like, refer to the action and processes of a computer system, or similar
electronic computing device, that manipulates and transforms data represented as physical
(electronic) quantities within the computer system's registers and memories into other
data similarly represented as physical quantities within the computer system memories or
registers or other such information storage, transmission or display devices.

[00181] The present invention also relates to an apparatus for performing the
operations described herein. This apparatus may be specially constructed for the required
purpose, or it may comprise a general-purpose computer selectively activated or
reconfigured by a computer program stored in the computer. Such a computer program
may be stored in a computer readable storage medium, such as, but is not limited to, any
type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks,
read-only memories (ROMs), RAMs, EPROMs, EEPROMs, magnetic or optical cards, or
any type of media suitable for storing electronic instructions, and each coupled to a
computer system bus.

[00182] The processes and displays presented herein are not inherently related to
any particular computer or other apparatus. Various general-purpose systems may be
used with programs in accordance with the teachings herein, or it may prove convenient
to construct a more specialized apparatus to perform the operations described. The
required structure for a variety of these systems will be evident from the description

below. In addition, the present invention is not described with reference to any particular

43

WO 2014/025509 PCT/US2013/051116

programming language. It will be appreciated that a variety of programming languages
may be used to implement the teachings of the invention as described herein.

[00183] The foregoing discussion merely describes some exemplary embodiments
of the present invention. One skilled in the art will readily recognize from such
discussion, the accompanying drawings and the claims that various modifications can be

made without departing from the spirit and scope of the invention.

44

WO 2014/025509 PCT/US2013/051116

CLAIMS

What is claimed is:

1. A machine-readable non-transitory storage medium having instructions therein,
which when executed by a machine, cause the machine to perform a method, the method
comprising:
executing a compiled code of a source code, the source code including an access
of an untyped variable;
randomly inspecting, during the execution, runtime values of the untyped
variable for a value profile including one or more expected types of future
runtime values for the untyped variable; and
executing a recompiled code of the source code to optimize the access of the
untyped variable for the future runtime values according to the value

profile.

2. The medium of claim 1, wherein the compiled code includes baseline instructions
for the access of the untyped variable, wherein each runtime value is associated with one
of a plurality of types and wherein the execution comprises:

executing the baseline instructions for the access to each runtime value regardless

which of the types the runtime value is associated with.

3. The medium of claim 2, wherein the compiled code includes one or more profile
instructions associated with a storage location allocated for the untyped variable, and
wherein the execution further comprises:
executing the profile instructions to store the runtime value in the storage
location, wherein the profile instructions are executed if the baseline

instructions are executed.
4. The medium of claim 3, wherein the storage location stores a separate one of the

runtime value previously stored, and wherein the runtime value is stored in the storage

location to overwrite the separate runtime value previously stored.

45

WO 2014/025509 PCT/US2013/051116

5. The medium of claim 2, wherein the recompiled code includes one or more
optimized instructions for the access of the untyped variable, the optimized instructions to

check if a future value for the untyped variable is of one of the expected types.

6. The medium of claim 1, wherein the random inspection comprises:
sampling the runtime values from the storage location at different times

asynchronously to the execution of the compiled code.

7. The medium of claim 6, wherein the different times correspond to a random

sequence without resonance with the runtime values.

8. The medium of claim 6, wherein the sampling comprises:

identifying a plurality of types for the sampled runtime values.

0. The medium of claim &, wherein the execution of the compiled code is associated
with a runtime state including object structures allocated for the execution, wherein at
least one of the sampled runtime values refers to the object structures in the runtime state
and wherein the identification comprises:
determining a correspondence between the one sampled runtime value and a
reference to the object structures; and
traversing the object structures in the runtime state, wherein a type associated
with the one sampled runtime value is identified according to the object

structures traversed.

10. The medium of claim 9, wherein at least one of the sampled runtime values is
associated with a type corresponding to a bit pattern and wherein the identification
comprises:

matching the bit pattern with a binary representation of the one sampled runtime

value.

11. The medium of claim 8, wherein at least one of the sampled runtime values refers
a function in the compiled code and wherein the identification comprises:
determining a correspondence between the one sampled runtime value and a

reference to the function in the compiled code.

46

WO 2014/025509 PCT/US2013/051116

12. The medium of claim &, further comprising
determining the expected types based on the identified types, and wherein the

identified types include each expected type.

13. The medium of claim 12, wherein the expected types correspond to the identified
types.
14. The medium of claim 12, wherein each identified type is associated with an

occurrence number indicating a number of the sampled runtime values associated with the
identified type, wherein one of the identified types is associated with a largest one of the

occurrence numbers, and wherein the expected types includes the one identified type.

15. The medium of claim 1, wherein the value profile is associated with a level of
confidence for the expected types, further comprising:
recompiling the source code for the recompiled code if the level of confidence

exceeds a trigger level.

16. The medium of claim 15, wherein the access of the untyped variable is associated
with a function block in the source code and wherein the level of confidence depends on a

number of calls to the function block during the execution.

17. The medium of claim 15, wherein the source code is recompiled during a garbage

collection operation of the execution.

18. The medium of claim 15, wherein the source code is recompiled when the

execution is idle.

19. A machine-readable non-transitory storage medium having instructions therein,
which when executed by a machine, cause the machine to perform a method, the method
comprising:
compiling an executable code from a source code including a untyped variable in
a dynamic programming language, the executable code including one or
more profile instructions associated with a storage location for the untyped

variable;

47

WO 2014/025509 PCT/US2013/051116

executing the executable code for a plurality of accesses to values of the untyped
variable, wherein each value is stored in the storage location via the
profile instructions;

recording the value of the untyped variable sporadically from the storage location;
and

optimizing the executable code based on the recorded values for the untyped

variable.

20. The medium of claim 19, wherein the storage location stores a latest value of the

untyped variable during the execution.

21. The medium of claim 20, further comprising:
analyzing the recorded values for a profile of types associated with the recorded
values, wherein the executable code is optimized with an expectation of

association between the profile of types and future values of the untyped

22. A computer implemented method comprising:

executing a compiled code of a source code specifying an access of an
untyped variable;

randomly inspecting, during the execution, runtime values of the untyped
variable for a value profile including one or more expected types of future
runtime values for the untyped variable; and

executing a recompiled code of the source code to optimize the access of the
untyped variable for the future runtime values according to the value

profile.

23. A computer system comprising:
a memory storing instructions and a source code, the source code including an
access of an untyped variable; and
a processor coupled to the memory to execute the instructions from the memory,
the processor being configured to
execute a compiled code compiled from the source code,
randomly inspect, during the execution of the compiled code,

runtime values of the untyped variable for a value profile

48

WO 2014/025509 PCT/US2013/051116

including one or more expected types of future runtime
values for the untyped variable, and

execute a recompiled code of the source code to optimize the
access of the untyped variable for the future runtime values

according to the value profile.

24. A machine-readable non-transitory storage medium having instructions therein,
which when executed by a machine, cause the machine to perform a method, the method
comprising:
executing a code compiled from a source code, the source code including an
access of an untyped variable, the code being speculatively optimized
according to a type prediction of runtime values of the untyped variable;
tracking failures of the type prediction during the execution, wherein each failure
is associated with one of the runtime values and wherein the one runtime
value is of a type outside of the type prediction;
adjusting the type prediction according to the failures tracked for future runtime
values of the untyped variable; and
executing a recompiled code of the source code to optimize the access to the
untyped variable for the future runtime values according to the adjusted

type prediction.

25. The medium of claim 24, wherein the type prediction represents a collection of
possible types for the runtime values, and wherein the code includes baseline instructions
and optimized instructions for the access, the baseline instructions to allow the access for
all possible types of values for the untyped variable, the optimized instructions to perform

the access for the collection of possible types of values for the untyped variable.

26. The medium of claim 25, wherein the adjusted type prediction indicates any type
of value is possible for the future runtime values of the untyped variable, wherein the
recompiled code includes the baseline instructions and wherein the access in the
recompiled code corresponds to the baseline instructions without additional optimized

instructions for the access.

49

WO 2014/025509 PCT/US2013/051116

27. The medium of claim 25, wherein the adjusted type prediction represents a
separate collection of possible types for the future runtime values, wherein the recompiled
code includes baseline instructions and separate optimized instructions to perform the

access for the separate collection of possible types of values for the untyped variable.

28. The medium of claim 25, wherein the code includes jump instructions to cause the
baseline instructions to be executed if the optimized instructions cannot be completely
executed because of the failures, and wherein the tracking is based on the jump

instructions.

29. The medium of claim 24, wherein the source code specifies a data processing task
including the access to the untyped variable, further comprising:
profiling the data processing task via one or more executions, each execution
based on a separate code compiled from the source; and
maintaining a profile database associated with the data processing task based on

the profiling.

30. The medium of claim 29, wherein the execution is associated with a runtime state
including a data instance for the untyped variable, the data instance causing the failure of
the type prediction, wherein the tracking comprises:

identifying a particular type of the data instance from the runtime; and

updating the profile database with the failure associated with the

particular type.

31. The medium of claim 29, wherein the code includes profiling instructions to store
each runtime value for the untyped variable in a preconfigured storage location, and
wherein the profiling comprises:

collecting type data from the preconfigured storage location to the profile

database in a random and infrequent manner.
32. The medium of claim 29, wherein the profile database includes statistics on types

of runtime values assigned to the untyped variable, and wherein the type prediction is

identified based on the statistics.

50

WO 2014/025509 PCT/US2013/051116

33. The medium of claim 32, wherein the profiling comprises:
analyzing the profile database to update the statistics according to a dynamic

schedule.

34. The medium of claim 32, further comprising
monitoring a runtime status for the executions, the runtime status indicating a
progress of each of the executions; and
configuring a runtime setting for the executions, the runtime setting specifying the
dynamic schedule for the analysis of the profile database based on the

progress.

35. The medium of claim 34, wherein the runtime status includes a number of

invocations of the data processing task for the progress.

36. The medium of claim 35, wherein the runtime status includes a measure of
memory usage indicating amount of memory used, wherein a next schedule for the
analysis in the dynamic schedule corresponds to more invocations of the data processing

task as the memory usage increases.

37. The medium of claim 34, wherein the adjusting the type prediction comprises:
determining a failure rate for the type prediction based on the profile database and
the runtime status; and

recompiling the recompiled code from the source code if the failure rate exceeds a

failure threshold.
38. The medium of claim 37, wherein the runtime setting dynamically specifies the
failure threshold.
39. The medium of claim 37, wherein the dynamic schedule specifies when to

recompile the recompiled code, and wherein the recompilation occurs less frequently than

the analysis.

40. The medium of claim 37, further comprising:

updating the dynamic schedule to prolong the profiling for the execution if the

51

WO 2014/025509 PCT/US2013/051116

runtime status indicates that the profile database does not include enough

data.

41. The medium of claim 40, wherein the source code includes a plurality of untyped
variables for the data processing task and wherein the runtime status indicates which of
the untyped variables have been accessed during the execution and wherein the profile
database does not include enough data if a percentage of the untyped variables have note

been assessed during the execution does not exceed a fullness threshold.

42. A machine-readable non-transitory storage medium having instructions therein,
which when executed by a machine, cause the machine to perform a method, the method
comprising:
providing a type prediction of runtime values of an untyped variable via an
execution of a baseline code block compiled without optimization for an
access to the untyped variable in a source code;
tracking failures of the type prediction via an execution of an optimized code
block speculatively optimized for the access according to the type
prediction, the tracking indicating whether the type prediction is
successful; and
recompiling the source code if the failures indicate a failure rate exceeding a
threshold, the recompiled code including the baseline code block for the

access without the optimized code block.

43. A machine-readable non-transitory storage medium having instructions therein,
which when executed by a machine, cause the machine to perform a method, the method
comprising:
collecting a runtime history for a sequence of executions, each execution to
perform a data processing task specified in a source code, each execution
based on a code compiled from the source code, and each execution
followed by a next one of the executions in the sequence, the runtime
history including a number of invocations of the data processing task for
each execution;
configuring dynamically a setting for each execution, the setting specifying a

condition to initiate the next execution; and

52

WO 2014/025509 PCT/US2013/051116

recompiling a compiled code from the source code for the next execution if the
runtime history matches the condition, the compiled code optimized based
on the runtime history, wherein the number of invocations of the data

processing tasks for each execution increases following the sequence.

44. A computer implemented method comprising:

executing a code compiled from a source code, the source code including an
access of an untyped variable, the code being speculatively optimized
according to a type prediction of runtime values of the untyped variable;

tracking failures of the type prediction during the execution, wherein each failure
is associated with one of the runtime values and wherein the one runtime
value is of a type outside of the type prediction;

adjusting the type prediction according to the failures tracked for future runtime
values of the untyped variable;

executing a recompiled code of the source code to optimize the access to the
untyped variable for the future runtime values according to the adjusted

type prediction.

45. A computer system comprising:
a memory storing instructions and a source code, the source code including an
access of an untyped variable for a data processing task;
a processor coupled to the memory and the user interface to execute the
instructions from the memory, the processor being configured to
execute a code compiled from the source code, the code being
speculatively optimized according to a type prediction of
runtime values of the untyped variable,
track failures of the type prediction during the execution, wherein
each failure is associated with one of the runtime values
and wherein the one runtime value is of a type outside of
the type prediction,
adjust the type prediction according to the failures tracked for
future runtime values of the untyped variable, and
execute a recompiled code of the source code to optimize the

access to the untyped variable for the future runtime values

53

WO 2014/025509 PCT/US2013/051116

according to the adjusted type prediction.

46. A machine-readable non-transitory storage medium having instructions therein,
which when executed by a machine, cause the machine to perform a method, the method
comprising:
executing a code compiled from a source code, the source code including an
access of an untyped variable, the access being compiled with speculative
optimization as an optimized access code in the code via a type prediction
of runtime values of the untyped variable;
detecting dynamically invalidity of the type prediction for future runtime values
of the untyped variable;
updating the code with an access code compiled for the access without the
speculative optimization; and
executing the updated code without executing the optimized access code for the

future runtime values of the untyped variable.

47. The medium of claim 46, wherein the type prediction specifies one or more
expected types for the runtime values, wherein the execution of the code is based on at
least one memory heap, wherein existing runtime values are allocated in the memory heap
via the execution of the code, and wherein the detection comprises:

identifying types of the existing runtime values, wherein the type prediction is

valid if at least one of the identified types belongs to the expected types.

48. The medium of claim 47, wherein an access code compiled without the
speculative optimization is based on a collection of possible types of values for the

untyped variable and wherein the collection of possible types include the expected types.

49. The medium of claim 47, wherein the source code specifies one or more
functions, each function having zero or more input variables to update one or more
variables, wherein the function represents a structure transition from a source collection
of types to a target collection of types, wherein each target type corresponds one of the
updated variables based on the input variables belonging to the source collection of types,
the detection further comprising:

identifying a sequence of one or more of the functions, wherein the types of the

54

WO 2014/025509 PCT/US2013/051116

existing runtime values are transitively transitioned to a resulting
collection of types via structure transitions in order corresponding to the
sequence of functions, and wherein the type prediction is valid if at least

one of the resulting collection of types belongs to the expected types.

50. The medium of claim 49, wherein the sequence of functions includes a first
function and a second function next to the first function according to the sequence, the
first function corresponding to a first structure transition, the second function
corresponding to a second structure transition, wherein a first collection of types are
transitively transitioned to a second collection of types via the first structure transition
and the second structure transition in order if the first collection of types is transitioned to
an intermediate collection of types via the first structure transition and the intermediate
collection of types is transitioned to the second collection of types via the second

structure transition.

51. The medium of claim 49, wherein each existing runtime value corresponds to a
runtime object, wherein the identification of the sequence of functions comprises:
determining if the one or more functions are invokable based on the existing

runtime values, wherein a particular one of the functions is invokable if a
particular one of the existing runtime values corresponds to a particular
runtime object including a pointer pointing to the particular function,
wherein the particular function is invokable if an invokable one of the
functions specifies a call to the particular function, and wherein each of

the sequence of functions is invokable.

52. The medium of claim 49, wherein the invalidity is detected if none of the
identified types belongs to the expected types and no sequence of the functions is
identified for a corresponding resulting collection of types with at least one of the

corresponding resulting collection of types belonging to the expected types.

53. The medium of claim 49, further comprising:
performing garbage collection operations to maintain the heap memory, wherein
the detection of the invalidity of the type prediction is initiated via the

garbage collection operations.

55

WO 2014/025509 PCT/US2013/051116

54. The medium of claim 46, further comprising:
profiling the execution of the code to collect one or more types of values assigned
to the untyped variable during runtime, and wherein the type prediction is

based on previously collected types of values.

55. The medium of claim 54, wherein the access of the untyped variable is specified
in one of the functions, the one function having at least one input variable, and wherein

the untyped variable belongs to the at least one input variable of the one function.

56. The medium of claim 55, wherein the code includes an optimally compiled
function code for the one function optimized based on the type prediction, and wherein

the optimally compiled function code includes the access to the untyped variable.

57. The medium of claim 56, wherein the updated code includes a non-optimized

compiled function code for the one function without the optimally compiled function

code.
38. The medium of claim 56, wherein the update comprises:
recompiling the code dynamically during the runtime to remove the optimally
compiled function code for the one function.
59. The medium of claim 56, wherein a non-optimally compiled function code for the

one function includes the access code, and wherein the recompilation replaces the
optimally compiled function code with the non-optimally compiled function code for the

one function.

60. The medium of claim 56, wherein the collected types of values correspond to an
updated type prediction for the future runtime values of the untyped variable and wherein
the recompilation replaces the optimally compiled function code with an updated
compiled function code for the one function optimized based on the updated type

prediction.

56

WO 2014/025509 PCT/US2013/051116

61. A machine-readable non-transitory storage medium having instructions therein,
which when executed by a machine, cause the machine to perform a method, the method
comprising:
executing a code compiled from a source code specifying at least one function
having one or more untyped input variables, the code including a first
function code optimally compiled for the function based on a type
prediction for future runtime values of the untyped input variables;
detecting dynamically invalidity of the type prediction for the future runtime
values of the untyped variable;
updating the code with a second function code compiled for the function; and
executing the updated code without executing the first function code for the future

runtime values of the untyped input variables.

62. The medium of claim 61, wherein the execution of the code is based on a heap
memory allocated with objects corresponding to existing runtime values for the execution
of the code, the method further comprising:
performing garbage collection operations to maintain the heap memory, wherein
the garbage collection operations identify which of the objects are no
longer needed for the execution of the code and wherein the garbage
collection operations include a callback to initiate the detection of the

invalidity.

63. The medium of claim 61, wherein the type prediction corresponds to one or more
expected types for the input variables and wherein the detection comprises:
determining whether types of the future runtime values include the expected
types, wherein the invalidity is detected if the types of the future runtime

values do not overlap with the expected types.

64. The medium of claim 63, further comprising:
identifying types of the existing runtime values in the heap memory, wherein the
types of the future runtime values include the types of the existing runtime

values.

57

WO 2014/025509 PCT/US2013/051116

65. The medium of claim 63, wherein the code includes a plurality of function codes
for a plurality of functions specified in the source code, wherein at least one of the
function codes represents a structure transition indicating a destination type of the future
runtime values based on a source type of the future runtime values, and wherein the types
of the future runtime values include the destination type if the types of the future runtime

values include the source type.

66. The medium of claim 65, wherein the objects in the heap memory include a

pointer pointing to the at least one function code.

67. A computer implemented method comprising:

executing a code compiled from a source code, the source code including an
access of an untyped variable, the access being compiled with speculative
optimization as an optimized access code in the code via a type prediction
of runtime values of the untyped variable;

detecting dynamically invalidity of the type prediction for future runtime values
of the untyped variable;

updating the code with an access code compiled for the access without the
speculative optimization; and

executing the updated code without executing the optimized access code for the

future runtime values of the untyped variable.

68. A computer system comprising:
a memory storing instructions and a source code, the source code including an
access of an untyped variable for a data processing task;
a processor coupled to the memory and the user interface to execute the
instructions from the memory, the processor being configured to
execute a code compiled from a source code including an access of
an untyped variable, the access being compiled with
speculative optimization as an optimized access code in the
code via a type prediction of runtime values of the untyped
variable,
detect dynamically invalidity of the type prediction for future

runtime values of the untyped variable,

58

WO 2014/025509 PCT/US2013/051116

update the code with an access code compiled for the access
without the speculative optimization, and
execute the updated code without executing the optimized access

code for the future runtime values of the untyped variable.

69. A machine-readable non-transitory storage medium having instructions therein,
which when executed by a machine, cause the machine to perform a method, the method
comprising:
maintaining a plurality of first structures and a plurality of second structure
separately in a first portion and a second portion of a heap in a memory to
execute a code based on the heap, wherein each second structure is
referenced by at most one of the first structure, at least one of the first
structures representing an object created via the execution of the code, the
object having a dynamic property associated with at least one of the
second structures, wherein the code is linked with a particular code
capable of referencing the dynamic property of the object without
referencing the first structure representing the object;
performing non-moving garbage collection operations on the first portion of the
heap to identify which of the first structures are available for future
allocation from the first portion of the heap without moving the identified
first structures; and
performing moving garbage collection operations on the second portion of the
heap to identify which of the second structures are movable within the
second portion of the heap for future allocation from the second portion of
the heap, wherein the non-moving garbage collection operations and the
moving garbage collection operations are performed substantially in
parallel, wherein a particular one of the second structures is not movable if
the particular second structure is referenced by the particular code, and
wherein the identified movable second structures are moved within the
second portion of the heap for future allocation from the second portion of

the heap.

70. The medium of claim 69, wherein the code is compiled from a source code in a

dynamically typed language, wherein the object is dynamically typed having a cell

59

WO 2014/025509 PCT/US2013/051116

representing handles to the object, and wherein the cell corresponds to one first structure

having a reference to the one second structure.

71. The medium of claim 69, wherein the particular code is compiled from a
particular source code having programming interfaces to manage memory usage in the
heap and wherein memory space allocated in the heap via the particular code is de-

allocated via the particular code.

72. The medium of claim 69, wherein the first portion of the heap includes first
memory blocks, each first memory block associated with a slot size for allocating one or
more fixed sized slots of the slot size, wherein the first structures are allocated in the first

memory blocks.

73. The medium of claim 72, wherein the first memory blocks are associated with a
number of first slot sizes, wherein the one first structure is allocated in one of the first
memory blocks, the one first structure being of a size, the one first memory block
associated with one of the first slot sizes, further comprising:
in response to receiving a request to allocate a memory slot of the size in the first
portion of the heap, determining the first slot size among the number of
first slot sizes for the request, wherein the first slot size best matches the

size among the number of first slot sizes.

74. The medium of claim 69, further comprising:
in response to receiving a request to allocate a memory slot of a size in the second
portion of the heap, determining whether there is a free memory slot
available for the size in the second memory blocks, wherein the non-
moving garbage collection operations are performed if no free memory

slot of the size is available in the second memory blocks.

75. The medium of claim 69, wherein the execution of the code is based on a stack,
further comprising:
scanning the stack to identify first references to the first portion of the heap and

second references to the second portion of the heap.

60

WO 2014/025509 PCT/US2013/051116

76. The medium of claim 75, wherein the performing the non-moving garbage
collection operations comprises:
identifying live first structures for the execution of the code from the first portion
of the heap, wherein a particular first structure is live if the particular first
structure is referenced in the first references of the stack or if the particular

structure is referenced by another live first structure.

77. The medium of claim 76, wherein the first structures are related via a hierarchical
relationship established via the execution of the code, wherein a parent first structure has
one or more offspring first structures according to the hierarchical relationship and
wherein if the parent first structure is identified as live, each of the offspring first

structures is identified as live.

78. The medium of claim 76, wherein the second portion of the heap includes second
memory blocks, each second memory block for allocating varied sized slots, wherein the

second structures are allocated in the varied sized slots of the second memory blocks.

79. The medium of claim 78, wherein the second references of the stack correspond to
one or more of the varied sized slots in the second memory blocks and wherein the
performing moving garbage collection operations comprises:
identifying pinned portion of the second memory blocks, wherein the pinned
portion are not movable for the non-moving garbage collection operations
and wherein the one or more of the varies sized slots belong to the pinned

portion of the second memory blocks.

80. The medium of claim 79, wherein the second references of the stack include a
particular reference to a particular second structure referenced by one of the first
structures, and wherein the particular code refers to the particular second structure

without referring to the one first structure.

81. The medium of claim 79, further comprising:
identifying which of the second structures are live in the second portion of the
heap, wherein each live second structure is referenced by a live first

structure or by another live second structure.

61

WO 2014/025509 PCT/US2013/051116

82. The medium of claim 81, further comprising:
identifying which of the second structures movable in the second portion of the
heap, wherein a live second structure is movable if the live second
structure does not belong to the pinned portion of the second memory

blocks.

83. The medium of claim 82, wherein the second memory blocks including the
movable second structures are allocated in a first memory space in the second portion of
the heap, wherein the second portion of the heap includes a second memory space which
is available, further comprising:
copying the identified movable second structures to the second memory space to
allow reclaim of the first memory space which does not belong to the
pinned portion of the second memory blocks for the moving garbage

collection operations.

84. The medium of claim 83, wherein at least one of the second memory blocks

includes a counter storing number of second structures allocated in the at least one second

memory block, wherein the number of second structures include a certain number of the

movable second structures, further comprising:

counting down the number when one of the certain number of the movable second

structures is copied, and wherein the counter indicates the at least one of
the second memory blocks is available for reclaim if the number counted
down indicates the certain number of the movable second structures have

been copied.

85. The medium of claim 84, further comprising:

releasing the at least one second memory block substantially when the number

counted down to zero.

86. A machine-readable non-transitory storage medium having instructions therein,

which when executed by a machine, cause the machine to perform a method, the method
comprising:

scanning a stack used in executing a code via a heap of memory, wherein one or

62

WO 2014/025509 PCT/US2013/051116

more fixed sized slots are allocated in the heap, wherein one or more
varied sized slots are allocated in the heap, each varied sized slot being
referenced by at most one of the fixed sized slots, wherein the stack
includes references to the heap;

identifying which of the fixed sized slots are live, wherein a fixed sized slot
referenced by the references of the stack is live and wherein a fixed sized
slot referenced by a live fixed slot is live;

identifying which of the varied sized slots are live, wherein a varied sized slot
referenced by a live fixed size slot is live;

identifying which of the varied sized slots are pinned, wherein a varied sized slot
referenced by the references of the stack is pinned;

defragmenting the heap to reclaim fixed sized slots which are not live without
moving live fixed sized slots; and

defragmenting the heap to reclaim varied sized slots which are neither live nor

pinned by moving live varied slots.

87. The medium of claim 86, wherein the code is linked with a particular code having
a function, wherein a call to the function from the code is associated with a particular one
of the references of the stack, wherein the particular reference refers to a particular one of
the varied sized slots, wherein the particular varied sized slot is referenced by a particular
one of the fixed sized slots, and wherein the function accesses the particular varied sized

slot without accessing the fixed sized slots in the heap.

88. A computer implemented method comprising:

maintaining a plurality of first structures and a plurality of second structure
separate in a first portion and a second portion of a heap in a memory to
execute a code based on the heap, wherein each second structure is
referenced by at most one of the first structure, at least one of the first
structures representing an object created via the execution of the code, the
object having a dynamic property associated with at least one of the
second structures, wherein the code is linked with a particular code
capable of referencing the dynamic property of the object without
referencing the first structure representing the object;

performing non-moving garbage collection operations on the first portion of the

63

WO 2014/025509 PCT/US2013/051116

heap to identify which of the first structures are available for future
allocation from the first portion of the heap without moving the identified
first structures; and

performing moving garbage collection operations on the second portion of the
heap to identify which of the second structures are movable within the
second portion of the heap for future allocation from the second portion of
the heap, wherein the non-moving garbage collection operations and the
moving garbage collection operations are performed substantially in
parallel, wherein a particular one of the second structures is not movable if
the particular second structure is referenced by the particular code, and
wherein the identified movable second structures are moved within the
second portion of the heap for future allocation from the second portion of

the heap.

89. A computer system comprising:
a memory storing instructions including a code linked with a particular code, the
memory including a heap for the code and the particular doe;
a processor coupled to the memory to execute the instructions from the memory,
the processor being configured to
maintain a plurality of first structures and a plurality of second structure
separate in a first portion and a second portion of the heap to
execute the code, wherein each second structure is referenced by at
most one of the first structure, at least one of the first structures
representing an object created via the execution of the code, the
object having a dynamic property associated with at least one of
the second structures, wherein the particular code is capable of
referencing the dynamic property of the object without referencing
the first structure representing the object,
perform non-moving garbage collection operations on the first portion of
the heap to identify which of the first structures are available for
future allocation from the first portion of the heap without moving
the identified first structures, and
performing moving garbage collection operations on the second portion of

the heap to identify which of the second structures are movable

64

WO 2014/025509

PCT/US2013/051116

within the second portion of the heap for future allocation from the
second portion of the heap, wherein the non-moving garbage
collection operations and the moving garbage collection operations
are performed substantially in parallel, wherein a particular one of
the second structures is not movable if the particular second
structure is referenced by the particular code, and wherein the
identified movable second structures are moved within the second
portion of the heap for future allocation from the second portion of

the heap.

65

WO 2014/025509 PCT/US2013/051116

1/14

Server Application (e.g. web servers
providing web content embedded or
linked with source code based on
JavaScript or other dynamic languages
101

Networks (e.g. wired/wireless internet/intranet,
cellular network, secured/open network, local/wide area
networks, internet etc.) 103

lient Application (e.g. web browser
capable of dynamically compiling
downloaded source code continuously
to optimize code during runtime) in a
client device 105

Fig. 1

WO 2014/025509 PCT/US2013/051116

2/14

N
(-
lan]

|

Operating Environment 201

Source Code (e.g. based on
JavaScript or other dynamic
languages) 203

Optimized Compilation Module

{e.g. providing value bucket code)
205

Validity Prediction Module
S e.g. for optimized code
// System Runtime\] (eg p223)

A A

Y

Continued Runtime
Optimization Control Module

Profile Management |4

Module 209 215 <
A 4
4 Runtime Data
» i
Valug Profile S (e.g. value buckets, | Garbage Collector Module
Data 211 i stacks, split heaps, 291
Kfunction counters etc.) 217

Analysis Module
213

i Dynamically
f C:,?;ﬁf%fg’" ————(Optimized Executable
Code 225

Library {e.g. based on
C++ code) 227

Fig. 2

WO 2014/025509 PCT/US2013/051116

3/14

(¥
o
o

Executing a compiled code of a source code including an access of an untyped
variable 301

A

Randomly inspecting, during the execution, runtime values of the untyped
variable for a value profile including one or more expected types of
future runtime values for the untyped variable 303

Executing a recompiled code of the source code to optimize the access of the
untyped variable for the future runtime values according to the value profile 305

Fig. 3

WO 2014/025509 PCT/US2013/051116

4/14

N
[an]

Compiling an executable code from a source code including a untyped
variable in a dynamic programming language, the executable code
including one or more profile instructions associated with a storage

location for the untyped variable 401

Executing the executable code for a plurality of accesses to values of
the untyped variable, each value stored in the storage location via the
profile instructions 403

Recording the value of the untyped variable sporadically from the
storage location during runtime 405

Optimizing the executable code based on the recorded values for the
untyped variable 407

Fig. 4

WO 2014/025509

foo(a,b,c)

501

5/14

|cn
o
O

|

Fig. 5

PCT/US2013/051116

store a
store b
store ¢
foo(a, b, ¢)

503

t=of
store t 507
X =

WO 2014/025509 PCT/US2013/051116

6/14

[ep}
o
o

Executing a code compiled from a source code including an access of an untyped variable, the
code being speculatively optimized according to a type prediction of runtime values of the
untyped variable 601

Tracking failures of the type prediction during the execution, wherein each failure is associated
with one of the runtime values and wherein the one runtime value is of a type outside of the type
prediction 603

Adjusting the type prediction according to the failures tracked for future runtime values of the
untyped variable 605

Executing a recompiled code of the source code to optimize the access to the untyped variable
for the future runtime values according to the adjusted type prediction 607

Fig. 6

WO 2014/025509 PCT/US2013/051116

714

~
o

Collecting a runtime history for a sequence of executions, each execution to perform a data processing
task specified in a source code, each execution based on a code compiled from the source code, and
each execution followed by a next one of the executions in the sequence, the runtime history includes a
number of invocations of the data processing task for each execution 701

\ 4

Configuring dynamically a setting for each execution, the setting specifying a condition to initiate the next
execution 703

Recompiling a compiled code from the source code for the next execution if the runtime history matches
the condition, the compiled code optimized based on the runtime history, the number of invocations of
the data processing tasks for each execution increasing following the sequence 705

Fig. 7

WO 2014/025509 PCT/US2013/051116

8/14

(e}
o
o

Executing a code compiled from a source code including an access of an untyped variable, the access
being compiled with speculative optimization as an optimized access code in the code via a type
prediction of runtime values of the untyped variable 801

Detecting dynamically invalidity of the type prediction for future runtime values of the untyped variable
803

v

Updating the code with an access code compiled for the access without the speculative optimization 805

Executing the updated code without executing the optimized access code for the future runtime values of
the untyped variable 807

Fig. 8

WO 2014/025509 PCT/US2013/051116

9/14

<o}
o
o

Executing a code compiled from a source code specifying at least one function having one or more
untyped input variables, the code including a first function code optimally compiled for the function based
on a type prediction for future runtime values of the untyped input variables 901

\ 4

Detecting dynamically invalidity of the type prediction for the future runtime values of the untyped
variable 903

Updating the code with a second function code compiled for the function 905

Executing the updated code without executing the first function code for the future runtime values of the
untyped input variables 907

Fig. 9

WO 2014/025509 PCT/US2013/051116

10/14
1000
Optimized Code 1005
Runtime Data 1001
Function F1(x) 1007
{
x.f=o;
}
Object Instance of
type {a,b} 1003
Function F2(x) 1009 1011
{ /
K y =x.f;
}

Structure Transition (e.g.
based on F1) 1015

Fig. 10

WO 2014/025509 PCT/US2013/051116

11/14

Maintaining a plurality of first structures and a plurality of second structure separately in a first
portion and a second portion of a heap in a memory to execute a code based on the heap,
wherein each second structure is referenced by at most one of the first structure, at least one of
the first structures representing an object created via the execution of the code, the object
having a dynamic property associated with at least one of the second structures, the code is
linked with a particular code capable of referencing the dynamic property of the object without
referencing the first structure representing the object 1101

\ 4

Performing hon-moving garbage collection operations on the first portion of the heap to identify
which of the first structures are available for future allocation from the first portion of the heap
without moving the identified first structures 1103

l

Performing moving garbage collection operations on the second portion of the heap to identify
which of the second structures are movable within the second portion of the heap for future
allocation from the second portion of the heap, the non-moving garbage collection operations
and the moving garbage collection operations are performed substantially in parallel, a particular
one of the second structures is not movable if the particular second structure is referenced by
the particular code, and the identified movable second structures are moved within the second
portion of the heap for future allocation from the second portion of the heap 1111

Fig. 11

WO 2014/025509 PCT/US2013/051116

12/14

1200

Scanning a stack used in executing a code compiled from a dynamic programming language
based source code, the stack including one or more references to a heap including one or more
first memory blocks and one or more second memory blocks, the first memory blocks allocated

with fixed sized slots, the second memory blocks allocated with varied sized slots, two or more of
the fixed sized slot being related via a hierarchical relationship, each varied sized slot being
referenced by at most one of the fixed sized slots 1201

\ 4

Identifying which of the fixed sized slots are live (or live fixed sized slots), each fixed sized slot
referenced by the references in the stack is live, each fixed sized slot referenced (e.g. via a
pointer or based on a hierarchical relationship) by a live fixed sized slot is also live 1203

\ 4

Identifying which of the varied sized slots are live, each varied sized slot referenced by live fixed
size slot is live 1205

|

Identifying pinned portion of the second memory blocks according to the references of the stack,
each varied sized slot referenced by the references belongs to the pinned portion of the second
memory blocks 1207

Copying the live varied sized slots which are not in the pinned portion of the second memory
blocks to make room for future allocation 1209

Defragmenting the first memory blocks in the heap to reclaim one or more of the fixed sized slots
which are not live without moving the fixed sized slots 1211

l

Defragmenting the second memory blocks in the heap to reclaim one or more of the varied sized
slots which are neither live hor pinned (or in the pinned portion of the second memory blocks)
1213

Fig. 12

WO 2014/025509

13/14

PCT/US2013/051116

/Heap (e.g. for executing executable codes compiled from a dynamic language
such as JavaScript) 1301

Mark Space 1303

Object Cell 1307

Meta data and
Pointers 1309
Object Cell 1311

— v 1323

Copy Space 1305

Object Property Store
(e.g. Structured Data)
1313

\
\
\

Hierarchical
Relationships 1317

Code (e.g. based on dynamcially
typed language, such as
JavaScript, without specifying
when to delete allocated memory
space) 1319

Fig. 13

Linked Code (e.g. library
function, such as C++ based
function, capable of memory
usage management) 1321

PCT/US2013/051116

WO 2014/025509

14/14

AIE

(4syund 4o
‘@oBpBUl JJoM)BU
Jo ‘wapoul
10 ‘pJeogAay
Jo ‘esnow "B-9)
ERINET
o/l

H m:ur/

(s)s|j0nuo)
o/l

aoina Aejdsig g
Jajjonuo) Aejdsig

:

:

yovl /

(s8) sng
(Alowsw yse|}
1o aAlUp pley B'9) WYY NOH Jossa204doloI
£ S[lEeloA
JOWIB N
9|I}B|OAUON
7 6011 / L0vL / SovlL /
Ll
ayoe)n
orlL

PATENT COOPERATION TREATY

PCT

DECLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SEARCH REPORT

(PCT Article 17(2)(a), Rules 13ter.1(c) and Rule 39)

Applicant's or agent's file reference Date of mailing{day/month/year)
IMPORTANT DECLARATION
P14441WO1 7 November 2013 (07-11-2013)
International application No. International filing date{day/month/year) (Earliest) Priority date{day/month/year)
PCT/US2013/051116 18 July 2013 (18-07-2013) 9 August 2012 (09-08-2012)
International Patent Classification (IPC) or both national classification and IPC
GO06F8/443
Applicant
APPLE INC.

This International Searching Authority hereby declares, according to Article 17(2)(a), that no international search report will be
established on the international application for the reasons indicated below

1. |:| The subject matter of the international application relates to:

a.
b.

C.

m.

OOOoooOoooooodd

scientific theories
mathematical theories
plant varieties

anhimal varieties

essentially biological processes for the production of plants and animals, other than microbiological processes and
the products of such processes

schemes, rules or methods of doing business

schemes, rules or methods of performing purely mental acts
schemes, rules or methods of playing games

methods for treatment of the human body by surgery or therapy
methods for treatment of the animal body by surgery or therapy
diagnostic methods practised on the human or animal body
mere presentations of information

computer programs for which this International Searching Authority is not equipped to search prior art

2. |:| The failure of the foIIovs_/ing parts of the international application to comply with prescribed requirements prevents a meaningful
search from being carried out:

[l

the description |:| the claims |:| the drawings

3. |:| A meaningful search could not be carried out without the sequence listing; the applicant did not, within the prescribed time limit:

[
[l

[

furnish a sequence listing on paper complying with the standard provided for in Annex C of the Administrative
Instructions, and such listing was not available to the International Searching Authority in a form and manner
acceptable to it.

furnish a sequence listing in electronic form complying with the standard provided for in Annex C of the
Administrative Instructions, and such listing was not available to the International Searching Authority in a form
and manner acceptable to it.

pay the required late furnishing fee for the furnishing of a sequence listing in response to an invitation under
Rule 13ter.1(a) or (b).

4. Further comments:

Name and mailing address of the International Searching Authority Authorized officer

Tel. (+31-70) 340-2040 Tel: +49 (0)89 2399-7578

European Patent Office, P.B. 5818 Patentlaan 2 EICH. Marti
0» NL-2280 HV Rijswijk » viartine

Fax: (+31-70) 340-3016

Form PCT/ISA/203 (July 2009)

International Application No. PCT/ US2013/051116

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 2()3

According to Article 17(2)(a)(ii) PCT. this International Searching
Authority considers that no meaningfully search of any subject-matter at
all is deemed possible, the reasons therefor being as follows.

1) The present application contains 89 claims, among which 17 are
separate independent claims (1, 19, 22-24, 42-46, 61, 67-69, 86, 88 and
89) and at least 9 are in the same category (machine readable
non-transitory storage medium), lacking a clear distinction because of
overlapping scope. Moreover, the dependent claim are all in one category
(machine readable non-transitory storage medium). Extending to three
categories (like the independent clims) there would be over 240 claims.
The plurality of the claims is drafted in such a way that they are not in
compliance with the provisions of clarity and conciseness as required by
the PCT. Furthermore, lack of clarity of the claims as a whole arises:
there are so many claims and they are drafted in such a way that the
claims as a whole are not in compliance with the provisions of clarity
and conciseness. In particular, the number of independent claims of
different, though overlapping, scope (see for instance claims 1, 19 and
22-24), as well as the multiplicity dependent claims makes it unduly
burdensome for a skilled person to establish the subject-matter for which
protection is sought.

2) The description does not provide a reasonable basis for judging
towards which part of the subject-matter the alleged invention is
directed. There is no clear and concise indication in the description
(the paragraph "Summary of the description" alone features at least 10
overlapping embodiments regarding the technical problem to be solved and
the combination of features considered as an inventive solution to the
technical problem. The application discloses a complex machine readable
non-transitory storage mediums, methods and systems so that, even in the
light of the description, the technical contribution provided by the
numerous and disparate features claimed is not apparent at all.

The non-conpliance with the substantive provisions is to such an extent
that a meaningful search of the whole claimed subject-matter could not be
carried out (Article 17(2)(a)(ii) PCT). Since there is no reasonable
basis in the application to clearly indicate the subject-matter which
might be expected to form the subject of the claims later in the
procedure, no search at all was deemed possible.

The applicants attention is drawn to the fact that claims relating to
inventions in respect of which no international search report has been
established need not be the subject of an international preliminary
examination (Rule 66.1(e) PCT). The applicant is advised that the EPO
policy when acting as an International Preliminary Examining Authority is
normally not to carry out a preliminary examination on matter which has
not been searched. This is the case irrespective of whether or not the
claims are amended following receipt of the search report or during any
Chapter II procedure. If the application proceeds into the regional phase
before the EPO, the applicant is reminded that a search may be carried
out during examination before the EPO (see EPO Guideline C-VI, 8.5),
should the problems which led to the Article 17(2) declaration be
overcome.

The applicant's attention is drawn to the fact that claims relating to
inventions in respect of which no international search report has been
established need not be the subject of an international preliminary

International Application No. PCT/ US2013/051116

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 2()3

examination (Rule 66.1(e) PCT). The applicant is advised that the EPO
policy when acting as an International Preliminary Examining Authority is
normally not to carry out a preliminary examination on matter which has
not been searched. This is the case irrespective of whether or not the
claims are amended following receipt of the search report or during any
Chapter II procedure. If the application proceeds into the regional phase
before the EPO, the applicant is reminded that a search may be carried
out during examination before the EPO (see EPO Guidelines C-1V, 7.2),
should the problems which led to the Article 17(2) declaration be
overcome.

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - claims
	Page 47 - claims
	Page 48 - claims
	Page 49 - claims
	Page 50 - claims
	Page 51 - claims
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - claims
	Page 61 - claims
	Page 62 - claims
	Page 63 - claims
	Page 64 - claims
	Page 65 - claims
	Page 66 - claims
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - pct-art17.2a
	Page 82 - pct-art17.2a
	Page 83 - pct-art17.2a

