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RARE VARIANT CALLS IN ULTRA-DEEP SEQUENCING

BACKGROUND

Nucleic acid sequencing determines an order of nucleotides present in a given DNA or
RNA molecule. The demand for cheaper and faster sequencing methods has driven the
development of next generation sequencing (NGS) methods. NGS platforms perform
massively parallel sequencing, during which millions of fragments of DNA from
multiple samples can be sequenced in unison, thus providing a much cheaper and higher
throughput alternative to traditional Sanger sequencing. NGS can be used in whole-
genome sequencing or targeted sequencing. With targeted sequencing, a subset of genes
or defined regions in a genome are sequenced or predominantly sequenced, ¢.g., by

amplifying target regions.

Ultra-deep sequencing is the sequencing of amplicons at a high depth of coverage with
the goal of identifying the common and rare sequence variations. With sufficient depth
of coverage, ultra-deep sequencing has the ability to fully characterize rare sequence
variants down to less than 1%. Ultra-deep sequencing has been used to detect low-
frequency HIV drug-resistant mutations, or identify rare somatic mutations in complex
cancer samples. For tests such as non-invasive blood tests, the frequency of biomarker
mutation could be lower than 1%. However, NGS is an error-prone process, and could
have an error rate of close to 1% or higher depending on the sequencing depth, sample
types, and sequencing protocols. Therefore, many current NGS software packages only
report variants with 1% or higher frequency because false positives could appear for
variants with frequencies of less than 1%. Yet, even for variants with low frequencies
of, for example, less than 1%, true positives may exist. Methods and systems are
therefore needed to detect true positives for variants with low frequencies, such as about

0.0025% to about 1%.

BRIEF SUMMARY

Embodiments can provide methods, systems, and apparatuses for making more accurate
variant calls based on sequencing reads of a sample, ¢.g., obtained from a targeted
sequencing. For example, once sequence reads are received and aligned to a reference

sequence, sequence reads having a variant at a location can be counted. A first variant
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frequency of a particular variant measured at one location of a sample can be compared
to one or more second variant frequencies of the particular variant measured at other
positions and/or from other samples. The second variant frequency can correspond to an

expected value for sequencing errors for a sequencing run.

In some embodiments, a probability value indicating the confidence level that a variant
is a true positive at a location can be calculated based on variant counts and total read
counts at a plurality of locations in the target region in one or more samples. The
probability value can then be compared with a threshold level to determine whether the
detected variant is a true positive. In other embodiments, a difference in variant counts
and total reads counts at a same location in a test sample and a reference sample (e.g.,
assumed to only have sequencing errors at the location) can be used to determine

whether a variant is a true positive in a test sample.

According to one embodiment, a method can detect true positives for rare variants in a
target region of a test sample. For each sample, variant frequencies for variants of a
same variant class at locations where a reference allele exists on a reference sequence
can be calculated using variant counts and total read counts. A distribution of the variant
frequencies for variants of the same class can be used to determine the probability value
of a variant at a location in the test sample with a determined variant frequency. Based
on the probability value, the variant at the location in the test sample is classified as

either a true positive (mutation) or a false positive.

In other embodiments, a method can detect true positives for rate variants in a target
region of a test sample by using a comparison with one or more reference samples. A
variant count and a wild type count for a specific variant at a specific location in the test
sample can be determined from the aligned sequence reads, and compared with a variant
count and a wild type count for the specific variant at the specific location in the one or
more reference samples to determine a probability value. Based on the probability
value, the specific variant at the specific location in the test sample is classified as either

a true positive or false positive.

In one embodiment, a computer-implemented method of detecting low frequency
variants in a target region in a first sample is provided. Herein, the method comprises (at
a computer system) receiving a plurality of sequence reads obtained from sequencing

DNA fragments from one or more samples, the one or more samples including the first
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sample, wherein the sequencing includes targeting the target region in the DNA
fragments; aligning the plurality of sequence reads to the target region of a reference
sequence; identifying a first candidate variant having a first allele at a first location of
the target region based on sequence reads of the first sample differing from a reference
allele at the first location of the reference sequence; determining a first variant
frequency for the first allele at the first location based on sequence reads of the first
sample that align to the first location of the reference sequence; identifying the first
candidate variant as corresponding to a first variant class selected from a plurality of
variant classes, each variant class of the plurality of variant classes corresponding to a
different type of variant; identifying a set of second locations in the target region of the
reference sequence that have the reference allele, wherein at least 50% of the other
locations in the one or more samples exhibit a false positive for the first allele, and
wherein the set of second locations includes the first location; at each of the set of
second locations and for each of the one or more samples: determining a second variant
frequency of the first allele based on sequence reads of the sample that align to the
second location of the reference sequence, the second variant frequencies forming a
statistical distribution; comparing the first variant frequency to a statistical value of the
statistical distribution to determine a probability value of the first variant frequency
relative to the statistical value of the statistical distribution; and comparing the
probability value to a threshold value as part of determining whether the first candidate
variant is a true positive in the first sample for the first allele, the threshold value

differentiating between false positives and true positives for the first allele.

In certain embodiments the reference sequence corresponds to a consensus sequence as
determined from normal cells. In some embodiments the one or more samples are
derived from cell-free DNA fragments. In some embodiments the one or more samples
are derived from RNA of a biological sample. In some embodiments the plurality of
samples are sequenced in a single sequencing run. In other embodiments the statistical
value of the statistical distribution includes a mean value. In other embodiments the
probability value is a z-score, modified z-score, cumulative probability, Phred quality
score, or modified Phred quality score. In other embodiments the statistical distribution
is the statistical distribution of logarithmic transformations of the second variant
frequencies. In other embodiments the threshold is determined using support vector

machines classifier based on training data obtained from one or more sequencing runs.
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In other embodiments In other embodiments the threshold is a function of variant

frequency.

In another embodiment. a computer-implemented method of detecting a variant having
a first allele at a first location in a target region in a first sample is provided. Herein, the
method comprises (at a computer system): receiving a plurality of sequence reads
obtained from sequencing DNA fragments from at least two samples, the at least two
samples including the first sample, wherein the sequencing includes targeting the target
region in the DNA fragments; aligning the plurality of sequence reads to the target
region of a reference sequence; identifying whether the first allele exists at the first
location in each sample of the at least two samples based on aligned sequence reads of
cach sample at the first location differing from a reference allele at the first location of
the reference sequence; determining a variant count of the first allele at the first location
and a wild type count of the reference allele at the first location for each sample of the at
least two samples; selecting, from the at least two samples, at least one sample as a
reference sample; comparing a first variant count of the first allele at the first location
and a first wild type count of the reference allele at the first location for the first sample
to a second variant count of the first allele at the first location and a second wild type
count of the reference allele at the first location for the reference sample to determine a
probability value of the variant having the first allele at the first location for the first
sample; and comparing the probability value to a threshold value as part of determining
whether the first allele at the first location in the first sample is a true positive for the
first allele, the threshold value differentiating between false positives and true positives

for the first allele at the first location.

In certain embodiments the reference sample comprises two samples with lowest variant
frequencies for the first allele at the first location among the at least two samples other
than the first sample. In some embodiments the probability value is determined using
chi-squared cumulative distribution function. In some embodiments the probability
value is determined using Pearson proportion test. In some embodiments the probability
value is one or more of z-score, modified z-score, p-value, chi-squared value,
cumulative probability value, and quality score. In some embodiments the quality score
is determined using a look-up table. In some embodiments the threshold is determined

using support vector machines classifier based on training data obtained from one or
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more sequencing runs. In some embodiments the threshold is a function of variant

frequency.

In another embodiment, a computer product comprising a non-transitory computer
readable medium storing a plurality of instructions that when executed control a
computer system to detect true variants in a target region of a first sample is provided.
Herein, the instructions comprise receiving a plurality of sequence reads obtained from
sequencing DNA fragments from one or more samples, the one or more samples
including the first sample, wherein the sequencing includes targeting the target region in
the DNA fragments; aligning the plurality of sequence reads to the target region of a
reference sequence; identifying a set of sequence locations in the target region of the
reference sequence that have a reference allele of variants in a variant class, wherein at
least 50% of the sequence locations in the one or more samples exhibit a false positive
for the variants in the variant class in the sequence reads, and wherein the set of
sequence locations includes a first location; at each location of the set of sequence
locations and for each sample of the one or more samples: determining a read count at
cach location for each sample; identifying candidate variants having variant alleles for
the variants in the variant class based on sequence reads of each sample differing from
the reference allele at the same location of the reference sequence, a total number of the
candidate variants at each location in each sample being the variant count in each
location for each sample; determining a variant frequency of variants in the variant class
based on the read count and the variant count, the variant frequency for each location in
cach sample forming a statistical distribution, wherein the variant frequency at a first
location in the set of sequence locations for the first sample is a first variant frequency;
comparing the first variant frequency to a value of the statistical distribution to
determine a probability value of the first variant frequency relative to the value of the
statistical distribution; and comparing the probability value to a threshold value as part
of determining whether candidate variants in the first sample are true positives, the
threshold value differentiating between false positives and true positives for the variants
in the variant class. In certain embodiments the statistical distribution is the statistical
distribution of a logarithmic transformation of the variant frequency at each location for

cach sample.

Other embodiments are directed to systems, apparatuses, and computer readable media

associated with methods described herein.
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A better understanding of the nature and advantages of the present invention may be
gained with reference to the following definitions, detailed description, and the

accompanying drawings.

DEFINITIONS

As used herein, the term “sample” or “biological sample” refers to any composition
containing or presumed to contain nucleic acid. The nucleic acid can be from an animal
(e.g., mammal, human), plant, microorganism, etc. The term sample includes purified or
separated components of cells, tissues, or blood, e.g., DNA, RNA, proteins, cell-free
portions, or cell lysates. A sample can also refer to other types of biological samples,
e.g., skin, plasma, serum, whole blood and blood components (buffy coat), saliva, urine,
tears, seminal fluid, vaginal fluids, aspirate or lavage, tissue biopsies, and other fluids
and tissues, including paraffin embedded tissues. Samples also may include constituents
and components of in vitro cultures of cells obtained from an individual, including cell
lines. A “test sample” refers to the sample that is under test for detecting variants in the

sample.

A “genomic segment” (also called “genomic fragment”) is a nucleic acid molecule that
is wholly or partially sequenced, where the molecule is from the genome of an
organism. It may be a DNA segment (also called “DNA fragment”) or a RNA segment
(also called “RNA fragment”). The segment can be created by fragmenting larger pieces
of a genome, e¢.g., by subjecting a cell to sonic waves. A genomic segment can be
sequenced to provide a “sequencing read” (also called a “sequence read” or just a
“read”). The sequencing read may be of the entire genomic segment or just part of the

segment.

A “reference sample” (also called a “control sample”) refers to a sample that serves as a
reference, usually a known reference, for comparison to a test sample. For example, a
test sample can be taken from an individual suspected of having cancer or a cancer-
related mutation, and compared to a reference sample from a cancer-free individual or
individual without a cancer-related mutation (negative control), or from an individual
known to have cancer or a cancer-related mutation (positive control). A control can also

represent an average value or a range gathered from a number of tests or results.
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A “target region” is a region in the sequence being analyzed that may have diagnostic
relevance. As an example, fragments including the target region can be amplified using
primers and an amplification process or can be enriched using probes. A “reference
sequence” (also simply called “reference”) is any known sequence to which sequence
reads are aligned. In various embodiments, the reference sequence may correspond to
all or only part of a genome or a transcriptome for an organism. A reference sequence
can also include genomes of more than one organism. For example, a sequence read
could also be compared against a database of viruses, as such viruses could be in the

sample.

A variant (also called a variation or mutation) refers to a difference between two
sequences. A variant may be, for example, a change of one base to one or more other
bases, an insertion of one or more bases, or a deletion of one or more bases. The base or
bases at a location in the reference sequence may be referred to as reference allele,
while the different base or bases (or insertion or deletion) at the same location on the
test sample may be referred to as variant allele. For example, for single based
substitution of A>C, A is the reference allele, and C is the variant allele. The reference
allele may be wild type allele representing the most common genotype for the organism
occurring in nature. A difference between a sequence read and a target region of a
reference sequence can get counted, and a true mutation might be identified (e.g., if

enough sequence read show the mutation).

The total number of same variant alleles, such as Cs for A>C variants, at a specific
location on different sequence reads of a sample is referred to as variant count. The total
number of reads of the specific location for a sample is referred to as read count.
Variant frequency of a variant type or class, such as A>C, at a specific location for a
sample is defined as the ratio of the variant count for the variant at the specific location

over the read count at the specific location for the sample.

As used herein, the term “location” corresponds to one or more positions in a sequence
(e.g., in a target region of a genome). Any length of nucleotides (or base pairs) may be

present at a location, e.g., when there is a multi-base insertion.

Unless defined otherwise, technical and scientific terms used herein have the same
meaning as commonly understood by a person of ordinary skill in the art. See, e.g.,

Pfaffl, Methods: The ongoing evolution of qPCR, vol. 50 (2010); van Pelt-Verkuil et al.
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Principles and Technical Aspects of PCR Amplification, Springer (2010); Lackie,
DICTIONARY OF CELL AND MOLECULAR BIOLOGY, Elsevier (4th ed. 2007);
Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL, Cold
Springs Harbor Press (1989).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flowchart illustrating genomic sequencing and variant calling using next
generation sequencing (NGS) for targeted ultra-deep sequencing according to

embodiments of the present invention.

FIG. 2 illustrates sequence reads of a target region compared with a reference sequence,
where variants of the same class and different class at different sequence locations are

shown according to embodiments of the present invention.

FIG. 3A illustrates an ideal statistical model of variant frequency distribution for
variants in a variant class at each location of a plurality of locations in a target region in

one or more samples according to embodiments of the present invention.

FIG. 3B illustrates the probability that the variant frequency of a variant at a specific
location on a specific sample will have a given Z value according to embodiments of the

present invention.

FIG. 3C shows the cumulative distribution function of the probability that a Z value
takes on a value less than or equal to z according to embodiments of the present

invention.

FIG. 3D shows the probability that a variant with a variant frequency value or Z value is
a false positive, and the associated quality score for making a variant call according to

embodiments of the present invention.

FIG. 4 is a flowchart illustrating a method of variant calling using statistical models

according to embodiments of the present invention.

FIG. 5 illustrates variant quality scores Qamp determined using a statistical model for
training data and test data of EGFR T790M of exon 20 with a separator line determined

by support vector machines (SVM) according to embodiments of the present invention.
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FIG. 6 illustrates variant quality scores Qawmp determined using a statistical model for
training data and test data of EGFR L858R of exon 21 with a separator line determined

by SVM according to embodiments of the present invention.

FIG. 7 illustrates a specific variant at a specific genomic location on sequence reads of a

reference sample and a test sample according to embodiments of the present invention.

FIG. 8 is a flowchart illustrating variant calling for a specific variant at a specific
sequence location by comparing sequence reads data of a test sample and a reference

sample according to embodiments of the present invention.

FIG. 9 illustrates localized variant quality scores Qroc determined by comparing two
samples for training data and test data of EGFR T790M of exon 20 with a separator line

determined by SVM according to embodiments of the present invention.

FIG. 10 illustrates localized variant quality scores Qroc determined by comparing two
samples for training data and test data of EGFR L858R of exon 21 with a separator line

determined by SVM according to embodiments of the present invention.

FIG. 11 illustrates localized variant quality scores Qroc determined by comparing two
samples for training data and test data of EGFR 15-base deletion 2235 2249del15 of
exon 19 with a separator line determined by SVM according to embodiments of the

present invention.

FIG. 12 illustrates a look-up table for efficient quality score estimation according to

embodiments of the present invention.

FIG. 13 shows a block diagram of an example computer system for low frequency

variant calling according to embodiments of the present invention.

FIG. 14 is an example of a general block diagram showing the relation between a

sequencing device and a computer system.

FIG. 15 are examples of a general block diagram showing the relation between software
and hardware resources that may be used to implement the methods and systems of the

invention.

DETAILED DESCRIPTION

Sequencing can be used to detect mutations of cancer or other diseases, and can also be

developed as in vitro diagnostic (IVD) tests. It is desirable to develop these tests as non-
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invasive blood tests. However, in blood samples, the frequency of biomarker mutation
is low. See, e.g., Kidess and Jeffrey, Circulating tumor cells versus tumor-derived
cellfree DNA: rivals or partners in cancer care in the era of single-cell analysis?
Genome. Med., 5:70 (2013), Diaz and Bardelli, Liquid biopsies: genotyping circulating
tumor DNA, J. Clin. Oncol., 32:579-586 (2014); and Diehl et al., Nat Med., 14:985-990
(2008). Due to errors associated with the sequencing process, many NGS software
packages only report variants with frequencies of 1% or higher because false positives

appear when the threshold is set at or below 1%.

Embodiments of the present invention provide solutions to detect true positives for low
frequency variants with variant frequencies below 1%. Accurate variant calls can be
based on sequencing reads of a sample, e.g., obtained from a targeted sequencing. For
example, once sequence reads are received and aligned to a reference sequence,
sequence reads having a variant at a location can be counted. A first variant frequency
of a particular variant measured at one location of a sample can be compared to one or
more second variant frequencies of the particular variant measured at other positions
and/or from other samples. The second variant frequency can correspond to an expected

value for sequencing errors for a sequencing run.

In some embodiments, a probability value indicating the confidence level that a variant
is a true positive at a location can be calculated based on variant counts and total read
counts at a plurality of locations in the target region in one or more samples. The
probability value can then be compared with a threshold level to determine whether the
detected variant is a true positive. In other embodiments, a difference in variant counts
and total reads counts at a same location in a test sample and a reference sample (e.g.,
assumed to only have sequencing errors at the location) can be used to determine

whether a variant is a true positive in a test sample.

I. ULTRA-DEEP SEQUENCING WITH TARGETED SEQUENCING

A specific region of a genome can be analyzed efficiently using targeted sequencing.
For example, genomic segments of a biological sample can be increased or amplified by
cloning segments that correspond to a target region (e.g., using primers in an
amplification process, such as polymerase chain reaction (PCR)) and/or using probes to
preferentially capture segments that correspond to a target region. The genomic

segments in the target-increased sample can be sequenced using massively parallel next
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generation sequencing (NGS) and analyzed to investigate possible mutations in the

target region.

However, such a process can lead to errors. For example, in variant detection using high
throughput next generation sequencing with a prior step of amplification or enrichment,
it is possible that the amplicon/enriched library (target-increased sample) contains false
positive reads. PCR can introduce point mutations and indels, and it can also generate
recombinant sequences, or chimeras. In addition, the relative frequencies of genetic
variants can be perturbed due to selective amplification bias during PCR. Additional
single-base errors can occur during emulsion PCR. Sequencing itself may also introduce
base substitution errors and indels. These errors can lead to incorrect mutation report
and can provide misleading information for disease diagnosis. The false positives may
be reduced by various methods, such as proper design of the primers and development
of high fidelity enzymes. However, false positives still remain, and in many cases, the

error rate could be significant, such as close to about 1% or more.

Even though the sequencing accuracy for each individual nucleotide can be relatively
high, the large number of nucleotides in the genome means that if an individual genome
is only sequenced once, there will be a significant number of sequencing errors. For
example, for an error rate of 0.2% per base pair and a read length of 400 base pairs, the
proportion of reads with at least one error is 1 - (1-0.002)*° = 0.551, which means over
55% of the sequence reads could have at least one error. Therefore, to distinguish
between sequencing errors and rare but true mutations, it is desirable to increase the
sequencing accuracy by sequencing individual genomes a large number of times. For
example, even if each sequence read contains a 1% error rate, the combination of eight

identical reads that cover the location of the variant will produce a strongly supported

variant detection with an error rate of (10%)°, or 107

Depth in DNA sequencing refers to the number of times a nucleotide is read during the
sequencing process. Deep sequencing indicates that the total number of reads is many
times larger than the length of the sequence under study. Coverage is the average
number of reads representing a given nucleotide in the reconstructed sequence. The
term “deep” has been used for a wide range of depths, such as larger than 7 times, and
the term “ultra-deep” generally refers to even higher coverage, such as larger than 100
times. Requirements for sequencing depth may depend on the variant type, the discase

model, and the size of the regions of interest. Thus, for rare variants with variant
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frequencies of 1% or less, even higher coverage may be desired. The massively parallel
NGS enables such ultra-deep sequencing for true variants detection. Nevertheless,
generating greater depth of shorter reads does not resolve all the issues for rare variants

detection.
1I. VARIANT CALLS IN ULTRA-DEEP SEQUENCING

Variant calling is the process of identifying true differences between sequence reads of
test samples and a reference sequence. Variant calling is important in sample
characterization and discase diagnosis. However, variant calling is inherently difficult
because somatic mutations often occur at very low frequencies. One goal of variant
calling is to identify somatic variants with high confidence to minimize spurious false

positives.

FIG. 1 illustrates a method 100 of genomic sequencing and variant calling using next
generation sequencing (NGS) for targeted ultra-deep sequencing. As with other
methods, embodiments can include all or some of the steps described, and some steps
may be performed with a computer system. The results of method 100 may be used by a

doctor in determining a diagnosis of an organism.

At block 110, samples containing polynucleotides to be sequenced and diagnosed are
received, wherein the polynucleotides potentially include a target region to be
sequenced. As defined above, the term “sample” refers to any composition containing or
presumed to contain nucleic acid. The samples include nucleic acid molecules that are
from the genome of the organism from which the samples are obtained. For example,
the samples can include cells that contain a genome encoded in chromosomes. The
samples may include one or more test samples. The samples may also include one or
more reference or control samples. Some samples may be obtained from a patient who
is being tested for mutations in particular regions of the genome. The samples may be
obtained from a biopsy of a tumor that is being tested for cancer. The samples may
include some normal cells, some cells at early stages of cancer progression, and some
cells at later stages of cancer progression. The samples can be from different people or
the same person (e.g., different biopsies), and may use different experimental

conditions.

Optionally, at block 120, RNA or DNA is separated from the samples prior to

sequencing. Methods for isolating nucleic acids from biological samples are known, for
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example, as described in Sambrook, and several kits are commercially available, for
example, DNA Isolation Kit for Cells and Tissues, DNA Isolation Kit for Mammalian
Blood, High Pure FFPET DNA Isolation Kit, High Pure RNA Isolation Kit, High Pure
Viral Nucleic Acid Kit, and MagNA Pure LC Total Nucleic Acid Isolation Kit, all
available from Roche. In some embodiments, the isolated nucleic acids include genomic
DNA. In some embodiments, the isolated nucleic acids include circulating free DNA
fragments (cfDNA). In some embodiments, the isolated nucleic acids include RNA,

such as cellular mRNA or ¢fRNA.

In the case of RNA, at block 130, a reverse transcription reaction is carried out. For
example, the RNA may be converted into a complementary DNA (cDNA) using a

reverse transcriptase.

Optionally, at block 140, DNA segments may be prepared for sequencing. This may
include fragmenting the DNA into smaller DNA segments including the target regions,
ligating adapter sequences onto the ends of the DNA segments, and anchoring specific
barcode sequences that identify the samples from which the DNA segments originated.
A target region is a segment in the DNA that may have diagnostic relevance, ¢.g., to see
if there is any cancer-related mutation. As examples, the target region can be about a
few hundred bases, ¢.g., 150-250 bases, 150-400 bases, or 200-600 bases. In another
embodiment, probes can be used to capture genomic segments that correspond to the
target region. For example, probes that are designed to hybridize to the target region can
be placed on a surface. Then, the genomic segments can be placed over the surface and
the segments of the target region will preferentially be hybridized. The DNA of the
samples can be fragmented, e.g., by sonication or other suitable methods to obtain
smaller genomic segments. For example, genomic segments of 200-500 bases long can
be obtained. For certain sequencing procedures, genomic segments of about this length

are preferred. However, embodiments can use genomic segments of any length.

The genomic segments can be marked with a barcode or multiplex identifier (MID)
sequence. For example, a sequence of 10 bases can be added (e.g., using a ligase) to the
end of a genomic segment. In this manner, segments from various samples can be
sequenced in parallel during a single sequencing run. The MID can be read as part of a
sequence read, and sequence reads with the same MID can be attributed to a same
sample and analyzed together. The MID can be used to de-multiplex or differentiate

sequences reads from different samples.
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At block 150, the DNA segments are optionally amplified or increased by an
amplification process, such as PCR, SDA, and derivations thereof, to generate DNA
segments, that is, amplification products, for sequencing. A DNA polymerase such as
Taq or another thermostable polymerase can be used for amplification by PCR. See,
e.g., Fakruddin et al., J Pharm Bioallied Sci. 5:245 (2013) for a review of amplification
methods. These amplification products are defined based on primers used for the
amplification. The primers are specific for a target region on the nucleic acid.
Sequencing primers are typically designed based on the selection of amplification
primers, such that the sequencing primers are specific for (specifically hybridize to)
sequences within the amplification products. In some embodiments, the target regions
may be enriched by a target enrichment process. Both amplification and enrichment
processes could be performed. Forward and reverse primers can be used to amplify a
target region. These forward and reverse primers can be of various length, e.g., about

15-30 bases long.

In some embodiments, the addition of the sample-specific MID can occur at different
points. For example, the MID could be added after the amplification/enrichment before
the samples are mixed together. In this way, different samples could be amplified or

enriched for different target regions.

At block 160, DNA segments from one or more samples are sequenced in a massively
parallel fashion in a single sequencing run. In the sequencing process, the clones of a
same segment created in an amplification process can have its sequence determined
separately (and counted later). In some embodiments, a single sequencing run can
generate over one terabase of data. In some embodiments, more than about 3,000 reads
per sample can be obtained. The number of reads may depend on the size of the sample,
how much amplification was performed as a part of the target increase, and the
bandwidth of the sequencing process (i.c., how much sequencing the apparatus is set
for, ¢.g., how many beads are used). In one embodiment, the reads are about 150-250

bases long.

The sequencing process can be performed by various techniques on various NGS
platforms, such as Roche 454, Illumina GA, and ABI SOLiD. In one embodiment, the
DNA segments can undergo an amplification as part of the sequencing. In embodiments
where an amplification process was used to create a target-increased sample, this

amplification would be a second amplification step. The second amplification can
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provide a stronger signal (e.g., a fluorescent signal corresponding to a particular base:

A, C, G, or T) than if the second amplification was not performed.

In one example of a sequencing process, amplified segments from block 150 (e.g.,
where amplification occurred in a solution) can each be attached to a bead. The attached
segments can then be amplified on the bead, and one sequence read can be obtained
from each bead. For embodiments that use a surface, a segment can be attached to a
surface and then amplified to create a single cluster on the surface. A single sequence
read can be obtained for each cluster. A sequence read can be for an entire length of a

genomic segment or a part of the segment.

At block 170, the sequence reads can optionally be filtered to remove low quality reads
and short reads, and the remaining sequence reads are aligned to a target region of a
reference sequence. In some embodiments, reads with identical bases are combined so
that they are considered a single sequence read. Thus, read counts for only unique read
may be recorded. An average base score can be calculated at every base location for
every unique read. A base score can measure how accurate a base call is on the
sequence read. Using the base score, low quality reads can be removed. In some

embodiments, reads that are shorter than a minimum value are removed as well.

By aligning, the process can compare the sequence reads to the target region of the
reference sequence to determine the number of variations between the sequence reads
and the reference sequence. As the alignment can be specific to only one or more target
regions, the alignment can be fast because the entire genome does not have to be
secarched. Also, as the percentage of segments corresponding to a target region is
increased, a substantial number of the reads would match favorably to the target region

(e.g., relatively few variations).

In one embodiment, if multiple target regions are used, then a sequence read can be
compared to all of the multiple target regions, and the target region that provides the
best alignment can be identified. Different target regions can have different genes or

different exons with a gene. Thus, the exon with the best alignment could be identified.

If a barcode or MID is used, it can be removed before aligning. The MID can be used to
organize all of the reads for a particular sample into one group. In this manner,
mutations from other samples will not impact the analysis of the particular sample. This

grouping is referred to as de-multiplexing. As different samples may have different
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target regions, the MID can be used to determine which target region(s) of a reference

sequence should be compared for the alignment.

At block 180, aligned sequence reads from the target region are used to identify
mutations in the target region. As part of this step, the number of variant alleles (or
variant count), the number of reference alleles (or wild type count), and thus the
frequency of each variant at a sequence location for each sample can be determined. For
example, for a particular position in a target region, the number of times a G mutation
appears instead of a normal A can be counted. A percentage of times the G mutations is
seen can be determined from the total reads that aligned to that position. In some
embodiments, variations that occur together can be identified, and may be categorized
as a part of a same mutation. For each sample, a sequencing depth for a target region

can be determined from the number of reads passing any filters for that sample.

At block 190, variant calling is made based on the variant counts, the wild type counts,
and/or the variant frequencies. In one embodiment, the variant frequency for a particular
variant can be required to be greater than a threshold (abundance filter) to be considered
an actual mutation. Table 1 shows minimal variant counts and variant frequencies
calculated based on Poisson model that Illumina MSR somatic variant caller reports

with default settings.

MinCountioReport [Min%ToReport

100 5 5
200 7 3.5
500 12 2.4
1000 19 1.9
2000 32 1.6
5000 68 1.36
10000 125 1.25
20000 235 1.175
50000 554 1.108
100000 1075 1.075

Table 1. Minimum variant count and minimum variant frequency to report for various

depth

In some embodiments, a quality score indicating the confidence level that a variant is
indeed present in the sample is provided and used to make a variant call. In some
embodiments, the quality score may be used in combination with one or more of the

variant count, the wild type count, and/or the variant frequency to make the variant call.
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A doctor could use the identified mutations to diagnose a predisposition to cancer or to

identify a tumor as having cancer.

FIG. 2 illustrates examples of sequence reads of a target region 215 in a test sample
compared with a reference sequence 210, in which variants of a same class and different
classes at various sequence locations are shown. FIG. 2 shows four example locations in
a target region where the reference sequence has reference alleles of base A. Five
sequence reads are explicitly shown for ease of illustration, but many more reads would
be used, in practice. Reference sequence 210 is shown to have A at locations 205, 231,

255, and 281.

For location 205, in some sequence reads, A is detected, but in some sequence reads, C
is detected. The detection of C indicates a potential A>C variant. The variant A>C is of
a particular variant class. Other bases could be detected in the sequence reads not
shown. The existence of other alleles could indicate other types of variants of other

variant classes.

For location 231, in some sequence reads, A is detected; in some sequence reads, C is
detected; in yet some other reads, nothing (“0”) is detected at location 231. The
detection of C indicates a potential variant of single-base substitution A>C. The

detection of “0” indicates a potential variant of deletions.

For the base A in location 255, in some sequence reads, A is detected; in some sequence
reads, C is detected; but in some other reads, T is detect. The detection of C indicates a
potential variant of single-base substitution A>C. The detection of T indicates a

potential variant of a different single-base substitution A>T.

For the base A in location 281, in some sequence reads, A is detected; in some sequence
reads, C is detected at a different frequency. The detection of C at a different frequency
indicates a potential variant of single-base substitution A>C with a different variant

frequency.

Based on the sequence reads for the test sample, for each location, the number of wild
type base A, the number of single-base substitution A>C, the number of single-base
substitution A>T, and the number of deletions of A can be counted. The types of
variants shown in FIG. 2 are for illustration purpose only. There may be various types

of variants or mutations as described below in this disclosure.



10

15

20

25

30

WO 2015/173222 PCT/EP2015/060442

18

III. VARIANT CALLING BASED ON STATISTICAL DISTRIBUTION
MODEL

In some embodiments of this disclosure, all variants observed in the NGS experiments
can be reported. Because most observed low frequency variants may be false positive,
in order to distinguish low frequency true positives from false positives, a distribution
of false positive variants may be used to establish a variant calling quality score to

determine how likely a variant is a true positive.

A. Mathematical theory of the statistical model based variant calling

FIGs. 3A-3D provide the underlying mathematical theory of statistical model based
variant calling according to some embodiments of this invention. Because the false
positive rates of variant calls depend on the sequence context and location, variants of
the same class or type, such as A>C, at various locations in all samples may be

compared together to make the variant calls based on a statistical distribution.

In some embodiments, simple variants in a sequencing run at different sequence
locations may be divided into 20 classes. In every class, the majority of the variants are
false positives. Parameters of the statistical distribution for every variant class can be

calculated. The variant classes may be defined as follows:

(1) 12 single-base substitutions, including A>C, A>G, A>T, C>A, C>G, C>T,
G>A, G>C, G>T, T>A, T>C and T>G;

(2) multiple-base substitutions, such as AC>GA,;

(3) 1-2 bases deletions, such as AGT>AT or GCAT>GT;

(4) 3-base deletions, such as ATCGA> AA;

(5) 4-5 bases deletions, such as GACCTA>GA or TGCGCGA>TA;

(6) 6 or more bases deletions, such as ATCCTCAG>AG;

(7)  1-2 bases insertions, such as AT>AAT or GC>GTAC;

(8) 3 or more bases insertions, such as GC>GTAAC or AC>AGATGC; and

(9) other simple mutations, such as a single-base substitution A>C followed
immediately by a 1-base deletion, e.g., the original reference bases are AT and
the mutant base is C, i.e., AT>C. Such mutation AT>C may also be interpreted

as a deletion of A followed by single-base substitution T>C.



10

15

20

25

30

WO 2015/173222 PCT/EP2015/060442

19

As used here, a simple mutation is a mutation bounded by two matching base pairs
without any matching base pair within it. For example, in aATg and aCg, simple
mutation AT>C is bounded by a matching pair a-a and a matching pair g-g, where lower
case letters are used for the matching pairs. But in aAcGg and aCcTg, AcG>CcT is not
a simple mutation because there is a matching pair c-c in it. Thus, AcG>CcT is a

complex mutation consisting of two simple mutations A>C and G>T.

In some embodiments, the variant frequency of variants of a same class, such as A>C,
at various locations in the target region where the reference allele (e.g., base A for
variant type A>C) exists in the reference sequence for one or more samples may be used
to form a statistical distribution for the variant class. For example, as shown in FIG. 2,
the variant frequency of single-base substitution A>C at each of location 205, location
231, location 255, location 281, and other locations in the target region where A exists
in the reference sequence for a sample may be a data point for the statistical distribution
for variant class A>C. The variant frequency of single-base substitution A>C at each of
location 205, location 231, location 255, location 281, and other locations in the target
region where A exists in the reference sequence for each of other samples sequenced in
the same sequencing run as the test sample may also be a data point for the statistical
distribution for variant class A>C. On the other hand, the variant frequency of a
different variant class, such as single-base substitution A>T or a single-base deletion
A>0, at cach of location 205, location 231, location 255, location 281, and other
locations in the target region where A exists in the reference sequence for each sample
sequenced in the same sequencing run as the test sample is not used for the statistical

distribution for the variant class A>C.

In some embodiments, at least 30 data points are included in the statistical distribution.
The at least 30 data points may be from two or more samples in a single sequencing run.
For data points less than 30, the true distribution may not be represented by the data

points.

FIG. 3A illustrates an ideal statistical distribution (normal distribution) of variant
frequency for variants of a same class. FIG. 3A is for illustration purpose only. Actual
statistical distribution of variant frequency of a variant class may depend on the
samples, and may be of other forms of distribution, such as a bi-modal distribution. In

some embodiments, some forms of transformation, such as the square, square root, or
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logarithmic, of the variant frequency may form a distribution closer to a normal

distribution.

In FIG. 3A, the x-axis represents the variant frequency value of a variant class, and y-
axis represents the number of data points with a particular variant frequency value f. As
shown in the ideal normal distribution in FIG. 3A, a mean value m and a standard

deviation s may be determined based on the distribution.

FIG. 3B illustrates a probability that the variant frequency of a variant at a specific
location on a specific sample will have a given Z value, where the probability and the Z
value can be derived from the statistical distribution shown in FIG. 3A. In some
embodiments, FIG. 3B may be a normalized distribution of FIG. 3A based on the mean
and the standard deviation. In some embodiments, more complicated transformation or
conversion, such as logarithmic transformation, may be used. The shaded area in FIG.

3A indicates a cumulative probability for all Z values equal to or greater than z.

FIG. 3C shows a cumulative distribution function F of the probability that a Z value

takes on a value less than or equal to z.

FIG. 3D shows a base-calling error probability (p-value) that a variant with a specific
variant frequency value or Z value is a false positive on the primary axis on the left, and
an associated quality score Q for making a variant call on the secondary axis on the

right. In some embodiments, the p-value may be calculated by 1-F. In some
embodiments, the quality score Q may be a Phred quality score given by Q= -10log P,

or any variations of the Phred quality score.

B. Method of statistical model based variant calling
FIG. 4 illustrates a method 400 of variant calling using a statistical model. As with other
methods, embodiments can include all or some of the procedures described, and some

procedures may include additional procedures or sub-procedures.

At block 410, sequence reads targeting a target region in one or more samples in a
single sequencing run are received. Sequence reads data may be received and stored in
any format that can be read and parsed by a computer. In some embodiments, pre-
processing of the sequence reads data may be performed to remove low-quality reads or
adapter sequences. In some embodiments, barcodes or MIDs may be removed, and

sequence reads from a same sample may be labeled or grouped.
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At block 420, the sequence reads are aligned to a target region of a reference sequence,

¢.g., as described in block 170 of method 100.

At block 430, variant alleles of a same variant class at a specific sequence location on
the aligned sequence reads of a test sample can be identified and counted to determine a
variant count. The read count for the specific sequence location on the aligned sequence
reads of the test sample can be determined as well. For example, as shown in FIG. 2, the
total number of C at location 205 in the sequence reads of the test sample is the variant
count for variant class A>C at location 205, and the total number of reads at location
205 in the sequence reads of the test sample is the read count for variant class A>C at
location 205. In some embodiments, the read count of the specific location for the test

sample may be determined in a separate procedure.

At block 440, the variant frequency of variants of the same class at the specific location
is determined. In one embodiment, the variant frequency can be determined by dividing
the variant count by the read count at the specific location in the test sample. In another
embodiment, the variant frequency can be determined by dividing the variant count by a
non-variant count (e.g., read count minus variant count) at the specific location in the
test sample. One skilled in the art will appreciate the various types of forms of the

variant frequency that can be used.

At block 450, for each sample sequenced in the same sequencing run as the test sample,
variants of the same class, such as A>C, are identified and counted at cach location of a
plurality of locations where a reference allele of the variant class, for example A, exists
on the reference sequence in the target region. Similarly, for each sample in the same
sequencing run, the read count for each of the plurality of locations where the reference

allele of the variant class is found on the reference sequence can be determined.

At block 460, for each sample sequenced in the same sequencing run as the test sample,
variant frequency for variants of the same variant class, such as A>C, at each location of
the plurality of locations may be determined by dividing the variant count for each
location by the read count for that location. Thus, if, for example, 3 samples are
sequenced together in a sequencing run, and 30 locations on the reference sequence in
the target region have a reference allele for a variant class, up to 90 variant frequencies
may be calculated, one for each location on each sample. These variant frequencies can

be used to determine a statistical distribution of variant frequencies for variants of the
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same class in the same sequencing run. Note that variant frequencies of other variant
classes are not included for determining the statistical distribution. In addition, data
points obtained from other sequencing runs may not be included for determining the
statistical distribution, in order to reduce the effect of variations between sequencing

runs that may affect the accuracy of the distribution model.

At block 470, a probability value corresponding to the variant frequency for variants of
the same class at the specific location in the test sample is determined by comparing the
variant frequency to parameters of the statistical distribution formed at block 460. In
some embodiments, the probability value may be an actual probability, an accumulative
distribution, or a quality score. In same embodiments, the parameters of the statistical

distribution may be one or more of a mean value and a standard deviation.

At block 480, a variant call is made based on the probability value and a threshold value
to determine whether variants of the variant class at the specific location on the test
sample are true positives. In some embodiments, the threshold value may be a single
value. In some embodiments, the threshold value may be a function of, for example, the
variant frequency. In some embodiments, the threshold value may be determined using
a machine learning algorithm, such as support vector machines (SVM), based on a
training data set. In some embodiments, the threshold value may be determined based

on training data obtained from different sequencing runs.

The method described above may be better understood in light of the examples below.

C. Examples

The examples given below illustrate the method described above in this section. In the
examples, models based on a statistical distribution of logarithmic variant frequency for
a variant class are used because the variant frequencies are not in normal distribution,
while the distribution of the logarithmic variant frequencies is close to normal as

explained below.

Table 2 shows the results of normality tests, such as Lilliefors test and Shapiro-Wilk
test, applied to both original variant frequency f and its logarithmic transformation x for
a wild type data with false positives of Exon 20 substitution T790M (C>T at 2369) and
Exon 21 substitution L858R (T>G at 2573). The results show that x has larger
probability of obtaining the observed sample results (P-values) (>0.08) when the normal

distribution assumption is used, which indicates a smaller discrepancy between the
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actual distribution and the normal distribution, and f has smaller P-values (<0.016).

Therefore, x is closer to the normal distribution than f.

False Variable P-value of Lilliefors | P-value of Shapiro-Wilk test
Positive test
T790M | f 0.008805 0.001830
logio(f+1e-06) | 0.348639 0.084104
L858R | f 0.014024 0.015862
logio(f+1e-06) | 0.602277 0.520155

Table 2. P-values of Normality Tests for f and x

Thus, in order to use the normal approximation to make a statistical analysis, a
logarithmic transformation of variant frequency is made first because the transformed
variant frequency is closer to normal distribution than the original variant frequency for
most noises. In some embodiments, in order to avoid negative infinity values when f =

0, the following logarithmic transformation is used
x = logio(f +e),

where ¢ is an adjustment constant for avoiding negative infinity values. The adjustment
constant ¢ can be set to any appropriate value. For example, in some embodiments, ¢

can be set to 10, thus the minimum x value is -6.

After the logarithmic transformation, mean value m and standard deviation s of the
normal distribution approximation can be calculated. The normal distribution
approximation can then be used to calculate a probability value of the detected variants
at a sequence location. For example, for an observed variant in the variant class at a
location with a variant frequency of fl, and a logarithmic variant frequency of x1 =
logio(f1 + ¢), with sufficient depth (total read count), a statistical probability value z-

score can be calculated by
z=(x1-m)/(s/sqrt(n)),

where n is the number of reference data points used in estimating s and m. Calculation
results indicate that the z score is large for large n, which may generate very small base-
calling error probability (p value), and hence very large quality score. Therefore, in
some embodiments, z-core is replaced by z-like score, which is calculated by replacing

n in the above equation with min(n, N). N can be set to any appropriate value, In some
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embodiments, N is set to 36. In some embodiments, a lower bound s2 can also be set
for s / sqrt(min(n, N)) in situations where s is too small. s2 can be set to any appropriate
value, such as, for example, a default value of 0.01. Thus, in some embodiments, the z-

like score can be expressed as
z’ = (x1 —m)/ max(s2, s / sqrt(min(n, N))).

Using the z-score or z-like score z’, base-calling error probability p value can be
determined by p = 1 — F(z) or p = 1-F(z’), where F is the cumulative distribution
function of the standard normal distribution. The variant calling quality score Qamp can
then be determined using the Phred score. In some embodiments, Qamp can be defined

as a Phred-like score:

Qamp = -10 logo(max(p, minP)),

=1 OfmaxQ/ 10

where minP . maxQ can be set to any suitable value. For example, in some

embodiments, maxQ may be set to 80 or 130.

In some embodiments, robust estimations of central position and variation of data,
instead of sample mean and sample standard deviation, can be used to calculate the

quality scores.

In some embodiments, a classification method, such as the support vector machines
(SVM) with linear kernel, can be used to separate true positives from false positives,
using a training data set with known true positives and false positives. In some

embodiments, a threshold value may be set by visualizing the data.

FIGs. 5 and 6 show example results of the above method applied to sequence read data
from real samples. FIG. 5 shows variant calling quality score Qayp With maxN=4 for
different training data and test data of EGFR T790M of exon 20 (C>T at 2369) with a
separator line determined by SVM. FIG. 5 shows that the variants and wild type data are
not well separated, and thus it may be difficult to distinguish true mutations and false
positives with variant frequencies of 0.1% or less. However, for all test data with variant
frequencies of 0.5% or more, and most test data with variant frequencies of at least

0.2%, true positives and false positives can be correctly distinguished.

FIG. 6 shows variant calling quality score Qanmp with maxN=4 for different training data

and test data of EGFR L858R of exon 21 (T>G at 2573) with a separator line



10

15

20

25

30

WO 2015/173222 PCT/EP2015/060442

25

determined by SVM. FIG. 6 shows that all testing data, including those with variant

frequencies of 0.1%, can be classified correctly.

IV.  VARIANT CALLING FOR SPECIFIC VARIANT AT A SPECIFIC
LOCATION USING A COMPARISON WITH ONE OR MORE REFERENCE
SAMPLES

In some embodiments of this invention, variants and wild type counts of a variant at a
same location in different samples can be compared to make variant call. This method is
especially useful if wild type (usually normal) samples are available as negative control

in a sequencing run.

A. Method of comparing test samples with reference samples for detecting a
specific variant at a specific location
This method can be used to compare a specific variant at a specific location for different

samples, and can be applied to as low as two data points.

FIG. 7 illustrates a specific variant C>T at a specific location 112 on sequence reads of
a reference sample and a test sample. As shown in FIG. 7, the reference allele at
location 112 of the reference sequence is C, and sequence reads at location 112 for the
reference sample are mostly Cs, but may have variants of C>T caused by sequencing
errors. For the test sample, the sequence reads at location 112 may also be Cs due to low
variant frequency, some Ts due to true mutations, and some Ts due to sequencing

CITorsS.

The reference sample is theoretically without true mutations, but sequencing errors may
cause small variant count as shown in FIG. 7. The variant counts of the reference
sample and the test sample, and the wild type counts of the reference sample and the test
sample for a specific variant at a specific location can be determined based on the
sequence reads, and put into a table as shown in Table 3 below. The count data for the
test sample and the reference sample can be used for determining whether the variant
frequency of the test sample is significantly larger than the variant frequency of the

reference sample at the same location.

In Table 3, al is the count of a specific variant at a specific location in the reference
sample, n1 is the depth of the sequence reads for the reference sample, and wl =nl —al
represents the wild type count at the specific location in the reference sample. a2, n2

and w2 are the corresponding variant count, depth and wild type count for the test
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sample. Table 3 also lists row sums a = al + a2, w=wl + w2, and total counts n =nl +

n2.

Count Table Reference | Test RowSum
Sample |Sample

Variant Count al a2 a

Wild Type Count  |wl w2 W

Total Count (Depth) |nl n2 n

Table 3. Count table for a reference sample and a test sample

There are a number of ways to test whether (al, wl) and (a2, w2) are significantly
different in ratio. In some embodiments, because nl and n2 can be very large in ultra-
deep sequencing, one-sided chi-squared test is preferably used. In the one-sided chi-
squared test, proportions f1 = al /nl and 2 = a2 / n2 are calculated first. If £2 <= f1,
that is, the proportion for test sample is not higher than the proportion for the reference
sample (which is known to be a false positive), a very small quality score, such as 2,
which corresponds to an error rate p = 0.63, can be set, and there is no need for further

analysis. However, if f2 > {1, chi-squared statistic can be calculated as
Y¥'=nx (al xw2—a2xwl)*/(nl xn2 x a x w).

A one-sided variant calling error probability p-value can be calculated as p = 0.5 x (1 —
pchisq(y %, d)), where pchisq is the chi-squared cumulative distribution function with a

degree of freedom of d. In some embodiments, the degree of freedom d is 1.

Another method to test whether (al, wl) and (a2, w2) are significantly different in ratio
is the Pearson proportion test for large samples. In Pearson proportion test, two
proportions, pl_hat = al / nl and p2 hat = a2 / n2, are calculated first. A Z-score can
then be determined by

Z = (p2_hat—pl_hat)/sqrt(V),

where V may be calculated with at least one of the following two formulae:
V=pl hat x(1—-pl _hat)/nl +p2 hat x (1 —p2 hat)/n2, and
V =p hat x (1 —p_hat) x ((1/n1) + (1/n2)),

where p_hat = (al + a2)/ (n1 + n2). A one-sided p-value can then be calculated asp =1

— Pnorm(Z), where pnorm 18 the cumulative probability distribution function.
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In some embodiments, Fisher’s exact test may be used to determine whether (al, wl)
and (a2, w2) are significantly different in ratio. Fisher’s exact test uses hypogeometric
distribution. The computation for Fisher’s exact test may be more complicated and may

cause overflow for large samples.

After the p-value is calculated, the corresponding quality score can be defined as Qroc =
-10 x log;o(p). Note that in the one-sided chi-squared test, p is in the range of (0, 0.5). In
some embodiments, to avoid the difficulty of numerical computation when p is close to
0, Qroc = -10 X logjo(max(p, minP)) is used, where minP can be set to any suitable

value, such as 107, which is equivalent to setting maximum quality score to 130.

B. Method of selecting reference samples for detecting a specific variant at a
specific location
Various methods can be used to set the reference counts for a specific variant at a
specific location in a sequencing run of multiple samples. One method is to use the sum
of the variant counts and the sum of the depths of two samples in the same sequencing
run with the lowest variant frequencies for the specific variant at the specific location
and having depths of no less than a minimum value minD. In some embodiments, the
minD may be set to 3000. In some embodiments, to avoid the rare possibility that all
samples have high variant frequencies for a specific variant at a specific location, when
the reference proportion is greater than f0 (which may be set to, for example, 0.01 or
1%), al is set to f0 x nl. Thus, the al value used is either the actual al value or 0 x nl,
whichever is smaller. With this method, if wild type samples are contaminated with
variants, the wild type samples with variant contamination will show high variant
frequency, and hence will not be selected as reference samples for the particular variant;
thus, quality score Qroc of other samples are usually not affected. Some complex
mutations consist of multiple simple mutations. In such situations, Qroc can be defined
as the median value of the quality scores Qroc of all simple mutation components of the

complex mutation.

Known wild type sample can also be used as a reference sample. However, if wild type
samples are contaminated with variants, quality scores Qroc of other samples may be

low.
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C. Data analysis by comparing test samples with reference samples to detect a
specific variant at a specific location

FIG. 8 illustrates a method 800 of variant calling by comparing test samples with one or

more reference samples to classify a specific variant at a specific location. As with other

methods, embodiments can include all or some of the procedures described, and some

procedures may include additional procedures or sub-procedures.

At block 810, sequence reads targeting a target region in DNA segments from one or
more samples in a single sequencing run are received. Sequence reads data may be
received and stored in any format that can be read and parsed by a computer. In some
embodiments, pre-processing of the sequence reads data may be performed to remove
low-quality reads or adapter sequences. In some embodiments, barcodes or MIDs may

be removed, and sequence reads from a same sample may be labeled or grouped.

At block 820, the sequence reads are aligned to a target region of a reference sequence

as described in block 170 of method 100.

At block 830, variant alleles for a specific variant at a specific sequence location on the
aligned sequence reads can be identified for all samples by comparing the aligned
sequence reads against the reference sequence. Any suitable alignment technique may

be used, as will be known by one skilled in the art.

At block 840, variant counts and read counts for the specific variant at the specific
sequence location for all samples can be determined. The variant count is the the total
number of same variant alleles, such as Cs for A>C variants, at a specific location on
different sequence reads of a sample. The read count is the total number of reads of the

specific location for a sample.

At block 850, at least one sample is selected as a reference sample. As described above,
in some embodiments, a known wild type sample can be used as the reference sample.
In some embodiments, two samples with the lowest variant frequencies in a sequence
run can be used as the reference samples. In such embodiments, the sum of variant
counts and the sum of the read counts of the two samples with the lowest variant
frequencies can be used as the variant count al and the read count nl for the reference

sample in the calculation.

At block 860, variant counts and read counts for the specific variant at the specific

sequence location for a test sample and the reference sample are compared to determine
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a probability value using methods such as the ones described above in Section IV(A).
The probability value may be one or more of a chi-squared value, a cumulative

probability distribution value, a p-value, a Z-value, and a quality score.

At block 870, a variant call is made based on the probability value and a threshold value
to determine whether the specific variants at the specific location on the test sample are
true positives. In some embodiments, the threshold value may be a single value. In some
embodiments, the threshold value may be a function of, for example, the variant
frequency. In some embodiments, the threshold value may be determined using a
machine learning algorithm, such as support vector machines (SVM), based on a
training data set. In some embodiments, the threshold value may be determined based

on training data obtained from different sequencing runs.

D. Examples
The examples below show the results of variant calling by comparing test samples with

reference samples for detecting a specific variant at a specific location.

FIG. 9 shows localized variant calling quality score Qpoc for training data and test data
of EGFR T790M of exon 20 with a separator line determined by SVM. It can be seen
from FIG. 9 that there is no misclassification of the wild type testing data even if the
separator determined by SVM is lowered to call 0.1% of T790M as a true positive. In
addition, a single threshold value of, for example, f >= 0.1% or Qroc>= 18, can be a

good decision point for the T790M variant.

FIG. 10 shows localized variant calling quality score Qroc for training data and test data
of EGFR L858R of exon 21 with a separator line determined by SVM. It can be seen
that all testing data, including those with variant frequencies of 0.1%, are classified
correctly. In addition, a single threshold value of, for example, Qroc >= 18 can be a

good decision point for the L858R variant.

FIG. 11 shows localized variant calling quality score Qroc for training data and test data
of EGFR 15-base deletion 2235 2249del15 of exon 19 with a separator line determined
by SVM. It can be seen that all testing data, including those with variant frequencies of
0.1%, are classified correctly. A single threshold value of, for example, Qroc >= 18 or

20 can be set without using SVM to separate false positives from true positives.
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FIGs. 9-11 also show that the localized variant calling score Qroc has wider margin
between the true positives and the false positives than the model based variant calling

score Qawmp.

V. SIMPLIFIED QUALITY SCORE ESTIMATION

In some applications, it may be time consuming to directly calculate p-value and quality
score for every variant. Since quality scores only need to be reported as an integer, in
some embodiments, the value of Qroc and Qamp can be discretized. For example, when
f2 <= f1, the quality score can be set to 2; when 2 > {1, the quality score can be set to 3,

4, ..., or maxQ, which may be set to, for example, 130 in some embodiments.

In some embodiments, the quality score can be determined using, for example, ¥ values
(chisq OF normal quantile value gnorm, and a look-up table as shown in FIG. 12. In FIG.
12, X2 values and quorm values for Q = 3.5, 4.5, ..., 129.5 are calculated and provided in
a look-up table. Thus, a searching algorithm, such as a binary search algorithm, can be
used to determine the best approximate integer value of Q in 3, 4, ..., 130 based on the

2 value or the quorm value.
VI SAMPLE AMOUNT REQUIRED TO AVOID ZERO EVENTS

One practical issue for blood test is to determine the amount of gDNA sufficient for
detecting the variants such that low frequency mutations can be detected. In some
embodiments of this invention, probability of zero events detection can be used to

estimate the required sample amount.

Based on the Avogadro constant of 6.022 x 10*° / mol, the average molecular weight of
650 Daltons (g/mol) per base pair, and 3.096 x 10° base pairs per human genome, it can
be calculated that 1 nanogram (ng) of human gDNA contains 6.022 x 10 / (650 x
3.096 x 10° x 10”) = 300 molecules.

The amount of gDNA needed for detecting a mutation depends on the mutation
frequency, and can be determined by solving the statistical problem of avoiding zero
events. See, e¢.g., Lachin, Biostatistical Methods: The Assessment of Relative Risks,
p.19, Wiley (2000). Assume that the number of mutant copies in a blood sample is B,
and the total number of DNA copies is N, the mutant probability is p = B / N.

According to the binomial distribution, the probability of not obtaining the mutant copy
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in a random trial is (1 —p), and the probability of not getting a mutant copy in N random

trials is (1 —p)". Therefore, the following inequality can be sct
(1-p) <o,

where o is the maximum allowed probability that no mutation will be detected
(maximum allowed failing rate), and 1-o is the upper confidence limit. Thus, sample

size N can be estimated by solving the inequality as
N>=In(a)) / In(1 - p).

For rare mutations where p <<I, the estimation can be simplified using Taylor

expansion
In(1 - p) = .

and the sample size estimation becomes
N>=—1In(a)/ p.

Since —In(0.05) = 2.9957, and —In(0.005) = 5.2983, 3/p or 5.3/p may be used to estimate
the sample size N for rare mutations with upper confidence limits of 0.95 and 0.995,

respectively.

Table 4 lists the estimated number of gDNA molecules required to include at least one
mutant copy with maximum allowed failing rates o of 0.05 and 0.005. For example, to
detect 0.1% (p = 0.001) mutation with 95% upper confidence level (o = 0.05) of getting
at least one mutant copy in the sample, 2995 gDNA copies are needed, which are

equivalent to about 10 ng of gDNA molecules.

p 0=0.05 0=0.005

copy# | ng | copy# | ng
0.01 300 1.0 | 530 1.8
0.005 | 600 20 | 1060 |3.5
0.002 |[1500 |5.0 |2650 |8.8
0.001 [2995 |10.0 5300 |17.7

Table 4. Estimation of copy number and weight of gDNA molecules for rare mutation

detection
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VII. APPLICATION AND VERIFICATION

The methods described above in Sections Il and IV can help to determine the threshold
of variant frequencies used as decision criteria. The methods can successfully detect
substitutions with frequencies of 0.1-0.3% with sufficient input DNA amount. Since the
false positive rate depends on mutation context and location, for certain substitutions at
certain locations, variants with variant frequencies of as low as 0.03% can be correctly

detected.

For moderate size insertions, deletions and complex mutations, such as a 15-base
deletion, it is difficult to generate these type of mutations randomly in sequencing, and
the main source of errors is the carry-over contamination from other samples. Thus,
with well-established washing protocol between runs, variants of these types with

variant frequencies of as low as 0.0025% can be correctly detected.

[llumina MiSeq Reporter (MSR) can be used in a non-standard way to verify the low
frequency variants detected by the methods described in this disclosure. MSR uses a
somatic variant caller with a built-in Poisson model to report low-frequency variants.
The lowest frequency that MSR reports is depth dependent. Based on the Poisson
model, the lowest variant counts and frequencies that MSR somatic variant caller
reports can be calculated and set as default settings as shown in Table 1. For example,
when the depth is 100, the lowest reported frequency is 5%; when the depth is 5000, the
lowest reported frequency is 1.36%; when the depth gets even higher, the lowest

reported frequency becomes close to but above 1%.

In some embodiments, MSR using a sample containing known variants as a reference
sample can be run such that MSR would report a wild type allele as a “variant allele” of
the reference sample, and report an actual variant allele as a “wild type allele”. In this
way, variant calls using methods described in this disclosure can be verified. This non-
standard usage of MSR may have several drawbacks. First, it may only be used to verify
known variants. Second, the variant calling quality score that MSR reports is for the
wild type rather than the actual variant. Third, when there are multiple overlapping
known variants, it becomes tedious or difficult to use this method. However, MSR can
be used as a verification tool for known variants after the above drawbacks are

considered. It is especially useful for moderate size indels that MSR mapping/alignment
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software may report as unmapped reads when the whole genome is used as the reference

sequence.
VIII. COMPUTER SYSTEM AND SEQUENCING SYSTEM

Any of the computer systems mentioned herein may utilize any suitable number of
subsystems. Examples of such subsystems are shown in FIG. 13 in computer apparatus
1300. In some embodiments, a computer system includes a single computer apparatus,
where the subsystems can be the components of the computer apparatus. In other
embodiments, a computer system can include multiple computer apparatuses, each
being a subsystem, with internal components. A computer system can include desktop

and laptop computers, tablets, mobile phones and other mobile devices.

The subsystems shown in FIG. 13 are interconnected via a system bus 1305. Additional
subsystems such as a printer 1340, keyboard 1370, storage device(s) 1380, monitor
1352, which is coupled to display adapter 1350, and others are shown. Peripherals and
input/output (I/O) devices, which couple to I/O controller 1310, can be connected to the
computer system by any number of means known in the art, such as serial port 1360.
For example, serial port 1360 or external interface 1390 (e.g. Ethernet, Wi-Fi, etc.) can
be used to connect computer system 1300 to a wide area network such as the Internet, a
mouse input device, or a scanner. The interconnection via system bus 1305 allows the
central processor 1330 to communicate with each subsystem and to control the
execution of instructions from system memory 1320 or the storage device(s) 1380 (e.g.,
a fixed disk), as well as the exchange of information between subsystems. The system
memory 1320 and/or the storage device(s) 1380 may embody a computer readable
medium. Any of the values mentioned herein can be output from one component to

another component and can be output to the user.

A computer system can include a plurality of the same components or subsystems, ¢.g.,
connected together by external interface 1390 or by an internal interface. In some
embodiments, computer systems, subsystem, or apparatuses can communicate over a
network. In such instances, one computer can be considered a client and another
computer a server, where each can be part of a same computer system. A client and a

server can each include multiple systems, subsystems, or components.

It should be understood that any of the embodiments of the present invention can be

implemented in the form of control logic using hardware (e.g. an application specific
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integrated circuit or field programmable gate array) and/or using computer software
with a generally programmable processor in a modular or integrated manner. As used
herein, a processor includes a single-core processor, multi-core processor on a same
integrated chip, or multiple processing units on a single circuit board or networked.
Based on the disclosure and teachings provided herein, a person of ordinary skill in the
art will know and appreciate other ways and/or methods to implement embodiments of

the present invention using hardware and a combination of hardware and software.

Any of the software components or functions described in this application may be
implemented as software code to be executed by a processor using any suitable
computer language such as, for example, Java, C, C++, C#, Objective-C, Swift, or
scripting language such as Perl or Python using, for example, conventional or object-
oriented techniques. The software code may be stored as a series of instructions or
commands on a computer readable medium for storage and/or transmission. A suitable
non-transitory computer readable medium can include random access memory (RAM),
a read only memory (ROM), a magnetic medium such as a hard-drive or a floppy disk,
or an optical medium such as a compact disk (CD) or DVD (digital versatile disk), flash
memory, and the like. The computer readable medium may be any combination of such

storage or transmission devices.

Such programs may also be encoded and transmitted using carrier signals adapted for
transmission via wired, optical, and/or wireless networks conforming to a variety of
protocols, including the Internet. As such, a computer readable medium according to an
embodiment of the present invention may be created using a data signal encoded with
such programs. Computer readable media encoded with the program code may be
packaged with a compatible device or provided separately from other devices (e.g., via
Internet download). Any such computer readable medium may reside on or within a
single computer product (e.g. a hard drive, a CD, or an entire computer system), and
may be present on or within different computer products within a system or network. A
computer system may include a monitor, printer, or other suitable display for providing

any of the results mentioned herein to a user.

Any of the methods described herein may be totally or partially performed with a
computer system including one or more processors, which can be configured to perform
the steps. Thus, embodiments can be directed to computer systems configured to

perform the steps of any of the methods described herein, potentially with different
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components performing a respective steps or a respective group of steps. Although
presented as numbered steps, steps of methods herein can be performed at a same time
or in a different order. Additionally, portions of these steps may be used with portions
of other steps from other methods. Also, all or portions of a step may be optional.
Additionally, any of the steps of any of the methods can be performed with modules,

circuits, or other means for performing these steps.

In certain aspects the invention also provides Sequencing Systems. An exemplary
Sequencing system is displayed in Fig. 14. The system depicted in Fig. 14 comprises a
sequencing analysis module which may be located in a sequencing device and an
intelligence module which is part of the computer system. The data sets (sequencing
data sets) are transferred from the analysis module to the intelligence module or vice
versa via a network connection or a direct connection. The data sets may for example be
processed according to the flowchart as depicted on Fig. 4 or 8. The steps provided in
the flowchart may conveniently be implemented by software stored on the hardware of
a computer system for example according to the flowcharts as depicted in Fig. 15A and
15B. Referring to Fig. 15A, computer system (1100) may comprise receiving means
(1110) for example for receiving data obtained from a plurality of sequencing reads,
aligning means (1120) for aligning the plurality of sequence reads to the target region of
the reference sequence, identifying means (1130) for identifying a first candidate variant
having a first allele at a first location of the target region based on sequence reads of the
first sample differing from a reference allele at the first location of the reference
sequence, determining means (1140) for determining a first variant frequency for the
first allele at the first location based on sequence reads of the first sample that align to
the first location of the reference sequence, identifying means (1150) for identifying the
first candidate variant as corresponding to a first variant class selected from a plurality
of variant classes, each variant class of the plurality of variant classes corresponding to
a different type of variant, further identifying means (1160) for identifying a set of
second locations in the target region of the reference sequence that have the reference
allele, wherein at least 50% of the other locations in the one or more samples exhibit a
false positive for the first allele, and wherein the set of second locations includes the
first location, further determining means (1170) for determining at each of the set of
second locations and for each of the one or more samples a second variant frequency of

the first allele based on sequence reads of the sample that align to the second location of
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the reference sequence, the second variant frequencies forming a statistical distribution
and comparing means (1180) for comparing the first variant frequency to a statistical
value of the statistical distribution to determine a probability value of the first variant
frequency relative to the statistical value of the statistical distribution, and further
comparing means (1190) for comparing the probability value to a threshold value as
part of determining whether the first candidate variant is a true positive in the first
sample for the first allele, the threshold value differentiating between false positives and
true positives for the first allele. Referring to Fig. 15B, computer system (2100) may
comprise receiving means (2110) for example for receiving data obtained from a
plurality of sequencing reads, aligning means (2120) for aligning the plurality of
sequence reads to the target region of the reference sequence, identifying means (2130)
for identifying whether the first allele exists at the first location in each sample of the at
least two samples based on aligned sequence reads of each sample at the first location
differing from a reference allele at the first location of the reference sequence,
determining means (2140) for determining a variant count of the first allele at the first
location and a wild type count of the reference allele at the first location for each sample
of the at least two samples, selecting means (2150) for selecting, from the at least two
samples, at least one sample as a reference sample, comparing means (2160) for
comparing a first variant count of the first allele at the first location and a first wild type
count of the reference allele at the first location for the first sample to a second variant
count of the first allele at the first location and a second wild type count of the reference
allele at the first location for the reference sample to determine a probability value of
the variant having the first allele at the first location for the first sample, and further
comparing means (2170) for comparing the probability value to a threshold value as
part of determining whether the first allele at the first location in the first sample is a
true positive for the first allele, the threshold value differentiating between false
positives and true positives for the first allele at the first location. In certain
embodiments the system may also comprise displaying means for displaying the results
on a computer screen. Fig. 14 illustrates the interaction between the sequencing device
and the computer system. The system comprises a sequence analysis module which may
be located in a sequencing device and an intelligence module which is part of the
computer system. The data sets (sequencing data sets) are transferred from the analysis
module to the intelligence module or vice versa via a network connection or a direct

connection. The data sets may be processed according to Fig. 15A or 15B by computer
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code running on the processor and being stored on the storage device of the intelligence
module and after processing transferred back to the storage device of the analysis
module, where the modified data may be displayed on a displaying device. In some
embodiments the intelligence module may also be implemented in the sequencing

device.

The specific details of particular embodiments may be combined in any suitable manner
without departing from the spirit and scope of embodiments of the invention. However,
other embodiments of the invention may be directed to specific embodiments relating to

each individual aspect, or specific combinations of these individual aspects.

The above description of example embodiments of the invention has been presented for
the purposes of illustration and description. It is not intended to be exhaustive or to limit
the invention to the precise form described, and many modifications and variations are

possible in light of the teaching above.

A recitation of "a", "an" or "the" is intended to mean "one or more" unless specifically
indicated to the contrary. The use of “or” is intended to mean an “inclusive or,” and not

an “exclusive or” unless specifically indicated to the contrary.
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CLAIMS:

1. A computer-implemented method of detecting low frequency variants in a target

region in a first sample, the method comprising, at a computer system:

receiving a plurality of sequence reads obtained from sequencing DNA
fragments from one or more samples, the one or more samples including the
first sample, wherein the sequencing includes targeting the target region in the
DNA fragments;

aligning the plurality of sequence reads to the target region of a reference
sequence;

identifying a first candidate variant having a first allele at a first location of the
target region based on sequence reads of the first sample differing from a
reference allele at the first location of the reference sequence;

determining a first variant frequency for the first allele at the first location
based on sequence reads of the first sample that align to the first location of the
reference sequence;

identifying the first candidate variant as corresponding to a first variant class
selected from a plurality of variant classes, each variant class of the plurality of
variant classes corresponding to a different type of variant;

identifying a set of second locations in the target region of the reference
sequence that have the reference allele, wherein at least 50% of the other
locations in the one or more samples exhibit a false positive for the first allele,

and wherein the set of second locations includes the first location;

at each of the set of second locations and for each of the one or more samples:

determining a second variant frequency of the first allele based on sequence
reads of the sample that align to the second location of the reference sequence,
the second variant frequencies forming a statistical distribution;

comparing the first variant frequency to a statistical value of the statistical
distribution to determine a probability value of the first variant frequency
relative to the statistical value of the statistical distribution; and

comparing the probability value to a threshold value as part of determining
whether the first candidate variant is a true positive in the first sample for the
first allele, the threshold value differentiating between false positives and true

positives for the first allele.
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The method of claim 1, wherein the reference sequence corresponds to a

consensus sequence as determined from normal cells.

The method of any one of claims 1 or 2, wherein the one or more samples are

derived from cell-free DNA fragments.

The method of any one of claims 1 or 2, wherein the one or more samples are

derived from RNA of a biological sample.

The method of any one of claims 1 to 4, wherein the plurality of samples are

sequenced in a single sequencing run.

The of any one of claims 1 to 5, wherein the statistical value of the statistical

distribution includes a mean value.

The of any one of claims 1 to 6, wherein the probability value is a z-score,

modified z-score, cumulative probability, Phred quality score, or modified Phred

quality score.

The of any one of claims 1 to 7, wherein the statistical distribution is the statistical

distribution of logarithmic transformations of the second variant frequencies.

The method of any one of claims 1 to 8, wherein the threshold is determined using

support vector machines classifier based on training data obtained from one or

more sequencing runs.

The method of any one of claims 1 to 9, wherein the threshold is a function of

variant frequency.

A computer-implemented method of detecting a variant having a first allele at a

first location in a target region in a first sample, the method comprising, at a

computer system:

— receiving a plurality of sequence reads obtained from sequencing DNA
fragments from at least two samples, the at least two samples including the first
sample, wherein the sequencing includes targeting the target region in the DNA
fragments;

— aligning the plurality of sequence reads to the target region of a reference
sequence;

— identifying whether the first allele exists at the first location in each sample of
the at least two samples based on aligned sequence reads of each sample at the
first location differing from a reference allele at the first location of the

reference sequence;
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— determining a variant count of the first allele at the first location and a wild
type count of the reference allele at the first location for each sample of the at
least two samples;

— selecting, from the at least two samples, at least one sample as a reference
sample;

— comparing a first variant count of the first allele at the first location and a first
wild type count of the reference allele at the first location for the first sample to
a second variant count of the first allele at the first location and a second wild
type count of the reference allele at the first location for the reference sample to
determine a probability value of the variant having the first allele at the first
location for the first sample; and

— comparing the probability value to a threshold value as part of determining
whether the first allele at the first location in the first sample is a true positive
for the first allele, the threshold value differentiating between false positives
and true positives for the first allele at the first location.

The method of claim 11, wherein the reference sample comprises two samples

with lowest variant frequencies for the first allele at the first location among the at

least two samples other than the first sample.

The method of any one of claims 11 or 12, wherein the probability value is

determined using chi-squared cumulative distribution function.

The method of any one of claims 11 or 12, wherein the probability value is

determined using Pearson proportion test.

The method of any one of claims 11 or 12, wherein the probability value is one or

more of z-score, modified z-score, p-value, chi-squared wvalue, cumulative

probability value, and quality score.

The method of claim 15, wherein the quality score is determined using a look-up

table.

The method of any one of claims 11 to 16, wherein the threshold is determined

using support vector machines classifier based on training data obtained from one

Or more sequencing runs.

The method of any one of claims 11 to 17, wherein the threshold is a function of

variant frequency.
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A computer product comprising a non-transitory computer readable medium

storing a plurality of instructions that when executed control a computer system to

detect true variants in a target region of a first sample, the instructions comprising:

receiving a plurality of sequence reads obtained from sequencing DNA
fragments from one or more samples, the one or more samples including the
first sample, wherein the sequencing includes targeting the target region in the
DNA fragments;

aligning the plurality of sequence reads to the target region of a reference
sequence;

identifying a set of sequence locations in the target region of the reference
sequence that have a reference allele of variants in a variant class, wherein at
least 50% of the sequence locations in the one or more samples exhibit a false
positive for the variants in the variant class in the sequence reads, and wherein
the set of sequence locations includes a first location;

at each location of the set of sequence locations and for each sample of the one
or more samples:

determining a read count at each location for each sample;

identifying candidate variants having variant alleles for the variants in the
variant class based on sequence reads of cach sample differing from the
reference allele at the same location of the reference sequence, a total number
of the candidate variants at each location in each sample being the variant
count in each location for each sample;

determining a variant frequency of variants in the variant class based on the
read count and the variant count, the variant frequency for each location in
cach sample forming a statistical distribution, wherein the variant frequency at
a first location in the set of sequence locations for the first sample is a first
variant frequency;

comparing the first variant frequency to a value of the statistical distribution to
determine a probability value of the first variant frequency relative to the value
of the statistical distribution; and

comparing the probability value to a threshold value as part of determining

whether candidate variants in the first sample are true positives, the threshold
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value differentiating between false positives and true positives for the variants

in the variant class.
20. The computer product of claim 19, wherein the statistical distribution is the
statistical distribution of a logarithmic transformation of the variant frequency at

each location for each sample.
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