wo 2014/055137 A1 [N 00O 0RO

(43) International Publication Date

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2014/055137 Al

10 April 2014 (10.04.2014) WIPO I PCT

(51) International Patent Classification: (74) Agents: LEDESMA, Daniel D. et al.; Hickman Palermo
GO6F 17/30 (2006.01) GO6F 15/78 (2006.01) Truong Becker Bingham Wong LLP, 1 Almaden

(21) International Application Number: Boulevard, Floor 12, San Jose, California 95113 (US).
PCT/US2013/045873 (81) Designated States (unless otherwise indicated, for every
. . kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
14 June 2013 (14.06.2013) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, I, IN, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
61/709,142 2 October 2012 (02.10.2012) Us OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,
13/778,009 26 February 2013 (26.02.2013) Us SD, SE, SG, SK, SL, SM, ST, 8V, 8Y, TH, TJ, TM, TN,

TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant: ORACLE INTERNATIONAL CORPORA- . o

TION [US/US]; 500 Oracle Parkway, Mail Stop SOP7, (84) Designated States (uniess otherwise indicated, for every
Redwood Shores, California 94065 (US). kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
(72) Inventors: AINGARAN, Kathirgamar; 500 Oracle Park- UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

way, Mail Stop 50P7, Redwood Shores, California 94065
(US). SWART, Garret F.; 500 Oracle Parkway, Mail Stop
50P7, Redwood Shores, California 94065 (US). KAPIL,
Sanjiv; 500 Oracle Parkway, Mail Stop 50P7, Redwood
Shores, California 94065 (US).

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: HARDWARE FOR TABLE SCAN ACCELERATION

100\

(QUERY EXECUTION ENGINE

MEMORY 140

COMMAND(S) 142

INPUT DATA 144

OUTPUT DATA 146

10

Address1

OS/HYPERVISOR 120

Address2

FIG. 1

COPROCESSOR 130

(57) Abstract: Techniques for processing a query are provided. One or more operations that are required to process a query are per-
formed by a coprocessor that is separate from a general purpose microprocessor that executes query processing software. The query
processing software receives a query, determines one or more operations that are required to be executed to fully process the query,
and issues one or more commands to one or more coprocessors that are programmed to perform one of the operations, such as a table
scan operation and/or a lookup operation. The query processing software obtains results from the coprocessor(s) and performs one or

more additional operations thereon to generate a tfinal result of the query.

WO 2014/055137 A1 |IIWANT 00T 000 A

— with amended claims (Art. 19(1))

Published:
— with international search report (Art. 21(3))

WO 2014/055137 PCT/US2013/045873

HARDWARE FOR TABLE SCAN ACCELERATION

PRIORITY CLAIM AND RELATED CASE

[0001] This application claims priority to U.S. Patent Application No. 13/778,009 filed
February 26, 2013; which claims priority to U.S. Provisional Application No. 61/709,142, filed
October 2, 2012, the contents of which are incorporated by reference, as if fully set forth herein.
[0002] This application is related to U.S. Patent Application No. 13/778,013 filed

February 26, 2013, the contents of which are incorporated by reference, as if fully set forth

herein.

FIELD OF THE INVENTION
[0003] The present invention relates generally to processing a query and, more specifically,
to using custom hardware in one or more coprocessors to perform one or more operations that

are required to process the query.

BACKGROUND
[0004] The approaches described in this section are approaches that could be pursued, but
not necessarily approaches that have been previously conceived or pursued. Therefore, unless
otherwise indicated, it should not be assumed that any of the approaches described in this section
qualify as prior art merely by virtue of their inclusion in this section.
[0005] Queries issued to a database typically target one or more one or more database
objects, such as relational tables. Many times, accessing data organized in a relational table
involves scanning the relational table or at least a portion thereof. A common SQL query is one
that requires a filter on a database table, such as the following:

select EMPLOYEE from T_EMPLOYEES where HIRE_ YEAR= 2012’
[0006] In this example, that database table T_EMPLOYEES is searched for all the
employees who were hired in 2012. This search (or "scan") is done by software running on one
or more microprocessors that execute a series of instructions to search through the table for the
specified value, which is 2012' in this example. The first step is typically the performance
bottleneck when running analysis applications on a large database, since this step has to run on
the entire table, which may be several terabytes large. Subsequent steps will work on the filtered

subset of the first scan step that meets the criteria set in the scan (employees hired in 2012 in the

WO 2014/055137 PCT/US2013/045873

above example). Therefore, the number of rows that a machine can filter per unit of time is an
important performance metric for the machine. This metric is referred to as the "scan rate."
[0007] Approaches for processing queries, such as queries that involve scanning a table, have
relied on software techniques, where the software is executed (or “runs”) on a general purpose

microprocessor.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] In the drawings:

[0009] FIG. 1 is a block diagram that depicts an example computer system for accelerating a
table scan, according to an embodiment;

[0010] FIG. 2 is a block diagram that depicts an example coprocessor, according to an
embodiment;

[0011] FIG. 3 is a flow diagram that depicts a process for processing a query, according to an
embodiment;

[0012] FIG. 4 is a block diagram that depicts a portion of an example lookup vector, in an
embodiment; and

[0013] FIG. 5 is a block diagram that illustrates a computer system upon which an

embodiment of the invention may be implemented.

DETAILED DESCRIPTION
[0014] In the following description, for the purposes of explanation, numerous specific
details are set forth in order to provide a thorough understanding of the present invention. It will
be apparent, however, that the present invention may be practiced without these specific details.
In other instances, well-known structures and devices are shown in block diagram form in order
to avoid unnecessarily obscuring the present invention.

GENERAL OVERVIEW
[0015] In an embodiment, a scan operation or a lookup operation associated with a query is
implemented in hardware, such as a coprocessor that is located on the same chip as a general
purpose microprocessor. In this way, the scan operation is performed by custom hardware
whereas other portions of the query are handled by the general purpose microprocessor running
software. One advantage of having different hardware components perform different operations

is that custom hardware is better able to handle the large volume of data that is required for a

2-

WO 2014/055137 PCT/US2013/045873

scan operation or a lookup operation. Also, custom hardware frees up the general purpose
microprocessor and associated cache(s) to work on other parts of the query or even other tasks
that are unrelated to the software that processes the query.
[0016] Embodiments of the invention are not limited to any particular microprocessor or
graphic processing unit (GPU).
[0017] The following examples refer to a table as a data object that is scanned. However, all
embodiments are not limited to tables. Data objects other than tables may be scanned.

SYSTEM OVERVIEW
[0018] FIG. 1 is a block diagram that depicts an example computer system 100 for
accelerating the processing of a query, according to an embodiment. Computer system 100
includes a query execution engine 110, an OS/hypervisor 120, a coprocessor 130, and memory
140. Although only a single coprocessor 130 is depicted, system 100 may include multiple
COPIoCessors.
[0019] Query execution engine 110 and hypervisor 120 are programs that reside in memory
(e.g., DRAM and/or cache memory) and include instructions that are executed by a general
purpose microprocessor. Query execution engine 110 comprises one or more software
components and may communicate with one or more other software components that are not part
of query execution engine 110 in order to execute a query to generate a result of the query.
Query execution engine 110 may be configured to rewrite a query (e.g., a SQL query) to
generate a rewritten query that query execution engine 110 is able to execute. Alternatively,
another software component receives an original query, generates a rewritten query based on the
original query, and passes the written query to query execution engine 110 for processing.
[0020] Non-limiting examples of types of queries that query execution engine 110 may be
configured to process include SQL queries and XML queries, such as XPath queries and XQuery
queries. At least one type of query that query execution engine 110 is configured to process is a
query that requires a scan of an object, or a portion thereof. As noted previously, a non-limiting
example of an object that is scanned is a relational table that is logically organized in one or
more columns and multiple rows. While data may be logically organized in a single table, the
data may be organized very differently in persistent storage, such as a hard disk drive or a flash
memory device. For example, the data of a table may be partitioned or different columns of a

table may be stored in very different storage locations.

WO 2014/055137 PCT/US2013/045873

[0021] Hypervisor 120 acts as an interface between query execution engine 110 and
coprocessor 130. In other words, commands issued by query execution engine 110 to
coprocessor 130 are issued over hypervisor 120. Thus, query execution engine 110 issues
commands on the hypervisor interface by making API calls to OS/hypervisor 120.

[0022] A hypervisor is a hardware virtualization technique that allows multiple operating
systems (“‘guests”) to run concurrently on a host computer. A hypervisor presents, to guest
operating systems, a virtual operating platform and manages the execution of the guest operating
systems. Multiple instances of a variety of operating systems may share the virtualized hardware
resources. Hypervisors may be installed on server hardware, with the function of running guest
operating systems that, themselves, act as servers.

[0023] One type of hypervisor runs directly on a host's hardware to control the hardware and
to manage guest operating systems. A guest operating system thus runs on another level above
the hypervisor. Another type of hypervisor runs within a typical operating system environment.
With the hypervisor layer as a distinct second software level, guest operating systems run at the
third level above the hardware. In other words, the first type of hypervisor runs directly on the
hardware while the second type of hypervisor runs on another operating system, such as
FreeBSD, Linux, or Windows.

[0024] Thus, although element 120 is labeled as “OS/Hypervisor,” an operating system and a
hypervisor are different entities. For purposes of this description, an OS and hypervisor are
treated the same. The following references to element 120 will be “hypervisor 120.”

[0025] Although hypervisor 120 is depicted as part of computer system 100, in one
embodiment, computer system 100 does not include a hypervisor. In that embodiment, query
execution engine 110 issues commands directly to coprocessor 130 without first requiring
processing by any other software component, other than an operating system (not depicted) of
computer system 100.

[0026] Coprocessor 130 is a hardware element that is programmed to perform one or more
tasks separate from the tasks performed by the general purpose processor that executes query
execution engine 110 and hypervisor 120. While coprocessor 130 is separate from the general
purpose processor that executes query execution engine 110, coprocessor 130 may be viewed as
part of query execution engine 110 in that coprocessor 130 performs one or more tasks that were

previously performed by query execution engine 110.

WO 2014/055137 PCT/US2013/045873

[0027] In an embodiment, coprocessor 130 at least performs the task of comparing a
specified target value (or target range of values) against a series of input values from a table.
This task is referred to as a scan operation and is described in more detail below. In an
embodiment, coprocessor 130 is capable of comparing multiple specified target values (or
multiple specified target ranges) against a series of input values or data elements from a table.
[0028] In another embodiment, coprocessor 130 at least performs the task of determining
whether one or more values exist in a particular set of values. The one or more values may be
used to index into the particular set of values so that the particular set of values do not need to be
scanned for each value of the one or more values. In this embodiment, coprocessor 130 is
programmed to efficiently perform a lookup operation, which is described in more details below.
[0029] Other than initial parameters established or dictated by query execution engine 110,
coprocessor 130 performs a scan operation and/or a lookup operation without intervention from
query execution engine 110 or any other software until the scan operation or lookup operation
(indicated by the initiating command) completes. At that point, coprocessor 130 signals to query
execution engine 110 that results of the operation are available. The signal may be in the form of
setting a flag. Hypervisor 120 may use this signal to insert new commands into a command
queue of coprocessor 130.

[0030] In an embodiment, coprocessor 130 is programmed to handle different data
types/formats and element sizes. For example, coprocessor 130 may process data that is in a
string format, a date format, or a number (e.g., integer or float) format. Also, the size of a data
element that coprocessor 130 processes may be a particular number of bits (e.g., 7 bits) or a
particular number of bytes (e.g., 2-bytes). Furthermore, data elements from a particular source
(such as a table) may be variable length or fixed length. In an embodiment, a data element that
coprocessor 130 receives from an object (such as a table) may be of one size and coprocessor
130 performs an operation to reduce or increase the size of the data element, such as removing
one byte from the data element, adding 9 bits to the data element or decompressing the data
element, before performing, for example, a comparison of the data element with another data
element.

[0031] In an embodiment, coprocessor 130 resides on-chip, that is, on the same chip as a
general purpose microprocessor that executes query execution engine 110. Coprocessor 130
includes (a) a memory interface that streams table data (or other data) from on- or off-chip

memory to coprocessor 130 and (b) a compute block that performs a scan operation and/or a

-5-

WO 2014/055137 PCT/US2013/045873

lookup operation. For example, in the case of the scan operation, the compute block acts on the
table data to determine if a specified value, or a range of values, occurs in the table data. Thus, a
set of comparators is used to determine if each element of an incoming stream is equal to a
searched-for value or lies in a searched-for range of values. Each comparator in the set of
comparators may perform a comparison operation at the same time. Thus, coprocessor 130 may
perform multiple comparison operations simultaneously. In an embodiment, coprocessor 130 is
configured to perform multiple types of comparisons, such as one 4-byte comparison, two 2-byte
comparisons, four 1-byte compares, and/or one 2-byte and one 1-byte comparison. Coprocessor
130 sends results of a search to on-chip memory or off-chip memory through the memory
interface.
[0032] As depicted in FIG. 1, memory 140 stores commands 142, input data 144, and output
data 146. A command reflected in commands 142 refers to (1) a location in memory 140 that
stores at least a portion of input data 144 and (2) a location in memory 140 that results (generated
by coprocessor 130) of the operation(s) that correspond to the command will be stored.
[0033] In an embodiment, coprocessor 130 includes a command queue that stores one or
more addresses of one or more commands. When not busy, coprocessor 130 selects one or more
addresses (inserted by hypervisor 120) from the command queue in order to retrieve the one or
more commands (e.g., reflected in commands 142) from memory (e.g., memory 140).
COPROCESSOR CONTROL BLOCK
[0034] In an embodiment, query execution engine 110 includes instructions that, when
executed by a general purpose microprocessor (not depicted), causes generation of a coprocessor
control block (CCB). A CCB is a data structure that represents a command issued by query
execution engine 110 and that includes data that coprocessor is configured to read and process.
In an embodiment, a CCB includes command type data that indicates the type of operation
coprocessor 130 is to perform and one or more operands that correspond to the operation
indicated by the command type data. If coprocessor 130 only performs one operation, then
command type data may not be an available operand in a CCB. Alternatively, coprocessor 130
may ignore the command type data if coprocessor is configured to perform only one operation.
[0035] The command type data indicates which logic coprocessor 130 will use to process a
command. Thus, different command types correspond to different logic implemented by

coprocessor 130. For example, a scan operation requires coprocessor 130 to execute first logic

WO 2014/055137 PCT/US2013/045873

while a lookup operation requires coprocessor 130 to execute second logic that is different than
the first logic.

[0036] An operand indicated in a CCB may be one of two types: an immediate operand or an
indirect operand. An immediate operand is an operand that can be used immediately by a
coprocessor when the coprocessor performs the operation without first requiring translation of
the operand, such as a memory lookup. An example of an immediate operand in the context of a
scan operation is a 4-byte integer that is used to perform a comparison against data elements
from table data. An indirect operand is an operand that must first be translated or looked up
before the coprocessor can perform the designated operation. An example of an indirect operand
is a physical address that indicates where (e.g., in memory 140) table data is stored for the
coprocessor to perform the operation, whether a scan operation or a lookup operation.

[0037] In the context of a scan operation, the operands (of the scan operation) indicated in a
CCB include (a) comparison data that indicates data that is used to perform a comparison against
data from table data and (b) location data that indicates where the table data is located (e.g., input
data 144 in memory 140).

[0038] Comparison data may be any type of data, such as a number, a date, a character, or a
string. Comparison data may be a single value and/or a range of values. Additionally,
comparison data may indicate multiple values and/or multiple ranges of values. For example, a
query may request to view names of employees who make below $30,000 and employees who
make between $100,000 and $130,000. In this example, comparison data indicates a range of 0-
30,000 and a range of 100,000-130,000.

[0039] Location data may be a single address or a multiple addresses, such as a starting
address and an ending address or a starting address and an offset from the starting address. Each
address indicated in the location data may be a virtual address, a real address, or a physical
address. In an embodiment, hypervisor 120 replaces location data indicated in a CCB with
second location data. For example, a (e.g., guest) operating system identifies the location data
indicated in a CCB, where the location data is a virtual address and replaces the virtual address
with a real address. The operating system then sends the CCB to hypervisor 120. Hypervisor
120 looks up, in a mapping table, a physical address that is mapped to the real address, and
replaces, in the CCB, the real address with the physical address.

[0040] In an embodiment, a CCB also includes output location data that indicates where

coprocessor 130 is to send a result of performing an operation indicated by the CCB. In FIG. 1,

-

WO 2014/055137 PCT/US2013/045873

the output location data would point to output data 146 in memory 140. This may be helpful if
multiple microprocessors are integrated on the same chip and each microprocessor has its own
private cache. Thus, if a particular general purpose microprocessor that executes query
execution engine 110 is one of multiple general purpose microprocessors on the same chip and
each is microprocessor is associated with different (e.g., L3) cache, then query execution engine
110 may specity, as a parameter in a CCB, a cache that is adjacent to or near the particular
general purpose microprocessor. Thus, instead of coprocessor 130 sending results of an
operation to RAM, coprocessor 130 may send (based on output location data indicated in the
CCB) the results not only to cache, but to a specific cache that is “closest” to query execution
engine 110. In this way, query execution engine 110 is not required to request the results (a)
from RAM, (b) from another microprocessor’s (or core’s) cache, or (c) from shared cache that is
shared among multiple cores, each which may be much slower than accessing data from a
microprocessor’s own (private) cache. Instead, query execution engine 110 is allowed to dictate
where results of operations performed by one or more hardware elements (i.e., coprocessors in
this embodiment) will be stored.

COPROCESSOR
[0041] Once coprocessor 130 receives a command (e.g., in the form of a CCB) over an
interface of hypervisor 120 (or directly from query execution engine 110), coprocessor 130
executes the command asynchronous to the thread of query execution engine 110 issuing the
original command. If coprocessor 130 receives multiple commands, then coprocessor 130 may
schedule the multiple commands for execution in a round robin fashion. Some commands may
be executed in parallel.
[0042] In an embodiment, input data (e.g., relational data) for a command is fetched over an
interface (to query execution engine 110) and results of a command (i.e., results that coprocessor
130 generates based on the input data) are written out over the interface.
[0043] In an embodiment, coprocessor 130 causes a completion status to be written out, over
the interface at the end of each command, to a completion data structure in the interface. Query
execution engine 110 may use the completion data structure to resynchronize with one or more
threads of query execution engine 110.
[0044] FIG. 2 is a block diagram that depicts an example coprocessor 200, according to an
embodiment. Coprocessor 200 may be coprocessor 130 in FIG. 1. Coprocessor 200 includes a

memory interface 210, a command scheduler 220, a decompressor 230, query pipe 240, and a

_8-

WO 2014/055137 PCT/US2013/045873

message pipe 250. Message pipe 250 handles memory copies and message passing. Query pipe
240 handles one or more query commands, such as a scan command or a lookup command, after
decompressor 230 decompresses compressed input data (e.g., data from a relational table).
[0045] Decompressor 230 may be configured to decompress only data that is compressed in
a single format. Alternatively, decompressor 230 may be configured to decompress data that is
compressed in one format and other data that is compressed in another format. In an
embodiment, coprocessor 200 does not include decompressor 230. Decompression may not be
necessary if the data that coprocessor 200 receives is not compressed (e.g., is already
decompressed) when coprocessor 200 receives the data. Also, decompression may not be
necessary even for compressed data if coprocessor 200 is configured to operate directly on the
compressed data without having to first decompress the compressed data.

[0046] Each of pipes 240 and 250 is associated with a different set of command queues and,
optionally, command formats. Hypervisor 120 is configured to ensure that commands (reflected
in CCBs) are directed to the command queue of the correct pipe. A flag bit in a CCB may
indicate if the CCB is a message command or a query command.

[0047] Each of pipes 240 and 250 may be multithreaded and capable of executing multiple
commands at a time. The degree of multithreading is not exposed to software. Command
scheduler 220 may schedule the commands on available threads on the assumption the
commands are parallelizable. If a given command needs to be serialized behind another
command, then the two commands may be placed in the same command queue and the
appropriate serializing flags may be set in both commands.

[0048] Although not depicted, coprocessor 200 comprises a certain amount of memory to
store data as the data is streamed through memory interface 210 or to store data that is used in a
lookup operation, such as a lookup vector, an example of which is a Bloom filter. The size of the
memory of coprocessor 200 may be quite small (e.g., 4KB) due to modern chips that consist
largely of one or more caches for the main core(s) or general purpose microprocessor(s).

[0049] While query execution engine 110 “views” table data relational and performs
operations as such, coprocessor 200 only “sees” or operates on vectors or single dimensional
arrays of data. In other words, coprocessor 200 does not “view” multiple columns or row
identifiers. Rather, coprocessor 200 is agnostic when it comes to how the data is logically
organized or stored. Therefore, in providing instructions to coprocessor 200, query execution

engine 110 ensures that the output of any operations performed by coprocessor 200 is stored in a

9.

WO 2014/055137 PCT/US2013/045873

particular order. If not, the query execution engine 110 would not know which portion of the
table to which the output corresponds. One way in which ordering is preserved is for query
execution engine 110 to keep track of which set of table data corresponds to which CCB, where
each CCB includes a unique CCB identifier. Then, the output generated by coprocessor 200
based on a particular CCB includes the identifier for that particular CCB to allow query
execution engine 110 to determine to which portion of the logical table the output corresponds.
For example, query execution engine 110 may store association data that associates rows 1001-
2000 of table Employee with CBB identifier 432899. Coprocessor 200 receives and processes a
CCB with identifier 432899 to generate output that is stored at a certain location.
[0050] Alternatively, instead of keeping track of a CCB identifier, query execution engine
110 stores association data that associates table data that indicates a portion of a table (e.g., rows
1001-2000 of table Employee) with output location data (e.g., physical address 1298737+4KB)
that indicates where output generated by coprocessor 200 is to be stored. Later, when query
execution engine 110 examines the output stored at that storage location, query execution engine
110 uses the association data to determine which portion of the table corresponds to that output.
Thus, query execution engine 110 can keep track of the order of the output even though
coprocessor 200 operates on different portions of the table at different times and even though
query execution engine 110 might instruct multiple coprocessors to operate on different portions
of the table, which operations might be performed concurrently.

PROCESSING A QUERY
[0051] FIG. 3 is a flow diagram that depicts a process 300 for processing a query that
requires a scan operation, in an embodiment. At block 310, query execution engine 110 receives
a query that targets one or more data objects, such as a table, and that requires a scan operation
of at least one of the one or more data objects. For example, query execution engine 110 may
process a SQL query to generate a rewritten query that includes one or more database operations,
including a scan operation, that query execution engine 110 is configured to execute or to
instruct one or more other software components to execute. Alternatively, another software
component receives an original query and generates a rewritten query that query execution
engine 110 is configured to process.
[0052] At block 320, query execution engine 110 determines, based on one or more criteria,
whether to involve coprocessor 130 in processing the query. The one or more criteria may

indicate whether the result was previously generated and cached, whether an index on the table

-10-

WO 2014/055137 PCT/US2013/045873

exists and may be used to answer the query instead of scanning the table, the size of the table,
etc. For example, if the size of the table that needs to be scanned is relatively small, then
involving coprocessor 130 may require more work (e.g., in the form of usage of the general
purpose microprocessor that is executing the instructions of query execution engine 110) or take
more time than executing the query without involving coprocessor 130.

[0053] Additionally or alternatively, the one or more criteria may indicate a relative cost for
processing the query (or rewritten query) in different ways. For example, query execution
engine 110 may include a cost estimator component that estimates the cost of executing the
query under different execution plans, such as using an index, scanning the table without using
coprocessor 130, and scanning the table using coprocessor 130. Query execution engine 110
then selects the execution plan that is the least expensive in terms of cost. “Cost” may be based
on one or more factors, such as CPU usage, memory usage, I/O usage, and network 1/O usage.
[0054] If query execution engine 110 determines to involve coprocessor 130 in executing the
query, then process 300 proceeds to block 330.

[0055] At block 330, query execution engine 110 sends, to hypervisor 120, an address of the
one or more instructions, an address of the input data, and an address of where output data is to
be stored. The one or more instructions may be in the form of a CCB that query execution
engine 110 generates. Hypervisor 120 translates the addresses from virtual addresses into
physical addresses and places the physical addresses into a command queue or buffer of
coprocessor 130.

[0056] After query execution engine 110 causes the one or more instructions to be stored in
memory (and, thus, are available for coprocessor 130 to read), query execution engine 110 may
perform other tasks that are related to execution of the query or that are related to another query
altogether. In this way, the operation(s) performed by coprocessor 130 are performed
asynchronously to the tasks performed by query execution engine 110, which is executed by a
general purpose microprocessor.

[0057] As noted above, computer system 100 may include multiple coprocessors. Thus,
query execution engine 110 may send instructions (e.g., a CCB) to each of multiple
coprocessors. In this way, a scan operation or a lookup operation may be divided up into
multiple “mini” operations, allowed each coprocessor to perform a different “mini” operation.
For example, a particular table may comprise 10,000 rows and there may be ten coprocessors.

Query execution engine 110 may then generate ten different CCBs, each of which is similar to

-11-

WO 2014/055137 PCT/US2013/045873

the other CCBs except that each CCB indicates a different address from which to access a
different set of 1,000 rows from the particular table. In this way, the ten coprocessors operate in
parallel on a different portion of the particular table.
[0058] Additionally or alternatively, block 330 involves query execution engine 110
selecting, based on one or more criteria, a subset of multiple coprocessors to send a CCB. For
example, query execution engine 110 may only need three coprocessors of ten total coprocessors
to each perform a scan operation (but on a different set of table data relative to each other
coprocessor). The one or more criteria that query execution engine 110 uses to select one or
more coprocessors may be a current load of each coprocessor, latency of each coprocessor,
and/or processing history of each coprocessor. For example, query execution engine 110 selects
the three coprocessors that are currently the least “loaded” or busy. The load of a coprocessor
may be reflected in the number of commands that are in one or more command queues of the
coprocessor. Thus, the more commands that are waiting to be processed by a particular
coprocessor, the more loaded that particular coprocessor becomes.
[0059] At block 340, coprocessor 130 receives the one or more instructions and performs one
or more operations reflected in the one or more instructions. For example, coprocessor 130
receives a CCB, determines that the type of operation(s) reflected in the CCB, reads in any data
necessary to complete the operation(s), performs the operation(s), and (in block 350) causes
results of the operation(s) to be sent to query execution engine 110. Execution of a command by
coprocessor 130 may be triggered by a write, by query execution engine 110 (or one of its
agents), to one or more internal registers of coprocessor 130.

SCAN OPERATION
[0060] In an embodiment, the one or more instructions indicate a scan operation and one or
more addresses where table data is stored. Coprocessor 130 retrieves the table data and performs
comparisons between a value or range of values (specified in the one or more instructions) and
the table data. Coprocessor 130 requests the table data from query execution engine 110 through
memory (e.g., memory 140), which may be dynamic RAM in the system or cache memory on
the chip. Table data may be stored in blocks, which may be relatively large, such as 64KB or
larger. Coprocessor 130 may access each of these blocks as a single dimensional array. Ina
columnar database, data is in a single dimensional array and easily readable by coprocessor 130.
In a row major database, data may be first transposed into a column major format before the data

is processed by coprocessor 130.

-12-

WO 2014/055137 PCT/US2013/045873

[0061] If the table data spans blocks that are discontinuous in memory, then coprocessor 130
separately requests each block (as a separate job). In such a scenario, query execution engine
“stitches” together the results (generated by coprocessor 130) of each job. For example, in a row
major database, the data will be strided and coprocessor 130 will select every Nth piece of data
where N is specified in the command.
[0062] Coprocessor 130 may perform the comparisons “on-the-fly”’; that is, as the table data
is streamed to coprocessor 130. Once a data element in the table data is compared to a target
value or a target range of values specified in the one or more instructions, coprocessor 130 may
(immediately or eventually) overwrite the memory used to store that data element with a new
data element from the table data.
[0063] Examples of types of comparison operations that coprocessor may be configured to
perform include greater-than (>), less-than (<), equal (==), not equal (!=), greater-than-or-equal-
to (>=), and less-than-or-equal-to (<=).
SEMANTIC-AWARE COMPRESSION

[0064] In an embodiment, coprocessor 130 is configured to operate on compressed data.
Some data is compressed using one or more non-semantic-aware compression techniques, while
other data may be compressed using one or more semantic-aware compression techniques. Data
that is compressed using a non-semantic-aware compression technique requires decompression
first before the decompressed data may be operated on. Data that is compressed using a
semantic-aware compression technique may not need to be decompressed before an operation
(for example, a number or string comparison) is performed. An example of a semantic-aware
compression technique is run-length encoding (RLE).
[0065] RLE is a form of data compression in which runs of data (that is, sequences in which
the same data value occurs in many consecutive data elements) are stored as a single data value
and count, rather than as the original run. This is most useful on data that contains many such
runs. For example, a column of a table may contain the following sequence department
identifiers:

AAAAAABBBCCCCCCCCCDDDDDAAAA
[0066] Applying a RLE data compression algorithm to the above sequence might yield the
following output: 6A3B8C5D4A. This run length code represents the original 26 characters in
only 10 characters. In RLE, the longer the run of a single data value in an input sequence, the

greater the compression.

-13-

WO 2014/055137 PCT/US2013/045873

[0067] Returning to block 340, table data may be run length encoded. Thus, the number of
table data that needs to be read into coprocessor 130 and the number of comparisons that
coprocessor 130 needs to perform against the run length encoded table data may be substantially
less than if the table data is not run length encoded. Given the example above, instead of
performing 26 comparisons (i.e., one for each of the 26 characters), coprocessor 130 would only
have to perform 5 comparisons.
[0068] The result of performing a scan operation against run length encoded data may itself
be run length encoded, which may be eventually processed by query execution engine 110.
Given the example above, the result of determining whether a row of a particular table includes
department identifier ‘A’ may be 6Y16N4Y, where Y’ indicates a positive result of the
determination and ‘N’ indicates a negative result of the determination.
[0069] Alternatively, the result of performing a scan operation against run length encoded
data may not be run length encoded. Instead, the result may be “decompressed.” Given the
example above, the result of determining whether a row of a particular table includes department
identifier ‘A’ may be YYYYYYNNNNNNNNNNNNNNNNYYYY. In this embodiment,
although a single comparison is performed for the character ‘C’ during the scan operation,
coprocessor 130 generates eight negative indications (e.g., ‘N’ or ‘0’) for that run length encoded
data element.

LOOKUP OPERATION
[0070] SQL queries frequently need to cross reference multiple tables in a database.
Processing such queries typically involves a set-intersect operation. Currently, set-intersect
operations are performed by software running on general purpose microprocessors where the
software utilizes a vector lookup (e.g., a Bloom filter lookup) when the cardinality of the table
columns being joined is small. According to an embodiment, a vector lookup (or lookup
operation) is implemented in hardware, which may be much fast than a software implementation.
[0071] Thus, in an embodiment, the one or more instructions (of block 330) indicate a
lookup operation, one or more addresses where table data is stored, and one or more addresses
where a lookup vector or array is stored. The one or more addresses where the table data (or
lookup vector) is stored may be two addresses (e.g., a starting address and an ending address) or
a single address with an offset. Coprocessor 130 causes the lookup vector and the table data to
be sent to coprocessor 130 and, for each data element in the table data, performs a lookup of the

data element in the lookup vector. In other words, coprocessor 130 uses the data element (or a

-14-

WO 2014/055137 PCT/US2013/045873

hash of the data element) to identify a position in the lookup vector and retrieve data from the
lookup vector at that position.

EXAMPLE QUERY REQUIRING A LOOKUP OPERATION
[0072] An example of a query that may require a lookup operation is a query that requests
information about “poor” people who live in “rich” zip codes. A “poor” person may be
considered someone who makes less than $30,000 per year and a “rich” zip code may be
considered a zip code where the median salary is over $100,000. In this example, coprocessor
130 requires data from at least two data objects: a lookup vector and a Person table. The lookup
vector indicates (for example, with a single bit) whether a zip code is “rich” or not. The lookup
vector may be pre-computed (i.e., that is, before the query is received) or may be computed in
response to receiving the query.
[0073] The Person table contains information about numerous people where the table
comprises at least three columns: one for each person’s name, one for each person’s salary, and
one for each person’s zip code. In one aspect, the data that indicates whether a zip code is rich or
poor is a dimension table while the Person table that contains information about each person is a
fact table. Dimension tables are typically much smaller than fact tables. In this example, the
lookup vector may be generated based on the dimension table. Relatedly, the fact table may be
represented by multiple data objects (e.g., tables): one data object may contain information about
each person’s salary and another data object may contain information about each person’s zip
code.

LOOKUP VECTOR

[0074] An example of a lookup vector is a Bloom filter, which is a probabilistic data
structure that is used to test whether an element is a member of a set. While false positives are
possible when utilizing a Bloom filter, false negatives are not. A Bloom filter is associated with
one or more hash functions, each of which maps an element to one of the array positions in the
Bloom filter.
[0075] However, a lookup vector need not be probabilistic. For example, if there are only
10,000 possible zip codes and each zip code is associated with a single bit, indicating whether
that zip code is “rich,” then the size of the lookup vector (e.g., 1.25KB) may be small enough to
fit the entire lookup vector in memory (e.g., SRAM) of coprocessor 130. Therefore, a

probabilistic lookup vector is not necessary in order to reduce its size.

-15-

WO 2014/055137 PCT/US2013/045873

[0076] FIG. 4 is a block diagram that depicts a portion of an example lookup vector 400.
Each position in lookup vector 400 is associated with a different zip code. In other words, a zip
code is used to index into lookup vector 400. Each position in lookup vector 400 contains a
single bit indicating if the corresponding zip is a “rich” zip code (‘1°) or a “poor” zip code (‘0).
[0077] If a lookup vector is not capable of fitting entirely in memory of coprocessor 130,
then (other than generating a probabilistic lookup vector) either (a) the lookup vector may be
split up (or divided) such that coprocessor 130 reads in table data each time for each portion of
the lookup vector or (b) a different coprocessor might read in table data once but only for a
portion of the lookup vector that it stores, in an embodiment where there are multiple
COPIoCessors.
[0078] In the former scenario, if coprocessor 130 can only fit, for example, Y4 of a lookup
vector into its memory, then coprocessor 130 reads table data that indicates a person’s zip code
four times (i.e., once for each portion of the lookup vector that coprocessor 130 reads in). Ifa
person’s zip code is not identified in any one pass of the table data, then the result for that person
may indicate a negative determination. The result of each pass of the table data may be one long
array of bits, one for each person indicated in the Person table.
[0079] In the latter scenario, four different coprocessors may store a different quarter of the
lookup vector and read in once table data that indicates a person’s zip code and then perform a
lookup into the lookup vector for each zip code reflected in the table data. Again, the result of a
lookup operation from each coprocessor may be one long array of bits, one for each person
indicated in the Person table.

GENERATING RESULTS OF SCAN OR LOOKUP OPERATION
[0080] In an embodiment, coprocessor 130 generates a specific output format as a result of
performing the one or more operations reflected in the one or more instructions. An example of
the specific output format is a bit vector, where each position in the bit vector indicates either a
true or a false. For example, if “10” is a target value and the comparison is determining whether
the target value is greater than a data value or data element from a table, then a result of the
comparison would be (a) true if the data value is greater than 10 and (b) false if the data value is
less than or equal to 10.
[0081] Each position in the vector corresponds to a data value or data element that was
received from the input (e.g., table) data. For example, in the above lookup operation example,

coprocessor 130 generates a bit vector that reflects “poor” people that live in “rich” zip codes. In

-16-

WO 2014/055137 PCT/US2013/045873

order to generate the bit vector, coprocessor 130 reads in data from the zip code column of the
Person table and determines, for each person indicated in the read-in data and based on the
lookup vector, whether the person lives in a “rich” zip code. Each bit in the bit vector indicates
whether a different person in the Person table lives in a “rich” zip code. Coprocessor 130 later
passes the bit vector to the general purpose microprocessor, which uses the bit vector to identify
persons that are also considered “poor.” For example, for each person that lives in a rich zip
code (as indicated in the bit vector), the general purpose microprocessor looks up a
corresponding row in the Person table to determine if the person is “poor.”
[0082] Because a bit vector is relatively small in size, processing of the bit vector by a
general purpose microprocessor is relatively fast; much faster than the general purpose processor
processing the input data directly. Furthermore, cache memory space required to store the bit
vector is much less than cache memory space that would be required to store the input data (such
as a large column of data).

GENERATING RESULTS OF SCAN OR LOOKUP OPERATION
[0083] Returning to process 300, at block 350, coprocessor 130 causes results of the scan
operation (or the lookup operation) to be available to query execution engine 110. Block 350
may involve coprocessor 130 sending the result of an operation to memory that is specified in the
one or more instructions from query execution engine 110 that initiated the operation. For
example, query execution engine 110 generated a CCB and indicated, in the CCB, that the result
of the corresponding operation is to be sent to, for example, DRAM, shared L3 cache, or cache
of a specific microprocessor (e.g., that executes query execution engine or that is different than
the microprocessor that generated the original command(s)).
[0084] Block 350 may further involve coprocessor 130 setting a flag that, when set, indicates
that the operation is complete. This flag setting acts as a signal to (1) hypervisor 120 to insert
new requests into a command queue of coprocessor 130 and (2) query execution engine 110 to
retrieve the results.
[0085] Alternatively, coprocessor 130 is programmed to always send the result of an
operation to a specific memory component (whether RAM or cache) that is accessible to query
execution engine 110.
[0086] Alternatively, instead of making the results of the scan operation available to query
execution engine 110, coprocessor 130 sends the results to another coprocessor. As noted

previously, computer system 100 may comprise multiple coprocessors. The multiple

-17-

WO 2014/055137 PCT/US2013/045873

coprocessors may be connected in a series. Each connection between two coprocessors may
include a FIFO buffer so that a “producing” coprocessor may generate results faster than a
“consuming” coprocessor can process the results. Eventually, the last coprocessor in the “chain”
sends results to a specified destination, such as in RAM or cache, that is accessible to query
execution engine 110.

[0087] At block 360, query execution engine 110 processes the results and performs one or
more other operations in order to generate a final result of the original query. While coprocessor
130 performs the scan or lookup operation, the general purpose microprocessor that executes
query execution engine 110 may be idle or may be utilized by query execution engine 110 or
another process altogether. For example, query execution engine 110 may perform one or more
other operations that are required by the query or that are not be related in any way to the query,
but rather to another query.

[0088] As an example of a scan operation, a query might request the IDs and prices of
purchase orders that were initiated during a specific range of dates. In this example, coprocessor
130 performs a scan operation that involves reading in date information for multiple purchase
orders, where the date information is reflected in a Purchase Order table. The result of the scan
operation may be a series of bits (e.g., a bit vector) that each reflects whether a corresponding
purchase order was initiated during the specified date range. Coprocessor 130 sends the result to
memory that is accessible to query execution engine 110 and may notify query execution engine
110 of the completion of the scan operation by setting a flag that query execution engine 110
checks periodically. Query execution engine 110 then uses the bits to identify, in the Purchase
Order table, the entries that correspond to those purchase orders that were initiated during the
specified date range. Then, query execution engine 110 identifies the IDs and the prices in the
identified entries and returns (e.g., displays) that information as a result of the query. The query
may also specify that the result of the query is to be ordered by price in descending order. Thus,
query execution engine 110 performs one or more operations after receiving the result of the
scan operation performed by coprocessor 110.

[0089] Given the lookup operation example where the query is to identify “poor” people
living in “rich” zip codes, in addition to instructing coprocessor 130 to perform a lookup
operation, query execution engine 110 may also have instructed coprocessor 130 (or another
coprocessor) to perform a scan operation on the Person table to identify all persons who have an

annual salary that is less than $30,000. The result of the scan operation (like the result of the

18-

WO 2014/055137 PCT/US2013/045873

lookup operation) may be in the form of a series of bits (e.g., a bit vector) where each bit
corresponds to a different person indicated in the Person table. In one embodiment, query
execution engine 110 performs an AND operation on the result of the scan operation and the
result of the lookup operation as inputs. Alternatively, coprocessor 130 (or another coprocessor)
may be programmed to perform the AND operation. In this embodiment, query execution
engine 110 may create another CCB where the operands include a (e.g., virtual) address to the
result of the lookup operation and an address to the result of the scan operation.

[0090] As described previously, the size of a lookup vector may not fit entirely in memory of
coprocessor 130 at one time. In one of the two scenarios described previously, the lookup vector
is divided into four “mini”’-vectors and coprocessor 130 operates on each mini-vector separately,
thus requiring coprocessor 130 to read in zip code data (from the Person table) for each person
four times. The total result produced by coprocessor 130 executing this lookup operation may
comprise four separate array of bits, which are eventually OR’d together to yield a single array
of bits (again, one for each person indicated in the Person table). This OR’ing step (which may
comprise three OR operations) may be performed by query execution engine 110. Alternatively,
coprocessor 130 may be programmed to perform the OR operations.

[0091] In the other of the two scenarios, query execution engine 110 causes four different
coprocessors to perform a lookup operation using different portions of the lookup vector. Then,
the result from one of the coprocessors is OR’d with the result from each of the other
coprocessors to yield a single array of bits (one for each person indicated in the Person table).
Again, this OR’ing step may be performed by query execution engine 110 or by one of the
COPIocessors.

[0092] Once query execution engine 110 determines which people live in “rich” zip codes,
query execution engine 110 uses that information to determine those people who are also
considered “poor,” as indicated above.

[0093] While the above description refers to performing either a scan operation or a lookup
operation, embodiments may involve one coprocessor performing scan operation for a particular
query while another coprocessor is performing a lookup operation for the particular query. Thus,
multiple coprocessors may execute simultaneously for the same query but perform different
operations.

[0094] An advantage of embodiments described herein is that a general purpose

microprocessor may offload data-intensive operations to one or more coprocessors that are

-19-

WO 2014/055137 PCT/US2013/045873

separate from the microprocessor in order to free up usage of the microprocessor for other tasks.
Thus, the coprocessor(s) may operate asynchronously with respect to the query processing
software that causes the coprocessors to perform the operations. Additionally, the one or more
coprocessors may perform those operations much faster than the general purpose microprocessor
executing the query processing software.

HARDWARE OVERVIEW
[0095] According to one embodiment, the techniques described herein are implemented by
one or more special-purpose computing devices. The special-purpose computing devices may be
hard-wired to perform the techniques, or may include digital electronic devices such as one or
more application-specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs)
that are persistently programmed to perform the techniques, or may include one or more general
purpose hardware processors programmed to perform the techniques pursuant to program
instructions in firmware, memory, other storage, or a combination. Such special-purpose
computing devices may also combine custom hard-wired logic, ASICs, or FPGAs with custom
programming to accomplish the techniques. The special-purpose computing devices may be
desktop computer systems, portable computer systems, handheld devices, networking devices or
any other device that incorporates hard-wired and/or program logic to implement the techniques.
[0096] For example, FIG. 5 is a block diagram that illustrates a computer system 500 upon
which an embodiment of the invention may be implemented. Computer system 500 includes a
bus 502 or other communication mechanism for communicating information, and a hardware
processor 504 coupled with bus 502 for processing information. Hardware processor 504 may
be, for example, a general purpose microprocessor.
[0097] Computer system 500 also includes a main memory 506, such as a random access
memory (RAM) or other dynamic storage device, coupled to bus 502 for storing information and
instructions to be executed by processor 504. Main memory 506 also may be used for storing
temporary variables or other intermediate information during execution of instructions to be
executed by processor 504. Such instructions, when stored in non-transitory storage media
accessible to processor 504, render computer system 500 into a special-purpose machine that is
customized to perform the operations specified in the instructions.
[0098] Computer system 500 further includes a read only memory (ROM) 508 or other static

storage device coupled to bus 502 for storing static information and instructions for processor

-20-

WO 2014/055137 PCT/US2013/045873

504. A storage device 510, such as a magnetic disk, optical disk, or solid-state drive is provided
and coupled to bus 502 for storing information and instructions.

[0099] Computer system 500 may be coupled via bus 502 to a display 512, such as a cathode
ray tube (CRT), for displaying information to a computer user. An input device 514, including
alphanumeric and other keys, is coupled to bus 502 for communicating information and
command selections to processor 504. Another type of user input device is cursor control 516,
such as a mouse, a trackball, or cursor direction keys for communicating direction information
and command selections to processor 504 and for controlling cursor movement on display 512.
This input device typically has two degrees of freedom in two axes, a first axis (e.g., X) and a
second axis (e.g., y), that allows the device to specify positions in a plane.

[0100] Computer system 500 may implement the techniques described herein using
customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic
which in combination with the computer system causes or programs computer system 500 to be a
special-purpose machine. According to one embodiment, the techniques herein are performed by
computer system 500 in response to processor 504 executing one or more sequences of one or
more instructions contained in main memory 506. Such instructions may be read into main
memory 506 from another storage medium, such as storage device 510. Execution of the
sequences of instructions contained in main memory 506 causes processor 504 to perform the
process steps described herein. In alternative embodiments, hard-wired circuitry may be used in
place of or in combination with software instructions.

[0101] The term “storage media” as used herein refers to any non-transitory media that store
data and/or instructions that cause a machine to operate in a specific fashion. Such storage
media may comprise non-volatile media and/or volatile media. Non-volatile media includes, for
example, optical disks, magnetic disks, or solid-state drives, such as storage device 510. Volatile
media includes dynamic memory, such as main memory 506. Common forms of storage media
include, for example, a floppy disk, a flexible disk, hard disk, solid-state drive, magnetic tape, or
any other magnetic data storage medium, a CD-ROM, any other optical data storage medium,
any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM,
NVRAM, any other memory chip or cartridge.

[0102] Storage media is distinct from but may be used in conjunction with transmission
media. Transmission media participates in transferring information between storage media. For

example, transmission media includes coaxial cables, copper wire and fiber optics, including the

21-

WO 2014/055137 PCT/US2013/045873

wires that comprise bus 502. Transmission media can also take the form of acoustic or light
waves, such as those generated during radio-wave and infra-red data communications.

[0103] Various forms of media may be involved in carrying one or more sequences of one or
more instructions to processor 504 for execution. For example, the instructions may initially be
carried on a magnetic disk or solid-state drive of a remote computer. The remote computer can
load the instructions into its dynamic memory and send the instructions over a telephone line
using a modem. A modem local to computer system 500 can receive the data on the telephone
line and use an infra-red transmitter to convert the data to an infra-red signal. An infra-red
detector can receive the data carried in the infra-red signal and appropriate circuitry can place the
data on bus 502. Bus 502 carries the data to main memory 506, from which processor 504
retrieves and executes the instructions. The instructions received by main memory 506 may
optionally be stored on storage device 510 either before or after execution by processor 504.
[0104] Computer system 500 also includes a communication interface 518 coupled to bus
502. Communication interface 518 provides a two-way data communication coupling to a
network link 520 that is connected to a local network 522. For example, communication
interface 518 may be an integrated services digital network (ISDN) card, cable modem, satellite
modem, or a modem to provide a data communication connection to a corresponding type of
telephone line. As another example, communication interface 518 may be a local area network
(LAN) card to provide a data communication connection to a compatible LAN. Wireless links
may also be implemented. In any such implementation, communication interface 518 sends and
receives electrical, electromagnetic or optical signals that carry digital data streams representing
various types of information.

[0105] Network link 520 typically provides data communication through one or more
networks to other data devices. For example, network link 520 may provide a connection
through local network 522 to a host computer 524 or to data equipment operated by an Internet
Service Provider (ISP) 526. ISP 526 in turn provides data communication services through the
world wide packet data communication network now commonly referred to as the “Internet”
528. Local network 522 and Internet 528 both use electrical, electromagnetic or optical signals
that carry digital data streams. The signals through the various networks and the signals on
network link 520 and through communication interface 518, which carry the digital data to and

from computer system 500, are example forms of transmission media.

22-

WO 2014/055137 PCT/US2013/045873

[0106] Computer system 500 can send messages and receive data, including program code,
through the network(s), network link 520 and communication interface 518. In the Internet
example, a server 530 might transmit a requested code for an application program through
Internet 528, ISP 526, local network 522 and communication interface 518.

[0107] The received code may be executed by processor 504 as it is received, and/or stored
in storage device 510, or other non-volatile storage for later execution.

[0108] In the foregoing specification, embodiments of the invention have been described
with reference to numerous specific details that may vary from implementation to
implementation. The specification and drawings are, accordingly, to be regarded in an
illustrative rather than a restrictive sense. The sole and exclusive indicator of the scope of the
invention, and what is intended by the applicants to be the scope of the invention, is the literal
and equivalent scope of the set of claims that issue from this application, in the specific form in

which such claims issue, including any subsequent correction.

23

WO 2014/055137 PCT/US2013/045873

CLAIMS
What is claimed is:
1. A machine-implemented method for processing a query, comprising:
determining that execution of the query involves a scan operation;
in response to determining that execution of the query involves a scan operation,
generating a scan operation command that includes, as parameters of the scan
operation command, address data that is used to identify input data to be read by a
coprocessor and one or more values that are used to compare against the input
data;
causing the scan operation command to be stored in memorys;
processing, by the coprocessor, the scan operation command by:
reading the scan operation command from the memorys;
causing the input data to be read from a location that is indicated by the address
data;
performing a comparison between the input data with the one or more values;
generating a result data based on the comparison;
causing the result data to be stored.
2. The method of Claim 1, wherein:
the scan operation command further includes operation type data that indicates a type of
operation to perform;
processing the scan operation command further by first identifying the operation type
data to determine the type of operation.
3. The method of Claim 2, further comprising:
using the operation type data to determine logic that is used to interpret the input data;
converting the input data from a first data type to a second data type that is different than
the first data type.
4, The method of Claim 1, wherein:
the input data comprises value data and count data;
an input value in the value data corresponds to data elements, the number of which is
indicated by a count value in the count data;
comparing the input data with the one or more values comprises comparing the input

value with the one or more values;

24-

10.

WO 2014/055137 PCT/US2013/045873

generating the result data comprises generating a result indication that indicates whether
the input value satisfies the one or more values;
generating the result data is performed without comparing the input value with the one or
more values said number of times.
The method of Claim 1, wherein the scan operation command further includes destination
data that indicates where the result data is to be stored.
The method of Claim 1, wherein causing the result data to be stored comprises causing
the result data to be stored in cache of a microprocessor.
The method of Claim 1, wherein causing the result data to be stored further comprises
causing, to be stored, a completion status that indicates that the scan operation command
has been performed.
The method of Claim 1, wherein:
determining that execution of the query involves a plurality of operations that includes
the scan operation and one or more other operations;
the method further comprising:
retrieving the result data from storage;
after retrieving the result data from the storage, processing the one or more other
operations that require the result data as input to the one or more other
operations.
The method of Claim 1, wherein:
the coprocessor is a first coprocessor of a plurality of coprocessors that are connected in a
series;
causing the result data to be stored comprises causing the result data to be sent to a buffer
of a second coprocessor of the plurality of coprocessors;
the method further comprising:
reading, by the second coprocessor, the result data from the buffer while the first
coprocessor is executing a portion of the query, and
based on the result data, generating, by the second coprocessor, second result
data.
The method of Claim 1, wherein the steps of determining, generating, and causing are
performed by a general purpose microprocessor executing a query execution engine,

wherein the general purpose microprocessor is separate from the coprocessor.

25.-

11.

12.

13.

14.

15.

16.

17.

WO 2014/055137 PCT/US2013/045873

The method of Claim 1, wherein:

generating the scan operation command comprises generating a plurality of scan
operation commands that includes the scan operation;

causing the scan operation command to be stored in memory comprises, for each scan
operation command of the plurality of scan operation commands, causing said
each scan operation command to be stored in the memory;

each coprocessor of a plurality of coprocessors selects a scan operation command of the
plurality of scan operation commands.

The method of Claim 1, wherein:

the address data included in the scan operation command includes one or more virtual
addresses;

the method further comprising causing the one or more virtual addresses to be replaced
with one or more physical addresses that the coprocessor uses to read the input
data.

The method of Claim 1, further comprising determining whether one or more criteria are

satisfied, wherein causing the scan operation command to be sent to the coprocessor is

only performed if the one or more criteria are satisfied.

The method of Claim 13, wherein the one or more criteria is based on an amount of data

that needs to be read in by the coprocessor to perform the scan operation.

The method of Claim 1, wherein:

the one or more values comprises a plurality of data elements;

comparing the input data with the one or more values comprises comparing the input data
with the plurality of data elements simultaneously.

The method of Claim 1, wherein generating the result data based on the comparison

comprises generating a bit vector, wherein each bit in the bit vector indicates whether a

comparison yielded a true or false.

A coprocessor that is configured to perform the steps of:

reading a scan operation command (1) that was generated by a microprocessor that
executes instructions related to query processing and (2) that includes, as
parameters of the scan operation command, address data that is used to identify
input data to be read by the coprocessor and one or more values that are used to

compare against the input data;

26-

18.

19.

20.

21.

22.

23.

WO 2014/055137 PCT/US2013/045873

causing the input data to be read from a location that is indicated by the address data;

performing a comparison between the input data and the one or more values;

generating a result data based on the comparison;

causing the microprocessor to be notified of the result data.

The coprocessor of Claim 17, wherein:

the scan operation command further includes operation type data that indicates a type of
operation to perform;

the coprocessor is further configured to perform the step of identifying the operation type
data to determine the type of operation.

The coprocessor of Claim 18, wherein the coprocessor is further configured to perform

the steps of:

using the operation type data to determine logic that is used to interpret the input data;

converting the input data from a first data type to a second data type that is different than
the first data type.

The coprocessor of Claim 17, wherein the scan operation command further includes

destination data that indicates where the result data is to be stored.

The coprocessor of Claim 17, wherein causing the result data to be stored comprises

causing the result data to be stored in cache of a microprocessor.

The coprocessor of Claim 17, wherein:

the input data comprises value data and count data;

an input value in the value data corresponds to data elements, the number of which is
indicated by a count value in the count data;

comparing the input data with the one or more values comprises comparing the input
value with the one or more values;

generating the result data comprises generating a result indication that indicates whether
the input value satisfies the one or more values;

generating the result data is performed without comparing the input value with the one or
more values said number of times.

The coprocessor of Claim 17, wherein:

the coprocessor is a first coprocessor of a plurality of coprocessors that are connected in a

series;

27-

WO 2014/055137 PCT/US2013/045873

causing the result data to be stored comprises causing the result data to be sent to a buffer
of a second coprocessor of the plurality of coprocessors.
24. The coprocessor of Claim 17, wherein:
the address data included in the scan operation command includes one or more virtual
addresses;
the method further comprising causing the one or more virtual addresses to be replaced
with one or more physical addresses that the coprocessor uses to read the input
data.
25. The coprocessor of Claim 17, wherein:
the one or more values comprises a plurality of data elements;
comparing the input data with the one or more values comprises comparing the input data
with the plurality of data elements simultaneously.
26. The coprocessor of Claim 17, wherein generating the result data based on the comparison
comprises generating a bit vector, wherein each bit in the bit vector indicates whether a

comparison yielded a true or false.

28-

WO 2014/055137 PCT/US2013/045873

AMENDED CLAIMS
received by the International Bureau on 19 September 2013

A machine-implemented method for processing a database query, comprising:

determining, separately from a coprocessor, that execution of the database query involves
a scan opcration of database object data;

in responsc to determining that execution of the databasc query involves a scan operation,
generating a scan operation command that includes, as parameters of the scan
operation command, memory address data that is used to identify input data to be
read by the coprocessor and one or more values that arc used to compare against
the input data;

causing the scan operation command to be stored in memory that is separate from the
coprocessot;

processing, by the coprocessor, the scan operation command by:
reading the scan operation command from the memory;
causing the input data to be read from a location that is indicated by the memory

address data;

petforming a comparison between the input data with the one or more values;
generating a result data based on the comparison;
causing the result data to be stored;

using the result data to compute a result for the database query.

The method of Claim 1, whetein:

the scan operation command further includes operation type data that indicates a type of
operation to perform;

processing the scan operation command further by first identifying the operation type
data to dctermine the type of operation.

The method of Claim 2, further comprising;:

using the operation type data to determine logic that is used to interpret the input data;

converting the input data from a first data type to a second data type that is different than
the first data type. |

The method of Claim 1, wherein:

the input data comprises valuc data and count data,

29
AMENDED SHEET (ARTICLE 19)

WO 2014/055137 PCT/US2013/045873

an input value in the value data corresponds to data clements, the number of which is
indicated by a count value in the count data;

comparing the input data with the one or more values comprises comparing the input
value with the one or more values;

generating the result data comprises generating a tesult indication that indicatcs whether
the input value satisfies the one or more values;

gencrating the result data is performed without comparing the input value with the one or
more values said number of times.

5. The method of Claim 1, wherein the scan operation command further includes destination
data that indicates where the result data is to be stored.

0. The method of Claim 1, wherein causing the result data to be stored comprises causing
the result data to be stored in cache of a microprocessor.

7. The method of Claim 1, wherein causing the rcsult data to be stored further comprises
causing, to be stored, a completion status that indicates that the scan operation command
has been performed.

8. The method of Claim 1, wherein:
determining that execution of the database query involves a plurality of operations that

includes the scan operation and one or more other operations;
the method further comprising:
retrieving the result data from storage;
afler retricving the result data from the storage, processing the onc or more other
operations that require the result data as ‘inpu.t to the one or more other
operations. '
9. - The method of Claim 1, wherein:
the coprocessor is a first coprocessor of a plurality of coprocessors that are connected in a
series;

causing the result data to be stored comprises causing the result data to be sent to a buffer
of a second coprocessor of the plurality of coprocessors;

the raethod further comprising:
reading, by the second coprocessor, the rcsult data from the buffer while the first

coprocessor is executing a portion of the database query, and

30
AMENDED SHEET (ARTICLE 19)

WO 2014/055137 PCT/US2013/045873

based on the result data, generating, by the second coprocessor, second result
data.
10. The method of Claim 1, wherein the steps of determining, generating, and causing are
performed by a general purpose microprocessor executing a query exccution engine,
wherein the general purpose microprocessor is separate from the coprocessor.
I1. The method of Claim], wherein:
generating the scan operation command comprises gencrating a plurality of scan
operation commands that includes the scan operation;

causing the scan opcration command to be stored in merriory comprises, for each scan
operation command of the plurality of scan operation commands, causing said
each scan operation command to be stored in the memory;

each coprocessor of a plurality of coprocessors sclects a scan operation command of the
plurality of scan operation commands.
12. The method of Claim 1, wherein:
the memory address data included in the scan operation command includes one or more
virtual addresses;

the method further comprising causing the one or more virtual addresses to be replaced
with one or more physical addresses that the coprocessor uses to read the input
data.

13, The method of Claim 1, further comprising determining whether onc or more criteria are
satisfied, wherein causing the scan operation command to be sent to the coprocessor is
only performed if the one or more criteria are satisfied.

14, The method of Claim 13, wherein the one or more critcria is based on an amount of data
that needs to be read in by the coprocessor to perform the scan operation.

15. The method of Claim 1, wherein:
the one or more values comprises a plurality of data elements;
comparing the input data with the onc or more values comprises comparing the input data

with the plurality of data elements simultaneously.

16. The method of Claim 1, wherein generating the result data bascd on the comparison
comprises generating a bit vector, wherein each bit in the bit vector indicates whether a

comparison yielded a true or false.

31
AMENDED SHEET (ARTICLE 19)

18.

19.

20.

21

22.

WO 2014/055137 PCT/US2013/045873

A coprocessor that is configured to perform the steps of:

reading a scan operation command (1) that was generated by a microprocessor that
executes instructions related to query processing and (2) that includes, as

~ parameters of the scan operation command, memory address data that is used to

identify input data to be read by the coprocessor and one or more values that are
uscd to compare against the input data;

causing the input data to be read from a location that is indicated by the memory address
data,

performing a comparison between the input data and the one or more values;

gencrating a result data based on the comparison;

causing the microprocessor to be notified of the result data.

The coprocessor of Claim 17, wherein:

the scan operation command further includes opcration type data that indicates a type of
operation to perform;

the coprocessor is further configured to perform the step of identifying the operation type
data to determine the type of operation.

The coprocessor of Claim 18, wherein the coprocessor is further configured to perform

the steps of:

using the opcration type data to determine logic that is used to interpret the input data;

converting the input data from a first data type to a second data type that is different than
the first data type.

The coprocessor of Claim 17, wherein the scan operation command further includes

destination data that indicates where the result data is to be stored.

The coprocessor of Claim 17, wherein causing the result data to be stored comprises

causing the result data to be stored in cache of a microprocessor.

The coprocessor of Claim 17, wherein:

the input data comprises value data and count data;

an input value in the value data corresponds to data elements, the number of which is
indicated by a count value in the count data;

comparing the input data with the one or more values compriscs comparing the input

value with the onc or more values;

32

AMENDED SHEET (ARTICLE 19)

23.

24.

WO 2014/055137 PCT/US2013/045873

gencrating the result data comprises generating a result indication that indicates whether
the input value satisfics the one or more values;

generating the result data is performed without comparing the input value with the one or
morc values said number of times.

The coprocessor of Claim 17, wherein:

the coprocessor is a first coprocessor of a plurality of coprocessors that are connected in a
series;

causing the result data to be stored comprises causing the result data to be sent to a buffer
of a second coprocessor of the plurality of coprocessors.

The coprocessor of Claim 17, wherein:

the memory address data included in the scan operation command includes onc or more
virtual addresses; |

the method further comprising causing the one or more virtual addresses to be replaced

- with one or more physical addresses that the coprocessor uses to read the input

data.

The coprocessor of Claim 17, wherein:

the one or more values comprises a plurality of data elements;

comparing the input data with the one or more values comprises comparing the input data
with the plurality of data elements simultaneously.

The coprocessor of Claim 17, wherein generating the result data based on the comparison

comprises generating a bit vector, wherein each bit in the bit vector indicates whether a

comparison yielded a true or false.

33

AMENDED SHEET (ARTICLE 19)

PCT/US2013/045873

WO 2014/055137

1/5

0€1 ¥0SS300dd0D

Zssalppy

021 HOSINYIdAH/SO

| SSBIPPY

w

971 v1vad 1ndL1no

Y71 V1va INdNI

7T (S)IAONVIANOD

071 AJOWAN

ANIONT NOILNDO3AX3 >w_m_30¥

oo

} "Ol4

PCT/US2013/045873

WO 2014/055137

2/5

¢ O

002 40SS300dd0D

Yy

092 3dId I9VSSIN

0¥Z 3dId A43ND

0€¢
HOSS3F4dN0O3d

022 ¥31Na3aHdS
ANVAINOD

01¢
JOV443INI
AHONTN

WO 2014/055137 PCT/US2013/045873
3/5

300
N

310
QUERY ENGINE RECEIVES A QUERY THAT TARGETS A TABLE

l

320
QUERY ENGINE DETERMINES WHETHER TO INVOLVE A COPROCESSOR IN
EXECUTING AN OPERATION REQUIRED BY THE QUERY

l

330
QUERY ENGINE CAUSES INSTRUCTION(S) TO BE STORED IN MEMORY

l

340
A COPROCESSOR READS THE INSTRUCTION(S) AND PERFORMS
OPERATION(S) REFLECTED IN THE INSTRUCTION(S)

l

350
THE COPROCESSOR CAUSES RESULTS OF THE OPERATION(S) TO BE
AVAILABLE TO THE QUERY ENGINE

l

360
QUERY ENGINE PROCESSES THE RESULTS AND PERFORMS ONE OR
MORE OTHER OPERATIONS TO GENERATE A RESULT OF THE QUERY

FIG. 3

WO 2014/055137

FIG. 4

4/5

400
N

PCT/US2013/045873

ZIP CODE

00000

10101

10102

45340

45341

99998

99999

PCT/US2013/045873

WO 2014/055137

5/5

749
1SOH

8¢¢

8%
MHOMLIN JOVAAINI 705
00T NOLLYOINNIAINOD H0SS$I00Nd
f
f
f
f
f
f
f 705
| snd
| f
f
f
LANINI |
f
| ore 805 0%
0€S | 3omaa ASOWIN
wanEs || Fowols NOY NIV

B— 14

MR |5
—/] 10Y.INOD

d0SdNd

v ¥18
J0IA30 1NaNI

AY1dSId

¢ O

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/045873

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F17/30 GO6F15/78
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data, INSPEC

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X PRANAV VAIDYA ET AL:

Column-Oriented Databases",
TECHNOLOGY AND SYSTEMS,

pages 1-30, XP055076632,
ISSN: 1936-7406, DOI:
10.1145/1968502.1968504
the whole document

"A Novel
Multicontext Coarse-Grained Reconfigurable
Architecture (CGRA) For Accelerating

ACM TRANSACTIONS ON RECONFIGURABLE

vol. 4, no. 2, 1 May 2011 (2011-05-01),

1-26

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

28 August 2013

Date of mailing of the international search report

06/09/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Warry, Lawrence

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/045873

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

Pranav Vaidya: "A Novel Multicontext
Coarse-Grained Join Accelerator For
Column-Oriented Databases",

ERSA09

2009, XP002711841,

Retrieved from the Internet:
URL:http://www.learningace.com/doc/3226820
/afblfbaf074fbb0afaf802a19c86571c/ersad9 j
oin_accelerator

[retrieved on 2013-08-27]

the whole document

US 2008/162876 Al (BOU-GHANNAM AKRAM A
[US] ET AL) 3 July 2008 (2008-07-03)

the whole document

US 2008/114724 A1 (INDECK RONALD S [US] ET
AL) 15 May 2008 (2008-05-15)

the whole document

1-26

1-26

1-26

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/045873
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2008162876 Al 03-07-2008 NONE
US 2008114724 Al 15-05-2008 US 2008114724 Al 15-05-2008
US 2010094858 Al 15-04-2010
US 2013007000 Al 03-01-2013

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - amend-body
	Page 32 - amend-body
	Page 33 - amend-body
	Page 34 - amend-body
	Page 35 - amend-body
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - wo-search-report
	Page 42 - wo-search-report
	Page 43 - wo-search-report

