© OAPI

ORGANISATION AFRICAINE DE LA PROPRIETE INTELLECTUELLE

51

Inter. Cl. 862K 5/05 (06.01)

11

N° 17616

FASCICULE DE BREVET D'INVENTION

Numéro de dépôt : 1201500520

(PCT/JP14/067485)

Date de dépôt : 30/06/2014

30 Priorité(s) :

JP n° 2013-138488 du 01/07/2013

73 Titulaire(s) :

YAMAHA HATSUDOKI KABUSHIKI KAISHA,

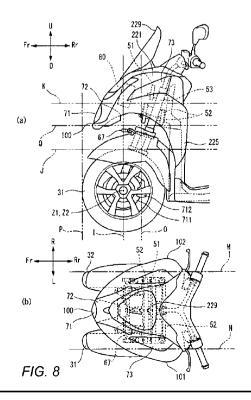
2500 Shingai, Iwata-shi, SHIZUOKA 4388501 (JP)

72 Inventeur(s) :

TAKANO Kazuhisa (JP) IIZUKA Toshio (JP) NOGUCHI Hirotoshi (JP)

74 Mandataire: SCP AKKUM, AKKUM & Associates,

Quartier Mballa II, Dragages, B.P. 4966, YAOUNDE (CM).


54 Titre : Vehicle.

Délivré le : 29/07/2016

Publié le : 28.04.2017

57 Abrégé :

A vehicle (1) is provided in which a front end (100) of a front portion of the vehicle and at least part of a headlamp (71) are situated on the left of a right end of a right front wheel (32) and on the right of a left end of a left front wheel (31) in such a state that the vehicle (1) is in the upright state and are situated above upper ends of the right front wheel (32) and the left front wheel (31) and below an upper end of a lower cross portion (52) in relation to an up-and-down direction of a body frame (21) in a position lying ahead of a front end of the lower cross portion (52) when looking at the vehicle (1) from a side thereof.

DESCRIPTION

[Title of the Invention] VEHICLE
[Technical Field]
[0001]

The present invention relates to a vehicle that includes a body frame that can lean and two front wheels.

[Background Art]

[0002]

5

10

15

There is known a vehicle that includes a body frame that leans to the right when the vehicle turns right and leans to the left when the vehicle turns left and two front wheels (for example, refer to Patent Literature 1 and Non-Patent Literature 1).

[0003]

The vehicles described in Patent Literature 1 and Non-Patent Literature 1 that include the body frame that can lean and the two front wheels include a link mechanism including an upper cross portion and a lower cross portion and a headlamp. An outline of a front portion of the vehicles is configured by, at least, a body cover that covers at least part of the link mechanism and the headlamp.

[Prior Art Literatures]

[Patent Literature]

[0004]

[Patent Literature 1] U.S. Design Patent No. 547,242

[Non-Patent Literature]

[Non-Patent Literature 1] Catalogo partidi ricambio, MP3 300ie LT Mod. ZAPM64102, Piaggio [Summary of the Invention] [Problem that the Invention is to solve] [0006]

In the vehicles described in Patent Literature 1 and Non-Patent Literature 1 that include the body frame that can lean and the two front wheels, a front end of the lower cross portion of the link mechanism is situated ahead of the upper cross portion thereof. Because of this, a space is provided in front of the upper cross portion where no constituent member of the link mechanism passes even in the event that the link mechanism is activated to operate.

[0007]

5

10

15

20

In the vehicles described in Patent Literature 1 and Non-Patent Literature 1 that include the body frame that can lean and the two front wheels, at least part of the headlamp is provided inwards of the body cover. The headlamp is a device that includes a light source and an outer cover that is provided in a position lying away to the front from the light source and that is hence long in the front-and-rear direction. The headlamp that is long in the front-and-rear direction is disposed by using the space defined in front of the upper cross

portion. Namely, in Patent Literature 1 and Non-Patent Literature 1, a reduction in voluminousness in the appearance of the front portion of the vehicle is attempted to be realized by making the front portion of the vehicle compact based on the reasonable idea that the headlamp is disposed by making use of the space defined in front of the upper cross portion as the dead space.

[8000]

5

10

15

20

On the other hand, in general, in case a front edge of the front portion of the vehicle is shaped so that a front end and an upper end thereof are connected smoothly, it is easy to reduce the air resistance. Then, in the vehicles described in Patent Literature 1 and Non-Patent Literature 1 that includes the body frame that can lean and the two front wheels, a front end of the front portion of the vehicle projects to a position lying ahead of the front wheels in the side view of the vehicle. This configuration enables the front edge of the front portion of the vehicle to be shaped so that the front end is connected smoothly to the upper end thereof that is situated above the upper cross portion. In Patent Literature 1 and Non-Patent Literature 1, the reduction in air resistance is realized by adopting the configuration described above.

Incidentally, in the vehicles described in Patent Literature 1 and Non-Patent Literature 1 that include the body

frame that can lean and the two front wheels, as has been described above, the front end of the lower cross portion is situated ahead of the upper cross portion, and the headlamp that is long in the front-and-rear direction is disposed directly ahead of the upper cross portion. Because of this, a front end of the headlamp and the front end of the lower cross portion are situated near to each other in relation to the front-and-rear direction. Because of this, in a side view of the vehicle, a portion that connects a portion that constitutes part of the front edge of the front portion of the vehicle and that is situated in an area that is occupied by the headlamp in relation to an up-and-down direction (hereinafter, referred to as a headlamp area front edge portion) with a portion of the front edge of the front portion of the vehicle that is situated in front of the lower cross portion easily takes a shape that rises perpendicularly, increasing the resistance.

10

15

20

To describe this in greater detail, in the vehicles described in Patent Literature 1 and Non-Patent Literature 1 that includes the body frame that can lean and the two front wheels, the headlamp that is long in the front-and-rear direction is disposed in front of the upper cross portion that lies near to the upper end of the front portion of the vehicle. Because of this, the front edge of the front portion of the vehicle tends to take easily a bent shape in which an

inclination angle relative to a horizontal plane of the portion from the upper end to the headlamp area front edge portion is small, while an inclination angle to a horizontal plane of the portion from the headlamp area front edge portion to the front end is large. Because of this, the air resistance tends to be increased easily at the portion of the front edge of the front portion of the vehicle that extends from the headlamp area front edge portion to the front end.

Then, in the vehicles described in Patent Literature 1 and Non-Patent Literature 1 that include the body frame that can lean and the two front wheels, a lower portion of the headlamp area front edge portion is extended to the front of the front wheels, and the front edge of the front portion of the vehicle is positioned directly ahead of the front wheels so that the front edge of the front portion of the vehicle takes a rectilinear shape, thereby reducing the air resistance. However, as a result of the front end of the front portion of the vehicle being extended to the front of the front wheels, the front portion of the vehicle tends to be increased in voluminousness in appearance.

In this way, as in Patent Literature 1 and Non-Patent Literature 1, combining (a) the idea that the voluminousness in appearance is reduced by disposing the headlamp by using the dead space in front of the upper cross portion and (b) the idea that the front edge of the front portion of the vehicle

is shaped so that the front end is connected smoothly to the upper end to reduce the air resistance results in the fact that although the air resistance is reduced, the voluminousness in appearance is increased.

[0010]

5

10

15

20

Then, an object of the invention is to provide a vehicle having a headlamp disposed in an interior of a body cover in which the voluminousness in appearance is reduced while reducing the air resistance.

[Means for Solving the Problem]

[0011]

With a view to achieving the object, according to an aspect of the invention, there is provided a vehicle having:

a body frame that leans to a right of the vehicle when the vehicle turns right and that leans to a left of the vehicle when the vehicle turns left;

a right front wheel and a left front wheel that are disposed so as to be aligned in a left-and-right direction of the body frame;

a right suspension device that supports the right front wheel at a lower portion thereof and that absorbs an upward displacement of the right front wheel in an up-and-down direction of the body frame;

a left suspension device that supports the left front wheel at a lower portion thereof and that absorbs an upward

displacement of the left front wheel in the up-and-down direction of the body frame;

a link mechanism which includes:

5

10

15

20

a right side portion that supports an upper portion of the right suspension device so as to allow the upper portion to turn about a right steering axis that extends in the up-and-down direction of the body frame;

a left side portion that supports an upper portion of the left suspension device so as to allow the upper portion to turn about a left steering axis that is parallel to the right steering axis;

an upper cross portion that supports an upper portion of the right side portion at a right end portion thereof so as to allow the upper portion to turn about an upper right axis that extends in a front-and-rear direction of the body frame and supports an upper portion of the left side portion at a left end portion thereof so as to allow the upper portion to turn about an upper left axis that is parallel to the upper right axis and that is supported on the body frame at a middle portion thereof so as to turn about an upper middle axis that is parallel to the upper right axis and the upper left axis; and

a lower cross portion that supports a lower portion of the right side portion at a right end portion so as to allow the upper portion to turn about a lower right axis that is parallel

5 .

10

15

20

to the upper right axis and supports a lower portion of the left side portion at a left end portion thereof so as to allow the upper portion to turn about a lower left axis that is parallel the upper left axis and that is supported on the body frame at a middle portion thereof so as to turn about a lower middle axis that is parallel to the upper middle axis;

a headlamp that includes a light source to emit light to the front of the vehicle; and

a body cover that covers at least part of the headlamp, the upper cross portion and a right side surface, a left side surface and an upper surface of the lower cross portion, wherein

at least part of the headlamp is disposed on the left of a right end of the right front wheel and on the right of a left end of the left front wheel in such a state that the vehicle is in an upright state and is disposed above upper ends of the right front wheel and the left front wheel and below an upper end of the lower cross portion in relation to the up-and-down direction of the body frame in a position lying ahead of a front end of the lower cross portion in a side view of the vehicle, and wherein

in a front end portion of the vehicle that is made up of the headlamp and the body cover,

a front edge of the front portion of the vehicle extends from a front end as far as above the upper cross portion and behind the front end of the lower cross portion in the side

view of the vehicle in such a state that the vehicle is in the upright, and

the front end of the front portion of the vehicle is situated on the left of the right end of the right front wheel and on the right of the left end of the left front wheel in such a state that the vehicle is in the upright state and is situated above the upper ends of the right front wheel and the left front wheel and below the upper end of the lower cross portion in relation to the up-and-down direction of the body frame in a position lying ahead of the front end of the lower cross portion in the side view of the vehicle.

The inventors have noticed that it is difficult to make the reduction in air resistance compatible with the reduction in voluminousness in appearance even by combining the idea (a) with the idea (b) as done in Patent Literature 1 and Non-Patent Literature 1. Then, the inventors have studied the configuration in which the headlamp that is long in the front-and-rear direction is positively disposed by making use of the space defined in front of the lower cross portion and the front end of the front portion of the vehicle is positioned near the area where the headlamp is disposed and have completed the invention.

[0013]

5

10

15

20

At a glance, in considering Patent Literature 1 and

Non-Patent Literature 1, it is considered that the front portion of the vehicle is enlarged in size in the front-and-rear direction as a result of the headlamp that is long in the front-and-rear direction being disposed in the space defined directly ahead of the lower cross portion that is situated ahead of the upper cross portion at the front end thereof. Additionally, in case the front end of the front portion of the vehicle is situated above the upper ends of the right front wheel and the left front wheel, it appears difficult that the front edge of the front portion of the vehicle is formed into a smooth rectilinear shape and hence that the air resistance is reduced.

However, the inventors have noticed that the voluminousness in appearance of the front portion of the vehicle can be reduced while reducing the air resistance thereat by forming the front portion of the vehicle into such a shape that the front end thereof projects downwards and forwards by positioning the headlamp below the upper end of the lower cross portion and have completed the invention.

Namely, according to the vehicle of the invention which includes the body frame that can lean and the two front wheels, at least part of the headlamp is disposed on the left of the right end of the right front wheel and on the right of the left end of the left front wheel in such a state that the vehicle

is in the upright state and is disposed above the upper ends of the right front wheel and the left front wheel and below the upper end of the lower cross portion in relation to the up-and-down direction of the body frame in the position lying ahead of the front end of the lower cross portion in the side view of the vehicle.

Namely, compared with the vehicles described in Patent Literature 1 and Non-Patent Literature 1, the headlamp of the vehicle according to the invention is provided in the lower position that lies below the upper end of the lower cross portion. Since the headlamp is long in the front-and-rear direction, the headlamp area front edge portion of the front edge of the front portion of the vehicle can be situated in the area that lies lower and further forwards.

In the vehicle according to the invention, the front end of the front portion of the vehicle can be made up of the headlamp area front end portion (in which case the front end of the headlamp is situated in a frontmost position on the front portion of the vehicle), and the front end of the front portion of the vehicle can be situated ahead of the headlamp area front edge portion (in which case part of the body cover is situated ahead of the headlamp).

[0016]

5

10

15

20

Additionally, according to the vehicle of the invention,

as to the front portion of the vehicle that is made up of the headlamp and the body cover, the front edge of the front portion of the vehicle extends from the front end as far as above the upper cross portion and behind the front end of the lower cross portion in the side view of the vehicle in such a state that the vehicle is in the upright state. Further, the front end of the front portion of the vehicle is situated on the left of the right end of the right front wheel and on the right of the left end of the left front wheel in such a state that the vehicle is in the upright state and is situated above the upper ends of the right front wheel and the left front wheel and below the upper end of the lower cross portion in relation to the up-and-down direction of the body frame in the position lying ahead of the front end of the lower cross portion in the side view of the vehicle.

[0017]

15

5

10

According to the vehicle of the invention, the front end of the front portion of the vehicle is disposed in the area where at least part of the headlamp is disposed and which lies above the upper ends of the right front wheel and the left front wheel and below the upper end of the lower cross portion.

20

In the vehicle according to the invention, as has been described above, the headlamp area front edge portion of the front edge of the front portion of the vehicle is situated in

the area that lies lower and further forwards in the side view of the vehicle. Further, since the front end of the front portion of the vehicle is situated at the headlamp area front edge portion or ahead thereof, the front end of the front portion of the vehicle can be situated in the area that lies lower and further forwards. Namely, the front end of the front portion of the vehicle can be disposed in the position that lies away largely forwards and downwards from the upper end of the front portion of the vehicle. Because of this, the front edge of the front portion of the vehicle is formed into the smoothly continuous rectilinear shape from the upper end to the front end of the front portion of the vehicle.

Additionally, since the front end of the front portion of the vehicle is situated above the upper ends of the right front wheel and the left front wheel, the front portion of the vehicle is formed into a compact shape in the up-and-down direction, whereby the voluminousness in appearance of the front portion of the vehicle is reduced. Further, the front end of the front portion of the vehicle is situated above the upper ends of the right front wheel and the left front wheel and below the upper end of the lower cross portion in relation to the up-and-down direction of the body frame in the position that lies ahead of the front end of the lower cross portion. Namely, the front portion of the vehicle is easily formed into

the shape in which the front end thereof projects to the front in the lower position. Because of this, it is easy that the portion lying near to the eyes of the user who rides on the vehicle is made small, whereby the voluminousness in appearance is easily reduced.

[0020]

5

From the reasons described heretofore, there is provided the vehicle having the headlamp disposed in the interior of the body cover in which the voluminousness in appearance of the front portion of the vehicle is reduced while reducing the air resistance.

[0021]

In the vehicle according to the invention, the following

configuration may be adopted.

(2) A right end and a left end of the front portion of the vehicle are situated behind the front end of the lower cross portion in the top view of the vehicle in such a state that the vehicle is in the upright state.

[0022]

15

20

The front portion of the vehicle is formed into the shape in which the front end projects ahead of the right end and the left end of the front portion of the vehicle, whereby the voluminousness in appearance of the front portion of the vehicle is reduced while reducing the air resistance also in the top view of the vehicle.

[0023]

In the vehicle according to the invention, the following configuration may be adopted.

(3) The right end and the left end of the front portion of the vehicle are situated behind a front end of the upper cross portion in the top view of the vehicle in such a state that the vehicle is in the upright state.

[0024]

[0025]

5

10

15

The front portion of the vehicle is formed into the shape in which the front end projects further ahead of the right end and the left end of the front portion of the vehicle, whereby the voluminousness in appearance of the front portion of the vehicle is reduced while reducing the air resistance also in the top view of the vehicle.

In the vehicle according to the invention, the following configuration may be adopted.

(4) The right end and the left end of the front portion of the vehicle are situated behind a rear end of the lower cross portion in the top view of the vehicle in such a state that the vehicle is in the upright state.

[0026]

The front portion of the vehicle is formed into the shape in which the front end projects further ahead of the right end and the left end of the front portion of the vehicle, whereby

the voluminousness in appearance of the front portion of the vehicle is reduced while reducing the air resistance also in the top view of the vehicle.

[0027]

[0029]

[0030]

In the vehicle according to the invention, the following configuration may be adopted.

(5) The right end and the left end of the front portion of the vehicle are situated behind a rear end of the upper cross portion in the top view of the vehicle in such a state that the vehicle is in the upright state.

[0028]

The front portion of the vehicle is formed into the shape in which the front end projects further ahead of the right end and the left end of the front portion of the vehicle, whereby the voluminousness in appearance of the front portion of the vehicle is reduced while reducing the air resistance also in the top view of the vehicle.

In the vehicle according to the invention, the following configuration may be adopted.

(6) The front end of the front portion of the vehicle is situated behind front ends of the right front wheel and the left front wheel in the side view of the vehicle in such a state that the vehicle is in the upright state.

15

5

10

As has been described above, the front portion of the vehicle is reduced in length in the front-and-rear direction while the front edge of the front portion of the vehicle is formed into the smooth rectilinear shape, whereby the voluminousness in appearance of the front portion of the vehicle is reduced more.

[0031]

5

10

15

20

In the vehicle according to the invention, the following configuration may be adopted.

(7) At least part of the headlamp is situated above a lower end of the lower cross portion in relation to the up-and-down direction of the body frame in the side view of the vehicle in such a state that the vehicle is in the upright state.
[0032]

Since at least part of the headlamp is situated above the lower end of the lower cross portion, even in the event that the body frame leans, it is difficult that the headlamp interferes with the front wheels. The vehicle is provided which includes the headlamp that is made difficult to interfere with the front wheels while maintaining the low air resistance and the compactness in size of the front portion of the vehicle. [0033]

In the vehicle according to the invention, the following configuration may be adopted.

(8) At least part of the headlamp is situated ahead of

rotating axes of the right front wheel and the left front wheel in the side view of the vehicle in such a state that the vehicle is in the upright state.

[0034]

5

10

15

20

Since at least part of the headlamp is situated ahead of the rotating axes of the right front wheel and the left front wheel, the portion of the front edge of the front portion of the vehicle which lies directly ahead of the headlamp and the front end which lies ahead of that portion can be situated further forwards. This makes it easy to form the front portion of the vehicle into the shape in which the front end projects further forwards, whereby the vehicle is provided in which the air resistance is small and the voluminousness in appearance of the front portion of the vehicle is small.

In the vehicle according to the invention, the following configuration may be adopted.

(9) At least part of an outer cover that covers the light source of the headlamp makes up part of the front edge of the front portion of the vehicle in the side view of the vehicle.
[0036]

Since at least part of the transparent or translucent outer cover forms part of the front edge of the front portion of the vehicle, an impression can be imparted that part of the front portion of the vehicle is cut out in the side view of

the vehicle, thereby making it possible to provide the vehicle in which the voluminousness in appearance of the front portion of the vehicle is reduced further.

[0037]

In the vehicle according to the invention, the following configuration may be adopted.

(10) The front portion of the vehicle is formed into a shape in which the front portion of the vehicle is tapered from the right end and the left end thereof towards the headlamp in the top view of the vehicle.

[0038]

10

15

20

The front portion of the vehicle is formed into the shape in which the front portion is tapered as it extends forwards (the tapered shape) so that the front end projects ahead of the right end and the left end of the front portion of the vehicle, whereby the voluminousness in appearance of the front portion of the vehicle is reduced further while reducing the air resistance also in the top view of the vehicle.

[0039]

In the vehicle according to the invention, the following configuration may be adopted.

(11) The vehicle has a brake device that applies a braking force to at least one of the right front wheel and the left front wheel and a fluid unit including a plurality of brake fluid flow paths to control the operation of the brake device

by switching the flow paths through which a brake fluid flows, and at least part of the fluid unit is provided so as to be aligned with the headlamp along a vertical direction in such a state that the vehicle is in the upright state.

[0040]

5

10

15

20

The headlamp and the fluid unit are both heavy devices, and since the headlamp and at least part of the fluid unit are disposed so as to be aligned with each other along the vertical direction, it is easy to balance the weight of the front portion of the vehicle in relation to the left-and-right direction and the front-and-rear direction.

[0041]

In the vehicle according to the invention, the following configuration may be adopted.

(12) At least part of the fluid unit is provided between the headlamp and the upper cross portion in a front view of the vehicle in such a state that the vehicle is in the upright state.

[0042]

Since at least part of the fluid unit is disposed above the headlamp, the interference of the fluid unit with the right front wheel and the left front wheel is easily avoided. Additionally, since at least part of the fluid unit is disposed below the upper cross portion, it is difficult that the center of gravity of the vehicle becomes high. This provides the

vehicle having the fluid unit mounted thereon in such a way as to make it difficult for the center of gravity of the vehicle to become high while avoiding the interference of the fluid unit with the front wheels.

[0043]

5

10

15

20

In the vehicle according to the invention, the following configuration may be adopted.

(13) The front edge of the front portion of the vehicle is shaped so that an inclination angle of a portion that is situated above the headlamp relative to the horizontal plane is smaller than an inclination angle of a portion that is situated above the portion above the headlamp relative to the horizontal plane in the side view of the vehicle in such a state that the vehicle is in the upright state.

[0044]

On the front edge of the front portion of the vehicle, since the inclination angle of the portion situated above the headlamp relative to the horizontal plane is smaller than the inclination angle of the portion situated above the portion above the headlamp relative to the horizontal plane, the front edge of the front portion of the vehicle is easily shaped so as to project forwards in the lower position. This provides the vehicle in which the voluminousness in appearance of the front portion of the vehicle is reduced to thereby reduce the air resistance further.

100451

In the vehicle according to the invention, the following configuration may be adopted.

(14) A vertical distance from the front end of the front portion of the vehicle to the upper end of the lower cross portion is smaller than a vertical distance from the upper end of the lower cross portion to the upper end of the front portion of the vehicle in a front view of the vehicle in such a state that the vehicle is in the upright state.

[0046]

5

10

15

20

The portion from the front end of the front portion of the vehicle to the upper end of the lower cross portion is situated below the portion from the upper end of the lower cross portion to the upper end of the front portion of the vehicle in relation to the up-and-down direction. Since the portion from the front end of the front portion of the vehicle to the upper end of the lower cross portion which is situated at a lower portion of the front portion of the vehicle is formed small in the vertical direction, the portion of the front portion of the vehicle that projects forwards can be made small, whereby the voluminousness in appearance of the front portion of the vehicle is reduced.

[0047]

In the vehicle according to the invention, the following configuration may be adopted.

(15) The headlamp has a right headlamp including an outer cover that forms part of a right edge of the front portion of the vehicle and a left headlamp including an outer cover that forms part of a left edge of the front portion of the vehicle, and wherein

5

10

15

20

the front end of the front portion of the vehicle is situated between the outer cover of the right headlamp and the outer cover of the left headlamp in the top view of the vehicle.

The front portion of the vehicle is formed into the shape in which the front end projects ahead of the right end and the left end of the front portion of the vehicle, whereby the voluminousness in appearance of the front portion of the vehicle is reduced further while reducing the air resistance also in the top view of the vehicle.

[0049]

In the vehicle according to the invention, the following configuration may be adopted.

(16) The vehicle has a brake device that applies a braking force to at least one of the right front wheel and the left front wheel and a fluid unit including a plurality of brake fluid flow paths to control the operation of the brake device by switching the flow paths through which a brake fluid flows, and at least part of the fluid unit is disposed between the right headlamp and the left headlamp in the top view of the

vehicle in such a state that the vehicle is in the upright state.
[0050]

In relation to the fluid unit, the right headlamp and the left headlamp which are all heavy devices, since at least part of the fluid unit is disposed between the right headlamp and the left headlamp, the weight of the front portion of the vehicle is easily balanced in relation to the left-and-right direction.

[Brief Description of Drawings]

[0051]

5

10

15

[Fig. 1] Fig. 1 is an overall side view of a vehicle according to a first embodiment of the invention.

[Fig. 2] Fig. 2 is a front view of a front portion of the vehicle shown in Fig. 1.

[Fig. 3] Fig. 3 is a plan view of the front portion of the vehicle shown in Fig. 1.

[Fig. 4] Fig. 4 is a plan view of the front portion of the vehicle in a state where the vehicle shown in Fig. 1 is steered.

[Fig. 5] Fig. 5 is a front view of the front portion of the vehicle in a state where the vehicle shown in Fig. 1 is caused to lean.

[Fig. 6] FIG. 6 is a front view of the front portion of the vehicle in a state where the vehicle shown in FIG. 1 is steered and is caused to lean.

[Fig. 7] Fig. 7 is a front view of the vehicle showing the

construction of a front portion of the vehicle.

[Fig. 8] (a) is a side view of the vehicle shown in Fig. 7, and (b) is a plan view of the vehicle shown in Fig. 7.

[Fig. 9] Fig. 9 is a front view of a vehicle according to a second embodiment of the invention.

[Fig. 10] (a) is a side view of the vehicle shown in Fig. 9, and (b) is a plan view of the vehicle shown in Fig. 9.

[Mode for Carrying out the Invention]

[0052]

5

10

15

20

<First Embodiment>

Hereinafter, referring to the accompanying drawings, a first embodiment of a vehicle according to the invention will be described.

In the embodiments, a vehicle having two front wheels and one rear wheel will be described as an example of the vehicle.

[0053]

<Overall Configuration>

Fig. 1 is a side view of the whole of a vehicle 1 as viewed from the left thereof. Hereinafter, in the drawings, an arrow F denotes a forward direction of the vehicle 1 and an arrow B denotes a rearward direction of the vehicle 1. An arrow U denotes an upward direction of the vehicle 1 and an arrow D denotes a downward direction of the vehicle 1. When forward, rearward, leftward and rightward directions are referred to

in the following description, they means forward, rearward, leftward and rightward directions as seen from a rider of the vehicle 1. An up-and-down direction means a vertical direction and also a substantially up-and-down direction which inclines from the vertical direction. A left-and-right direction means a horizontal direction and also a substantially left-and-right direction which inclines from the horizontal direction. A center in a vehicle's width direction means a central position of the vehicle 1 in the vehicle's width direction. The right in the vehicle's width direction means a direction directed from the center in the vehicle's width direction towards the right. The left in the vehicle's width direction means a direction directed from the center in the vehicle's width direction towards the left. An unloaded state of the vehicle means a state in which the vehicle 1 is in the upright state with front wheels neither steered nor caused to lean in such a state that no rider rides on and no fuel is put in the vehicle 1.

[0054]

5

10

15

20

As shown in Fig. 1, the vehicle 1 includes a vehicle main body portion 2, a pair of left and right front wheels 3 (refer to Fig. 2), a rear wheel 4, a steering mechanism 7, and a link mechanism 5. The vehicle main body portion 2 includes a body frame 21, a body cover 22, a seat 24 and a power unit 25. [0055]

The body frame 21 has a headstock 211, a down frame 212, an under frame 214 and a rear frame 213. In Fig. 1, in the body frame 21, portions that are hidden by the body cover 22 are shown by broken lines. The body frame 21 supports the power unit 25, the seat 24 and the like. The power unit 25 has a drive source such as an engine, an electric motor or the like, a transmission and the like.

[0056]

5

10

15

20

The head pipe 211 is disposed at a front portion of the vehicle 1. The headstock 211 is disposed so as to be slant with respect to the vertical direction so that, in a side view of the vehicle 1, an upper portion thereof is positioned behind the lower portion thereof. The steering mechanism 7 and the link mechanism 5 are disposed around the headstock 211. A steering shaft 60 of the steering mechanism 7 is turnably inserted into the head pipe 211. The headstock 211 supports the link mechanism 5.

The headstock 211 is part of the body frame 21 and is allowed to lean to the right of the vehicle 1 when the vehicle 1 turns right and to lean to the left of the vehicle 1 when the vehicle 1 turns left.

[0057]

The down frame 212 is connected to the headstock 211. The down frame 212 is disposed behind the headstock 211 and extends along the up-and-down direction. The under frame 214

is connected to a lower portion of the down frame 212. The under frame 214 extends rearwards from the lower portion of the down frame 212. The rear frame 213 is disposed behind the under frame 214 and extends rearwards and upwards. The rear frame 213 supports the seat 24, the power unit 25, a tail lamp and the like.

[0058]

5

10

15

20

The body frame 21 is covered by the body cover 22. The body cover 22 has a front cover 221, a pair of left and right mudguards 223, a leg shield 225, a center cover 226 and a rear mudguard 224.

[0059]

The front cover 221 is arranged directly ahead of the seat 24. The front cover 221 covers at least parts of the steering mechanism 7 and the link mechanism 5. The front cover 221 includes a front portion 221a that is disposed ahead of the link mechanism 5. In the side view of the vehicle 1 in the unloaded state, the front portion 221a of the front cover 221 is disposed behind front ends of the front wheels 3. In the side view of the vehicle 1 in the unloaded state, the front portion 221a of the front cover 221 is disposed behind front ends of the front wheels 3. The leg shield 225 is disposed below the front cover 221 and ahead of the seat 24. The center cover 226 is disposed so as to cover the circumference of the rear frame 213.

[0060]

The pair of left and right front mudguards 223 (see Fig. 2) is disposed directly below the front cover 221 and directly above the pair of front wheels 3. The rear mudguard 224 is disposed directly above a rear portion of the rear wheel 4.

5

The pair of left and right front wheels 3 is disposed below the headstock 211 and directly below the front cover 221 when the vehicle 1 is unloaded. The rear wheel 4 is disposed below the center cover 226 and the rear mudguard 224.

[0062]

<Steering Mechanism>

10

Fig. 2 is a front view of the vehicle 1 shown in Fig. 1 which results when a front portion of the vehicle 1 is seen from the front thereof. Fig. 3 is a plan view of the vehicle 1 shown in Fig. 1 which results when the front portion of the vehicle 1 is seen from thereabove. Figs. 2 and 3 show the vehicle 1 as seen through the body cover 22.

15

20

As shown in Figs. 2 and 3, the steering mechanism 7 has a steering force transmission mechanism 6, a left shock absorber 33, a right shock absorber 34 and a pair of left and right front wheels 3.

[0063]

The pair of left and right front wheels 3 includes a left front wheel 31 and a right front wheel 32. The left front wheel

31 and the right front wheel 32 are disposed so as to be aligned in the left-and-right direction of the body frame 21. The left front wheel 31 and the right front wheel 32 are disposed laterally symmetrical with each other with respect to a center of the vehicle 1 in relation to the vehicle's width direction.

In addition, of the pair of left and right front mudguards 223, a left front mudguard 227 is disposed above the left front wheel 31. Of the pair of left and right front mud guards 223, a right front mud guard 228 is disposed above the right front wheel 32. The left front wheel 31 is supported on the left shock absorber 33. The right front wheel 32 is supported on the right shock absorber 34.

[0064]

5

10

15

20

In this description, the "left-and-right direction of the body frame 21" denotes a direction that intersects at right angles or perpendicular to an axial direction of the headstock 211 in a front view of the vehicle 1. An up-and-down direction of the body frame 21 denotes a direction which extends in an axial direction of the headstock 211 in the front view of the vehicle 1. For example, the up-and-down direction of the body frame 21 coincides with the axial direction of the headstock 211 in the front view of the vehicle 1. As shown in Fig. 2, in such a state that the vehicle 1 is in an upright state, a rightward direction RF of the body frame 21 coincides with a rightward direction R in a horizontal direction when the

vehicle 1 is viewed front the front thereof. Because of this, only the rightward direction R in the horizontal direction is shown in Fig. 2. As shown in Fig. 5, in such a state that the vehicle 1 leans relative to a road surface, in the front view of the vehicle 1, the rightward direction RF of the body frame 21 does not coincide with the rightward direction R in the horizontal direction, and an upward direction UF of the body frame 21 does not coincide with an upward direction U in the vertical direction.

[0065]

5

10

15

20

The left shock absorber (an example of a left suspension device) 33 is a so-called telescopic shock absorber and absorbs vibration from a road surface. The left shock absorber 33 supports the left front wheel 31 at a lower portion thereof and absorbs an upward displacement of the left front wheel 31 in the up-and-down direction of the body frame 21. The left shock absorber 33 has a first lower-side portion 33a and a first upper-side portion 33b. The left front wheel 31 is supported on the first lower-side portion 33a. The first lower-side portion 33a extends in the up-and-down direction, and a left wheel axle 314 is supported on a lower end side of the first lower-side portion 33a. The left wheel axle 314 supports the left front wheel 31. The left axle shaft 314 extends along a rotating axis Z1 of the left front wheel 31.

The first upper-side portion 33b is disposed at an upper

side of the first lower-side portion 33a in such a state that the first upper-side portion 33b is partially inserted into the first lower-side portion 33a. The first upper-side portion 33b can move relative to the first lower-side portion 33a in a direction in which the first lower-side portion 33a extends. An upper portion of the first upper-side portion 33b is fixed to a first bracket 317. In this way, the left shock absorber 33 supports the left front wheel 31 so as to allow it to be displaced in the up-and-down direction.

[0066]

10

5

The first lower-side portion 33a and the first upper-side portion 33b make up two telescopic elements that are aligned parallel in the front-and-rear direction and are connected together. This configuration restricts the first upper-side portion 33b from turning relative to the first lower-side portion 33a.

[0067]

15

20

The right shock absorber (an example of a right suspension device) 34 is a so-called telescopic shock absorber and absorbs vibration from the road surface. The right shock absorber 34 supports the right front wheel 32 at a lower portion thereof and absorbs an upward displacement of the right front wheel 32 in the up-to-down direction of the body frame 21. The right shock absorber 34 includes a second lower portion 34a and a second upper portion 34b. The right front wheel 32 is

supported on the second lower-side portion 34a. The second lower-side portion 34a extends in the up-and-down direction, and a right wheel axle 324 is supported on a lower end side of the second lower-side portion 34a. The right wheel axle 324 supports the right front wheel 32. The right axle shaft 324 extends along a rotating axis Z2 of the right front wheel 32.

The second upper-side portion 34b is disposed at an upper side of the second lower-side portion 34a in such a state that the second upper-side portion 34b is partially inserted into the second lower-side portion 34a. The second upper-side portion 34b can move relative to the second lower-side portion 34a in a direction in which the second lower-side portion 34a extends. An upper portion of the second upper-side portion 34b is fixed to a second bracket 327. In this way, the right shock absorber 34 supports the right front wheel 32 so as to allow it to be displaced in the up-and-down direction.

The second lower-side portion 34a and the second upper-side portion 34b make up two telescopic elements that are aligned parallel in the front-and-rear direction and are connected together. This configuration restricts the second upper-side portion 34b from turning relative to the second lower-side portion 34a.

[0069]

5

10

15

20

The steering force transmission mechanism 6 is disposed

above the left front wheel 31 and the right front wheel 32. The steering force transmission mechanism 6 comprises a steering member 28 as a member that inputs steering force exerted by a rider. The steering member 28 has a steering shaft 60 and a handlebar 23 that is connected to an upper portion of the steering shaft 60.

The steering shaft 60 is supported on the headstock 211 between the left shock absorber 33 and the right shock absorber 34 in the left-and-right direction of the body frame 21. Additionally, the steering shaft 60 can turn about a middle steering axis Y3 that extends in the up-and-down direction of the body frame 21. The steering shaft 60 is disposed so as to extend substantially in the up-and-down direction with part thereof inserted into the headstock 211 and can turn relative to the headstock 211. The steering shaft 60 is turned as the rider turns the handlebar 23.

The steering force transmission mechanism 6 turns the left shock absorber 33 about a left steering axis Y1 that extends in the up-and-down direction and turns the right shock absorber 34 about a right steering axis Y2 that is parallel to the left steering axis Y1 in association with the turning of the steering shaft 60 which is triggered in response to the operation of the handlebar 23.

[0070]

10

15

20

The steering effort transmission mechanism 6 has, in

addition to the steering member 28, a first transmission plate 61, a second transmission plate 62, a third transmission plate 63, a first joint 64, a second joint 65, a third joint 66, a tie-rod 67, the first bracket 317 and the second bracket 327. The steering effort transmission mechanism 6 transmits the steering effort by which the rider operates the handlebar 23 to the first bracket 317 and the second bracket 327 by way of those constituent members.

[0071]

5

10

15

20

The first transmission plate 61 is disposed at the center in the vehicle's width direction and is connected to the steering shaft 60 so as not to turn relative to the steering shaft 60. The first transmission plate 61 turns as the steering shaft 60 turns.

[0072]

The second transmission plate 62 is connected to a left side portion 53 of the link mechanism 5, which will be described later, so as to turn relatively. The second transmission plate 62 is fixed to the first bracket 317. The second transmission plate 62 is disposed below the first bracket 317. The second transmission plate 62 is disposed on the left of the first transmission plate 61.

[0073]

The third transmission plate 63 is connected to a right side portion 54 of the link mechanism 5, which will be described

later, so as to turn relatively. The third transmission plate 63 is disposed laterally symmetrical with the second transmission plate 62 around the first transmission plate 61. The third transmission plate 63 is fixed to the second bracket 327. The third transmission plate 63 is positioned below the second bracket 327.

[0074]

5

10

15

20

The first joint 64 is disposed at a front portion of the first transmission plate 61. The first joint 64 is supported by a turning shaft that extends in the up-and-down direction so as to turn relative to the first transmission plate 61. The second joint 65 is disposed at a front portion of the second transmission plate 62. The second joint 65 is supported by a turning shaft that extends in the up-and-down direction so as to turn relative to the second transmission plate 62. The third joint 66 is disposed at a front portion of the third transmission plate 63. The third joint 66 is supported by a turning shaft that extends in the up-and-down direction so as to turn relative to the third transmission plate 63. The first joint 64, the second joint 65, and the third joint 66 each have a shaft portion that extends in the front-and-rear diction at a front portion thereof.

[0075]

The tie-rod 67 is disposed so as to extend in the vehicle's width direction. The tie-rod 67 is supported so as to turn about

the shaft portions that extend in the front-and-rear direction at the front portion of the first joint 64, the front portion of the second joint 65 and the front portion of the third joint 66. This tie-rod 67 is part of the steering force transmission mechanism 6 and moves so as to maintain a parallel relationship with the lower cross portion 52, which will be described later, when the body frame 21 leans.

[0076]

5

10

15

20

The steering effort transmission mechanism 6 that is configured in the way described above transmits the steering effort transmitted from the steering member 28 to the tie rod 67 by way of the first transmission plate 61 and the first joint 64. This causes the tie rod 67 to be displaced either leftwards or rightwards. The steering force transmitted to the tie-rod 67 is transmitted from the tie-rod 67 to the first bracket 317 via the second transmission plate 62 and the second joint 65 and is transmitted from the tie-rod 67 to the second bracket 327 via the third transmission plate 63 and the third joint 66. As a result, the first bracket 317 and the second bracket 327 turn in the direction in which the tie-rod 67 is displaced. [0077]

<Link Mechanism>

In this embodiment, the link mechanism 5 adopts a four-joint or four-bar linkage (also, referred to as a parallelogram linkage).

The link mechanism 5 is disposed below the handlebar 23. The link mechanism 5 is connected to the head pipe 211 of the body frame 21. The link mechanism 5 includes an upper cross portion 51, a lower cross portion 52, a left side portion 53 and a right side portion 54 as a configuration by which the vehicle 1 is caused to lean. Additionally, the link mechanism 5 includes the first bracket 317 and the left shock absorber 33 as a configuration that is connected to a lower portion of the left side portion 53 to lean together with the left side portion 53. Further, the link mechanism 5 includes the second bracket 327 and the right shock absorber 34 as a configuration that is connected to a lower portion of the right side portion 54 to lean together with the right side portion 54.

The right side portion 54 supports an upper portion of the right shock absorber 34 so as to turn about a right steering axis Y2 that extends in the up-and-down direction of the body frame 21. The left side portion 53 supports an upper portion of the left shock absorber 33 so as to turn a left steering axis Y1 that is parallel to the right steering axis Y2.

The upper cross portion 51 supports the upper portion of the right side portion 54 at the right end portion thereof so as to turn around an upper right axis E extending in the front-and-rear direction of the body frame 21, supports the upper portion of the left side portion 53 at the left end portion

5

10

15

20

thereof so as to turn around an upper left axis D which is parallel to the upper right axis E, and the middle portion thereof is supported on the body frame 21 so as to turn around an upper middle axis C which is parallel to the upper right axis E and the upper left axis D.

The lower cross portion 52 supports the lower portion of the right side portion 54 at the right end portion thereof so as to turn around a lower right axis H which is parallel to the upper right axis E, supports the lower portion of the left side portion 53 at the left end portion thereof so as to turn around a lower left axis G which is parallel to the upper left axis E, and the middle portion thereof is supported on the body frame 21 so as to turn around a lower middle axis F which is parallel to the upper middle axis C.

The upper cross portion 51 includes a plate-shaped member 512 that is disposed at a front side of the headstock 211 so as to extend in the vehicle width direction. The plate-shaped member 512 is supported on the headstock 211 by a supporting portion that is positioned at a center in the left-and-right direction and can turn about an upper middle axis C that extends substantially in the front-and-rear direction relative to the headstock 211.

A left end of the upper cross portion 51 is connected to the left side portion 53 by a supporting portion. The upper

cross portion 51 can turn relative to the left side portion 53 about the upper left axis D that extends substantially in the front-and-rear direction. The right end of the upper cross portion 51 is connected to the right side portion 54 via the connecting portion E The upper cross portion 51 can turn relative to the right side portion 54 about the upper right axis E that extends substantially in the front-and-rear direction.

[0800]

10

15

20

The lower cross portion 52 is supported on the headstock 211 by a supporting portion and can turn about the lower middle axis F that extends substantially in the front-and-rear direction. The lower cross portion 52 is disposed below the upper cross portion 51. The lower cross portion 52 has substantially the same widthwise length as that of the upper cross portion 51 in relation to the vehicle's width direction and is disposed parallel to the upper cross portion 51.

The lower cross portion 52 includes a pair of plate-shaped members 522, 522 that extend in the vehicle's width direction. The pair of plate-shaped members 522, 522 is disposed so as to hold the headstock 211 therebetween in the front-and-rear direction. The pair of plate-shaped members 522, 522 is connected integrally to each other by a middle portion 523. The middle portion 523 may be integral with or separated

from the pair of the plate-shaped member 522, 522. A left end of the lower cross portion 52 is connected to the left side portion 53 by a supporting portion. The lower cross portion 52 can turn relative to the left side portion 53 about the lower left axis G that extends substantially in the front-and-rear direction. A right end of the lower cross portion 52 is connected to the right side portion 54 by a supporting portion. The lower cross portion 52 can turn relative to the right side portion 54 about the lower right axis H that extends substantially in the front-and-rear direction.

The left side portion 53 is on a left side of the headstock 211 and extends parallel to a direction in which the headstock 211 extends. The left side portion 53 is disposed above the left shock absorber 33 directly above the left front wheel 31. The left side portion 53 is connected to the first bracket 317 at a lower portion thereof and is attached so as to turn about the left steering axis Y1 relative to the first bracket 317. This left side portion 53 supports an upper portion of the left shock absorber 33 so as to allow it to turn about the left steering axis Y1.

[0083]

10

15

20

The right side portion 54 is disposed on a right side of the headstock 211 and extends parallel to the direction in which the headstock 211 extends. The right side portion 54 is

disposed above the right shock absorber 34 directly above the right front wheel 32. The right side portion 54 is connected to the second bracket 327 at a lower portion thereof and is attached so as to turn about the right steering axis Y2 relative to the second bracket 327. This right side portion 54 supports an upper portion of the right shock absorber 34 so as to allow it to turn about the right steering axis Y2.

In this way, the upper cross portion 51, the lower cross portion 52, the left side portion 53 and the right side portion 54 are connected together in such a posture that the upper cross portion 51 and the lower cross portion 52 become parallel to each other and that the left side portion 53 and the right side portion 54 become parallel to each other.

<Steering Operation>

[0085]

5

10

15

20

Fig. 4 is a plan view of the front portion of the vehicle 1 when the vehicle 1 is steered to be turned, depicting how the vehicle 1 is steered to be turned.

As shown in Fig. 4, when the handlebar 23 is turned in the left-and-right direction, the steering effort transmission mechanism 6 of the steering mechanism 7 is activated to thereby perform a steering operation. When the steering shaft 60 turns as a result of the handlebar 23 being turned, the first transmission plate 61 turns in association

5

10

15

20

with the turning of the steering shaft 60. Namely, the front wheels 3 are turned by the steering force transmission mechanism 6 that moves in response to the turning of the steering shaft 60.

For example, when the steering shaft 60 turns in a direction indicated by an arrow T in Fig. 4, the tie rod 67 moves leftwards and rearwards in association with the turning of the first transmission plate 61. As this occurs, the first transmission plate 61 is allowed to turn relative to the first joint 64 by the turning shaft that extends in the up-and-down direction of the first joint 64, and the tie-rod 67 moves to the left rear while maintaining its posture. The second transmission plate 62 and the third transmission plate 63 turn in the direction indicated by the arrow T about the left side portion 53 and the right side portion 54, respectively, as the tie-rod 67 moves leftwards and rearwards. As this occurs, the second transmission plate 62 turns relative to the second joint 65 about the rotating shaft of the second joint 65 that extends in the up-and-down direction, and the third transmission plate 63 turns relative to the third joint 66 about the rotating shaft of the third joint 66 that extends in the up-and-down direction. [0086]

When the second transmission plate 62 and the third transmission plate 63 turn in the direction indicated by the arrow T, the first bracket 317 and the second bracket 327 turn

in the direction indicated by the arrow T. When the first bracket 317 and the second bracket 327 turn in the direction indicated by the arrow T, the left front wheel 31 turns about the left steering axis Y1 (refer to Fig. 2) via the left shock absorber 33, and the right front wheel 32 turns about the right steering axis Y2 (refer to Fig. 2) via the right shock absorber 34.

[0087]

5

10

15

20

<Leaning Operation>

Fig. 5 is a front view of the front portion of the vehicle 1 when the vehicle 1 is steered to be turned, depicting a leaning operation of the vehicle 1.

As shown in Fig. 5, the vehicle 1 leans to the left or right as the link mechanism 5 operates. The operation of the link mechanism 5 means that the individual members (the upper cross portion 51, the lower cross portion 52, the left side portion 53 and the right side portion 54) that activate a leaning operation in the link mechanism 5 turn relatively about their connecting points as axes so as to change the shape of the link mechanism 5.

In the link mechanism 5 of this embodiment, for example, the upper cross portion 51, the lower cross portion 52, the left side portion 53 and the right side portion 54 which are disposed so as to form substantially a rectangular shape when viewed from the front with the vehicle 1 being in the upright

state turn to change the rectangular shape that they form substantially into a parallelogram shape in such a state that the vehicle leans. The link mechanism 5 performs a leaning operation in association with the relative turning operation of the upper cross portion 51, the lower cross portion 52, the left side portion 53 and the right side portion 54 to thereby cause the left front wheel 31 and the right front wheel 32 to lean accordingly.

[8800]

5

10

15

20

For example, when the rider causes the vehicle 1 to lean to the left, the headstock 211 leans relative to the vertical direction. When the headstock 211 leans, the upper cross portion 51 turns relative to the headstock 211 about the upper middle axis C, and the lower cross portion 52 turns relative to the headstock 211 about the lower middle axis F. Then, the upper cross portion 51 moves to the left than the lower cross portion 52 and the left side portion 53 and the right side portion 54 lean relative to the vertical direction while kept parallel to the headstock 211. The left side portion 53 and the right side portion 54 turn relative to the upper cross portion 51 and the lower cross portion 52 when the left side portion 53 and the right side portion 54 lean. Consequently, when the vehicle 1 is caused to lean, the left front wheel 31 and the right front wheel 32 that are supported on the left side portion 53 and the right side portion 54, respectively,

lean while kept parallel to the headstock 211 relative to the vertical direction as the left side portion 53 and the right side portion 54 lean.

[0089]

5

10

15

20

Additionally, as they lean, the tie-rod 67 turns relative to the individual shaft portions, extending in the front-and-rear direction, of the first joint 64, the second joint 65, and the third joint 66. This allows the tie-rod 67 to maintain a parallel posture to the upper cross portion 51 and the lower cross portion 52 even though the vehicle 1 leans.

<Steer operation and Lean operation>

FIG. 6 is a front view of the front portion of the vehicle 1 in a state where the vehicle 1 is steered and is caused to lean.

In Fig. 6, the vehicle 1 is steered to the left and is caused to lean to the left thereof. When the vehicle 1 operates as illustrated in Fig. 6, the directions of the left front wheel 31 and the right front wheel 32 are changed by the steering operation, and both the left front wheel 31 and the right front wheel 32 are caused to lean together with the body frame 21 by the leaning operation. In this state, the upper cross portion 51, the lower cross portion 52, the left side portion 53 and the right side portion 54 of the link mechanism 5 are turned to change the shape that they form substantially into a

parallelogram, whereby the tie-rod 67 moves leftwards or rightwards, that is, in a direction in which the vehicle 1 is steered (leftwards in Fig. 6) and rearwards.

[0091]

<Configuration of Front Portion of Vehicle>

th Fi th

5

15

20

Next, by using Figs. 7 and 8, positions where the body cover 22 and the members that are situated in an interior of the body cover 22 are disposed will be described in detail. Fig. 7 is a front view of a front portion of the vehicle 1 when the front wheels are not turned in such a state that the vehicle 1 is in the upright state. In Fig. 8, (a) is a side view of the vehicle shown in Fig. 7, and (b) is a plan view of the vehicle shown in Fig. 7.

[0092]

As shown in Figs. 7 and 8, the vehicle 1 includes, as body cover members that make up the front portion of the vehicle, an upper portion of the front cover 221, the leg shield 225 and a windshield 229. The front portion of the vehicle is a portion at the front of the vehicle 1 which has an external appearance that is integral with a headlamp 71. The front mud guard 223 that is disposed separately from the headlamp 71 does not constitute the front portion of the vehicle that is defined above. Additionally, the vehicle 1 according to the invention includes lamps in the interior of the body cover 22. As the lamps, there are provided the headlamp 71, a positioning lamp

72 and turn signal lamps 73. The body cover members cover the headlamp 71, the upper cross portion 51 and at least part of a right side surface, a left side surface and an upper surface of the lower cross portion 52.

[0093]

(Lamps)

[0094]

5

10

15

The vehicle 1 includes the headlamp 71 at a central portion of the vehicle 1 in the left-and-right direction thereof as shown in Fig. 7, and the headlamp 71 includes a light source to emit light to the front of the vehicle. Additionally, the positioning lamp 72 is provided above the headlamp 71 so as to be adjacent thereto. The visibility of a road surface by the rider can be enhanced by turning on the headlamp 71. The visibility of the vehicle 1 by the driver or rider of an oncoming vehicle or a pedestrian can be enhanced by turning on the positioning lamp 72.

In the vehicle 1 of this embodiment, the headlamp 71 and the positioning lamp 72 are integrated into a single lamp unit. The headlamp 71 and the positioning lamp 72 share a common housing and outer lens (an example of an outer cover).

As shown at (a) in Fig. 8, the housing for the headlamp 71 and the positioning lamp 72 is provided in an interior of the front cover 221. The outer lens for the headlamp 71 and

the positioning lamp 72 is exposed to the front from the front cover 221.

[0096]

A projection lens, a light source, and a reflector are disposed in an interior of the headlamp 71 in such a way as to be aligned in that order from the front to the rear of the headlamp 71. Because of this configuration, the headlamp 71 is made into a member that is long in the front-and-rear direction. Light from the light source in the headlamp 71 and light from a light source in the positioning lamp 72 are emitted to the front of the vehicle 1 via the outer lens.

[009]

5

10

15

20

The turn signal lamps 73 are provided left and right at an upper portion of the front portion of the vehicle as shown in Fig. 7. Drivers or riders of vehicles 1 or pedestrians around the vehicle 1 can be informed of a travelling direction of the vehicle 1 by looking at the turn signal lamp 73 that is illuminated. The turn signal lamps 73 are provided so as to straddle over the upper cross portion 51 in the front-and-rear direction. This enhances the visibility of the turn signal lamps 73 when looking at the vehicle 1 from both sides thereof.

[8000]

The front cover 221 covers left and right side surfaces and at least part of an upper surface of the headlamp 71, left

and right side surfaces and at least part of an upper surface of the upper cross portion 51, and left and right side surfaces and at least part of an upper surface of the lower cross portion 52. The outer lens for the headlamp 71 and the positioning lamp 72 and outer lenses of the turn signal lamps 73 are exposed to the outside from the front cover 221.

Additionally, in this embodiment, as shown in Fig. 7, the positioning lamp 72 and the turn signal lamps 73 are formed so as to extend from the center to sides of the vehicle 1 in the front view of the vehicle 1, which gives the front portion of the vehicle an external appearance that is pointed at a front end thereof and in which the voluminousness in appearance is reduced in the front view of the vehicle 1.

The headlamp 71 is situated ahead of a rotating axis Z1 of the left front wheel 31 and a rotating axis Z2 of the right front wheel 32 (ahead of an additional line I) and above upper ends of the left front wheel 31 and the right front wheel 32 (above an additional line J) in relation to the up-and-down direction in such a state that the vehicle 1 is in the upright state and the front wheels are not turned as shown at (a) in Fig. 8. The additional line I is a vertical line that passes through the rotating axes Z1, Z2. The additional line J is a horizontal line that passes through the upper ends of the left front wheel 31 and the right front wheel 32. In this way, the

headlamp 71 is disposed on a front side of the front portion of the vehicle so that the headlamp 71 does not interfere with the left front wheel 31 and the right front wheel 32 when the vehicle 1 is steered while being caused to lean.

[0100]

10

15

20

Additionally, at least part of the headlamp 71 is situated between the upper end and a lower end of the lower cross portion 52 (between an additional line K and an additional line Q) in relation to the up-and-down direction. additional line K is a horizontal line that passes through the upper end of the lower cross portion 52. The additional line Q is a horizontal line that passes through the lower end of the lower cross portion 52. A front end portion of the lower cross portion 52 is situated ahead of the upper cross portion 51. The link mechanism 5 is inclined so that a lower portion is situated ahead of an upper portion thereof. Since part of the headlamp 71 is situated between the upper end and the lower end of the lower cross portion 52 that is situated ahead of the upper cross portion 51 at a front end thereof, the front cover 221 that covers the headlamp 71 and the link mechanism 5 is formed into a shape in which a lower portion thereof projects to the front as shown at (a) in Fig. 8. [0101]

As shown at (b) in Fig. 8, at least part of the headlamp 71 is situated on the left of a right end of the right front

wheel 32 (on the left of an additional line M) and on the right of a left end of the left front wheel 31 (on the right of an additional line N) in such a state that the vehicle 1 is in the upright state. The additional line M is a line that passes through the right end of the right front wheel 32 to extend in the front-and-rear direction. The additional line N is a line that passes through the left end of the left front wheel 31 to extend in the front-and-rear direction.

Additionally, as shown at (a) in Fig. 8, at least part of the headlamp 71 is situated ahead of the front end of the lower cross portion 52 (ahead of an additional line 0) and above the upper ends of the right front wheel 32 and the left front wheel 31 (above the additional line J) in the side view of the vehicle 1. The additional line 0 is a horizontal line that passes through the front end of the lower cross portion 52.

Further, at least part of the headlamp 71 is disposed below the upper end of the lower cross portion 52 (below the additional line K) in relation to the up-and-down direction of the body frame 21.

[0102]

5

10

15

20

(External Appearance of the Front Portion of the Vehicle)

As shown at (a) in Fig. 8, a portion of the front portion of the vehicle that is situated in a frontmost position is referred to as a front end 100. In the vehicle 1 of this embodiment, a front end of the front cover 221 that is situated

below the headlamp 71 constitutes the front end 100 of the front portion of the vehicle. As shown at (a) in Fig. 8, in the side view of the vehicle 1, the front end 100 is situated above the upper ends of the left front wheel 31 and the right front wheel 32 (above the additional line J) and below the upper end of the lower cross portion 52 (below the additional line K). Additionally, as shown at (b) in Fig. 8, in the top view of the vehicle 1, the front end 100 is situated between the left front wheel 31 and the right front wheel 32. Namely, the front portion of the vehicle is formed into a shape in which a lower portion at the center in the left-and-right direction projects to the front.

[0103]

5

10

15

20

In addition, an outline of an upper portion of the front portion of the vehicle that appears in the side view of the vehicle 1 is referred to as an upper edge of the front portion of the vehicle. As shown at (a) in Fig. 8, an upper edge portion is made up of the outer lens of the headlamp 71, the outer lens of the positioning lamp 72, the front cover 221 and the windshield 229. The upper edge of the front portion of the vehicle extends from the front end 100 as far as above the upper end of the upper cross portion 51 and behind the front end of the lower cross portion 52 in the side view of the vehicle 1. [0104]

As shown at (a) in Fig. 8, as to the front portion of

the vehicle that is made up of the headlamp 71 and the body cover 22, the front edge of the front portion of the vehicle extends from the front end 100 as far as above the upper cross portion 51 and behind the front end of the lower cross portion 52 in the side view of the vehicle 1 in such a state that the vehicle 1 is in the upright state.

The front end 100 of the front portion of the vehicle is situated on the left of the right end of the right front wheel 32 (on the left of the additional line M) and on the right of the left end of the left front wheel 31 (on the right of the additional line N) in such a state that the vehicle 1 is in the upright state. Additionally, as shown at (a) in Fig. 8, the front end 100 of the front portion of the vehicle is situated ahead of the front end of the lower cross portion 52 (ahead of the additional line O) and above the upper ends of the right front wheel 32 and the left front wheel 31 (above the additional line J) in the side view of the vehicle 1. Further, the front end 100 of the front portion of the vehicle is situated below the upper end of the lower cross portion 52 (below the additional line K) in relation to the up-and-down direction of the body frame 21.

[0105]

5

10

15

20

As shown at (b) in Fig. 8, an outline of a left portion of the front portion of the vehicle that appears in the top view of the vehicle 1 is referred to as a left edge of the front

portion of the vehicle. In addition, an outline of a right portion of the front portion of the vehicle that appears in the top view of the vehicle 1 is referred to as a right edge of the front portion of the vehicle. The left edge and right edge of the vehicle 1 are formed of the outer lens of the headlamp 71, the outer lens of the positioning lamp 72 and the front cover 221.

The left edge of the front portion of the vehicle extends from the front end 100 as far as on the left of a left end of the upper cross portion 51 in the top view of the vehicle 1. A left end 101 of the left edge of the front portion of the vehicle is situated on the left of the left front wheel 31 (on the left of the additional line N). Additionally, the left end 101 of the left edge of the front portion of the vehicle is situated behind the front lower cross portion 52 of the lower cross portions 52 that are arranged back and forth in the front-and-rear direction. The left end 101 of the left edge of the front portion of the vehicle is situated behind the upper cross portion 51.

[0106]

10

15

20

Similarly, the right edge of the front portion of the vehicle extends from the front end 100 as far as on the right of a right end of the upper cross portion 51. A right end 102 of the right edge of the front portion of the vehicle is situated on the right of the right front wheel 32 (on the right of the

additional line M). Additionally, the right end 102 of the right edge of the front portion of the vehicle is situated behind the front lower cross portion 52 of the lower cross portions 52 that are arranged back and forth in the front-and-rear direction. Further, a right end portion of the right edge of the front portion of the vehicle is situated behind the upper cross portion 51.

[0107]

5

10

15

20

In this way, in the vehicle 1 according to this embodiment, also in the top view of the vehicle 1, the front end 100 projects forwards at a central portion of the front portion of the vehicle in the left-and-right direction, and a left and right edge portions are formed so as to extend from the front end 100 as far as outer sides of the left and right end portions Because of this, the front of the upper cross portion 51. portion of the vehicle is formed so as to be tapered towards the headlamp 71 from the right end portion of the right edge and the left end portion of the left edge of the front portion of the vehicle. Namely, the front portion of the vehicle is formed into a streamlined shape in which front portions of the left and right end portions of the front portion of the vehicle are cut out, thereby reducing the voluminousness in appearance of the front portion of the vehicle. Additionally, since the left and right end portions 101, 102 of the front portion of the vehicle are situated behind the rear lower cross portion 52, also in the top view of the vehicle 1, angles formed by the left edge and the right edge of the front portion of the vehicle and the travelling direction of the vehicle 1 become small, thereby providing the vehicle 1 that presents a small air resistance.

5

10

15

20

[0108]

In addition, as shown at (b) in Fig. 8, in case the left and right end portions 101, 102 of the front portion of the vehicle are situated behind the upper cross portion 51 that is situated behind the front end of the lower cross portion 52 at their front ends, the angles formed by the left edge and the right edge and the travelling direction of the vehicle 1 can preferably be made smaller.

Being different from the embodiment, in case the headlamp is disposed directly ahead of the upper cross portion, since the upper cross portion is situated behind the front end of the front lower cross portion, a distance defined in the front-and-rear direction between the front end of the headlamp and the front end of the lower cross portion becomes short. Then, an angle formed by the upper edge of the front portion of the vehicle that extends from the outer lens of the headlamp to the front cover that covers the front of the lower cross portion and the travelling direction of the vehicle 1 becomes large. This causes the front portion of the vehicle to be formed into a rectangular parallelepiped shape, thereby increasing

the voluminousness in appearance of the front portion of the vehicle. Additionally, this increases the air resistance thereat.

In contrast with this, according to the vehicle of this embodiment, the front portion of the vehicle is formed into the streamlined shape in which the front portion is partially cut out, whereby the voluminousness in appearance thereat is reduced.

[0109]

(Hydraulic Unit)

In Fig. 7 and at (a) and (b) in Fig. 8, reference numeral 80 denotes the hydraulic unit. The fluid unit 80 is a metallic member. A plurality of flow paths are formed in an interior of the fluid unit 80. The fluid unit 80 is one of constituent elements of a so-called ABS (Anti-lock Braking System).

The fluid unit 80 controls the operations of brake devices of the front wheels and the rear wheels by switching the flow paths through which a brake fluid flows. As shown at (a) in Fig. 8, the brake device has a brake disc 711 that rotates together with the front wheel 3 and a brake caliper 712 that applies a brake force on the rotation of the brake disc 711.

20

5

10

15

At least part of this fluid unit 80 is provided so as to be aligned with the headlamp 71 in a vertical direction at a central portion in the vehicle's width direction as shown

in Fig. 7 and at (b) in Fig. 8. The headlamp 71 and the fluid unit 80 are both heavy. Because of this, the weight of the vehicle 1 is balanced uniformly in the left-and-right direction and hence the weight of the vehicle 1 is balanced easily by providing the headlamp 71 and the fluid unit 80 so as to be aligned with each other in the vertical direction at the central portion in the left-and-right direction.

[0111]

5

10

15

20

Additionally, at least part of the fluid unit 80 is provided between the headlamp 71 and the upper cross portion 51 in the front view of the vehicle 1 as shown in Fig. 7. The center of gravity of the vehicle 1 can be lowered by providing the fluid unit 80 below the upper end of the upper cross portion 51.

[0112]

(Advantages)

In the vehicles described in Patent Literature 1 and Non-Patent Literature 1 that include the body frame that can lean and the two front wheels, at least part of the headlamp is provided inwards of the body cover. The headlamp is a device that includes a light source and an outer cover that is provided in a position lying away to the front from the light source and that is hence long in the front-and-rear direction. The headlamp that is long in the front-and-rear direction is disposed by using the space defined in front of the upper cross

portion. Namely, in Patent Literature 1 and Non-Patent Literature 1, a reduction in voluminousness in the appearance of the front portion of the vehicle is attempted to be realized by making the front portion of the vehicle compact based on the reasonable idea that the headlamp is disposed by making use of the space defined in front of the upper cross portion as the dead space.

[0113]

5

10

15

20

On the other hand, in general, in case a front edge of the front portion of the vehicle is shaped so that a front end and an upper end thereof are connected smoothly, it is easy to reduce the air resistance. Then, in the vehicles described in Patent Literature 1 and Non-Patent Literature 1 that includes the body frame that can lean and the two front wheels, a front end of the front portion of the vehicle projects to a position lying ahead of the front wheels in the side view of the vehicle. This configuration enables the front edge of the front portion of the vehicle to be shaped so that the front end is connected smoothly to the upper end thereof that is situated above the upper cross portion. In Patent Literature 1 and Non-Patent Literature 1, the reduction in air resistance is realized by adopting the configuration described above.

However, in the vehicles described in Patent Literature 1 and Non-Patent Literature 1 that include the body frame that can lean and the two front wheels, as has been described above,

the front end of the lower cross portion is situated ahead of the upper cross portion, and the headlamp that is long in the front-and-rear direction is disposed directly ahead of the upper cross portion. Because of this, a front end of the headlamp and the front end of the lower cross portion are situated near to each other in relation to the front-and-rear direction. Because of this, in a side view of the vehicle, a portion that connects a portion that constitutes part of the front edge of the front portion of the vehicle and that is situated in an area that is occupied by the headlamp in relation to an up-and-down direction (hereinafter, referred to as a headlamp area front edge portion) with a portion of the front edge of the front portion of the vehicle that is situated in front of the lower cross portion easily takes a shape that rises perpendicularly, increasing the air resistance.

To describe this in greater detail, in the vehicles described in Patent Literature 1 and Non-Patent Literature 1 that includes the body frame that can lean and the two front wheels, the headlamp that is long in the front-and-rear direction is disposed in front of the upper cross portion that lies near to the upper end of the front portion of the vehicle. Because of this, the front edge of the front portion of the vehicle tends to take easily a bent shape in which an inclination angle relative to a horizontal plane of the portion from the upper end to the headlamp area front edge portion is

small, while an inclination angle to a horizontal plane of the portion from the headlamp area front edge portion to the front end is large. Because of this, the air resistance tends to be increased easily at the portion of the front edge of the front portion of the vehicle that extends from the headlamp area front edge portion to the front end.

[0114]

5

10

15

20

Then, in the vehicles described in Patent Literature 1 and Non-Patent Literature 1 that include the body frame that can lean and the two front wheels, a lower portion of the headlamp area front edge portion is extended to the front of the front wheels, and the front edge of the front portion of the vehicle is positioned directly ahead of the front wheels so that the front edge of the front portion of the vehicle takes a rectilinear shape, thereby reducing the air resistance. However, as a result of the front end of the front portion of the vehicle being extended to the front of the front wheels, the front portion of the vehicle tends to be increased in voluminousness in appearance.

[0115]

Namely, the inventors have noticed the fact that even in the event that as in Patent Literature 1 and Non-Patent Literature 1, (a) the idea that the voluminousness in appearance is reduced by disposing the headlamp by using the dead space in front of the upper cross portion and (b) the idea

that the front edge of the front portion of the vehicle is shaped so that the front end is connected smoothly to the upper end to reduce the air resistance are combined together, it is difficult that the reduction in air resistance is made compatible with the reduction in voluminousness in appearance. Then, the inventors have studied the configuration in which the headlamp 71 that is long in the front-and-rear direction is positively disposed by making use of the space defined in front of the lower cross portion 52 and the front end 100 of the front portion of the vehicle is situated near the area where the headlamp 71 is disposed and have completed the invention.

At a glance, in considering Patent Literature 1 and Non-Patent Literature 1, it is considered that the front portion of the vehicle is enlarged in size in the front-and-rear direction as a result of the headlamp 71 that is long in the front-and-rear direction being disposed in the space defined directly ahead of the lower cross portion 52 that is situated ahead of the upper cross portion 51 at the front end thereof. Additionally, in case the front end 100 of the front portion of the vehicle is situated above the upper ends of the right front wheel 32 and the left front wheel 31, it appears difficult that the front edge of the front portion of the vehicle is formed into a smooth rectilinear shape and hence that the air resistance is reduced.

[0117]

5

10

15

20

However, the inventors have noticed that the voluminousness in appearance of the front portion of the vehicle can be reduced while reducing the air resistance thereat by forming the front portion of the vehicle into such a shape that the front end 100 thereof projects downwards and forwards by positioning the headlamp 71 below the upper end of the lower cross portion 52 and have completed the invention.

Namely, according to the vehicle 1 of the invention which includes the body frame 21 that can lean and the two front wheels 3, at least part of the headlamp 71 is disposed on the left of the right end of the right front wheel 32 and on the right of the left end of the left front wheel 31 in such a state that the vehicle 1 is in the upright state and is disposed above the upper ends of the right front wheel 32 and the left front wheel 31 and below the upper end of the lower cross portion 52 in relation to the up-and-down direction of the body frame 21 in the position lying ahead of the front end of the lower cross portion 52 in the side view of the vehicle 1.

Namely, compared with the vehicles described in Patent Literature 1 and Non-Patent Literature 1, the headlamp 71 of the vehicle 1 according to the embodiment is provided in the lower position that lies below the upper end of the lower cross

portion 52. Since the headlamp 71 is long in the front-and-rear direction, the headlamp area front edge portion of the front edge of the front portion of the vehicle can be situated in the area that lies lower and further forwards.

[0120]

5

10

15

Additionally, according to the vehicle 1 of the invention, as to the front portion of the vehicle that is made up of the headlamp 71 and the body cover 22, the front edge of the front portion of the vehicle extends from the front end as far as above the upper cross portion 51 and behind the front end of the lower cross portion 52 in the side view of the vehicle 1 in such a state that the vehicle 1 is in the upright state. Further, the front end 100 of the front portion of the vehicle is situated on the left of the right end of the right front wheel 32 and on the right of the left end of the left front wheel 31 in such a state that the vehicle 1 is in the upright state and is situated above the upper ends of the right front wheel 32 and the left front wheel 31 and below the upper end of the lower cross portion 52 in relation to the up-and-down direction of the body frame 21 in the position lying ahead of the front end of the lower cross portion 52 in the side view of the vehicle 1.

20

[0121]

According to the vehicle 1 of the embodiment, the front end 100 of the front portion of the vehicle is disposed in the

area where at least part of the headlamp 71 is disposed and which lies above the upper ends of the right front wheel 32 and the left front wheel 31 and below the upper end of the lower cross portion 52.

[0122]

5

10

15

20

In the vehicle 1 according to the embodiment, as has been described above, the headlamp area front edge portion of the front edge of the front portion of the vehicle is situated in the area that lies lower and further forwards in the side view of the vehicle 1. Further, since the front end 100 of the front portion of the vehicle is situated at the headlamp area front edge portion or ahead thereof, the front end 100 of the front portion of the vehicle can be situated in the area that lies lower and further forwards. Namely, the front end 100 of the front portion of the vehicle can be disposed in the position that lies away largely forwards and downwards from the upper end of the front portion of the vehicle. Because of this, the front edge of the front portion of the vehicle is formed into the smoothly continuous rectilinear shape from the upper end to the front end of the front portion of the vehicle. [0123]

Additionally, since the front end 100 of the front portion of the vehicle is situated above the upper ends of the right front wheel 32 and the left front wheel 31, the front portion of the vehicle is formed into a compact shape in the

up-and-down direction, whereby the voluminousness in appearance of the front portion of the vehicle is reduced. Further, the front end of the front portion of the vehicle is situated above the upper ends of the right front wheel 32 and the left front wheel 31 and below the upper end of the lower cross portion 52 in relation to the up-and-down direction of the body frame 21 in the position that lies ahead of the front end of the lower cross portion 52. Namely, the front portion of the vehicle is easily formed into a shape in which the front end thereof projects to the front in the lower position (for example, a shell-like shape). Because of this, it is easy that the portion lying near to the eyes of the user who rides on the vehicle 1 is made small, whereby the voluminousness in appearance is easily reduced.

[0124]

5

10

15

20

From the reasons described heretofore, there is provided the vehicle 1 having the headlamp 71 disposed in the interior of the body cover 22 in which the voluminousness in appearance of the front portion of the vehicle is reduced while reducing the air resistance.

[0125]

In addition, in the vehicle 1 according to this embodiment, as shown at (b) in Fig. 8,

the right end 102 and the left end 101 of the front portion of the vehicle are situated behind the front end of the lower

cross portion 52 in the top view of the vehicle 1 in such a state that the vehicle 1 is in the upright state.

[0126]

Also in the top view of the vehicle 1, the front portion of the vehicle is formed into the shape in which the front end 100 thereof projects ahead of the right end 102 and the left end 101 of the front portion of the vehicle, whereby the voluminousness in appearance of the front portion of the vehicle is reduced while reducing the air resistance.

[0127]

In addition, in the vehicle 1 according to this embodiment, as shown at (b) in Fig. 8, the right end 102 and the left end 101 of the front portion of the vehicle are situated behind the front end of the upper cross portion 51 in the top view of the vehicle 1 in such a state that the vehicle 1 is in the upright state.

[0128]

[0129]

5

10

15

20

The front portion of the vehicle is formed into the shape in which the front end 100 projects further ahead of the right end 102 and the left end 101 of the front portion of the vehicle, whereby the voluminousness in appearance of the front portion of the vehicle is reduced while reducing the air resistance also in the top view of the vehicle 1.

In the vehicle 1 according to the embodiment, the right

end 102 and the left end 101 of the front portion of the vehicle are situated behind the rear end of the lower cross portion 52 in the top view of the vehicle 1 in such a state that the vehicle 1 is in the upright state as shown at (b) in Fig. 8. [0130]

5

The front portion of the vehicle is formed into the shape in which the front end 100 projects further ahead of the right end 102 and the left end 101 of the front portion of the vehicle, whereby the voluminousness in appearance of the front portion of the vehicle is reduced while reducing the air resistance also in the top view of the vehicle 1.

10

15

In addition, in the vehicle 1 according to the embodiment, the right end 102 and the left end 101 of the front portion of the vehicle are situated behind the rear end of the upper cross portion 51 in the top view of the vehicle 1 in such a state that the vehicle 1 is in the upright state as shown at (b) in Fig. 8.

[0132]

[0131]

The front portion of the vehicle is formed into the shape in which the front end 100 projects further ahead of the right end 102 and the left end 101 of the front portion of the vehicle, whereby the voluminousness in appearance of the front portion of the vehicle is reduced while reducing the air resistance also in the top view of the vehicle 1.

20

[0133]

In addition, in the vehicle 1 according to this embodiment, as shown at (a) in Fig. 8, the front end 100 of the front portion of the vehicle is situated behind front ends (an additional line P) of the right front wheel 32 and the left front wheel 31 in the top view of the vehicle 1 in such a state that the vehicle 1 is in the upright state. The additional line P is a vertical line that passes through the front ends of the right front wheel 32 and the left front wheel 31.

[0134]

5

10

15

20

As has been described above, the front portion of the vehicle is reduced in length in the front-and-rear direction while the front edge of the front portion of the vehicle is formed into the smooth rectilinear shape, whereby the voluminousness in appearance of the front portion of the vehicle is reduced more.

[0135]

Additionally, in the vehicle according to this embodiment, as shown at (a) in Fig. 8, at least part of the headlamp 71 is situated above the lower end (the additional line Q) of the lower cross portion 52 in relation to the up-and-down direction of the body frame 21 in the side view of the vehicle 1 in such a state that the vehicle 1 is in the upright state.

[0136]

Since at least part of the headlamp 71 is situated above the lower end (the additional line Q) of the lower cross portion 52, even in the event that the body frame 21 leans, it is difficult that the headlamp 71 interferes with the front wheels 3. The vehicle 1 is provided which includes the headlamp 71 that is made difficult to interfere with the front wheels 3 while maintaining the low air resistance and the compactness in size of the front portion of the vehicle.

[0137]

5

10

15

20

Additionally, in the vehicle 1 according to this embodiment, as shown at (a) in Fig. 8, at least part of the headlamp 71 is situated ahead of the rotating axes Z2, Z1 (the additional line I) of the right front wheel 32 and the left front wheel 31 in the side view of the vehicle 1 in such a state that the vehicle 1 is in the upright state.

-

Since at least part of the headlamp 71 is situated ahead of the rotating axes 22, Z1 of the right front wheel 32 and the left front wheel 31, the portion of the front edge of the front portion of the vehicle which lies directly ahead of the headlamp 71 and the front end 100 which lies ahead of that portion can be situated further forwards. This makes it easy to form the front portion of the vehicle into the shape in which the front end 100 projects further forwards, whereby the vehicle 1 is provided in which the air resistance is small and

the voluminousness in appearance of the front portion of the vehicle is small.

[0139]

In addition, in the vehicle 1 according to this embodiment, as shown at (a) in Fig. 8, at least part of the outer cover that covers the light source of the headlamp 71 forms part of the front edge of the front portion of the vehicle in the side view of the vehicle 1.

[0140]

5

10

15

Since at least part of the transparent or translucent outer cover forms part of the front edge of the front portion of the vehicle, an impression can be imparted that part of the front portion of the vehicle is cut out in the side view of the vehicle 1, thereby making it possible to provide the vehicle 1 in which the voluminousness in appearance of the front portion of the vehicle is reduced further.

[0141]

In addition, in the vehicle 1 according to this embodiment, as shown at (b) in Fig. 8,

The front portion of the vehicle is formed into the shape in which the front end portion of the vehicle is tapered towards the headlamp 71 from the right end 102 and the left end 101 thereof in the top view of the vehicle 1.

[0142]

Also in the top view of the vehicle 1, the front end 100

of the front portion of the vehicle is formed into the tapered shape in which the front end 100 thereof projects ahead of the right end 102 and the left end 101 of the front portion of the vehicle, whereby the voluminousness in appearance of the front portion of the vehicle is reduced while reducing the air resistance.

[0143]

5

15

20

25

Additionally, the vehicle 1 according to the embodiment has, as shown in Fig. 7, the brake device that applies a braking force to at least one of the right front wheel 32 and the left front wheel 31 and the fluid unit 80 that includes the plurality of flow paths to control the operation of the brake device by switching the flow paths through which the brake fluid flows.

At least part of the fluid unit 80 is provided so as to be aligned with the headlamp 71 along the vertical direction in such a state that the vehicle 1 is in the upright state.
[0144]

The headlamp 1 and the fluid unit 80 are both the heavy devices, and since the headlamp 71 and at least part of the fluid unit 80 are disposed so as to be aligned with each other along the vertical direction, it is easy to balance the weight of the front portion of the vehicle in relation to the left-and-right direction and the front-to-right direction. [0145]

In addition, in the vehicle 1 according to the embodiment,

as shown in Fig. 7, at least part of the fluid unit 80 is provided between the headlamp 71 and the upper cross portion 51 in the front view of the vehicle 1 in such a state that the vehicle 1 is in the upright state.

[0146]

5

10

15

20

Since at least part of the fluid unit 80 is disposed above the headlamp 71, the interference of the fluid unit 80 with the right front wheel 32 and the left front wheel 31 is easily avoided. Additionally, since at least part of the fluid unit 80 is disposed below the upper cross portion 51, it is difficult that the center of gravity of the vehicle 1 becomes high. This provides the vehicle 1 having the fluid unit 80 mounted thereon in such a way as to make it difficult for the center of gravity of the vehicle 1 to become high while avoiding the interference of the fluid unit 80 with the front wheels 3.

<Second Embodiment>

[0147]

In the first embodiment that has been described above, while the vehicle 1 is described as having the single headlamp 71 mounted thereof, the invention is not limited thereto. The invention can also be applied to a vehicle 1A having a plurality of headlamps mounted thereon. Fig. 9 is a front view of a front portion of the vehicle 1A in such a state that the vehicle 1 is in the upright state and stays at a halt. In Fig. 10, (a) is a side view of the front portion of the vehicle 1A shown

in Fig. 9, and (b) is a plan view of the vehicle 1A shown in Fig. 9.

[0148]

5

10

15

20

The vehicle 1A according to the second embodiment includes a left headlamp 74 and a right headlamp 75 that are spaced away from each other in a left-and-right direction. As with the first embodiment that has been described above, the headlamps 74, 75 are situated ahead of a rotating axis of a left front wheel 31 and a rotating axis of a right front wheel 32 (ahead of an additional line I) and above upper ends of the left front wheel 31 and the right front wheel 32 (above an additional line J) in relation to an up-and-down direction in such a state that the vehicle 1A is in the upright state and the front wheels are not turned. In this way, the headlamps 74, 75 are disposed on a front side of the front portion of the vehicle so that the headlamps 74, 75 do not interfere with the left front wheel 31 and the right front wheel 32 when the vehicle 1A is steered while being caused to lean.

[0149]

Additionally, at least parts of the headlamps 74, 75 are situated between an upper end and a lower end of a lower cross portion 52 (between an additional line K and an additional line Q) in relation to the up-and-down direction. Because of this configuration, a front cover 221 that covers the headlamps 74, 75 and a link mechanism 5 is formed into a shape in which a

lower portion thereof projects to the front as shown at (a) in Fig. 10.

[0150]

5

10

15

20

As shown at (b) in Fig. 10, at least parts of the headlamps 74, 75 are situated on the left of a right end of the right front wheel 32 (on the left of an additional line M) and on the right of a left end of the left front wheel 31 (on the right of an additional line N) in such a state that the vehicle 1A is in the upright state. As shown at (a) in Fig. 10, at least parts of the headlamps 74, 75 are situated ahead of a front end of the lower cross portion 52 (ahead of an additional line O) and above the upper ends of the right front wheel 32 and the left front wheel 31 (above the additional line J) in the side view of the vehicle 1A. Further, at least parts of the headlamps 74, 75 are disposed below the upper end of the lower cross portion 52 (below the additional line K) in relation to the up-and-down direction of the body frame 21.

[0151]

(External Appearance of the Front Portion of the Vehicle)

As shown at (a) in Fig. 10, in the vehicle 1A of this embodiment, a front end of the front cover 221 constitutes a front end 100A of the front portion of the vehicle. As shown at (a) in Fig. 10, in the side view of the vehicle 1A, the front end 100A is situated above the upper ends (the additional line J) of the left front wheel 31 and the right front wheel 32 and

below the upper end (the additional line K) of the lower cross portion 52. Additionally, as shown at (b) in Fig. 10, in the plan view of the vehicle 1A, the front end 100A is situated between the left front wheel 31 and the right front wheel 32. Namely, the front portion of the vehicle is formed into a shape in which a lower portion at the center in the left-and-right direction projects to the front.

5

10

15

20

[0152]

Additionally, as shown at (a) in Fig. 10, an upper edge of the front portion of the vehicle is made up of outer lenses of the headlamps 74, 75, the front cover 221 and a windshield 229. The front edge of the front portion of the vehicle extends as far as above an upper end of an upper cross portion 51 and behind a front end of the lower cross portion 52 in the side view of the vehicle 1A.

In this way, the front edge of the front portion of the vehicle is formed so as to extend from the front end 100A of the front portion of the vehicle that projects downwards and forwards as far as above the upper end of the upper cross portion 51 and behind the front end of the lower cross portion 52. Because of this, in the side view of the vehicle 1A, the front edge is inclined so that a vertical dimension of the front portion of the vehicle increases from the front to the rear. This allows the front portion of the vehicle to be formed into a shape in which the front of the upper cross portion 51 of

the link mechanism 5 is cut out so as to reduce the voluminousness in appearance of the front portion of the vehicle in the side view of the vehicle 1A. Additionally, since an angle that is formed by the front edge of the front portion of the vehicle and the travelling direction of the vehicle 1A becomes small, it is possible to provide the vehicle 1A having a small air resistance.

[0153]

5

10

15

20

As shown at (a) in Fig. 10, as to the front portion of the vehicle that is made up of the headlamps 74, 75 and the body cover 22, the front edge of the front portion of the vehicle extends from the front end 100A as far as above the upper cross portion 51 and behind the front end of the lower cross portion 52 in the side view of the vehicle 1A in such a state that the vehicle 1A is in the upright state.

The front end 100A of the front portion of the vehicle is situated on the left of the right end of the right front wheel 32 (on the left of the additional line M) and on the right of the left end of the left front wheel 31 (on the right of the additional line N) in such a state that the vehicle 1 is in the upright state. Additionally, as shown at (a) in Fig. 10, the front end 100A of the front portion of the vehicle is situated ahead of the front end of the lower cross portion 52 (ahead of the additional line O) and above the upper ends of the right front wheel 32 and the left front wheel 31 (above

the additional line J) in the side view of the vehicle 1A. Further, the front end 100A of the front portion of the vehicle is situated below the upper end of the lower cross portion 52 (below the additional line K) in relation to the up-and-down direction of the body frame 21.

Additionally, in the side view of the vehicle 1A, an inclination angle of a surface S of the front cover 221 that covers a front surface of the upper cross portion 51 relative to a horizontal plane is greater than an inclination angle of a surface of the front cover that is situated directly above the headlamps 74, 75 relative to the horizontal plane. The voluminousness in appearance of the front portion of the vehicle becomes small and hence, the air resistance of the vehicle 1A becomes small as a result of the lower portion of the front portion of the vehicle projecting forwards from the front portion of the vehicle in the way described above.

The outer lenses of the headlamps 74, 75 may be formed so as to extend upwards around the lower portion of the front portion of the vehicle. As this occurs, it is preferable that the front portion of the vehicle is formed so that the inclination angle of the surface S of the front cover 221 that covers the front surface of the upper cross portion 51 relative to the horizontal plane is greater than an inclination angle of surfaces of the outer lenses of the front portion of the

vehicle that are situated directly above the headlamps 74, 75 relative to the horizontal plane.

As shown at (b) in Fig. 10, an outline of a left portion of the front portion of the vehicle that appears in the plan view of the vehicle 1A is referred to as a left edge of the front portion of the vehicle. In addition, an outline of a right portion of the front portion of the vehicle that appears in the plan view of the vehicle 1A is referred to as a right edge of the front portion of the vehicle. The left edge and right edge of the vehicle 1A are formed of the outer lenses of the headlamps 74, 75 and the front cover 221.

The left edge of the front portion of the vehicle extends from the front end 100A as far as on the left of a left end of the upper cross portion 51 in the plan view of the vehicle 1A. A left end 101A of the left edge of the front portion of the vehicle is situated on the left of the left front wheel 31 (on the left of the additional line N). The left end 101A of the left edge of the front portion of the vehicle is situated behind the lower cross portion 52. Further, the left end 101A of the left edge of the front portion of the vehicle is situated behind the upper cross portion 51.

[0156]

[0155]

5

10

15

20

Similarly, the right edge of the front portion of the vehicle extends from the front end 100A as far as on the right

of a right end of the upper cross portion 51 in the plan view of the vehicle 1A. A right end 102A of the right edge of the front portion of the vehicle is situated on the right of the right front wheel 32 (on the right of the additional line M). Additionally, the right end 102A of the right edge of the front portion of the vehicle is situated behind the lower cross portion 52. Further, the right end 102A of the right edge of the front portion of the vehicle is situated behind the upper cross portion 51.

[0157]

5

10

15

20

In this way, in the plan view of the vehicle 1A, the left and right edges of the front portion of the vehicle are formed so as to extend from the front end 100A that projects forwards at the central portion of the front portion of the vehicle in the left-and-right direction as far as outwards of left and right end portions of the upper cross portion 51. This allows the front portion of the vehicle to be formed into a streamlined shape in the plan view of the vehicle 1A, whereby the voluminousness in appearance of the front portion of the vehicle becomes small and hence the air resistance thereat becomes small. In case the left and right end portions 101A, 102A of the front portion of the vehicle are situated behind the upper cross portion 51, the angles formed by the left edge and the right edge and the travelling direction of the vehicle 1A can preferably be reduced to be small.

[0158]

5

10

15

20

Additionally, in the front view of the vehicle 1A as shown in Fig. 9, a distance D1 from the front end 100A of the front portion of the vehicle to the upper end of the lower cross portion 52 is shorter than a vertical dimension D2 from the upper end of the lower cross portion 52 to an upper end portion of the windshield 229 that constitutes an upper end portion of the front portion of the vehicle. This configuration makes a lower portion of the front portion of the vehicle that projects forwards small, thereby making it possible to reduce the voluminousness in appearance of the front portion of the vehicle.

[0159]

Additionally, in the plan view of the vehicle 1A as shown at (b) in Fig. 10, the front end 100A is situated between the outer lens of the left headlamp 74 and the outer lens of the right headlamp 75. This allows the center in the left-and-right direction to project forwards, and therefore, the front portion of the vehicle is formed into the streamlined shape in the plan view of the vehicle 1A, whereby the voluminousness in appearance of the front portion of the vehicle is reduced to be small.

[0160]

In this embodiment, at least part of a hydraulic unit 80 is situated between the left headlamp 74 and the right

headlamp 75 in the plan view of the vehicle 1A. As has been described before, the hydraulic unit 80 is heavy. Since the heavy hydraulic unit 80 is situated at the center in the left-and-right direction, it is possible to provide the vehicle 1A having a good weight balance.

[0161]

5

10

15

20

Also in the vehicle 1A according to this embodiment, at least parts of the headlamps 74, 75 are disposed on the left of the right end of the right front wheel 32 and on the right of the left end of the left front wheel 31 in such a state that the vehicle 1A is in the upright state and is disposed above the upper ends of the right front wheel 32 and the left front wheel 31 and below the upper end of the lower cross portion 52 in relation to the up-and-down direction of the body frame 21 in the position lying ahead of the front end of the lower cross portion 52 in the side view of the vehicle 1A.

In the front portion of the vehicle that is made up of the headlamps 74, 75 and the body cover 22, the front edge of the front portion of the vehicle extends from the front end as far as above the upper cross portion 51 and behind the front end of the lower cross portion 52 in the side view of the vehicle 1A in such a state that the vehicle 1A is in the upright state. The front end 100 of the front portion of the vehicle is situated on the left of the right end of the right front wheel 32 and on the right of the left end of the left front wheel 31 in such

a state that the vehicle 1A is in the upright state and is situated above the upper ends of the right front wheel 32 and the left front wheel 31 and below the upper end of the lower cross portion 52 in relation to the up-and-down direction of the body frame 21 in the position lying ahead of the front end of the lower cross portion 52 in the side view of the vehicle 1A.

[0162]

5

10

15

20

Also in the vehicle 1A according to this embodiment, the front end 100A of the front portion of the vehicle is disposed in the area where at least parts of the headlamps 74, 75 are disposed and which lies above the upper ends of the right front wheel 32 and the left front wheel 31 and below the upper end of the lower cross portion 52.

In the vehicle 1A according to the embodiment, as has been described above, the headlamp area front edge portion of the front edge of the front portion of the vehicle is situated in the area that lies lower and further forwards in the side view of the vehicle 1A. Further, since the front end 100A of the front portion of the vehicle is situated at the headlamp area front edge portion or ahead thereof, the front end 100A of the front portion of the vehicle can be situated in the area that lies lower and further forwards. Namely, the front end 100A of the front portion of the vehicle can be disposed in the position that lies away largely forwards and downwards from

the upper end of the front portion of the vehicle. Because of this, the front edge of the front portion of the vehicle is formed into a smoothly continuous rectilinear shape from the upper end to the front end 100A of the front portion of the vehicle.

5

10

15

20

Additionally, since the front end 100A of the front portion of the vehicle is situated above the upper ends of the right front wheel 32 and the left front wheel 31, the front portion of the vehicle is formed into a compact shape in the up-and-down direction, whereby the voluminousness appearance of the front portion of the vehicle is reduced. Further, the front end of the front portion of the vehicle is situated above the upper ends of the right front wheel 32 and the left front wheel 31 and below the upper end of the lower cross portion 52 in relation to the up-and-down direction of the body frame 21 in the position that lies ahead of the front end of the lower cross portion 52. Namely, the front portion of the vehicle is easily formed into a shape in which the front end 100A thereof projects to the front in the lower position (for example, a shell-like shape). Because of this, it is easy that the portion lying near to the eyes of the user who rides on the vehicle 1A is made small, whereby the voluminousness in appearance is easily reduced to be small.

From the reasons described heretofore, there is provided the vehicle 1A having the headlamps 74, 75 disposed in the

interior of the body cover 22 in which the voluminousness in appearance of the front portion of the vehicle is reduced to be small while reducing the air resistance.

[0163]

5

10

15

20

In addition, in the vehicle 1A according to this embodiment, as shown at (a) in Fig. 10, the front edge of the front portion of the vehicle is formed into the shape in which the inclination angle of the portion T that is situated above the headlamp 71 relative to the horizontal line is smaller than the inclination angle of the portion S that is situated above that portion relative to the horizontal plane in the side view of the vehicle 1A in such a state that the vehicle 1A is in the upright state.

[0164]

On the front edge of the front portion of the vehicle, since the inclination angle of the portion T that is situated above the headlamps 74, 75 relative to the horizontal plane is smaller than the inclination angle of the portion S that is situated above the portion above the headlamps 74, 75 relative to the horizontal plane, the front edge of the front portion of the vehicle is easily shaped so as to project forwards in the lower position in the side view of the vehicle 1. This provides the vehicle 1A in which the voluminousness in appearance of the front portion of the vehicle is reduced to thereby reduce the air resistance further.

[0165]

Additionally, in the vehicle 1A according to this embodiment, in the front view of the vehicle 1A in such a state that the vehicle 1A is in the upright state as shown in Fig. 9, the vertical distance D1 from the front end 100A of the front portion of the vehicle to the upper end of the lower cross portion 52 is shorter than the vertical dimension D2 from the upper end of the lower cross portion 52 to the upper end portion of the front portion of the vehicle.

[0166]

5

10

15

20

The portion T from the front end 100A of the front portion of the vehicle to the upper end of the lower cross portion 52 is situated below the portion S from the upper end of the lower cross portion 52 to the upper end of the front portion of the vehicle in relation to the up-and-down direction. Since the portion T from the front end 100A of the front portion of the vehicle to the upper end of the lower cross portion 52 that is situated at the lower portion of the front portion of the vehicle is formed small in the vertical direction, the portion of the front portion of the vehicle that projects forwards can be made small in size, whereby the voluminousness in appearance of the front portion of the vehicle is reduced.

[0167]

In addition, in relation to the vehicle 1A according to this embodiment, as shown at (b) in Fig. 10, the vehicle 1A

has the right headlamp 75 that includes the outer lens forming part of the right edge of the front portion of the vehicle and the left headlamp 74 that includes the outer lens forming part of the left edge of the front portion of the vehicle. The front end 100A of the front portion of the vehicle is situated between the outer lens of the right headlamp 75 and the outer lens of the left headlamp 74 in the plan view of the vehicle 1A. [0168]

Also in the plan view of the vehicle 1A, the front portion of the vehicle is formed into the shape in which the front end 100A thereof projects ahead of the right end 102A and the left end 101A of the front portion of the vehicle, whereby the voluminousness in appearance of the front portion of the vehicle is reduced while reducing the air resistance.

[0169]

Additionally, the vehicle 1A according to the embodiment has the brake device that applies a braking force to at least one of the right front wheel 32 and the left front wheel 31 and the fluid unit 80 that includes a plurality of flow paths to control the operation of the brake device by switching the flow paths through which a brake fluid flows. At least part of the hydraulic unit 80 is situated between the right headlamp 75 and the left headlamp 74 in the plan view of the vehicle 1A in such a state that the vehicle 1A is in the upright state. [0170]

In relation to the fluid unit 80, the right headlamp 75 and the left headlamp 74 which are all the heavy devices, since at least part of the fluid unit 80 is disposed between the right headlamp 75 and the left headlamp 74, the weight of the front portion of the vehicle is easily balanced in relation to the left-and-right direction.

[0171]

5

10

15

20

Thus, while the invention has been described heretofore by the use of the first embodiment and the second embodiment thereof, the technical scope of the invention is not limited to the technical scopes that are descriptively defined in the embodiments. It is obvious to those skilled in the art to which the invention pertains that various alterations or improvements can be made to the embodiments.

[0172]

The embodiment described heretofore is intended to facilitate the understanding of the invention and are not intended to limit the invention. It is obvious that the invention can be modified or improved without departing from the scope thereof and that their equivalents can be also comprised in the invention.

[0173]

The terms and expressions that are used in this description are used to describe the embodiment of the invention and hence should not be construed as limiting the

scope of the invention. It should be understood that any equivalents to the characteristic matters that are shown and described in this description should not be excluded and that various modifications made within the scope of claims to be made later are permitted.

[0174]

5

10

<Other Modified Examples>

For example, in the first and second embodiments that have been described above, while the front mud guards are described as not constituting the front portion of the vehicle, in a vehicle in which front mud guards are formed integral with a front cover, a front portion of the vehicle is configured so as to include the front mud guards. Additionally, in the first and second embodiments, the vehicles 1, 1A are described as including the windshield 229, the invention can also be applied to a vehicle that includes no windshield 229.

[0175]

15

In the embodiments, while the front end portion of the front cover 221 is described as constituting the front end of the front portion of the vehicle, the invention is not limited thereto. For example, front ends of the headlamps 74, 75 may constitute the front end of the front portion of the vehicle. [0176]

20

Additionally, the invention can also be applied to a

vehicle that includes two headlamps that are aligned in a vertical direction. As this occurs, in case the invention is applied to a construction in which the two headlamps that are aligned in the vertical direction are disposed at a center in the left-and-right direction, it is possible to provide a vehicle in which the voluminousness in appearance of a front portion of the vehicle is small and hence the are resistance of the vehicle is reduced to be small as described in the first embodiment.

In addition, the invention can also be applied to a vehicle that includes three headlamps. As this occurs, the first embodiment and the second embodiment are combined together so that one headlamp can be disposed at the center in the left-and-right direction as done in the first embodiment and two headlamps can be disposed on left and right sides of the central headlamp as done in the second embodiment.

10

15

20

Additionally, the invention can also be applied to a vehicle that includes four or more headlamps and the voluminousness in appearance of a front portion of the vehicle and the air resistance of the vehicle can be made small by combining the first embodiment and the second embodiment.

[0177]

An LED (Light Emitting Diode) element, a filament bulb, a discharge bulb, a laser light source or a surface emitting panel light source (for example, an EL element) can be adopted

as a light source contained in the headlamp.

An outer lens including a lens element that refracts light may be adopted as the outer cover of the headlamp as done in the embodiments described above, or the outer cover may be configured as a transparent outer cover that transmits light with no reflection or refraction.

[0178]

5

10

15

20

[Acute Angles]

The size of the acute angle of the invention and the embodiments is an angle including 0° and smaller than 90°. By nature, the acute angle does not include 0°, but in the invention and the embodiment that has been described above, the acute angle should include 0°. In the embodiment, the imaginary plane that intersects perpendicularly the upper axes and the lower axes of the cross members is a plane that extends rearwards and upwards. However, the invention is not limited thereto, and hence, the imaginary plane that intersects perpendicularly the upper axes and the lower axes of the cross members may be a plane that extends forwards and upwards.

[0179]

[Parallel, Extend, Along]

When referred to in this specification, "parallel" also includes two straight lines that do not intersect each other as members while they are inclined within the range of \pm 40°. When referred to in relation to the "direction," and the "member"

in the invention, the term "along" also includes a case where what goes along is inclined within the range of \pm 40° relative to the direction or the member. When referred to in relation to the "direction" in the invention, "extend" also includes a case where what extends is inclined within the range of \pm 40° relative to the direction.

[0180]

5

10

15

20

[Wheels, Power Unit and Body Cover]

The vehicle 1 according to the invention is the vehicle including the body frame that can lean and the two front wheels. The number of rear wheels may be one or more. The vehicle may include a body cover that covers the body frame. The vehicle may not include the body cover which covers the body frame. The power unit includes the power source. The power source is not limited to the engine and hence may be an electric motor. [0181]

In the above embodiment, the center of the rear wheel 4 in relation to the left-and-right direction of the body frame 21 coincides with the center of the distance defined between the left front wheel 31 and the right front wheel 32 in relation to the left-and-right direction of the body frame 21. Although the configuration described above is preferable, the center of the rear wheel 4 in relation to the left-and-right direction of the body frame 21 may not coincide with the center of the distance defined between the left front wheel 31 and

the right front wheel 32 in relation to the left-and-right direction of the body frame 21.

[0182]

[Positional Relationship between Headstock and Side Portions]

In the embodiment described above, the right side portion 54, the left side portion 53 and the headstock 211 are provided in positions that are superposed one on another in the side view of the body frame 21. However, in the side view of the body frame 21, the headstock 211 may be provided in a different position from the positions where the right side portion 53 and the left side portion 54 are provided in relation to the front-and-rear direction. Additionally, angles at which the right side portion 54 and the left side portion 53 lean from the up-and-down direction of the body frame 21 may differ from an angle at which the headstock 211 leans.

[0183]

[Headstock]

15

5

10

The headstock that supports the link mechanism may be made up of a single piece of part or a plurality of parts. In the event of the headstock 211 being made up of the plurality of components, the components may be fastened together through welding or bonding or may be fastened together with a fastening member such as a bolt or a rivet.

20

In this embodiment, while the headstock 211 is described as being the part of the body frame 21 that supports the steering

shaft 60 so as to turn, the invention is not limited thereto. A member can be adopted which supports the steering shaft 60 so as to turn about a middle steering axis Y3 in place of the headstock. For example, a member can be adopted which includes a bearing which supports the steering shaft 60 so as to turn about the middle steering axis Y3.

[0184]

10

15

15

[Body Frame Configuration: Integral and Separate Body Frames,
Upper End Configuration of Front Edge of Integral Body Frame,
and Configuration of UP-to-Down Frame Portion]

In the embodiments, the body frame has the headstock, member (the upper front-and-rear connecting longitudinal frame portion), the down frame (the up-and-down or vertical frame portion) and the under frame (the lower front-and-rear or longitudinal frame portion), and they are connected together through welding. However, the body frame of the invention is not limited to the embodiments described above. The body frame should have the headstock, the upper longitudinal frame portion, the vertical frame portion and the lower longitudinal frame portion. For example, the body frame may be formed integral entirely or partially through casting or the like. Additionally, in the body frame, the upper longitudinal frame portion and the vertical frame portion may be made up of one member or separate members.

[0185]

[Magnitude of Acute Angle: Steering Shaft and Shock Absorbers]

In the embodiment described above, the left shock absorber 33 and the right shock absorber 34 each include the pair of telescopic mechanisms. However, depending upon the specification of the vehicle 1, the number of telescopic mechanisms that the left shock absorber 33 and the right shock absorber 34 include individually may be one.

5

10

1.5

20

[0187]

In this embodiments, the acute angle formed by the turning axis of the steering shaft and the up-and-down direction of the body frame coincides with the acute angle formed by the direction in which the right shock absorber and the left shock absorber extend or contract and the up-and-down direction of the body frame. However, the invention is not limited to the embodiment. For example, the acute angle formed by the turning axis of the steering shaft and the up-and-down direction of the body frame may be smaller or greater than the acute angle formed by the direction in which the right shock absorber and the left shock absorber extend or contract and the up-and-down direction of the body frame.

In addition, in the embodiments, the turning axis of the steering shaft and the direction in which the right shock absorber and the left shock absorber extend and contact coincide with each other. However, the invention is not limited

to the embodiment. In a side view of the vehicle being in the upright state, the turning axis of the steering shaft and the direction in which the right shock absorber and the left shock absorber extend or contact may be spaced away from each other in the front-and-rear direction. Alternatively, they may intersect each other.

[0188]

5

10

15

20

In this embodiment, the right front wheel and the left front wheel are supported so that their upper ends can move further upwards in the up-and-down direction of the body frame than an upper end of the down frame of the body frame. However, the invention is not limited to the embodiment. In this invention, the right front wheel and the left front wheel may be able to move upwards as high as or to a height that is lower than the upper end of the down frame of the body frame in the up-and-down direction of the body frame.

[0189]

[Cross portions, Side Portions]

The upper cross portion may include an upper front cross portion that is made up of a single part, an upper rear cross portion that is made up of a single part, and a connecting member that is provided between the upper and lower cross portions and that is made up of a plurality of parts. In the event of the headstock 211 being made up of the plurality of components, the components may be fastened together through welding or

bonding or may be fastened together with a fastening member such as a bolt or a rivet.

The lower cross portion may include a lower front cross portion that is made up of a single part, a lower rear cross portion that is made up of a single part and a connecting member that is provided between the lower front and rear cross portions and that is made up of a plurality of parts. In the event of the headstock 211 being made up of the plurality of components, the components may be fastened together through welding or bonding or may be fastened together with a fastening member such as a bolt or a rivet.

The right side portion and the left side portion may each be made up of a single part or a plurality of parts. In the event of the headstock 211 being made up of the plurality of components, the components may be fastened together through welding or bonding or may be fastened together with a fastening member such as a bolt or a rivet. The right side portion and the left side portion may each include a portion that is disposed ahead of the upper cross portion or the lower cross portion in the front-and-rear direction of the body frame and a portion that is disposed behind the upper cross portion or the lower cross portion in the front-and-rear direction of the body frame. The upper cross portion or the lower cross portion

may be disposed between the portions that are disposed ahead of the right side portion and the left side portion and the portions that are disposed behind the right side portion and the left side portion.

[0192]

5

10

15

20

In the invention, the link mechanism may include further a cross portion in addition to the upper cross portion and the lower cross portion. The upper cross portion and the lower cross portion are so called only from their relative positional relationship in the up-and-down direction. The upper cross portion does not imply an uppermost cross portion in the link mechanism. The upper cross portion means a cross portion that lies above a cross portion that lies therebelow. The lower cross portion does not imply a lowermost cross portion in the link mechanism. The lower cross portion means a cross portion that lies below a cross portion that lies thereabove. Additionally, the cross portion may be made up of two parts of a right cross portion and a left cross portion. In this way, the upper cross portion and the lower cross portion may each include a plurality of cross portions as long as they still exhibit the link function. Further, other cross portions may be provided between the upper cross portion and the lower cross portion. The link mechanism should include the upper cross portion and the lower cross portion.

[0193]

The invention can be implemented with many different embodiments. This disclosure should be understood to provide a principle embodiment of the invention. Based on the understanding that there is no intention to limit the invention to the preferred embodiment that is described and/or illustrated herein, the embodiment is described and illustrated herein.

[0194]

5

10

15

20

The illustrated embodiment of the invention is described herein. The invention is not limited to the preferred embodiment described herein. The invention also includes every embodiment which includes equivalent elements, modifications, deletions, combinations (for example, a combination of characteristics from various embodiments), improvements and/or alternations which those skilled in the art to which the invention pertains can recognize based on the disclosure made herein. The limitative matters of claims should be construed widely based on terms used in the claims and hence should not be limited by the embodiment described in this specification or the prosecution of this patent application. Those embodiments should be construed as non-exclusive. For example, in this disclosure, such terms as "preferable or preferably" and "may be or do" are non-exclusive terms and mean that "it is preferable, but the invention is not limited thereto" and "it may be or do, but the invention is not limited thereto,"

respectively.

[0195]

5

10

15

15

The contents of the Japanese Patent Application No. 2013-138488 filed on July 1, 2013 are cited as constituting part of the description of this patent application. Namely, the following configurations also constitute part of the description of the patent application.

- (1) A riding type vehicle having:
 - a body frame;
 - a right front wheel disposed on a right side;
 - a left front wheel disposed on a left side;
- a right suspension device that supports at a lower portion thereof the right front wheel so as to allow the right front wheel to be displaced in an up-and-down direction;
- a left suspension device that supports at a lower portion thereof the left front wheel so as to allow the left front wheel to be displaced in the up-and-down direction;
- a right side member that supports an upper portion of the right suspension device so as to allow the upper portion to turn about an axis extending in the up-and-down direction;
- a left side member that supports an upper portion of the left suspension device so as to allow the upper portion to turn about an axis extending in the up-and-down direction;
- an upper link member that is supported on the body frame at a central portion thereof so as to turn about an axis

extending in a front-and-rear direction and that supports an upper portion of the right side member at a right end portion thereof so as to allow the upper portion to turn about an axis extending in the front-and-rear direction and supports an upper portion of the left side member at a left end portion thereof so as to allow the upper portion to turn about an axis extending in the front-and-rear direction; and

a lower link member that is supported on the body frame at a central portion thereof so as to turn about an axis extending in the front-and-rear direction and that supports a lower portion of the right side member at a right end portion thereof so as to allow the lower portion to turn about an axis extending in the front-and-rear direction and that supports a lower portion of the left side member at a left end portion thereof so as to allow the lower portion to turn about an axis extending in the front-and-rear direction and at least of which is situated ahead of the upper link member, the riding type vehicle comprising:

a headlamp that is situated ahead of rotating axes of the right front wheel and the left front wheel and above the right front wheel and the left front wheel in such a state that the vehicle is in an upright state and the front wheels are not turned and at least part of which is situated between an upper end and a lower end of the lower link member in relation to the up-and-down direction; and

a cover member that covers the headlamp, the upper link member, at least part of a right side surface, at least part of a left side surface and at least part of an upper surface of the lower link member, wherein

in a front portion of the vehicle that is made up of the headlamp and the cover member in such a state that the vehicle is in the upright state and the front wheels are not turned,

5

10

15

20

a front end portion of the front portion of the vehicle is situated above the right front wheel and the left front wheel and below the upper end of the lower link member in a side view of the vehicle and is situated between the right front wheel and the left front wheel in a top view of the vehicle, wherein

an upper edge of the front portion of the vehicle extends from the front end portion as far as above and behind the upper link member in a side view of the vehicle, wherein

a right edge of the front portion of the vehicle extends from the front end portion as far as on the right of a right end of the upper link member in the top view of the vehicle, and a right end portion of the right edge of the front portion of the vehicle is situated on the right of the right front wheel, and wherein

a left edge of the front portion of the vehicle extends from the front end portion as far as on the left of a left end of the upper link member in the top view of the vehicle, and a left end portion of the left edge of the front portion of the vehicle is situated on the left of the left front wheel. [0196]

(2) The riding type vehicle according to (1), wherein the right end portion of the right edge of the front portion of the vehicle is situated behind the lower link member and the left end portion of the left edge of the front portion of the vehicle is situated behind the lower link member in the top view of the vehicle.

[0197]

(3) The riding type vehicle according to (1) or (2), wherein the right end portion of the right edge of the front portion of the vehicle is situated behind the upper link member and the left end portion of the left edge of the front portion of the vehicle is situated behind the upper link member in the top view of the vehicle.

[0198]

10

15

(4) The riding type vehicle according to anyone of (1) to(3), wherein

at least an outer lens of the headlamp forms part of the upper edge of the front portion of the vehicle in the side view of the vehicle.

[0199]

(5) The riding type vehicle according to anyone of (1) to(4), wherein

the front portion of the vehicle is formed so as to be

tapered from the right end portion of the right edge and the left end portion of the left edge of the front portion of the vehicle towards the headlamp in the top view of the vehicle.

[0200]

(6) The riding type vehicle according to anyone of (1) to
(5), having:

a fluid unit including a plurality of flow paths of a brake fluid to control the operation of a brake device by switching the flow paths through which the brake fluid flows, wherein the fluid unit is provided so as to be aligned with the headlamp in a vertical direction.

[0201]

5

10

15

- (7) The riding type vehicle according to (6), wherein the fluid unit is provided between the headlamp and the upper link member in the top view of the vehicle.

 [0202]
- (8) The riding type vehicle according to anyone of (1) to(3), wherein

the headlamp has a right headlamp that includes an outer lens forming part of the right edge of the front portion of the vehicle in the top view of the vehicle and a left headlamp that includes an outer lens forming part of the left edge of the front portion of the vehicle in the top view of the vehicle, and wherein

an inclination angle of a surface of the front portion of

the vehicle that covers a front surface of the upper link member relative to a horizontal plane is greater than an inclination angle of a surface of the front portion of the vehicle that is situated above the headlamp relative to the horizontal plane, in the side view of the vehicle.

[0203]

[0204]

5

10

15

- (9) The riding type vehicle according to (8), wherein a distance from the front end portion of the front portion of the vehicle to the upper end of the lower link member is shorter than a vertical dimension from the upper end of the lower link member to an upper end portion of the front portion of the vehicle, in a front view of the vehicle.
- (10) The riding type vehicle according to (8) or (9), wherein

the front end portion of the front portion of the vehicle is situated between the outer lens of the left headlamp and the outer lens of the right headlamp in the top view of the vehicle.

[0205]

- (11) The riding type vehicle according to anyone of (8) to (10), having:
- a fluid unit including a plurality of flow paths of a brake fluid to control the operation of a brake device by switching the flow paths through which the brake fluid flows, wherein

the fluid unit is disposed between the right headlamp and the left headlamp in the top view of the vehicle.

Claims

[Claim 1]

5

10

15

A vehicle comprising:

a body frame that leans to a right of the vehicle when the vehicle turns right and that leans to a left of the vehicle when the vehicle turns left;

a right front wheel and a left front wheel that are disposed so as to be aligned in a left-and-right direction of the body frame;

a right suspension device that supports the right front wheel at a lower portion thereof and that absorbs an upward displacement of the right front wheel in an up-and-down direction of the body frame;

a left suspension device that supports the left front wheel at a lower portion thereof and that absorbs an upward displacement of the left front wheel in the up-and-down direction of the body frame;

a link mechanism which includes:

a right side portion that supports an upper portion of the right suspension device so as to allow the upper portion to turn about a right steering axis that extends in the up-and-down direction of the body frame;

a left side portion that supports an upper portion of the left suspension device so as to allow the upper portion to turn about a left steering axis that is parallel to the right

steering axis;

5

10

15

20

an upper cross portion that supports an upper portion of the right side portion at a right end portion thereof so as to allow the upper portion to turn about an upper right axis that extends in a front-and-rear direction of the body frame and supports an upper portion of the left side portion at a left end portion thereof so as to allow the upper portion to turn about an upper left axis that is parallel to the upper right axis and that is supported on the body frame at a middle portion thereof so as to turn about an upper middle axis that is parallel to the upper right axis and the upper left axis; and

a lower cross portion that supports a lower portion of the right side portion at a right end portion so as to allow the upper portion to turn about a lower right axis that is parallel to the upper right axis and supports a lower portion of the left side portion at a left end portion thereof so as to allow the upper portion to turn about a lower left axis that is parallel the upper left axis and that is supported on the body frame at a middle portion thereof so as to turn about a lower middle axis that is parallel to the upper middle axis;

a headlamp that includes a light source to emit light to the front of the vehicle; and

a body cover that covers at least part of the headlamp, the upper cross portion and a right side surface, a left side surface and an upper surface of the lower cross portion, wherein

at least part of the headlamp is disposed on the left of a right end of the right front wheel and on the right of a left end of the left front wheel in such a state that the vehicle is in an upright state and is disposed above upper ends of the right front wheel and the left front wheel and below an upper end of the lower cross portion in relation to the up-and-down direction of the body frame in a position lying ahead of a front end of the lower cross portion in a side view of the vehicle, and wherein

5

10

15

20

in a front end portion of the vehicle that is made up of the headlamp and the body cover,

a front edge of the front portion of the vehicle extends from a front end as far as above the upper cross portion and behind the front end of the lower cross portion in a side view of the vehicle in such a state that the vehicle is in the upright state, and

the front end of the front portion of the vehicle is situated on the left of the right end of the right front wheel and on the right of the left end of the left front wheel in such a state that the vehicle is in the upright state and is situated above the upper ends of the right front wheel and the left front wheel and below the upper end of the lower cross portion in relation to the up-and-down direction of the body frame in a position lying ahead of the front end of the lower

cross portion in the side view of the vehicle.
[Claim 2]

The vehicle according to Claim 1, wherein

a right end and a left end of the front portion of the vehicle are situated behind the front end of the lower cross portion in the top view of the vehicle in such a state that the vehicle is in the upright state.

[Claim 3]

5

10

15

20

The vehicle according to Claim 2, wherein

the right end and the left end of the front portion of the vehicle are situated behind a front end of the upper cross portion in the top view of the vehicle in such a state that the vehicle is in the upright state.

[Claim 4]

The vehicle according to Claim 3, wherein

the right end and the left end of the front portion of the vehicle are situated behind a rear end of the lower cross portion in the top view of the vehicle in such a state that the vehicle is in the upright state.

[Claim 5]

The vehicle according to Claim 4, wherein

the right end and the left end of the front portion of the vehicle are situated behind a rear end of the upper cross portion in the top view of the vehicle in such a state that the vehicle is in the upright state.

[Claim 6]

The vehicle according to anyone of Claims 1 to 5, wherein the front end of the front portion of the vehicle is situated behind front ends of the right front wheel and the left front wheel in the side view of the vehicle in such a state that the vehicle is in the upright state.

[Claim 7]

5

10

15

The vehicle according to anyone of Claims 1 to 6, wherein at least part of the headlamp is situated above a lower end of the lower cross portion in relation to the up-and-down direction of the body frame in the side view of the vehicle in such a state that the vehicle is in the upright state.

[Claim 8]

The vehicle according to anyone of Claims 1 to 7, wherein at least part of the headlamp is situated ahead of rotating axes of the right front wheel and the left front wheel in the side view of the vehicle in such a state that the vehicle is in the upright state.

[Claim 9]

The vehicle according to anyone of Claims 1 to 8, wherein at least part of an outer cover that covers the light source of the headlamp makes up part of the front edge of the front portion of the vehicle in the side view of the vehicle.

[Claim 10]

The vehicle according to anyone of Claims 1 to 9, wherein

the front portion of the vehicle is formed into a shape in which the front portion of the vehicle is tapered from the right end and the left end thereof towards the headlamp in the top view of the vehicle.

[Claim 11]

5

10

15

20

The vehicle according to anyone of Claims 1 to 10, having a brake device that applies a braking force to at least one of the right front wheel and the left front wheel and a fluid unit including a plurality of brake fluid flow paths to control the operation of the brake device by switching the flow paths through which a brake fluid flows, wherein

at least part of the fluid unit is provided so as to be aligned with the headlamp along a vertical direction in such a state that the vehicle is in the upright state.

[Claim 12]

The vehicle according to Claim 11, wherein

at least part of the fluid unit is provided between the headlamp and the upper cross portion in a front view of the vehicle in such a state that the vehicle is in the upright state.

[Claim 13]

The vehicle according to anyone of Claims 1 to 12, wherein the front edge of the front portion of the vehicle is shaped so that an inclination angle of a portion that is situated above the headlamp relative to the horizontal plane is smaller than an inclination angle of a portion that is situated above the

portion above the headlamp relative to the horizontal plane in the side view of the vehicle in such a state that the vehicle is in the upright state.

[Claim 14]

The vehicle according to Claim 13, wherein

a vertical distance from the front end of the front portion of the vehicle to the upper end of the lower cross portion is smaller than a vertical distance from the upper end of the lower cross portion to the upper end of the front portion of the vehicle in a front view of the vehicle in such a state that the vehicle is in the upright state.

[Claim 15]

10

The vehicle according to anyone of Claims 1 to 14, wherein the headlamp has a right headlamp including an outer cover that forms part of a right edge of the front portion of the vehicle and a left headlamp including an outer cover that forms part of a left edge of the front portion of the vehicle, and wherein

15

20

the front end of the front portion of the vehicle is situated between the outer cover of the right headlamp and the outer cover of the left headlamp in the top view of the vehicle.

[Claim 16]

The vehicle according to Claim 15, having a brake device that applies a braking force to at least one of the right front wheel and the left front wheel and a fluid unit including a

plurality of brake fluid flow paths to control the operation of the brake device by switching the flow paths through which a brake fluid flows, wherein

at least part of the fluid unit is disposed between the right headlamp and the left headlamp in the top view of the vehicle in such a state that the vehicle is in the upright state.

5

Abstract

A vehicle (1) is provided in which a front end (100) of a front portion of the vehicle and at least part of a headlamp (71) are situated on the left of a right end of a right front wheel (32) and on the right of a left end of a left front wheel (31) in such a state that the vehicle (1) is in the upright state and are situated above upper ends of the right front wheel (32) and the left front wheel (31) and below an upper end of a lower cross portion (52) in relation to an up-and-down direction of a body frame (21) in a position lying ahead of a front end of the lower cross portion (52) when looking at the vehicle (1) from a side thereof.

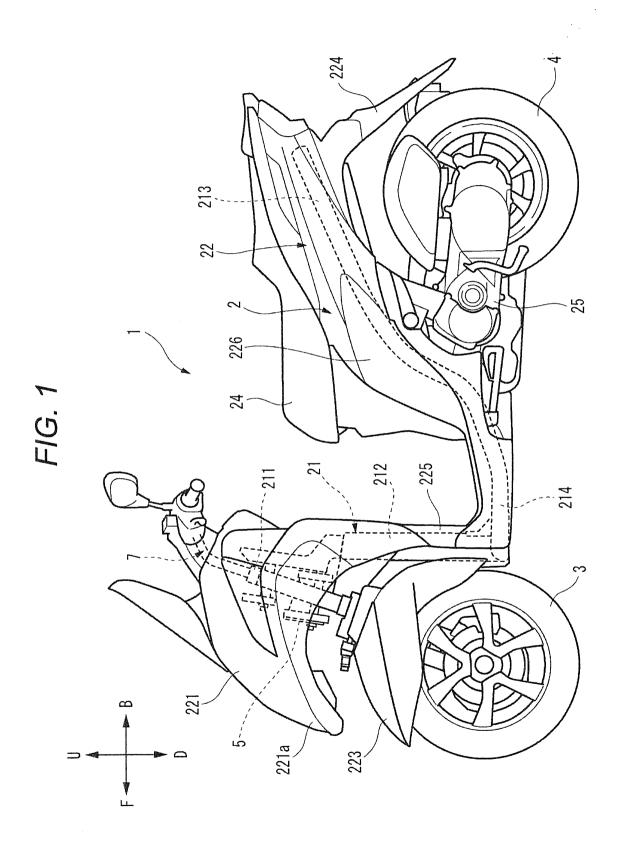


FIG. 2

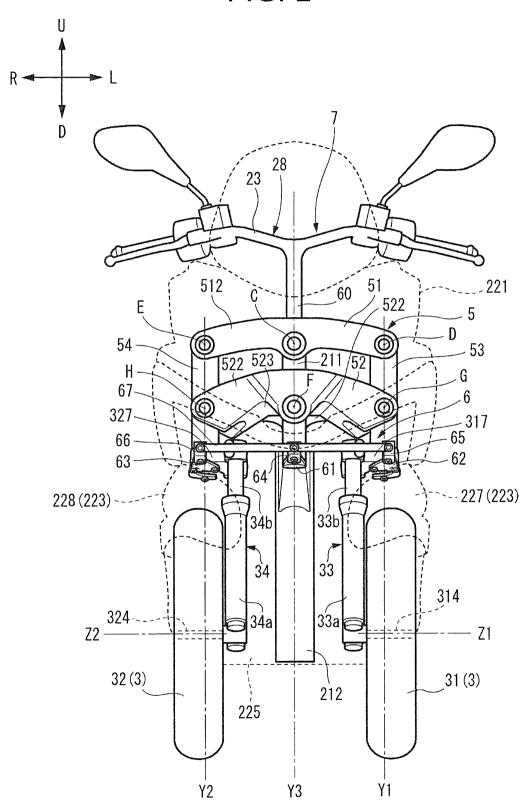


FIG. 3

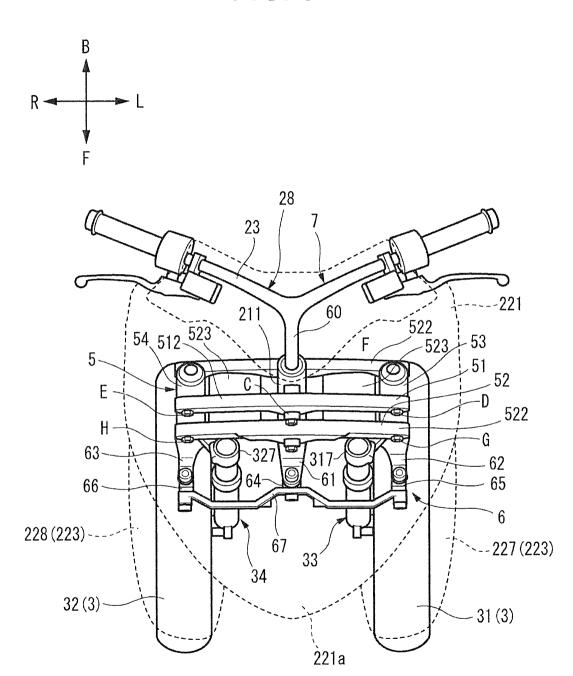


FIG. 4

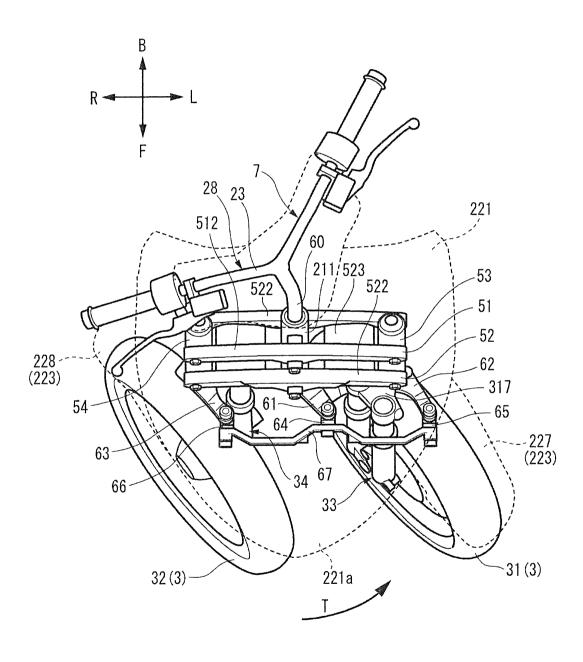


FIG. 5

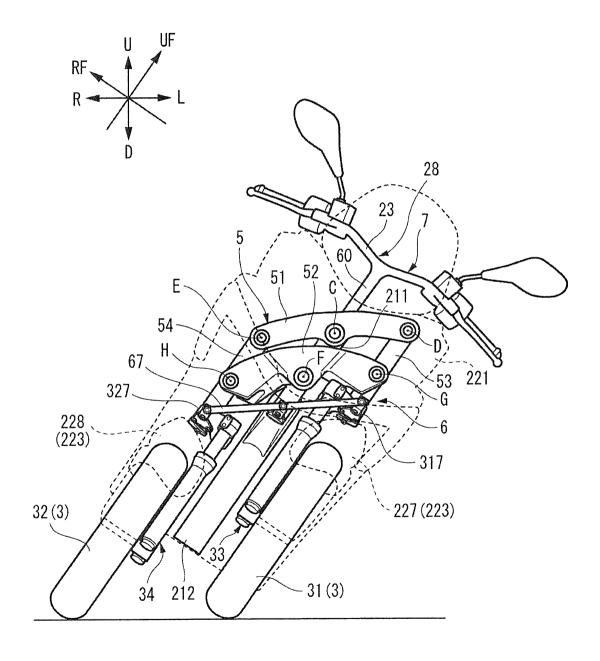


FIG. 6

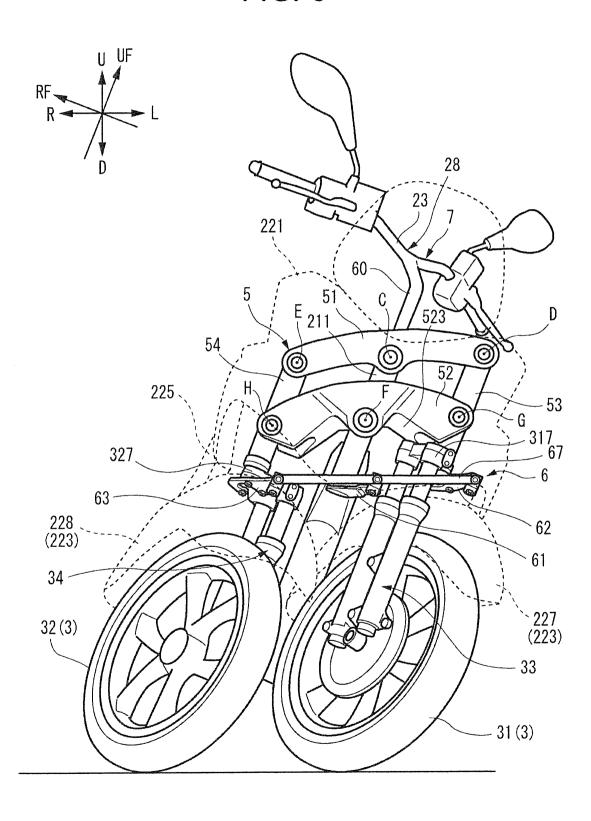


FIG. 7

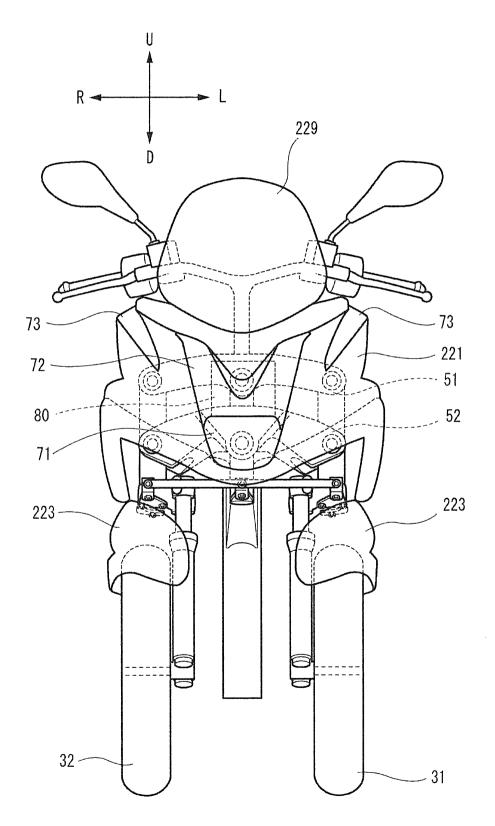


FIG. 8

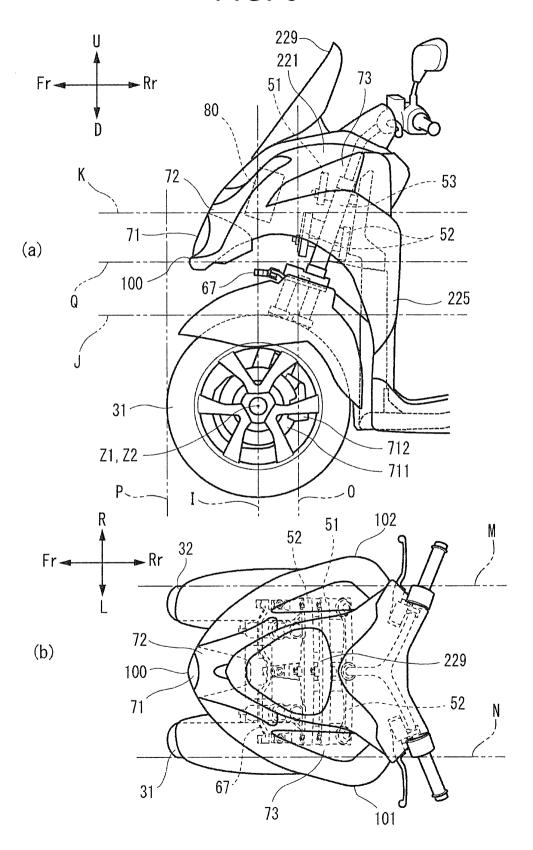
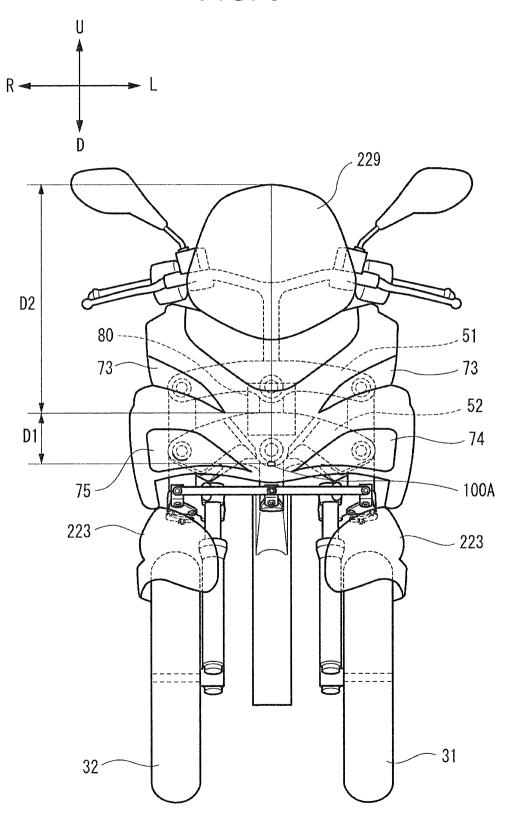
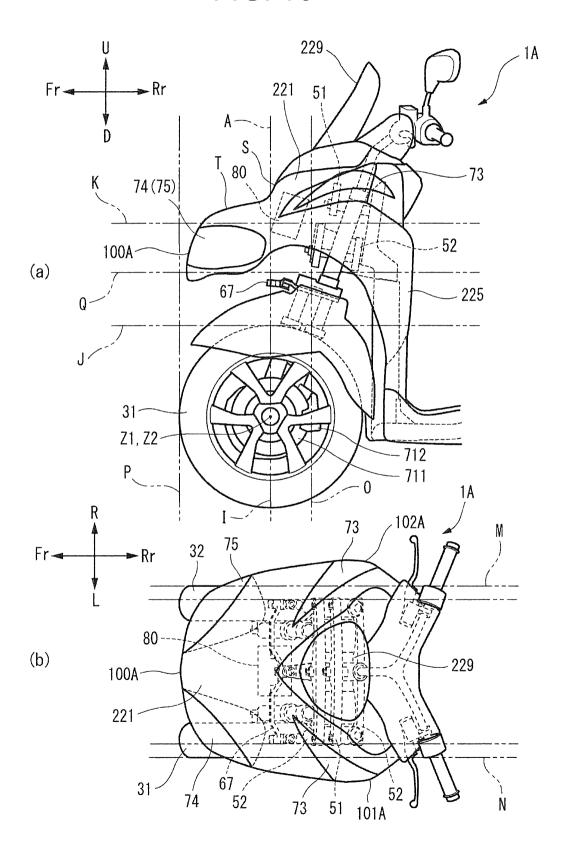




FIG. 9

10/10

FIG. 10

