(51) International Patent Classification 4: C12N 1/00
(11) International Publication Number: WO 88/05076
(43) International Publication Date: 14 July 1988 (14.07.88)

(21) International Application Number: PCT/GB87/00926
(22) International Filing Date: 30 December 1987 (30.12.87)
(31) Priority Application Number: 8700354
(32) Priority Date: 8 January 1987 (08.01.87)
(33) Priority Country: GB

(71) Applicant (for all designated States except US): UNITED DISTILLERS PLC [GB/GB]; Distillers House, 33 Ellerslie Road, Edinburgh EH12 6JW (GB).

(72) Inventor; and
(75) Inventor/Applicant (for US only): BRYAN-JONES, David, Garath [GB/GB]; 29a Dunster Road, Stirling FK9 5HX (GB).

(74) Agent: FITZPATRICKS; 4 West Regent Street, Glasgow G2 1RS (GB).

(54) Title: CULTURE AND PRESERVATION OF MICROORGANISMS WITHIN A CONCENTRATED MEDIUM

(57) Abstract

A microorganism growth medium is concentrated up from the optimum medium and extends the growth cycle of the microorganisms. The growth of the microorganism has not been dominantly limited by the depletion of essential nutrients, and therefore these are still present, even in the stationary and death phase of the growth cycle. The growth medium can therefore be diluted in these phases, preferably to the optimum growth medium and the overall growth of the microorganisms again commences.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>AT</th>
<th>Austria</th>
<th>FR</th>
<th>France</th>
<th>ML</th>
<th>Mali</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>HU</td>
<td>Hungary</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IT</td>
<td>Italy</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>JP</td>
<td>Japan</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LX</td>
<td>Sri Lanka</td>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>DE</td>
<td>Germany, Federal Republic of</td>
<td>MC</td>
<td>Monaco</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MG</td>
<td>Madagascar</td>
<td>US</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
Culture and preservation of microorganisms within a concentrated medium.

This invention relates to the culture of microorganisms. More particularly it relates to the preservation of viable microorganisms and a method of producing a quantity of such microorganisms for industrial use. A good example of this is the treatment of grass for ensilage.

Microorganisms are cultured in nutrient media typically composed of water, carbon sources, nitrogen sources and mineral salts, which provide for growth under favourable conditions of temperature, pressure, pH etc. In such a medium microorganisms proceed through a typical growth cycle, which is a consequence of the relative balance between the growth and death rates of the microorganisms, and which may be described as consisting of a lag phase or delayed growth phase, during which the microorganisms become acclimatised to the environment of the nutrient medium; an exponential growth phase, during which numbers increase logarithmically with time; an apparently stationary phase, during which an equilibrium culture density is reached; and finally a phase of accelerating death. The stationary phase arises from a number of factors, such as the accumulation of toxic substances and the depletion of nutrients, which inhibit the growth of the microorganisms. The rate of growth decreases and the death of cells commences, the balance between cell growth and cell death determining the population of viable microorganisms. In their natural environment a slow rate of cell death can prolong the stationary phase of the growth cycle, so effecting a strategy for maintaining viability between the intermittent occurrence of nutrients. This prolonged stationary phase of the growth cycle is the natural condition of many non-spore forming microorganisms between short spells of active growth, when nutrients once again become available.
Microorganisms are useful industrially, for example, for cheese manufacture, silage fermentation, effluent treatment, and deposit removal. The present method of producing microorganisms for such use is to grow them under optimum conditions (using the optimum growth/nutrient medium), harvest them, then preserve them by drying, freezing or freeze drying until ready for use. However all these methods of producing an industrially useful quantity of microorganisms are costly.

It is an object of the present invention to provide a means of preserving microorganisms in a viable condition without the need for drying and the like.

According to a first aspect of the invention there is provided a microorganism culture kit comprising a quantity of viable microorganisms, and a concentrated growth medium containing the microorganisms, the degree of concentration of the growth medium being such that the normal death phase is delayed and that on subsequent dilution of said growth medium, the number of microorganisms increase.

The length of the growth cycle of the microorganisms in the concentrated growth medium will increase with concentration. Generally, they will go through in sequence, a growth phase in which the rate of growth of the microorganisms is greater than the rate of death thereof, at the top end of this growth phase the number of microorganisms will be at a maximum; a stationary phase in which the growth and death rates are approximately equal; and a death phase in which the death rate of the microorganisms is greater than the growth rate thereof.

A microorganism culture in a medium designed for optimum growth of the microorganism will be taken as standard or normal.

As can be seen, whereas previous methods of supplying microorganisms all involve firstly growing the microorganisms in a normal/optimum growth medium, the present invention is contrary to this in that the growth medium purposely is not at optimum conditions: it is more concentrated.
The advantage of such a concentrated medium is that the shelf life of the microorganisms is sufficiently increased. That is, it has been found that under optimum growth conditions the limiting factor terminating the logarithmic growth phase is dominantly, depletion of one or more essential nutrients. In a concentrated medium, the normal logarithmic growth phase is more gradual but there is still a phase of growth. At the end of this growth phase, the growth is slowed down by a build up of inhibitors (such as by-products); but there is still an excess of nutrients present, thereby allowing slow growth to continue, and the high osmotic pressure and presence of insoluble solids appear to contribute towards retarding the death rate. The result is a prolonged stationary phase followed by a very gradual death phase. Therefore a significant proportion of the maximum number of microorganisms which were grown remain viable after a prolonged period.

The length of the growth cycle of the microorganisms will generally increase as the optimum growth medium is further concentrated. For Commercial Purposes alone the maximum concentration of the growth medium will be that which can still just pour. At the lower limit, there must be a sufficient number of viable microorganisms on purchase thereof so that they can quickly be grown up to an industrially useful quantity. Such a lower limit is thought to be at least 0.5% of the maximum quantity remain viable after two months, preferable at least 1%, more preferable at least 5%, and most preferably at least 10% of the microorganisms remain viable after 2 months.

The optimum nutrient medium for any microorganism is a matter of general knowledge. It is found economical where possible, however, to use at least one waste or by-product from an industrial process in the growth medium. Preferably the waste products are comprised in a waste stream which can be concentrated or diluted as required.
The waste products are preferably obtained from a food manufacturing process (such as would give whey waste) or a fermentation process. Spent wash or spent wash syrup (such as wheat spent wash) are particularly preferred for use with the growth medium, and are obtained as a by-product from alcohol production, particularly in the manufacture of whisky.

These effluents contain proteinaceous material, amino acids, yeast residues and other assimilable materials which are available for use in the culture of microorganisms. Spent wash typically contains from 2% to 12% solids and spent wash syrup from 12% to 55% solids. The solids content in the concentrated medium is preferably between 10% and 30%, advantageously about 16%.

From this discussion it will be appreciated that use of an industrial waste product or stream as discussed above for a concentrated growth medium or a portion thereof, forms a second aspect of the invention.

It is important to limit as far as possible the growth of contaminant microorganisms or undesirable mutants. If the storage medium, however, resembles in as many parameters as possible the environment in which the microorganisms are ultimately to be used, then undesirable mutants are unlikely to outgrow other cells. Inhibitors could be added and/or pH chosen to selectively inhibit undesirable microorganisms. Propionic acid has been successfully used in some systems as an inhibitor.

The prolonged stationary phase is believed to be achieved by control of the rates of cell growth and cell death compared to a normal laboratory culture. Some slowing of the growth rate of the microorganisms is attributed to pH, osmotic pressure and the utilisation of available nutrients, but a relatively greater slowing of cell death rate is controlled by a number of factors including pH, osmotic pressure, the concentration of toxic
substances, temperature, insoluble particles and the agglomeration of cells into clumps. A knowledge of the effect of these factors in prolonging the stationary phase is required to design a suitable concentrated medium for each particular microorganism or mixture of microorganisms.

It will be appreciated that not all microorganisms could be stored in a concentrated form of their optimum growth medium. For example some pathogenic microorganisms require very specific conditions for growth. It will, however, be apparent by trial and error which microorganisms could be so stored. There are a number of industrially useful microorganisms which could be so stored, especially such as Lactobacillus plantarum (for silage), and Bacillus subtilis (for effluent treatment).

As has been mentioned, a significant feature of the present invention is that the concentrated medium still contains an excess of essential nutrients well into the death phase. Thus, if the concentrated medium is diluted below the concentration inhibiting the microorganisms' growth, the microorganisms will start to increase in number again; to grow.

Therefore, in accordance with a third aspect of the present invention, a method of providing a viable quantity of microorganisms comprises taking a microorganism culture kit as defined in the first aspect of the invention and diluting the concentrated growth medium, where the microorganisms are in the stationary phase or death phase of their growth cycle, so that inhibitory substances are at a concentration below that inhibiting the microorganisms' growth.

The advantage of this method is that a sufficient number of the microorganisms will still be viable on sale of the culture kit, so that they can quickly and easily be grown up to a required, useful quantity. Moreover, this method of supplying a useful quantity of microorganisms is very economical. The growth of the microorganisms will
depend on the dilution factor, which ultimately will be such as to provide a microorganism culture whose numbers are dominantly limited by depletion of one or more essential nutrients. In such a system, the optimum quantity of microorganisms will be produced.

From a commercial consideration, the dilution factor should be such as to obtain an industrially useful quantity of microorganisms in a short period, preferably less than three days, but most preferably up to two days. In practical terms an industrially useful quantity is preferably at least 60% of the maximum quantity which would be obtained in an optimum growth medium, and is more preferably at least 80%.

Further nutrients may need to be added on dilution of the growth medium. This, however, complicates the use of the culture kit and it is preferred, where possible, to concentrate the growth medium sufficiently at the start so that no further nutrients need be added.

The invention is illustrated in the following examples. Examples 1 to 4 are used to supply a quantity of microorganisms for silage treatment, whereas example 5 supplies a quantity of microorganisms for effluent treatment.

Example 1

Two strains of \textit{Lactobacillus plantarum} were first grown in MRS or other suitable medium. A 1% by volume inoculum was then added to a storage medium consisting of wheat spent wash syrup (a distillery by-product) at 16% Dry Matter, to which acetate/acetic acid buffer (pH 5.0, 0.2 Molar) and sucrose (0.05 Molar) have been added. This was held at ambient temperature (20°C ± 4°C). After 7 days the bacteria had grown to 1×10^9 bacteria per millilitre. After a further 4 weeks the medium was diluted 10 fold and sucrose (final concentration .03 Molar) and acetate buffer (final concentration 0.02 Molar) added. The diluted medium was stored at ambient temperature for 48 hours, during which time the bacteria grew to 1×10^9 bacteria per millilitre.
Example 2
Repeating steps of Example 1, the same inoculum was added to a similar medium as before, but containing acetate/acetic acid buffer, pH 5.0, 0.4 Molar and sucrose, 0.55 Molar. This was held at ambient temperature (20°C ± 4°C). After 7 days the bacteria had grown to 2 x 10^9 bacteria per millilitre. After a further 4 weeks the medium was diluted 20 fold. The diluted medium was stored at ambient temperature for 48 hours, during which time the bacteria grew to 1 x 10^9 bacteria per millilitre.

Example 3
Repeating steps of Example 1, the same inoculum was added to a similar medium as Example 2, except that propionic acid (10 parts per million) and hexanoic acid (10 parts per million) were further added. This was held at ambient temperature (20°C ± 4°C). After 7 days the bacteria had grown to 2 x 10^9 bacteria per millilitre. After a further 4 weeks the medium was diluted 25 fold. The diluted medium was stored at ambient temperature for 48 hours during which time the bacteria grew to 1.0 x 10^9 bacteria per millilitre.

Example 4
Repeating steps of Example 1, the same inoculum was added to a similar medium as Example 2, except that propionic acid (1000 parts per million) and calcium carbonate (0.2%) were further added. This was held at ambient temperature (20°C ± 4°C). After 7 days the bacteria had grown to 2 x 10^9 bacteria per millilitre. After a further 4 weeks the medium was diluted 20 fold. The diluted medium was stored at 25°C for 24 hours, during which time the bacteria grew to 1.5 x 10^9 bacteria per millilitre.

Example 5
A strain of *Bacillus subtilis* is first grown in Nutrient Broth or other suitable medium. A 1% by volume inoculum was then added to a storage medium consisting of
wheat spent wash syrup (a distillery by-product) at 16% Dry Matter adjusted to pH 6.8 with ammonium hydroxide, to which a lactose (0.56 Molar) and potassium dihydrogen orthophosphate (0.1 Molar) have been added. This was incubated with aeration at 30°C for 24 hours and then held at ambient temperature (20°C ± 4°C). After 7 days the bacteria had grown to 8 x 10⁸ bacteria per millilitre. After a further 4 weeks the medium was diluted 10 fold. The diluted medium was incubated with aeration at 25°C for 24 hours during which time the bacteria grew to 2 x 10⁹ bacteria per millilitre.

A comparison of a culture Lactobacillus plantarum on an optimum growth medium (Oxoid) and a concentrated growth medium in accordance with the invention is illustrated in Graphs 1 and 2 hereinafter.

Graph 1 shows that the culture in the Oxoid medium has a growth cycle of about 40 days, after which time there is about a 100% decrease from the maximum quantity of microorganisms. On the other hand, the viable culture in the concentrated nutrient medium after 60 days is still about 10% of the maximum (m). The useful shelf life is at least three months. Furthermore, if the Oxoid medium is diluted, there is no overall increase in the rate of growth of the microorganisms. Conversely, as illustrated by Graph 2, since only a small percentage of nutrients have been consumed, the microorganisms will grow normally if the concentrated medium is diluted. In this system dilution (25 times) to the optimum growth medium results in logarithmic growth of the microorganisms. The graph shows the Log no of bacteria per ml, thus the total quantity of bacteria actually produced is masked by the extra water.

The examples will now be examined and compared.

A comparison of examples 1 and 2, shows that the sucrose can be concentrated up to 0.55 Molar and therefore no further addition on dilution is required. The optimum pH is 5 (0.4M).
Example 4 shows that propionic acid increases the eventual quantity of microorganisms. This acid acts as an inhibitor for moulds, but is also thought to increase the growth rate. The calcium carbonate acts as a buffering agent.

The 16% DM obtained from the spent wash syrup is the optimum and maximum concentration which will still pour. The dilution factor for optimum growth is about 20 to 25, but it is still acceptable between a dilution factor of 5 and 100.

Example 5 shows the preferred conditions for providing *Bacillus subtilis* for effluent treatment.

As shown by the description and examples a particularly useful source of nutrients for the concentrated growth medium is that of industrial waste products. Therefore a second aspect of the invention provides for use of a by-product or waste product from a suitable industrial process for a concentrated growth medium or a portion thereof, particularly a food or fermentation process, more particularly a process for the production of alcohol, advantageously whisky manufacture.

The example in the graphs for the *Lactobacillus plantorum* system shows that at least 10% of the maximum amount of microorganisms are still viable after about 2 months. It is thought that the percentage viability could be raised for this system by, for example, storing the culture kit in a fridge. For other systems the percentage viability will vary, and could well be much more than 10% after 2 months.
Claims

1. A microorganism culture kit comprising a quantity of viable microorganisms, and a concentrated growth medium containing the microorganisms, the degree of concentration of the growth medium being such that the onset of the normal death phase is delayed and that on subsequent dilution of the growth medium, the number of microorganisms increases.

2. A microorganism culture kit as defined in claim 1, wherein the minimum concentration of the growth medium is such that 0.5% or more of the maximum number of microorganisms still remain viable after two months.

3. A microorganism culture kit as defined in any one of the preceding claims, wherein the concentrated growth medium comprises a waste product from a food or fermentation process.

4. A microorganism culture kit as defined in claim 3 wherein the waste product is spent wash or spent wash syrup obtained in the production of a fermentation process.

5. A microorganism culture kit as defined in claim 4, wherein the fermentation process is involved in whisky manufacture.

6. A microorganism culture kit as defined in any one of the preceding claims, wherein the microorganism is *Bacillus subtilis*.

7. A microorganism culture kit as defined in any one of the preceding claims, wherein the microorganism is *Lactobacillus plantarum*.

8. Use of a waste product from an industrial process as defined in any one of claims 3 to 5 for a concentrated growth medium, or a portion thereof, as defined in any of claims 1 to 5.

9. A method of providing a quantity of viable microorganisms, comprising taking a microorganism culture kit as defined in any one of claims 1 to 7, and diluting the concentrated growth medium when the microorganisms are in the stationary or death phase of their growth.
cycle, so that inhibitory substances are at a concentration below that inhibiting the microorganisms growth.

10. A method of providing a quantity of viable microorganisms according to claim 9 wherein the dilution factor is such as to obtain at least 60% of the maximum quantity of microorganisms in up to three days.
Graph 1

Log No. Bacteria per ml.

Concentrated storage medium based on spent wash syrup

MRS (Oxoid) standard laboratory medium

Time (Days)
Graph 2

Log No. bacteria per ml.

Dilution (25 x)

Time (Days)
INTERNATIONAL SEARCH REPORT

I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC

| IPC 4 | C 12 N 1/00 |

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC 4</td>
<td>C 12 N 1</td>
</tr>
</tbody>
</table>

Documentation searched other than Minimum Documentation to the extent that such Documents are included in the Fields Searched

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Chemical Abstracts, volume 88, no. 1, 1 February 1978, (Columbus, Ohio, US), see page 424, abstract 47726t, & JP, A, 77108079 (HOMARE SANGYO CO., LTD) 10 September 1977</td>
<td>1</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

IV. CERTIFICATION

- **Date of the Actual Completion of the International Search**
 15th March 1988

- **Date of Mailing of this International Search Report**
 18 APR 1988

- **International Searching Authority**
 EUROPEAN PATENT OFFICE

- **Signature of Authorized Officer**
 [Signature]

Form PCT/ISA/210 (second sheet) (January 1985)